WorldWideScience

Sample records for fungal cellulases created

  1. Production of cellulases by fungal cultures isolated from forest litter soil

    Directory of Open Access Journals (Sweden)

    A. Sri Lakshmi

    2012-06-01

    Full Text Available The aims of this study were the isolation and screening of fungal cultures from forest litter soil for cellulases production. In the present study, four fungal cultures were isolated and identified. Among these fungal cultures, three belonged to the genus Aspergillus and one belonged to the genus Pencillium. These fungal cultures were tested to find their ability to produce cellulases, that catalyze the degradation of cellulose, which is a linear polymer made of glucose subunits linked by beta-1, 4 glycosidic bonds. The fungal isolate 3 (Aspergillus sp. was noticed to show maximum zone of hydrolysis of carboxy-methyl cellulose and produce higher titers of cellulases including exoglucanase, endoglucanase and beta -D-glucosidase. The activities of the cellulases were determined by Filter paper assay (FPA, Carboxy-methly cellulase assay (CMCase and beta -D-glucosidase assay respectively. The total soluble sugar and extracellular protein contents of the fungal filtrates were also determined.

  2. Production and properties of fungal cellulase from native isolates ...

    African Journals Online (AJOL)

    Orange bagasse was employed as the sole carbon source for production of cellulase having adapted the organisms on cellulose and on orange bagasse. The extracellular cellulase produced by Aspergillus niger and Rhizopus species were partially purified by ammonium sulphate precipitation in a single step and dialyzed ...

  3. Reliable simultaneous zymographic method of characterization of cellulolytic enzymes from fungal cellulase complex.

    Science.gov (United States)

    Dojnov, Biljana; Grujić, Marica; Vujčić, Zoran

    2015-08-01

    A method for zymographic detection of specific cellulases in a complex (endocellulase, exocellulase, and cellobiase) from crude fermentation extracts, after a single electrophoretic separation, is described in this paper. Cellulases were printed onto a membrane and, subsequently, substrate gel. Cellobiase isoforms were detected on the membrane using esculine as substrate, endocellulase isoforms on substrate gel with copolymerized carboxymethyl cellulose (CMC), while exocellulase isoforms were detected in electrophoresis gel with 4-methylumbelliferyl-β-d-cellobioside (MUC). This can be a useful additional tool for monitoring and control of fungal cellulase production in industrial processes and fundamental research, screening for particular cellulase producers, or testing of new lignocellulose substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation and Screening of Thermo-Stable Cellulase Enzyme Fungal Producer at Different Temperature

    International Nuclear Information System (INIS)

    Noor Ashiqin Jamroo; Noor Azrimi Umor; Kamsani

    2015-01-01

    Thermo stable cellulase from fungi has high potential for industrial application. In this study, wild -type of fungal were isolate from different sources such as hot spring water, sea water, soft wood, rice straw and cow dung. The isolates were characterized by cultural and morphological observation. Based on morphological characteristics, the genera of all fungal cultures were identified namely Aspergillus fumigatus. The screening for thermo stable cellulase were done using 2 % carboxymethyl cellulose and congo red as an indicator at temperature 30, 37, 45 and 50 degree Celsius respectively. Out of 26 fungal isolates, only eight isolates were selected for further screening and showed the abilities to secrete cellulases by forming distinct halo zones on selective agar plate. The maximum halo zone ranging from 32 mm to 35 mm were obtained after 72 hour incubation at 50 degree Celsius by H2, SW1 and C1 isolates. As contrary other isolates showed halo zone range from 22 mm to 29 mm at same temperature. All the isolates showed the abilities to secrete cellulase enzyme at other temperature but lower when compared to 50 degree Celsius referred to the halo zone obtained. The SW1 isolates showed highest cellulolytic index which was 2.93 measured at 37 degree Celsius and 2.67 at 50 degree Celsius respectively. (author)

  5. Improvement of halophilic cellulase production from locally isolated fungal strain.

    Science.gov (United States)

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen; Gumba, Rizo Edwin

    2015-07-01

    Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett-Burman design and the Face Centered Central Composite Design (FCCCD). Plackett-Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization.

  6. Fungal cellulases as an aid for the saccharification of cassava

    Energy Technology Data Exchange (ETDEWEB)

    De Menezes, T J.B.; Arakaki, T; DeLamo, P R; Sales, A M

    1978-04-01

    Culture broths of cellulolytic fungi were used together with commercial anylases to enhance the saccharification of cassava starch slurry. It was found that the addition of appropriate concentration of the cellulases Trichoderma viride and a soil isolated Basidiomycete, increased both the rate of sugar formation and the degree of solubilization, and decreased the viscosity of the hydrolyzates. Owing to the improvement of the rheological properties of the must, and the additional sugar produced, an increased ethanol yield would be expected from the alcoholic fermentation of this hydrolyzate.

  7. Effect of gamma irradiation on the production of cellulase enzyme by some fungal isolates

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Mostafa, I.Y.

    1991-01-01

    The production of cellulase by various wild fungal isolates under optimal growth conditions was investigated. Trichoderma viride and Aspergillus terreus produced the highest amount of C x and C 1 cellulose enzyme. When sugar cane bagasse was used as the substrate, the highest cellulase activity was obtained by the second irradiation of T.viride at 20 krad (253.5%) followed by the first irradiation of T.viride at the same irradiation dose (134.5%). Moreover, the percentage of hydrolysis of sugar cane bagasse by the first irradiation isolates of A.terreus and F.roseum at 5 krad were 139.6 and 199.4% of their parent isolates, respectively. On the other hand, the highest dry weight and protein content of fungal mycelium were obtained in presence of solka floc cellulose.3 fig., 3 tab

  8. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    Science.gov (United States)

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  9. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting celluloytic complexes

    NARCIS (Netherlands)

    Mingardon, F.; Chanal, A.; Lopez Contreras, A.M.; Dray, C.; Bayer, E.A.; Fierobe, H.P.

    2007-01-01

    Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from

  10. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose

    DEFF Research Database (Denmark)

    Rosgaard, L.; Pedersen, S.; Meyer, Anne Boye Strunge

    2006-01-01

    This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile...... Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a P-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic...... treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased...

  11. Production of β-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase.

    Science.gov (United States)

    Inoue, Hiroyuki; Kitao, Chiaki; Yano, Shinichi; Sawayama, Shigeki

    2016-11-01

    On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of β-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high β-xylosidase dominance. β-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 β-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.

  12. NOVEL SOURCES OF FUNGAL CELLULASES OF THERMOPHILIC / THERMOTOLERANT FOR EFFICIENT DEINKING OF COMPOSITE PAPER WASTE

    Directory of Open Access Journals (Sweden)

    Rohit Soni

    2008-02-01

    Full Text Available Twenty thermophilic/thermotolerant fungal strains were isolated from compositing soils and screened for production of different enzymes (Endoglucanases, β-glucosidase, Fpase and xylanases to assess their deinking efficiency. Three isolates, Aspergillus sp. AMA, Aspergillus terreus AN1, and Myceliophthora fergusii T4I, identified on the basis of morphological and sequencing of amplified ITS1-5.8S-ITS2 rDNA region, showed significant deinking of composite waste paper (70% magazine and 30% Xerox copier/ laser print paper waste as well as improved properties (brightness, tensile strength, tear index of recycled paper sheets. The chosen strains Aspergillus sp. AMA, Aspergillus terreus AN1 and Myceliophthora fergusii T4I, showed 53, 52.7, and 40.32% deinking with increase in brightness by 4.32, 3.56, and 3.01 % ISO, respectively. These cultures were found to produce multiple endoglucanases and were characterized to lack a cellulose binding module (CBD, which may be responsible for their better deinking efficiency.

  13. Exo-endo cellulase fusion protein

    Science.gov (United States)

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  14. The VELVET A Orthologue VEL1 of Trichoderma reesei Regulates Fungal Development and Is Essential for Cellulase Gene Expression

    Science.gov (United States)

    Atanasova, Lea; Fekete, Erzsébet; Paholcsek, Melinda; Sándor, Erzsébet; Aquino, Benigno; Druzhinina, Irina S.; Karaffa, Levente; Kubicek, Christian P.

    2014-01-01

    Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex. PMID:25386652

  15. Development and selection of fungal and bacterial mutants using ionizing radiation and radioisotopes for improved enzyme production (cellulase and coagulase)

    International Nuclear Information System (INIS)

    Markov, K.I.

    1975-01-01

    Ultraviolet and gamma radiations, chemical mutagens, and combinations of chemical and physical mutagens were used in order to obtain mutants of Bacillus mesentericus and Trichoderma viridae with a higher production of coagulase and cellulase, respectively. It was possible to isolate mutant strains, with enzyme activity increased by a factor of 2 and 3

  16. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    Science.gov (United States)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  17. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.

    Science.gov (United States)

    Garvey, Megan; Klose, Holger; Fischer, Rainer; Lambertz, Camilla; Commandeur, Ulrich

    2013-10-01

    Improvement of cellulase expression has the potential to change the nature of the biofuel industry. Increasing the economic feasibility of cellulase systems would significantly broaden the range of practicable biomass conversion, lowering the environmental impact of our civilisations' fuel needs. Cellulases are derived from certain fungi and bacteria, which are often difficult to culture on an industrial scale. Accordingly, methods to recombinantly express important cellulases and other glycosyl hydrolase (GH) enzymes are under serious investigation. Herein, we examine the latest developments in bacterial, yeast, plant, and fungal expression systems. We discuss current strategies for producing cellulases, and evaluate the benefits and drawbacks in yield, stability, and activity of enzymes from each system, and the overall progress in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Duo-Chuan Li

    2011-01-01

    Full Text Available Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications.

  19. Comparative Studies on the Amylase and Cellulase Production of ...

    African Journals Online (AJOL)

    Michael Horsfall

    from different sources and examined for their ability to produce cellulase and amylase. Ten fungal ... microorganisms for enzymes and, eventually, also secondary metabolites with anti-microbial or ... polymer i.e. cellulose to smaller sugar.

  20. Influence of gamma-rays and some cultural conditions on the enhancement of cellulase production by some fungal strains isolated from cellulosic wastes

    International Nuclear Information System (INIS)

    Aziz, N.H.; Abo-State, M.A.; Girigs, A.M.P.; Youssef, Kh.A.; El-Mahalawy, A.A.

    2010-01-01

    In the present study, out of 51 fungal strains isolated from the cellulosic wastes, only 19 were CMCase-producers. Aspergillus, Fusarium and Penicillium were the most common fungal genera isolated from the cellulosic wastes. Fusarium neoceras, Aspergillus fumigatus and Fusarium oxysporium produced CMCase activity than Trichoderma viride. Out of 23 gamma-irradiated survivors from A.fumigatus and F. neoceras showing CMCase production, only two mutant strains A.fumigatus 8G-2 and F. neoceras 4G-2 produced the highest levels of CMCase than the parent strains. The results indicated that the maximum level of of CMCase activity was produced by A.fumigatus and F. neoceras strains under optiminizing conditions.

  1. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei

    Science.gov (United States)

    Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  2. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  3. Processive and nonprocessive cellulases for biofuel production. Lessons from bacterial genomes and structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David B. [Cornell Univ. Ithaca, New York, NY (United States). Dept. of Molecular Biology and Genetics

    2012-01-15

    Cellulases are key enzymes used in many processes for producing liquid fuels from biomass. Currently there many efforts to reduce the cost of cellulases using both structural approaches to improve the properties of individual cellulases and genomic approaches to identify new cellulases as well as other proteins that increase the activity of cellulases in degrading pretreated biomass materials. Fungal GH-61 proteins are important new enzymes that increase the activity of current commercial cellulases leading to lower total protein loading and thus lower cost. Recent work has greatly increased our knowledge of these novel enzymes that appear to be oxido-reductases that target crystalline cellulose and increase its accessibility to cellulases. They appear to carry out the C1 activity originally proposed by Dr Reese. Cellobiose dehydrogenase appears to interact with GH-61 proteins in this function, providing a role for this puzzling enzyme. Cellulase research is making considerable progress and appears to be poised for even greater advances. (orig.)

  4. Thermostable Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-03-24

    These are a set of slides from the conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  5. Thermostable Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2010-04-19

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  6. Engineering Cellulases for Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  7. Cellulase Production Potentials of the Microbial Profile of Some Sugarcane Bagasse Dumping Sites in Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    Kamoldeen Abiodun AJIJOLAKEWU

    2013-11-01

    Full Text Available This research work investigated cellulase production potentials of the microbial profile of three sugarcane bagasse dumping sites at Zango area, Ilorin, Nigeria. The microbial isolates were screened for cellulase production with a view to select the best organism for eventual cellulase production. Pour Plate method was used for the isolation and a total of thirteen (13 different organisms including both fungal and bacterial species were isolated and screened. Six (6 fungal isolates identified as Mucor racemosus, Aspergillus niger, Aspergillus flavus, Neurospora sitophilus, Penicillium oxalicum and Penicillium citrinum were isolated, while seven (7 different bacterial species isolated include Clostridium cellobioparum, Clostridium thermocellum,Bacillus subtilis, Bacillus pumillus, Lactobacillus spp, Pseudomonas flavescens and Serratia spp. Generally, bacterial isolates were more in abundance than fungal species. However; fungal isolates were constant and were isolated through the experimental period of three weeks. All the isolates showed cellulase production potential in varying degrees as reflected in the clearance zone around their colonies. Fungal isolates produced more cellulase than the bacterial isolates. Mucor racemosus had the highest clearance zone (75.0 mm among the fungal isolates while Clostridium cellobioparum (35.0 mm were the best producer among bacterial isolates. The least producer among fungal isolates, Penicillium citrinum (40.0 mm, is a little more than the bacterial cellulase producer (35.0 mm and is far greater than the least bacterium Serratia spp (14.0 mm.

  8. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    Science.gov (United States)

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High-throughput selection for cellulase catalysts using chemical complementation.

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  10. Chapter Three -- Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Eric R. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.; Himmel, Michael E. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Biosciences Center; Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center; Tan, Zhongping [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.

    2015-10-24

    Methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.

  11. Cellulases: biosynthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D D.Y.; Mandels, M

    1980-04-01

    Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulose suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus beta-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugar. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentrations. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10 to 25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of beta-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favorable for such application.

  12. Response to Comment on "Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA".

    Science.gov (United States)

    Brunecky, Roman; Alahuhta, Markus; Xu, Qi; Donohoe, Bryon S; Crowley, Michael F; Kataeva, Irina A; Yang, Sung-Jae; Resch, Michael G; Adams, Michael W W; Lunin, Vladimir V; Himmel, Michael E; Bomble, Yannick J

    2014-05-09

    Gusakov critiques our methodology for comparing the cellulolytic activity of the bacterial cellulase CelA with the fungal cellulase Cel7A. We address his concerns by clarifying some misconceptions, carefully referencing the literature, and justifying our approach to point out that the results from our study still stand.

  13. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion

    International Nuclear Information System (INIS)

    McDougall, G.J.; Fry, S.C.

    1990-01-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose 4 ·xylose 3 (XG7) core. The substituted oligosaccharides XG8 (glucose 4 ·xylose 3 ·galactose) and XG9n (glucose 4 ·xylose 3 ·galactose 2 ) were more effective than XG7 itself and XG9 (glucose 4 ·xylose 3 ·galactose·fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10 -4 molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of [ 3 H]xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products)

  14. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.

    Science.gov (United States)

    Saini, Reetu; Saini, Jitendra Kumar; Adsul, Mukund; Patel, Anil Kumar; Mathur, Anshu; Tuli, Deepak; Singhania, Reeta Rani

    2015-01-01

    Present study was focused on cellulase production from an indigenously isolated filamentous fungal strain, identified as Penicillium oxalicum. Initially, cellulase production under submerged fermentation in shake flasks resulted in cellulase activity of 0.7 FPU/mL. Optimization of process parameters enhanced cellulase production by 1.7-fold and resulted in maximum cellulase activity of 1.2 FPU/mL in 8 days. Cellulase production was successfully scaled-up to 7 L fermenter under controlled conditions and incubation time was reduced from 8 days to 4 days for achieving similar cellulase titer. Optimum pH and temperature for activity of the crude enzyme were pH 5 and 50 °C, respectively. At 50 °C the produced cellulase retained approximately 50% and 26% of its activity at 48 h and 72 h, respectively. Hydrolytic efficiency of P. oxalicum was comparable to commercial cellulase preparations which indicate its great potential for application in the lignocellulose hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars.

    Science.gov (United States)

    Kumar, Rajeev; Wyman, Charles E

    2014-07-01

    Cellulase enzymes contribute a major fraction of the total cost for biological conversion of lignocellulosic biomass to fuels and chemicals. Although a several fold reduction in cellulase production costs and enhancement of cellulase activity and stability have been reported in recent years, sugar yields are still lower at low enzyme doses than desired commercially. We recently reported that hemicellulose xylan and its oligomers strongly inhibit cellulase and that supplementation of cellulase with xylanase and β-xylosidase would significantly reduce such inhibition. In this study, mannan polysaccharides and their enzymatically prepared hydrolyzates were discovered to be strongly inhibitory to fungal cellulase in cellulose conversion (>50% drop in % relative conversion), even at a small concentration of 0.1 g/L, and inhibition was much greater than experienced by other known inhibitors such as cellobiose, xylooligomers, and furfural. Furthermore, cellulase inhibition dramatically increased with heteromannan loading and mannan substitution with galactose side units. In general, enzymatically prepared hydrolyzates were less inhibitory than their respective mannan polysaccharides except highly substituted ones. Supplementation of cellulase with commercial accessory enzymes such as xylanase, pectinase, and β-glucosidase was effective in greatly relieving inhibition but only for less substituted heteromannans. However, cellulase supplementation with purified heteromannan specific enzymes relieved inhibition by these more substituted heteromannans as well, suggesting that commercial preparations need to have higher amounts of such activities to realize high sugar yields at the low enzyme protein loadings needed for low cost fuels production. © 2014 Wiley Periodicals, Inc.

  16. Enhanced processive cellulases

    Science.gov (United States)

    Adney, William S.; Beckham, Gregg T.; Jarvis, Eric; Himmel, Michael E.; Decker, Stephen R.; Linger, Jeffrey G.; Podkaminer, Kara; Baker, John O.; Taylor, II, Larry; Xu, Qi; Singh, Arjun

    2017-06-20

    Nucleic acid sequences encoding chimeric polypeptides that exhibit enhanced cellulase activities are disclosed herein. These nucleic acids may be expressed in hosts such as fungi, which in turn may be cultured to produce chimeric polypeptides. Also disclosed are chimeric polypeptides and their use in the degradation of cellulosic materials.

  17. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.

    Science.gov (United States)

    Callow, Nicholas V; Ray, Christopher S; Kelbly, Matthew A; Ju, Lu-Kwang

    2016-01-01

    This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5±2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7±1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  19. Ionic liquid-tolerant cellulase enzymes

    Science.gov (United States)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  20. Cellulase Activity in Solid State Fermentation of Palm Kernel Cake with Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Massaud, M. B. N.

    2012-01-01

    Full Text Available Aims: The effect of different types of fungal inocula to the cellulase activity measured on palm kernel cake (PKC was studied. Methodology and Results: Isolate Pro-A1 which was identified as Trichoderma sp. was selected as a potential producer of cellulase via solid state fermentation technique (SSF. Two types of PKCs were used; raw PKC (containing residual oil and defatted PKC. The PKCs were inoculated with different concentrations of conidia and varying amounts (g of solid mycelia plugs (SMP for SSF. The effect of ultrafiltered crude fungal filtrate (CFF as inocula was also being tested. The highest cellulase activity of 2.454 FPU/mL was detected with 60% (wt/wt SMP applied to the raw PKC. Conversely, 2.059 FPU/mL of cellulase activity was measured when 80% (wt/wt of SMP was applied to the defatted PKC which is 62.3% higher than the untreated defatted PKC; and more than 100% increase in enzymatic activity compared to raw PKC. The cellulase activity in the SSF inoculated with 8 x 106 conidia /mL and 12 x 106 conidia /mL were 1.704 FPU/mL for raw PKC and 1.856 FPU/mL for defatted PKC, an enhancement of about 46% from uninoculated batch. Inoculation with CFF bears corresponding maximum improvement of the cellulase activity on both PKCs of 13.58% (raw and 2.86% (defatted. Conclusion, significance and impact of study: The current study proves that Trichoderma sp. in the form of SMP can enhance the cellulase activity on PKCs effectively with more than 100% increment. Fungal conidia are also a better choice in enhancing cellulase activity of Trichoderma sp. permitted that the PKC used is devoid of oil. From this study, Trichoderma sp. holds the potential of converting lignocellulosic materials into products of commercial and industrial values such as glucose and other biofuels.

  1. Enhancing Cellulase Commercial Performance for the Lignocellulosic Biomass Industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarnigan, Alisha [Danisco, US Inc., Copenhagen (Denmark)

    2016-06-07

    Cellulase enzyme loading (Bt-G) for the economic conversion of lignocellulosic biomass to ethanol is on of the key challenges identified in the Biomass Program of DOE/EERE. The goal of Danisco’s project which ran from 2008 to 2012, was to address the technical challenge by creating more efficient enzyme that could be used at lower doses, thus reducing the enzymes’ cost contribution to the conversio process. We took the approach of protein engineering of cellulase enzymes to overcome the enzymati limitations in the system of cellulosic-hydrolyzing enzymes to improve performance in conversion o biomass, thereby creating a more effective enzyme mix.

  2. Optimization of cellulase production by Penicillium sp.

    Science.gov (United States)

    Prasanna, H N; Ramanjaneyulu, G; Rajasekhar Reddy, B

    2016-12-01

    The production of cellulolytic enzymes (β-exoglucanase, β-endoglucanase and β-glucosidase) by Penicillium sp. on three different media in liquid shake culture conditions was compared. The organism exhibited relatively highest activity of endoglucanase among three enzymes measured at 7-day interval during the course of its growth on Czapek-Dox medium supplemented with 0.5 % (w/v) cellulose. Cellulose at 0.5 %, lactose at 0.5 %, sawdust at 0.5 %, yeast extract at 0.2 % as a nitrogen source, pH 5.0 and 30 °C temperature were found to be optimal for growth and cellulase production by Penicillium sp. Yields of Fpase, CMCase and β-glucosidase, attained on optimized medium with Penicillium sp. were 8.7, 25 and 9.52 U/ml, respectively with increment of 9.2, 5.9 and 43.8-folds over titers of the respective enzyme on unoptimised medium. Cellulase of the fungal culture with the ratio of β-glucosidase to Fpase greater than one will hold potential for biotechnological applications.

  3. Bioprospecting thermophiles for cellulase production: a review.

    Science.gov (United States)

    Acharya, Somen; Chaudhary, Anita

    2012-07-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  4. Bioprospecting thermophiles for cellulase production: a review

    Directory of Open Access Journals (Sweden)

    Somen Acharya

    2012-09-01

    Full Text Available Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  5. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N

    2016-09-26

    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

  6. Exogenous Cellulase Contributes to Mycoherbicidal Activity of Fusarium arthrosporioides on Orobanche aegyptiaca

    Directory of Open Access Journals (Sweden)

    Olubukola O. Babalola

    2010-01-01

    Full Text Available This paper investigates an association between the tubercle size of Orobanche aegyptiaca, tubercle death, and days to tubercle death in relation to cellulase-assisted mycoherbicide. Fusarium arthrosporioides killed 56% of tubercles when applied with cellulase compared to 35% when no cellulase was added. Death was inversely correlated with days over the two fungal treatment types. O. aegyptiaca tubercle size significantly correlated with the two other infection parameters studied. For F. arthrosporioides, only 9% (2 of the variation in days to death was explained by variation in tubercle size, whereas with cellulase it reaches 14%. In this study, mycelia of F. arthrosporioides did not show apparent damage to the tomato roots.

  7. A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.

    2010-01-01

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460

  8. Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF

    OpenAIRE

    Ishtiaq Ahmed; Muhammad Anjum Zia; Hafiz Muhammad Nasir Iqbal

    2010-01-01

    The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of prod...

  9. Cellulase hydrolysis of unsorted MSW

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    2011-01-01

    A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of surfact......A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition...... of calcium, potassium, sodium, chloride and others that may affect cellulolytic enzymes. Cellulase performance showed no effect of adding the metal ion-chelating agent EDTA to the solution. The cellulases were stable, tolerated and functioned in the presence of several contaminants....

  10. Immobilization of cellulase by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of cellulase by radiation polymerization at low temperatures was studied. The enzymatic activity of immobilized cellulase pellets varied with the monomer, enzyme concentration, and the thickness of immobilized cellulase pellets. The optimum monomer concentration in the immobilization of cellulase was 30-50% at the pellet thickness of 1.0 mm, in which the enzymatic activity was 50%. The enzymatic activity of immobilized cellulase pellets was examined using various substrates such as cellobiose, carboxymethylcellulose, and paper pretreated by radiation. It was found that irradiated paper can be hydrolyzed by immobilized cellulase pellets. (author)

  11. The Effects of Bioprocess Parameters on Cellulase Production with Trichoderma viride CMIT35

    Directory of Open Access Journals (Sweden)

    Teodor Vintila

    2010-05-01

    Full Text Available Fungal cellulases are well-studied, and have various applications in industry, health or agriculture. Species of Trichoderma can produce substantial amounts of endoglucanase, exoglucanase (saccharifying cellulases, and some strains are able to produce important quantities of β-glucosidase. A number of fungi were isolated abroad and screened for cellulolytic potential. In this study, the kinetics of cellulase production from an indigenous strain of T. viride CMIT35 is reported. Product formation parameters of different types of cellulases indicate that the studied strain of T. viride is capable of producing important levels of cellulases when grown on Mandels medium with wheat bran as carbon source. Furthermore, it was observed that production of endoglucanase reaches its maximum during exponential phase of growth, while exoglucanase during the stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be more efficient than liquid state fermentation. High production of cellulase was noted at the following parameters for liquid cultures: 4% wheat bran, 5% inoculum, 180 r.p.m. agitation, pH 5; and 60% humidity in the case of solid state fermentation.

  12. Bioprospecting thermophiles for cellulase production: a review

    OpenAIRE

    Acharya,Somen; Chaudhary,Anita

    2012-01-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of...

  13. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui; Mansfield, Elisabeth; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Vinzant, Todd

    2017-04-24

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolase activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific

  14. Cellulase producing microorganism ATCC 55702

    Science.gov (United States)

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  15. Highly Efficient Thermostable DSM Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-04-26

    These are the slides from this presentation. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  16. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture.

    Science.gov (United States)

    Li, Yonghao; Liu, Chenguang; Bai, Fengwu; Zhao, Xinqing

    2016-09-01

    Cellulase is a prerequisite for the bioconversion of lignocellulosic biomass, but its high cost presents the biggest challenge. In this article, low-cost mixture was produced from glucose through the transglycosylation reaction catalyzed by β-glucosidase for cellulase overproduction by Trichodema reesei RUT C30. As a result, cellulase titer of 90.3FPU/mL, which was more than 10 folds of that achieved with lactose as inducer, was achieved at 144h. Meanwhile, cellulase productivity was drastically increased to 627.1FPU/L/h, at least 3-5 folds higher than previously reported by the fungal species. The crude enzyme was further tested by hydrolyzing NaOH-pretreated corn stover with 15% solid loading, and 96.6g/L glucose was released with 92.6% sugar yield at 96h and 44.8g/L ethanol was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3.

    Science.gov (United States)

    Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D

    2017-10-01

    Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.

  18. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  19. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Spanish Recommend on Facebook Tweet Share ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  20. Biological nitrate removal from synthetic wastewater using a fungal ...

    African Journals Online (AJOL)

    A series of lignocellulosic fungi, capable of cellulase and/or xylanase production, were isolated from soil to be used for cellulose degradation and nitrate removal from nitrate-rich wastewater in simple one-stage anaerobic bioreactors containing grass cuttings as source of cellulose. The fungal consortium, consisting of six ...

  1. Cellulase Production by Bacteria: A Review

    OpenAIRE

    Sadhu Sangrila; Maiti Tushar Kanti

    2013-01-01

    Cellulose is an abundant natural biopolymer on earth and most dominating Agricultural waste. This cellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. It can be degraded by cellulase produced by cellulolytic bacteria. This enzyme has various industrial applications and now considered as major group of industrial enzyme. The review discusses application of cellulase, classification of cellulase, quantification...

  2. Thermostable cellulase from a thermomonospora gene

    Science.gov (United States)

    Wilson, D.B.; Walker, L.P.; Zhang, S.

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity. 3 figs.

  3. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Science.gov (United States)

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Undefined cellulase formulations hinder scientific reproducibility.

    Science.gov (United States)

    Himmel, Michael E; Abbas, Charles A; Baker, John O; Bayer, Edward A; Bomble, Yannick J; Brunecky, Roman; Chen, Xiaowen; Felby, Claus; Jeoh, Tina; Kumar, Rajeev; McCleary, Barry V; Pletschke, Brett I; Tucker, Melvin P; Wyman, Charles E; Decker, Stephen R

    2017-01-01

    In the shadow of a burgeoning biomass-to-fuels industry, biological conversion of lignocellulose to fermentable sugars in a cost-effective manner is key to the success of second-generation and advanced biofuel production. For the effective comparison of one cellulase preparation to another, cellulase assays are typically carried out with one or more engineered cellulase formulations or natural exoproteomes of known performance serving as positive controls. When these formulations have unknown composition, as is the case with several widely used commercial products, it becomes impossible to compare or reproduce work done today to work done in the future, where, for example, such preparations may not be available. Therefore, being a critical tenet of science publishing, experimental reproducibility is endangered by the continued use of these undisclosed products. We propose the introduction of standard procedures and materials to produce specific and reproducible cellulase formulations. These formulations are to serve as yardsticks to measure improvements and performance of new cellulase formulations.

  5. Production of cellulase from Pellicularia filamentosa

    Energy Technology Data Exchange (ETDEWEB)

    Mizukoshi, S; Sugi, H; Mori, H; Ichihashi, M

    1977-01-01

    In the screening test for cellulase producers from 237 strains of microorganisms, 3 strains of Fusarium sp., 2 strains of Trichoderma sp., and 4 strains of Pellicularia sp. were found to produce a lot of cellulase in their culture filtrates. Of these cellulase producing fungi, Pellicularia filamentosa isolated from diseased cucumber seedlings showed high cellulase activity comparable to that of Trichoderma viride. This preparation was active toward filter paper, avicel, carboxymethyl cellulose, soluble starch, insulin, and p-nitrophenyl ..beta..-D-glucopyranoside. The optimum temperature and pH for the filter paper degrading activity of this crude cellulase were 45/sup 0/C and 5.0, respectively. The filter paper degrading activity was inhibited by Cu/sup + +/, Fe/sup + + +/, N-bromosuccinimide, and sodium dodecyl sulfate.

  6. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  7. Fungal Endocarditis.

    Science.gov (United States)

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis.

  8. Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus; Liberti, Joanito; Giampoudakis, Konstantinos

    2014-01-01

    activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also...... for decomposition enzymes....

  9. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  10. Fungal Wound Infection

    Centers for Disease Control (CDC) Podcasts

    2016-01-28

    Dr. David Tribble, acting director of the infectious disease clinical research program at Uniformed Services University of the Health Sciences, discusses fungal wound infections after combat trauma.  Created: 1/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/28/2016.

  11. Reaction mechanism of dicofol removal by cellulase.

    Science.gov (United States)

    Wang, Ziyuan; Yang, Ting; Zhai, Zihan; Zhang, Boya; Zhang, Jianbo

    2015-10-01

    It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol (a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4'-dichloro-dibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4'-dichloro-dibenzophenone. Copyright © 2015. Published by Elsevier B.V.

  12. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  13. Mutagenesis and evaluation of cellulase properties and cellulose hydrolysis of Talaromyces piceus.

    Science.gov (United States)

    He, Ronglin; Cai, Pengli; Wu, Gaihong; Zhang, Can; Zhang, Dongyuan; Chen, Shulin

    2015-11-01

    A fungal species with a high yield of β-glucosidase was isolated and identified as Talaromyces piceus 9-3 (anamorph: Penicillium piceum) by morphological and molecular characterization. Through dimethyl sulphate mutagenesis, the cellulase over-producing strain T. piceus H16 was obtained. The FPase activity and β-glucosidase activity of T. piceus H16 were 5.83 and 53.12 IU ml(-1) respectively--a 5.34- and 4.43-times improvement from the parent strain T. piceus 9-3. The optimum pH and temperature for enzyme activity were pH 5.0 and 50 °C for FPase activity and pH 5.0 and 55 °C for β-glucosidase activity, respectively. The cellulase were quite stable at 37 °C, only losing cellulase from T. piceus H16 with that from Trichoderma reesei RUT C30 on hydrolyzing different substrates due to the high β-glucosidase activity of T. piceus H16. These data suggest that T. piceus H16 can be used as a potential cellulase producer with good prospects.

  14. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates.

    Science.gov (United States)

    Delabona, Priscila da Silva; Lima, Deise Juliana; Robl, Diogo; Rabelo, Sarita Cândida; Farinas, Cristiane Sanchez; Pradella, José Geraldo da Cruz

    2016-05-01

    The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.

  15. A steady state theory for processive cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2013-01-01

    coefficient’, which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low....... This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....

  16. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina

    2013-01-01

    Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...... on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly...

  17. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  18. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    Available online at http://www.tjpr.org ... Methods: Molecular community structure of the newly selected thermophilic bacterial ... Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, Characterization, Hot spring ... Currently, one.

  19. Production and Partial Characterization of Cellulases from ...

    African Journals Online (AJOL)

    The optimum temperature of CCI was 55°C whereas that of CCO was 50°C. The stability of enzymes from 35°C to 70°C was studied. At 70°C, CCO cellulase has lost 45.88% of its original activity while CCI cellulase lost 58.14%. The results show that corn cob could serve as a cheap carbon source for the production of fungi ...

  20. Production of immobilized cellulase enzyme by some microorganisms from the rice straw agro-waste using γ-irradiation

    International Nuclear Information System (INIS)

    Mohamed, M.A.Z.

    2014-01-01

    Studies were carried out using 14 fungal cultures screened for their ability to produce cellulase enzymes. A .hortai was selected for the present research as a potent cellulase producer. Cultural and nutritional factors affecting cellulase production were also investigated in order to optimize the fermentation conditions for the maximization of production. The obtained results revealed that, the maximum cellulase production (0.23 U/ml) was achieved after 96 h in a liquid medium (Ph 7.0) inoculated with 10% v/v inoculum size, at temperature 37 ºC, containing (gL -1 ) CMC, 5.0; yeast extract, 0.1; (NH 4 ) 2 SO 4 , 0.5; KH 2 PO 4 , 10.0; MgSO 4 .7H 2 O, 0.1 and NaCl, 0.2. The activity remained almost stable between ph 6.0 and 7.0. The highest cellulase activity (1.18 U/ml) was obtained at a lactose concentration of (5.0 gL -1 ). Partial purification of the crude cellulase by ammonium sulphate 70% saturation showed the highest specific enzyme activity and purification fold (2.3 U/mg protein and 2.12 fold, respectively). Different carriers and methods were used to select the suitable one for cellulase immobilization. Poly (acrylamide-co-acrylic acid) prepared by diazotization method increase S.E.A and the amount of immobilized enzyme to be (2.3 U/mg protein and 2.8 mg), respectively. The immobilized cellulase shows better operational stability, including wider ph and thermal ranges. The immobilized cellulase remained fully active up to 60°C. The kinetic parameters Km and Vmax were determined. The increase of the apparent Km after immobilization clearly indicates an apparent lower affinity of the immobilized enzyme for its substrate than the free enzyme. The resulting immobilized cellulase exhibited good reusability on degradation of rice straw agricultural wastes and also show good storage stability, that it lost only 17 % of its initial activity after 6 weeks.

  1. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

    2011-02-17

    Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

  2. Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R

    coastal waters in the form of detritus and live animals (fish, shellfish). The detritus serves as a nutrient source and is the base of an extensive primary source in the food web of the tropical marine ecosystem (Raghukumar et al. 1994). Marine fungi... for the production of alkaline cellulase enzymes using agricultural and industrial wastes such as wheat bran, rice bran, cotton seeds, sugarcane bagasse and paper as substrates. Materials and Methods Sampling of plant material and isolation of fungal...

  3. Cellulase and Xylanase Production from Three Isolates of Indigenous Endophytic Fungi

    Science.gov (United States)

    Yopi; Tasia, W.; Melliawati, R.

    2017-12-01

    Cellulases and hemicellulases have good potential to be used in energy production, in pulp, paper, textile industries, as well as in animal feed industries. Moreover, its utilization in food industries also cannot be ignored, among others, cellulase and xylanase roles in bakery, wine, and fruit and vegetables juice production. One of the potential enzyme source is endophytic fungi. Object of this study is to explore the potency of endophytic fungi isolated from medicinal plants as source of cellulolytic and xylanolytic enzymes. HL.47F.216 is endophytic fungi isolated from traditional medicinal plants ironwood tree was determined as xylanase producer. HL.51F.235 from pin-flower tree is cellulase producer, while CBN.6F.29 which produces both xylanase and cellulase is originated from Madagascar periwinkle. HL.47F.216 showed 2.5 cm in clear zone diameter and its xylanase activity was 0.262 U/mL with optimum condition pH 7 at 50°C. HL.51F.235 showed 2.4 cm clear zone diameter and 0.239 U/mL of cellulase activity at pH 5 and 70°C. CBN.6F.29 showed 2.8 cm and 0.394 U/mL (pH 5, 40°C) for its cellulase activity, while 2.3 cm and 0.439 U/mL (pH 8, 70°C) for its xylanase activity. Xylanase from HL.47F.216 and CBN.6F.29 showed low molecular masses of 20 kDa and 37-50 kDa, respectively. Molecular masses for cellulases from HL.51F.235 and CBN.6F.29 were 25 and 50 kDa for HL.51F.235 and 100 kDa for CBN.6F.29. Based on macroscopic and microscopic identification, fungal isolate CBN.6F.29 is a member of Class Coelomycetes, while HL.47F.216 was Acremonium sp. and HL.51F.235 was Aspergillus nigri.

  4. Recent advances in cellulase technology

    Energy Technology Data Exchange (ETDEWEB)

    Mandels, M; Sternberg, D

    1976-01-01

    Interest in studies of cellulase activities of micro-organisms has increased in recent years because it is hoped that such studies may contribute to the solution of some of our current pressing economic problems. Cellulose is the only organic material that is annually replenishable in very large quantities. The utilization of this resource is greatly simplified if cellulose is first hydrolyzed to its monomer, glucose. This conversion could be accomplished by either acid or enzymatic hydrolysis. When using acid, expensive corrosion proof equipment if required. Moreover, the crystalline structure of cellulose makes it very resistant to acid so that the temperature and acid concentration needed to achieve hydrolysis also cause decomposition of the resulting sugars so that yields of glucose are low and the syrups contain unwanted by-products and reversion compounds. The enzymes on the other hand are specific for cellulose and related polysaccharides and they do not react with impurities that may be present in waste cellulose. Moreover, the reaction takes place at moderate conditions so glucose is not degraded and enzymatically produced syrups are fairly pure and constant in composition. This paper is a review of the recent efforts at Natick to develop a practical process for enzymatic saccharification of waste cellulose and produce cheap technical glucose.

  5. cellulase and pectinase production potentials of aspergillus niger

    African Journals Online (AJOL)

    Prof Oyeleke

    preparation of denim fabrics in textile industries, maceration of protoplasts ... exploitation of cellulase is its high cost of production ... catabolite repression influence economics of cellulase ... of enzyme production is to replace pure cellulose by.

  6. Approaches for improving thermostability characteristics in cellulases.

    Science.gov (United States)

    Anbar, Michael; Bayer, Edward A

    2012-01-01

    Many efforts have been invested to reduce the cost of biofuel production to substitute renewable sources of energy for fossil-based fuels. At the forefront of these efforts are the initiatives to convert plant-derived cellulosic material to biofuels. Although significant improvements have been achieved recently in cellulase engineering in both efficiency and cost reduction, complete degradation of lignocellulosic material still requires very long periods of time and high enzyme loads. Thermostable cellulases offer many advantages in the bioconversion process, which include increase in specific activity, higher levels of stability, inhibition of microbial growth, increase in mass transfer rate due to lower fluid viscosity, and greater flexibility in the bioprocess. Besides rational design methods, which require deep understanding of protein structure-function relationship, two of the major methods for improvement in specific cellulase properties are directed evolution and knowledge-based library design based on multiple sequence alignments. In this chapter, we provide protocols for constructing and screening of improved thermostable cellulases. Modifications of these protocols may also be used for screening for other improved properties of cellulases such as pH tolerance, high salt, and more. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai

    Science.gov (United States)

    Rahman, Mohammad; Inoue, Akira; Ojima, Takao

    2014-08-01

    The common sea hare Aplysia kurodai is known to be a good source for the enzymes degrading seaweed polysaccharides. Recently four cellulases, i.e., 95 kDa, 66 kDa, 45 kDa and 21 kDa enzymes, were isolated from A. kurodai (Tsuji et al., PLoS ONE, 8, e65418, 2013). The former three cellulases were regarded as glycosyl-hydrolase-family 9 (GHF9) enzymes, while the 21 kDa cellulase was suggested to be a GHF45 enzyme. The 21 kDa cellulase was significantly heat stable, and appeared to be advantageous in performing heterogeneous expression and protein-engineering study. In the present study, we determined some enzymatic properties of the 21 kDa cellulase and cloned its cDNA to provide the basis for the protein engineering study of this cellulase. The purified 21 kDa enzyme, termed AkEG21 in the present study, hydrolyzed carboxymethyl cellulose with an optimal pH and temperature at 4.5 and 40oC, respectively. AkEG21 was considerably heat-stable, i.e., it was not inactivated by the incubation at 55oC for 30 min. AkEG21 degraded phosphoric-acid-swollen cellulose producing cellotriose and cellobiose as major end products but hardly degraded oligosaccharides smaller than tetrasaccharide. This indicated that AkEG21 is an endolytic ?-1,4-glucanase (EC 3.2.1.4). A cDNA of 1,013 bp encoding AkEG21 was amplified by PCR and the amino-acid sequence of 197 residues was deduced. The sequence comprised the initiation Met, the putative signal peptide of 16 residues for secretion and the catalytic domain of 180 residues, which lined from the N-terminus in this order. The sequence of the catalytic domain showed 47-62% amino-acid identities to those of GHF45 cellulases reported in other mollusks. Both the catalytic residues and the N-glycosylation residues known in other GHF45 cellulases were conserved in AkEG21. Phylogenetic analysis for the amino-acid sequences suggested the close relation between AkEG21 and fungal GHF45 cellulases.

  8. Characterization of a GHF45 cellulase, AkEG21, from the common sea hare Aplysia kurodai

    Directory of Open Access Journals (Sweden)

    Mohammad Matiur Rahman

    2014-08-01

    Full Text Available The common sea hare Aplysia kurodai is known to be a good source for the enzymes degrading seaweed polysaccharides. Recently four cellulases, i.e., 95 kDa, 66 kDa, 45 kDa and 21 kDa enzymes, were isolated from A. kurodai (Tsuji et al., PLoS ONE, 8, e65418, 2013. The former three cellulases were regarded as glycosyl-hydrolase-family 9 (GHF9 enzymes, while the 21 kDa cellulase was suggested to be a GHF45 enzyme. The 21 kDa cellulase was significantly heat stable, and appeared to be advantageous in performing heterogeneous expression and protein-engineering study. In the present study, we determined some enzymatic properties of the 21 kDa cellulase and cloned its cDNA to provide the basis for the protein engineering study of this cellulase. The purified 21 kDa enzyme, termed AkEG21 in the present study, hydrolyzed carboxymethyl cellulose with an optimal pH and temperature at 4.5 and 40oC, respectively. AkEG21 was considerably heat-stable, i.e., it was not inactivated by the incubation at 55oC for 30 min. AkEG21 degraded phosphoric-acid-swollen cellulose producing cellotriose and cellobiose as major end products but hardly degraded oligosaccharides smaller than tetrasaccharide. This indicated that AkEG21 is an endolytic -1,4-glucanase (EC 3.2.1.4. A cDNA of 1,013 bp encoding AkEG21 was amplified by PCR and the amino-acid sequence of 197 residues was deduced. The sequence comprised the initiation Met, the putative signal peptide of 16 residues for secretion and the catalytic domain of 180 residues, which lined from the N-terminus in this order. The sequence of the catalytic domain showed 47-62% amino-acid identities to those of GHF45 cellulases reported in other mollusks. Both the catalytic residues and the N-glycosylation residues known in other GHF45 cellulases were conserved in AkEG21. Phylogenetic analysis for the amino-acid sequences suggested the close relation between AkEG21 and fungal GHF45 cellulases.

  9. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjuan [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Qiu, Jianhui, E-mail: qiu@akita-pu.ac.jp [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan); Feng, Huixia [College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Zang, Limin; Sakai, Eiichi [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Engineering, Akita Prefectural University, Akita 015-0055 (Japan)

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase.

  10. cellulase and pectinase production potentials of aspergillus niger

    African Journals Online (AJOL)

    Prof Oyeleke

    Production of pectinase and cellulase by Aspergillus niger from corn cob was examined. ... organism was screened for enzymatic activity using Carboxyl Methyl ... preparation of denim fabrics in textile industries, ... exploitation of cellulase is its high cost of production ... catabolite repression influence economics of cellulase.

  11. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles.

    Science.gov (United States)

    Ladole, Mayur Ramrao; Mevada, Jayesh Sevantilal; Pandit, Aniruddha Bhalchandra

    2017-09-01

    In the present work, effect of low power, low frequency ultrasound on cellulase immobilized magnetic nanoparticles (cellulase@MNPs) was studied. To gain maximum activity recovery in cellulase@MNPs various parameters viz. ratio of MNPs:cellulase, concentration of glutaraldehyde and cross-linking time were optimized. The influence of ultrasonic power on cellulase@MNPs was studied. Under ultrasonic conditions at 24kHz, 6W power, and 6min of incubation time there was almost 3.6 fold increased in the catalytic activity of immobilized cellulase over the control. Results also indicated that there was improvement in pH and temperature stability of cellulase@MNPs. Furthermore, thermal deactivation energy required was more in cellulase@MNPs than that of the free cellulase. Secondary structural analysis revealed that there were conformational changes in free cellulase and cellulase@MNPs before and after sonication which might be responsible for enhanced activity after ultrasonication. Finally, the influence of ultrasound and cellulase@MNPs for biomass hydrolysis was studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    These results indicated that banana peel provided necessary nutrients for cell growth and cellulase synthesis. It can be used as a potential substrate for cellulase production by T. viride GIM 3.0010 under solid-state fermentation. To the best of our knowledge, this is the first report on cellulase production using banana peel.

  13. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    International Nuclear Information System (INIS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-01-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase

  14. Kinetic Studies on Trichoderna Viride Cellulase

    International Nuclear Information System (INIS)

    Saw Aung; Oo Aung; Aung Myint

    2002-02-01

    Studies on cellulase enzyme (EC 3.2.1.4), which catalyzes the hydrolysis of. cellulose to yield glucose, were made. Cellulase from a fungus source, Trichoderma viride was cultivated on Czapek's agar medium and enzyme production broth medium was employed for parameter tests. The microscopic examination and cellulase hydrolysis test on subcultured fungi were applied to confirm the T. viride species. A calibration curve for standard glucose was plotted by using visible spectroscopy. Dinitrosalicylic acid was used as enzyme reaction inhibitor and the colour intensity was measured in a UV-visible spectrophotometer at a λ max of 570 nm. The parameters such as optimum pH, optimum temperature, effect of substrate concentration, effect, of enzyme concentration, enzyme unit (EU), reaction order (n), maximum velocity (V max ), Michaelis-Menten constant (K m ) using various substrates, viz., carboxy methylcellulose, cotton fibre and filter paper determined. (author)

  15. Behaviour of the activity of cellulase irradiated under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I

    1988-04-18

    The activity of cellulase irradiated at various conditions has been studied. The activity of cellulase irradiated at low temperature (-78 /sup 0/C) increased by heating at 40 /sup 0/C, but that of cellulase irradiated at high temperature above 0 /sup 0/C decreased. The activity of cellulase irradiated in the dry state at room temperature increased with irradiation dose. The effect of adding biological substances such as amino acids, enzymes, and agar on the irradiation of cellulase was studied. It was shown that EDTA and p-benzoquinone have a protective ability against radiation-induced inactivation of the enzyme.

  16. Behaviour of the activity of cellulase irradiated under various conditions

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    The activity of cellulase irradiated at various conditions has been studied. The activity of cellulase irradiated at low temperature (-78 0 C) increased by heating at 40 0 C, but that of cellulase irradiated at high temperature above 0 0 C decreased. The activity of cellulase irradiated in the dry state at room temperature increased with irradiation dose. The effect of adding biological substances such as amino acids, enzymes, and agar on the irradiation of cellulase was studied. It was shown that EDTA and p-benzoquinone have a protective ability against radiation-induced inactivation of the enzyme. (author)

  17. Carboxymethyl-cellulase from Erwina chrysanthemi. I. Production and regulation of extracellular carboxymethyl-cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M.H.; Chambost, J.P.; Magnan, M.; Cattaneo, J.

    1984-01-01

    Erwinia chrysanthemi strain 3665 growing aerobically in a mineral salts medium containing various carbon sources constitutively secreted low levels of carboxymethyl-cellulase activity. Increased production of this activity was triggered by conditions which reduced the growth rate. The results obtained with continuous culture suggested that this production was controlled by a mechanism similar to catabolite repression. However, other factors might be implicated in the regulation of cellulase production.

  18. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    Science.gov (United States)

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  19. Secretion of clostridium cellulase by E. coli

    Science.gov (United States)

    Yu, Ida Kuo

    1998-01-01

    A gene, encoding an endocellulase from a newly isolated mesophilic Clostridium strain IY-2 which can digest bamboo fibers, cellulose, rice straw, and sawdust, was isolated by shotgun cloning in an E. coli expression plasmid pLC2833. E. coli positive clones were selected based on their ability to hydrolyze milled bamboo fibers and cellulose present in agar plates. One clone contained a 2.8 kb DNA fragment that was responsible for cellulase activity. Western blot analyses indicated that the positive clone produced a secreted cellulase with a mass of about 58,000 daltons that was identical in size to the subunit of one of the three major Clostridium cellulases. The products of cellulose digestion by this cloned cellulase were cellotetraose and soluble higher polymers. The cloned DNA contained signal sequences capable of directing the secretion of heterologous proteins from an E. coli host. The invention describes a bioprocess for the treatment of cellulosic plant materials to produce cellular growth substrates and fermentation end products suitable for production of liquid fuels, solvents, and acids.

  20. Production and Partial Characterization of Cellulases from ...

    African Journals Online (AJOL)

    Prof. Ogunji

    fermentation, the organism produced cellulase. Activity ... become of considerable economic interest to develop processes for effective treatment and ... industries such as textile, laundry, pulp and paper and fruit juice extraction. ..... choices for costly enzymes that lose appreciable part of their activity even when stored at low.

  1. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosa...

  2. Catalytic performance of corn stover hydrolysis by a new isolate Penicillium sp. ECU0913 producing both cellulase and xylanase.

    Science.gov (United States)

    Shi, Qian-Qian; Sun, Jie; Yu, Hui-Lei; Li, Chun-Xiu; Bao, Jie; Xu, Jian-He

    2011-07-01

    A fungal strain, marked as ECU0913, producing high activities of both cellulase and xylanase was newly isolated from soil sample collected near decaying straw and identified as Penicillium sp. based on internal transcribed spacer sequence homology. The cultivation of this fungus produced both cellulase (2.40 FPU/ml) and xylanase (241 IU/ml) on a stepwisely optimized medium at 30 °C for 144 h. The cellulase and xylanase from Penicillium sp. ECU0913 was stable at an ambient temperature with half-lives of 28 and 12 days, respectively. Addition of 3 M sorbitol greatly improved the thermostability of the two enzymes, with half-lives increased by 2.3 and 188-folds, respectively. Catalytic performance of the Penicillium cellulase and xylanase was evaluated by the hydrolysis of corn stover pretreated by steam explosion. With an enzyme dosage of 50 FPU/g dry substrate, the conversions of cellulose and hemicellulose reached 77.2% and 47.5%, respectively, without adding any accessory enzyme.

  3. CELLULASES FROM THE BASIDIO - MYCETES CULTURAL LIQUID

    Directory of Open Access Journals (Sweden)

    К. G. Dreval

    2013-04-01

    Full Text Available Adsorption of cellulases on substrate taking place during the cultivation process was determined. Adsorbed enzymes can be eluted by buffer solution with high ionic strength, but for determine their activity they should be transferred into the aqueous solution. On the basis of the results a method for obtaining of cellulases preparations from cultural liquids of basidiomycetes was developed. This method is the elution of cellulases from the cultivation substrate of basidiomycetes. It was found that using of the last allows to obtain enzymatic preparations with a high degree of purification in 3 stages (salting out of proteins — dialysis — gelchromatography. Cellulase preparations received original products of basidiomycetes strains К-1, А-Дон-02, Д-1 Irpex lacteus and AnSc-1 Daedaleopsis confragosa f. confragosa were obtained. They contained different proteins, enzymes with specific peaks out of column and their activity. However, common to them was a distinct maximum of outing from the column by endoglucanases or cellobiases, which may indicate that the studied cellulolytic complexes of basidiomycetes do not contain multiple forms of cellulases with different molecular mass. This method allowed to obtain preparations with different degree of purification in comparing with the original culture filtrate 7,3 for endoglucanase and 33,3 for cellobiase of strain А-Дон-02 I. lacteus; 13,1 for endoglucanase and 25,5 for cellobiase of strain Д-1 I. lacteus; 29,9 for endoglucanase and 90,1 for cellobiase of strain К-1 I. lacteus; 2,1 for endoglucanase and 30,6 for cellobiase of strain AnSc-1 D. confragosa f. confragosa.

  4. Effect of cellulase producing fungi on plant residues degradation used as organic fertilizer

    International Nuclear Information System (INIS)

    Ibrahim, R.M.M

    2009-01-01

    Series of laboratory and field experiments were conducted at Soil microbiology Unit and Farm of soil and Water research department, Nuclear Research Center, Atomic Energy Authority, Egypt. Laboratory experiments revealed that between nine fungal strain, A. niger was the most potent cellulolytic fungus able to degrade many cellulosic sources (CP, CMC, and FP). Study the effect of cellulolytic fungi on degradation of plant residues used as organic fertilizer in addition to nitrogen fixing bacteria (symbiotically) on lupine growth, yield and nutrients uptake (Field experiment) had been carried out. This objective aims to recycling different plant residues in soil which is consistent with (sustainable development) and utilization of these organic residues as a single carbon source for cellulolytic fungi.Application of 15 N- tracer technique gave us the chance and opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to lupine plant under the effect of cellulolytic fungi on different plant residues.The obtained results could be summarized as following:I.Laboratory Technique Selection of the most potent cellulolytic fungi 1-Nine fungal strains of Aspergillus niger; Penicillium oxalicum; Trichoderma longibranchiatum; Aspergillus terreus; Aspergillus flavus; Alterrnaria sp.; Trichderma harzianum ; Rhizopus sp. and Syncephalastrum sp. obtained from different sources and tested for their cellulolytic activity. 2-Aspergillus niger and Pencillium oxalicum exhibited the highest cellulase productivity followed by Trichoderma longibranchiatum and Aspergillus terreus.3- fungal mixtures of the most potent four genera Aspergillus niger; Penicillium oxalicum; Trichoderma longibranchiatum and Aspergillus terreus found to have a lower cellulolytic activities for all substrates compared with single inoculation with A. niger.4-Highest FPase activities were exhibited by A. niger when filter paper (FP) used as a carbon source.5-A. niger is

  5. Comparison of Different Methods of Denim Stone Washing by Pumice Stone, Acid Cellulases and Neutral Cellulases

    Directory of Open Access Journals (Sweden)

    M. Montazer

    2007-10-01

    Full Text Available Denim is a casual garment normally used by young people and extremely influential in shaping the fashion industry. Among various garments, these garments are subjected to innovations. This work is an attempt to compare the different methods of stone washing using pumice stones, acid cellulases and neutral cellulases or in combination of these methods. The effects of different processing conditions on the garment are compared and reported. Color differences of samples are probed by reflective colorimeter on the front side as well as the backside and also the white pocket of the garment.The abrasion resistance, tensile strength and crease recovery angle of samples are also reported. The XRD spectra are used to calculate the crystalline degrees of the selected samples. Moreover, fiber surfaces of some treated samples have been observed by SEM. The results indicate that treatment of denim with pumice stone with equal weight of garment causes a small color differences. The addition of cellulases to the washing, however, accelerates the color fading. Also, lower staining observed on the white pocket when the garment was treated with cellulases. However, the neutralcellulases increase the garment fading and decrease the staining on the white pocket. It is also observed that pumice stone with cellulases damages the fabric surface, although it is of a minimal damage.

  6. Mutant strain screening and its enzyme production conditions of cellulase

    International Nuclear Information System (INIS)

    Dong Zhiyang; Zhu Lingxiang; Yu Wei

    2001-01-01

    Trichoderma koeningii T-801, which can produce relatively high cellulase, was isolated. The ability of producing cellulase of mutant T-801 had increased 1.77 times after treated with nitrous guanide and γ-ray and was higher than that of Trichoderma QM9414. The medium with straw powder as carbon source and peptone as nitrogen source is optimal and the maximum cellulase activity is reached at 30 degree C and pH 5.0 when cultured for 5 days

  7. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    Science.gov (United States)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  8. Comparison of the thermostability of cellulases from various thermophilic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczak, G; Breuil, C; Yamada, J; Saddler, J N

    1987-10-01

    The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (> 45/sup 0/C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.

  9. Cellulose digestion in Monochamus marmorator Kby. (coleoptera: Cerambycidae): role of acquired fungal enzymes

    International Nuclear Information System (INIS)

    Kukol, J.J.; Martin, M.M.

    1986-01-01

    Larvae of the balsam fir sawyer, Monochamus marmorator Kby. (Coleoptera, Cerambycidae), contain midgut digestive enzymes active against hemicellulose and cellulose. Cellulases from larvae fed on balsam fir wood infected with the fungus, Trichoderma harzianum Rifai (Deuteromycetes, Moniliales, Moniliaceae), were found to be identical to those of the cellulase complex produced by this fungus when compared using chromatography, electrophoresis, and isofocusing. When larvae are maintained on a fungusfree diet, their midgut fluids lack cellulolytic activity, and they are unable to digest cellulose. Cellulolytic capacity can be restored by feeding the larvae wood permeated by fungi. We conclude that the enzymes which enable M. marmorator larvae to digest cellulose are not produced by the larvae. Instead, the larvae acquire the capacity to digest cellulose by ingesting active fungal cellulases while feeding in fungus-infected wood

  10. Cellulose digestion in Monochamus marmorator Kby. (coleoptera: Cerambycidae): role of acquired fungal enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kukol, J.J.; Martin, M.M.

    1986-05-01

    Larvae of the balsam fir sawyer, Monochamus marmorator Kby. (Coleoptera, Cerambycidae), contain midgut digestive enzymes active against hemicellulose and cellulose. Cellulases from larvae fed on balsam fir wood infected with the fungus, Trichoderma harzianum Rifai (Deuteromycetes, Moniliales, Moniliaceae), were found to be identical to those of the cellulase complex produced by this fungus when compared using chromatography, electrophoresis, and isofocusing. When larvae are maintained on a fungusfree diet, their midgut fluids lack cellulolytic activity, and they are unable to digest cellulose. Cellulolytic capacity can be restored by feeding the larvae wood permeated by fungi. We conclude that the enzymes which enable M. marmorator larvae to digest cellulose are not produced by the larvae. Instead, the larvae acquire the capacity to digest cellulose by ingesting active fungal cellulases while feeding in fungus-infected wood.

  11. Kinetic study of Escherichia coli BPPTCC-EgRK2 to produce recombinant cellulase for ethanol production from oil palm empty fruit bunch

    Science.gov (United States)

    Limoes, S.; Rahman, S. F.; Setyahadi, S.; Gozan, M.

    2018-03-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 46,77% (w/w) of cellulose. The high cellulose content of OPEFB can be used as a substrate for bacteria cultivation to produce cellulase. By using OPEFB as an alternative substrate, the production cost of cellulase in industrial scale can be suppressed. However, currently there are no available research that simulate a cellulase production plant design. Prior to simulating the cellulase plant design, kinetic studies of bacteria used in cultivation are needed to create an accurate simulation. In this research, kinetic studies of E. coli BPPTCC-EgRK2 growth were examined with the Monod approach to get the Monod constant (Ks) and maximum specific growth rate (μmax). This study found that E. coli BPPTCC-EgRK2 have μmax and Ks of 1.581 and 0.0709 respectively. BPPTCC-EgRK2 produced intracellular cellulase, thus gave linear correlation between cell concentration and cellulase production.

  12. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba

    2016-01-01

    Amine functionalized cobalt ferrite (AF-CoFe 2 O 4 ) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe 2 O 4 were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe 2 O 4 remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe 2 O 4 . The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe 2 O 4 surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe 2 O 4 MNPs can be considered as promising candidate for enzyme immobilization.

  13. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  14. Exploration of indigenous agrowastes for cellulase production by ...

    African Journals Online (AJOL)

    admin

    2012-05-10

    May 10, 2012 ... However, high lignin content of B. campestris made the cellulose inaccessible and resulted in poor yield of enzyme. Therefore, S. spontaneum has a great potential to serve as a cheaper, easily available and reasonable substrate for cellulase production. Key words: Agrowastes, cellulase, indigenous, ...

  15. Corn stover-enhanced cellulase production by Aspergillus niger ...

    African Journals Online (AJOL)

    The production of extracellular cellulases by Aspergilus niger NRRL 567 on corn stover was studied in liquid state fermentation. In this study, three cellulases, exoglucanase (EXG), endoglucanase (EG) and β-glucosidase (BGL) were produced by A. niger NRRL 567. The optimal pH, temperature and incubation time for ...

  16. Production Of Cellulase In Plastids Of Transgenic Plants

    Science.gov (United States)

    Lamppa, Gayle

    2002-08-06

    A genetic construct encoding a fusion protein including endogluconase E1 and a transit peptide is used to transform plants. The plants produce cellulase by expressing the genetic construct. The cellulase is targeted to plastids and can be collected and purified.

  17. Optimization for cellulase production by Aspergillus niger using saw ...

    African Journals Online (AJOL)

    Cellulases are a group of hydrolytic enzymes and are capable of degrading lignocellulosic materials. Cellulases have wide range of applications. This work focuses on factors relevant for improvement of enzymatic hydrolysis of saw dust by using Aspergillus niger. Different cultural conditions were examined to assess their ...

  18. Fungal Endophthalmitis

    Centers for Disease Control (CDC) Podcasts

    2012-11-05

    In this podcast, CDC’s Dr. Rachel Smith discusses endophthalmitis and focuses on funcal endophthalmitis, including diagnosis and treatment.  Created: 11/5/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/5/2012.

  19. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion.

    Science.gov (United States)

    Berrin, Jean-Guy; Navarro, David; Couturier, Marie; Olivé, Caroline; Grisel, Sacha; Haon, Mireille; Taussac, Sabine; Lechat, Christian; Courtecuisse, Régis; Favel, Anne; Coutinho, Pedro M; Lesage-Meessen, Laurence

    2012-09-01

    In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.

  20. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  1. Exogenous cellulases of thermophilic micromycetes. Pt. 1. Selection of producers

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Kvachadze, L; Aleksidze, T; Chartishvili, D K

    1986-01-01

    More than 600 micromycetes - representatives of different genera have been investigated for their ability to produce exogenous cellulases. Most of the investigated cultures were found to produce these enzymes, 24 cultures being thermophilic, and 18 thermotolerant. Cellulase or its derivatives proved to be the most favourable carbon source for cellulase secretion. None of the thermophilic cultures studied manifested the ability of exogenous exoglucanase biosynthesis. Using UV-rays as mutagen, a mutant strain A. terreus T-49 has been obtained being characterized by an increased endo-glucanase and cellobiase activity, as compared to the initial strains. The cellulase preparations of thermophilic micromycetes contain one cellulasic component: endo-glucanase, or two: endo-glucanase and cellobiase.

  2. Immobilization of cellulase using porous polymer matrix

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  3. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  4. Measurement and characterization of cellulase activity in sclerophyllous forest litter.

    Science.gov (United States)

    Criquet, Stéven

    2002-07-01

    Cellulases are enzymatic proteins which hydrolyze cellulose polymers to smaller oligosaccharides, cellobiose and glucose. They consist in three major types of enzymes: endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC 3.2.1.91) and beta-glucosidases (EC 3.2.1.21) which play an essential role in carbon turnover of forest ecosystem. The aim of this study was firstly to determine the parameters (i.e. buffer type, pH, temperature, quantity of litter, incubation time and reagent type) which affect the measurement of cellulase activity in a sclerophyllous forest litter, and secondly to compare two methods for measuring cellulase activity: a direct method and an extraction method. In the direct method, the litter was directly incubated with a buffered solution containing the enzyme substrate, whereas in the extraction method, the cellulases were firstly extracted before measuring their activity. The results were compared with other studies about soil cellulase activity, and it appeared that several parameters (buffer type, pH, temperature and sample quantity) which influence the measurement of cellulase activity differ according to whether a soil or a litter is considered. Concerning the procedure used for the measurement of cellulase activity, results showed that the activity values were higher when using an extraction procedure than when using a direct procedure. The extraction procedure, combined with a concentration stage of the extract, also allowed electrophoretic analysis (PAGE) of the cellulases extracted from the litter. The electrophoretic pattern revealed two cellulase isoenzymes which may be related to the occurrence of two pH-activity peaks of these enzymes when citrate buffer was used for the measurement of cellulase activity in the litter.

  5. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis; Kaper, Thijs; Kelemen, Bradley R.; Liu, Amy D.

    2017-07-04

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  6. Cellulase variants with improved expression, activity and stability, and use thereof

    Science.gov (United States)

    Aehle, Wolfgang; Bott, Richard R; Bower, Benjamin; Caspi, Jonathan; Estell, David A; Goedegebuur, Frits; Hommes, Ronaldus W.J.; Kaper, Thijs; Kelemen, Bradley; Kralj, Slavko; Van Lieshout, Johan; Nikolaev, Igor; Van Stigt Thans, Sander; Wallace, Louise; Vogtentanz, Gudrun; Sandgren, Mats

    2014-03-25

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  7. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Science.gov (United States)

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  8. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  9. Cellulase variants with improved expression, activity and stability, and use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Aehle, Wolfgang; Bott, Richard R.; Bower, Benjamin S.; Caspi, Jonathan; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus Joannes; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Van Lieshout, Johannes Franciscus Thomas; Nikolaev, Igor; Wallace, Louise; Van Stigt Thans, Sander; Vogtentanz, Gudrun; Sandgren, Mats

    2016-12-20

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having improved expression, activity and/or stability. Also described are nucleic acids encoding the cellulase variants, compositions comprising the cellulase variants, and methods of use thereof.

  10. Fungal enzyme production in seeds of transgenic canola plants for conversion of cellulosic materials to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.J.; Beauchemin, K.A. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Moloney, M.M. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1997-07-01

    The fuel alcohol industry makes use of industrial enzymes to effectively degrade fibrous plant cell walls. Carbohydrates in cellulosic materials are in the form of complex sugars that can be hydrolyzed to simple sugars by fungal fibrolytic enzymes such as cellulases and xylanases. This study was conducted to find a cost effective way to produce fibrolytic enzymes using gene fusion technology in which a xylanase gene and a cellulase gene from two fungal species are introduced into canola to be a carrier for the production of these enzymes. The two genes had been analyzed for maximal enzymatic activity to minimize side effects. Results of the study demonstrated the stability and potential of transgenic oil-bodies as an immobilized enzyme matrix, and showed that it is possible to express fibrolytic enzymes in canola.

  11. Enhanced cellulase and β-glucosidase production by a mutant of Alternaria alternata

    International Nuclear Information System (INIS)

    Macris, B.J.

    1984-01-01

    The cellulolytic activity of the wild type and a mutant strain of A. alternata was investigated. Mutants were induced by gamma radiation. A suspension of about 10 5 condidia/mL in 0.05M phosphate buffer pH 5 were irradiated in a gamma-cell-type (Cammacell 220, Atomic Energy of Canada Limited, Ottawa, Canada) 60 Co source with a dose rate of 2.5 krad/min. The amount of radiation given was 70 krad which resulted in about 10% survival level. The stock culture was maintained on a sterile growth medium supplemented with 1% cellulose 123 and 0.3% agar. Following the incubation period, the fungal biomass was harvested by centrifugation (5000g for 10 min) and the clarified supernatant was used as the source of cellulase and β-glucosidase

  12. The Activity of Cellulase from Thermophilic Fungi Isolated from CaneBagasses

    International Nuclear Information System (INIS)

    Aris-Toharisman; Akyunul-Jannah

    2000-01-01

    The activity of cellulase from thermophilic fungi isolated from canebagasses has been measured. This wild strain, named fungal strain PJ-2,secreted a large amount of cellulolytic enzyme components consisting of 0.46units of avicelase, 0.8 units of carboxymethyl cellulose hydrolizing enzyme(CMCase) and 0.5 units of β-glucosidase per ml of culture broth oncultivation in Mandels Reese medium for 7 days at 500 o C. These cellulasesproduction was lower than that of Trichoderma reesei NRRL 3653 producing 0.5units/ml avicelase, 1.6 units/ml CMCase and 0.4 units/ml ofβ-glucosidase cultivated in the same medium at 30 o C. However,thermophilic fungi may be potential to be exploited in lignocellulosedegradation at the tropical areas as the process usually needs temperature ofabove 50 o C. (author)

  13. Hydrolysis of cellulose in a cellulase-bead fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I; Tanaka, S; Shirai, T; Suzuki, S

    1977-08-01

    Cellulase was immobilized in a collagen fibril matrix, and no leakage of cellulase from the collagen fibril matrix was observed. The immobilized cellulase was more stable than the native cellulase. The substrate cellulose was hydrolyzed quantitatively with immobilized cellulase. The final reaction product was identified as glucose. Immobilized cellulase was used in a fluidized bed reactor where the pressure drop of the fluidized bed reactor was low and constant. Cellulose was hydrolyzed to glucose by the cellulase-bead fluidized bed reactor. The minimum flow velocity (U/sub mf/) was 0.5 cm/sec and the optimum flow velocity of the cellulose hydrolysis was 1 cm/sec.

  14. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.

    Science.gov (United States)

    Gao, Dongfang; Luan, Yaqi; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2015-10-09

    The microbial conversion of plant biomass into value added products is an attractive option to address the impacts of petroleum dependency. The Gram-negative bacterium Escherichia coli is commonly used as host for the industrial production of various chemical products with a variety of sugars as carbon sources. However, this strain neither produces endogenous cellulose degradation enzymes nor secrets heterologous cellulases for its poor secretory capacity. Thus, a cellulolytic E. coli strain capable of growth on plant biomass would be the first step towards producing chemicals and fuels. We previously identified the catalytic domain of a cellulase (Cel-CD) and its N-terminal sequence (N20) that can serve as carriers for the efficient extracellular production of target enzymes. This finding suggested that cellulose-utilizing E. coli can be engineered with minimal heterologous enzymes. In this study, a β-glucosidase (Tfu0937) was fused to Cel-CD and its N-terminal sequence respectively to obtain E. coli strains that were able to hydrolyze the cellulose. Recombinant strains were confirmed to use the amorphous cellulose as well as cellobiose as the sole carbon source for growth. Furthermore, both strains were engineered with poly (3-hydroxybutyrate) (PHB) synthesis pathway to demonstrate the production of biodegradable polyesters directly from cellulose materials without exogenously added cellulases. The yield of PHB reached 2.57-8.23 wt% content of cell dry weight directly from amorphous cellulose/cellobiose. Moreover, we found the Cel-CD and N20 secretion system can also be used for the extracellular production of other hydrolytic enzymes. This study suggested that a cellulose-utilizing E. coli was created based on a heterologous cellulase secretion system and can be used to produce biofuels and biochemicals directly from cellulose. This system also offers a platform for conversion of other abundant renewable biomass to biofuels and biorefinery products.

  15. Creating standards: Creating illusions?

    DEFF Research Database (Denmark)

    Linneberg, Mai Skjøtt

    written standards may open up for the creation of illusions. These are created when written standards' content is not in accordance with the perception standard adopters and standard users have of the specific practice phenomenon's content. This general theoretical argument is exemplified by the specific...

  16. Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes

    Directory of Open Access Journals (Sweden)

    Aza Kobakhidze

    2016-09-01

    Full Text Available This paper reports regulation of endoglucanase (EC 3.2.1.4 and xylanase (EC 3.2.1.8 production in submerged cultivation of four white-rot basidiomycetes. Among carbon sources tested, the Avicel-based medium provided the highest levels of both hydrolases activities in all fungal cultures. However, the maximum endoglucanase and xylanase activities of the tested basidiomycetes varied from 3.9 U/ml and 7.4 U/ml in Fomes fomentarius to 34.2 U/ml and 29.5 U/ml in Pseudotrametes gibbosa, respectively (P. gibbosa specific cellulase and xylanase activities achieved 8.55 and 7.38 U/mg, respectively. Replacement of Avicel in the medium with carboxymethyl cellulose or xylan significantly lowered the enzyme yield of the tested fungi. Moreover, xylan did not ensure high xylanase activity of these fungi. Lignocellulosic substrates used as a carbon source provided poorer productivity (the specific CMCase activity was 1.12–3.62 U/mg and the specific xylanase activity was 1.95–3.32 U/mg. Expression of endoglucanase and xylanase synthesis in Panus lecometei and P. gibbosa was inducible; supplementation of the glycerol-containing medium with Avicel accompanied with a sharp increase of the fungal specific CMCase and xylanase activities from 0.02–0.04 U/mg to 1.30–8.55 U/mg. Supplementation of the Avicel-induced cultures with glucose or glycerol caused a catabolite repression of the cellulase and xylanase formation by P. gibbosa and P. lecometei. The enzyme synthesis resumed only after depletion of easily metabolizable carbon source, glucose or glycerol, from the medium. The data received suggest that in the tested fungi endoglucanase and xylanase synthesis is under control by a common regulatory mechanism.

  17. Cytochemical localization of cellulases in decayed and nondecayed wood

    Energy Technology Data Exchange (ETDEWEB)

    Murmanis, L.; Highley, T.L.; Palmer, J.G.

    1987-01-01

    Sawdust from undecayed western hemlock wood and from wood previously decayed by the brown-rot fungus Poria placenta or by the white-rot fungus Ganoderma applanatum was incubated with commercial cellulase from Trichoderma viride. Samples were treated cytochemically to locate cellulase activity and examined by TEM. Results showed that cellulase degraded undecayed wood extensively, with the attack starting on the outer border of a cell wall and progressing inside. Wood decayed by P. placenta, with or without cellulase incubation, and treated by the cytochemical test showed uniform distribution of electron dense particles throughout the cell walls. In wood decayed by G. applanatum, cellulase degradation was similar to that in undecayed wood. From measurements of particle diameter it is suggested that electron dense particles are cellulase. It is concluded that brown-rot and white-rot fungi have different effects on the microstructure of wood. The brown-rot fungus appears to open the wood microstructure so that cellulase can diffuse throughout the degraded tracheid wall.

  18. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  19. Genetic modification: a tool for enhancing cellulase secretion

    Directory of Open Access Journals (Sweden)

    Anusuiya Singh

    2017-06-01

    Full Text Available Lignocellulosic (LC biomass is abundantly available as a low-cost resource on the Earth. LC conversion into energy carriers is the most accepted alternative energy production policy because it is non-competitor to food or feed. LC ethanol has brought cellulases to the forefront which was otherwise lost in oblivion during last decades. LC biomass can be converted into value added products or into sugars by various routes, e.g., thermo-chemical, chemical, or biological methods. Biological route via enzymes is one of the most eco-friendly and feasible method. Both fungi and bacteria are known to degrade biomass. Fungi have been greatly exploited for cellulase production due to their inherent properties of secreting extracellular cellulase. These microorganisms are known as cellulase producers for many decades, however, to bring the enzymatic biomass conversion to an economically feasible status, extensive research efforts have been made in last decade to enhance cellulase titers. Mutations and genetic interventions along with bioprocess development have played a very important role for enhancing cellulase production. This review will present a critical overview of the on-going research towards improving cellulase production for biofuel industry via genetic modification, which will include mutation and genetic engineering employed to exert changes at genetic level in microorganisms.

  20. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  1. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Directory of Open Access Journals (Sweden)

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  2. Induction of Cellulase by Gentiobiose and Its Sulfur-Containing Analog in Penicillium purpurogenum

    OpenAIRE

    Kurasawa, Takashi; Yachi, Makoto; Suto, Manabu; Kamagata, Yoichi; Takao, Shoichi; Tomita, Fusao

    1992-01-01

    Cellulase induction by β-glucodisaccharides was investigated by using non-cellulase-induced mycelia of Penicillium purpurogenum P-26, a highly-cellulase-producing fungus. Gentiobiose induced significant amounts of cellulase compared with cellobiose when nojirimycin was added to the induction medium to inhibit extracellular β-glucosidase activity. Thiogentiobiose (6-S-β-d-glucopyranosyl-6-thio-d-glucose), a sulfur-containing analog of gentiobiose, was more effective for cellulase induction tha...

  3. Exogenous cellulases of thermophilic micromycetes. Pt. 2. Thermostability of enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Gogilashvili, L; Svanidze, R; Buachidze, T; Chirgadze, L; Nizharadze, D

    1986-01-01

    The ability of a large number of higher fungi to form extracellular cellulases is investigated. Some representatives of these fungi grow at 40-50/sup 0/C, and form extracellular cellulases exceeding cellulases of mesophilic fungi in thermostability. It is shown that cellulases of higher thermophilic fungi differ by their thermostability. The temperature optimum of cellulase action of higher fungi occurs within 60-62/sup 0/C.

  4. Optimization for cellulase production by Aspergillus niger using saw ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Several other parameters like inoculum size, time duration, nitrogen source and its ... β-1,4-D-glycosidic bond (Gielkens et al., 1999; Han et al.,. 1995). Cellulase is a ... management, medical/pharmaceutical industry, proto-.

  5. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    Science.gov (United States)

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  6. Characterization of cellulase production by carbon sources in two ...

    African Journals Online (AJOL)

    user7

    2013-11-27

    Nov 27, 2013 ... 7State Key Laboratory of Urban Water Resource and Environment, Harbin ... China. Accepted 28 March, 2012. The induction of cellulase production in two .... prevent the contamination with bacteria, 0.02% sodium azide was.

  7. Biohydrolysis of Saccharum spontaneum for cellulase production by ...

    African Journals Online (AJOL)

    admin

    2012-03-13

    Mar 13, 2012 ... fermentation (SSF) for economic production of cellulase. ... Lignocellulosic biomass has been regarded as a ... concentration in the pretreated substrate. It can be fairly ... wheat straw, 54% and sorghum straw, 61%) for ethanol.

  8. Cellulase production by a strain of Myrothecium sp

    Energy Technology Data Exchange (ETDEWEB)

    Kassim, E A

    1982-01-01

    A selected strain of Myrothecium sp. was grown on various carbon sources. Cellulose was found to be the highest inducer of cellulase. CMC resulted in a moderate yield. Cellobiose resulted in a low yield. Glucose, lactose, maltose and soluble starch resulted in negligible amounts. Sucrose, glycerol and salicin were extremely unsuitable. Continuous addition of glucose or cellobiose during fermentation to cellulosic culture media reduced cellulase production, whereas addition of the entire amount of glucose or cellobiose at the beginning did not affect the enzyme production. The enzyme was precipitated from the culture filtrate with ammonium sulfate giving crude cellulase, 3854 units/g. The culture filtrate was concentrated to a one-tenth volume, 97 units/ml. The purified cellulase was prepared by dialysis 6700 units/g of enzyme precipitate.

  9. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Pan, Xuejun; Saddler, Jack N

    2009-09-09

    Enzymatic hydrolysis of lignocellulosic materials is significantly affected by cellulase adsorption onto the lignocellulosic substrates and lignin. The presence of lignin plays an important role in lignocellulosic hydrolysis and enzyme recycling. Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their adsorption onto cellulolytic enzyme lignin (CEL) from steam-exploded Lodgepole pine (SELP) and ethanol (organosolv)-pretreated Lodgepole pine (EPLP). The adsorption affinity of cellulase (Celluclast) onto isolated lignin (CEL-EPLP and CEL-SELP) was slightly higher than that from corresponding EPLP and SELP substrates on the basis of the Langmuir constants. Effects of temperature, ionic strength, and surfactant on cellulase adsorption onto isolated lignin were also explored in this study. Thermodynamic analysis of enzyme adsorption onto isolated lignin (Gibbs free energy change DeltaG(0) approximately -30 kJ/mol) indicated this adsorption was a spontaneous process. The addition of surfactant (0.2% w/v) could reduce the adsorption of cellulase onto CEL-SELP by 60%. Two types of adsorption isotherm were compared for cellulase adsorption onto isolated lignin. A Langmuir adsorption isotherm showed better fit for the experimental data than a Freundlich adsorption isotherm.

  10. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    Science.gov (United States)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  11. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    Science.gov (United States)

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  12. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  13. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Science.gov (United States)

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  14. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  15. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Science.gov (United States)

    2010-04-01

    ... cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used in food in accordance with the following prescribed conditions: (a) Aspergillus niger is classified as follows: Class, Deuteromycetes; order, Moniliales; family, Moniliaceae...

  16. October 2012 Multistate Fungal Meningitis Outbreak

    Centers for Disease Control (CDC) Podcasts

    2012-10-17

    This podcast gives an overview of the October 2012 multistate fungal meningitis outbreak, including symptoms to watch for and a website for up-to-date information.  Created: 10/17/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/17/2012.

  17. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    Science.gov (United States)

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  18. Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium.

    OpenAIRE

    Allcock, E R; Woods, D R

    1981-01-01

    The production of a carboxymethyl cellulase and a cellobiase by Clostridium acetobutylicum was demonstrated. In liquid medium the carboxymethyl cellulase was induced by molasses, and it was not repressed by glucose. Optimum carboxymethyl cellulase activity occurred at pH 4.6 and 37 degrees C.

  19. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Directory of Open Access Journals (Sweden)

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  20. Preparation of cellulase concoction using differential adsorption phenomenon.

    Science.gov (United States)

    Birhade, Sachinkumar; Pednekar, Mukesh; Sagwal, Shilpa; Odaneth, Annamma; Lali, Arvind

    2017-05-28

    Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.

  1. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa

    Science.gov (United States)

    2012-01-01

    Background Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. Results We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. Conclusions Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa. PMID:22462823

  2. Enhancement of Cellulase Production by Cellulomonas Fimi and Bacillus Subtilis

    International Nuclear Information System (INIS)

    Omer, A.M.

    2012-01-01

    Two bacterial strains identified as Cellulomonas fimi and Baciliius subtilus are cosidered as highly active cellulytic bacteria. Trials for maximizing the cellulolytic activites of the two strains were conducted. A maximum cellulase production was achieved at 1 and 1.5%carboxy methyl cellulose as carbon source, sodium nitrate and yeast as nitrogen source for Cellulomonas fimi and Bacillus subtilis, respectively. Incubation temprature at 30 and 45 degree C, ph at 6 and 7 achieved the highest activity of cellulase for Cellulomonas fimi and bacillus subtilis, respectively

  3. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions

    DEFF Research Database (Denmark)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr

    2013-01-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated...... to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose...

  4. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kutter, Jörg Peter; Olsson, Lisbeth

    2003-01-01

    Cellulases and hemicellulases are two classes of enzymes produced by filamentous fungi and secreted into the cultivation medium. Both classes of enzymes consist of a subset of classes of which the fungi produce several enzymes with varying molecular mass and pI but similar enzymatic activities....... Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused...

  5. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  6. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    Science.gov (United States)

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  7. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  8. Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C C; Cole, A L; Shepherd, M G

    1980-10-01

    Three cellulases and a beta-glucosidase were purified from the culture filtrate of the thermophilic fungus Thermoascus aurantiacus. The isolated enzymes were all homogenous on polyacrylamide-disc-gel electrophoresis. Data from chromatography on Bio-Gel P-60 and solium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated molecular weights of 87000 (beta-glucosidase), 78000 (cellulase I), 49000 (cellulase II) and 34000 (cellulase III); the carbohydrate contents of the enzymes were 33.0 5.5, 2.6 and 1.8% (w/w) respectively. Although the three purified cellulases were active toward filter paper, only cellulases I and III were active towards CM (Carboxymethyl)-cellulose. Cellulase I was also active towards yeast glucan. The Km and catalytic-centre-activity values for the enzymes were as follows; 0.52 mu mol/ml and 6.5 by 10 to the power of 4 for beta-glucosidase on p-nitrophenyl beta-d-glucoside, 3.9 mg/ml and 6.3 for cellulase I on CM-cellulose, 1.2 mg/ml and 1.1 for cellulase I on yeast glucan, 34.4 mg/ml and 0.34 for cellulase II on filter paper, and 1.9 mg/ml and 33 for cellulase III on CM-cellulose.

  9. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification.

    Science.gov (United States)

    Xue, Yiyun; Wang, Xiahui; Chen, Xingxuan; Hu, Jiajun; Gao, Min-Tian; Li, Jixiang

    2017-06-01

    Effects of different cellulases on the release of phenolic acids from rice straw during saccharification were investigated in this study. All cellulases tested increased the contents of phenolic acids during saccharification. However, few free phenolic acids were detected, as they were present in conjugated form after saccharification when the cellulases from Trichoderma reesei, Trichoderma viride and Aspergillus niger were used. On the other hand, phenolic acids were present in free form when the Acremonium cellulolyticus cellulase was used. Assays of enzyme activity showed that, besides high cellulase activity, the A. cellulolyticus cellulase exhibited high feruloyl esterase (FAE) activity. A synergistic interaction between FAE and cellulase led to the increase in free phenolic acids, and thus an increase in antioxidative and antiradical activities of the phenolic acids. Moreover, a cost estimation demonstrated the feasibility of phenolic acids as value-added products to reduce the total production cost of ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fungal Skin Infections

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... touching the infected area. Diagnosis Skin scrapings or cultures Doctors may suspect a fungal infection when they ...

  12. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  13. Fungal symbiosis unearthed

    Science.gov (United States)

    Daniel Cullen

    2008-01-01

    Associations between plant roots and fungi are a feature of many terrestrial ecosystems. The genome sequence of a prominent fungal partner opens new avenues for studying such mycorrhizal interactions....

  14. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.

    Science.gov (United States)

    Kern, Marcelo; McGeehan, John E; Streeter, Simon D; Martin, Richard N A; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P; Payne, Christina M; Himmel, Michael E; Schnorr, Kirk; Beckham, Gregg T; Cragg, Simon M; Bruce, Neil C; McQueen-Mason, Simon J

    2013-06-18

    Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.

  15. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... The feasibility of using banana peel for the production of cellulase by Trichoderma viride GIM 3.0010 in solid-state fermentation was evaluated in this study. The effect of incubation time, incubation temperature, initial moisture content of the medium, inoculum size and supplementation of carbon sources ...

  16. Fermentative production and kinetics of cellulase protein on ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-16

    Oct 16, 2006 ... various carbon sources on the production of cellulase using strains of T. reesei QM 9414, 97.177 and Tm3. Pretreatment of sugarcane ... of cellulose chains; endo-1,4-β-D-glucanses which cleave internal glucosidic bonds ..... production, the Leudeking piret model (Rakshit and Sahai, 1991) was developed.

  17. Importance of cellulase cocktails favoring hydrolysis of cellulose.

    Science.gov (United States)

    Victoria, Juliet; Odaneth, Annamma; Lali, Arvind

    2017-07-03

    Depolymerization of lignocellulosic biomass is catalyzed by groups of enzymes whose action is influenced by substrate features and the composition of cellulase preparation. Cellulases contain a mixture of variety of enzymes, whose proportions dictate the saccharification of biomass. In the current study, four cellulase preparation varying in their composition were used to hydrolyze two types of alkali-treated biomass (aqueous ammonia-treated rice straw and sodium hydroxide-treated rice straw) to study the effect on catalytic rate, saccharification yields, and sugar release profile. We found that substrate features affected the extent of saccharification but had minimal effect on the sugar release pattern. In addition, complete hydrolysis to glucose was observed with enzyme preparation having at least a cellobiase units (CBU)/carboxymethyl cellulose (CMC) ratio (>0.15), while a modified enzyme ratio can be used for oligosaccharide synthesis. Thus, cellulase preparation with defined ratios of the three main enzymes can improve the saccharification which is of utmost importance in defining the success of lignocellulose-based economies.

  18. Improving cellulase production by Aspergillus niger using adaptive evolution

    NARCIS (Netherlands)

    Patyshakuliyeva, Aleksandrina; Arentshorst, Mark; Allijn, Iris E; Ram, Arthur F J; de Vries, Ronald P; Gelber, Isabelle Benoit

    OBJECTIVES: To evaluate the potential of adaptive evolution as a tool in generating strains with an improved production of plant biomass degrading enzymes. RESULTS: An Aspergillus niger cellulase mutant was obtained by adaptive evolution. Physiological properties of this mutant revealed a five times

  19. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    Science.gov (United States)

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  20. Cellulase enzyme: Homology modeling, binding site identification and molecular docking

    Science.gov (United States)

    Selvam, K.; Senbagam, D.; Selvankumar, T.; Sudhakar, C.; Kamala-Kannan, S.; Senthilkumar, B.; Govarthanan, M.

    2017-12-01

    Cellulase is an enzyme that degrades the linear polysaccharide like cellulose into glucose by breaking the β-1,4- glycosidic bonds. These enzymes are the third largest enzymes with a great potential towards the ethanol production and play a vital role in degrading the biomass. The production of ethanol depends upon the ability of the cellulose to utilize the wide range of substrates. In this study, the 3D structure of cellulase from Acinetobacter sp. was modeled by using Modeler 9v9 and validated by Ramachandran plot. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 81.1% in the favored region, compatibility of an atomic model (3D) with amino acid sequence (1D) for the model was observed as 78.21% and 49.395% for Verify 3D and ERRAT at SAVES server. As the binding efficacy with the substrate might suggests the choice of the substrate as carbon and nitrogen sources, the cellobiose, cellotetraose, cellotetriose and laminaribiose were employed in the docking studies. The docking of cellobiose, cellotetraose, cellotetriose and laminaribiose with cellulase exhibited the binding energy of -6.1523 kJ/mol, -7.8759 kJ/mol,-6.1590 kJ/mol and -6.7185 kJ/mol, respectively. These docking studies revealed that cellulase has the greater potential towards the cellotetraose as a substrate for the high yield of ethanol.

  1. (Trametes sp.) in the production of cellulase and xylanase

    African Journals Online (AJOL)

    Nanda

    2016-05-18

    May 18, 2016 ... in solid-sate fermentation (SSF), in this work, the production of cellulase and xylanase by the fungus ... sugars can be converted to ethanol, lactic acid and ... substances; clarification of juices and wines; improving ..... SSF processes has a marked effect on growth kinetics, ..... Overview of applied solid-state.

  2. Endogenous cellulases in stylet secretions of cyst nematodes

    NARCIS (Netherlands)

    Smant, G.

    1998-01-01

    This thesis describes the identification ofβ-1,4-endoglucanases (cellulases) in stylet secretions of the two cyst nematodes species, Globodera rostochiensis and Heterodera glycines . A novel method was developed to raise monoclonal antibodies that were

  3. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  4. Ecofriendly application of cellulase and xylanase producing marine ...

    African Journals Online (AJOL)

    windows

    2012-06-05

    Jun 5, 2012 ... producing marine Streptomyces clavuligerus as enhancer in ... pretreatment of cellulase, xylanase and the combination of enzymes. ... Energy from biomass holds a promising scope under ... investment, simplification of the fermentation media, ... biodegradation of lignocellulosic residues and enhanced ...

  5. Biohydrolysis of Saccharum spontaneum for cellulase production by ...

    African Journals Online (AJOL)

    Saccharum spontaneum, a wasteland weed, is utilized for cellulase production by Aspergillus terreus in solid state fermentation. S. spontaneum served as good carbon source and solid support. Various process parameters including optimal nitrogen source, initial moisture level, incubation time, initial pH, incubation ...

  6. Cellulase Production by Aspergillus flavus Linn Isolate NSPR 101 ...

    African Journals Online (AJOL)

    Bagasse, corncob and sawdust were used as lignocellulosic substrates for the production of cellulase enzyme using Aspergillus flavus after ballmilling and pretreatment with caustic soda. From the fermentation studies, sawdust gave the best result with an enzyme activity value of 0.0743IU/ml while bagasse and corncob ...

  7. Exploration of indigenous agrowastes for cellulase production by ...

    African Journals Online (AJOL)

    Regional agrowastes such as Vigna mungo, Saccharum spontaneum and Brassica campestris were collected and biohydrolysis of these substrates for cellulase production were carried out by Aspergillus niger. Proximate composition of each agrowastes was analyzed based on dry weight, to have an insight view of their ...

  8. Induction and optimization of cellulases using various agro-wastes ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... This study presents optimization of various lignocellulosics and alkali pretreatment for maximum cellulase production by Trichoderma virdii sp. Maximum endoglucanase (642 IU/L) and exoglucanase. (187IU/L) activity was achieved with maize straw at 5% concentration. Oat hay was the most suitable.

  9. Induction and optimization of cellulases using various agro-wastes ...

    African Journals Online (AJOL)

    This study presents optimization of various lignocellulosics and alkali pretreatment for maximum cellulase production by Trichoderma virdii sp. Maximum endoglucanase (642 IU/L) and exoglucanase (187IU/L) activity was achieved with maize straw at 5% concentration. Oat hay was the most suitable agro-waste for β ...

  10. CBH1 homologs and varian CBH1 cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  11. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The productive cellulase binding capacity of cellulosic substrates.

    Science.gov (United States)

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    Directory of Open Access Journals (Sweden)

    Gupta Munishwar

    2007-06-01

    Full Text Available Abstract Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Results Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase were completely retained after cross-linking. The Vmax/Km values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. Conclusion A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1 hydrolysis of pectin, 2 hydrolysis of xylan and 3 hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.

  14. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels.

    Directory of Open Access Journals (Sweden)

    Joshua I Park

    Full Text Available Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.

  15. A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels

    Science.gov (United States)

    Park, Joshua I.; Steen, Eric J.; Burd, Helcio; Evans, Sophia S.; Redding-Johnson, Alyssa M.; Batth, Tanveer; Benke, Peter I.; D'haeseleer, Patrik; Sun, Ning; Sale, Kenneth L.; Keasling, Jay D.; Lee, Taek Soon; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Singer, Steven W.; Simmons, Blake A.; Gladden, John M.

    2012-01-01

    Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels. PMID:22649505

  16. Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study.

    Science.gov (United States)

    Németh, Attila; Kamondi, Szilárd; Szilágyi, András; Magyar, Csaba; Kovári, Zoltán; Závodszky, Péter

    2002-05-02

    Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.

  17. Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution.

    Science.gov (United States)

    Eibinger, Manuel; Zahel, Thomas; Ganner, Thomas; Plank, Harald; Nidetzky, Bernd

    2016-01-01

    useful prediction of the soluble sugar release rate. Salient dynamic features of cellulose surface degradation by different cellulases acting in synergy were reproduced in simulations in good agreement with evidence from high-resolution visualization experiments. Due to the single-molecule resolution of the modeling approach, the utility of the presented model lies not only in predicting system behavior but also in elucidating inherently complex (e.g., stochastic) phenomena involved in enzymatic cellulose degradation. Thus, it creates synergy with experiment to advance the mechanistic understanding for improved application.

  18. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Wan, Yinhua

    2014-09-01

    Pretreatment of lignocellulosic material produces a wide variety of inhibitory compounds, which strongly inhibit the following enzymatic hydrolysis of cellulosic biomass. Vanillin is a kind of phenolics derived from degradation of lignin. The effect of vanillin on cellulase activity for the hydrolysis of cellulose was investigated in detail. The results clearly showed that vanillin can reversibly and non-competitively inhibit the cellulase activity at appropriate concentrations and the value of IC50 was estimated to be 30 g/L. The inhibition kinetics of cellulase by vanillin was studied using HCH-1 model and inhibition constants were determined. Moreover, investigation of three compounds with similar structure of vanillin on cellulase activity demonstrated that aldehyde group and phenolic hydroxyl groups of vanillin had inhibitory effect on cellulase. These results provide valuable and detailed information for understanding the inhibition of lignin derived phenolics on cellulase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.

    Science.gov (United States)

    Iqtedar, Mehwish; Nadeem, Mohammad; Naeem, Hira; Abdullah, Roheena; Naz, Shagufta; Qurat ul Ain Syed; Kaleem, Afshan

    2015-01-01

    The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn(+2), significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.

  20. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  1. Molecular cloning of cellulase genes from indigenous bacterial isolates

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Mat Rasol Awang

    2006-01-01

    Indigenous cellulolytic bacterial isolates having high activities in degrading carboxymethyl cellulose (CMC) were isolated from local environments. Identification of these isolates were performed by molecular techniques. By using polymerase chain reaction (PCR) techniques, PCR products encoding cellulase gene were amplified from the total genomic DNAs. Purified PCR product was successfully cloned and expressed in Escherichia coli host system. The complete nucleotide sequences of the cellulase genes determined. The analysis of amino acid sequences deduced from the genes indicated that the cloned DNA fragments show high homology to those of endoglucanase genes of family GH5. All cloned genes consist of an N-terminal signal peptide, a catalytic domain of family 5 glycosyl hydrolase and a cellulose-binding domain of family III. (Author)

  2. Formation of cellulases and degradation of cellulose by several fungi

    Energy Technology Data Exchange (ETDEWEB)

    Herr, D; Luck, G; Dellweg, H

    1978-01-01

    Five strains of fungi (Aspergillus niger, Lenzites trabea, Myrothecium verrucaria, Trichoderma koningii and Trichoderma lignorum) were tested for the production of cellulolytic enzymes on pure glucose and on cellulose media. The most active strains belonging to the genera of Trichoderma, Aspergillus and Myrothecium, also secreting high activities of ..beta..-glucosidase, were grown in a bioreactor under defined conditions. Depending on the strain this procedure resulted in a manifold increase in cellulolytic activities. The culture filtrates were concentrated and standardized with respect to ..beta..-glucosidase activity and used for the hydrolysis of cellulose powder. With Trichoderma-cellulase, 46% conversion of crystalline cellulose to glucose was achieved within 48 h. The ratio of cellobiose to glucose found in the hydrolysate, the amount of high molecular carbohydrates as well as the degree of hydrolysis widely depended on the type of cellulase used.

  3. Biosynthesis and isolation of C1 and Cx cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Panaiotov, Kh; Cholakov, G

    1981-01-01

    Aspergillus usamii, Aspergillus niger, and Trichoderma viridae were grown on media containing lactose, lignin, (NH4)2SO4, urea, KH2PO4, CaCl2, MgSO4, and yeast extract. Maximum activities of cellulase C1 and Cx in Aspergillus usamii were observed after 76 and 90 h to be approximately 6 and approximately 24 units/mug protein, respectively. Maximum production by Aspergillus niger was 5 units C1/mug at 90h and 44 units Cx/mug at 34 h and Trichoderma produced 32.5 units C1 at 34 h and 16.5 units Cx at 58 h. Thus, Trichoderma viride produces cellulases C1 and Cx in a more balanced ratio than the Aspergillus strains.

  4. Nucleotide sequences of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology.

    OpenAIRE

    Fukumori, F; Sashihara, N; Kudo, T; Horikoshi, K

    1986-01-01

    Two genes for cellulases of alkalophilic Bacillus sp. strain N-4 (ATCC 21833) have been sequenced. From the DNA sequences the cellulases encoded in the plasmids pNK1 and pNK2 consist of 488 and 409 amino acids, respectively. The DNA and protein sequences of the pNK1-encoded cellulase are related to those of the pNK2-encoded cellulase. The pNK2-encoded cellulase lacks the direct repeat sequence of a stretch of 60 amino acids near the C-terminal end of the pNK1-encoded cellulase. The duplicatio...

  5. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose

    OpenAIRE

    Li, Yanfei; Sun, Zongping; Ge, Xiaoyan; Zhang, Junhua

    2016-01-01

    Background Considerable works have been reported concerning the obstruction of enzymatic hydrolysis efficiency by lignin. However, there is a lack of information about the influence of lignin on the adsorption of cellulases on cellulose, along with the hydrolytic activity of the cellulases adsorbed on lignin. In addition, limited discovery has been reported about the influence of additives on cellulase desorption from lignin and lignocellulosic materials. In this work, the effects of lignin o...

  6. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    OpenAIRE

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups invo...

  7. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei

    OpenAIRE

    Wang, Min; Lu, Xuefeng

    2016-01-01

    Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in biomass to biofuels process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellob...

  8. Cellulase activity of a thermophilic Aspergillus fumigatus (fresenius) strain

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, E J; Logghe, J M; Geeraerts, A M

    1982-10-01

    A thermophilic fungus, isolated from horse manure on Whatman-cellulose CF-11 as sole carbon source was identified as Aspergillus fumigatus. It grew optimally at 45 degrees C and displayed highest cellulase activity at 55 degrees C and pH 5.0 towards a range of soluble and crude insolulble cellulosic substrates. Germination and outgrowth of the spore inoculum in carboxymethylcellulose (CMCellulose) medium was accompanied by high endoglucanase (E.C. 3.2.1.4) activity. The cellulose complex e.g. exo-beta-1,4-glucanase (E.C.3.2.1.-); endo-beta-1,4glucanase (E.C.3.2.1.4.) and beta-glucosidase (E.C.3.2.1.21.) displayed quite different properties depending on whether it was formed on low or highly substituted CMCellulose. Extracellular cellulase formation followed biomass accumulation. Upon prolonged incubation cell lysis occurred which resulted in a further increase in cellulase activity. Ball-milled crude cellulosics, such as newsprint, de-inked newsprint, glossy writing paper, toilet paper and beech sawdust were substantially solubilized with 110 hours of growth. The type of crude cellulosic material greatly influenced the pattern of enzyme production. The enzyme complex formed when A. fumigatus was grown on soluble CMC-4M6F, displayed a different activity spectrum towards crude cellulosics compared with that formed on ball-milled glossy writing paper. The extracellular cellulase of A. fumigatus looks promising for a rapid and substantial solubilisation and saccharification of crude cellulosics. (Refs. 32).

  9. Fungal prostatitis: an update.

    Science.gov (United States)

    Mayayo, Emilio; Fernández-Silva, Fabiola

    2014-06-01

    Prostate pathology is a daily occurrence in urological and general medical consultations. Besides hyperplasia and neoplastic pathology, other processes, such as infectious ones, are also documented. Their etiology is diverse and varied. Within the infectious prostatic processes, fungi can also be a specific cause of prostatitis. Fungal prostatitis often appears in patients with impaired immunity and can also be rarely found in healthy patients. It can result from a disseminated infection, but it can also be localized. Fungal prostatitis is a nonspecific and harmless process. Diagnosis is commonly made by fine needle aspiration cytology or by biopsy. A number of fungi can be involved. Although there are not many reported cases, they are becoming more frequent, in particular in patients with some degree of immunodeficiency or those who live in areas where specific fungi are endemic or in visitors of those areas. We present a comprehensive review of the various forms of fungal prostatitis, and we describe the morphological characteristics of the fungi more frequently reported as causes of fungal prostatitis. We also report our own experience, aiming to alert physicians, urologists and pathologists of these particular infections.

  10. The Fungal Kingdom

    NARCIS (Netherlands)

    Heitman, Joseph; Howlett, B.J.; Crous, P.W.; Stukenbrock, E.H.; James, T.Y.; Gow, N.A.R.

    2017-01-01

    Fungi research and knowledge grew rapidly following recent advances in genetics and genomics. This book synthesizes new knowledge with existing information to stimulate new scientific questions and propel fungal scientists on to the next stages of research. This book is a comprehensive guide on

  11. Cellulase biosynthesis by trichoderma viride on soluble substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S B; Kitagawa, Y; Suga, K; Ichikawa, K

    1978-01-01

    Batch and continuous cultures of Trichoderma viride QM 6a were carried out using either glucose or cellobiose as the sole carbon source. From the data obtained in the continuous culture with glucose as substrate, growth parameters of this fungus ..mu../sub m/, K/sub s/, m and Y were identified. In the case of glucose as substrate, there were extremely low levels of cellobiase and no detectable cellulase activity in both batch and continuous cultures. The inducible cellobiase was an intracellular enzyme, produced in association with cell growth in batch culture on cellobiose as substrate. A kinetic model for cellobiose degradation and cell growth is proposed. A significant increase in the extracellular cellulase productivity was obtained in the range of low dilution rates from 0.025 h/sup -1/ to 0.2 h/sup -1/ in the continuous culture on cellobiose. From the results of these experiments, it was concluded that in continuous culture on cellobiose as substrate the cellulase activity was determined by the balance between induction and catabolite repression.

  12. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass.

    Science.gov (United States)

    Potprommanee, Laddawan; Wang, Xiao-Qin; Han, Ye-Ju; Nyobe, Didonc; Peng, Yen-Ping; Huang, Qing; Liu, Jing-Yong; Liao, Yu-Ling; Chang, Ken-Lin

    2017-01-01

    A themophilic cellulase-producing bacterium was isolated from a hot spring district and identified as Geobacillus sp. HTA426. The cellulase enzyme produced by the Geobacillus sp. HTA426 was purified through ammonium sulfate precipitation and ion exchange chromatography, with the recovery yield and fold purification of 10.14% and 5.12, respectively. The purified cellulase has a molecular weight of 40 kDa. The optimum temperature and pH for carboxymethyl cellulase (CMCase) activity of the purified cellulase were 60°C and pH 7.0, respectively. The enzyme was also stable over a wide temperature range of 50°C to 70°C after 5 h of incubation. Moreover, the strain HTA426 was able to grow and produce cellulase on alkali-treated sugarcane bagasse, rice straw and water hyacinth as carbon sources. Enzymatic hydrolysis of sugarcane bagasse, which was regarded as the most effective carbon source for cellulase production (CMCase activity = 103.67 U/mL), followed by rice straw (74.70 U/mL) and water hyacinth (51.10 U/mL). This strain producing an efficient thermostable cellulose is a potential candidate for developing a more efficient and cost-effective process for converting lignocellulosic biomass into biofuel and other industrial process.

  13. LHC Create

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    LHC Create is an upcoming 2-day workshop held at IdeaSquare in November. Participants from CERN and IPAC school of design will compete to design an exhibit that explains why CERN does what it does. The winner will have their exhibit fully realised and made available to experiments, institutes, and tourism agencies around the world.

  14. Creating Poetry.

    Science.gov (United States)

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  15. A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Tatsumi, Hirosuke; Borch, Kim

    2014-01-01

    Cellulases hydrolyze cellulose to soluble sugars and this process is utilized in sustainable industries based on lignocellulosic feedstock. Better analytical tools will be necessary to understand basic cellulase mechanisms, and hence deliver rational improvements of the industrial process...

  16. Effects of Lytic Polysaccharide Monooxygenase Oxidation on Cellulose Structure and Binding of Oxidized Cellulose Oligomers to Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Josh V.; Crowley, Michael F.; Beckham, Gregg T.; Payne, Christina M.

    2015-05-21

    with different affinities relative to cellobiose itself, which potentially affects hydrolytic turnover through product inhibition. To examine the effect of oxidation on cello-oligomer binding, we use thermodynamic integration to compute the relative change in binding free energy between the hydrolyzed and oxidized products in the active site of Family 7 and Family 6 processive glycoside hydrolases, Trichoderma reesei Cel7A and Cel6A, which are key industrial cellulases and commonly used model systems for fungal cellulases. Our results suggest that the equilibrium between the two reducing end oxidized products, favoring the linear aldonic acid, may increase product inhibition, which would in turn reduce processive substrate turnover. In the case of LMPO action at the nonreducing end, oxidation appears to lower affinity with the nonreducing end specific cellulase, reducing product inhibition and potentially promoting processive cellulose turnover. Overall, this suggests that oxidation of recalcitrant polysaccharides by LPMOs accelerates degradation not only by increasing the concentration of chain termini but also by reducing decrystallization work, and that product inhibition may be somewhat reduced as a result.

  17. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water

    OpenAIRE

    Lu, Xianqin; Zheng, Xiaoju; Li, Xuezhi; Zhao, Jian

    2016-01-01

    Background In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize the components of cellulase mixture, genetically engineer high-efficiency cellulase, and reduce cost ...

  18. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance.

    Directory of Open Access Journals (Sweden)

    Alexander G Bulakhov

    Full Text Available Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO displaying a synergism with cellulases.Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL, and eglIV, encoding LPMO (formerly endoglucanase IV from Trichoderma reesei (TrLPMO, were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3 varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples. The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10-43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1.The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable

  19. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  20. Cleanability Improvement of Cotton Fabrics Through Their Topographical Changes Due to the Conditioning with Cellulase Enzyme

    NARCIS (Netherlands)

    Calvimontes, A.; Lant, N.J.; Dutschk, Victoria

    2012-01-01

    In this study, topographical changes of woven cotton fabrics conditioned with a cellulase enzyme during several wash–dry cycles are systematically studied. A recent study of cellulase enzyme effect on cellulose films has proven that this substance selectively attacks amorphous regions of cellulose,

  1. Mechanism of interaction between cellulase action and applied shear force, an hypothesis

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    An overview is given of what is known in literature concerning the structure of both cellulose and cellulase enzymes and the enzymatic degradation of cellulose. Based on this knowledge, a hypothesis is formulated about the relation between cellulase performance and required applied shear force on

  2. 21 CFR 184.1250 - Cellulase enzyme preparation derived from Trichoderma longibrachiatum.

    Science.gov (United States)

    2010-04-01

    ... Trichoderma longibrachiatum. 184.1250 Section 184.1250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1250 Cellulase enzyme preparation derived from Trichoderma longibrachiatum. (a) Cellulase enzyme preparation is derived from a nonpathogenic, nontoxicogenic strain of Trichoderma longibrachiatum (formerly T...

  3. Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process

    Science.gov (United States)

    Woodward, J.

    1987-09-18

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.

  4. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    Science.gov (United States)

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of non-ionic surfactants on the interactions between cellulases and tannic acid

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Bohlin, Christina Helena; Murphy, Leigh

    2011-01-01

    of cellulases to lignin. In the current work we address this hypothesis using tannic acid (TAN) as a general poly-phenolic model compound (for lignin and soluble phenolics) and measure the mutual interactions of cellulases (CBHI, CBHII, EGI, EGII and BG), TAN and NIS (Triton X-100) using isothermal titration...

  6. Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2006-01-01

    Full Text Available An analysis of the recently published genome sequence of Cytophagahutchinsonii revealed an unusual collection of genes for an organism that can attackcrystalline cellulose. Consequently, questions were being raised by cellulase scientists, as towhat mechanism this organism uses to degrade its insoluble substrates. Cellulose, being ahighly polymeric compound and insoluble in water, cannot enter the cell walls ofmicroorganisms. Cellulose-degrading enzymes have therefore to be located on the surface ofthe cell wall or released extracellularly. The location of most cellulase enzymes has beenstudied. However, basic information on C. hutchinsonii cellulases is almost non-existent. Inthe present study, the location, formation and biosynthetic regulation of cellulases in C.hutchinsonii were demonstrated on different substrates. Various fractions isolated from C.hutchinsonii after cell rupture were assayed for carboxymethyl-cellulase activity (CMC.The cellulases were found to be predominantly cell-free during active growth on solka-flok,although 30% of activity was recorded on cell-bound enzymes. Relatively little CM-cellulase was formed when cells were grown on glucose and cellobiose. Apparently glucoseor labile substrates such as cellobiose seem to repress the formation of CM-cellulase. Thesefindings should provide some insight into possible hydrolysis mechanisms by C.hutchinsonii.

  7. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    OpenAIRE

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  8. Daily dynamics of cellulase activity in arable soils depending on management practices

    Science.gov (United States)

    Lavrent'eva, E. V.; Semenov, A. M.; Zelenev, V. V.; Chzhun, Yu.; Semenova, E. V.; Semenov, V. M.; Namsaraev, B. B.; van Bruggen, A. H. C.

    2009-08-01

    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic fertilizers alone) in a microfield experiment. The regular oscillatory dynamics of the cellulase activity were revealed and confirmed by the harmonic (Fourier) analysis. The oscillatory dynamics of the cellulase activity had a self-oscillatory nature and was not directly caused by the disturbing impacts of both the uncontrolled (natural) changes in the temperature and moisture (rainfall) and the controlled ones (the application of different fertilizers). The disturbing impacts affected the oscillation amplitude of the cellulase activity but not the frequency (periods) of the oscillations. The periodic oscillations of the cellulase activity were more significant in the soil under the high-input management compared to the soil under the biological farming system.

  9. Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation

    DEFF Research Database (Denmark)

    Bentil, Joseph A.; Thygesen, Anders; Mensah, Moses

    2018-01-01

    fungi for improved enzyme expression, as well as on-site approaches for production of enzyme blends for industrial biomass conversion. The quantitative comparisons made have implications for selection of the most appropriate cultivation method for WRB fungi for attaining maximal cellulase production....... on different biomass residues in SSC or SmC systems. Although some variation in cellulase production yields have been reported for certain substrates, the analysis convincingly shows that SmC is generally more efficient than SSC for obtaining high cellulase production yields and high cellulase production rates......) or submerged cultivation (SmC) systems. In this review, we quantitatively assess the data available in the literature on cellulase production yields by WRB fungi cultivated by SSC or SmC. The review also assesses cellulolytic enzyme production rates and enzyme recovery when WRB fungi are cultivated...

  10. Characterization of the enzymes present in the cellulase system of Thielavia terrestris 255B

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Michel; Breuil, Colette; Saddler, J N [Forintek Canada Corp., Ottawa, ON (CA). Dept. of Biotechnology and Chemistry

    1992-01-01

    The authors initiated a study of the cellulases from the thermophilic fungus Thielavia terrestris 255B to see how they compared with enzymes derived from mesophilic fungi such as Trichoderma. To try to obtain maximum production of a complete cellulase system, the fungus was first grown on a variety of soluble and insoluble substrates. As well as assaying the culture filtrates for cellulase activity and protein concentration, the enzyme profiles were compared using non-denaturing electrophoretic techniques (IEF and native-PAGE). The separation by native-PAGE and IEF was followed by activity staining methods to detect endoglucanase and xylanase activities. Native-PAGE could not be used to determine accurately the M{sub r} of the cellulases because of possible differences in mass/charge ratios. Bands with apparent M{sub r} values above 200000 were reproducibly detected. This suggested that the various cellulase components may be organized into high molecular weight complexes. (author).

  11. Enhanced Production of Cellulase from Pineapple Waste by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2013-01-01

    Full Text Available Optimization of the media components for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using pineapple waste as substrate was performed with statistical methodology based on experimental designs. The screening of nutrients and their influence on the cellulase production was studied using a Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and yeast extract were found to have the positive influence for the production of cellulase. The selected components were optimized using response surface methodology. The optimum concentrations are avicel: 26.5 g/L, soybean cake flour: 22.5 g/L, KH2PO4: 4.5 g/L, and yeast extract: 12.3 g/L. A maximum cellulase activity of 8.61 IU/mL was obtained under the optimized medium in the validation experiment.

  12. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  13. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    Science.gov (United States)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  14. Cellulase activities in biomass conversion: measurement methods and comparison.

    Science.gov (United States)

    Dashtban, Mehdi; Maki, Miranda; Leung, Kam Tin; Mao, Canquan; Qin, Wensheng

    2010-12-01

    Cellulose, the major constituent of all plant materials and the most abundant organic molecule on the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases acting in a synergistic manner. In biopolymer hydrolysis studies, enzyme assay is an indispensable part. The most commonly used assays for the individual enzymes as well as total cellulase activity measurements, including their advantages and limitations, are summarized in this review article. In addition, some novel approaches recently used for enzyme assays are summarized.

  15. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  16. Isolation, identification and screening of potential cellulase-free ...

    African Journals Online (AJOL)

    compaq

    2012-09-05

    Sep 5, 2012 ... Eight fungal species were selected for further study based on clearing zones ... lignolytic enzymes, instead of chlorine, are used to break the xylan, cellulose, lignin ... purchased from Sigma chemicals Co., USA. Isolation and ...

  17. Digestibility of Betung Bamboo Fiber Following Fungal Pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-10-01

    Full Text Available This research evaluated the effect of fungal pretreatment of betung bamboo fibers and enzymatic- and microwave-assisted hydrolysis on the reducing sugar yield. The enzymatic hydrolysis of the pretreated biomass was carried out with cellulase and 10 and 20 FPU/g of substrate in a shaking incubator at 50 °C and 150 rpm for 48 h. The sulfuric acid concentration used in the microwave-assisted acid hydrolysis was 1.0, 2.5, and 5%, either with or without the addition of activated carbon. Microwave irradiation (330 Watt was applied for 5–12.5 min. The yield of reducing sugar was better with the microwave-assisted acid hydrolysis, and the yield tended to increase with an increase in the irradiation time. Based on the dry weight of the initial biomass (bamboo, pretreatment with 5% inoculum loading resulted in a higher reducing sugar yield (17.06% than with 10% inoculum loading (14.54%. At a 1% acid concentration, the formation of brown compounds decreased, followed by a reduction in the reducing sugar yield. The addition of activated carbon at a 1% acid concentration seemed to be of no benefit with respect to the yield in the microwave-assisted acid hydrolysis. The pretreatment with the 5% inoculum loading for 12.5 min at 1% acid concentration resulted in the highest reducing sugar yield. Under these conditions, the yield was 6.3-fold that of the reducing sugar yield using 20 FPU/g of cellulase. The rate of bamboo hollocellulose hydrolysis reached 22.75% of the maximum theoretical reducing sugar reducing sugar of dry biomass.

  18. Effect of gamma irradiation and environmental factors on the production of extracellular cellulase enzyme by trichoderma Spp. using banana waste under solid state bio processing

    International Nuclear Information System (INIS)

    El-Shafey, H.M.; Matar, Z.A.I.; Ghanem, S.M.A.

    2007-01-01

    Fungal strains were isolated from degraded banana waste including leaves, pseudo stems and skins. Many isolated strains showed cellulolytic activities using the plate screening medium. The hyper cellulolytic isolates were selected on the basis of the diameter of the hydrolysis zone surrounding the colonies and identified to the genus level. The identified strains were found to belong to one of the genera Trichoderma, Aspergillus, Pleurotus or Penicillium. The strain with the larger diameter of the hydrolysis zone was found to belong to the genus Trichoderma. It was further identified to be Trichoderma harzianum, which was selected to be studied. Banana waste including leaves and pseudo stems were inoculated by the selected fungus and the production of the carboxymethyl cellulase (CMCase) and filter paper cellulase (FPCase) was followed during changes of the growth conditions under solid state fermentation. It was found that the two enzymes shared the same incubation temperature (25 degree C) and incubation period (18 days) for the maximum enzyme production. The gamma radiation dose of 1.5 KGy increased the production of CMCase produced on leaves by 4.0% and on pseudo stems by 5.6% and the production of FPCase produced on leaves by 2.4% and on pseudo stems by 2.3%. The results also suggest that FPCase and CMCase enzymes produced on leaves were higher than those produced from pseudo stems and the level of CMCase enzyme produced was higher than that of FPCase

  19. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2015-01-01

    Full Text Available The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA and Csac_1078 (celB from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA and TM0070 (xynB, resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried by Thermotoga-E. coli shuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed in E. coli DH5α and T. sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. In E. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas in T. sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost in T. sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study have ever been expressed in Thermotoga, demonstrating the feasibility of using engineered Thermotoga spp. for efficient cellulose utilization.

  20. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  1. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility.

    Science.gov (United States)

    Jeoh, Tina; Ishizawa, Claudia I; Davis, Mark F; Himmel, Michael E; Adney, William S; Johnson, David K

    2007-09-01

    Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.

  2. Effect of exogenous cellulase enzyme on feed digestibility in lamb

    International Nuclear Information System (INIS)

    Boonek, Lerchat; Shinkoi, Henrry S; Piadang, Nattayana

    2006-09-01

    The aim of this study was to determine the effect of exogenous enzyme on digestibility and N retention in lamb. Eight lambs were randomly allocated to 2 experiment group in group comparison design trial. Experimental treatments were: 1) CTL (No enzyme) and 2 50NZ (Mixed enzyme with high cellulase at 50g/100kg.feed). The digestibility study showed that Exogenous enzyme increased (P<0.05) dry matter and crude protein digestibility of treated lamb compared to those of control. A similar trend (P=0.11) was observed for the NDF digestibility. Mean values for dry matter digestibility were 57.86 and 69.83% and for protein digestibility were 64.76 and 73.38%, for CTL and 50NZ, respectively). The N intake was similar among treatment, averaging 22.57g/head/day. Percent N retained of 50 NZ treated lambs was higher (P<.05) than those of CTL group (mean value were 47.74 and 59.07 for CTC and 50NZ, respectively). Feed efficiency or feed conversion ratio was numerically improved for enzyme-treated groups. Overall, the results of this study provide evidence that mixed cellulase enzyme can be used to improver performance of lambs as compare to non-enzyme diet.

  3. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  4. Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-05-01

    Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.

    Science.gov (United States)

    Wang, Yi; Hu, Qiongzheng; Tian, Tongtong; Gao, Yan'an; Yu, Li

    2016-11-01

    A liquid crystal (LC)-based sensor, which is capable of monitoring enzymatic activity at the aqueous/LC interface and detecting cellulase and cysteine (Cys), was herein reported. When functionalized with a surfactant, dodecyl β-d-glucopyranoside, the 4-cyano-4'-pentylbiphenyl (5CB) displays a dark-to-bright transition in the optical appearance for cellulase. We attribute this change to the orientational transition of LCs, as a result of enzymatic hydrolysis between cellulase and surfactant. Furthermore, by adding cellulase and Cu(2+), our surfactant-LCs system performs an interesting ability to detect Cys, even though Cys could not interact with surfactant or LC directly. Alternatively, through the strong binding between Cys and Cu(2+), cellulase was able to hydrolyze surfactant in the presence of Cu(2+), leading to the transition of LCs from dark to bright. The detection limit of the LC sensor was around 1×10(-5)mg/mL and 82.5μM for cellulase and Cys, respectively. The LC-based sensor may contribute to the development of low-cost, expedient, and label-free detection for cellulase and Cys and the design strategy may also provide a novel way for detecting multiple analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis.

    Science.gov (United States)

    Mishra, Abhijeet; Sardar, Meryam

    2015-01-01

    In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Investigation and Isolation of Cellulase-Producing microorganisms in the Red Sea

    KAUST Repository

    Fatani, Siham

    2016-05-01

    Cellulolytic microorganisms are considered to be key players in biorefinery, especially for the utilization of plant biomass. These organisms have been isolated from various environments. The Red Sea is one of the seas with high biodiversity and a unique environment, characterized by high water temperature and high salinity . However, there is little information regarding cellulases in Red Sea environments. The aim of the present study is to evaluate the Red Sea as a gene resource for microbial cellulase. I first surveyed microbial cellulases in the Red Sea using a method called metagenomes, and then investigated their abundance and diversity. My survey revealed that the Red Sea biome has a substantial abundance and a wide range of cellulase enzymes with substantial abundance, when compared with those in other environments. Next, I tried to isolate cellulase-active microorganisms from the Red Sea and I successfully obtained seven strains of four different taxonomic groups. These strains showed a similarity of 99% identity to Aspergillus ustus, 99% to Staphylococcus pasteuri, 99% to Bacillus aerius and 99% to Bacillus subtilis. The enzyme assay I conducted, revealed that these strains actually secreted active cellulases. These results suggest that the Red Sea environment can be, indeed, an excellent gene resource of microbial cellulases.

  8. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion

    Directory of Open Access Journals (Sweden)

    Fernando Segato

    2016-07-01

    Full Text Available Current cellulosic biomass hydrolysis is based on the one-time use of cellulases. Cellulases immobilized on magnetic nanocarriers offer the advantages of magnetic separation and repeated use for continuous hydrolysis. Most immobilization methods focus on only one type of cellulase. Here, we report co-immobilization of two types of cellulases, β-glucosidase A (BglA and cellobiohydrolase D (CelD, on sub-20 nm superparamagnetic nanoparticles. The nanoparticles demonstrated 100% immobilization efficiency for both BglA and CelD. The total enzyme activities of immobilized BglA and CelD were up to 67.1% and 41.5% of that of the free cellulases, respectively. The immobilized BglA and CelD each retained about 85% and 43% of the initial immobilized enzyme activities after being recycled 3 and 10 times, respectively. The effects of pH and temperature on the immobilized cellulases were also investigated. Co-immobilization of BglA and CelD on MNPs is a promising strategy to promote synergistic action of cellulases while lowering enzyme consumption.

  9. Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants

    Directory of Open Access Journals (Sweden)

    Xiran Jiang

    2017-01-01

    Full Text Available The production of cellulases in plants is an economical method for the conversion of lignocellulosic biomass into fuels. Herein we report the expressions of two thermostable Acidothermus cellulolyticus cellulases, endo-1,4-β-D-glucanase (E1 and exoglucanase (Gux1, in tobacco and rice. To evaluate the expression of these recombinant cellulases, we expressed the full-length E1, the catalytic domains of E1 (E1cd and Gux1 (Gux1cd, as well as an E1–Gux1cd fusion enzyme in various subcellular compartments. In the case of tobacco, transgenic plants that expressed apoplast-localized E1 showed the highest level of activity, about three times higher than those that expressed the cytosolic E1. In the case of rice, the level of cellulase-specific activity in the transgenic plants ranged from 11 to 20 nmol 4-methylumbelliferone min−1 mg−1 total soluble protein. The recombinant cellulases exhibited good thermostability below 70 °C. Furthermore, transgenic rice leaves that were stored at room temperature for a month lost about 20% of the initial cellulase activity. Taken together, the results suggested that heterologous expression of thermostable cellulases in plants may be a viable option for biomass conversion.

  10. Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

    Directory of Open Access Journals (Sweden)

    SooYeon Lim

    2013-08-01

    Full Text Available In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below E−10 using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4 were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below 10−5. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

  11. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera.

    Science.gov (United States)

    Tao, Zhi-Peng; Sun, Le-Chang; Qiu, Xu-Jian; Cai, Qiu-Feng; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2016-07-01

    In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides. A cellulase was purified from the hepatopancreas of abalone by ammonium sulfate precipitation and two-steps column chromatography. The molecular weight of the cellulase was 45 kDa on SDS-PAGE. Peptide mass fingerprinting analysis yielded 103 amino acid residues, which were identical to cellulases from other species of abalone. Substrate specificity analysis indicated that the cellulase is an endo-1,4-β-glucanase. Hydrolysis of seaweed Porphyra haitanensis polysaccharides by the enzyme produced oligosaccharides with degree of polymerisation of two to four, whose monosaccharide composition was 58% galactose, 4% glucose and 38% xylose. The oligosaccharides revealed 2,2'-diphenyl-1-picrylhydrazyl free radical as well as hydrogen peroxide scavenging activity. It is feasible and meaningful to utilise cellulase from the viscera of abalone for preparation of functional oligosaccharides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  13. The evolution of fungal epiphytes

    NARCIS (Netherlands)

    Hongsanan, S.; Sánchez-Ramírez, S.; Crous, P.W.; Ariyawansa, H.A.; Zhao, R.L.; Hyde, K.D.

    2016-01-01

    Fungal epiphytes are a polyphyletic group found on the surface of plants, particularly on leaves, with a worldwide distribution. They belong in the phylum Ascomycota, which contains the largest known number of fungal genera. There has been little research dating the origins of the common ancestors

  14. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Wang, Ying; Radosevich, Mark; Hayes, Douglas; Labbé, Nicole

    2011-05-01

    Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL-cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β-glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre-incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL-cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL-cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co-products from the individual biomass components. Copyright © 2010 Wiley Periodicals, Inc.

  15. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  16. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    Science.gov (United States)

    2011-01-01

    Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS) cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH) of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF) of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA) assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B') exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive information about the

  17. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Mohagheghi Ali

    2011-09-01

    Full Text Available Abstract Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B' exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive

  18. Superficial fungal infections.

    Science.gov (United States)

    Schwartz, Robert A

    Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.

  19. Fungal keratitis: A review

    International Nuclear Information System (INIS)

    Jastaneiah, Sabah S.; Al-Rajhi, Ali A.

    2006-01-01

    Keratomycosis is a vision-threatening fungal corneal infection. The dramatic increase in the number of cases over the past three decades is attributable not only to better diagnostic recognition, improved laboratory techniques and greater awareness by the ophthalmic society as a whole, but is also due to a true increase in the incidence of keratitis related to the indiscriminate use of topical broad-spectrum antibiotics, corticosteroids and immunosuppressive drugs, as well as surgical trauma. Corneal trauma has remained the main predisposing factor over the years, though in recent years HIV-positive cases and AIDS are taking lead in certain areas. Aspergillus, Fusarium and Candida species remains the commonest 'organisms' isolated worldwide. Although the approach to this form of keratitis is similar to other types of microbial keratitis, it remains the most difficult in terms of diagnosis and management. Early recognition, prevention, prompt treatment and timely keratoplasty are crucial for a better outcome. (author)

  20. A kinetic model for the burst phase of processive cellulases

    DEFF Research Database (Denmark)

    Præstgaard, Eigil; Olsen, Jens Elmerdahl; Murphy, Leigh

    2011-01-01

    . This approach generally accounts well for the initial time course (approximately 1 h) of the hydrolysis. We suggest that the models will be useful in attempts to rationalize the initial kinetics of processive cellulases, and demonstrate their application to some open questions, including the effect of repeated......Cellobiohydrolases (exocellulases) hydrolyze cellulose processively, i.e. by sequential cleaving of soluble sugars from one end of a cellulose strand. Their activity generally shows an initial burst, followed by a pronounced slowdown, even when substrate is abundant and product accumulation...... of the model, which can be solved analytically, shows that the burst and slowdown can be explained by the relative rates of the sequential reactions in the hydrolysis process and the occurrence of obstacles for the processive movement along the cellulose strand. More specifically, the maximum enzyme activity...

  1. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Science.gov (United States)

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  2. Developing improved MD codes for understanding processive cellulases

    International Nuclear Information System (INIS)

    Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C

    2008-01-01

    The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose

  3. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  4. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    The 2009 Gordon Conference on Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes will present cutting-edge research on the enzymatic degradation of cellulose and other plant cell wall polysaccharides. The Conference will feature a wide range of topics that includes the enzymology of plant structural degradation, regulation of the degradative apparatus, the mechanism of protein complex assembly, the genomics of cell wall degrading organisms, the structure of the substrate and the industrial application of the process particularly within the biofuel arena. Indeed the deployment of plant cell wall degrading enzymes in biofuel processes will be an important feature of the meeting. It should be emphasized that the 2009 Conference will be expanded to include, in addition to cellulase research, recent advances in other plant cell wall degrading enzymes, and contributions from people working on hemicellulases and pectinases will be particularly welcome. Invited speakers represent a variety of scientific disciplines, including biochemistry, structural biology, genetics and cell biology. The interplay between fundamental research and its industrial exploitation is a particularly important aspect of the meeting, reflecting the appointment of the chair and vice-chair from academia and industry, respectively. The meeting will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with more established figures in the field. Indeed, some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. The Conference is likely to be heavily subscribed so we would recommend that you submit

  5. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase.

    Science.gov (United States)

    Li, Mao; Zhou, Hanlin; Zi, Xuejuan; Cai, Yimin

    2017-10-01

    In order to improve the silage fermentation of stylo (Stylosanthes guianensis) in tropical areas, stylo silages were prepared with commercial additives Lactobacillus plantarum Chikuso-1 (CH1), L. rhamnasus Snow Lact L (SN), Acremonium cellulase (CE) and their combination as SN+CE or CH1 + CE, and the fermentation quality, chemical composition and ruminal degradation of these silages were studied. Stylo silages treated with lactic acid bacteria (LAB) or cellulase, the pH value and NH 3 -N ⁄ total-N were significantly (P fermentation and ruminal degradation than SN+CE treatment. The results confirmed that LAB or LAB plus cellulase treatment could improve the fermentation quality, chemical composition and ruminal degradation of stylo silage. Moreover, the combined treatment with LAB and cellulase may have beneficial synergistic effects on ruminal degradation. © 2017 Japanese Society of Animal Science.

  6. Screening of highly cellulolytic fungi and the action of their cellulase enzyme systems

    Energy Technology Data Exchange (ETDEWEB)

    Saddler, J N

    1982-11-01

    Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase (1,4-(1,3;1,4)-beta-D-glucan 4- glucanohydrolase, EC 3.2.1.4) activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the beta-D-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) activity was approximately six to nine times greater. (Refs. 26).

  7. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    Science.gov (United States)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  8. Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass

    Science.gov (United States)

    Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH)...

  9. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Eriksson, T.; Borjesson, J.

    2003-01-01

    The filamentous fungus Penicillium brasilianum IBT 20888 was cultivated on a mixture of 30 g l(-1) cellulose and 10 g l(-1) xylan for 111 h and the resulting culture filtrate was used for protein purification. From the cultivation broth, five cellulases and one xylanase were purified. Hydrolysis...... studies revealed that two of the cellulases were acting as cellobiohydrolases by being active on only microcrystalline cellulose (Avicel). Three of the cellulases were active on both Avicel and carboxymethyl cellulose indicating endoglucanase activity. Two of these showed furthermore mannanase activity...... the cellulose-binding domain or an essential part of it. The basic xylanase (pI > 9) was only active towards xylan. Two of the purified cellulases with endoglucanase activity were partly sequenced and based on sequence homology with known enzymes they were classified as belonging to families 5 and 12...

  10. Comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30

    Energy Technology Data Exchange (ETDEWEB)

    Saddler, J.N.; Hogan, C.M.; Louis-Seize, G.

    1985-06-01

    Nearly all of the filter paper, endoglucanase and ..beta..-glucosidase activities of T. harzianum E58 were located extracellularly, with low amounts of these activities detected in the cell extracts and relatively little associated with the cell wall. Most of the filter paper and endoglucanase activities of T. reesei C30 were detected extracellularly. The half lives of the different cellulase activities were assayed at various temperatures over a period of time. When the pH of the filtrate was adjusted to 4.8, the cellulase activities were considerably enhanced, with the average half-life at 50/sup 0/C extended to 25 hrs. When various lignocellulosic substrates were hydrolyzed by T. harzianum E58 cellulases approximately 90% of the reducing sugars were present as glucose while 50 - 60% of the reducing sugars were detected as glucose when T. reesei C30 cellulases were used.

  11. The cellulases of Trichoderma viride : mode of action and application in biomass conversion

    NARCIS (Netherlands)

    Beldman, G.

    1986-01-01

    Beet pulp and potato fibre were liquefied and saccharified with a combination of cellulase from Trichodermaviride and pectinase from Aspergillusniger . Cell wall polysaccharides were hydrolysed extensively. The application

  12. The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi-Ping; Fan, Yao-Ting; Pan, Chun-Mei; Hou, Hong-Wei [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Fan, Shao-Qun [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Beijing Alcatel-Lucent R and D Center, Beijing, 100102 (China)

    2010-01-15

    Strategies were adopted to cost-efficiently produce cellulose-hydrogen by anaerobic fermentation in this paper. First, cellulase used for hydrolyzing cellulose was prepared by solid-state fermentation (SSF) on cheap biomass from Trichoderma viride. Several cultural conditions for cellulase production on cheap biomass such as moisture content, inoculum size and culture time were studied. And the components of solid-state medium were optimized using statistical methods to further improve cellulase capability. Second, the crude cellulase was applied to cellulose-hydrogen process directly. The maximal hydrogen yield of 122 ml/g-TVS was obtained at the substrate concentration of 20 g/L and cultured time of 53 h. The value was about 45-fold than that of raw corn stalk wastes. The hydrogen content in the biogas was 44-57%(v/v) and there was no significant methane gas observed. (author)

  13. Immobilization of cellulases on magnetic particles to enable enzyme recycling during hydrolysis of lignocellulose

    DEFF Research Database (Denmark)

    Alftrén, Johan

    feedstocks containing insolubles. This could potentially be overcome by immobilizing the cellulases on magnetically susceptible particles. Consequently, the immobilized cellulases could be magnetically recovered and recycled for a new cycle of enzymatic hydrolysis of cellulose. The main objective...... of this thesis was to examine the possibility of immobilizing cellulases on magnetic particles in order to enable enzyme re-use. Studies at lab and pilot scale (20 L) were conducted using model and real substrates. In paper I and III beta-glucosidase or a whole cellulase mixture was covalently immobilized...... on commercial, but expensive, magnetic particles activated with different chemistries. It was observed that the highest immobilized enzyme activities were obtained using magnetic particles activated with cyanuric chloride. In paper II biotinylated recombinant beta-glucosidase was produced and immobilized...

  14. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries.

    Science.gov (United States)

    Ellilä, Simo; Fonseca, Lucas; Uchima, Cristiane; Cota, Junio; Goldman, Gustavo Henrique; Saloheimo, Markku; Sacon, Vera; Siika-Aho, Matti

    2017-01-01

    During the past few years, the first industrial-scale cellulosic ethanol plants have been inaugurated. Although the performance of the commercial cellulase enzymes used in this process has greatly improved over the past decade, cellulases still represent a very significant operational cost. Depending on the region, transport of cellulases from a central production facility to a biorefinery may significantly add to enzyme cost. The aim of the present study was to develop a simple, cost-efficient cellulase production process that could be employed locally at a Brazilian sugarcane biorefinery. Our work focused on two main topics: growth medium formulation and strain improvement. We evaluated several Brazilian low-cost industrial residues for their potential in cellulase production. Among the solid residues evaluated, soybean hulls were found to display clearly the most desirable characteristics. We engineered a Trichoderma reesei strain to secrete cellulase in the presence of repressing sugars, enabling the use of sugarcane molasses as an additional carbon source. In addition, we added a heterologous β-glucosidase to improve the performance of the produced enzymes in hydrolysis. Finally, the addition of an invertase gene from Aspegillus niger into our strain allowed it to consume sucrose from sugarcane molasses directly. Preliminary cost analysis showed that the overall process can provide for very low-cost enzyme with good hydrolysis performance on industrially pre-treated sugarcane straw. In this study, we showed that with relatively few genetic modifications and the right growth medium it is possible to produce considerable amounts of well-performing cellulase at very low cost in Brazil using T. reesei . With further enhancements and optimization, such a system could provide a viable alternative to delivered commercial cellulases.

  15. Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer

    OpenAIRE

    Zhang, Yingying; Tang, Bin; Du, Guocheng

    2017-01-01

    Cellulolytic fungi have evolved a sophisticated genetic regulatory network of cellulase synthesis to adapt to the natural environment. Even in the absence of lignocellulose, it still secretes low levels of ?constitutive? cellulase for standby application. However, the mechanisms of this constitutive expression remain incompletely understood. Here we identified a cellobiose synthetase (CBS) from Rhizopus stolonifer, which has the capacity to catalyse the synthesis of cellobiose from uridine di...

  16. Effects of some added carbohydrates on cellulases and ligninase and decomposition of whole bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, P; Prabhu, K A

    1986-01-01

    Two basidiomycetes mould isolates were studied for the production of extracellular cellulases and ligninase in submerged shake culture using whole bagasse as substrate. The effects of some added carbohydrates on enzyme production, substrate decomposition and biomass formation were examined. In both cultures the addition of lactose stimulated biomass production and increased the decomposition of total carbohydrate and lignin contents of bagasse. Lactose was the only sugar which stimulated cellulase and ligninase in both cultures. 19 references.

  17. Hydrolysis of cellulose-containing materials by cellulase of the Trichoderma lignorum OM 534 fungus

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, S L; Lobanok, A G

    1977-01-01

    Of the cellulose containing materials, hydrocellulose was most easily degraded while lignocellulose was hardest to break down with cellulase from T. lignorum grown on lactose or cellulose. Grinding and heat treatment (at 200/sup 0/) of lignocellulose enhanced its enzymic degradability. Hydrolysis was highest by cellulase from lactose-cultured Trichoderma. The hydrolysis products contained glucose, galactose, xylose, and mannose. Filtrates from T. lignorum grown on a lignocellulose were enzymically active after purification.

  18. Effects of gamma-ray irradiation on cellulase secretion of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tamada, M.; Kasai, N.; Kaetsu, I.

    1987-01-01

    Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells

  19. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    Science.gov (United States)

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Xylanase, CM-cellulase and avicelase production by the thermophilic fungus Sporotrichum thermophile

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A; Merchant, R; Yaguchi, M

    1983-01-01

    When wheat straw was used as C source, S. thermophile produced large amounts of xylanase extracellularly in addition to CM-cellulase and Avicelase. These enzymes were isolated by alcohol precipitation, desalting, and column chromatography. The molecular weights were estimated to be 25,0065,000 and 84,000 for xylanase, CM-cellulase, and Avicelase, respectively. Serine and threonine were the most abundant amino acids and these enzymes are very acidic proteins.

  1. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    Science.gov (United States)

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  2. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Po-Jung Huang

    2015-01-01

    Full Text Available Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1. Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase.

  3. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  4. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.

    Science.gov (United States)

    Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing

    2016-11-01

    Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Science.gov (United States)

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  6. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    Science.gov (United States)

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.

  7. Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob

    International Nuclear Information System (INIS)

    Du, Ruoyu; Su, Rongxin; Zhang, Mingjia; Qi, Wei; He, Zhimin

    2014-01-01

    Despite the advantageous prospect of second-generation bioethanol, its final commercialization must overcome the primary cost impediment due to enzyme assumption. To solve this problem, this work achieves high-concentration ethanol fermentation and multi-round cellulase recycling through process integration. The optimal time and temperature of the re-adsorption process were determined by monitoring the adsorption kinetics of cellulases. Both glucose and cellobiose inhibited cellulase adsorption. After 96 h of ethanol fermentation, 40% of the initial cellulase remained in the broth, from which 62.5% of the cellulase can be recycled and reused in fresh substrate re-adsorption for 90 min. Under optimum conditions, i.e., pH 5.0, dry matter loading of 15 wt%, cellulase loading of 45 FPU/g glucan, two cycles of fermentation and re-adsorption can yield twofold increased ethanol outputs and reduce enzyme costs by over 50%. The ethanol concentration in each cycle can be achieved at levels >40 g/L.

  8. Accelerating effects of cellulase in the removal of denture adhesives from acrylic denture bases.

    Science.gov (United States)

    Harada-Hada, Kae; Mimura, Sumiyo; Hong, Guang; Hashida, Tatsumi; Abekura, Hitoshi; Murata, Hiroshi; Nishimura, Masahiro; Nikawa, Hiroki

    2017-04-01

    Studies of effective methods for the easy removal of denture adhesives from a denture base are not well represented in the literature. We previously assessed the removability of denture adhesives by immersing within denture cleaners, showing that some cleaners have a weak effect, insufficiently effective in daily use. In this study, we prepared a cellulase, as a potential component for denture adhesive removers, and we examined whether the addition of cellulase to denture cleaners is effective in the removal of cream denture adhesives. We prepared the cellulase Meicelase as one component for the liquefaction of denture adhesives. We used two denture cleaners and two cream adhesives. After the immersion of plates in sample solutions, we evaluated the area of the sample plate still covered with adhesives. Biofilm removal assay was also performed using denture cleaners containing cellulase. The addition of cellulase accelerated the removal of cream adhesives in immersion experiments to a rate faster than that of water and denture cleaners. However, it did not influence the removability of Candida albicans biofilms from acrylic resin specimens. Cellulase hastened the liquefaction of cream adhesives. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Adsorption, immobilization and activity of cellulase in soil: the impacts of maize straw and its humification

    Directory of Open Access Journals (Sweden)

    Ali Akbar Safari Sinegani

    2013-12-01

    Full Text Available The present work aimed to study some aspects of sorption and immobilization of cellulase molecules on soil components by the analysis of the reactions of cellulase in a soil treated with different levels of maize residue and incubated for 90 days. The analysis of variance showed that the effects of the treatments of maize straw, incubation time and their interaction on cellulase adsorption, desorption and immobilization were statistically significant. The adsorption and immobilization capacities of soil by application of maize straw increased significantly. However they decreased with decreasing the soil organic matter (SOM after 45 days of incubation. The desorption of adsorbed cellulase molecules from the soil by washing with distilled water depended on the SOM contents and its humification. The binding strength of cellulase molecule with fresh miaze straw was significantly stronger than that with humified maize straw. The immobilized cellulase activity, particularly its specific activity increased significantly by increasing the OC contents in the soil treated with maize straw.

  11. Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ruoyu [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Su, Rongxin, E-mail: surx@tju.edu.cn [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin (China); Zhang, Mingjia [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Qi, Wei [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin (China); He, Zhimin [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin (China)

    2014-06-26

    Despite the advantageous prospect of second-generation bioethanol, its final commercialization must overcome the primary cost impediment due to enzyme assumption. To solve this problem, this work achieves high-concentration ethanol fermentation and multi-round cellulase recycling through process integration. The optimal time and temperature of the re-adsorption process were determined by monitoring the adsorption kinetics of cellulases. Both glucose and cellobiose inhibited cellulase adsorption. After 96 h of ethanol fermentation, 40% of the initial cellulase remained in the broth, from which 62.5% of the cellulase can be recycled and reused in fresh substrate re-adsorption for 90 min. Under optimum conditions, i.e., pH 5.0, dry matter loading of 15 wt%, cellulase loading of 45 FPU/g glucan, two cycles of fermentation and re-adsorption can yield twofold increased ethanol outputs and reduce enzyme costs by over 50%. The ethanol concentration in each cycle can be achieved at levels >40 g/L.

  12. Cellulase recycling after high-solids simultaneous saccharification and fermentation of combined pretreated corncob

    Directory of Open Access Journals (Sweden)

    Ruoyu eDu

    2014-06-01

    Full Text Available Despite the advantageous prospect of second-generation bioethanol, its final commercialization must overcome the primary cost impediment due to enzyme assumption. To solve this problem, this work achieves high-concentration ethanol fermentation and multi-round cellulase recycling through process integration. The optimal time and temperature of the re-adsorption process were determined by monitoring the adsorption kinetics of cellulases. Both glucose and cellobiose inhibited cellulase adsorption. After 96 h of ethanol fermentation, 40% of the initial cellulase remained in the broth, from which 62.5% of the cellulase can be recycled and reused in fresh substrate re-adsorption for 90 min. Under optimum conditions, i.e., pH 5.0, dry matter loading of 15 wt%, cellulase loading of 45 FPU/g glucan, two cycles of fermentation and re-adsorption can yield two-fold increased ethanol outputs and reduce enzyme costs by over 50%. The ethanol concentration in each cycle can be achieved at levels greater than 40 g/L.

  13. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion

    Directory of Open Access Journals (Sweden)

    Junqi Jia

    2017-02-01

    Full Text Available The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs, which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  14. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion.

    Science.gov (United States)

    Jia, Junqi; Zhang, Weiwei; Yang, Zengjie; Yang, Xianling; Wang, Na; Yu, Xiaoqi

    2017-02-10

    The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs), which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC) was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  15. Effects of different dietary cation-anion balance and cellulase on blood biochemical indexes in sheep

    International Nuclear Information System (INIS)

    Niu Xuejia; Sun Yongqiang; Zheng Guoping; Li Mangxue; Liu Dasen

    2007-01-01

    Five sheep with average live weight of 38 kg were selected and fitted with permanent ruminal fistulae for the study of the influence of DCAB and cellulase on blood biochemical indexes in sheep. With the design of 5 x 5 Latin square, the goats were undergone four groups of treatments. As sheep in control group were only fed with basic feed, other treatments were fed with basic feed and additives. Those additives were: treatment 1 with cellulase (0.2% of dietary), treatment 2 with DCAB1 (20 mEq/100g DM), treatment 3 with cellulase (0.2% of dietary) and DCAB1 (20 mEq/100g DM) and treatment 4 with cellulase (0.2% of dietary) and DCAB2 (40 mEq/100 g DM). The results show that different DCAB and cellulase had no apparent influence on the concentrations of T 3 and T 4 (P>0.05), but they had significant influence on the concentration of insulin (P 0.05). The study indicated that addition of 0.2% cellulase to dietary while adjusting DCAB to 0.2-40 mEq/100 g DM respectively did not destroy tissues and organs of sheep. (authors)

  16. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  17. Hospitalized Patients and Fungal Infections

    Science.gov (United States)

    ... are mild skin rashes, but others can be deadly, like fungal pneumonia. Because of this, it’s important ... the environment. Fungi live outdoors in soil, on plants, trees, and other vegetation. They are also on ...

  18. Cancer Patients and Fungal Infections

    Science.gov (United States)

    ... are mild skin rashes, but others can be deadly, like fungal pneumonia. Because of this, it’s important ... the environment. Fungi live outdoors in soil, on plants, trees, and other vegetation. They are also on ...

  19. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  20. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila

    Directory of Open Access Journals (Sweden)

    Anthi eKarnaouri

    2014-06-01

    Full Text Available The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Cellulolytic fungi represent a promising group of organisms, as they have evolved complex systems for adaptation to their natural habitat. The filamentous fungus Myceliophthora thermophila constitutes an exceptionally powerful cellulolytic microorganism that synthesizes a complete set of enzymes necessary for the breakdown of plant cell wall. The genome of this fungus has been recently sequenced and annotated, allowing systematic examination and identification of enzymes required for the degradation of lignocellulosic biomass. The genomic analysis revealed the existence of an expanded enzymatic repertoire including numerous cellulases, hemicellulases and enzymes with auxiliary activities, covering the most of the recognized CAZy families. Most of them were predicted to possess a secretion signal and undergo through post translational glycosylation modifications. These data offer a better understanding of activities embedded in fungal lignocellulose decomposition mechanisms and suggest that M. thermophila could be made usable as an industrial production host for cellulolytic and hemicellulolytic enzymes.

  1. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  2. Serious fungal infections in Ecuador.

    Science.gov (United States)

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (Ecuador is affected by serious fungal infection.

  3. Role of alkaline-tolerant fungal cellulases in release of total antioxidants from agro-wastes under solid state fermentation

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Varatharajan, G. R.; Karthikeyan, A.

    -wastes and total antioxidant property. The increased antioxidant activity on free radical scavenging was also observed with the increase in pH. Thus, the present study makes it possible to produce nutraceutical ingredients cost-effectively from agricultural wastes....

  4. A ?-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production

    OpenAIRE

    Li, Chengcheng; Lin, Fengming; Li, Yizhen; Wei, Wei; Wang, Hongyin; Qin, Lei; Zhou, Zhihua; Li, Bingzhi; Wu, Fugen; Chen, Zhan

    2016-01-01

    Background The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low ?-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial ...

  5. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Londono, Jorge E. G.; Ambye-Jensen, Morten

    2016-01-01

    straw (WS). This study was undertaken to assess whether a combination of forced ensiling with Lactobacillus buchneri and WRF treatment using a low cellulase fungus, Ceriporiopsis subvermispora, could produce a relevant pretreatment effect on WS for bioethanol and biogas production. Results......: A combination of the ensiling and WRF treatment induced efficient pretreatment of WS by reducing lignin content and increasing enzymatic sugar release, thereby enabling an ethanol yield of 66 % of the theoretical max on the WS glucan, i.e. a yield comparable to yields obtained with high-tech, large......-scale pretreatment methods. The pretreatment effect was reached with only a minor total solids loss of 5 % by weight mainly caused by the fungal metabolism. The combination of the biopretreatments did not improve the methane potential of the WS, but improved the initial biogas production rate significantly...

  7. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.

    Science.gov (United States)

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-09-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.

  8. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis.

    Science.gov (United States)

    Knutsen, Jeffrey S; Davis, Robert H

    2004-01-01

    Technologies suitable for the separation and reuse of cellulase enzymes during the enzymatic saccharification of pretreated corn stover are investigated to examine the economic and technical viability of processes that promote cellulase reuse while removing inhibitory reaction products such as glucose and cellobiose. The simplest and most suitable separation is a filter with relatively large pores on the order of 20-25 mm that retains residual corn stover solids while passing reaction products such as glucose and cellobiose to form a sugar stream for a variety of end uses. Such a simple separation is effective because cellulase remains bound to the residual solids. Ultrafiltration using 50-kDa polyethersulfone membranes to recover cellulase enzymes in solution was shown not to enhance further the saccharification rate or overall conversion. Instead, it appears that the necessary cellulase enzymes, including beta-glucosidase, are tightly bound to the substrate; when fresh corn stover is contacted with highly washed residual solids, without the addition of fresh enzymes, glucose is generated at a high rate. When filtration was applied multiple times, the concentration of inhibitory reaction products such as glucose and cellobiose was reduced from 70 to 10 g/L. However, an enhanced saccharification performance was not observed, most likely because the concentration of the inhibitory products remained too high. Further reduction in the product concentration was not investigated, because it would make the reaction unnecessarily complex and result in a product stream that is much too dilute to be useful. Finally, an economic analysis shows that reuse of cellulase can reduce glucose production costs, especially when the enzyme price is high. The most economic performance is shown to occur when the cellulase enzyme is reused and a small amount of fresh enzyme is added after each separation step to replace lost or deactivated enzyme.

  9. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.

    Science.gov (United States)

    Maki, Miranda; Leung, Kam Tin; Qin, Wensheng

    2009-07-29

    Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  10. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  11. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens.

    Science.gov (United States)

    Wang, Mingyu; Mu, Ziming; Wang, Junli; Hou, Shaoli; Han, Lijuan; Dong, Yanmei; Xiao, Lin; Xia, Ruirui; Fang, Xu

    2013-04-01

    Lignocellulosic biomass is an underutilized, renewable resource that can be converted to biofuels. The key step in this conversion is cellulose saccharification catalyzed by cellulase. In this work, the effect of metal ions on cellulose hydrolysis by cellulases from Penicillium decumbens was reported for the first time. Fe(3+) and Cu(2+) were shown to be inhibitory. Further studies on Fe(3+) inhibition showed the inhibition takes place on both enzyme and substrate levels. Fe(3+) treatment damages cellulases' capability to degrade cellulose and inhibits all major cellulase activities. Fe(3+) treatment also reduces the digestibility of cellulose, due to its oxidation. Treatment of Fe(3+)-treated cellulose with DTT and supplementation of EDTA to saccharification systems partially relieved Fe(3+) inhibition. It was concluded that Fe(3+) inhibition in cellulose degradation is a complicated process in which multiple inhibition events occur, and that relief from Fe(3+) inhibition can be achieved by the supplementation of reducing or chelating agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluation of pulmonary fungal diseases in patients with fungal rhino-sinusitis

    Directory of Open Access Journals (Sweden)

    M.Sh. Badawy

    2013-07-01

    Conclusion: Universal screening for pulmonary fungal infection especially in patients with fungal rhino sinusitis is highly recommended to treat it early, decrease morbidity and mortality of the diseases.

  13. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  14. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  15. Ruminococcus flavefaciens 007C cellulosomes and cellulase consortium

    Directory of Open Access Journals (Sweden)

    Maša VODOVNIK

    2015-11-01

    Full Text Available Ruminococcus flavefaciens is among the most important cellulolytic bacterial species in rumen and gastrointestinal tract of monogastric herbivorous animals. Its efficiency in degradation of (hemicellulosic substrates is associated with the production of remarkably intricate extracellular multienzyme complexes, named cellulosomes. In the present work we investigated the cellulolytic system of 007C. The bioinformatic analysis of the draft genome sequence revealed identical organization of sca gene cluster as has previously been found in four other strains of R. flavefaciens. The cluster consists of five genes in the following order: scaC-scaA-scaB-cttA-scaE. The cellulases of R. flavefaciens 007C belong to four families of glycoside hydrolases, namely GH48, GH44, GH9 in GH5. Majority of these enzymes are putative endoglucanases, belonging to families GH5 and GH9, whereas only one gene encoding GH44 and GH48 was found. Apart from catalytic domains, most of these proteins also contain dockerins – signature sequences, which indicate their attachement to cellulosomes. On the other hand, carbohydrate-binding modules were only found coupled to GH9 catalytic domains. Zymogram analysis showed that larger endoglucanases were mostly constitutively expressed, wheras smaller enzymes were only detected in later phases of Avicel-grown cultures.

  16. Surface activation of dyed fabric for cellulase treatment.

    Science.gov (United States)

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cellulase recycling in biorefineries--is it possible?

    Science.gov (United States)

    Gomes, Daniel; Rodrigues, Ana Cristina; Domingues, Lucília; Gama, Miguel

    2015-05-01

    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.

  18. Interrelationships between cellulase activity and cellulose particle morphology

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Donohoe, Bryon S.; Borch, Kim

    2016-01-01

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate...... on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases....... depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have...... to observe and quantify structural features at μm and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal...

  19. Genetic engineering of Trichoderma reesei cellulases and their production.

    Science.gov (United States)

    Druzhinina, Irina S; Kubicek, Christian P

    2017-11-01

    Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  1. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Chandra, Richard P; Saddler, Jack N

    2007-01-01

    Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.

  3. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-01-01

    For enzymatic treatment of dissolving pulp, there is a need to improve the process to facilitate its commercialization. For this purpose, the high consistency cellulase treatment was conducted based on the hypothesis that a high cellulose concentration would favor the interactions of cellulase and cellulose, thus improves the cellulase efficiency while decreasing the water usage. The results showed that compared with a low consistency of 3%, the high consistency of 20% led to 24% increases of cellulase adsorption ratio. As a result, the viscosity decrease and Fock reactivity increase at consistency of 20% were enhanced from 510 mL/g and 70.3% to 471 mL/g and 77.6%, respectively, compared with low consistency of 3% at 24h. The results on other properties such as alpha cellulose, alkali solubility and molecular weight distribution also supported the conclusion that a high consistency of cellulase treatment was more effective than a low pulp consistency process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Science.gov (United States)

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  6. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli.

    Science.gov (United States)

    Ko, Chun-Han; Tsai, Chung-Hung; Lin, Po-Heng; Chang, Ko-Cheng; Tu, Jenn; Wang, Ya-Nang; Yang, Chien-Ying

    2010-10-01

    The Cel-BL11 gene from Paenibacillus campinasensis BL11 was cloned and expressed in Escherichia coli as a His-tag fusion protein. Zymographic analysis of the recombinant protein revealed cellulase activity corresponding to a protein with a 38-kDa molecular weight. The optimum temperature and pH for purified cellulase were 60 °C and pH 7.0, respectively. The enzyme retained more than 80% activity after 8h at 60 °C at pH 6 and 7. The cellulase has a Km of 11.25 mg/ml and a Vmax of 1250 μmol/min/mg with carboxylmethyl cellulose (CMC). Then enzyme was active on Avicel, swollen Avicel, CMC, barley β-glucan, laminarin in the presence of 100 mM acetate buffer. It was inhibited by Hg²⁺, Cu²⁺ and Zn²⁺. Significant kraft pulp refining energy saving, 10%, was exhibited by the pretreatment of this cellulase applied at 2 IU per gram of oven-dried pulp. Broad pH and temperature stability render this cellulase a convenient applicability toward current mainstream biomass conversion and other industrial processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost

    Directory of Open Access Journals (Sweden)

    ÉVILIN G. DE MARCO

    2017-10-01

    Full Text Available ABSTRACT During composting processes, the degradation of organic waste is accomplished and driven by a succession of microbial populations exhibiting a broad range of functional competencies. A total of 183 bacteria, isolated from a composting process, were evaluated for cellulase activity at different temperatures (37, 50, 60, and 70°C and pH values. Out of the 22 isolates that showed activity, isolate 380 showed the highest cellulase activity. Its ability to produce cellulase was evaluated in culture medium supplemented with carboxymethyl cellulose, microcrystalline cellulose, wheat straw, and rice husk. The culture medium supplemented with carboxymethyl cellulose induced higher enzyme activity after 6 hours of incubation (0.12 UEA mL-1 min-1. For wheat straw and rice husk, the results were 0.08 UEA mL-1 min-1 for both, while for microcrystalline cellulose, 0.04 UEA mL-1 min-1 were observed. The highest carboxymethyl cellulase activity was observed at 60°C (0.14 UEA mL-1 min-1 for both crude and partially purified enzyme after 30 and 120 min of incubation, respectively. Alkalinization of the medium was observed during cultivation in all substrates. The cellulase had a molecular mass of 20 kDa determined by SDS-Page. Isolate 380 was identified as Bacillus licheniformis. This work provides a basis for further studies on composting optimization.

  8. Application of Statistical Design for the Production of Cellulase by Trichoderma reesei Using Mango Peel

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2012-01-01

    Full Text Available Optimization of the culture medium for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using mango peel as substrate was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on cellulase production is achieved using Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and CoCl2·6H2O were selected based on their positive influence on cellulase production. The composition of the selected components was optimized using Response Surface Methodology (RSM. The optimum conditions are as follows: Avicel: 25.30 g/L, Soybean cake flour: 23.53 g/L, KH2PO4: 4.90 g/L, and CoCl2·6H2O: 0.95 g/L. These conditions are validated experimentally which revealed an enhanced Cellulase activity of 7.8 IU/mL.

  9. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-09-01

    Full Text Available The aim of this study was to evaluate the impact of cellulase (C on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1% was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging effect, the ferric reducing antioxidant power (FRAP, and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction.

  10. Strategies to increase cellulase production with submerged fermentation using fungi isolated from the Brazilian biome

    Directory of Open Access Journals (Sweden)

    Genilton da Silva Faheina Junior

    2015-03-01

    Full Text Available Studies on new microbial sources of cellulase and accurate assessment of the steps that increase cellulase production are essential strategies to reduce costs of various processes using such enzymes. This study aimed at the selection of cellulase-producing filamentous fungi, and at the research of parameters involving cellulase production by submerged fermentation. The first test consisted of selecting the best cellulase-producing microorganisms (FPase in Erlenmeyer flasks containing 200 mL of specific growth medium. The next test was designed to further investigate the enzyme production in fermentation with four types of soluble sugars: glucose, lactose, sucrose and xylose. In bioreactor tests, three different inoculation strategies were analyzed. The best FPase activity was presented by the strain Trichoderma sp. CMIAT 041 (49.9 FPU L-1 and CMCase by the fungus Lasiodiplodia theobromae CMIAT 096 (350.0 U L-1. Sucrose proved to be the best option among the soluble sugars tested, with higher rates of FPase activity (49.9 FPU L-1 and CMCase (119.7 U L-1. The best inoculation strategy for the bioreactor was a spore suspension obtained from a semi-solid state fermentation of wheat bran for 72h.

  11. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    Science.gov (United States)

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  12. Fungal contamination in hospital environments.

    Science.gov (United States)

    Perdelli, F; Cristina, M L; Sartini, M; Spagnolo, A M; Dallera, M; Ottria, G; Lombardi, R; Grimaldi, M; Orlando, P

    2006-01-01

    To assess the degree of fungal contamination in hospital environments and to evaluate the ability of air conditioning systems to reduce such contamination. We monitored airborne microbial concentrations in various environments in 10 hospitals equipped with air conditioning. Sampling was performed with a portable Surface Air System impactor with replicate organism detection and counting plates containing a fungus-selective medium. The total fungal concentration was determined 72-120 hours after sampling. The genera most involved in infection were identified by macroscopic and microscopic observation. The mean concentration of airborne fungi in the set of environments examined was 19 +/- 19 colony-forming units (cfu) per cubic meter. Analysis of the fungal concentration in the different types of environments revealed different levels of contamination: the lowest mean values (12 +/- 14 cfu/m(3)) were recorded in operating theaters, and the highest (45 +/- 37 cfu/m(3)) were recorded in kitchens. Analyses revealed statistically significant differences between median values for the various environments. The fungal genus most commonly encountered was Penicillium, which, in kitchens, displayed the highest mean airborne concentration (8 +/- 2.4 cfu/m(3)). The percentage (35%) of Aspergillus documented in the wards was higher than that in any of the other environments monitored. The fungal concentrations recorded in the present study are comparable to those recorded in other studies conducted in hospital environments and are considerably lower than those seen in other indoor environments that are not air conditioned. These findings demonstrate the effectiveness of air-handling systems in reducing fungal contamination.

  13. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    Science.gov (United States)

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.

  14. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Science.gov (United States)

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  15. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  16. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  17. Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp.

    Science.gov (United States)

    Duan, Chao; Wang, Xinqi; Zhang, YanLing; Xu, Yongjian; Ni, Yonghao

    2017-01-01

    The aim of this study was to investigate a combined process involving pulp fractionation and cellulase treatment of each fraction for improving the molecular weight distribution (MWD) and reactivity of a kraft-based dissolving pulp. Three pulp fractions, namely long-fiber, mid-fiber and short-fiber fractions (LF, MF and SF, respectively), were used as the substrates. The results showed that the SF had the highest accessibility, lowest viscosity, and highest cellulase adsorption capacity, while the opposite was true for the LF. At a given viscosity, the combined process led to a lower polydispersity index (3.71 vs 4.98) and a higher Fock reactivity (85.6% vs 76.3%), in comparison to the conventional single-stage cellulase treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cellulase-assisted extraction and antioxidant activity of the polysaccharides from garlic.

    Science.gov (United States)

    Pan, Saikun; Wu, Shengjun

    2014-10-13

    In the present study, the polysaccharides were prepared from garlic by using a cellulase-assisted extraction method and the antioxidant activity of garlic polysaccharides (GPs) was evaluated. To improve the yield of GPs, the influences of the several factors such as extraction time, temperature, pH, and cellulase amount on the extraction efficiency were studied. The optimal conditions for extraction of GPs were determined as follows: time, 80 min; temperature, 45 °C; pH, 5; cellulase amount, 8000 U/g. Under the optimised extraction conditions, the yield of GPS reached up to 35.34%. The GPs product exhibited strong antioxidant activity including hydroxyl radical scavenging activity, 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity, and reducing power. The results suggest that the GPs could be used as potential antioxidants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface......-biosensor was shown to be anomer unspecific and it can therefore be used in kinetic studies over broad time-scales of both retaining- and inverting cellulases (in addition to enzyme cocktails). The biosensor was used for real-time measurements of the activity of the inverting cellobiohydrolase Cel6A from Hypocrea...... equation for processive cellulases, and it was found that the turnover for HjCel6A at saturating substrate concentration (i.e. maximal apparent specific activity) was similar (0.39–0.40 s−1) for the two substrates. Conversely, the substrate load at half-saturation was much lower for BMCC compared to Avicel...

  20. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  1. Cellulose hydrolysis by fungi. 2. Cellulase production by Trichoderma harzianum in liquid medium fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roussos, S.; Raimbault, M. (Laboratoire de Microbiologie ORSTOM, Centre de Recherche IRCHA, 91 - Vert-le-Petit (France))

    Microcrystalline cellulose (cellulose Avicel, Merck) supported growth of Trichoderma harzianum and induced production of cellulases in liquid cultures. After 50 h growth, the total cellulasic activities present in both the supernatant and the mycelium were 3,000 IU/l of carboxymethyl cellulose, 400 IU/l of filter paper activity, and 4 IU/l of cotton activity corresponding to 1.7 g/l of proteins. Cellulase production could be increased by a preliminary treatment of cellulose, and pH regulation during growth. The influence of inoculum concentration was studied and an optimum of 3 X 10/sup 7/ conidia/g dry weight of substrate was demonstrated. Using a synthetic culture medium, a soluble factor of germination was demonstrated which could be leached out by 3 successive washings of conidia.

  2. Adsorption of cellulases onto sugar beet shreds and modeling of the experimental data

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This study investigated the adsorption of cellulases onto sugar beet shreds. The experiments were carried out using untreated, as well as dried and not dried dilute acid and steam pretreated sugar beet shreds at different initial enzyme loads. Both dilute acid and steam pretreatment were beneficial in respect of cellulases adsorption providing 8 and 9 times higher amounts of adsorbed proteins, respectively, in comparison to the results obtained with the untreated substrate. Although the use of higher solids load enabled by drying of pretreated substrates, could be beneficial for process productivity, at the same time it decreases the adsorption of enzymes. The obtained experimental data were fitted to five adsorption models, and the Langmuir model having the lowest residual sum of squares was used for the determination of adsorption parameters which were used to calculate the strength of cellulases binding to the substrates.[Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  3. Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Hobley, Timothy John

    2013-01-01

    The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition...... of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal medium containing Avicel (i.e. micro crystalline cellulose) and ammonium sulphate. It was found that in the shake flask experiments, the highest cellulase activities (~0.1 ± 0.02 FPU ml−1) were obtained...... with media containing soy peptone (3–6 g l−1) and glutamate (3.6 g l−1). However, these improvements in the cellulase titers in the presence of the organic nitrogen sources appeared to be related to smaller changes in the pH of the medium. This was confirmed using stirred tank bioreactors with pH control...

  4. Production of cellulases by a thermophilic fungus, Thermoascus aurantiacus A-131

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, M; Takayama, K; Takasawa, S

    1987-01-01

    A thermophilic fungus, strain A-131, isolated from a soil sample produced cellulases in the culture fluid. The fungus (strain A-131) was identified as Thermoascus aurantiacus Miehe from its taxonomical characteristics. The cellulases of T. aurantiacus A-131 were produced constitutively without cellulase inducers. Moreover, their production was induced markedly by amorphous polysaccharides containing beta-1, 4 linkages such as alkali-treated bagasse and xylan rather than crystalline cellulose. The cultivation of T. aurantiacus A-131 at 45 degrees C with 4% alkali-treated bagasse led to the production of about 70 U/ml of CMCase after four days. The thermostability of the cellulolytic enzymes of T. aurantiacus A-131 was excellent and virtually no decreases in their activities were seen after preincubation at 60 degrees C for 24 hours. (Refs. 21).

  5. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 deg. C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  6. Laser mutagenesis and producing cellulase condition optimization of Trichoderma virid protoplast

    International Nuclear Information System (INIS)

    Chen Shuli; Zhang Qin; Han Jingjing; Lv Jiangtao; Wang Shilong; Yao Side

    2009-01-01

    The protoplast of Trichoderma virid CICC13038 was mutated using Nd:YAG laser of 266 nm light. And a high-cellulase producing strain JG13 was bred by screening with cellulose microcrystalline. Under the condition of 28 degree C, 180 rpm and 72 h of fermentation time, optimal conditions for the celluase ferment by orthogonal experiment were: 2% bran as the carbon source, 1% (NH 4 ) 2 SO 4 as the nitrogen source, 0.5% Tween-80 as a enzyme-promoting agent,and 25 mL of medium volume in a 250 mL bottle. The cellulase activity of the mutant reached 35.68 U/mL, 25.76% higher than that of the original strain under the same conditions. The mutant JG13 has a great potential in industrial production. And it also can be used as the original strain for further mutagenesis to get the strain of higher cellulase activity. (authors)

  7. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    Science.gov (United States)

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  8. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  9. DEMONSTRATION BULLETIN: FUNGAL TREATMENT BULLETIN

    Science.gov (United States)

    Fungal treatment technology uses white rot fungi (lignin degrading fungi) to treat organic contaminated soils in situ. Organic materials inoculated with the fungi are mechanically mixed into the contaminated soil. Using enzymes normally produced for wood degradation as well as ot...

  10. [Fungal infections of the gastrointestinal tract].

    Science.gov (United States)

    Maragkoudakis, Emmanouil; Realdi, Giuseppe; Dore, Maria Pina

    2005-06-01

    In immunocompetent subjects fungal infections of the gastrointestinal tract are uncommon. Candida esophagitis remains the single most common fungal infection in immunocompromised hosts or in H. pylori- infected patients who receive antibiotic therapy. Enteric fungal infections are uncommon even in HIV-infected patients. Antifungal agents such as amphotericin B, ketoconazole, fluconazole, and the various formulations of itraconazole are effective for most cases.

  11. Daphnia can protect diatoms from fungal parasitism

    NARCIS (Netherlands)

    Kagami, M.; Van Donk, E.; De Bruin, A.; Rijkeboer, M.; Ibelings, B.W.

    2004-01-01

    Many phytoplankton species are susceptible to chytrid fungal parasitism. Much attention has been paid to abiotic factors that determine whether fungal infections become epidemic. It is still unknown, however, how biotic factors, such as interactions with zooplankton, affect the fungal infection

  12. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs to carbohydrate-binding modules (CBMs. Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests

  13. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Science.gov (United States)

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  14. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    International Nuclear Information System (INIS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-01-01

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  15. Study of thermal and chemical effects on cellulase enzymes: Viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N., E-mail: naoufel-ghaouar@lycos.co [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia); Aschi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia); Belbahri, L. [Agronomy Department, School of Engineering of Lullier, University of Applied Sciences of Western Switzerland, 150, Route de Presinge, 1254 Jussy (Switzerland); Trabelsi, S.; Gharbi, A. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 (Tunisia)

    2009-11-15

    The behaviour of cellulase enzymes in phosphate saline buffer has been studied over a wide range of temperatures and enzyme concentrations by using viscosity measurements. To characterize the conformation change of cellulase versus temperature and chemical denaturants, such as guanidinium chloride (GdmCl) and urea, the information about the intrinsic viscosity and the hydrodynamic radius are necessary. The dependence of the intrinsic viscosity and the hydrodynamic radius in its random coil conformation on temperature and denaturant concentration were studied. Our results and discussions are limited to the dilute regime of concentration because of abnormalities in conformation observed in the very dilute regime due to the presence of capillary absorption effects.

  16. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  17. DIAGNOSIS & MANAGEMENT OF ALLERGIC FUNGAL SINUSITIS

    Directory of Open Access Journals (Sweden)

    Syam Manohar Gadhamsetty

    2016-08-01

    Full Text Available BACKGROUND Chronic sinusitis is one of the common diagnosis in ENT practice. Allergic fungal sinusitis is a clinical entity with characteristic clinical, radiographic and histopathological findings. Allergic fungal sinusitis and eosinophilic mucin rhinosinusitis can easily be misdiagnosed. AIM OF STUDY A prospective clinical study of allergic Fungal Rhinosinusitis to use diagnostic criteria to confirm the disease with Radiological, Pathological & Microbiological investigations and their management. MATERIALS & METHODS A prospective study of allergic Fungal Rhinosinusitis in 2 years from November 2011 to October 2013. Among the patients who attended the ENT OPD during this period, 21 patients with symptoms and signs suggestive of Allergic Fungal Rhinosinusitis are selected.

  18. Fungal Sex: The Basidiomycota.

    Science.gov (United States)

    Coelho, Marco A; Bakkeren, Guus; Sun, Sheng; Hood, Michael E; Giraud, Tatiana

    2017-06-01

    Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.

  19. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India.

    Science.gov (United States)

    Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay

    2015-09-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

  20. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

    Directory of Open Access Journals (Sweden)

    A. Naglot

    2015-09-01

    Full Text Available Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s in the inhibitory activity.

  1. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    Science.gov (United States)

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  2. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei.

    Science.gov (United States)

    Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang

    2015-10-01

    Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.

  3. Using temperature-responsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling.

    Science.gov (United States)

    Cai, Cheng; Pang, Yuxia; Zhan, Xuejuan; Zeng, Meijun; Lou, Hongming; Qian, Yong; Yang, Dongjie; Qiu, Xueqing

    2017-11-01

    Some zwitterionic surfactants exhibit upper critical solution temperature (UCST) in aqueous solutions. For the zwitterionic surfactant solution mixed with cellulase, when its temperature is below UCST, the cellulase can be recovered by coprecipitation with zwitterionic surfactant. In this work, 3-(Hexadecyldimethylammonio) propanesulfonate (SB3-16) was selected to enhance the enzymatic hydrolysis of lignocelluloses and recover the cellulase. After adding 2mmol/L of SB3-16, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) and by sulfite (Eu-SPORL) increased from 27.9% and 35.1% to 72.6% and 89.7%, respectively. The results showed that SB3-16 could reduce the non-productive adsorption of cellulase on hydrophobic interface, while it did not significantly inhibit the activity of cellulase. For the solution contained 1wt% SB3-16 and 200mg protein/L CTec2 cellulase, 55.2% of protein could be recovered by cooling. The filter paper activity of the recovered cellulase was 1.93FPU/mg protein, which was 95.8% of its initial activity. Copyright © 2017. Published by Elsevier Ltd.

  4. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-09

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55.

    Science.gov (United States)

    Kazeem, Muinat Olanike; Shah, Umi Kalsom Md; Baharuddin, Azhari Samsu; AbdulRahman, Nor' Aini

    2017-08-01

    Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.

  6. Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose

    Science.gov (United States)

    Zhou, Qingxin; Xu, Jintao; Kou, Yanbo; Lv, Xinxing; Zhang, Xi; Zhao, Guolei; Zhang, Weixin; Chen, Guanjun

    2012-01-01

    Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals. PMID:23002106

  7. The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa*

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-01

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875

  8. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  9. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei.

    Science.gov (United States)

    Liu, Kuimei; Dong, Yanmei; Wang, Fangzhong; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2016-01-01

    Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.

  10. Comparative studies on production of cellulases from three strains of aspergillus niger

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.

    2014-01-01

    Three strains of Aspergillus niger were retrieved from culture collection of the Department of Microbiology, University of Karachi, Pakistan and were studied for their ability to produce cellulases. Cultivation at different temperatures and in presence of various carbon sources revealed that all the three strains produced more amounts of endoglucanase, glucosidase and filter-paperase activities at 35 degree C; carboxymethyl cellulose promotes the production of filter paperase and endoglucanase activities whereas salicin induced glucosidase activity. Experiments on growth and enzyme production kinetics showed that generation time and hence volumetric rate of biomass production is influenced by the carbon source used in the medium; simple carbon source, such as glucose favored the growth of all the strains. Cellulases from all the strains showed optimum activity at temperature >50 degree C and under acidic range of pH, while melting temperature was 64-65 degree C. These findings affirm that cellulases from A. niger are potential candidates as alternative to Trichoderma cellulases. (author)

  11. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.

    Science.gov (United States)

    Tiwari, Rameshwar; Nain, Lata; Labrou, Nikolaos E; Shukla, Pratyoosh

    2018-03-01

    Second generation biofuel production has been appeared as a sustainable and alternative energy option. The ultimate aim is the development of an industrially feasible and economic conversion process of lignocellulosic biomass into biofuel molecules. Since, cellulose is the most abundant biopolymer and also represented as the photosynthetically fixed form of carbon, the efficient hydrolysis of cellulose is the most important step towards the development of a sustainable biofuel production process. The enzymatic hydrolysis of cellulose by suites of hydrolytic enzymes underlines the importance of cellulase enzyme system in whole hydrolysis process. However, the selection of the suitable cellulolytic enzymes with enhanced activities remains a challenge for the biorefinery industry to obtain efficient enzymatic hydrolysis of biomass. The present review focuses on deciphering the novel and effective cellulases from different environmental niches by unculturable metagenomic approaches. Furthermore, a comprehensive functional aspect of cellulases is also presented and evaluated by assessing the structural and catalytic properties as well as sequence identities and expression patterns. This review summarizes the recent development in metagenomics based approaches for identifying and exploring novel cellulases which open new avenues for their successful application in biorefineries.

  12. Bacillus pumilus BpCRI 6, a promising candidate for cellulase ...

    African Journals Online (AJOL)

    Cellulose degrading organisms have been used for the conversion of cellulolytic materials into soluble sugars or solvents in several biotechnological and industrial applications. In this report, a mutant of Bacillus pumilus was obtained after chemical mutagenesis and screened for cellulase production. This mutant named ...

  13. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection.

    NARCIS (Netherlands)

    Ferrari, Alessandro; Gaber, Yasser; Fraaije, Marco

    2014-01-01

    BACKGROUND: Most of the current colorimetric methods for detection of chitinase or cellulase activities on the insoluble natural polymers chitin and cellulose depend on a chemical redox reaction. The reaction involves the reducing ends of the hydrolytic products. The Schales' procedure and the

  14. Enhanced Learning of Biotechnology Students by an Inquiry-Based Cellulase Laboratory

    Science.gov (United States)

    Ketpichainarong, Watcharee; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-01-01

    This study explored the effectiveness of an inquiry-based cellulase laboratory unit in promoting inquiry in undergraduate students in biotechnology. The following tools were used to assess the students' achievements and attitude: conceptual understanding test, concept mapping, students' documents, CLES questionnaire, students' self reflection, and…

  15. A new earthworm cellulase and its possible role in the innate immunity.

    Science.gov (United States)

    Park, In Yong; Cha, Ju Roung; Ok, Suk-Mi; Shin, Chuog; Kim, Jin-Se; Kwak, Hee-Jin; Yu, Yun-Sang; Kim, Yu-Kyung; Medina, Brenda; Cho, Sung-Jin; Park, Soon Cheol

    2017-02-01

    A new endogenous cellulase (Ean-EG) from the earthworm, Eisenia andrei and its expression pattern are demonstrated. Based on a deduced amino acid sequence, the open reading frame (ORF) of Ean-EG consisted of 1368 bps corresponding to a polypeptide of 456 amino acid residues in which is contained the conserved region specific to GHF9 that has the essential amino acid residues for enzyme activity. In multiple alignments and phylogenetic analysis, the deduced amino acid sequence of Ean- EG showed the highest sequence similarity (about 79%) to that of an annelid (Pheretima hilgendorfi) and could be clustered together with other GHF9 cellulases, indicating that Ean-EG could be categorized as a member of the GHF9 to which most animal cellulases belong. The histological expression pattern of Ean-EG mRNA using in situ hybridization revealed that the most distinct expression was observed in epithelial cells with positive hybridization signal in epidermis, chloragogen tissue cells, coelomic cell-aggregate, and even blood vessel, which could strongly support the fact that at least in the earthworm, Eisenia andrei, cellulase function must not be limited to digestive process but be possibly extended to the innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  17. Separation of hydrolytically active components of cellulase from Myrothecium verrucaria by starch gel electrophoresis

    NARCIS (Netherlands)

    Ritter, F.J.; Prins-van der Meulen, P.Y.F.; Marel, T. van der

    1968-01-01

    Using starch gel electrophoresis according to Smithies, desalted crude cellulase from Myrothecium verrucqria was separated into at least 12 protein zones. These were tested on their activity towards p-nitrophenyl-β-D-glucoside, sodium carboxymethylcellulose and α-cellulose. They were all

  18. Cooperative action of cellulase enzyme and carboxymethyl cellulose on cotton fabric cleanability from a topographical standpoint

    NARCIS (Netherlands)

    Calvimontes, A.; Lant, N.J.; Dutschk, Victoria

    2011-01-01

    In this study, the effect of cotton treatment with cellulose and carboxymethyl cellulose on soil release of three different types of fabric: woven plain, woven twill and knitted were systematically studied. A recent study of the effect of a cleaning cellulase enzyme on cellulose films has proven

  19. Daily dynamics of cellulase activity in arable soils depending on management practices

    NARCIS (Netherlands)

    Semenov, A.M.; Zelenev, V.V.; Chzhun, Yu; Semenova, E.V.; Semenov, V.M.; Namsaraev, B.B.; Bruggen, van A.H.C.

    2009-01-01

    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic

  20. Guidelines to come to minimized tensile strength loss upon cellulase application

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    Application of cellulase technology in the textile production process often results in a certain loss of tensile strength along with the desired performance. In this paper guidelines are given how to come to minimization or even prevention of tensile strength loss. Part of the considerations is

  1. Electrotransformation and expression of cellulase genes in wild-type Lactobacillus reuteri.

    Science.gov (United States)

    Li, Wang; Yang, Ming-Ming; Zhang, Guang-Qin; He, Wan-Ling; Li, Yuan-Xiao; Chen, Yu-Lin

    2012-01-01

    Two cellulase genes, Cel15 and Cel73, were amplified from Bacillus subtilis genome DNA in a previous study. Two integrative vectors, pLEM4153 and pLEM4154, containing the genes Cel15 and Cel73, respectively, were constructed and successfully electroporated into the wild-type Lactobacillus reuteri which was isolated from chick guts through an optimized procedure. Two recombinant L. reuteri were selected from a Man, Rogosa, and Sharp (MRS) plate with 10 µg/ml erythromycin, and named L. reuteri XNY-Cel15 and L. reuteri XNY-Cel73, respectively. To verify the transcription and expression of the two cellulase genes in the recombinant L. reuteri strains, the mRNA relative quantity (RQ) and the cellulase activity were determined. The mRNA RQ of Cel15 in L. reuteri XNY-Cel15 is 1,8849.5, and that of Cel73 in L. reuteri XNY-Cel73 is 1,388, and the cellulase activity of the modified MRS broth cultured with L. reuteri XNY-Cel15 was 0.158 U/ml, whereas that with L. reuteri XNY-Cel73 was 0.15 U/ml. Copyright © 2012 S. Karger AG, Basel.

  2. In Situ Stability of Substrate-Associated Cellulases Studied by DSC

    DEFF Research Database (Denmark)

    Borch, Kim; Cruys-Bagger, Nicolaj; Badino, Silke Flindt

    2014-01-01

    This work shows that differential scanning calorimetry (DSC) can be used to monitor the stability of substrate-adsorbed cellulases during long-term hydrolysis of insoluble cellulose. Thermal transitions of adsorbed enzyme were measured regularly in subsets of a progressing hydrolysis, and the size...

  3. Identification and Characterization of the Most Abundant Cellulases in Stylet Secretions from Globodera rostochiensis

    NARCIS (Netherlands)

    Rehman, S.; Butterbach, P.B.E.; Popeijus, H.E.; Overmars, H.A.; Davis, E.L.; Jones, J.T.; Goverse, A.; Bakker, J.; Smant, G.

    2009-01-01

    Plant-parasitic cyst nematodes secrete cell wall modifying proteins during their invasion of host plants. In this study, we used a monoclonal antibody to immunopurify and to sequence the N terminus of the most abundant cellulases in stylet secretions of preparasitic juveniles of Globodera

  4. Assessment of methods to determine minimal cellulase concentrations for efficient hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, C.M.; Mes-Hartree, M.; Saddler, J.N. (Forintek Canada Corp., Ottawa, ON (Canada). Biotechnology and Chemistry Dept.); Kushner, D.J. (Toronto Univ., Ontario (Canada). Dept. of Microbiology)

    1990-02-01

    The enzyme loading needed to achieve substrate saturation appeared to be the most economical enzyme concentration to use for hydrolysis, based on percentage hydrolysis. Saturation was reached at 25 filter paper units per gram substrate on Solka Floc BW300, as determined by studying (a) initial adsorption of the cellulase preparation onto the substrate, (b) an actual hydrolysis or (c) a combined hydrolysis and fermentation (CHF) process. Initial adsorption of the cellulases onto the substrate can be used to determine the minimal cellulase requirements for efficient hydrolysis since enzymes initially adsorbed to the substrate have a strong role in governing the overall reaction. Trichoderma harzianum E58 produces high levels of {beta}-glucosidase and is able to cause high conversion of Solka Floc BW300 to glucose without the need for exogenous {beta}-glucosidase. End-product inhibition of the cellulase and {beta}-glucosidase can be more effectively reduced by employing a CHF process than by supplemental {beta}-glucosidase. (orig.).

  5. Assimilating Text-Mining & Bio-Informatics Tools to Analyze Cellulase structures

    Science.gov (United States)

    Satyasree, K. P. N. V., Dr; Lalitha Kumari, B., Dr; Jyotsna Devi, K. S. N. V.; Choudri, S. M. Roy; Pratap Joshi, K.

    2017-08-01

    Text-mining is one of the best potential way of automatically extracting information from the huge biological literature. To exploit its prospective, the knowledge encrypted in the text should be converted to some semantic representation such as entities and relations, which could be analyzed by machines. But large-scale practical systems for this purpose are rare. But text mining could be helpful for generating or validating predictions. Cellulases have abundant applications in various industries. Cellulose degrading enzymes are cellulases and the same producing bacteria - Bacillus subtilis & fungus Pseudomonas putida were isolated from top soil of Guntur Dt. A.P. India. Absolute cultures were conserved on potato dextrose agar medium for molecular studies. In this paper, we presented how well the text mining concepts can be used to analyze cellulase producing bacteria and fungi, their comparative structures are also studied with the aid of well-establised, high quality standard bioinformatic tools such as Bioedit, Swissport, Protparam, EMBOSSwin with which a complete data on Cellulases like structure, constituents of the enzyme has been obtained.

  6. Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials

    NARCIS (Netherlands)

    Kabel, M.A.; Maarel, van der M.J.E.C.; Klip, G.; Voragen, A.G.J.; Schols, H.A.

    2006-01-01

    Commercial cellulase preparations are potentially effective for processing biomass feedstocks in order to obtain bioethanol. In plant cell walls, cellulose fibrils occur in close association with xylans (monocotyls) or xyloglucans (dicotyls). The enzymatic conversion of cellulose/xylans is a complex

  7. BIOPROCESS DEVELOPMENTS FOR CELLULASE PRODUCTION BY Aspergillus oryzae CULTIVATED UNDER SOLID-STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    R. D. P. B. Pirota

    Full Text Available Abstract Bioprocess development studies concerning the production of cellulases are of crucial importance due to the significant impact of these enzymes on the economics of biomass conversion into fuels and chemicals. This work evaluates the effects of solid-state fermentation (SSF operational conditions on cellulase production by a novel strain of Aspergillus oryzae using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The use of SSF cultivation under controlled conditions substantially improved cellulase production. Highest production of FPase (0.40 IU g-1, endoglucanase (123.64 IU g-1, and β-glucosidase (18.32 IU g-1 was achieved at 28 °C, using an initial substrate moisture content of 70%, with an inlet air humidity of 80% and an airflow rate of 20 mL min-1. Further studies of kinetic profiles and respirometric analyses were performed. The results showed that these data could be very useful for bioprocess development of cellulase production and scale-up.

  8. An Integrated Process of Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass with Immobilised Cellulase

    Directory of Open Access Journals (Sweden)

    Mihaela Ungurean

    2014-08-01

    Full Text Available An integrated process of lignocellulosic biomass conversion was set up involving pretreatment by an ionic liquid (IL and hydrolysis of cellulose using cellulase immobilised by the sol-gel method, with recovery and reuse of both the IL and biocatalyst. As all investigated ILs, regardless of the nature of the anion and the cation, led to the loss of at least 50% of the hydrolytic activity of cellulase, the preferred solution involved reprecipitation of cellulose and lignin after the pretreatment, instead of performing the enzymatic hydrolysis in the same reaction system. The cellulose recovered after pretreatment with 1-ethyl-3-methylimidazolium acetate ([Emim][Ac] and dimethylsulfoxide (DMSO (1:1 ratio, v/v was hydrolysed with almost double yield after 8 h of reaction time with the immobilised cellulase, compared to the reference microcrystalline cellulose. The dissolution capacity of the pretreatment mixture was maintained at satisfactory level during five reuse cycles. The immobilised cellulase was recycled in nine reaction cycles, preserving about 30% of the initial activity.

  9. Standard Assays Do Not Predict the Efficiency of Commercial Cellulase Preparations Towards Plant Materials

    NARCIS (Netherlands)

    Kabel, Mirjam A.; Maarel, Marc J.E.C. van der; Klip, Gert; Voragen, Alphons G.J.; Schols, Henk A.

    2006-01-01

    Commercial cellulase preparations are potentially effective for processing biomass feedstocks in order to obtain bioethanol. In plant cell walls, cellulose fibrils occur in close association with xylans (monocotyls) or xyloglucans (dicotyls). The enzymatic conversion of cellulose/xylans is a complex

  10. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes.

    Science.gov (United States)

    Annamalai, Neelamegam; Rajeswari, Mayavan Veeramuthu; Elayaraja, Sivaramasamy; Balasubramanian, Thangavel

    2013-04-15

    An extracellular thermostable, haloalkaline cellulase by bioconversion of lignocellulosic wastes from Bacillus halodurans CAS 1 was purified to homogeneity with recovery of 12.54% and purity fold 7.96 with the molecular weight of 44 kDa. The optimum temperature, pH and NaCl for enzyme activity was determined as 60°C, 9.0 and 30% and it retained 80% of activity even at 80°C, 12 and 35% respectively. The activity was greatly inhibited by EDTA, indicating that it was a metalloenzyme and significant inhibition by PMSF revealed that serine residue was essential for catalytic activity. The purified cellulase hydrolyzed CMC, cellobiose and xylan, but not avicel, cellulose and PNPG. Furthermore, the cellulase was highly stable in the presence of detergents and organic solvents such as acetone, n-hexane and acetonitrile. Thus, the purified cellulase from B. halodurans utilizing lignocellulosic biomass could be greatly useful to develop industrial processes. Published by Elsevier Ltd.

  11. Yeast production from cellulase hydrolyzed furfural industrial waste. II. Conditions for the cultivation of yeast

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Three yeast strains, Candida AS 2-121, C. utilis AS 2-1180, and C. tropicalis AS 2-637 were selected as being capable of growing on cellulase-hydrolyzed furfural industrial waste. Cell mass yields with respect to C source were approximately 50%. Fermentation conditions are given.

  12. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, Jim

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  13. Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrate

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, J

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  14. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  15. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  16. Systemic fungal infections in neonates

    Directory of Open Access Journals (Sweden)

    Rao S

    2005-01-01

    Full Text Available Advances in neonatal management have led to considerable improvement in newborn survival. However, early (72hours onset systemic infections, both bacterial and fungal, remain a devastating complication and an important cause of morbidity and mortality in these babies. Most neonatal fungal infections are due to Candida species, particularly Candida albicans. The sources of candidiasis in NICU are often endogenous following colonization of the babies with fungi. About 10% of these babies get colonized in first week of life and up to 64% babies get colonized by 4 weeks of hospital stay. Disseminated candidiasis presents like bacterial sepsis and can involve multiple organs such as the kidneys, brain, eye, liver, spleen, bone, joints, meninges and heart. Confirming the diagnosis by laboratory tests is difficult and a high index of suspicion is required. The diagnosis of fungemia can be made definitely only by recovering the organism from blood or other sterile bodily fluid. Amphotericin B continues to be the mainstay of therapy for systemic fungal infections but its use is limited by the risks of nephrotoxicity and hypokalemia. Newer formulations of amphotericin B, namely the liposomal and the lipid complex forms, have recently become available and have been reported to have lesser toxicity. More recently Indian liposomal Amphotericin B derived from neutral lipids (L-Amp -LRC-1 has shown good response with less toxicity. A clinical trial with this preparation has shown to be safe and efficacious in neonatal fungal infections. Compared to other liposomal preparations, L-Amp-LRC-1 is effective at lower dose and is less expensive drug for the treatment of neonatal candidiasis.

  17. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  18. Fungal genome resources at NCBI

    Science.gov (United States)

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  19. Evaluating the Biodeterioration Enzymatic Activities of Fungal Contamination Isolated from Some Ancient Yemeni Mummies Preserved in the National Museum

    Directory of Open Access Journals (Sweden)

    Khalid Mohammed Naji

    2014-01-01

    Full Text Available Sophisticated mummification using chemical preservation was prevalent in ancient Yemeni civilization as noted in the 4th century B.C. mummies of the National Museum of Yemen, Sana’a, used in this study. Five of these mummies were used to evaluate hydrolytic enzymes produced as a result of fungal contamination. Forty-seven fungal species were isolated, thereby reflecting a high degree of contamination which may have resulted from the poor ventilation and preservation system. Aspergillus was the most common genus isolated (48.9%. Fifteen isolates exhibited ability to produce cellulase (EC; 3.2.1.4, Aspergillus candidus being the highest cellulose-producer. Pectin lyase (PL, EC; 4.2.2.2 and pectin methyl esterase (PME, EC; 3.1.1.11 were produced by Trichoderma hamatum, whereas chitinase (EC; 3.2.1.14 was produced by Aspergillus niger. Protease activity was noted by only Cladosporium herbarum. The higher activities of these fungal hydrolytic enzymes represent the major threats of biodeterioration including deteriorating linen bandages as well as the mummy bodies. Therefore, it is recommended to improve the preservation system of the mummies at the National Museum to minimize the contamination up to the lowest level and protect the mummies from biodeterioration.

  20. Myco-fluidics: The fluid dynamics of fungal chimerism

    Science.gov (United States)

    Roper, Marcus; Hickey, Patrick; Dressaire, Emilie; Roch, Sebastien

    2012-11-01

    Chimeras-fantastical creatures formed as amalgams of many animals-have captured the human imagination since Ancient times. But they are also surprisingly common in Nature. The syncytial cells of filamentous fungi harbor large numbers of nuclei bathed in a single cytoplasm. As a fungus grows these nuclei become genetically diverse, either from mutation or from exchange of nuclei between different fungal individuals, a process that is known to increase the virulence of the fungus and its adaptability. By directly measuring nuclear movement in the model ascomycete fungus Neurospora crassa, we show that the fungus' tolerance for internal genetic diversity is enabled by hydrodynamic mixing of nuclei acting at all length scales within the fungal mycelium. Mathematical modeling and experiments in a mutant with altered mycelial morphology reveal some of the exquisite hydraulic engineering necessary to create these mixing flows from spatially coarse pressure gradients.

  1. The 2012 Fungal Meningitis Outbreak in the United States: Connections Between Soils and Human Health

    Science.gov (United States)

    Burgess, Lynn; Brevik, Eric

    2013-04-01

    In September of 2012 the United States found itself facing a fungal meningitis outbreak that was traced back to contaminated steroid injections. The fungus Exserohilium rostratum, which is found in soil, among other locations in the environment, was identified as the main cause of the health issues created by the contaminated steroids. As of November 7, 2012 419 cases of fungal meningitis, stroke due to presumed fungal meningitis, or other central nervous system-related infections, 10 cases of peripheral joint infections, and 31 deaths linked to the contaminated steroids had been documented. However, the life cycle and soil ecology of E. rostratum is not well understood, and such knowledge would aid human health professionals in understanding the pathogenic potential of E. rostratum. Therefore, soil scientists have a role to play in developing the most effective ways to combat human health challenges such as the 2012 fungal meningitis outbreak.

  2. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.

    Science.gov (United States)

    Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T

    2018-04-01

    Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  4. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  5. Cellulase production by Trichoderma harzianum in static and mixed solid-state fermentation reactors under nonaseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, F.; Giuliano, C.; Asther, M.; Huet, M.C.; Roussos, S.

    1985-09-01

    Cellulase production from lignocellulosic materials was studied in solid-state cultivation by both static and mixed techniques under nonaseptic conditions. The effects of fermentation conditions, such as moisture content, pH, temperature, and aeration, on cellulase production by Trichoderma harzianum using a mixture of wheat straw (80%) and bran (20%) were investigated. With a moisture content of 74% and a pH of 5.8, 18 IU filter paper activity and 198 IU endoglucanase activity/g initial substrate content were obtained in 66 hours. The extension from static column cultivation to stirred tank reactor of 65 l capacity gave similar yields of cellulase.

  6. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger.

    Science.gov (United States)

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W; Adams, Paul D; Sale, Kenneth L; Simmons, Blake A; Baker, Scott E; Magnuson, Jon K; Gladden, John M

    2017-01-01

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.

  7. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    Science.gov (United States)

    Lynn, Jed; Sibert, Stephanie J.; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M.; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W.; Adams, Paul D.; Sale, Kenneth L.; Simmons, Blake A.; Baker, Scott E.; Magnuson, Jon K.; Gladden, John M.

    2017-01-01

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry. PMID:29281693

  8. Production of xylanases and cellulases by aspergillus fumigatus ms16 using crude lignocellulosic substrates

    International Nuclear Information System (INIS)

    Naseeb, S.; Sohai, M.; Ahmad, A.; Khan, S.A.

    2015-01-01

    Xylanolytic and cellulolytic potential of a soil isolate, Aspergillus fumigatus (MS16) was studied by growing it on a variety of lignocellulosics, purified cellulose and xylan supplemented media. It was noted that carboxymethyl cellulose, salicin and xylan induce the -glucosidase and xylanase, respectively production of endoglucanase. The study revealed that Aspergillus fumigatus (MS16) co-secretes xylanase and cellulase in the presence of xylan; the ratio of the two enzymes was influenced by the initial pH of the medium. The maximum titers of xylanase and cellulase were noted at initial pH of 5.0. Relatively higher titers of both the enzymes were obtained when the fungus was cultivated at 35 degree C. Whereas, cellulase production was not detected when the fungus was cultivated at 40 degree C. The volumetric productivity (Qp) of xylanase was much higher than cellulases. The organism produced 2-3 folds higher titers of xylanase when grown on lignocellulosic materials in submerged cultivation than under solid-state cultivation, suggesting a different pattern of enzyme production in presence and in absence of free water. The partial characterization of enzymes showed that xylanase from this organism has -glucosidase. The higher melting temperature than endoglucanase and optimum temperature for activity was higher for xylanases than cellulases, whereas the optimum pH differed slightly i.e. in the range of 4.0-5.0. Enzyme preparation from this organism was loaded on some crude substrates and it showed that the enzyme preparation can be used to hydrolyze a variety of vegetable and agricultural waste materials. (author)

  9. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J.; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M.; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W.; Adams, Paul D.; Sale, Kenneth L.; Simmons, Blake A.; Baker, Scott E.; Magnuson, Jon K.; Gladden, John M.; Croft, Anna Kristina

    2017-12-27

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.

  10. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Saori Amaike Campen

    Full Text Available Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.

  11. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    Science.gov (United States)

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  12. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  13. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures.

    Directory of Open Access Journals (Sweden)

    Senta Heiss-Blanquet

    Full Text Available Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity.

  14. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  15. Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2016-08-01

    Full Text Available Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on

  16. Characterization of Cellulase Enzyme Inhibitors Formed During the Chemical Pretreatments of Rice Straw

    Science.gov (United States)

    Rajan, Kalavathy

    Production of fuels and chemicals from a renewable and inexpensive resource such as lignocellulosic biomass is a lucrative and sustainable option for the advanced biofuel and bio-based chemical platform. Agricultural residues constitute the bulk of potential feedstock available for cellulosic fuel production. On a global scale, rice straw is the largest source of agricultural residues and is therefore an ideal crop model for biomass deconstruction studies. Lignocellulosic biofuel production involves the processes of biomass conditioning, enzymatic saccharification, microbial fermentation and ethanol distillation, and one of the major factors affecting its techno-economic feasibility is the biomass recalcitrance to enzymatic saccharification. Preconditioning of lignocellulosic biomass, using chemical, physico-chemical, mechanical and biological pretreatments, is often practiced such that biomass becomes available to downstream processing. Pretreatments, such as dilute acid and hot water, are effective means of biomass conversion. However, despite their processing importance, preconditioning biomass also results in the production of carbohydrate and lignin degradation products that are inhibitory to downstream saccharification enzymes. The saccharification enzyme cocktail is made up of endo-cellulase, exo-cellulase and beta-glucosidase enzymes, whose role is to cleave cellulose polymers into glucose monomers. Specifically, endo-cellulase and exo-cellulase enzymes cleave cellulose chains in the middle and at the end, resulting in cellobiose molecules, which are hydrolyzed into glucose by beta-glucosidase. Unfortunately, degradation compounds generated during pretreatment inhibit the saccharification enzyme cocktail. Various research groups have identified specific classes of inhibitors formed during biomass pretreatment and have studied their inhibitory effect on the saccharification cocktail. These various research groups prepared surrogate solutions in an attempt to

  17. Fungal Endocarditis: Update on Diagnosis and Management.

    Science.gov (United States)

    Pasha, Ahmed Khurshid; Lee, Justin Z; Low, See-Wei; Desai, Hem; Lee, Kwan S; Al Mohajer, Mayar

    2016-10-01

    Fungal endocarditis is an extremely debilitating disease associated with high morbidity and mortality. Candida spp. are the most common isolated organisms in fungal endocarditis. It is most prevalent in patients who are immunosuppressed and intravenous drug users. Most patients present with constitutional symptoms, which are indistinguishable from bacterial endocarditis, hence a high index of suspicion is required for pursuing diagnosis. Diagnosis of fungal endocarditis can be very challenging: most of the time, blood cultures are negative or take a long time to yield growth. Fungal endocarditis mandates an aggressive treatment strategy. A medical and surgical combined approach is the cornerstone of therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Chitinase and cellulase activity from Bacillus thuringiensis strains - doi: 10.5102/ucs.v7i1.974

    Directory of Open Access Journals (Sweden)

    Vinícius Fiúza Dumas

    2009-12-01

    Full Text Available The present study aimed to analyze the production of chitinase and cellulase enzymes by strains of Bacillus thuringiensis toxic to Spodoptera frugiperda and Anthonomus grandis larvae. In order to evaluate the relationship between cellular growth and the chitinase and cellulase production, in vitro assays were carried through with bacteria cultures grown for 16h, 24h, 48h and 72h. Chitinase and cellulase activity was determined by a colorimetric method. The amount of N-acetylglucosamine (GlcNAc or its equivalent was measured by development of color in acid medium. All strains presented enzymatic production after 16h of cellular growth until 72h. However, a Kruskal-Wallis test detected no significant differences among the chitinase and cellulase activity during the cellular growth. According to these results, was not possible to associate chitinase and cellulose activity with the different level of toxicity of Bt strains against S. frugiperda and A. grandis larvae.

  19. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    Science.gov (United States)

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  20. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events Advocacy News Call ... Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create Your ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... of the differences in types of vegetables. When creating your plate at home, remember that half of ... effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods ...

  3. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose

    OpenAIRE

    Bischof, Robert; Fourtis, Lukas; Limbeck, Andreas; Gamauf, Christian; Seiboth, Bernhard; Kubicek, Christian P

    2013-01-01

    Background Renewable lignocellulosic biomass is an advantageous resource for the production of second generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on lactose, the only soluble and also cheap inducing ...

  4. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    Science.gov (United States)

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  5. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  6. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: Application in saccharification of lignocellulose.

    Science.gov (United States)

    Xu, Jiaxing; Sheng, Zhenhuan; Wang, Xinfeng; Liu, Xiaoyan; Xia, Jun; Xiong, Peng; He, Bingfang

    2016-01-01

    The objective of the present work was to improve ionic liquid (IL) tolerance of cellulase based on the exploration of functional nanoscale carriers for potential application in lignocellulosic biorefinery. PEGylated graphene oxide (GO) composite was successfully fabricated by chemical binding of 4-arm-PEG-NH2 and GO and applied to the immobilization of cellulase. The PEGylated GO-Cellulase retained 61% of the initial activity in 25% (w/v) 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) while free cellulase only retained 2%. The IL stability was enhanced more than 30 times. The relatively minor change in Km value (from 2.7 to 3.2mgmL(-1)) after the immobilization suggested that PEGylated GO-Cellulase was capable of closely mimicking the performance of free enzyme. After treating rice straw with [Bmim][Cl] and dilution to a final IL concentration of 15% (w/v), the slurry was directly hydrolyzed using PEGylated GO-Cellulase without IL removing and a high hydrolysis rate of 87% was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  9. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  10. PEA PEEL WASTE: A LIGNOCELLULOSIC WASTE AND ITS UTILITY IN CELLULASE PRODUCTION BY Trichoderma reesei UNDER SOLID STATE CULTIVATION

    Directory of Open Access Journals (Sweden)

    Nitin Verma

    2011-03-01

    Full Text Available A wide variety of waste bioresources are available on our planet for conversion into bioproducts. In the biological systems, microorganisms are used to utilize waste as an energy source for the synthesis of valuable products such as biomass proteins and enzymes. The large quantities of byproducts generated during the processing of plant food involve an economic and environmental problem due to their high volumes and elimination costs. After isolation of the main constituent, there are abundant remains which represent an inexpensive material that has been undervalued until now. Pea peel waste is one of the undervalued, unused sources of energy that can serve as a potential source for cellulase production. Batch experiments have been performed, using pea peel waste as a carbon source for cellulase production under solid state cultivation by Trichoderma reesei. It was observed that 30 oC temperature and pH 5.0 are the most favorable conditions for cellulase production by T. reesei. FPase activity significantly increases by incorporation of whey as well as wheat starch hydrolysate in the basal salt media used in the production study. The present study describes the utility of pea peel waste, whey as well as wheat starch hydrolysate in cellulase production by T. reesei. The utilization of economically cheap, pea peel waste for cellulase production could be a novel, cost effective, and valuable approach in cellulase production as well as in solid waste management.

  11. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    Science.gov (United States)

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Fungal transmission of plant viruses.

    Science.gov (United States)

    Campbell, R N

    1996-01-01

    Thirty soilborne viruses or virus-like agents are transmitted by five species of fungal vectors. Ten polyhedral viruses, of which nine are in the family Tombusviridae, are acquired in the in vitro manner and do not occur within the resting spores of their vectors, Olpidium brassicae and O. bornovanus. Fungal vectors for other viruses in the family should be sought even though tombusviruses are reputed to be soil transmitted without a vector. Eighteen rod-shaped viruses belonging to the furo- and bymovirus groups and to an unclassified group are acquired in the in vivo manner and survive within the resting spores of their vector, O. brassicae, Polymyxa graminis, P. betae, and Spongospora subterranea. The viral coat protein has an essential role in in vitro transmission. With in vivo transmission a site in the coat protein-read through protein (CP-RT) of beet necrotic yellow vein furovirus determines vector transmissibility as does a site in a similar 98-kDa polyprotein of barley mild mosaic bymovirus. The mechanisms by which virions move (or are moved) into and out of the protoplasm of zoospores or of thalli needs study.

  13. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  14. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis.

    Science.gov (United States)

    Yang, Yi; Yang, Jinshui; Liu, Jiawen; Wang, Ruonan; Liu, Liang; Wang, Fengqin; Yuan, Hongli

    2018-06-01

    Herein, we report the secretome of Penicillium chrysogenum P33 under induction of lignocellulose for the first time. A total of 356 proteins were identified, including complete cellulases and numerous hemicellulases. Supplementing a commercial cellulase with increasing dosage of P33 enzyme cocktail from 1 to 5 mg/g substrate increased the release of reducing sugars from delignified corn stover by 21.4% to 106.8%. When 50% cellulase was replaced by P33 enzyme cocktail, release of reducing sugars was 78.6% higher than with cellulase alone. Meanwhile, glucan and xylan conversion was increased by 37% and 106%, respectively. P33 enzyme cocktail also enhanced commercial cellulase hydrolysis against four different delignified lignocellulosic biomass. These findings demonstrate that mixing appropriate amount of P33 cocktail with cellulase improves polysaccharide hydrolysis, suggesting P33 enzymes have great potential for industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Estimation of the Burden of Serious Human Fungal Infections in Malaysia

    Directory of Open Access Journals (Sweden)

    Rukumani Devi Velayuthan

    2018-03-01

    Full Text Available Fungal infections (mycoses are likely to occur more frequently as ever-increasingly sophisticated healthcare systems create greater risk factors. There is a paucity of systematic data on the incidence and prevalence of human fungal infections in Malaysia. We conducted a comprehensive study to estimate the burden of serious fungal infections in Malaysia. Our study showed that recurrent vaginal candidiasis (>4 episodes/year was the most common of all cases with a diagnosis of candidiasis (n = 501,138. Oesophageal candidiasis (n = 5850 was most predominant among individuals with HIV infection. Candidemia incidence (n = 1533 was estimated in hospitalized individuals, some receiving treatment for cancer (n = 1073, and was detected also in individuals admitted to intensive care units (ICU (n = 460. In adults with asthma, allergic bronchopulmonary aspergillosis (ABPA was the second most common respiratory mycoses noticed (n = 30,062 along with severe asthma with fungal sensitization (n = 39,628. Invasive aspergillosis was estimated in 184 cases undergoing anti-cancer treatment and 834 ICU cases. Cryptococcal meningitis was diagnosed in 700 subjects with HIV/AIDS and Pneumocystis jirovecii pneumonitis (PCP in 1286 subjects with underlying HIV disease. The present study indicates that at least 590,214 of the Malaysian population (1.93% is affected by a serious fungal infection annually. This problem is serious enough to warrant the further epidemiological studies to estimate the burden of human fungal infections in Malaysia.

  17. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis.

    Science.gov (United States)

    Ahmad, Razi; Khare, Sunil Kumar

    2018-03-01

    In present study, Aspergillus niger cellulase was immobilized onto functionalized multiwalled carbon nanotubes (MWCNTs) via carbodiimide coupling. MWCNTs offer unique advantages including enhanced electronics properties, a large edge to basal plane ratio, rapid electrode kinetics and it's possess higher tensile strength properties due to their structural arrangements. The immobilization was confirmed by FTIR (Fourier transform infrared spectroscopy) and SEM (scanning electron microscope). The bionanoconjugates prepared under optimized condition retained 85% activity with improved pH and thermal stability. The t 1/2 of immobilized cellulase at 70 °C was four fold higher than free enzyme. The Km value indicates that affinity of bionanoconjugates towards substrate has increased by two times. The preparation could be reused ten times without much loss in enzyme activity. The enhanced catalytic efficiency, stability and reusability makes it useful for efficient cellulose hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover.

    Science.gov (United States)

    Idris, Ayman Salih Omer; Pandey, Ashok; Rao, S S; Sukumaran, Rajeev K

    2017-10-01

    The production of cellulase by Trichoderma reesei RUT C-30 under solid-state fermentation (SSF) on wheat bran and cellulose was optimized employing a two stage statistical design of experiments. Optimization of process parameters resulted in a 3.2-fold increase in CMCase production to 959.53IU/gDS. The process was evaluated at pilot scale in tray fermenters and yielded 457IU/gDS using the lab conditions and indicating possibility for further improvement. The cellulase could effectively hydrolyze alkali pretreated sorghum stover and addition of Aspergillus niger β-glucosidase improved the hydrolytic efficiency 174%, indicating the potential to use this blend for effective saccharification of sorghum stover biomass. The enzymatic hydrolysate of sorghum stover was fermented to ethanol with ∼80% efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    Science.gov (United States)

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. PURIFICATION AND SOME PROPERTIES OF CELLULASE FROM ODONTOTERMES FORMOSANUS (ISOPTERA: TERMITIDAE)

    Institute of Scientific and Technical Information of China (English)

    Tian-ciYang; Jian-chuMo; Jia-anCheng

    2004-01-01

    The purification of the cellulase from Odontotermes forrnosanus workers was achieved by using anion-exchange column of UNOsphere Q, BioLogic DuoFlow chromatography system. The purified cellulase was identified as an endoglucanase and some of its properties were investigated. The EGase activity was 807.5-fold as high as the initial enzyme activity using CMC as substrate and 14.4-fold using salicin as substrate. The enzyme preparations were homogeneous as judged by SDS-PAGE electrophoresis, molecular weight of which was 80 kDa and confirmed by 2-DE zymogram analysis. The enzyme was isoelectric at pH 6.4, which was active on CMC substrate.

  1. Ultrasonic treatment of Viscozyme Cassava C preparation for improving cellulase activity

    Science.gov (United States)

    Tra, Tran Thi Thu; Vu, Huynh Minh; Man, Le Van Viet

    2017-09-01

    In this study, the effects of ultrasonic treatment on the cellulolytic activity of Viscozyme Cassava C preparation were investigated. The biocatalyst was treated with ultrasound at different enzyme concentrations (from 0.02 to 19.50 mg protein/mL), ultrasonic powers (from 0 to 12 W/mL) and times (from 0 to 120 seconds). The highest cellulase activity was achieved when the enzyme preparation was ultrasonicated at 7.3 W/mL for 40 sec, under which the cellulase activity increased by 18.1% over the control. The optimal pH and temperature of the sonicated and unsonicated biocatalysts were statistically similar. However, the half-life value of the sonicated preparation at 4 °C was 24.5% higher than that of the unsonicated preparation. This result indicated that ultrasonic treatment of the enzyme preparation could reduce its amount used in biocatalysis.

  2. Cellulase enzyme production during continuous culture growth of Sporotrichum (Chrysosporium) thermophile

    Energy Technology Data Exchange (ETDEWEB)

    Cossar, D; Canevascini, G

    1986-07-01

    The cellulolytic fungus Sporotrichum (Chrysosporium) thermophile produces an extracellular cellobiose dehydrogenase during batch culture on cellulose or cellobiose. In chemostat culture at pH 5.6 on cellobiose this enzyme was produced in parallel with endo-cellulase. At pH 5.0 in continuous or fed-batch culture such a pattern was not evident. At constant growth rate in a chemostat with varying pH, activity of these enzymes was found to be poorly correlated. Thus the induction of cellobiose dehydrogenase shows a dependence on pH and cellobiose concentration which is different to that for endo-cellulase. The natural inducer of these enzymes and the role of cellubiose dehydrogenase remain to be elucidated.

  3. Development of Specific Substrates for Hypocrea jecorina Cellulases

    DEFF Research Database (Denmark)

    Rasmussen, Tina Secher

      During the last decades a considerable amount of interest has focused on transformation of cellulosic biomass to renewable energy sources such as ethanol.1,2 Cellulases, secreted by different microorganisms, are key enzymes in this process. However, the degradation of cellulose is a difficult......, a commonly encountered problem during this process is the "dying off" of enzymes over time,4 possibly caused by one component in the mixture becoming rate-limiting. Currently, no methodologies exists that can accurately profile, identify and quantify active enzymes in a complex mixture and such a methodology...... of the three-dimensional (X-ray) structures of different cellulases indicated that modifications at other positions would occlude binding, while, typically some space is available around the 4' and 6' position. The substituents were chosen so that further modifications would be possible either by click...

  4. Cellulase-assisted extraction of polysaccharides from Cucurbita moschata and their antibacterial activity.

    Science.gov (United States)

    Qian, Zhi-Gang

    2014-01-30

    In this study, cellulase-assisted extraction of water soluble polysaccharides from pumpkin (Cucurbita moschata) and their antibacterial activity were investigated. The polysaccharides yield was monitored during the extraction process. The optimum extraction conditions were determined as follows: time, 40 min; temperature, 55°C; pH, 4.5; and cellulase amount, 4,000 U/g. The extracts were centrifuged, filtered, proteins removed by Sevag method, concentrated to approximately 15% (w/v), precipitated with 5 volumes of absolute ethanol, freeze-dried, and pulverized to yield a water soluble powder of pumpkin polysaccharides (PP). The sugar content of the product was 68.3%, and the yield was 17.34% (w/w), respectively. The PP had high antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli at the concentration of 100 mg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Recycling Cellulase from Enzymatic Hydrolyzate of Laser-Pretreated Corn Stover by UF Membrane

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2015-09-01

    Full Text Available The ultrafiltration membrane reactor, utilizing a membrane module with a suitable molecular weight alleyway, retains the larger cellulase components. Smaller molecules, such as the fermentable reducing sugars and water, pass through the membrane. The purpose of this work was to investigate the capability of recycling cellulase in the UF membrane. PS30 hollow fiber membrane, an ultrafiltration method using internal pressure, was found to be an ideal membrane separation device, allowing re-use of the enzyme. A Box-Behnken experimental design (BBD established the following optimum pretreatment parameters: operation pressure at 1.73 bar, temperature at 36.38 °C, and a pH of 5.92. Under these conditions, the model predicted a membrane flux yield of 2.3174 L/(m2•h. The rejection rate of the UF membrane was over 95%.

  6. Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Alasepp, Kadri; Andersen, Morten

    2016-01-01

    the tunnel with a cellulose strand and end with the opposite, that is, the dethreading process. Evidence has suggested that threading or dethreading may be rate-limiting for the overall enzyme reaction. To directly elucidate the rates of threading and dethreading, we analyzed experimental data with respect......, at which other steps also influenced the overall dynamics. These results will be helpful in identifying rate-limiting steps for cellulases and, in turn, targets for rational design of faster enzymes.......Industrially important cellulase Cel7A hydrolyzes crystalline cellulose by a complex processive mechanism in which the enzyme slides along the cellulose surface with one strand of the polymeric substrate channeled through its catalytic tunnel. Each processive run must start with threading...

  7. Cellulase-assisted extraction and antioxidant activity of polysaccharides from Rhizoma imperata.

    Science.gov (United States)

    Jiang, Long-Fa

    2014-08-08

    In this study, the cellulase-assisted extraction and antioxidant activity of the polysaccharides from Rhizoma imperata were investigated. To improve the yield of R. Imperata polysaccharides (RPs), the extraction conditions were optimized as follows: time, 69.48 min; temperature, 45.36°C; pH, 4.58; cellulase amount, 1,200 U/g. Under these optimum conditions, the yield of RPs reached 0.67% (w/w), and was higher than that of the traditionally aqueous extraction method. The sugar content in the RPs product reached up to 93.25% (w/w). The RPs product has high antioxidant activity including hydroxyl radical scavenging activity and 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity at the concentration of 100mg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fungal effector proteins: past, present and future

    NARCIS (Netherlands)

    Wit, de P.J.G.M.; Mehrabi, R.; Burg, van den H.A.; Stergiopoulos, I.

    2009-01-01

    The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence (Avr) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and

  9. A novel class of fungal lipoxygenases

    NARCIS (Netherlands)

    Heshof, R.; Jylhä, S.; Haarmann, T.; Jørgensen, A.L.W.; Dalsgaard, T.K.; Graaff, de L.H.

    2014-01-01

    Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database

  10. Fungal infection knowledge gap in Ethiopia

    African Journals Online (AJOL)

    EPHA USER33

    receiving immunosuppressive therapy, and patients with chronic obstructive lung disease (1). Fungi also play a role in allergic fungal disease such as allergic broncho- pulmonary Aspergilosis (ABPA) and chronic or deep tissue infections. The laboratory diagnosis of fungal infection starts with a simple potassium hydroxide.

  11. Clinical consideration of fungal paranasal sinusitis

    International Nuclear Information System (INIS)

    Okuni, Tsuyoshi; Asakura, Koji; Homma, Tomo; Kawaguchi, Ryuichi; Ishikawa, Tadataka; Yamazaki, Norikazu; Himi, Tetsuo

    2008-01-01

    Fungal paranasal sinusitis is included in the differential diagnosis of unilateral paranasal lesion. Recently the incidence of fungal paranasal sinusitis has been increasing. We reviewed 24 patients (9 males and 15 females) with fungal paranasal sinusitis treated at Muroran City Hospital between January 2001 and May 2006, and clinical presentation and CT findings with those of 56 patients (36 males and 20 females) with chronic unilateral sinusitis. Fungal sinusitis patients ranged in age from 45 to 87, and the average age was 65.9 years old. In contrast, the age of chronic sinusitis patients ranged from 24 to 83, and the average age was 54.4 years old. The chief complaint of both fungal sinusitis and chronic sinusitis included rhinorrhea, nasal obstruction and post nasal discharge. CT exam was performed in all patients. In 23 cases of paranasal fungal sinusitis and 54 cases of chronic sinusitis the findings involved the maxillary sinus. The most common observation (69.6%) was bone density within the affected sinus in fungal sinusitis. However, only 2 cases of chronic sinusitis (3.9%) showed calcification. All cases of fungal sinusitis were diagnosed by pathological examinations. Most cases were proved to be aspergillus, while only one case was mucor. We treated all cases surgically, 18 cases underwent Caldwell-Luc's procedure and 5 cases underwent endoscopic sinus surgery under local anesthesia. (author)

  12. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  13. Improvement of Cellulase Production and its Characteristics by Inducing Mutation on Trichoderma reesei 2414 under Solid State Fermentation on Rice By-products

    Directory of Open Access Journals (Sweden)

    Nazanin Darabzadeh

    2018-01-01

    Full Text Available  Background and Objective: Solid State Fermentation is an economic technology to produce value-added products. Also, the use of agricultural by-products, as a waste management strategy, has recently been considered. On the other hand, the new mutants are interesting for the production of enzymes. The aim of this study was to investigate the effect of mutation on the improvement of cellulase quality. Therefore, rice by-products were used under solid state fermentation for production of cellulase. Moreover, the characteristics of the new cellulose produced from the new mutated strain was studied.Material and Methods: Cellulase was produced under solid state fermentation process. Spore suspensions of Trichoderma reesei were subjected to Co60 γ irradiation and mutated. The activities of cellulases (from parent and mutants were compared. The effects of temperature and pH on cellulase activity and the stability of cellulase in optimum condition were investigated.Results and Conclusion: Cellulase was successfully produced under solid state fermentation on the mixture of rice by-products as substrate. The results showed that mutation had a significant effect on cellulase activity and Characteristics. Trichoderma reesei B (a mutated strain had about 30% filter Paperase and 23% Carboxymethyl Cellulase higher than its parent. Cellulase activity of Trichoderma reesei B was 47% higher than its parent at the optimum temperature (50°C. In other temperatures, the activity of cellulase extracted from Trichoderma reesei B was significantly higher than that of the others; for example, at 60°C, the enzyme activity was 120% higher than its parent. It is notable that an 84% increase in the enzyme activity was observed at the optimum pH (4.5 after mutation and cellulase activity increased from 0.72 U g-1 dry solid to 1.31 U g-1 dry solid.Conflict of interest: The authors declare no conflict of interest.

  14. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  15. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.

    Science.gov (United States)

    Müller, Gerdt; Kalyani, Dayanand Chandrahas; Horn, Svein Jarle

    2017-03-01

    Enzymatic catalysis plays a key role in the conversion of lignocellulosic biomass to fuels and chemicals such as lactic acid. In the last decade, the efficiency of commercial cellulase cocktails has increased significantly, in part due to the inclusion of lytic polysaccharide monooxygenases (LPMOs). However, the LPMOs' need for molecular oxygen to break down cellulose demands reinvestigations of process conditions. In this study, we evaluate the efficiency of lactic acid production from steam-exploded birch using an LPMO-containing cellulase cocktail in combination with lactic acid bacteria, investigating both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). While the SSF set up generally has been considered to be more efficient because it avoids sugar accumulation which may inhibit the cellulases, the SHF set up in our study yielded 26-32% more lactic acid than the SSF. This was mainly due to competition for oxygen between LPMOs and the fermenting organisms in the SSF process, which resulted in reduced LPMO activity and thus less efficient saccharification of the lignocellulosic substrate. By means of aeration it was possible to activate the LPMOs in the SSF, but less lactic acid was produced due to a shift in metabolic pathways toward production of acetic acid. Overall, this study shows that lactic acid can be produced efficiently from lignocellulosic biomass, but that the use of LPMO-containing cellulase cocktails in fermentation processes demands re-thinking of traditional process set ups due to the requirement of oxygen in the saccharification step. Biotechnol. Bioeng. 2017;114: 552-559. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Production and localization of cellulases and. beta. -glucosidase from the thermophilic fungus Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Breuil, C; Wojtczak, G; Saddler, J N

    1986-01-01

    The enzyme production and localization of Thielavia terrestris strains C464 and NRRL 8126 were compared to determine their optimum temperature and pH for cellulase activity. High levels of intracellular ..beta..-glucosidase activity were detected in the former strain. The intracellular ..beta..-glucosidase of both strains were more thermostable than the extra-cellular enzyme; the half life of T. terrestris (C464) endoglucanase activity at 60 degrees C was greater than 96 hours. 12 references.

  17. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering

  18. Soil fungal community responses to global changes

    DEFF Research Database (Denmark)

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  19. Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF of Cellulosic Material

    Directory of Open Access Journals (Sweden)

    Leeuwen, J.

    2011-01-01

    Full Text Available Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum, white rot (Phanerochaete chrysosporium and soft rot (Trichoderma reesei. After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.

  20. Fungal/mycotic diseases of poultry-diagnosis, treatment and control: a review.

    Science.gov (United States)

    Dhama, Kuldeep; Chakraborty, Sandip; Verma, Amit Kumar; Tiwari, Ruchi; Barathidasan, Rajamani; Kumar, Amit; Singh, Shambhu Dayal

    2013-12-01

    Fungal/mycotic diseases cause significant economic losses to the poultry industry either due to their direct infectious nature or due to production of mycotoxins, the secondary fungal metabolites produced in grains or poultry feed. Several fungi have created havoc in the poultry industry and some of them cause direct harm to human health due to their zoonotic implications. They are responsible for high morbidity and mortality, especially in young birds and cause stunted growth and diarrhea; and fatal encephalitis. Mycotic dermatitis is a possible health hazard associated with poultry houses. Mycotoxins are the leading cause of producing immunosuppression in birds, which makes them prone to several bacterial and viral infections leading to huge economic losses to the poultry industry. In comparison to bacterial and viral diseases, advances in diagnosis, treatment, prevention and control of fungal diseases in poultry has not taken much attention. Recently, molecular biological tools have been explored for rapid and accurate diagnosis of important fungal infections. Effective prevention and control measures include: appropriate hygiene, sanitation and disinfection, strict biosecurity programme and regular surveillance/monitoring of fungal infections as well as following judicious use of anti-fungal drugs. Precautionary measures during crop production, harvesting and storing and in feed mixing plants can help to check the fungal infections including health hazards of mycotoxins/mycotoxicosis. The present review describes the fungal pathogens causing diseases in poultry/birds, especially focusing to their diagnosis, prevention and control measures, which would help in formulating appropriate strategies to have a check and control on these unwanted troubles to the poultry producers/farmers.

  1. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation.

    Science.gov (United States)

    Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2016-08-01

    Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  3. Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Ziyanda Mmango-Kaseke

    2016-11-01

    Full Text Available This paper reports on the optimization of culture conditions for cellulase and xylanase production by bacterial isolate from lignocellulosic biomass. The bacterial isolate was screened for cellulase and xylanase production on carboxyl methyl cellulose (CMC and birch wood xylan as substrates, respectively. One bacterial isolate showing the highest halo zone diameter (isolate PLY1 was selected for detailed studies. The analysis of the 16S ribosomal ribonucleic acid (rRNA gene nucleotide sequence of PLY1 revealed it to have 98% similarity to Micrococcus luteus strain Fse9 and the sequence was deposited in the GenBank as Micrococcus luteus strain SAMRC-UFH3 with accession number KU171371. Cellulase production was achieved in the presence of CMC (1% w/v under an incubation temperature of 25 °C (198 U/mL, pH 5 (173 U/mL, agitation speed 50 rpm (173 U/mL and incubation period of 96 h (102 U/mL. Xylanase was produced maximally when birch wood xylan (1% w/v was used as the substrate at 25 °C (1007 U/mL, pH 10 (2487 U/mL, 200 rpm (1814 U/mL, and under an incubation period of 84 h (1296 U/mL. Our findings showed that Micrococcus sp. SAMRC-UFH3 appears to be a potentially important candidate for lignocellulosic waste degradation and other relevant industrial applications.

  4. Characterization of cellulase, hemicellulase and lipase and its use in deinking of laser printed paper

    Directory of Open Access Journals (Sweden)

    Che Omar, I.

    2013-01-01

    Full Text Available Aims: It is recognized that laser printed paper are difficult to deink using conventional method. This had lead to the suggestion of enzymatic approach to overcome the problem encountered by commonly employed deinking techniques. The present study aimed to investigate 7 commercially available enzymes for their suitability use in deinking of laser printed paper. Methodology and results: 3 cellulases, hemicellulases, xylanase and 2 lipases were used in enzymatic deinking of laser-printed wastepaper. Cellulase A “Amano”3 (C, Hemicellulase (H and lipase (L were selected for used in deinking because they possess either highest activity or broad pH stability compared to others enzymes. Different combination of enzymes was carried out to evaluate their effectiveness in deinking process. CH enzymes sequence was determined to be the most effective sequence in toner removal with 1.90% of brightness increment. However, only 0.95% of brightnessincrement was gained by enzyme sequence L. Highest deinking efficiency obtained was not proportional to the highest total reducing sugar produced. Conclusion, significance and impact of study: Enzyme (cellulase and hemicellulase can be used to de-ink laserprintedwastepaper, which are difficult to be deinked by conventional chemical deinking process. Thus, enzyme deinking has high possibility as alternative method to current chemical deinking process which is not environmental friendly.

  5. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515

  6. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.

    Science.gov (United States)

    Zhang, Xiaoyue; Li, Yonghao; Zhao, Xinqing; Bai, Fengwu

    2017-01-01

    The high cost of cellulase production presents biggest challenge in biomass deconstruction. Cellulase production by Trichoderma reesei using low cost carbon source is of great interest. In this study, an artificial transcription activator containing the Cre1 binding domain linked to the Xyr1 effector and binding domains was designed and constitutively overexpressed in T. reesei RUT C30. The recombinant strain T. reesei zxy-2 displayed constitutive cellulase production using glucose as a sole carbon source, and the production titer was 12.75-fold of that observed with T. reesei RUT C30 in shake flask culture. Moreover, FPase and xylanase titers of 2.63 and 108.72IU/mL, respectively, were achieved using glucose as sole carbon source within 48h in a 7-L fermenter by batch fermentation using T. reesei zxy-2. The crude enzyme obtained was used to hydrolyze alkali pretreated corn stover, and a high glucose yield of 99.18% was achieved. Copyright © 2016. Published by Elsevier Ltd.

  7. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    Science.gov (United States)

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  8. In vitro flow cytometry-based screening platform for cellulase engineering

    Science.gov (United States)

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  9. Optimization of cellulase-assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai.

    Science.gov (United States)

    Zhao, Yong-Ming; Song, Jin-Hui; Wang, Jin; Yang, Jian-Ming; Wang, Zhi-Bao; Liu, Ying-Hui

    2016-10-01

    Tricholoma mongolicum Imai is a well-known edible and medicinal mushroom which in recent years has attracted increasing attention because of its bioactivities. In this study, water-soluble polysaccharides were extracted from T. mongolicum Imai by cellulase-assisted extraction and their antioxidant activities were investigated. In order to improve the yield of polysaccharides, four variables, cellulase amount (X1 ), pH (X2 ), temperature (X3 ) and extraction time (X4 ), were investigated with a Box-Behnken design. The optimal conditions were predicted to be cellulase amount of 20 g kg(-1) , pH of 4.0, temperature of 50 °C and extraction time of 127 min, with a predicted polysaccharide yield of 190.1 g kg(-1) . The actual yield of polysaccharides under these conditions was 189.6 g kg(-1) , which matched the predicted value well. The crude polysaccharides were purified to obtain four fractions, and characterization of each was carried out. In addition, antioxidant properties of four polysaccharides assessed by 1,1-diphenyl-2-picryldydrazyl (DPPH) and hydroxyl radical-scavenging assays indicated that polysaccharides from T. mongolicum Imai (TMIPs) possessed antioxidant activity in a dose-dependent manner. TMIPs show moderate antioxidant activities in vitro. Therefore it is suggested that TMIPs are potential natural antioxidants for use in functional foods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Sorghum bagasse as substrate for cellulase production by submerged and solid-state cultures of Trichoderma

    Directory of Open Access Journals (Sweden)

    Teodor Vintilă

    2014-05-01

    Full Text Available Sweet sorghum bagasse was used as cellulosic substrate in submerged and solid-state cultures of Trichoderma for cellulase production. Submerged liquid cultures (SLC were obtained by inoculation of Mandels media containing 1% cellulose with spores suspension of Trichoderma. Solid-state cultures (SSC were carried out in Erlenmayer flasks, where the substrate was distributed 1 cm layers. Comparing the yields of cellulases produced by Trichoderma strains in the systems applied in this study, using as substrate sorghum bagasse, we found the solid-state cultures as the system to produce the highest cellulase yields. The local strain of T. viride CMIT3.5. express high productivity in SSC system in laboratory conditions. The cellulolytic enzymes have maximum activity at 50oC, pH 4,8. The results recommend solid-state cultures of Trichoderma on sorghum bagasse as systems for producing cellulolytic products with higher activity than submerged cultures of Trichoderma on the same substrate.

  11. Michaelis kinetic analysis of extracellular cellulase and amylase excreted by Lactobacillus plantarum during cassava fermentation

    Science.gov (United States)

    Frediansyah, Andri; Kurniadi, Muhamad

    2017-01-01

    Our previous study reveal that single culture of Lactobacillus plantarum has ability to ferment cassava tuber in relation to produce modified cassava flour (mocaf). It was used to accelerate a fermentation process. L. plantarum grow well and produce some extracellular enzymes i.e. cellulase to change the structure and breakdown the cell wall of cassava tuber. Then, the starchy materials will be hydrolyzed by i.e. amylase into simple sugar and convert to organic acid. All of these process will give new characteristic of cassava i.e. lower fiber content, good flavor, taste, aroma and texture and the amount of cyanide acid is lower. Therefore this present study was to analyze Michaelis kinetics of extracellular carboxymethyl cellulase and amylase production by L. plantarum during cassava fermentation. The maximum carboxymethyl cellulase and amylase activity of 8.60 U/ml and 14.07 U/ml, respectively, were obtained from filtrate which has been incubated at 37°C for 18 h under stationary conditions. The Vmax and Km of CMCase were 0.8506 × 10-3 U/ml and 0.9594 × 10-3 g/mL, respectively. For amylase were 9.291 × 10-3 U/ml and 0.9163 × 10-3 g/ml, respectively.

  12. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    Science.gov (United States)

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  13. Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer.

    Science.gov (United States)

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  14. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda Eckard

    2012-01-01

    Full Text Available Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM, fourier transform infrared spectroscopy (FT-IR, capillary electrophoresis (CE, and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  15. Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.

    Science.gov (United States)

    Jeya, Marimuthu; Nguyen, Ngoc-Phuong-Thao; Moon, Hee-Jung; Kim, Sang-Hwan; Lee, Jung-Kul

    2010-11-01

    Agaricus arvensis, a newly isolated basidiomycetous fungus, was found to secrete efficient cellulases. The strain produced the highest endoglucanase (EG), cellobiohydrolase (CBH) and beta-glucosidase (BGL) activities of 0.3, 3.2 and 8U/mg-protein, respectively, with rice straw as the carbon source. Saccharification of the woody biomass with A. arvensis cellulase as the enzyme source released a high level of fermentable sugars. Enzymatic hydrolysis of the poplar biomass was optimized using the response surface methodology in order to study the influence of the variables (pH, temperature, cellulases concentration and substrate concentration). The enzyme and substrate concentrations were identified as the limiting factors for the saccharification of poplar wood biomass. A total reducing sugar level of 29g/L (293mg/g-substrate) was obtained at an enzyme concentration of 65FPU/g-substrate after optimization of the hydrolysis parameters. The model validation showed a good agreement between the experimental results and the predicted responses. A. arvensis could be a good candidate for the production of reducing sugars from a cellulosic biomass.

  16. Construction of a Bacterial Cellulase Cocktail for Saccharification of Regenerated Cellulose and Pretreated Corn Stover

    Directory of Open Access Journals (Sweden)

    Alei Geng

    2015-09-01

    Full Text Available To apply bacterial cellulases for efficient saccharification of biomass, three Clostridium thermocellum cellulases and a Thermoanaerobacter brockii β-1,4-glucosidase were synthesized in Escherichia coli, and the proportions among them were optimized. When the activities of CelD, CBHA, CBH48Y, and CglT were set at 554, 0.91, 0.91, and 856 mU per assay, respectively, the percent conversion of regenerated cellulose (0.92 g/L reached 80.9% within 24 h at 60 °C without shaking. Meanwhile, the percent conversion of pretreated corn stover (0.62 g/L reached 70.1%. Gradually raising the loads of regenerated cellulose from 0.92 to 4.58 g/L resulted in a linear increase in glucose production from 870 to 3208 μg (R2=0.997, as well as a decrease in the percent conversion from 80.9% to 59.6%. These findings suggested that the cellulase cocktail is efficient in saccharification of regenerated cellulose, as well as pretreated corn stover, and has potential applications in the biofuels industry.

  17. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.

    Science.gov (United States)

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.

  18. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  19. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

    Science.gov (United States)

    Donaldson, Lloyd; Vaidya, Alankar

    2017-03-01

    Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

  20. PERFORMANCE OF LAYER HEN FED FERMENTED Jatropha Curcas L. MEAL SUPPLEMENTED WITH CELLULASE AND PHYTASE ENZYME

    Directory of Open Access Journals (Sweden)

    S. Sumiati

    2014-10-01

    Full Text Available The objective of the experiment was to study the effect of feeding fermented Jatropha curcas L.meal (JCM supplemented with cellulase and phytase on the performances of ISA-Brown laying henaged 25-30 weeks. The Jatropha curcas meal was fermented using Rizhopus oligosporus. In this study200 laying hens were used and distributed to 5 treatments and 4 replications in Completely RandomizedDesign. The diet treatments were: R0 = control diet (without JCM, R1; diet contained fermented JCM7.5%, R2; diet contained fermented JCM 7.5% + celullase 200 g/ton, R3; diet contained fermented JCM7.5% + phytase 200 g/ton and R4; diet contained fermented JCM 7.5% + cellulase 200 g/ton + phytase200 g/ton. The parameters observed were feed consumption, hen day egg production, egg massproduction, egg weight and feed conversion ratio. The results showed that feeding fermented JCM 7.5%,both enzyme supplemented as well as unsupplemented significantly decreased (P<0.05 the feedconsumption, hen day egg and egg mass production. However, the treatments did not influence the eggweight. Supplementation of cellulase (R2 or phytase (R3 improved the feed conversion ratio with thevalue as same as the R0 diet.

  1. INCIDENCE OF FUNGAL ELEMENTS IN SINONASAL POLYPOSIS

    Directory of Open Access Journals (Sweden)

    Santhosh G. S

    2016-12-01

    Full Text Available BACKGROUND Nasal polyposis is a disease entity characterised by formation of pseudoedema of sinonasal mucus membrane progressing to form polyps. It presents clinically with nasal obstruction and fleshy masses in the nasal cavity. The nasal mucosa reacts to formation of polypi in allergic fungal sinusitis also. The present study is an attempt to demonstrate possible fungal elements from the polypi removed during surgery by KOH study and HPE study. The aim of the study is to find out the incidence of fungal elements in sinonasal polyposis. MATERIALS AND METHODS 50 patients attending the ENT OPD for nasal obstruction and showing polypi on anterior rhinoscopy were selected. All the patients were subjected to surgery and specimens collected were subjected to KOH study and histopathology to demonstrate fungal elements. RESULTS Among 50 patients, the age range was from 9-57 years; mean age- 36.46 years. The male-to-female ratio was 1.5:1. Deviated nasal septum was found in 38% of patients. Among the unilateral cases, 47% were antrochoanal polyps and 53% were ethmoid polyps. Out of 50 patients, only 3 specimens were positive for fungal elements with KOH study and only 2 cases with fungal culture. Thus, the incidence of fungal elements in sinonasal polyposis was 6%. CONCLUSION The incidence of fungal elements in sinonasal polyposis was 6%. Histopathological examination of polypectomy specimen was negative for invasive fungal disease and showed inflammatory changes only. There is no difference in the detection of the presence of fungal by two methods.

  2. Chapter 8: Invasive fungal rhinosinusitis.

    Science.gov (United States)

    Duggal, Praveen; Wise, Sarah K

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a disease of the paranasal sinuses and nasal cavity that typically affects immunocompromised patients in the acute fulminant form. Early symptoms can often mimic rhinosinusitis, while late symptoms can cause significant morbidity and mortality. Swelling and mucosal thickening can quickly progress to pale or necrotic tissue in the nasal cavity and sinuses, and the disease can rapidly spread and invade the palate, orbit, cavernous sinus, cranial nerves, skull base, carotid artery, and brain. IFRS can be life threatening if left undiagnosed or untreated. While the acute fulminant form of IFRS is the most rapidly progressive and destructive, granulomatous and chronic forms also exist. Diagnosis of IFRS often mandates imaging studies in conjunction with clinical, endoscopic, and histopathological examination. Treatment of IFRS consists of reversing the underlying immunosuppression, antifungal therapy, and aggressive surgical debridement. With early diagnosis and treatment, IFRS can be treated and increase patient survival.

  3. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.

    Science.gov (United States)

    An, Tianchen; Dong, Zhu; Lv, Junchen; Liu, Yujun; Wang, Manchuriga; Wei, Shuangshuang; Song, Yanting; Zhang, Yingxia; Deng, Shiming

    2015-04-01

    A cellulase with wide range of pH resistance and high salt tolerance was isolated from the digestive gland of the oyster Crassostrea rivularis living in mangrove forests. The 27 kDa cellulase named as CrCel was purified 40.6 folds by anion exchange chromatography and extraction from the gel after non-reducing sodium dodecylsufate-polyacrylamide gel electrophoresis. The specific activity of the purified cellulase was 23.4 U/mg against carboxymethyl cellulose (CMC). The N-terminal amino acid sequence of CrCel was determined to be NQKCQANSRV. CrCel preferably hydrolyzes β-1,4-glucosidic bonds in the amorphous parts of cellulose materials and displays degradation activity toward xylan. The Km and Vmax values of CrCel for CMC were determined to be 2.1% ± 0.4% and 73.5 ± 3.3 U mg(-1), respectively. The optimal pH value and temperature of CrCel were 5.5 and 40°C, respectively. The enzyme was stable in a wide range of pH, retaining over 60% activity after incubation for 80 min in the pH range of 3.0-9.0. In addition, CrCel showed remarkable tolerance to salt and remained active at high NaCl concentrations, but also retained over 70% activity after incubation in 0.5-2 M NaCl for up to 24 h. On the basis of the N-terminal sequence alignment and its similar properties to other animal cellulases, CrCel was regarded as a member of glycosyl hydrolase family 45 β-1,4-glucanases. CrCel is the first reported cellulase isolated from mangrove invertebrates, which suggests that it may participate in the assimilation of cellulolytic materials derived from the food sources of the oyster and contribute to the consumption of mangrove primary production. The unique properties of this enzyme make it a potential candidate for further industrial application. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  4. fA cellular automaton model of crystalline cellulose hydrolysis by cellulases

    Directory of Open Access Journals (Sweden)

    Little Bryce A

    2011-10-01

    Full Text Available Abstract Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall

  5. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.

    Science.gov (United States)

    Rahnama, Nooshin; Foo, Hooi Ling; Abdul Rahman, Nor Aini; Ariff, Arbakariya; Md Shah, Umi Kalsom

    2014-12-12

    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels. Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the

  6. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    Science.gov (United States)

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of

  7. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.

    Science.gov (United States)

    Huang, Renliang; Guo, Hong; Su, Rongxin; Qi, Wei; He, Zhimin

    2017-03-01

    Recycling cellulases by substrate adsorption is a promising strategy for reducing the enzyme cost of cellulosic ethanol production. However, β-glucosidase has no carbohydrate-binding module (CBM). Thus, additional enzymes are required in each cycle to achieve a high ethanol yield. In this study, we report a new method of recycling cellulases without β-glucosidase supplementation using lignocellulosic substrate, an engineered strain expressing β-glucosidase and Tween 80. The cellulases and Tween 80 were added to an aqueous suspension of diluted sulfuric acid/ammonia-treated corncobs in a simultaneous saccharification and fermentation (SSF) process for ethanol production. Subsequently, the addition of fresh pretreated corncobs to the fermentation liquor and remaining solid residue provided substrates with absorbed cellulases for the next SSF cycle. This method provided excellent ethanol production in three successive SSF cycles without requiring the addition of new cellulases. For a 10% (w/v) solid loading, a cellulase dosage of 30 filter paper units (FPU)/g cellulose, 0.5% Tween 80, and 2 g/L of the engineered strain, approximately 90% of the initial ethanol concentration from the first SSF process was obtained in the next two SSF processes, with a total ethanol production of 306.27 g/kg corncobs and an enzyme productivity of 0.044 g/FPU. Tween 80 played an important role in enhancing cellulase recovery. This new enzyme recycling method is more efficient and practical than other reported methods. Biotechnol. Bioeng. 2017;114: 543-551. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... Type 2 Education Series Hear audio clips and full recordings of past Q&A events at your ...

  12. Fungal infection in organ transplant patients.

    Science.gov (United States)

    Hong, Wei; Wen, Hai; Liao, Wanqing

    2003-09-01

    To review the characteristics and evolution of the fungal spectrum, and the risk factors causing fungal infection, and to make progress in diagnosing fungal infection after organ transplantation. An English-language literature search (MEDLINE 1990 - 2000) and bibliographic review of textbooks and review articles. Twenty-three articles were selected from the literature that specifically addressed the stated purpose. Fungal infections in organ transplant patients were generally divided into two types: (1) disseminated primary or reactivation infection with one of the geographically restricted systemic mycoses; (2) opportunistic infection by fungal species that rarely cause invasive infection in normal hosts. The risk factors of fungal infection after a transplant can be evaluated and predicted according to the organ recipient's conditions before, during and after the transplant. Progress in early diagnostic methods during the past 10 years has mainly revolved around two aspects, culture and non-culture. It is important to undertake a systemic evaluation on the condition of the organ recipient before, during and after a transplant; should any risk factor for fungal infection be suspected, diagnosis should be made as early as possible by employing mycological techniques including culture and non-culture methods.

  13. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    . Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:24422981

  14. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  15. Fungal infections in neutropenic cancer patients

    International Nuclear Information System (INIS)

    Parvez, T.

    2003-01-01

    Invasive fungal infections are important causes of morbidity and mortality in cancer patients with prolonged neutropenia following chemotherapy. Recent trends indicate a change toward infections by Aspergillus species, non-albicans species of Candida, and previously uncommon fungal pathogens. These have decreased susceptibility to current antifungal agents. In the last decade there has been much effort to find solutions for these changing trends. This article reviews current approaches to prevention and treatment of opportunistic fungal infections in postchemotherapy neutropenic patients and discussion future antifungal approaches and supportive methods. (author)

  16. Use of Cellulases to Predict in vivo Digestible Organic Matter (D value in Pasture Silages Uso de Celulasas para Predecir el Contenido de Materia Orgánica Digestible (Valor D in vivo, en Ensilajes de Praderas

    Directory of Open Access Journals (Sweden)

    Claudia Barchiesi-Ferrari

    2011-06-01

    Full Text Available In pasture-based dairy herds where silage is a widely adopted supplement, optimized feeding requires reliable estimations of nutritional quality of this conserved forage. Metabolizable energy, an important nutritional fraction, can be predicted from digestibility-related traits, such as the digestible organic matter contained in the dry matter (D-value. The aim of the present study was to evaluate the prediction of D-value and dry matter digestibility (DMD of grass silages made from four different pastures and maturity stages, using the pepsin-cellulase method. Fungal cellulase was used, applying different enzyme concentrations, incubation times and types of final wash. The silages were prepared from permanent pasture (Dactylis glomerata L., Lolium perenne L., Bromus catharticus Vahl var. catharticus, Trifolium repens L. and Holcus lanatus L., rotation pasture (Lolium multiflorum Lam. cv. Tama, oats (Avena sativa L., and mixed pasture (L. perenne-T. repens. These were harvested at three different physiological stages (vegetative, ear emergence and dough grain. The treatment using an incubation time of 24 h, a cellulase concentration of 6.25 g L-1 and final wash with water (Treatment 3 presented the best prediction capacity of the in vivo D-value (R² = 0.78 and in vivo DMD (R² = 0.71. In vivo D-value prediction improved (R² = 0.8 when a chemical determination (crude fibre, gross energy, neutral detergent fibre, total ash or acid detergent fibre was included in addition (multiple regression to D-value obtained with cellulases (Treatment 3. Results of DMD obtained with cellulases show good precision, but underestimate in vivo values, and are closer to those obtained with ruminal fluid. Suitable equations could be used to improve accuracy.En sistemas lecheros pastoriles que utilizan ensilaje como suplemento, se requiere conocer el valor nutricional de éste para optimizar la alimentación del ganado. La energía metabolizable, importante fracci

  17. Creating more effective graphs

    CERN Document Server

    Robbins, Naomi B

    2012-01-01

    A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr

  18. The production and activity test of cellulases using bagasse substrate on Aspergillus niger isolated from Clove field, Kare, Madiun

    Science.gov (United States)

    Ardhi, Muh. Waskito; Sulistyarsi, Ani; Pujiati

    2017-06-01

    Aspergillus sp is a microorganism which has a high ability to produce cellulase enzymes. In producing Cellulase enzymes requires appropriate concentration and incubation time to obtain optimum enzyme activity. This study aimed to determine the effect of inoculum concentration and incubation time towards production and activity of cellulases from Aspergillus sp substrate bagasse. This research used experiments method; completely randomized design with 2 factorial repeated 2 times. The treatment study include differences inoculum (K) 5% (K1), 15% (K2) 25%, (K3) and incubation time (F) that is 3 days (F1), 6 days (F2), 9 days (F3), 12 days (F4). The data taken from the treatment are glucose reduction and protein levels of crude cellulase enzyme activity that use Nelson Somogyi and Biuret methods. Analysis of variance ANOVA data used two paths with significance level of 5% then continued with LSD test. The results showed that: Fhit>Ftab. Thus, there is effect of inoculum concentrations and incubation time toward activity of crude cellulases of Aspergillus sp. The highest glucose reduction of treatment is K3F4 (concentration of inoculum is 25% with 12 days incubation time) amount 12.834 g / ml and the highest protein content is K3F4 (concentration of inoculum is 25% with with 12 days incubation time) amount 0.740 g / ml.

  19. Evaluation of bacterial expansin EXLX1 as a cellulase synergist for the saccharification of lignocellulosic Agro-industrial wastes.

    Directory of Open Access Journals (Sweden)

    Hui Lin

    Full Text Available Various types of lignocellulosic wastes extensively used in biofuel production were provided to assess the potential of EXLX1 as a cellulase synergist. Enzymatic hydrolysis of natural wheat straw showed that all the treatments using mixtures of cellulase and an optimized amount of EXLX1, released greater quantities of sugars than those using cellulase alone, regardless of cellulase dosage and incubation time. EXLX1 exhibited different synergism and binding characteristics for different wastes, but this can be related to their lignocellulosic components. The cellulose proportion could be one of the important factors. However, when the cellulose proportion of different biomass samples exhibited no remarkable differences, a higher synergism of EXLX1 is prone to occur on these materials, with a high proportion of hemicellulose and a low proportion of lignin. The information could be favorable to assess whether EXLX1 is effective as a cellulase synergist for the hydrolysis of the used materials. Binding assay experiments further suggested that EXLX1 bound preferentially to alkali pretreated materials, as opposed to acid pretreated materials under the assay condition and the binding preference would be affected by incubation temperature.

  20. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    Science.gov (United States)

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.