WorldWideScience

Sample records for fungal cell-wall integrity

  1. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  2. The cell wall: a carbohydrate armour for the fungal cell.

    Science.gov (United States)

    Latgé, Jean-Paul

    2007-10-01

    The cell wall is composed of a polysaccharide-based three-dimensional network. Considered for a long time as an inert exoskeleton, the cell wall is now seen as a dynamic structure that is continuously changing as a result of the modification of culture conditions and environmental stresses. Although the cell wall composition varies among fungal species, chemogenomic comparative analysis have led to a better understanding of the genes and mechanisms involved in the construction of the common central core composed of branched beta1,3 glucan-chitin. Because of its essential biological role, unique biochemistry and structural organization and the absence in mammalian cells of most of its constitutive components, the cell wall is an attractive target for the development of new antifungal agents. Genomic as well as drug studies have shown that the death of the fungus can result from inhibition of cell wall polysaccharide synthases. To date, only beta1,3 glucan synthase inhibitors have been launched clinically and many more targets remain to be explored.

  3. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.

    Science.gov (United States)

    Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T

    2018-04-01

    Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    Science.gov (United States)

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  5. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose.

    Science.gov (United States)

    Engel, Jakob; Schmalhorst, Philipp S; Routier, Françoise H

    2012-12-28

    Fungal cell walls frequently contain a polymer of mannose and galactose called galactomannan. In the pathogenic filamentous fungus Aspergillus fumigatus, this polysaccharide is made of a linear mannan backbone with side chains of galactofuran and is anchored to the plasma membrane via a glycosylphosphatidylinositol or is covalently linked to the cell wall. To date, the biosynthesis and significance of this polysaccharide are unknown. The present data demonstrate that deletion of the Golgi UDP-galactofuranose transporter GlfB or the GDP-mannose transporter GmtA leads to the absence of galactofuran or galactomannan, respectively. This indicates that the biosynthesis of galactomannan probably occurs in the lumen of the Golgi apparatus and thus contrasts with the biosynthesis of other fungal cell wall polysaccharides studied to date that takes place at the plasma membrane. Transglycosylation of galactomannan from the membrane to the cell wall is hypothesized because both the cell wall-bound and membrane-bound polysaccharide forms are affected in the generated mutants. Considering the severe growth defect of the A. fumigatus GmtA-deficient mutant, proving this paradigm might provide new targets for antifungal therapy.

  6. Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation.

    Science.gov (United States)

    Ost, Kyla S; Esher, Shannon K; Leopold Wager, Chrissy M; Walker, Louise; Wagener, Jeanette; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2017-01-31

    Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to

  7. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  8. Deletion of admB gene encoding a fungal ADAM affects cell wall construction in Aspergillus oryzae.

    Science.gov (United States)

    Kobayashi, Takuji; Maeda, Hiroshi; Takeuchi, Michio; Yamagata, Youhei

    2017-05-01

    Mammals possess a unique signaling system based on the proteolytic mechanism of a disintegrin and metalloproteinases (ADAMs) on the cell surface. We found two genes encoding ADAMs in Aspergillus oryzae and named them admA and admB. We produced admA and admB deletion strains to elucidate their biological function and clarify whether fungal ADAMs play a similar role as in mammals. The ∆admA∆admB and ∆admB strains were sensitive to cell wall-perturbing agents, congo red, and calcofluor white. Moreover, the two strains showed significantly increased weights of total alkali-soluble fractions from the mycelial cell wall compared to the control strain. Furthermore, ∆admB showed MpkA phosphorylation at lower concentration of congo red stimulation than the control strain. However, the MpkA phosphorylation level was not different between ∆admB and the control strain without the stimulation. The results indicated that A. oryzae AdmB involved in the cell wall integrity without going through the MpkA pathway.

  9. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia.

    Science.gov (United States)

    Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang

    2018-05-30

    Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.

  10. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism.

    Science.gov (United States)

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches.

  11. Structure and biosynthesis of fungal alpha-glucans

    NARCIS (Netherlands)

    Grün, Christian Hugo

    2003-01-01

    The fungal cell wall is unique among eukaryotes and therefore it forms an ideal target for the development of novel antifungal drugs. Fungal cell morphology and integrity depend on a cell-surrounding wall, which is composed of glycoproteins and polysaccharides. Disrupting enzymes that are involved

  12. Three mitogen-activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available Bck1, Mkk1 and Slt2 are three mitogen-activated protein (MAP kinases constituting cell wall integrity (CWI pathway that may control multi-stress responses via crosstalk with high-osmolarity glycerol (HOG pathway in budding yeast. In this study, Bck1, Mkk1 and Slt2 orthologues in Beauveria bassiana were confirmed as the three-module cascade essential for CWI because cell wall impairment occurred in the hyphae and conidia of Δbck1, Δmkk1 and Δslt2 examined in multiple experiments. Strikingly, all the deletion mutants became more sensitive to hyperosmotic NaCl and sorbitol with the Western blot of Hog1 phosphorylation being weakened in Δbck1 and absent in Δmkk1 and Δslt2. Apart from crossing responses to cell wall perturbation and high osmolarity, three deletion mutants exhibited faster growth and conidiation on nutrition-rich medium, much less virulence to Galleria mellonella larvae, and higher sensitivity to nutritional, fungicidal, thermal and UV-B irradiative stresses, accompanied with less accumulation of intracellular mannitol and trehalose. Moreover, Δmkk1 and Δslt2 were equally more sensitive to all the stresses of different types except wet-heat stress than wild type and more or less different from Δbck1 in sensitivity to most of the stresses despite their null responses to two oxidants. All the changes in three deletion mutants were restored by each targeted gene complementation. Taken together, the CWI-required Bck1, Mkk1 and Slt2 are all positive, but differential, regulators of multi-stress tolerance and virulence perhaps due to interplay with the HOG pathway essential for osmoregulation, thereby contributing greatly to the biocontrol potential of the fungal entomopathogen.

  13. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  14. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.

    Science.gov (United States)

    van der Weerden, Nicole L; Hancock, Robert E W; Anderson, Marilyn A

    2010-11-26

    The antifungal activity of the plant defensin NaD1 involves specific interaction with the fungal cell wall, followed by permeabilization of the plasma membrane and entry of NaD1 into the cytoplasm. Prior to this study, the role of membrane permeabilization in the activity of NaD1, as well as the relevance of cell wall binding, had not been investigated. To address this, the permeabilization of Fusarium oxysporum f. sp. vasinfectum hyphae by NaD1 was investigated and compared with that by other antimicrobial peptides, including the cecropin-melittin hybrid peptide CP-29, the bovine peptide BMAP-28, and the human peptide LL-37, which are believed to act largely through membrane disruption. NaD1 appeared to permeabilize cells via a novel mechanism that required the presence of the fungal cell wall. NaD1 and Bac2A, a linear variant of the bovine peptide bactenecin, were able to enter the cytoplasm of treated hyphae, indicating that cell death is accelerated by interaction with intracellular targets.

  15. A Fungus-Inducible Pepper Carboxylesterase Exhibits Antifungal Activity by Decomposing the Outer Layer of Fungal Cell Walls.

    Science.gov (United States)

    Seo, Hyo-Hyoun; Park, Ae Ran; Lee, Hyun-Hwa; Park, Sangkyu; Han, Yun-Jeong; Hoang, Quyen T N; Choi, Gyung Ja; Kim, Jin-Cheol; Kim, Young Soon; Kim, Jeong-Il

    2018-05-01

    Colletotrichum species are major fungal pathogens that cause devastating anthracnose diseases in many economically important crops. In this study, we observed the hydrolyzing activity of a fungus-inducible pepper carboxylesterase (PepEST) on cell walls of C. gloeosporioides, causing growth retardation of the fungus by blocking appressorium formation. To determine the cellular basis for the growth inhibition, we observed the localization of PepEST on the fungus and found the attachment of the protein on surfaces of conidia and germination tubes. Moreover, we examined the decomposition of cell-wall materials from the fungal surface after reaction with PepEST, which led to the identification of 1,2-dithiane-4,5-diol (DTD) by gas chromatography mass spectrometry analysis. Exogenous DTD treatment did not elicit expression of defense-related genes in the host plant but did trigger the necrosis of C. gloeosporioides. Furthermore, the DTD compound displayed protective effects on pepper fruits and plants against C. gloeosporioides and C. coccodes, respectively. In addition, DTD was also effective in preventing other diseases, such as rice blast, tomato late blight, and wheat leaf rust. Therefore, our results provide evidence that PepEST is involved in hydrolysis of the outmost layer of the fungal cell walls and that DTD has antifungal activity, suggesting an alternative strategy to control agronomically important phytopathogens.

  16. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    Science.gov (United States)

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The structure of cell wall alpha-glucan from fission yeast

    NARCIS (Netherlands)

    Grün, Christian H.; Hochstenbach, Frans; Humbel, Bruno M.; Verkleij, Arie J.; Sietsma, J. Hans; Klis, Frans M.; Kamerling, Johannis P.; Vliegenthart, Johannes F. G.

    2005-01-01

    Morphology and structural integrity of fungal cells depend on cell wall polysaccharides. The chemical structure and biosynthesis of two types of these polysaccharides, chitin and (1-->3)-beta-glucan, have been studied extensively, whereas little is known about alpha-glucan. Here we describe the

  18. The structure of cell wall alpha-glucan from fission yeast.

    NARCIS (Netherlands)

    Grün, C.H.; Hochstenbach, F.; Humbel, B.M.; Verkleij, A.J.; Sietsma, J.H.; Klis, F.M.; Kamerling, J.P.; Vliegenthart, J.F.G.

    2005-01-01

    Morphology and structural integrity of fungal cells depend on cell wall polysaccharides. The chemical structure and biosynthesis of two types of these polysaccharides, chitin and (1rarr3)-beta-glucan, have been studied extensively, whereas little is known about alpha-glucan. Here we describe the

  19. Functional duality of the cell wall.

    Science.gov (United States)

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Role of the synthase domain of Ags1p in cell wall alpha-glucan biosynthesis in fission yeast

    NARCIS (Netherlands)

    Vos, Alina; Dekker, Nick; Distel, Ben; Leunissen, Jack A. M.; Hochstenbach, Frans

    2007-01-01

    The cell wall is important for maintenance of the structural integrity and morphology of fungal cells. Besides beta-glucan and chitin, alpha-glucan is a major polysaccharide in the cell wall of many fungi. In the fission yeast Schizosaccharomyces pombe, cell wall alpha-glucan is an essential

  1. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    Science.gov (United States)

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  2. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

    Science.gov (United States)

    Jung, Sook-In; Rodriguez, Natalie; Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G; Park, Hyunsook

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.

  4. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells.

    Science.gov (United States)

    Nimrichter, Leonardo; de Souza, Marcio M; Del Poeta, Maurizio; Nosanchuk, Joshua D; Joffe, Luna; Tavares, Patricia de M; Rodrigues, Marcio L

    2016-01-01

    Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.

  5. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    Science.gov (United States)

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  6. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall.

    Science.gov (United States)

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E

    2015-05-29

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. 30 years of battling the cell wall.

    Science.gov (United States)

    Latgé, J P

    2017-01-01

    In Aspergillus fumigatus, like in other pathogenic fungi, the cell wall is essential for fungal growth as well as for resisting environmental stresses such as phagocytic killing. Most of the chemical analyses undertaken on the cell wall of A. fumigatus are focused on the mycelial cell wall because it is the vegetative stage of the fungus. However, the cell walls of the mycelium and conidium (which is the infective propagule) are different especially at the level of the surface layer, which plays a significant role in the interaction between A. fumigatus conidia and phagocytic cells of the immune system. In spite of the essential function of the cell wall in fungal life, progresses have been extremely slow in the understanding of biosynthesis as well in the identification of the key host responses against the cell wall components. A major difficulty is the fact that the composition and structural organization of the cell wall is not immutably set and is constantly reshuffled depending on the environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.

    Science.gov (United States)

    van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L

    2007-07-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.

  9. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  10. The Aspergillus fumigatus Sialidase (Kdnase Contributes to Cell Wall Integrity and Virulence in Amphotericin B-Treated Mice

    Directory of Open Access Journals (Sweden)

    Jason R. Nesbitt

    2018-01-01

    Full Text Available Aspergillus fumigatus is a filamentous fungus that can cause a life-threatening invasive pulmonary aspergillosis (IPA in immunocompromised individuals. We previously characterized an exo-sialidase from A. fumigatus that prefers the sialic acid substrate, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (Kdn; hence it is a Kdnase. Sialidases are known virulence factors in other pathogens; therefore, the goal of our study was to evaluate the importance of Kdnase in A. fumigatus. A kdnase knockout strain (Δkdnase was unable to grow on medium containing Kdn and displayed reduced growth and abnormal morphology. Δkdnase was more sensitive than wild type to hyperosmotic conditions and the antifungal agent, amphotericin B. In contrast, Δkdnase had increased resistance to nikkomycin, Congo Red and Calcofluor White indicating activation of compensatory cell wall chitin deposition. Increased cell wall thickness and chitin content in Δkdnase were confirmed by electron and immunofluorescence microscopy. In a neutropenic mouse model of invasive aspergillosis, the Δkdnase strain had attenuated virulence and a significantly lower lung fungal burden but only in animals that received liposomal amphotericin B after spore exposure. Macrophage numbers were almost twofold higher in lung sections from mice that received the Δkdnase strain, possibly related to higher survival of macrophages that internalized the Δkdnase conidia. Thus, A. fumigatus Kdnase is important for fungal cell wall integrity and virulence, and because Kdnase is not present in the host, it may represent a potential target for the development of novel antifungal agents.

  11. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    OpenAIRE

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the pre...

  12. The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    Science.gov (United States)

    2011-01-01

    Background Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of CCW12 results in severe cell wall damage and reduced mating efficiency. Results In order to explore the function of CCW12, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of CCW12. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are PFD1, WHI3, SRN2, PAC10, FEN1 and YDR417C, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant ccw12Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are BCK1, CHS3, EDE1, PFD1, SLT2 and SLA1 that were also identified in the SGA. In contrast, a specific feature of mutant ccw12Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection. Conclusions The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw

  13. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    Science.gov (United States)

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Dual Activity Responsible for the Elongation and Branching of β-(1,3-Glucan in the Fungal Cell Wall

    Directory of Open Access Journals (Sweden)

    Vishukumar Aimanianda

    2017-06-01

    Full Text Available β-(1,3-Glucan, the major fungal cell wall component, ramifies through β-(1,6-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify β-(1,6-branching on β-(1,3-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-(14Cglucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, the bgl2Δ and gas1Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced β-(1,6-branching on the β-(1,3-oligomers following its β-(1,3-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear β-(1,3-oligomers as well as Bgl2p-catalyzed products [short β-(1,3-oligomers linked by a linear β-(1,6-linkage]. The double S. cerevisiae gas1Δ bgl2Δ mutant showed a drastically sick phenotype. An ScGas1p ortholog, Gel4p from Aspergillus fumigatus, also showed dual β-(1,3-glucan elongating and branching activity. Both ScGas1p and A. fumigatus Gel4p sequences are endowed with a carbohydrate binding module (CBM, CBM43, which was required for the dual β-(1,3-glucan elongating and branching activity. Our report unravels the β-(1,3-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life.

  15. ProFASTA: a pipeline web server for fungal protein scanning with integration of cell surface prediction software

    NARCIS (Netherlands)

    de Groot, P.W.J.; Brandt, B.W.

    2012-01-01

    Surface proteins, such as those located in the cell wall of fungi, play an important role in the interaction with the surrounding environment. For instance, they mediate primary host-pathogen interactions and are crucial to the establishment of biofilms and fungal infections. Surface localization of

  16. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  17. The cell wall protein Ecm33 of Candida albicans is involved in chronological life span, morphogenesis, cell wall regeneration, stress tolerance and host-cell interaction

    Directory of Open Access Journals (Sweden)

    Ana eGil-Bona

    2016-02-01

    Full Text Available Ecm33 is a glycosylphosphatidylinositol (GPI-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the cell wall integrity pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a veil growth, never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  18. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity

    Directory of Open Access Journals (Sweden)

    Arsa Thammahong

    2017-04-01

    Full Text Available Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions.

  19. A method for detecting fungal contaminants in wall cavities.

    Science.gov (United States)

    Spurgeon, Joe C

    2003-01-01

    This article describes a practical method for detecting the presence of both fungal spores and culturable fungi in wall cavities. Culturable fungi were collected in 25 mm cassettes containing 0.8 microm mixed cellulose ester filters using aggressive sampling conditions. Both culturable fungi and fungal spores were collected in modified slotted-disk cassettes. The sample volume was 4 L. The filters were examined microscopically and dilution plated onto multiple culture media. Collecting airborne samples in filter cassettes was an effective method for assessing wall cavities for fungal contaminants, especially because this method allowed the sample to be analyzed by both microscopy and culture media. Assessment criteria were developed that allowed the sample results to be used to classify wall cavities as either uncontaminated or contaminated. As a criterion, wall cavities with concentrations of culturable fungi below the limit of detection (LOD) were classified as uncontaminated, whereas those cavities with detectable concentrations of culturable fungi were classified as contaminated. A total of 150 wall cavities was sampled as part of a field project. The concentrations of culturable fungi were below the LOD in 34% of the samples, whereas Aspergillus and/or Penicillium were the only fungal genera detected in 69% of the samples in which culturable fungi were detected. Spore counting resulted in the detection of Stachybotrys-like spores in 25% of the samples that were analyzed, whereas Stachybotrys chartarum colonies were only detected on 2% of malt extract agar plates and on 6% of corn meal agar plates.

  20. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; Didone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  1. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  2. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    DEFF Research Database (Denmark)

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A.J.

    2014-01-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered...

  3. The Cell Wall-Associated Proteins in the Dimorphic Pathogenic Species of Paracoccidioides.

    Science.gov (United States)

    Puccia, Rosana; Vallejo, Milene C; Longo, Larissa V G

    2017-01-01

    Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis (PCM). They are dimorphic ascomycetes that grow as filaments at mild temperatures up to 28oC and as multibudding pathogenic yeast cells at 37oC. Components of the fungal cell wall have an important role in the interaction with the host because they compose the cell outermost layer. The Paracoccidioides cell wall is composed mainly of polysaccharides, but it also contains proportionally smaller rates of proteins, lipids, and melanin. The polysaccharide cell wall composition and structure of Paracoccidioides yeast cells, filamentous and transition phases were studied in detail in the past. Other cell wall components have been better analyzed in the last decades. The present work gives to the readers a detailed updated view of cell wall-associated proteins. Proteins that have been localized at the cell wall compartment using antibodies are individually addressed. We also make an overview about PCM, the Paracoccidioides cell wall structure, secretion mechanisms, and fungal extracellular vesicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans.

    Science.gov (United States)

    Kovács, Zsuzsanna; Szarka, Máté; Kovács, Szilvia; Boczonádi, Imre; Emri, Tamás; Abe, Keietsu; Pócsi, István; Pusztahelyi, Tünde

    2013-05-01

    The cell wall integrity (CWI) signaling pathway is responsible for cell wall remodeling and reinforcement upon cell wall stress, which is proposed to be universal in fungal cultures. In Aspergillus nidulans, both the deletion of rlmA encoding the RlmA transcription factor in CWI signaling and low concentrations of the cell wall polymer intercalating agent Congo Red caused significant physiological changes. The gene deletion mutant ΔrlmA strain showed decreased CWI and oxidative stress resistances, which indicated the connection between the CWI pathway and the oxidative stress response system. The Congo Red stress resulted in alterations in the cell wall polymer composition in submerged cultures due to the induction of the biosynthesis of the alkali soluble fraction as well as the hydrolysis of cell wall biopolymers. Both RlmA and RlmA-independent factors induced by Congo Red stress regulated the expression of glucanase (ANID_00245, engA) and chitinase (chiB, chiA) genes, which promoted the autolysis of the cultures and also modulated the pellet sizes. CWI stress and rlmA deletion affected the expression of brlA encoding the early conidiophore development regulator transcription factor BrlA and, as a consequence, the formation of conidiophores was significantly changed in submerged cultures. Interestingly, the number of conidiospores increased in surface cultures of the ΔrlmA strain. The in silico analysis of genes putatively regulated by RlmA and the CWI transcription factors AnSwi4/AnSwi6 in the SBF complex revealed only a few jointly regulated genes, including ugmA and srrA coding for UgmA UDP-galactopyranose mutase and SrrA stress response regulator, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.

    Science.gov (United States)

    Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo

    2017-11-01

    Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In

  6. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    Science.gov (United States)

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling.

    Science.gov (United States)

    Feng, Wei; Kita, Daniel; Peaucelle, Alexis; Cartwright, Heather N; Doan, Vinh; Duan, Qiaohong; Liu, Ming-Che; Maman, Jacob; Steinhorst, Leonie; Schmitz-Thom, Ina; Yvon, Robert; Kudla, Jörg; Wu, Hen-Ming; Cheung, Alice Y; Dinneny, José R

    2018-03-05

    Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  9. Effect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology.

    Science.gov (United States)

    Alves, Lívia Araújo; Freires, Irlan de Almeida; Pereira, Tricia Murielly; de Souza, Andrade; Lima, Edeltrudes de Oliveira; de Castro, Ricardo Dias

    2013-01-01

    To evaluate the anti-fungal activity of a tincture from Schinus terebinthifolius (Brazilian pepper tree) on Candida albicans (ATCC 289065), a micro-organism associated with fungal infections of the oral cavity. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through microdilution technique, as well as the microbial growth curve of C. albicans promoted by S. terebinthifolius. In addition, this study investigated a possible activity of the product on the fungal cell wall and its biological activity on fungal morphology. Nystatin was used as control and all tests were performed in triplicate. S. terebinthifolius showed MIC of 312.5 µg/mL and MFC of 2500 µg/mL upon the strain tested, while Nystatin showed MIC and MFC of 6.25 µg/mL. As regards the microbial growth curve, S. terebinthifolius was able to significantly reduce the number of CFU/mL when compared to growth control until the time of 60 min. In the times 120 and 180 min there was no statistically significant difference between the growth control and the experimental product. S. terebinthifolius possibly acts on the fungal cell wall, once the sorbitol test indicated a MIC of 1250 µg/mL. In the fungal morphology, a reduction was observed of pseudo-hyphae, chlamydoconidia and blastoconidia in the presence of the experimental product. S. terebinthifolius showed anti-fungal activity against C. albicans, inhibiting, probably, the fungal cell wall formation.

  10. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Science.gov (United States)

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  11. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  12. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  13. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray.

    Science.gov (United States)

    Sillo, Fabiano; Fangel, Jonatan U; Henrissat, Bernard; Faccio, Antonella; Bonfante, Paola; Martin, Francis; Willats, William G T; Balestrini, Raffaella

    2016-08-01

    A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.

  14. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.

    2010-02-26

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  15. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.; Damsz, B.; Woloshuk, C. P.; Bressan, R. A.; Narasimhan, Meena L.

    2010-01-01

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  16. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall......Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  17. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

    Science.gov (United States)

    Gil-Bona, Ana; Reales-Calderon, Jose A; Parra-Giraldo, Claudia M; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  18. Interactions of liposome carriers with infectious fungal hyphae reveals the role of β-glucans.

    Science.gov (United States)

    Chavan, Neelam L; Young, Joseph K; Drezek, Rebekah A; Lewis, Russell; Bikram, Malavosklish

    2012-09-04

    Relatively little is known about how liposomal formulations modulate drug delivery to fungal pathogens. We compared patterns of hyphal cell wall binding for empty rhodmine-labeled liposomes and the clinically available amphotericin B-containing liposomal formulation (AmBisome) in Aspergillus fumigatus and Candida albicans. Following 0.5 h of coincubation with A. fumigatus , empty liposomes concentrated primarily in fungal septae along at the surface of the cell wall, suggesting that liposome uptake is concentrated in areas of the cell wall where linear glucan is exposed on the cell surface, which was confirmed by aniline blue staining. Consistent with this hypothesis, pretreatment of liposomes with soluble linear glucan (laminarin) decreased liposome binding in both Aspergillus and Candida fungal hyphae, while growth of Aspergillus hyphae in the presence of an agent that increases fungal cell wall surface exposure of linear β-glucans without cell death (caspofungin) increased liposome uptake throughout the Aspergillus fungal cell wall. Increasing the polyethylene glycol (PEG) concentration in liposomes from 0 to 30% significantly increased fungal uptake of liposomes that was only modestly attenuated when fungal cells were incubated in serum concentrations ranging from 10 to 100%. The presence of β-glucans on the fungal hyphae cell walls of Aspergillus fumigatus is one of the factors responsible for mediating the binding of liposome carriers to the hyphae and could explain possible synergy reported between liposomal amphotericin B and echinocanins.

  19. Identification of Novel Cell Wall Components

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  20. Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars.

    Science.gov (United States)

    de Farias Viégas Aquije, Glória Maria; Zorzal, Poliana Belisário; Buss, David Shaun; Ventura, José Aires; Fernandes, Patricia Machado Bueno; Fernandes, Antonio Alberto Ribeiro

    2010-10-01

    Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant-pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar.

  1. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    Science.gov (United States)

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  2. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  3. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  4. A novel pseudopodial component of the dendritic cell anti-fungal response: the fungipod.

    Directory of Open Access Journals (Sweden)

    Aaron K Neumann

    2010-02-01

    Full Text Available Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC recognize fungi. We report a novel dorsal pseudopodial protrusion, the "fungipod", formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7+/-5.6 microm long and 1.8+/-0.67 microm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225+/-55 nm/second exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 microm particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion.

  5. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray

    DEFF Research Database (Denmark)

    Sillo, Fabiano; Fangel, Jonatan Ulrik; Henrissat, Bernard

    2016-01-01

    . An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available...... on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus...

  6. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    Science.gov (United States)

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    Science.gov (United States)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  8. Cell wall staining with Trypan Blue enables quantitative analysis of morphological changes in yeast cells

    Directory of Open Access Journals (Sweden)

    Johannes eLiesche

    2015-02-01

    Full Text Available Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  9. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  10. The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence.

    Science.gov (United States)

    Chen, Ying; Zhu, Jing; Ying, Sheng-Hua; Feng, Ming-Guang

    2014-06-01

    Ecm33 is one of several glycosylphosphatidylinositol (GPI)-anchored proteins. This protein is known to be involved in fungal cell wall integrity, but its contribution to multi-stress tolerance is largely unknown. Here we characterized the functions of two Ecm33 orthologues, i.e., Bbecm33 in Beauveria bassiana and Mrecm33 in Metarhizium robertsii. Bbecm33 and Mrecm33 were both confirmed as GPI-anchored cell wall proteins in immunogold localization. Single-gene disruptions of Bbecm33 and Mrecm33 caused slight growth defects, but conidial yield decreased much more in ΔBbecm33 (76 %) than in ΔMrecm33 (42 %), accompanied with significant reductions of intracellular mannitol and trehalose contents in both mutants and weakened cell walls in ΔBbecm33 only. Consequently, ΔBbecm33 was far more sensitive to the cell wall-perturbating agents Congo red and sodium dodecyl sulfate (SDS) than ΔMrecm33, which showed null response to SDS. Both deletion mutants became significantly more sensitive to two oxidants (menadione and H2O2), two fungicides (carbendazim and ethirimol), osmotic salt NaCl, and Ca(2+) during growth despite some degrees of differences in their sensitivities to the chemical stressors. Strikingly, conidial UV-B resistance decreased by 55 % in ΔBbecm33 but was unaffected in ΔMrecm33, unlike a similar decrease (25-28 %) of conidial thermotolerance in both. All the changes were restored to wild-type levels by gene complementation through ectopic gene integration in each fungus. However, neither ΔBbecm33 nor ΔMrecm33 showed a significant change in virulence to a susceptible insect host. Our results indicate that Bbecm33 and Mrecm33 contribute differentially to the conidiation and multi-stress tolerance of B. bassiana and M. robertsii.

  11. Hydroxycinnamate Conjugates as Potential Monolignol Replacements: In vitro Lignification and Cell Wall Studies with Rosmarinic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuki, Tobimatsu; Sasikumar, Elumalai; Grabber, John H.; Davidson, Christy L.; Xuejun, Pan; John, Ralph

    2012-04-01

    The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin oligomers to form polymers with new benzodioxane inter-unit linkages. Incorporation of RA permitted extensive depolymerization of synthetic lignins by mild alkaline hydrolysis, presumably by cleavage of ester intra-unit linkages within RA. Copolymerization of RA with monolignols into maize cell walls by in situ peroxidases significantly enhanced alkaline lignin extractability and promoted subsequent cell wall saccharification by fungal enzymes. Incorporating RA also improved cell wall saccharification by fungal enzymes and by rumen microflora even without alkaline pretreatments, possibly by modulating lignin hydrophobicity and/or limiting cell wall cross-linking. Consequently, we anticipate that bioengineering approaches for partial monolignol substitution with RA and analogous plant hydroxycinnamates would permit more efficient utilization of plant fiber for biofuels or livestock production.

  12. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    Directory of Open Access Journals (Sweden)

    Jackson Champer

    2016-01-01

    Full Text Available We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy. Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4, Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here.

  13. Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Pappanaicken R. Kumaresan

    2018-01-01

    Full Text Available Invasive fungal infections (IFIs cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV, or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.

  14. Plant cell wall signalling and receptor-like kinases.

    Science.gov (United States)

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    Aon, Juan C; Sun, Jianxin; Leighton, Julie M; Appelbaum, Edward R

    2016-08-15

    In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.

  16. Fungal abdominal wall abscess in a renal transplant recipient

    International Nuclear Information System (INIS)

    Sanavi, R. Suzan; Gashti, Hossein Nejad; Afshar, R.

    2006-01-01

    The incidence of fungal infection is significantly higher in patients with end-stage renal disease and renal transplant recipients than in normal individuals. Candida Albicans is an uncommon cause of abdominal wall abscess. We describe a 37 year-old renal transplant recipient with such an infection. He presented with a typical clinical manifestations and an insidious course, but was successfully treated with antifungal therapy. (author)

  17. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    Science.gov (United States)

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  18. In vitro activity of Schinus terebinthifolius (Brazilian pepper tree) on Candida tropicalis growth and cell wall formation.

    Science.gov (United States)

    Alves, Lívia A; Freires, Irlan de A; de Souza, Tricia M P A; de Castro, Ricardo D

    2012-01-01

    The aim of this study was to evaluate the in vitro antifungal activity of Schinus terebinthifolius (Brazilian pepper tree) tincture on planktonic Candida tropicalis (ATCC 40042), which is a microorganism associated to oral cavity infections. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through the microdilution technique. Possible action of the tincture on fungal cell wall formation was also studied by adding an osmotic protector (0.8M sorbitol) to the microplates. Nystatin was used as standard control and tests were performed in triplicate. S. terebinthifolius was found to have MIC and MFC values of 625 microg/mL on the strain assayed, whereas nystatin showed MIC and MFC of 6.25 microg/mL. Results suggest that S. terebinthifolius tincture acts on fungal cell walls, since the sorbitol test indicated a MIC of 1.250 microg/mL. It may be concluded that S. terebinthifolius has potential in vitro antifungal activity against C. tropicalis strains, and probably acts by inhibiting fungal cell wall formation.

  19. The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Azad, Gajendra Kumar; Singh, Vikash; Baranwal, Shivani; Thakare, Mayur Jankiram; Tomar, Raghuvir S

    2015-01-02

    Yeast repressor activator protein (Rap1p) is involved in genomic stability and transcriptional regulation. We explored the function of Rap1p in yeast physiology using Rap1p truncation mutants. Our results revealed that the N-terminal truncation of Rap1p (Rap1ΔN) leads to hypersensitivity towards elevated temperature and cell-wall perturbing agents. Cell wall analysis showed an increase in the chitin and glucan content in Rap1ΔN cells as compared with wild type cells. Accordingly, mutant cells had a twofold thicker cell wall, as observed by electron microscopy. Furthermore, Rap1ΔN cells had increased levels of phosphorylated Slt2p, a MAP kinase of the cell wall integrity pathway. Mutant cells also had elevated levels of cell wall integrity response transcripts. Taken together, our findings suggest a connection between Rap1p and cell wall homeostasis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  2. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    Science.gov (United States)

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  3. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis

    NARCIS (Netherlands)

    Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J.

    2008-01-01

    To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative

  4. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis

    NARCIS (Netherlands)

    Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2008-01-01

    To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative a-glucan

  5. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi

    Directory of Open Access Journals (Sweden)

    Akira Yoshimi

    2017-11-01

    Full Text Available Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.

  6. Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae.

    Science.gov (United States)

    Zhang, Silai; Sato, Hiroki; Ichinose, Sakurako; Tanaka, Mizuki; Miyazawa, Ken; Yoshimi, Akira; Abe, Keietsu; Shintani, Takahiro; Gomi, Katsuya

    2017-07-01

    We have previously reported that α-amylase (Taka-amylase A, TAA) activity disappears in the later stage of submerged Aspergillus oryzae culture as a result of TAA adsorption onto the cell wall. Chitin, one of the major components of the cell wall, was identified as a potential factor that facilitates TAA adsorption. However, TAA adsorption only occurred in the later stage of cultivation, although chitin was assumed to be sufficiently abundant in the cell wall regardless of the submerged culture period. This suggested the presence a factor that inhibits TAA adsorption to the cell wall in the early stage of cultivation. In the current study, we identified α-1,3-glucan as a potential inhibiting factor for TAA adsorption. We constructed single, double, and triple disruption mutants of three α-1,3-glucan synthase genes (agsA, agsB, and agsC) in A. oryzae. Growth characteristics and cell wall component analysis of these disruption strains showed that AgsB plays a major role in α-1,3-glucan synthesis. In the ΔagsB mutant, TAA was adsorbed onto the mycelium in all stages of cultivation (early and later), and the ΔagsB mutant cell walls had a significantly high capacity for TAA adsorption. Moreover, the α-1,3-glucan content of the cell wall prepared from the wild-type strain in the later stage of cultivation was markedly reduced compared with that in the early stage. These results suggest that α-1,3-glucan is a potential inhibiting factor for TAA adsorption onto the cell wall component, chitin, in the early stage of submerged culture in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  8. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  9. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    . Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:24422981

  10. A new model for fungal hyphae growth using the thin viscous sheet equations

    NARCIS (Netherlands)

    de Jong, T.G.; Prokert, G.; Hulshof, J.; Itou, H.; Kimura, M.; Chalupecký, V.; Ohtsuka, K.; Tagami, D.; Takada, A.

    2016-01-01

    In this paper, we model the growth of single nonbranching fungal hypha cell. The growth proceeds as an elongating expansion in a single direction. Modelling of hyphae growth consists out of two parts: transport of cell wall building material to the cell wall and growth of the cell wall as new cell

  11. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    Science.gov (United States)

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-11-01

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani.

    Science.gov (United States)

    Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena

    2005-06-01

    Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.

  13. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana.

    Science.gov (United States)

    Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto

    2016-10-01

    Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition.

    Science.gov (United States)

    Román, E; Correia, I; Salazin, A; Fradin, C; Jouault, T; Poulain, D; Liu, F-T; Pla, J

    2016-07-03

    The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery.

  15. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Directory of Open Access Journals (Sweden)

    María J. Navarro-Arias

    2016-12-01

    Full Text Available The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite there was a significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1 null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with

  16. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis

    Science.gov (United States)

    Zhu, Feng; Willette-Brown, Jami; Song, Na-Young; Lomada, Dakshayani; Song, Yongmei; Xue, Liyan; Gray, Zane; Zhao, Zitong; Davis, Sean R.; Sun, Zhonghe; Zhang, Peilin; Wu, Xiaolin; Zhan, Qimin; Richie, Ellen R.; Hu, Yinling

    2018-01-01

    SUMMARY Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell–driven autoimmune disease caused by impaired central tolerance, are susceptible to developing chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop phenotypes reminiscent of APECED, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the potential link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or depletion of autoreactive CD4 T cells rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or EGFR activity decreases fungal burden. Importantly, fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development. PMID:28407484

  17. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  18. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Isolate-dependent growth, virulence, and cell wall composition in the human pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Nansalmaa Amarsaikhan

    Full Text Available The ubiquitous fungal pathogen Aspergillus fumigatus is a mediator of allergic sensitization and invasive disease in susceptible individuals. The significant genetic and phenotypic variability between and among clinical and environmental isolates are important considerations in host-pathogen studies of A. fumigatus-mediated disease. We observed decreased radial growth, rate of germination, and ability to establish colony growth in a single environmental isolate of A. fumigatus, Af5517, when compared to other clinical and environmental isolates. Af5517 also exhibited increased hyphal diameter and cell wall β-glucan and chitin content, with chitin most significantly increased. Morbidity, mortality, lung fungal burden, and tissue pathology were decreased in neutropenic Af5517-infected mice when compared to the clinical isolate Af293. Our results support previous findings that suggest a correlation between in vitro growth rates and in vivo virulence, and we propose that changes in cell wall composition may contribute to this phenotype.

  20. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    Science.gov (United States)

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    Science.gov (United States)

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  2. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    Science.gov (United States)

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  3. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    Science.gov (United States)

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  4. β(1,3-glucanosyl-transferase activity is essential for cell wall integrity and viability of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    María de Medina-Redondo

    Full Text Available BACKGROUND: The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3-glucan synthase complex synthesizes linear β(1,3-glucans, which remain unorganized until they are cross-linked to other β(1,3-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3-glucanosyl-transferases -gas1(+, gas2(+, gas4(+ and gas5(+- are present in S. pombe, although their function has not been analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. CONCLUSIONS/SIGNIFICANCE: We conclude that β(1,3-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth.

  5. The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: Fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall

    NARCIS (Netherlands)

    Ram, A.F.J.; Arentshorst, M.; Damveld, R.A.; Kuyk, P.A. van; Klis, F.M.; Hondel, C.A.M.J.J. van den

    2004-01-01

    Perturbation of cell wall synthesis in Saccharomyces cerevisiae, either by mutations in cell wall synthesis-related genes or by adding compounds that interfere with normal cell wall assembly, triggers a compensatory response to ensure cell wall integrity. This response includes an increase in chitin

  6. [Ultrastructure and molecular biochemistry on pathogenic fungal cells: the architecture of septal cell walls of dermatophytes].

    Science.gov (United States)

    Kitajima, Y

    2001-01-01

    This review provides abstracts of our research for which the year 2000 prize of The Japanese Society for Medical Mycology was awarded. The study consists of 4 fields: 1)Ultrastructure and biochemistry of the cell walls of dermatophytes. 2) Freeze-fracture electron microscopic study on the membrane systems of pathogenic fungi. 3) Action mechanisms of antifungal agents in terms of membrane structure and functions. 4) Dimorphism and virulence of pathogenic fungi in terms of molecular biology of membrane lipids. Since the detailed contents of these studies were reported in my previous review article (Jpn J Med Mycol 41: 211-217, 2000), I would like to mention these studies only briefly here, together with a detailed review of the septal cell wall architecture of dermatophytes, which I did not cover in my earlier articles.

  7. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  8. The changes of oil palm roots cell wall lipids during pathogenesis of Ganoderma boninense

    Science.gov (United States)

    Alexander, A.; Dayou, J.; Abdullah, S.; Chong, K. P.

    2017-07-01

    One of the first physical defences of plants against fungal infection is their cell wall. Interaction between combinations of metabolism enzymes known as the “weapons” of pathogen and the host cell wall probably determines the fate of possible invasion of the pathogen in the host. The present work aims to study the biochemical changes of cell wall lipids of oil palm roots and to determine novel information on root cell wall composition during pathogenesis of Ganoderma boninense by using Gas Chromatography Mass Spectrometry. Based on Total Ion Chromatogram analysis, 67 compounds were found more abundant in the roots infected with G. boninense compared to the healthy roots (60 compounds). Interestingly, nine new compounds were identified from the cell wall lipids of roots infected with G. boninense. These includes Cyclohexane, 1,2-dimethyl-, Methyl 2-hydroxy 16-methyl-heptadecanoate, 2-Propenoic acid, methyl ester, Methyl 9-oxohexacosanoate, 5-[(3,7,11,15-Tetramethylhexadecyl)oxy]thiophene-2carboxylic acid, Ergosta-5,7,22,24(28)-tetraen-3beta-ol, 7-Hydroxy-3',4'-methylenedioxyflavan, Glycine and (S)-4'-Hydroxy-4-methoxydalbergione, this may involve as response to pathogen invasion. This paper provides an original comparative lipidomic analysis of oil palm roots cell wall lipids in plant defence during pathogenesis of G. boninense.

  9. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Microstructure of Cell Wall-Associated Melanin in the Human Pathogenic Fungus cryptococcus neoformans

    OpenAIRE

    Eisenman, H.C.; Nosanchuk, J.D.; Webber, J. Beau W.; Emerson, T.A.; Casadevall, A.

    2005-01-01

    Melanin is a virulence factor for many pathogenic fungal species,including Cryptococcus neoformans. Melanin is deposited in the cell wall, and melanin isolated from this fungus retains the shape of the cells, resulting in hollow spheres called ``ghosts''. In this study, atomic force, scanning electron, and transmission electron microscopy revealed that melanin ghosts are covered with roughly spherical granular particles approximately 40-130 nm in diameter, and that the melanin is arranged in ...

  11. The Specific Nature of Plant Cell Wall Polysaccharides 1

    Science.gov (United States)

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  12. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus.

    Directory of Open Access Journals (Sweden)

    Mengying Li

    Full Text Available N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth.

  13. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  14. Functional analysis of LysM effectors secreted by fungal plant pathogens

    NARCIS (Netherlands)

    Kombrink, A.

    2014-01-01

    Chitin is a homopolymer of N-acetyl-d-glucosamine (GlcNAc)that is abundantly present in nature and found as a major structural component in the fungal cell wall. In Chapter 1,the role of chitin as an important factor in the interaction between fungal pathogens

  15. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers.

    Directory of Open Access Journals (Sweden)

    Leila M Lopes-Bezerra

    2018-03-01

    Full Text Available Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant

  16. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    Science.gov (United States)

    Walker, Louise A.; Niño-Vega, Gustavo; Mora-Montes, Héctor M.; Neves, Gabriela W. P.; Villalobos-Duno, Hector; Barreto, Laura; Garcia, Karina; Franco, Bernardo; Martínez-Álvarez, José A.; Munro, Carol A.; Gow, Neil A. R.

    2018-01-01

    Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and

  17. THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?

    Science.gov (United States)

    Cheung, Alice Y; Wu, Hen-Ming

    2011-12-01

    The plant cell wall provides form and integrity to the cell as well as a dynamic interface between a cell and its environment. Therefore mechanisms capable of policing changes in the cell wall, signaling cellular responses including those that would feedback regulate cell wall properties are expected to play important roles in facilitating growth and ensuring survival. Discoveries in the last few years that the Arabidopsis THESEUS 1 receptor-like kinase (RLK) may function as a sensor for cell wall defects to regulate growth and that its relatives FERONIA and ANXURs regulate pollen tube integrity imply strongly that they play key roles in cell wall-related processes. Furthermore, FERONIA acts as a cell surface regulator for RAC/ROP GTPases and activates production of reactive oxygen species which are, respectively, important molecular switches and mediators for diverse processes. These findings position the THESEUS 1/FERONIA family RLKs as surface regulators and potential cell wall sensors capable of broadly and profoundly impacting cellular pathways in response to diverse signals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds.

    Science.gov (United States)

    Trapalis, Menelaos; Li, Song Feng; Parish, Roger W

    2017-07-01

    The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fungal cell gigantism during mammalian infection.

    Directory of Open Access Journals (Sweden)

    Oscar Zaragoza

    2010-06-01

    Full Text Available The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  20. Fungal cell gigantism during mammalian infection.

    Science.gov (United States)

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  1. Control of Cell Wall Extensibility during Pollen Tube Growth

    OpenAIRE

    Hepler, Peter K.; Rounds, Caleb M.; Winship, Lawrence J.

    2013-01-01

    Tip-growing pollen tubes achieve rapid elongation while maintaining cell wall integrity by balancing local expansion, controlled by local changes in wall viscosity, against exocytosis, influenced by the activity of the actin cytoskeleton, cellular energetics, and calcium and proton physiology.

  2. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    Science.gov (United States)

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a

  3. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential

    DEFF Research Database (Denmark)

    Sultan, Abida; Frisvad, Jens Christian; Andersen, Birgit

    2017-01-01

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface......-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown...... on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases...

  4. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    Science.gov (United States)

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  5. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  6. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  7. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    , alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  8. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    Science.gov (United States)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Fungal farming in a non-social beetle.

    Directory of Open Access Journals (Sweden)

    Wataru Toki

    Full Text Available Culturing of microbes for food production, called cultivation mutualism, has been well-documented from eusocial and subsocial insects such as ants, termites and ambrosia beetles, but poorly described from solitary, non-social insects. Here we report a fungal farming in a non-social lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae, which entails development of a special female structure for fungal storage/inoculation, so-called mycangium, and also obligate dependence of the insect on the fungal associate. Adult females of D. bucculenta bore a hole on a recently-dead bamboo culm with their specialized mandibles, lay an egg into the internode cavity, and plug the hole with bamboo fibres. We found that the inner wall of the bamboo internode harboring a larva is always covered with a white fungal layer. A specific Saccharomycetes yeast, Wickerhamomyces anomalus ( = Pichia anomala, was consistently isolated from the inner wall of the bamboo internodes and also from the body surface of the larvae. Histological examination of the ovipositor of adult females revealed an exoskeletal pocket on the eighth abdominal segment. The putative mycangium contained yeast cells, and W. anomalus was repeatedly detected from the symbiotic organ. When first instar larvae were placed on culture media inoculated with W. anomalus, they grew and developed normally to adulthood. By contrast, first instar larvae placed on either sterile culture media or autoclaved strips of bamboo inner wall exhibited arrested growth at the second instar, and addition of W. anomalus to the media resumed growth and development of the larvae. These results strongly suggest a mutualistic nature of the D. bucculenta-W. anomalus association with morphological specialization and physiological dependence. Based on these results, we compare the fungal farming of D. bucculenta with those of social and subsocial insects, and discuss ecological factors relevant to the

  10. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Daniel J.

    2015-11-25

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  11. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  12. Expanding the product portfolio of fungal type I fatty acid synthases

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Krivoruchko, Anastasia

    2017-01-01

    Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes into ...

  13. Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis

    Directory of Open Access Journals (Sweden)

    Freimoser Florian M

    2007-09-01

    Full Text Available Abstract Background Inorganic polyphosphate (poly P, linear chains of phosphate residues linked by energy rich phosphoanhydride bonds, is found in every cell and organelle and is abundant in algae. Depending on its localization and concentration, poly P is involved in various biological functions. It serves, for example, as a phosphate store and buffer against alkali, is involved in energy metabolism and regulates the activity of enzymes. Bacteria defective in poly P synthesis are impaired in biofilm development, motility and pathogenicity. PolyP has also been found in fungal cell walls and bacterial envelopes, but has so far not been measured directly or stained specifically in the cell wall of any plant or alga. Results Here, we demonstrate the presence of poly P in the cell wall of Chlamydomonas reinhardtii by staining with specific poly P binding proteins. The specificity of the poly P signal was verified by various competition experiments, by staining with different poly P binding proteins and by correlation with biochemical quantification. Microscopical investigation at different time-points during growth revealed fluctuations of the poly P signal synchronous with the cell cycle: The poly P staining peaked during late cytokinesis and was independent of the high intracellular poly P content, which fluctuated only slightly during the cell cycle. Conclusion The presented staining method provides a specific and sensitive tool for the study of poly P in the extracellular matrices of algae and could be used to describe the dynamic behaviour of cell wall poly P during the cell cycle. We assume that cell wall poly P and intracellular poly P are regulated by distinct mechanisms and it is suggested that cell wall bound poly P might have important protective functions against toxic compounds or pathogens during cytokinesis, when cells are more vulnerable.

  14. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    Science.gov (United States)

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  15. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde

    Science.gov (United States)

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We dissected gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challeng...

  16. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Natalia Carbó

    2010-07-01

    Full Text Available It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.

  17. Assembly and enlargement of the primary cell wall in plants

    Science.gov (United States)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  18. Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins

    Science.gov (United States)

    Liu, Wei; Zou, Zui; Huang, Xin; Shen, Hui; He, Li Juan; Chen, Si Min; Li, Li Ping; Yan, Lan; Zhang, Shi Qun; Zhang, Jun Dong; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape. PMID:27708385

  19. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    Science.gov (United States)

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  20. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    Science.gov (United States)

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  1. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  2. A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins

    Science.gov (United States)

    Ghamrawi, Sarah; Gastebois, Amandine; Zykwinska, Agata; Vandeputte, Patrick; Marot, Agnès; Mabilleau, Guillaume; Cuenot, Stéphane; Bouchara, Jean-Philippe

    2015-01-01

    Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of human infections, notably respiratory infections in patients with cystic fibrosis. The development of new therapeutic strategies targeting S. boydii necessitates a better understanding of the physiology of this fungus and the identification of new molecular targets. In this work, we studied the conidium-to-germ tube transition using a variety of techniques including scanning and transmission electron microscopy, atomic force microscopy, two-phase partitioning, microelectrophoresis and cationized ferritin labeling, chemical force spectroscopy, lectin labeling, and nanoLC-MS/MS for cell wall GPI-anchored protein analysis. We demonstrated that the cell wall undergoes structural changes with germination accompanied with a lower hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes during germination also included a higher accessibility of some cell wall polysaccharides to lectins and less CH3/CH3 interactions (hydrophobic adhesion forces mainly due to glycoproteins). We also extracted and identified 20 GPI-anchored proteins from the cell wall of S. boydii, among which one was detected only in the conidial wall extract and 12 only in the mycelial wall extract. The identified sequences belonged to protein families involved in virulence in other fungi like Gelp/Gasp, Crhp, Bglp/Bgtp families and a superoxide dismutase. These results highlighted the cell wall remodeling during germination in S. boydii with the identification of a substantial number of cell wall GPI-anchored conidial or hyphal specific proteins, which provides a basis to investigate the role of these molecules in the host-pathogen interaction and fungal virulence. PMID:26038837

  3. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels

    Science.gov (United States)

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728

  5. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers.

    Directory of Open Access Journals (Sweden)

    Gero Steinberg

    Full Text Available The Transfersome® is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome® an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome® vesicles has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome® vesicles (TFVs. When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T(1/2~2 min. Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome® degradation and neutralized the cytotoxic effect of Transfersome®-delivered terbinafine. These data suggest that (a Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c fungal lipases digest the invading Transfersome® vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the

  6. Atkinesin-13A Modulates Cell-Wall Synthesis and Cell Expansion in Arabidopsis thaliana via the THESEUS1 Pathway

    Science.gov (United States)

    Fujikura, Ushio; Elsaesser, Lore; Breuninger, Holger; Sánchez-Rodríguez, Clara; Ivakov, Alexander; Laux, Thomas; Findlay, Kim; Persson, Staffan; Lenhard, Michael

    2014-01-01

    Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate here that the internal-motor kinesin AtKINESIN-13A (AtKIN13A) limits cell expansion and cell size in Arabidopsis thaliana, with loss-of-function atkin13a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of the two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent with this function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtKIN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling via the THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkin13a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion. PMID:25232944

  7. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

    Science.gov (United States)

    Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R

    2008-10-01

    The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.

  8. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall

    Science.gov (United States)

    Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.

    2017-10-01

    Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.

  9. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    Science.gov (United States)

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  10. The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans.

    Science.gov (United States)

    Alvarez, Francisco J; Douglas, Lois M; Rosebrock, Adam; Konopka, James B

    2008-12-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Delta mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Delta mutant are similar to the effects of inhibiting beta-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.

  11. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    Science.gov (United States)

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  12. Growth mechanics of bacterial cell wall and morphology of bacteria

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  13. Cell wall as a target for bacteria inactivation by pulsed electric fields

    Science.gov (United States)

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  14. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  15. Fungal melanin: what do we know about structure?

    Directory of Open Access Journals (Sweden)

    Joshua D Nosanchuk

    2015-12-01

    Full Text Available The production of melanin significantly enhances the virulence of many important human pathogenic fungi. Despite fungal melanin’s importance in human disease, as well as melanin’s contribution to the ability of fungi to survive in diverse hostile environments, the structure of melanin remains unsolved. Nevertheless, ongoing research efforts have progressively revealed several notable structural characteristics of this enigmatic pigment, which will be the focus of this review. These compositional and organizational insights could further our ability to develop novel therapeutic approaches to combat fungal disease and enhance our understanding of how melanin is inserted into the cell wall.

  16. An alternative anionic bio-sustainable anti-fungal agent: Investigation of its mode of action on the fungal cell membrane.

    Science.gov (United States)

    Stenbæk, Jonas; Löf, David; Falkman, Peter; Jensen, Bo; Cárdenas, Marité

    2017-07-01

    The potential of a lactylate (the sodium caproyl lactylate or C10 lactylate), a typical food grade emulsifier, as an anionic environmental friendly anti-fungal additive was tested in growth medium and formulated in a protective coating for exterior wood. Different laboratory growth tests on the blue stain fungus Aureobasidium pullulans were performed and its interactions on a model fungal cell membrane were studied. Promising short term anti-fungal effects in growth tests were observed, although significant but less dramatic effects took place in coating test on wood panels. Scanning electron microscope analysis shows clear differences in the amount of fungal slime on the mycelium of Aureobasidium pullulans when the fungus was exposed of C10 lactylate. This could indicate an effect on the pullulan and melanin production by the fungus. Moreover, the interaction studies on model fungal cell membranes show that C10 lactylate affects the phospholipid bilayer in a similar manner to other negative charged detergents. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatm...... contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.......Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme...... treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...

  18. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    Science.gov (United States)

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Current advances in aptamer-assisted technologies for detecting bacterial and fungal toxins.

    Science.gov (United States)

    Alizadeh, N; Memar, M Y; Mehramuz, B; Abibiglou, S S; Hemmati, F; Samadi Kafil, H

    2018-03-01

    Infectious diseases are among the common leading causes of morbidity and mortality worldwide. Associated with the emergence of new infectious diseases, the increasing number of antimicrobial-resistant isolates presents a serious threat to public health and hospitalized patients. A microbial pathogen may elicit several host responses and use a variety of mechanisms to evade host defences. These methods and mechanisms include capsule, lipopolysaccharides or cell wall components, adhesions and toxins. Toxins inhibit phagocytosis, cause septic shock and host cell damages by binding to host surface receptors and invasion. Bacterial and fungal pathogens are able to apply many different toxin-dependent mechanisms to disturb signalling pathways and the structural integrity of host cells for establishing and maintaining infections Initial techniques for analysis of bacterial toxins were based on in vivo or in vitro assessments. There is a permanent demand for appropriate detection methods which are affordable, practical, careful, rapid, sensitive, efficient and economical. Aptamers are DNA or RNA oligonucleotides that are selected by systematic evolution of ligands using exponential enrichment (SELEX) methods and can be applied in diagnostic applications. This review provides an overview of aptamer-based methods as a novel approach for detecting toxins in bacterial and fungal pathogens. © 2017 The Society for Applied Microbiology.

  20. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana.

    Science.gov (United States)

    Bethke, Gerit; Thao, Amanda; Xiong, Guangyan; Li, Baohua; Soltis, Nicole E; Hatsugai, Noriyuki; Hillmer, Rachel A; Katagiri, Fumiaki; Kliebenstein, Daniel J; Pauly, Markus; Glazebrook, Jane

    2016-02-01

    Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-D-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-D-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.

    Science.gov (United States)

    Zhou, Xiaoying; Liu, Lixing; Chen, Yunpeng; Xu, Shufa; Chen, Jie

    2007-09-01

    Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.

  2. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2014-09-01

    Full Text Available Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth, secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.

  3. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  4. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  5. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions.

    Science.gov (United States)

    Mora-Montes, Héctor M; Bates, Steven; Netea, Mihai G; Castillo, Luis; Brand, Alexandra; Buurman, Ed T; Díaz-Jiménez, Diana F; Jan Kullberg, Bart; Brown, Alistair J P; Odds, Frank C; Gow, Neil A R

    2010-04-16

    The cell wall proteins of fungi are modified by N- and O-linked mannosylation and phosphomannosylation, resulting in changes to the physical and immunological properties of the cell. Glycosylation of cell wall proteins involves the activities of families of endoplasmic reticulum and Golgi-located glycosyl transferases whose activities are difficult to infer through bioinformatics. The Candida albicans MNT1/KRE2 mannosyl transferase family is represented by five members. We showed previously that Mnt1 and Mnt2 are involved in O-linked mannosylation and are required for virulence. Here, the role of C. albicans MNT3, MNT4, and MNT5 was determined by generating single and multiple MnTDelta null mutants and by functional complementation experiments in Saccharomyces cerevisiae. CaMnt3, CaMnt4, and CaMnt5 did not participate in O-linked mannosylation, but CaMnt3 and CaMnt5 had redundant activities in phosphomannosylation and were responsible for attachment of approximately half of the phosphomannan attached to N-linked mannans. CaMnt4 and CaMnt5 participated in N-mannan branching. Deletion of CaMNT3, CaMNT4, and CaMNT5 affected the growth rate and virulence of C. albicans, affected the recognition of the yeast by human monocytes and cytokine stimulation, and led to increased cell wall chitin content and exposure of beta-glucan at the cell wall surface. Therefore, the MNT1/KRE2 gene family participates in three types of protein mannosylation in C. albicans, and these modifications play vital roles in fungal cell wall structure and cell surface recognition by the innate immune system.

  6. Isolation of the Cell Wall.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  7. Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.

    Science.gov (United States)

    Borman, Andrew M; Palmer, Michael; Johnson, Elizabeth M

    2013-01-01

    The rapid and inexpensive extraction of fungal genomic DNA that is of sufficient quality for molecular approaches is central to the molecular identification, epidemiological analysis, taxonomy, and strain typing of pathogenic fungi. Although many commercially available and in-house extraction procedures do eliminate the majority of contaminants that commonly inhibit molecular approaches, the inherent difficulties in breaking fungal cell walls lead to protocols that are labor intensive and that routinely take several hours to complete. Here we describe several methods that we have developed in our laboratory that allow the extremely rapid and inexpensive preparation of fungal genomic DNA.

  8. Plant cell walls throughout evolution: towards a molecular understanding of their design principles.

    Science.gov (United States)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-01-01

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  9. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  10. The Role of Auxin in Cell Wall Expansion.

    Science.gov (United States)

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  11. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  12. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  13. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Science.gov (United States)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  14. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  15. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan; Rodriguez Lopez, Gabriela M.; Jakes, Joseph E.

    2015-05-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.

  16. Neutron activation analysis of heavy metal binding by fungal cell walls

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Mayer, J.A.

    1994-01-01

    Aqueous effluents are produced during nuclear power and nuclear weapons development activities which frequently contain low levels of dissolved radioactive nuclides. A number of laboratories are now focusing attention to renewable biological materials to provide traps for low concentrations of dissolved radioactive metal ions in wastewater effluents. The term BIOTRAP can be used to describe such materials, and in this laboratory cell wall preparations of the fungus Penicillium ochro-chloron have been employed to demonstrate their capacity and affinity to reversibly bind and remove copper(2). Since neutron activation analysis (NAA) was readily available, that method was one of several applied to this problem as a suitable analytical methodology to study heavy metal-to-BIOTRAP interactions. Copper and mercury provide good examples of metals which are capable of undergoing activation by thermal neutrons. In NAA, 63 Cu (69.1% natural abundance) is converted to 64 Cu which has a half live of 12.7 hr, and 202 Hg (29.7 % natural abundance) is converted to 203 Hg which has a half life of 46.,6 d

  17. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    Science.gov (United States)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  18. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    Full Text Available Abstract Background Leaf-cutting (attine ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. Results We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21% of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Conclusions Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to

  19. Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds.

    Science.gov (United States)

    Kobras, Carolin Martina; Mascher, Thorsten; Gebhard, Susanne

    2017-01-01

    Whole-cell biosensors, based on the visualization of a reporter strain's response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, i.e., the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. We here describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances. The system is based on the well-characterized promoter P liaI , which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple "spot-on-lawn" assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

  20. Diurnal Periodicity in the Supply of Cell Wall Components during Wood Cell Wall Formation

    OpenAIRE

    細尾, 佳宏

    2012-01-01

    This review summarizes recent studies on the diurnal periodicity in wood cell wall formation, with a major focus on those that we have conducted. Differences in the innermost surface of developing secondary walls of differentiating conifer tracheids can be seen from day to night Cellulose microfibrils are clearly evident during the day, and amorphous material containing abundant hemicelluloses is prevalent at night. These findings suggest a diurnal periodicity in the supply of cell wall compo...

  1. Study Unveils New Method for Universal Extraction and PCR Amplification of Fungal DNA

    Science.gov (United States)

    2014-06-12

    ubiquitous human fungal pathogen. It is the most commonly seen Aspergillus infection, and it responds to the usual antifungal treatment, amphotericin...600. Besides the tough exterior, some fungi also have melanin in their cell walls, and may contain carbohydrates and other substances that inhibit PCR

  2. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé

    2006-05-01

    Full Text Available Abstract Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP during the isolation procedure, (ii polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50% of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i homogenization in low ionic strength acid buffer to retain CWP, (ii purification through increasing density cushions, (iii extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%, belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The

  3. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    Science.gov (United States)

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  4. Cell wall heterogeneity in root development of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Marc Somssich

    2016-08-01

    Full Text Available Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signalling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modelling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes.

  5. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  6. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  7. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Science.gov (United States)

    Boberg, Johanna B; Finlay, Roger D; Stenlid, Jan; Ekblad, Alf; Lindahl, Björn D

    2014-01-01

    Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration), presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  8. Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells.

    Science.gov (United States)

    Woriedh, Mayada; Merkl, Rainer; Dresselhaus, Thomas

    2015-08-01

    EMBRYO SAC1-4 (ES1-4) peptides belong to the defensin subgroup of cysteine-rich peptides known to mediate pollen tube burst in Zea mays (maize). ES1-4 are reported here to also be capable of inhibiting germination and growth of the maize fungal pathogens Fusarium graminearum and Ustilago maydis at higher concentrations. Dividing the peptides into smaller pieces showed that a 15-amino-acid peptide located in a highly variable loop region lacking similarity to other defensins or defensin-like peptides binds to maize pollen tube surfaces, causing swelling prior to burst. This peptide fragment and a second conserved neighbouring fragment showed suppression of fungal germination and growth. The two peptides caused swelling of fungal cells, production of reactive oxygen species, and finally the formation of big vacuoles prior to burst at high peptide concentration. Furthermore, peptide fragments were found to bind differently to fungal cells. In necrotrophic F. graminearum, a peptide fragment named ES-d bound only at cell surfaces whereas the peptide ES-c bound at cell surfaces and also accumulated inside cells. Conversely, in biotrophic U. maydis, both peptide fragments accumulated inside cells, but, if applied at higher concentration, ES-c but not ES-d accumulated mainly in vacuoles. Mapping of peptide interaction sites identified amino acids differing in pollen tube burst and fungal response reactions. In summary, these findings indicate that residues targeting pollen tube burst in maize are specific to the ES family, while residues targeting fungal growth are conserved within defensins and defensin-like peptides. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis.

    Science.gov (United States)

    Bruneau, J M; Magnin, T; Tagat, E; Legrand, R; Bernard, M; Diaquin, M; Fudali, C; Latgé, J P

    2001-08-01

    Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.

  10. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics.

    Science.gov (United States)

    Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe

    2015-05-08

    Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.

  11. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  12. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. Measuring the Mechanical Properties of Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hannes Vogler

    2015-03-01

    Full Text Available The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM, and its automated successor, real-time CFM (RT-CFM.

  14. Determination of chitin content in fungal cell wall: an alternative flow cytometric method.

    Science.gov (United States)

    Costa-de-Oliveira, Sofia; Silva, Ana P; Miranda, Isabel M; Salvador, Alexandre; Azevedo, Maria M; Munro, Carol A; Rodrigues, Acácio G; Pina-Vaz, Cidália

    2013-03-01

    The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted GlycosylPhosphatidylInositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi. Copyright © 2013 International Society for Advancement of Cytometry.

  15. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  16. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.

    Science.gov (United States)

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A; Mascher, Thorsten

    2012-11-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing).

  17. Cell walls as a stage for intercellular communication regulating shoot meristem development

    Directory of Open Access Journals (Sweden)

    Toshiaki eTameshige

    2015-05-01

    Full Text Available Aboveground organs of plants are ultimately derived/generated from the shoot apical meristem (SAM, which is the proliferative tissue located at the apex of the stem. The SAM contains a population of stem cells that provide new cells for organ/tissue formation. The SAM is composed of distinct cell layers and zones with different properties. Primordia of lateral organs develop at the periphery of the SAM. The shoot apex is a dynamic and complex tissue, and as such intercellular communications among cells, layers and zones play significant roles in the coordination of cell proliferation, growth and differentiation to achieve elaborate morphogenesis. Recent findings have highlighted the importance of a number of singling molecules acting in the cell wall space for the intercellular communication, including classic phytohormones and secretory peptides. Moreover, accumulating evidences reveal that cell wall properties and their modifying enzymes modulate hormone actions. In this review, we overview how behaviors of singling molecules and changes of cell wall properties are integrated for the shoot meristem regulation.

  18. Cell wall integrity, genotoxic injury and PCD dynamics in alfalfa saponin-treated white poplar cells highlight a complex link between molecule structure and activity.

    Science.gov (United States)

    Paparella, Stefania; Tava, Aldo; Avato, Pinarosa; Biazzi, Elisa; Macovei, Anca; Biggiogera, Marco; Carbonera, Daniela; Balestrazzi, Alma

    2015-03-01

    In the present work, eleven saponins and three sapogenins purified from Medicago sativa were tested for their cytotoxicity against highly proliferating white poplar (Populus alba L.) cell suspension cultures. After preliminary screening, four saponins with different structural features in terms of aglycone moieties and sugar chains (saponin 3, a bidesmoside of hederagenin; saponins 4 and 5, monodesmoside and bidesmoside of medicagenic acid respectively, and saponin 10, a bidesmoside of zanhic acid) and different cytotoxicity were selected and used for further investigation on their structure-activity relationship. Transmission Electron Microscopy (TEM) analyses provided for the first time evidence of the effects exerted by saponins on plant cell wall integrity. Exposure to saponin 3 and saponin 10 resulted into disorganization of the outer wall layer and the effect was even more pronounced in white poplar cells treated with the two medicagenic acid derivatives, saponins 4 and 5. Oxidative burst and nitric oxide accumulation were common hallmarks of the response of white poplar cells to saponins. When DNA damage accumulation and DNA repair profiles were evaluated by Single Cell Gel Electrophoresis, induction of single and double strand breaks followed by effective repair was observed within 24h. The reported data are discussed in view of the current issues dealing with saponin structure-activity relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  20. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    OpenAIRE

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a uni...

  1. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens

    Science.gov (United States)

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C.

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  2. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    Science.gov (United States)

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Roles of membrane trafficking in plant cell wall dynamics

    Directory of Open Access Journals (Sweden)

    Kazuo eEbine

    2015-10-01

    Full Text Available The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.

  4. Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy.

    Science.gov (United States)

    Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S

    2011-05-01

    The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.

  5. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans.

    Science.gov (United States)

    Liepins, Janis; Kovačova, Elena; Shvirksts, Karlis; Grube, Mara; Rapoport, Alexander; Kogan, Grigorij

    2015-07-20

    Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chemical analysis of isolated cell walls of Gram-positive bacteria and the determination of the cell wall to cell mass ratio.

    NARCIS (Netherlands)

    Wal, van der A.; Norde, W.; Bendinger, B.; Zehnder, A.J.B.; Lyklema, J.

    1997-01-01

    Cell walls of five Gram-positive bacterial strains, including four coryneforms and a Bacillus brevis strain were isolated and subsequently chemically analysed. The wall contribution to the total cell mass is calculated from a comparison of D-Lactate concentrations in hydrolysates of whole cells and

  7. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of

  8. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  9. Integrity of the first wall in fusion reactors

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi

    2004-07-01

    Future fusion power reactors DREAM and A-SSTR2, which have been conceptually designed in the Japan Atomic Energy Research Institute, use the SiC/SiC composite material as the first wall of the blanket because of its characteristics of high heat-resistance and low radiation material. DEMO reactor, which was conceptually designed in 2001, uses the low activation ferritic steel as the first-wall material of the blanket. The problems in the thermal structural design of the plasma facing component such as the blanket first wall and the divertor plate which receives very high heat flux were examined in the design of the fusion power reactors. Compact high fusion power reactor must give high heat flux and high-speed neutron flux from the plasma to the first wall and the divertor plate. In this environmental situation, the micro cracks should be generated in material of the first wall. Structural integrity of the first wall would be very low during the operation of the reactor, if those micro-cracks grow in a crack having significant size by the fatigue or the creep. The crack penetration in the first wall can be a factor which threatens the safety of the fusion power reactor. This paper summarizes the problems on the structural integrity in the first wall made of the SiC/SiC composite material or the ferritic steel. (author)

  10. Secondary structure of cell-penetrating peptides during interaction with fungal cells.

    Science.gov (United States)

    Gong, Zifan; Ikonomova, Svetlana P; Karlsson, Amy J

    2018-03-01

    Cell-penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep-1, MPG, pVEC, TP-10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α-helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep-1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular-level interaction with the cell membrane, and these simulations suggested that pVEC, TP-10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α-helical conformation. In contrast, penetratin, Pep-1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena. © 2017 The Protein Society.

  11. Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism

    Science.gov (United States)

    Khalil, Zeinab G.; Kalansuriya, Pabasara; Capon, Robert J.

    2014-01-01

    We report on a preliminary investigation of the use the Gram-negative bacterial cell wall constituent lipopolysaccharide (LPS) as a natural chemical cue to stimulate and alter the expression of fungal secondary metabolism. Integrated high-throughput micro-cultivation and micro-analysis methods determined that 6 of 40 (15%) of fungi tested responded to an optimal exposure to LPS (0.6 ng/mL) by activating, enhancing or accelerating secondary metabolite production. To explore the possible mechanisms behind this effect, we employed light and fluorescent microscopy in conjunction with a nitric oxide (NO)-sensitive fluorescent dye and an NO scavenger to provide evidence that LPS stimulation of fungal secondary metabolism coincided with LPS activation of NO. Several case studies demonstrated that LPS stimulation can be scaled from single microplate well (1.5 mL) to preparative (>400 mL) scale cultures. For example, LPS treatment of Penicillium sp. (ACM-4616) enhanced pseurotin A and activated pseurotin A1 and pseurotin A2 biosynthesis, whereas LPS treatment of Aspergillus sp. (CMB-M81F) substantially accelerated and enhanced the biosynthesis of shornephine A and a series of biosynthetically related ardeemins and activated production of neoasterriquinone. As an indication of broader potential, we provide evidence that cultures of Penicillium sp. (CMB-TF0411), Aspergillus niger (ACM-4993F), Rhizopus oryzae (ACM-165F) and Thanatephorus cucumeris (ACM-194F) were responsive to LPS stimulation, the latter two examples being particular noteworthy as neither are known to produce secondary metabolites. Our results encourage the view that LPS stimulation can be used as a valuable tool to expand the molecular discovery potential of fungal strains that either have been exhaustively studied by or are unresponsive to traditional culture methodology. PMID:25379339

  12. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  13. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  14. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    Science.gov (United States)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  15. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains.

    Science.gov (United States)

    Zhang, Y J; Zhang, S; Liu, X Z; Wen, H A; Wang, M

    2010-07-01

    A simple and rapid method (designated thermolysis) for extracting genomic DNA from bulk fungal strains was described. In the thermolysis method, a few mycelia or yeast cells were first rinsed with pure water to remove potential PCR inhibitors and then incubated in a lysis buffer at 85 degrees C to break down cell walls and membranes. This method was used to extract genomic DNA from large numbers of fungal strains (more than 92 species, 35 genera of three phyla) isolated from different sections of natural Ophiocordyceps sinensis specimens. Regions of interest from high as well as single-copy number genes were successfully amplified from the extracted DNA samples. The DNA samples obtained by this method can be stored at -20 degrees C for over 1 year. The method was effective, easy and fast and allowed batch DNA extraction from multiple fungal isolates. Use of the thermolysis method will allow researchers to obtain DNA from fungi quickly for use in molecular assays. This method requires only minute quantities of starting material and is suitable for diverse fungal species.

  16. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    Science.gov (United States)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  17. The Mkk2 MAPKK Regulates Cell Wall Biogenesis in Cooperation with the Cek1-Pathway in Candida albicans

    NARCIS (Netherlands)

    Román, Elvira; Alonso-Monge, Rebeca; Miranda Bedate, A.; Pla, Jesús

    2015-01-01

    The cell wall integrity pathway (CWI) plays an important role in the biogenesis of the cell wall in Candida albicans and other fungi. In the present work, the C. albicans MKK2 gene that encodes the putative MAPKK of this pathway was deleted in different backgrounds and the phenotypes of the

  18. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    Directory of Open Access Journals (Sweden)

    Elumalai Sasikumar

    2012-08-01

    Full Text Available Abstract Background Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. Results In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92% that far exceeded that for lignified controls (44 to 62%. Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. Conclusions It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.

  19. Synthesis of plant cell wall oligosaccharides

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    Plant cell walls are structurally complex and contain a large number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins...... for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from the group and provide examples from studies of their interactions with proteins....... such as enzymes, cell surface lectins, and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used...

  20. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  1. At the border: the plasma membrane-cell wall continuum.

    Science.gov (United States)

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.

    Science.gov (United States)

    Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun

    2018-05-16

    Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.

  3. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    Logemann, E.; Wu ShengCheng; Schröder, J.; Schmelzer, E.; Somssich, I.E.; Hahlbrock, K.

    1995-01-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  4. On-Off Switches for Secondary Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhong Wang; Richard A.Dixon

    2012-01-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport.They also provide textiles,timber,and potentially second-generation biofuels for human use.Genes responsible for synthesis of the different cell wall components,namely cellulose,hemicelluloses,and lignin,are coordinately expressed and under transcriptional regulation.In the past several years,cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis.Positive and negative regulators,which function upstream of NAC master switches,have also been identified in different plant tissues.Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production.

  5. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    Science.gov (United States)

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  6. Catalytic properties of the Gas family β-(1,3)-glucanosyltransferases active in fungal cell-wall biogenesis as determined by a novel fluorescent assay.

    Science.gov (United States)

    Mazáň, Marián; Ragni, Enrico; Popolo, Laura; Farkaš, Vladimír

    2011-09-01

    BGTs [β-(1,3)-glucanosyltransglycosylases; EC 2.4.1.-] of the GH72 (family 72 of glycosylhydrolases) are GPI (glycosylphosphatidylinositol)-anchored proteins that play an important role in the biogenesis of fungal cell walls. They randomly cleave glycosidic linkages in β-(1,3)-glucan chains and ligate the polysaccharide portions containing newly formed reducing ends to C(3)(OH) at non-reducing ends of other β-(1,3)-glucan molecules. We have developed a sensitive fluorescence-based method for the assay of transglycosylating activity of GH72 enzymes. In the new assay, laminarin [β-(1,3)-glucan] is used as the glucanosyl donor and LamOS (laminarioligosaccharides) fluorescently labelled with SR (sulforhodamine) serve as the acceptors. The new fluorescent assay was employed for partial biochemical characterization of the heterologously expressed Gas family proteins from the yeast Saccharomyces cerevisiae. All the Gas enzymes specifically used laminarin as the glucanosyl donor and a SR-LamOS of DP (degree of polymerization) ≥5 as the acceptors. Gas proteins expressed in distinct stages of the yeast life cycle showed differences in their pH optima. Gas1p and Gas5p, which are expressed during vegetative growth, had the highest activity at pH 4.5 and 3.5 respectively, whereas the sporulation-specific Gas2p and Gas4p were most active between pH 5 and 6. The novel fluorescent assay provides a suitable tool for the screening of potential glucanosyltransferases or their inhibitors.

  7. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  8. Regulation of plant cells, cell walls and development by mechanical signals

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  9. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to d-Limonene Show Changes to the Cell Wall but Not to the Plasma Membrane

    Science.gov (United States)

    Brennan, Timothy C. R.; Nielsen, Lars K.

    2013-01-01

    Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis. PMID:23542628

  10. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  11. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  12. A dynamical model for plant cell wall architecture formation.

    NARCIS (Netherlands)

    Mulder, B.M.; Emons, A.M.C.

    2001-01-01

    We discuss a dynamical mathematical model to explain cell wall architecture in plant cells. The highly regular textures observed in cell walls reflect the spatial organisation of the cellulose microfibrils (CMFs), the most important structural component of cell walls. Based on a geometrical theory

  13. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; Sørensen, Iben; Bernal Giraldo, Adriana Jimena

    2007-01-01

    We describe here a methodology that enables the occurrence of cell-wall glycans to be systematically mapped throughout plants in a semi-quantitative high-throughput fashion. The technique (comprehensive microarray polymer profiling, or CoMPP) integrates the sequential extraction of glycans from...... analysis of mutant and wild-type plants, as demonstrated here for the Arabidopsis thaliana mutants fra8, mur1 and mur3. CoMPP was also applied to Physcomitrella patens cell walls and was validated by carbohydrate linkage analysis. These data provide new insights into the structure and functions of plant...

  14. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  15. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  16. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  17. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  18. Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics

    DEFF Research Database (Denmark)

    Torode, Thomas A.; O'Neill, Rachel E.; Marcus, Susan E.

    2017-01-01

    has previously been identified in garlic bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I (RG...

  19. Improvement of C*-integral and Crack Opening Displacement Estimation Equations for Thin-walled Pipes with Circumferential Through-wall Cracks

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Jhung, Myung Jo

    2012-01-01

    Since the LBB(Leak-Before-Break) concept has been widely applied to high energy piping systems in the pressurized water reactors, a number of engineering estimation methods had been developed for J-integral and COD values. However, those estimation methods were mostly reliable for relatively thick-walled pipes about R m /t=5 or 10. As the LBB concept might be considered in the design stage of the SFR (Sodium-cooled Fast Reactor) which has relatively thin-walled pipes due to its low design pressure, the applicability of current estimation methods should be investigated for thin-walled pipes. Along with the J-integral and COD, the estimation method for creep fracture mechanics parameters, C*- integral and COD rate, is required because operating temperature of SFR is high enough to induce creep in the structural materials. In this study, the applicability of the current C*- integral and COD estimation methods to thin-walled pipes is studied for a circumferential through-wall crack using the finite element (FE) method. Based on the FE results, enhancement of the current estimation methods is made

  20. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  1. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    Science.gov (United States)

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  2. Changes in Cell Wall Polysaccharides Associated With Growth 1

    Science.gov (United States)

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1968-01-01

    Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862

  3. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  4. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  5. Role of Arf GTPases in fungal morphogenesis and virulence.

    Directory of Open Access Journals (Sweden)

    Hayet Labbaoui

    2017-02-01

    Full Text Available Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.

  6. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    Science.gov (United States)

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  7. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  8. Diagnostic integration solutions in the ITER first wall

    International Nuclear Information System (INIS)

    Martínez, Gonzalo; Martin, Alex; Watts, Christopher; Veshchev, Evgeny; Reichle, Roger; Shigin, Pavel; Sabourin, Flavien; Gicquel, Stefan; Mitteau, Raphael; González, Jorge

    2015-01-01

    Highlights: • This paper describes the current status of the integration efforts to implement diagnostics in the ITER first wall (FW). • Some diagnostics require a plasma facing element attached to the FW, commonly known as a FW diagnostic. Their design must comply not only with their functional requirements but also with the design of the blankets. • An integrated design concept has been developed. It provides a design that respects the requirements of each system. Thermo-mechanical analyses are on-going to confirm that this configuration respects the heat loads limits on the blanket FW. - Abstract: ITER will have about 50 diagnostic systems for machine protection, plasma control and optimization, and understanding the physics of burning plasma. The implementation in the ITER machine is challenging, particularly for the in-vessel diagnostics, region defined between the vacuum vessel and first wall (FW) contours, where space is constrained by the high number of systems. This paper describes the current status of design integration efforts to implement diagnostics in the ITER first wall. These approaches are the basis for detailed optimization and improvement of conceptual interfaces designs between systems.

  9. Diagnostic integration solutions in the ITER first wall

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Gonzalo, E-mail: gonzalo.martinez@iter.org [Technical University of Catalonia (UPC), Barcelona-Tech, Barcelona (Spain); Martin, Alex; Watts, Christopher; Veshchev, Evgeny; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Shigin, Pavel [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); National Research Nuclear University (MEPhI), Kashirskoe shosse, 115409 Moscow (Russian Federation); Sabourin, Flavien [ABMI-Groupe, Parc du Relais BatD 201 Route de SEDS, 13127 Vitrolles (France); Gicquel, Stefan; Mitteau, Raphael [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); González, Jorge [RÜECKER LYPSA, Carretera del Prat, 65, Cornellá de Llobregat (Spain)

    2015-10-15

    Highlights: • This paper describes the current status of the integration efforts to implement diagnostics in the ITER first wall (FW). • Some diagnostics require a plasma facing element attached to the FW, commonly known as a FW diagnostic. Their design must comply not only with their functional requirements but also with the design of the blankets. • An integrated design concept has been developed. It provides a design that respects the requirements of each system. Thermo-mechanical analyses are on-going to confirm that this configuration respects the heat loads limits on the blanket FW. - Abstract: ITER will have about 50 diagnostic systems for machine protection, plasma control and optimization, and understanding the physics of burning plasma. The implementation in the ITER machine is challenging, particularly for the in-vessel diagnostics, region defined between the vacuum vessel and first wall (FW) contours, where space is constrained by the high number of systems. This paper describes the current status of design integration efforts to implement diagnostics in the ITER first wall. These approaches are the basis for detailed optimization and improvement of conceptual interfaces designs between systems.

  10. Disruption of cell walls for enhanced lipid recovery

    Science.gov (United States)

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  11. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  12. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    Science.gov (United States)

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  14. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates.

    Directory of Open Access Journals (Sweden)

    Rafaela A Castro

    Full Text Available Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.

  15. Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell.

    Science.gov (United States)

    Ghosh Ray, S; Ghangrekar, M M

    2015-01-01

    For enhancing organic matter removal from cereal-based distillery stillage two-stage treatment consisting of fermentation by Aspergillus awamori followed by microbial fuel cell (MFC) is proposed. Considerable reduction in total and soluble chemical oxygen demand (COD) up to 70% and 40%, respectively, along with 98% reduction of suspended solids (SS) has been achieved during fungal pretreatment. The process generated chitosan, a useful fermentation byproduct from fungal mycelia, as 0.6-0.7g/l of settled sludge with mycelium (3.8% solids). Prior treatment of wastewater with fungal strain enhanced the power generation in MFC by 2.9 times at an organic loading rate of 1.5kgCOD/m(3)day, demonstrating soluble COD reduction of 92% in MFC. While treating distillery wastewater, this two-stage integrated biological process demonstrated overall 99% COD removal and almost complete removal of SS, delivering ample scope for scale-up and industrial application to offer effective solution for distillery wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  17. An enzymatic approach to cell wall structure | Hungate | South ...

    African Journals Online (AJOL)

    Ruminococcus albus was incubated with isolated alfalfa cell wall material for 72 h in batch culture. Cellulose in the cell walls was digested to a somewhat greater extent (88%) than were the fermentable sugars of the hemicellulose fraction (62- 76%). The digestibility of the total insoluble alfalfa cell wall, including lignin but ...

  18. THE FUNGAL ABILITY FOR BIOBLEACHING/BIOPULPING/BIOREMEDIATION OF LIGNIN-LIKE COMPOUNDS OF AGRO-INDUSTRIAL RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Ana Maria Queijeiro López

    Full Text Available Lignin is present in plant cell secondary wall, associated to carbohydrates preventing their efficient hydrolysis, and cellulose pulp manufacture basically consists in breaking down the middle lamella of plant cells, individualizing fibers such as cellulose from the other biopolymers. Different levels of lignocellulose are found in plant residues and they can be decomposed by extracellular fungal lignin modifying enzymes, used as a tool to reduce waste materials in contaminated soils and effluents. In the paper mill industries, for instance, they are a suitable or complementary alternative to the traditional methods of pulping/bleaching, contributing to improve paper strength as well as to reduce the pitch content, the quantity of chemicals and the consume of electrical energy. The aim of this review was to describe the fungal degradation of lignocellulosic like-material, the non-specific enzymatic aspects of the attack of wood and agricultural wastes, the fungal ability for biosorption and bioconversion, and its applications in the pulp/paper industry and bioremediation.

  19. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence.

    Directory of Open Access Journals (Sweden)

    Loida López-Fernández

    Full Text Available With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.

  20. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    Science.gov (United States)

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  1. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....

  2. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with roles in Plant Cell Wall Degradation and Virulence

    KAUST Repository

    Lakshman, Dilip; Roberts, Daniel P.; Garrett, Wesley M.; Natarajan, Savithiry S.; Darwish, Omar; Alkharouf, Nadim; Pain, Arnab; Khan, Farooq; Jambhulkar, Prashant P.; Mitra, Amitava

    2016-01-01

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. Here we used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions; the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups; and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.

  3. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with roles in Plant Cell Wall Degradation and Virulence

    KAUST Repository

    Lakshman, Dilip

    2016-03-28

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. Here we used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions; the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups; and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.

  4. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  5. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells

    Science.gov (United States)

    Dix, Andreas; Czakai, Kristin; Leonhardt, Ines; Schäferhoff, Karin; Bonin, Michael; Guthke, Reinhard; Einsele, Hermann; Kurzai, Oliver; Löffler, Jürgen; Linde, Jörg

    2017-01-01

    Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during

  6. Stimulation with lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae maximizes cross-reactivity of anti-fungal T cells.

    Science.gov (United States)

    Deo, Shivashni S; Virassamy, Balaji; Halliday, Catriona; Clancy, Leighton; Chen, Sharon; Meyer, Wieland; Sorrell, Tania C; Gottlieb, David J

    2016-01-01

    Invasive fungal diseases caused by filamentous fungi and yeasts are significant causes of morbidity and mortality in immunosuppressed hematology patients. We previously published a method to expand Aspergillus fumigatus-specific T cells for clinical cell therapy. In the present study, we investigated expansion of T cells specific for other fungal pathogens and creation of a broadly reactive panfungal T-cell product. Fungal strains selected were those frequently observed in the clinical hematology setting and included Aspergillus, Candida, Fusarium, Rhizopus and Lomentospora/Scedosporium. Four T-cell cultures specific to each fungus were established. We selected lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae to expand panfungal T cells. Allelic restriction of anti-fungal activity was determined through the use of specific major histocompatibility complex class II-blocking antibodies. Individual T-cell cultures specific to each fungus could be expanded in vitro, generating predominantly CD4(+) T cells of which 8% to 20% were fungus-specific. We successfully expanded panfungal T cells from the peripheral blood (n = 8) and granulocyte-colony-stimulating factor-primed stem cell products (n = 3) of normal donors by using a combination of lysates from Aspergillus terreus, Candida krusei and Rhizopus oryzae. Anti-fungal activity was mediated through human leukocyte antigen (HLA)-DR alleles and was maintained when antigen-presenting cells from partially HLA-DRB1-matched donors were used to stimulate T cells. We demonstrate a method to manufacture panfungal T-cell products with specificity against a range of clinical fungal pathogens by use of the blood and stem cells of healthy donors as the starting material. The safety and efficacy of these products will need to be tested clinically. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Vaddepalli, Prasad; Fulton, Lynette; Wieland, Jennifer; Wassmer, Katrin; Schaeffer, Milena; Ranf, Stefanie; Schneitz, Kay

    2017-06-15

    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig -like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro , cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  8. Integrated proteomics and metabolomics suggests symbiotic metabolism and multimodal regulation in a fungal-endobacterial system.

    Science.gov (United States)

    Li, Zhou; Yao, Qiuming; Dearth, Stephen P; Entler, Matthew R; Castro Gonzalez, Hector F; Uehling, Jessie K; Vilgalys, Rytas J; Hurst, Gregory B; Campagna, Shawn R; Labbé, Jessy L; Pan, Chongle

    2017-03-01

    Many plant-associated fungi host endosymbiotic endobacteria with reduced genomes. While endobacteria play important roles in these tri-partite plant-fungal-endobacterial systems, the active physiology of fungal endobacteria has not been characterized extensively by systems biology approaches. Here, we use integrated proteomics and metabolomics to characterize the relationship between the endobacterium Mycoavidus sp. and the root-associated fungus Mortierella elongata. In nitrogen-poor media, M. elongata had decreased growth but hosted a large and growing endobacterial population. The active endobacterium likely extracted malate from the fungal host as the primary carbon substrate for energy production and biosynthesis of phospho-sugars, nucleobases, peptidoglycan and some amino acids. The endobacterium obtained nitrogen by importing a variety of nitrogen-containing compounds. Further, nitrogen limitation significantly perturbed the carbon and nitrogen flows in the fungal metabolic network. M. elongata regulated many pathways by concordant changes on enzyme abundances, post-translational modifications, reactant concentrations and allosteric effectors. Such multimodal regulations may be a general mechanism for metabolic modulation. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  10. Cell wall composition and candidate biosynthesis gene expression during rice development

    DEFF Research Database (Denmark)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    2016-01-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall...... components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples......, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had...

  11. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    Directory of Open Access Journals (Sweden)

    Shazia Rehman

    2014-12-01

    Full Text Available Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE, in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase using a novel substrate, Banana Peels (BP for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  12. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    Science.gov (United States)

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  13. Positioning for vertical integration through clinics "without walls".

    Science.gov (United States)

    Johnson, B A; Schryver, D L

    1994-01-01

    Authors Bruce A. Johnson, J.D., M.P.A., and Darrell Schryver, D.P.A., offer the clinic without walls model as a transitory step to full vertical integration. They write that this model "may enable physicians to address the key issues associated with managed care and integration in a more gradual, controlled fashion.

  14. Sequence analysis and gene expression of putative exo- and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection.

    Science.gov (United States)

    Yeoh, Keat-Ai; Othman, Abrizah; Meon, Sariah; Abdullah, Faridah; Ho, Chai-Ling

    2012-10-15

    Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.

    2006-01-01

    The effects of the cellulose inhibitor dichlobenil on the cell wall composition and structure during the habituation/dehabituation process of suspension-cultured bean cells were assessed. A range of techniques were used including cell wall fractionation, sugar analysis, immunofluorescence...... and fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...

  16. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double....... The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  17. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    Science.gov (United States)

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  18. Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-11-01

    Full Text Available Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.

  19. The Role of Pectin Acetylation in the Organization of Plant Cell Walls

    DEFF Research Database (Denmark)

    Fimognari, Lorenzo

    adopt defined 3D organization to allow their composition/interactions to be tweaked upon developmental need. Failure to build functional cell wall architecture will affect plant growth and resistance to stresses. In this PhD dissertation I explored the role of pectin acetylation in controlling...... wall organization, namely polysaccharides-to-polysaccharides interactions. These results suggest that cell wall acetylation is a mechanism that plants evolved to control cell wall organization. In Manuscript III, we report the characterization of Arabidopsis mutants trichome birefringence like (tbl) 10......All plant cells are surrounded by one or more cell wall layers. The cell wall serves as a stiff mechanical support while it allows cells to expand and provide a protective barrier to invading pathogens. Cell walls are dynamic structures composed of entangled cell wall polysaccharides that must...

  20. Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution

    Science.gov (United States)

    László G. Nagy; Robert Riley; Philip J. Bergmann; Krisztina Krizsán; Francis M. Martin; Igor V. Grigoriev; Dan Cullen; David S. Hibbett

    2016-01-01

    Fungal decomposition of plant cell walls (PCW) is a complex process that has diverse industrial applications and huge impacts on the carbon cycle. White rot (WR) is a powerful mode of PCW decay in which lignin and carbohydrates are both degraded. Mechanistic studies of decay coupled with comparative genomic analyses have provided clues to the enzymatic components of WR...

  1. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  2. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    Science.gov (United States)

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  3. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  4. Proteomic analysis of cell walls of two developmental stages of alfalfa stems

    Directory of Open Access Journals (Sweden)

    Julian C Verdonk

    2012-12-01

    Full Text Available Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g. crosslinking of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible and basal alfalfa stems (more mature, less digestible was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% percent of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach.

  5. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    Science.gov (United States)

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  6. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Barbara Koch

    2017-12-01

    Full Text Available The interactions of mitochondria with the endoplasmic reticulum (ER are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure. In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER

  7. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans.

    Science.gov (United States)

    Koch, Barbara; Tucey, Timothy M; Lo, Tricia L; Novakovic, Stevan; Boag, Peter; Traven, Ana

    2017-01-01

    The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae , the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans . There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1 Δ / Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1 Δ / Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1 Δ / Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans . We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing

  8. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated......Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...

  9. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  10. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook.

    Science.gov (United States)

    Primo, Emiliano D; Otero, Lisandro H; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  11. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Science.gov (United States)

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  12. Catalysts of plant cell wall loosening [version 1; referees: 2 approved

    OpenAIRE

    Daniel J. Cosgrove

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  13. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    Science.gov (United States)

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Evolution of the cell wall components during terrestrialization

    Directory of Open Access Journals (Sweden)

    Alicja Banasiak

    2014-12-01

    Full Text Available Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants. In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3,(1→4-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.

  15. Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.

    Science.gov (United States)

    Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei

    2012-08-25

    Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.

  16. Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.

    Science.gov (United States)

    Okubo-Kurihara, Emiko; Matsui, Minami

    2018-01-01

    The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.

  17. The Disruptive Effect of Lysozyme on the Bacterial Cell Wall Explored by an "In-Silico" Structural Outlook

    Science.gov (United States)

    Primo, Emiliano D.; Otero, Lisandro H.; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall…

  18. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  19. The plant cell wall in the feeding sites of cyst nematodes.

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  20. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  1. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz

    2008-01-01

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  2. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    Directory of Open Access Journals (Sweden)

    Jean-Claude Mollet

    2013-03-01

    Full Text Available The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  3. Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells.

    Science.gov (United States)

    Rao, Xiaolan; Shen, Hui; Pattathil, Sivakumar; Hahn, Michael G; Gelineo-Albersheim, Ivana; Mohnen, Debra; Pu, Yunqiao; Ragauskas, Arthur J; Chen, Xin; Chen, Fang; Dixon, Richard A

    2017-01-01

    Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass ( Panicum virgatum ) have yet to be reported. Our previous studies have established a cell suspension system for switchgrass, in which cell wall lignification can be induced by application of brassinolide (BL). We have now collected cell wall composition and microarray-based transcriptome profiles for BL-induced and non-induced suspension cultures to provide an overview of the dynamic changes in transcriptional reprogramming during BL-induced cell wall modification. From this analysis, we have identified changes in candidate genes involved in cell wall precursor synthesis, cellulose, hemicellulose, and pectin formation and ester-linkage generation. We have also identified a large number of transcription factors with expression correlated with lignin biosynthesis genes, among which are candidates for control of syringyl (S) lignin accumulation. Together, this work provides an overview of the dynamic compositional changes during brassinosteroid-induced cell wall remodeling, and identifies candidate genes for future plant genetic engineering to overcome cell wall recalcitrance.

  4. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.

    Science.gov (United States)

    Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng

    2018-04-20

    During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  5. Evidence for differentiation of cell wall poles in Bacillus subtilis

    International Nuclear Information System (INIS)

    Sonnenfeld, E.M.

    1985-01-01

    Previous data have suggested that the chromosome of Bacillus subtilis was found to the cell surface at polar regions. A significant corollary of DNA attachment to cell poles is the role of the cell wall in chromosome segregation. This project was mainly concerned with visualizing the DNA-cell wall association through autoradiography. The origin and terminus of replication were labelled with ( 3 H)-thymidine using a temperature-sensitive DNA initiation mutant. It was found that most of the radioactivity was associated with cell poles. Ultrastructural analyses of cell walls stained with dilute cationized ferritin showed that the polar area contained a site of dense electronegativity. It is not immediately apparent why cell wall poles would contain an area with a high concentration of negative charge. This finding may be related to the cell pole functioning as the site of chromosome attachment. An additional observation encountered in this study was that cell wall exhibited asymmetry with regard to negative charge, the outside surface being more electronegative than the inside. A significant consequence of this finding is that both teichoic acid and muramyl peptides are situated perpendicularly to the cell surface. This favored arrangement may facilitate cell separation during the division process due to opposition of like charges at septa. The results of this work provide further convincing evidence that the cell wall of B. subtilis is differentiated

  6. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  7. Binding of 18F by cell membranes and cell walls of Streptococcus mutans

    International Nuclear Information System (INIS)

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-01-01

    The binding of 18 F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of 18 F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. 18 F binding was stimulated by Ca 2+ (1 mM). The binding of 18 F to cellular components was dependent upon the pH, as well as the amount of 18 F and dose of the binder employed. The binding of 18 F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of 18 F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of 18 F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of 18 F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of 18 F per mg (dry weight). 18 F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of 18 F binding by cell membranes and walls of oral flora

  8. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  9. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  10. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  11. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  12. Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components.

    Science.gov (United States)

    Sato, Kanna; Suzuki, Ryu; Nishikubo, Nobuyuki; Takenouchi, Sachi; Ito, Sachiko; Nakano, Yoshimi; Nakaba, Satoshi; Sano, Yuzou; Funada, Ryo; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2010-06-01

    The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.

  13. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  14. Endotoxins, Glucans and Other Microbial Cell Wall Agents

    NARCIS (Netherlands)

    Basinas, Ioannis; Elholm, Grethe; Wouters, Inge M.

    2017-01-01

    During the last decades an increasing interest in microbial cell wall agents has been established, since exposure to these agents has been linked to a wide range of adverse and beneficial health effects. The term microbial cell wall agents refers to a group of molecules of different composition that

  15. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as

  16. Dissecting the regulation of pollen tube growth by modelling the interplay of hydrodynamics, cell wall and ion dynamics

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2014-08-01

    Full Text Available Hydrodynamics, cell wall and ion dynamics are all important properties that regulate pollen tube growth. Currently, the two main pollen tube growth models, the cell wall model and the hydrodynamic model do not appear to be reconcilable. Here we develop an integrative model for pollen tube growth and show that our model reproduces key experimental observations: 1 that the hypertonic condition leads to a much longer oscillatory period and that the hypotonic condition halves the oscillatory period; 2 that oscillations in turgor are experimentally undetectable; 3 that increasing the extracellular calcium concentration or decreasing the pH decreases the growth oscillatory amplitude; 4 that knockout of Raba4d, a member of the Rab family of small GTPase proteins, decreases pollen tube length after germination for 24 hours. Using the model generated here, we reveal that 1 when cell wall extensibility is large, pollen tube may sustain growth at different volume changes and maintain relatively stable turgor; 2 turgor increases if cell wall extensibility decreases; 3 increasing turgor due to decrease in osmolarity in the media, although very small, increases volume change . However, increasing turgor due to decrease in cell wall extensibility decreases volume change. In this way regulation of pollen tube growth by turgor is context dependent. By changing the osmolarity in the media, the main regulatory points are extracellular osmolarity for water flow and turgor for the volume encompassed by the cell wall. However, if the viscosity of cell wall changes, the main regulatory points are turgor for water flow and wall extensibility for the volume encompassed by the cell wall. The novel methodology developed here reveals the underlying context-dependent regulatory principle of pollen tube growth.

  17. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    Science.gov (United States)

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  18. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    Science.gov (United States)

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  19. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs.

    Science.gov (United States)

    Frenken, Thijs; Alacid, Elisabet; Berger, Stella A; Bourne, Elizabeth C; Gerphagnon, Mélanie; Grossart, Hans-Peter; Gsell, Alena S; Ibelings, Bas W; Kagami, Maiko; Küpper, Frithjof C; Letcher, Peter M; Loyau, Adeline; Miki, Takeshi; Nejstgaard, Jens C; Rasconi, Serena; Reñé, Albert; Rohrlack, Thomas; Rojas-Jimenez, Keilor; Schmeller, Dirk S; Scholz, Bettina; Seto, Kensuke; Sime-Ngando, Télesphore; Sukenik, Assaf; Van de Waal, Dedmer B; Van den Wyngaert, Silke; Van Donk, Ellen; Wolinska, Justyna; Wurzbacher, Christian; Agha, Ramsy

    2017-10-01

    Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Characterizing visible and invisible cell wall mutant phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  1. An update on post-translational modifications of hydroxyproline-rich glycoproteins: Towards a model highlighting their contribution to plant cell wall architecture

    Directory of Open Access Journals (Sweden)

    May eHijazi

    2014-08-01

    Full Text Available Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp-rich O-glycoproteins (HRGPs were classified into three categories: (i moderately glycosylated extensins (EXTs able to form covalent scaffolds; (ii hyperglycosylated arabinogalactan proteins (AGPs; and (iii Hyp/proline (Pro-Rich proteins (H/PRPs that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs, biosynthesis, structure and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.

  2. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  3. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    Science.gov (United States)

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain

    DEFF Research Database (Denmark)

    Dohn, Søren; Kjelstrup-Hansen, Jakob; Madsen, D.N.

    2005-01-01

    variations in the response. Using a simple resistor model we estimate the expected conductance-strain response for a multi-walled carbon nanotube, and compare to our results on multi-walled carbon nanotubes as well as measurements by others on single-walled carbon nanotubes. Integration of nanotubes...

  5. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  6. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome.

    Directory of Open Access Journals (Sweden)

    Philippe Boucher

    2007-05-01

    Full Text Available The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-beta in vascular smooth muscle cells (VSMC. LRP1 is also a receptor for TGFbeta1 and is required for TGFbeta mediated inhibition of cell proliferation.We show that loss of LRP1 in VSMC (smLRP(- in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFbeta target genes thrombospondin-1 (TSP1 and PDGFRbeta in the vascular wall. Treatment of smLRP1(- animals with the PPARgamma agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels.Our findings are consistent with an activation of TGFbeta signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity.

  7. The Cell Wall of Bacillus subtilis

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan; Graumann, Peter

    2012-01-01

    The cell wall of Bacillus subtilis is a rigid structure on the outside of the cell that forms the first barrier between the bacterium and the environment, and at the same time maintains cell shape and withstands the pressure generated by the cell’s turgor. In this chapter, the chemical composition

  8. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    Science.gov (United States)

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides...... cannot really be synthesised or sequenced. The work described in this thesis is focused to a large extent on the development of a microarray-based high-throughput method for cell wall analysis known as Comprehensive microarray polymer profiling or CoMPP. The procedure uses highly specific molecular...... probes (monoclonal antibodies mAbs and carbohydrate binding modules, CBMs) to rapidly profile polysaccharides across a sample set. During my PhD I have further developed the CoMPP technique and used it for cell wall analysis within the context of a variety of applied and fundamental projects. The data...

  10. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  11. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  12. Colletotrichum higginsianum Mitogen-Activated Protein Kinase ChMK1: Role in Growth, Cell Wall Integrity, Colony Melanization and Pathogenicity

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2016-08-01

    Full Text Available Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. To facilitate the efficient control of anthracnose disease, it will be important to understand the mechanism by which the cruciferous crops and C. higginsianum interact. A key step in understanding this interaction is characterizing the mitogen-activated protein kinases (MAPK signaling pathway of C. higginsianum. MAPK plays important roles in diverse physiological processes of multiple pathogens. In this study, a Fus3/Kss1-related MAPK gene, ChMK1, from C. higginsianum was analyzed. The results showed that the Fus3/Kss1-related MAPK ChMK1 plays a significant role in cell wall integrity. Targeted deletion of ChMK1 resulted in a hypersensitivity to cell wall inhibitors, reduced conidiation and albinistic colonies. Further, the deletion mutant was also unable to form melanized appressorium, a specialized infection structure that is necessary for successful infection. Therefore, the deletion mutant loses pathogenicity on A. thaliana leaves, demonstrating that ChMK1 plays an essential role in the early infection step. In addition, the ChMK1 deletion mutant showed an attenuated growth rate that is different from that of its homologue in C. lagenarium, indicating the diverse roles that Fus3/Kss1-related MAPKs plays in phytopathogenic fungi. Furthermore, the expression level of three melanin synthesis associated genes were clearly decreased in the albinistic ChMK1 mutant compared to that of the wild type strain, suggesting that ChMK1 is also required for colony melanization in C. higginsianum.

  13. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Aymerick Eudes

    2016-07-01

    Full Text Available Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet. In this study, we demonstrate in Arabidopsis stems that targeted expression of S-adenosylmethionine hydrolase (AdoMetase, E.C. 3.3.1.2 in secondary cell-wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H units and a reduction of dimethylated syringyl (S units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.

  14. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor.

    Science.gov (United States)

    Satari, Behzad; Karimi, Keikhosro; Taherzadeh, Mohammad J; Zamani, Akram

    2016-02-26

    The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.

  15. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor

    Directory of Open Access Journals (Sweden)

    Behzad Satari

    2016-02-01

    Full Text Available The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.

  16. The Mkk2 MAPKK Regulates Cell Wall Biogenesis in Cooperation with the Cek1-Pathway in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Elvira Román

    Full Text Available The cell wall integrity pathway (CWI plays an important role in the biogenesis of the cell wall in Candida albicans and other fungi. In the present work, the C. albicans MKK2 gene that encodes the putative MAPKK of this pathway was deleted in different backgrounds and the phenotypes of the resultant mutants were characterised. We show here that Mkk2 mediates the phosphorylation of the Mkc1 MAPK in response to cell wall assembly interfering agents such as zymolyase or tunicamycin and also to oxidative stress. Remarkably, mkk2 and mkc1 mutants display related but distinguishable- cell wall associated phenotypes and differ in the pattern of MAPK phosphorylation under different stress conditions. mkk2 and mkc1 mutants display an altered expression of GSC1, CEK1 and CRH11 genes at different temperatures. Combined deletion of MKK2 with HST7 supports a cooperative role for the Cek1-mediated and CWI pathways in regulating cell wall architecture under vegetative growth. However, and in contrast to Mkc1, Mkk2 does not seem to play a role in the virulence of C. albicans in the mouse systemic model or the Galleria mellonella model of infection.

  17. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Fabio Carrilho Galvão

    Full Text Available The putative eukaryotic translation initiation factor 5A (eIF5A is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1 and deoxyhypusine hydroxylase (Lia1 catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1 and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of m

  18. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  19. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  20. Processive motions of MreB micro-filaments coordinate cell wall growth

    Science.gov (United States)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  1. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...... responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids...... and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate...

  2. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  3. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  4. Characteristic thickened cell walls of the bracts of the 'eternal flower' Helichrysum bracteatum.

    Science.gov (United States)

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-07-01

    Helichrysum bracteatum is called an 'eternal flower' and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type.

  5. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  6. High Spatial Resolution Analysis of Fungal Cell Biochemistry: Bridging the Analytical Gap using Synchrotron FTIR Spectromicroscopy

    International Nuclear Information System (INIS)

    Kaminskyj, S.; Konstantin, J.; Szeghalmi, A.; Gough, K.

    2008-01-01

    Fungi impact humans and the environment in many ways, for good and ill. Some fungi support the growth of terrestrial plants or are used in biotechnology, and yet others are established or emerging pathogens. In some cases, the same organism may play different roles depending on the context or the circumstance. A better understanding of the relationship between fungal biochemical composition as related to the fungal growth environment is essential if we are to support or control their activities. Synchrotron FTIR (sFTIR) spectromicroscopy of fungal hyphae is a major new tool for exploring cell composition at a high spatial resolution. Brilliant synchrotron light is essential for this analysis due to the small size of fungal hyphae. sFTIR biochemical characterization of subcellular variation in hyphal composition will allow detailed exploration of fungal responses to experimental treatments and to environmental factors.

  7. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Science.gov (United States)

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  8. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Digby Wrede

    Full Text Available The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm, large (over 300 µm, heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  9. Plant cell walls to ethanol.

    Science.gov (United States)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  10. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    International Nuclear Information System (INIS)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun

    2016-01-01

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  11. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Songlin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycká 129, Prague 6−Suchdol 165 21 (Czech Republic); Zhang, Xin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Sun, Yuqing; Wu, Zhaoxiang [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Li, Tao [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu, Yajun [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 (China); Lv, Jitao; Li, Gang; Zhang, Zhensong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Jing; Zheng, Lirong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhen, Xiangjun [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); and others

    2016-10-05

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  12. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    Science.gov (United States)

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  13. Integrating the Wall Street Journal into AIS Courses

    Science.gov (United States)

    Kohlmeyer, James M., III

    2008-01-01

    While it is important for accounting information systems (AIS) students to understand computer technology, internal controls and business processes, such knowledge is of little use without reference to appropriate contexts. Integrating Wall Street Journal (WSJ) readings and discussions into AIS classes can enrich learning by stimulating…

  14. A gene expression analysis of cell wall biosynthetic genes in Malus × domestica infected by ‘Candidatus Phytoplasma mali’

    Science.gov (United States)

    Guerriero, Gea; Giorno, Filomena; Ciccotti, Anna Maria; Schmidt, Silvia; Baric, Sanja

    2016-01-01

    Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several ‘knot’-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion. PMID:23086810

  15. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    Science.gov (United States)

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  16. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Science.gov (United States)

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  17. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  18. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  19. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  20. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  1. Role of the plant cell wall in gravity resistance.

    Science.gov (United States)

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  3. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    Directory of Open Access Journals (Sweden)

    Chengkang eZhang

    2015-10-01

    Full Text Available Fusarium verticillioides (formerly F. moniliforme is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

  4. Purification and characterization of a soybean cell wall protein

    International Nuclear Information System (INIS)

    San Francisco, S.; Tierney, M.L.

    1989-01-01

    Plant cell wall composition is thought to reflect cellular responses to developmental and environmental signals. We have purified a 33 kDa protein from cell wall extracts of soybean seedlings which is most abundant in extracts from the hook region of the hypocotyl and is rich in proline and hydroxypyroline. In vivo 3 H-proline labelling of hypocotyl tissues indicates that the hook tissue is the predominant site for synthesis of this protein. In unwounded hook, label is incorporated into a 33 kDa protein, while in wounded hook this and additional proteins rich in proline are synthesized. Similarly treated cell wall extracts analyzed by Western blot analysis, using a polyclonal antibody raised against this 33kD protein, showed that the 33 kDa protein is most abundant in cell wall extracts from the hook region of unwounded seedlings and does not increase upon wounding. An immunologically related 35kD protein is also apparent in extracts from wounded hooks and appears to co-migrate with one of the labelled proteins extractable from this tissue. These data indicate that there are two related, proline-rich cell wall proteins in the hook region of soybean seedlings, one of which (33 kDa) is prominent during seedling development and another (35 kDa) which is wound inducible

  5. Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape.

    Science.gov (United States)

    Sotiriou, P; Giannoutsou, E; Panteris, E; Galatis, B; Apostolakos, P

    2018-03-01

    The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  6. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography

    International Nuclear Information System (INIS)

    Schlaeppi, J.M.; Schaefer, O.; Karamata, D.

    1985-01-01

    Cells of a Bacillus subtilis mutant deficient in both major autolytic enzyme activities were continuously labeled in either cell wall or DNA or both cell wall and DNA. After appropriate periods of chase in minimal as well as in rich medium, thin sections of cells were autoradiographed and examined by electron microscopy. The resolution of the method was adequate to distinguish labeled DNA units from cell wall units. The latter, which could be easily identified, were shown to segregate symmetrically, suggesting a zonal mode of new wall insertion. DNA units could also be clearly recognized despite a limited fragmentation; they segregated asymmetrically with respect to the nearest septum. Analysis of cells simultaneously labeled in cell wall and DNA provided clear visual evidence of their regular but asymmetrical cosegregation, confirming a previous report obtained by light microscope autoradiography. In addition to labeled wall units, electron microscopy of thin sections of aligned cells has revealed fibrillar networks of wall material which are frequently associated with the cell surface. Most likely, these structures correspond to wall sloughed off by the turnover mechanism but not yet degraded to filterable or acid-soluble components

  7. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Jeurink, P.V.; Lull Noguera, C.; Savelkoul, H.F.J.; Wichers, H.J.

    2008-01-01

    Immunomodulation by fungal compounds can be determined by the capacity of the compounds to influence the cytokine production by human peripheral blood mononuclear cells (hPBMC). These activities include mitogenicity, stimulation and activation of immune effector cells. Eight mushroom strains

  8. Structure of the cell wall of mango after application of ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Josenilda M.; Villar, Heldio P.; Pimentel, Rejane M.M.

    2012-01-01

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane. - Highlights: ► Mesocarp cells were analyzed by Transmission Electron Microscope—TEM. ► No change in cell wall structure, middle lamella and plasma membrane was found in fruits immediately after irradiation. ► Changes in cell wall structure, middle lamella and plasma membrane happened after storage. ► Fruits subjected to 0.5 kGy showed smaller cell wall change.

  9. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    International Nuclear Information System (INIS)

    Alsteens, David; Dupres, Vincent; Evoy, Kevin Mc; Dufrene, Yves F; Wildling, Linda; Gruber, Hermann J

    2008-01-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls

  10. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Barhoom Sima

    2008-02-01

    Full Text Available Abstract Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable

  11. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Directory of Open Access Journals (Sweden)

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  12. Longevity in vivo of primary cell wall cellulose synthases.

    Science.gov (United States)

    Hill, Joseph Lee; Josephs, Cooper; Barnes, William J; Anderson, Charles T; Tien, Ming

    2018-02-01

    Our work focuses on understanding the lifetime and thus stability of the three main cellulose synthase (CESA) proteins involved in primary cell wall synthesis of Arabidopsis. It had long been thought that a major means of CESA regulation was via their rapid degradation. However, our studies here have uncovered that AtCESA proteins are not rapidly degraded. Rather, they persist for an extended time in the plant cell. Plant cellulose is synthesized by membrane-embedded cellulose synthase complexes (CSCs). The CSC is composed of cellulose synthases (CESAs), of which three distinct isozymes form the primary cell wall CSC and another set of three isozymes form the secondary cell wall CSC. We determined the stability over time of primary cell wall (PCW) CESAs in Arabidopsis thaliana seedlings, using immunoblotting after inhibiting protein synthesis with cycloheximide treatment. Our work reveals very slow turnover for the Arabidopsis PCW CESAs in vivo. Additionally, we show that the stability of all three CESAs within the PCW CSC is altered by mutations in individual CESAs, elevated temperature, and light conditions. Together, these results suggest that CESA proteins are very stable in vivo, but that their lifetimes can be modulated by intrinsic and environmental cues.

  13. Plant cell wall sugars: sweeteners for a bio-based economy.

    Science.gov (United States)

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  14. Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas.

    Science.gov (United States)

    Itoh, Hiroko; Mogami, Haruta; Bou Nemer, Laurice; Word, Larry; Rogers, David; Miller, Rodney; Word, R Ann

    2018-02-01

    How does progesterone alter matrix remodeling in abdominal wall endometriomas compared with normal endometrium? Progesterone may prevent attachment of endometrial cells to the abdominal wall, but does not ameliorate abnormal stromal cell responses of abdominal wall endometriomas. Menstruation is a tightly orchestrated physiologic event in which steroid hormones and inflammatory cells cooperatively initiate shedding of the endometrium. Abdominal wall endometriomas represent a unique form of endometriosis in which endometrial cells inoculate fascia or dermis at the time of obstetrical or gynecologic surgery. Invasion of endometrium into ectopic sites requires matrix metalloproteinases (MMPs) for tissue remodeling but endometrium is not shed externally. Observational study in 14 cases and 19 controls. Tissues and stromal cells isolated from 14 abdominal wall endometriomas were compared with 19 normal cycling endometrium using immunohistochemistry, quantitative PCR, gelatin zymography and cell attachment assays. P values cell preps to provide scientific rigor to the conclusions. The results indicate that MMP2 and MMP9 are not increased by TGFβ1 in endometrioma stromal cells. Although progesterone prevents attachment of endometrioma cells to matrix components of the abdominal wall, it does not ameliorate these abnormal stromal cell responses to TGFβ1. N/A. Endometriomas were collected from women identified pre-operatively. Not all endometriomas were collected. Stromal cells from normal endometrium were from different patients, not women undergoing endometrioma resection. This work provides insight into the mechanisms by which progesterone may prevent abdominal wall endometriomas but, once established, are refractory to progesterone treatment. Tissue acquisition was supported by NIH P01HD087150. Authors have no competing interests. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All

  15. Production of fungal biomass protein using microfungi from winery wastewater treatment.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Bai, Zhi Hui; Wang, Xiao Yi

    2008-06-01

    This study was carried out to investigate the production of fungal biomass protein (FBP) in treatment of winery wastewater using microfungi. Three fungal strains, Trichoderma viride WEBL0702, Aspergillus niger WEBL0901 and Aspergillus oryzae WEBL0401, were selected in terms of microbial capability for FBP production and COD reduction. T. viride appeared to be the best strain for FBP production due to high productivity and less nitrogen requirement. More than 5 g/L of fungal biomass was produced in shake fermentation using T. viride without nitrogen addition, and by A. oryzae and A. niger with addition of 0.5-1.0 g/L (NH4)2SO4. The FBP production process corresponded to 84-90% COD reduction of winery wastewater. Fungal biomass contained approximately 36% protein produced by two Aspergillus strains, while biomass produced by T. viride consisted of 19.8% protein. Kinetic study indicated that maximum fungal cell growth could be achieved in 24h for T. viride and 48 h for A. oryzae and A. niger. Current results indicated that it could be feasible to develop a biotechnological treatment process integrated with FBP production from the winery waste streams.

  16. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  17. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    Science.gov (United States)

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  18. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    International Nuclear Information System (INIS)

    Lamont-Friedrich, Stephanie J; Michl, Thomas D; Giles, Carla; Griesser, Hans J; Coad, Bryan R

    2016-01-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata . Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others. (paper)

  19. Analyzing Cell Wall Elasticity After Hormone Treatment: An Example Using Tobacco BY-2 Cells and Auxin.

    Science.gov (United States)

    Braybrook, Siobhan A

    2017-01-01

    Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.

  20. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria.

    Directory of Open Access Journals (Sweden)

    Erik C Hett

    2010-07-01

    Full Text Available Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB, a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA, an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1, as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein-protein interactions between enzymes with antagonistic functions.

  1. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.

    Science.gov (United States)

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G

    2002-07-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.

  2. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    Science.gov (United States)

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in

  3. Cell-wall recovery after irreversible deformation of wood

    Science.gov (United States)

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  4. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Steens

    2017-04-01

    Full Text Available Summary: The vascular wall (VW serves as a niche for mesenchymal stem cells (MSCs. In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs, based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. : In this article, Klein and colleagues show that iPSCs generated from skin fibroblasts of transgenic mice carrying a GFP gene under the control of the endogenous Nestin promoter to facilitate lineage tracing (NEST-iPSCs can be directly programmed toward mouse vascular wall-typical multipotent mesenchymal stem cells (VW-MSC by ectopic lentiviral expression of a previously defined VW-MSC-specific HOX code. Keywords: vascular wall-derived mesenchymal stem cells, HOX gene, induced pluripotent stem cells, direct programming, nestin

  5. original article the use of morphological and cell wall chemical

    African Journals Online (AJOL)

    boaz

    THE USE OF MORPHOLOGICAL AND CELL WALL CHEMICAL MARKERS IN. THE IDENTIFICATION OF ... aerial hyphae, with or without diffusible pigments on medium surface (7, 14). Cell wall components of Actinomycetes enable rapid qualitative identification of certain .... Alexander von Humboldt Foundation and the.

  6. Development of engineering program for integrity evaluation of pipes with local wall thinned defects

    International Nuclear Information System (INIS)

    Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu

    2008-01-01

    Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data

  7. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Mariem Ben-Abdallah

    Full Text Available Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB, a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of

  8. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Characteristic Thickened Cell Walls of the Bracts of the ‘Eternal Flower’ Helichrysum bracteatum

    Science.gov (United States)

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-01-01

    Background and Aims Helichrysum bracteatum is called an ‘eternal flower’ and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. Methods DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Key Results Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Conclusions Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type. PMID:18436550

  10. Generation of plastic influence functions for J-integral and crack opening displacement of thin-walled pipes with a short circumferential through-wall crack

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Choi, Young Hwan; Im, Seyoung

    2014-01-01

    Fracture mechanics parameters such as the J-integral and crack opening displacement (COD), are necessary for Leak-Before-Break (LBB) evaluation. The famous two estimation methods, the GE/EPRI and the Reference Stress Method (RSM), have their applicability limit with regard to the ratio of a pipe mean radius to thickness (R m /t). In order to extend their applicability limit to a thin walled pipe, several finite element analyses are performed for the J-integral and COD, and then new plastic influence functions are developed for thin-walled pipes with a short circumferential through-wall crack. With the newly generated plastic influence functions, the GE/EPRI and the RSM give closer results with those obtained from detailed finite element analyses. In addition, C*-integral and COD rate are estimated by using the new plastic influence functions and they are well matched with elastic–creep finite element analysis results under the power-law creep condition. Since the LBB concept can be applied to a piping system in a Korean Sodium-cooled Fast Reactor (SFR) which is designed to have thin-walled pipes and to operate in high temperature enough to cause creep, this paper can be applied for the LBB assessment of thin-walled pipes with a short through-wall crack in the SFR

  11. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  12. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo

    2015-01-01

    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants...... to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall...

  13. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  15. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  16. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  17. Fungal biological control agents for integrated management of Culicoides spp. (Diptera: Ceratopogonidae of livestock

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2015-02-01

    Full Text Available Aim: Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana had wide host range against insects and hence these are being exploited as fungal bio-pesticide on a large scale. Both fungi are proved pesticides against many crop pests and farmers are well acquainted with their use on the field. Thus, research was aimed to explore the potency of these fungal spores against larval and adult Culicoides midges, a pest of livestock. Materials and Methods: In-vitro testing of both fungal biological control agents was undertaken in Petri dishes against field collected Culicoides larvae, while in plastic beakers against field collected blood-engorged female Culicoides midges. In-vivo testing was undertaken by spraying requisite concentration of fungal spores on the drainage channel against larvae and resting sites of adult Culicoides midges in the cattle shed. Lethal concentration 50 (LC50 values and regression equations were drawn by following probit analysis using SPSS statistical computerized program. Results: The results of this study revealed LC50 values of 2692 mg and 3837 mg (108 cfu/g for B. bassiana and M. anisopliae, respectively, against Culicoides spp. larvae. Death of Culicoides larvae due to B. bassiana showed greenish coloration in the middle of the body with head and tail showed intense blackish changes, while infection of M. anisopliae resulted in death of Culicoides larvae with greenish and blackish coloration of body along with total destruction, followed by desquamation of intestinal channel. The death of adult Culicoides midges were caused by both the fungi and after death growth of fungus were very well observed on the dead cadavers proving the efficacy of the fungus. Conclusion: Preliminary trials with both funguses (M. anisopliae, B. bassiana showed encouraging results against larvae and adults of Culicoides spp. Hence, it was ascertained that, these two fungal molecules can form a part of biological control and

  18. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    Science.gov (United States)

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  19. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy

    Science.gov (United States)

    Cellulose and the other polysaccharides present in forage cell walls can be completely degraded by the rumen microflora but only when these polysaccharides have been isolated from the wall and all matrix structures eliminated. Understanding how cell wall component interactions limit microbial degrad...

  20. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.

    Science.gov (United States)

    Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E

    2016-11-07

    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  2. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  3. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development.

    Science.gov (United States)

    Tucker, Matthew R; Lou, Haoyu; Aubert, Matthew K; Wilkinson, Laura G; Little, Alan; Houston, Kelly; Pinto, Sara C; Shirley, Neil J

    2018-05-31

    The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

  4. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    Directory of Open Access Journals (Sweden)

    Indrakumar Vetharaniam

    2014-05-01

    Full Text Available We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a range of systems where cell walls are degraded and to the modification of cell walls by endogenous enzymes. As a proof of principle, we have modelled the wall of a mesophyll cell from the leaf of perennial ryegrass and then simulated its enzymatic degradation. This is a primary, non-lignified cell wall and the model includes cellulose, hemicelluloses (glucuronoarabinoxylans, 1,3;1,4-β-glucans, and xyloglucans and pectin. These polymers are represented at the level of constituent monosaccharides, and assembled to form a 3-D, meso-scale representation of the molecular structure of the cell wall. The composition of the cell wall can be parameterised to represent different walls in different cell types and taxa. The model can contain arbitrary combinations of different enzymes. It simulates their random diffusion through the polymer networks taking collisions into account, allowing steric hindrance from cell-wall polymers to be modelled. Steric considerations are included when target bonds are encountered, and breakdown products resulting from enzymatic activity are predicted.

  5. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    International Nuclear Information System (INIS)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-01-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  6. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-07-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  7. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    Science.gov (United States)

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  8. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik Etlar [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-21

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the following objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.

  9. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  10. Fungal enzyme production in seeds of transgenic canola plants for conversion of cellulosic materials to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.J.; Beauchemin, K.A. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Moloney, M.M. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1997-07-01

    The fuel alcohol industry makes use of industrial enzymes to effectively degrade fibrous plant cell walls. Carbohydrates in cellulosic materials are in the form of complex sugars that can be hydrolyzed to simple sugars by fungal fibrolytic enzymes such as cellulases and xylanases. This study was conducted to find a cost effective way to produce fibrolytic enzymes using gene fusion technology in which a xylanase gene and a cellulase gene from two fungal species are introduced into canola to be a carrier for the production of these enzymes. The two genes had been analyzed for maximal enzymatic activity to minimize side effects. Results of the study demonstrated the stability and potential of transgenic oil-bodies as an immobilized enzyme matrix, and showed that it is possible to express fibrolytic enzymes in canola.

  11. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined...... by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  12. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci.

    Science.gov (United States)

    Pidgeon, Sean E; Pires, Marcos M

    2017-07-21

    Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.

  13. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    OpenAIRE

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  14. An integrated study for mapping the moisture distribution in an ancient damaged wall painting.

    Science.gov (United States)

    Capitani, Donatella; Proietti, Noemi; Gobbino, Marco; Soroldoni, Luigi; Casellato, Umberto; Valentini, Massimo; Rosina, Elisabetta

    2009-12-01

    An integrated study of microclimate monitoring, IR thermography (IRT), gravimetric tests and portable unilateral nuclear magnetic resonance (NMR) was applied in the framework of planning emergency intervention on a very deteriorated wall painting in San Rocco church, Cornaredo (Milan, Italy). The IRT investigation supported by gravimetric tests showed that the worst damage, due to water infiltration, was localized on the wall painting of the northern wall. Unilateral NMR, a new non-destructive technique which measures the hydrogen signal of the moisture and that was applied directly to the wall, allowed a detailed map of the distribution of the moisture in the plaster underlying the wall panting to be obtained. With a proper calibration of the integral of the recorded signal with suitable specimens, each area of the map corresponded to an accurate amount of moisture. IRT, gravimetric tests and unilateral NMR applied to investigate the northern wall painting showed the presence of two wet areas separated by a dry area. The moisture found in the lower area was ascribed to the occurrence of rising damp at the bottom of the wall due to the slope of the garden soil towards the northern exterior. The moisture found in the upper area was ascribed to condensation phenomena associated with the presence of a considerable amount of soluble, hygroscopic salts. In the framework of this integrated study, IRT investigation and gravimetric methods validated portable unilateral NMR as a new analytical tool for measuring in situ and without any sampling of the distribution and amount of moisture in wall paintings.

  15. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...... polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained...

  16. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants

    Directory of Open Access Journals (Sweden)

    Christophe Loix

    2017-10-01

    Full Text Available Cadmium (Cd pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.

  17. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance.

    Science.gov (United States)

    Damm, Tatjana; Pattathil, Sivakumar; Günl, Markus; Jablonowski, Nicolai David; O'Neill, Malcolm; Grün, Katharina Susanne; Grande, Philipp Michael; Leitner, Walter; Schurr, Ulrich; Usadel, Björn; Klose, Holger

    2017-07-15

    The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500 ® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. B-Glucan exacerbates allergic asthma independent of fungal ...

    Science.gov (United States)

    BackgroundAllergic sensitization to fungi has been associated with asthma severity. As a result, it has been largely assumed that the contribution of fungi to allergic disease is mediated through their potent antigenicity.ObjectiveWe sought to determine the mechanism by which fungi affect asthma development and severity.MethodsWe integrated epidemiologic and experimental asthma models to explore the effect of fungal exposure on asthma development and severity.ResultsWe report that fungal exposure enhances allergen-driven TH2 responses, promoting severe allergic asthma. This effect is independent of fungal sensitization and can be reconstituted with β-glucan and abrogated by neutralization of IL-17A. Furthermore, this severe asthma is resistant to steroids and characterized by mixed TH2 and TH17 responses, including IL-13+IL-17+CD4+ double-producing effector T cells. Steroid resistance is dependent on fungus-induced TH17 responses because steroid sensitivity was restored in IL-17rc−/− mice. Similarly, in children with asthma, fungal exposure was associated with increased serum IL-17A levels and asthma severity.ConclusionOur data demonstrate that fungi are potent immunomodulators and have powerful effects on asthma independent of their potential to act as antigens. Furthermore, our results provide a strong rationale for combination treatment strategies targeting IL-17A for this subgroup of fungus-exposed patients with difficult-to-treat asthma. To describe th

  19. Autoradiographic studies on the kinetics of fetal supporting cells and wall cells in rats 19 days after conception

    International Nuclear Information System (INIS)

    Lugani-Mehta, S.

    1980-01-01

    The duration of the S-phase of supporting cells and wall cells of rat fetuses aged 19 days was determined by the ''labelled mitosis'' method. The supporting cells are predecessors of the sertoli cells while the wall cells are predecessors of the boundary tissue and, possibly, of part of the peritubular Leydig cell system. The S-phase of the supporting cells was found to last 10.1 h while the S-phase of the wall cells lasted 9.2 h. The data were not in agreement with the data of other authors. (orig./MG) [de

  20. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  1. Fungal polyketide azaphilone pigments as future natural food colorants?

    DEFF Research Database (Denmark)

    Mapari, Sameer Shamsuddin; Thrane, Ulf; Meyer, Anne S.

    2010-01-01

    The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply...... functionality and to expand the color palette of contemporary natural food colorants.......The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply...... of raw materials, thus minimizing batch-to-batch variations. Here, we review the potential of polyketide pigments produced from chemotaxonomically selected non-toxigenic fungal strains (e.g. Penicillium and Epicoccum spp.) to serve as food colorants. We argue that the production of polyketide azaphilone...

  2. The plant secretory pathway seen through the lens of the cell wall.

    Science.gov (United States)

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  3. The adventitia: essential regulator of vascular wall structure and function.

    Science.gov (United States)

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.

  4. [Stem and progenitor cells in biostructure of blood vessel walls].

    Science.gov (United States)

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  5. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  6. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Bardet, Michel; De Paepe, Gael; Hediger, Sabine; Ayala, Isabel; Simorre, Jean-Pierre

    2013-01-01

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  7. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    Science.gov (United States)

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  8. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  9. Identifying Genes Controlling Ferulate Cross-Linking Formation in Grass Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    de O. Buanafina, Marcia Maria [Pennsylvania State Univ., University Park, PA (United States)

    2013-10-16

    This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties.

  10. Cell Wall Diversity in Forage Maize

    NARCIS (Netherlands)

    Torres, A.F.; Noordam-Boot, C.M.M.; Dolstra, Oene; Weijde, van der Tim; Combes, Eliette; Dufour, Philippe; Vlaswinkel, Louis; Visser, R.G.F.; Trindade, L.M.

    2015-01-01

    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage

  11. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    Science.gov (United States)

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001; FINAL

    International Nuclear Information System (INIS)

    Carpita, Nicholas C.

    2001-01-01

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis

  13. 2009 Plant Cell Walls Gordon Research Conference-August 2-7,2009

    Energy Technology Data Exchange (ETDEWEB)

    Mohnen, Debra [Univ. of Georgia, Athens, GA (United States)

    2009-08-07

    Plant cell walls are a complex cellular compartment essential for plant growth, development and response to biotic and abiotic stress and a major biological resource for meeting our future bioenergy and natural product needs. The goal of the 2009 Plant Cell Walls Gordon Research Conference is to summarize and critically evaluate the current level of understanding of the structure, synthesis and function of the whole plant extracellular matrix, including the polysaccharides, proteins, lignin and waxes that comprise the wall, and the enzymes and regulatory proteins that drive wall synthesis and modification. Innovative techniques to study how both primary and secondary wall polymers are formed and modified throughout plant growth will be emphasized, including rapid advances taking place in the use of anti-wall antibodies and carbohydrate binding proteins, comparative and evolutionary wall genomics, and the use of mutants and natural variants to understand and identify wall structure-function relationships. Discussions of essential research advances needed to push the field forward toward a systems biology approach will be highlighted. The meeting will include a commemorative lecture in honor of the career and accomplishments of the late Emeritus Professor Bruce A. Stone, a pioneer in wall research who contributed over 40 years of outstanding studies on plant cell wall structure, function, synthesis and remodeling including emphasis on plant cell wall beta-glucans and arabinogalactans. The dwindling supply of fossil fuels will not suffice to meet our future energy and industrial product needs. Plant biomass is the renewable resource that will fill a large part of the void left by vanishing fossil fuels. It is therefore critical that basic research scientists interact closely with industrial researchers to critically evaluate the current state of knowledge regarding how plant biomass, which is largely plant cell walls, is synthesized and utilized by the plant. A final

  14. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  15. Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance[W

    Science.gov (United States)

    Hernández-Blanco, Camilo; Feng, Dong Xin; Hu, Jian; Sánchez-Vallet, Andrea; Deslandes, Laurent; Llorente, Francisco; Berrocal-Lobo, Marta; Keller, Harald; Barlet, Xavier; Sánchez-Rodríguez, Clara; Anderson, Lisa K.; Somerville, Shauna; Marco, Yves; Molina, Antonio

    2007-01-01

    Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane–localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW–RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)–responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens. PMID:17351116

  16. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  17. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  18. Examining an underappreciated control on lignin decomposition in soils? Effects of reactive manganese species on intact plant cell walls

    Science.gov (United States)

    Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.

    2011-12-01

    Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.

  19. Chapter 3 Cell Wall Chemistry

    Science.gov (United States)

    Roger M. Rowell; Roger Pettersen; Mandla A. Tshabalala

    2012-01-01

    Wood is best defined as a three-dimensional biopolymer composite composed of an interconnected network of cellulose, hemicelluloses and lignin with minor amounts of extractives, and inorganics. The major chemical component of a living tree is water, but on a dry weight basis, all wood cell walls consist mainly of sugar-based polymers (carbohydrates, 65-75%) that are...

  20. Histochemical effects of γ radiation on soft fruit cell walls

    International Nuclear Information System (INIS)

    Foa, E.; Jona, R.; Vallania, R.

    1980-01-01

    Irradiation effects in peaches, tomatoes, cherries and grapes on the composition of cell wall polysaccharides were investigated by histochemical techniques. Cell wall polysaccharides, separated by a modified Jensen's method were pectins, hemicellulose, non-cellulosic polysaccharides and cellulose. The extinction values of Periodic Acid Schiff stained tissues was measured by microscopical photometry. Irradiation induced highly significant changes in polysaccharide composition of mesocarp cell walls; these changes were found to be a function of time of irradiation after harvest and of the species tested. A general influence on polysaccharide molecules was not found. Variations produced by irradiation are postulated to be an interference with a regulatory system rather than a breakdown of a functional molecule (metabolic enzyme or polysaccharide. (author)

  1. Fungal myositis in children: serial ultrasonographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jung Hwa; Lee, Hee Jung; Choi, Jin Soo [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2003-08-01

    To evaluate serial ultrasonographic findings of fungal myositis in children. Eleven lesions caused by fungal myositis and occurring in six children were included in this study. Eight lesions in five children were histopathologically proven and the other three were clinically diagnosed. Serial ultrasonographic findings were retrospectively evaluated in terms of size, location, margin, internal echotexture and adjacent cortical change occurring during the follow-up period ranging from five days to two months. Three patients (50%) had multiple lesions. The sites of involvment were the thigh (n=4), calf (n=3), chest wall (n=2), abdominal wall (n=1) and forearm (n=1). Initially, diffuse muscular swelling was revealed, with ill-defined hypoechoic lesions confined to the muscle layer (n=8). Follow-up examination of eight lesions over a period of 5-10 days showed that round central echogenic lesions were surrounded by previous slightly echogenic lesions (n=6, 75%). Long-term follow-up of five lesions over a two-month period revealed periosteal thickening in one case (20%), and the peristence of echogenic solid nodules in four (80%). Pathologic examination showed that the central lesions correlated with a fungus ball and the peripheral slightly echogenic lesions corresponded to hematoma and necrosis. Serial ultrasonographic findings of fungal myositis in children revealed relatively constant features in each case. In particular, the findings of muscular necrosis and a fungus ball over a period of 5-14 days were thought to be characteristic.

  2. Fungal myositis in children: serial ultrasonographic findings

    International Nuclear Information System (INIS)

    Kwon, Jung Hwa; Lee, Hee Jung; Choi, Jin Soo

    2003-01-01

    To evaluate serial ultrasonographic findings of fungal myositis in children. Eleven lesions caused by fungal myositis and occurring in six children were included in this study. Eight lesions in five children were histopathologically proven and the other three were clinically diagnosed. Serial ultrasonographic findings were retrospectively evaluated in terms of size, location, margin, internal echotexture and adjacent cortical change occurring during the follow-up period ranging from five days to two months. Three patients (50%) had multiple lesions. The sites of involvment were the thigh (n=4), calf (n=3), chest wall (n=2), abdominal wall (n=1) and forearm (n=1). Initially, diffuse muscular swelling was revealed, with ill-defined hypoechoic lesions confined to the muscle layer (n=8). Follow-up examination of eight lesions over a period of 5-10 days showed that round central echogenic lesions were surrounded by previous slightly echogenic lesions (n=6, 75%). Long-term follow-up of five lesions over a two-month period revealed periosteal thickening in one case (20%), and the peristence of echogenic solid nodules in four (80%). Pathologic examination showed that the central lesions correlated with a fungus ball and the peripheral slightly echogenic lesions corresponded to hematoma and necrosis. Serial ultrasonographic findings of fungal myositis in children revealed relatively constant features in each case. In particular, the findings of muscular necrosis and a fungus ball over a period of 5-14 days were thought to be characteristic

  3. Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa.

    Science.gov (United States)

    Bowman, Shaun M; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J

    2006-03-01

    Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.

  4. Comprehensive evaluation of Streptococcus sanguinis cell wall-anchored proteins in early infective endocarditis.

    Science.gov (United States)

    Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L; Wu, Hui; Kitten, Todd

    2009-11-01

    Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified-a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (approximately 2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention.

  5. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Immersion Refractometry of Isolated Bacterial Cell Walls

    Science.gov (United States)

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  7. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    International Nuclear Information System (INIS)

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C.

    1991-01-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H 2 O 2 by the cells. To test the hypothesis that this synthesis involves reduction of O 2 at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 μg solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m 2 ) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m 2 ) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction

  8. Targeted and non-targeted effects in cell wall polysaccharides from transgenetically modified potato tubers

    NARCIS (Netherlands)

    Huang, J.H.

    2016-01-01

    The plant cell wall is a chemically complex network composed mainly of polysaccharides. Cell wall polysaccharides surround and protect plant cells and are responsible for the stability and rigidity of plant tissue. Pectin is a major component of primary cell wall and the middle lamella of plants.

  9. Identification of polysaccharide hydrolases involved in autolytic degradation of Zea cell walls

    International Nuclear Information System (INIS)

    Nock, L.P.; Smith, C.J.

    1987-01-01

    Cell walls of Zea mays (cv L.G.11) seedlings labeled with 14 C were treated with α-amylase from Bacillus subtilis to remove starch and mixed linkage glucans. These walls released arabinose, xylose, galactose, and galacturonic acid in addition to glucose when they were allowed to autolyze. Methylation analysis was performed on samples of wall which had been incubated autolytically and the results indicated that degradation of the major polymer of the wall, the glucoarabinoxylan, had occurred. A number of glycanases could be dissociated from the wall by use of 3 M LiCL. The proteins which were released were found to contain a number of exoglycosidase activities in addition to being effective in degrading the polysaccharide substrates, araban, xylan, galactan, laminarin, mannan, and polygalacturonic acid. The effects of these enzymes on the wall during autolysis appear to result from endo-activity in addition to exo-activity. The structural changes that occurred in the cell walls during autolysis were found to be related to the changes previously found to occur in cell walls during auxin induced extension

  10. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  11. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  12. Turnover of galactans and other cell wall polysaccharides during development of flax plants

    International Nuclear Information System (INIS)

    Gorshkova, T.A.; Chemikosova, S.B.; Lozovaya, V.V.; Carpita, N.C.

    1997-01-01

    We investigated the synthesis and turnover of cell wall polysaccharides of the flax (Linum usitatissimum L.) plant during development of the phloem fibers. One-month-old flax plants were exposed to a 40-min pulse with 14CO2 followed by 8-h, 24-h, and 1-month periods of chase with ambient CO2, and radioactivity in cell wall sugars was determined in various plant parts. The relative radioactivity of glucose in noncellulosic polysaccharides was the highest compared with all other cell wall sugars immediately after the pulse and decreased substantially during the subsequent chase. The relative radioactivities of the other cell wall sugars changed with differing rates, indicating turnover of specific polysaccharides. Notably, after 1 month of chase there was a marked decrease in the proportional mass and total radioactivity in cell wall galactose, indicating a long-term turnover of the galactans enriched in the fiber-containing tissues. The ratio of radiolabeled xylose to arabinose also increased during the chase, indicating a turnover of arabinose-containing polymers and interconversion to xylose. The pattern of label redistribution differed between organs, indicating that the cell wall turnover processes are tissue- and cell-specific

  13. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    Science.gov (United States)

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  14. Global Insight into Lysine Acetylation Events and Their Links to Biological Aspects in Beauveria bassiana, a Fungal Insect Pathogen

    Science.gov (United States)

    Wang, Zhi-Kang; Cai, Qing; Liu, Jin; Ying, Sheng-Hua; Feng, Ming-Guang

    2017-01-01

    Lysine acetylation (Kac) events in filamentous fungi are poorly explored. Here we show a lysine acetylome generated by LC-MS/MS analysis of immunoaffinity-based Kac peptides from normal hyphal cells of Beauveria bassiana, a fungal entomopathogen. The acetylome comprised 283 Kac proteins and 464 Kac sites. These proteins were enriched to eight molecular functions, 20 cellular components, 27 biological processes, 20 KEGG pathways and 12 subcellular localizations. All Kac sites were characterized as six Kac motifs, including a novel motif (KacW) for 26 Kac sites of 17 unknown proteins. Many Kac sites were predicted to be multifunctional, largely expanding the fungal Kac events. Biological importance of identified Kac sites was confirmed through functional analysis of Kac sites on Pmt1 and Pmt4, two O-mannosyltransferases. Singular site mutations (K88R and K482R) of Pmt1 resulted in impaired conidiation, attenuated virulence and decreased tolerance to oxidation and cell wall perturbation. These defects were close to or more severe than those caused by the deletion of pmt1. The Pmt4 K360R mutation facilitated colony growth under normal and stressful conditions and enhanced the fungal virulence. Our findings provide the first insight into the Kac events of B. bassiana and their links to the fungal potential against insect pests. PMID:28295016

  15. Cell wall composition throughout development for the model grass Brachypodium distanchyon

    Directory of Open Access Journals (Sweden)

    David eRancour

    2012-12-01

    Full Text Available Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distanchyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corroborate genetic predictions, we determined the chemical composition profiles of organ-specific cell walls throughout the development of two common diploid accessions of Brachypodium distanchyon, Bd21-3 and Bd21. Chemical analysis was performed on cell walls isolated from distinct organs (i.e. leaves, sheaths, stems and roots at three developmental stages of 1 12-day seedling, 2 vegetative-to-reproductive transition, and 3 mature seed-fill. In addition, we have included cell wall analysis of embryonic callus used for genetic transformations. Composition of cell walls based on components lignin, hydroxycinnamates, uronosyls, neutral sugars, and protein suggests that Brachypodium distanchyon is similar chemically to agriculturally important forage grasses. There were modest compositional differences in hydroxycinnamate profiles between accessions Bd21-3 and Bd21. In addition, when compared to agronomical important C3 grasses, more mature Brachypodium stem cell walls have a relative increase in glucose of 48% and a decrease in lignin of 36%. Though differences exists between Brachypodium and agronomical important C3 grasses, Brachypodium distanchyon should be still a useful model system for genetic manipulation of cell wall composition to determine the impact upon functional characteristics such as rumen digestibility or energy conversion efficiency for bioenergy production.

  16. Cell wall composition throughout development for the model grass Brachypodium distachyon

    Science.gov (United States)

    Rancour, David M.; Marita, Jane M.; Hatfield, Ronald D.

    2012-01-01

    Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distachyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corroborate genetic predictions, we determined the chemical composition profiles of organ-specific cell walls throughout the development of two common diploid accessions of Brachypodium distachyon, Bd21-3 and Bd21. Chemical analysis was performed on cell walls isolated from distinct organs (i.e., leaves, sheaths, stems, and roots) at three developmental stages of (1) 12-day seedling, (2) vegetative-to-reproductive transition, and (3) mature seed fill. In addition, we have included cell wall analysis of embryonic callus used for genetic transformations. Composition of cell walls based on components lignin, hydroxycinnamates, uronosyls, neutral sugars, and protein suggests that Brachypodium distachyon is similar chemically to agriculturally important forage grasses. There were modest compositional differences in hydroxycinnamate profiles between accessions Bd21-3 and Bd21. In addition, when compared to agronomical important C3 grasses, more mature Brachypodium stem cell walls have a relative increase in glucose of 48% and a decrease in lignin of 36%. Though differences exist between Brachypodium and agronomical important C3 grasses, Brachypodium distachyon should be still a useful model system for genetic manipulation of cell wall composition to determine the impact upon functional characteristics such as rumen digestibility or energy conversion efficiency for bioenergy production. PMID:23227028

  17. LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-γ Production by Repressing β-Catenin Activation in Dendritic Cells

    Science.gov (United States)

    Orr, Selinda J.; Burg, Ashley R.; Chan, Tim; Quigley, Laura; Jones, Gareth W.; Ford, Jill W.; Hodge, Deborah; Razzook, Catherine; Sarhan, Joseph; Jones, Yava L.; Whittaker, Gillian C.; Boelte, Kimberly C.; Lyakh, Lyudmila; Cardone, Marco; O'Connor, Geraldine M.; Tan, Cuiyan; Li, Hongchuan; Anderson, Stephen K.; Jones, Simon A.; Zhang, Weiguo; Taylor, Philip R.; Trinchieri, Giorgio; McVicar, Daniel W.

    2013-01-01

    Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we demonstrate that LAB is involved in anti-fungal immunity. We show that Lat2 −/− mice are more susceptible to C. albicans infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear β-catenin levels. This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12 and IL-23 production was blunted in Lat2−/− DCs. Accordingly, Lat2−/− DCs directed reduced Th1 polarization in vitro and Lat2 −/− mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-γ production in vivo/ex vivo. Thus our data define a novel link between LAB and β-catenin nuclear accumulation in DCs that facilitates IFN-γ responses during anti-fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family cytokines and an IFN-γ response for pathogen clearance. PMID:23675302

  18. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  19. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity.

    Science.gov (United States)

    de Castro, María; Miller, Janice G; Acebes, José Luis; Encina, Antonio; García-Angulo, Penélope; Fry, Stephen C

    2015-04-01

    Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [(3)H]arabinose, and traced the distribution of (3)H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [(3)H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [(3)H]xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of (3)H-hemicelluloses ([(3)H]xylans and [(3)H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls' cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells' reduced capacity to integrate arabinoxylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly. © 2015 Institute of Botany, Chinese Academy of Sciences.

  1. Ethanol yields and cell wall properties in divergently bred switchgrass genotypes

    Science.gov (United States)

    Genetic modification of herbaceous plant cell walls to increase biofuels yields from harvested biomass is a primary bioenergy research goal. The focus of much of this research has been on cell wall lignin concentration. Using switchgrass genotypes developed by divergent breeding for ruminant diges...

  2. On the robustness of the geometrical model for cell wall deposition

    NARCIS (Netherlands)

    Diotallevi, F.; Mulder, B.M.; Grasman, J.

    2010-01-01

    All plant cells are provided with the necessary rigidity to withstand the turgor by an exterior cell wall. This wall is composed of long crystalline cellulose microfibrils embedded in a matrix of other polysaccharides. The cellulose microfibrils are deposited by mobile membrane bound protein

  3. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  4. Cell wall changes during the formation of aerenchyma in sugarcane roots.

    Science.gov (United States)

    Leite, D C C; Grandis, A; Tavares, E Q P; Piovezani, A R; Pattathil, S; Avci, U; Rossini, A; Cambler, A; De Souza, A P; Hahn, M G; Buckeridge, M S

    2017-11-10

    Aerenchyma develops in different plant organs and leads to the formation of intercellular spaces that can be used by the plant to transport volatile substances. Little is known about the role of cell walls in this process, although the mechanism of aerenchyma formation is known to involve programmed cell death and some cell wall modifications. We assessed the role that cell wall-related mechanisms might play in the formation of aerenchyma in sugarcane roots. Sections of roots (5 cm) were subjected to microtomography analysis. These roots were divided into 1-cm segments and subjected to cell wall fractionation. We performed analyses of monosaccharides, oligosaccharides and lignin and glycome profiling. Sections were visualized by immunofluorescence and immunogold labelling using selected monoclonal antibodies against polysaccharide epitopes according to the glycome profiles. During aerenchyma formation, gas spaces occupied up to 40 % of the cortex cross-section within the first 5 cm of the root. As some of the cortex cells underwent dissolution of the middle lamellae, leading to cell separation, cell expansion took place along with cell death. Mixed-linkage β-glucan was degraded along with some homogalacturonan and galactan, culminating in the formation of cell wall composites made of xyloglucan, arabinoxylans, cellulose and possibly lignin. The composites formed seem to play a role in the physical-chemical properties of the gas chambers, providing mechanical resistance to forces acting upon the root and at the same time decreasing permeability to gases. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Harholt, Jesper; Ulvskov, Peter

    2014-01-01

    in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS: Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs...... to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non......-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs...

  6. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    Science.gov (United States)

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  7. Dual Roles of FmtA in Staphylococcus aureus Cell Wall Biosynthesis and Autolysis

    Science.gov (United States)

    Qamar, Aneela

    2012-01-01

    The fmtA gene is a member of the Staphylococcus aureus core cell wall stimulon. The FmtA protein interacts with β-lactams through formation of covalent species. Here, we show that FmtA has weak d-Ala-d-Ala-carboxypeptidase activity and is capable of covalently incorporating C14-Gly into cell walls. The fluorescence microscopy study showed that the protein is localized to the cell division septum. Furthermore, we show that wall teichoic acids interact specifically with FmtA and mediate recruitment of FmtA to the S. aureus cell wall. Subjection of S. aureus to FmtA concentrations of 0.1 μM or less induces autolysis and biofilm production. This effect requires the presence of wall teichoic acids. At FmtA concentrations greater than 0.2 μM, autolysis and biofilm formation in S. aureus are repressed and growth is enhanced. Our findings indicate dual roles of FmtA in S. aureus growth, whereby at low concentrations, FmtA may modulate the activity of the major autolysin (AtlA) of S. aureus and, at high concentrations, may participate in synthesis of cell wall peptidoglycan. These two roles of FmtA may reflect dual functions of FmtA in the absence and presence of cell wall stress, respectively. PMID:22564846

  8. Binding of paraquat to cell walls of paraquat resistant and susceptible biotypes of Hordeum glaucum

    International Nuclear Information System (INIS)

    Alizadeh, H.M.; Preston, C.; Powles, S.B.

    1997-01-01

    Full text: Paraquat is a widely used, non-selective, light activated contact herbicide acting as a photosystem electron acceptor. Resistance to paraquat in weed species has occurred in Australia and world-wide following extensive use of this herbicide. The mechanism of resistance to paraquat in 'Hordeum glaucum' is correlated with reduced herbicide translocation and may be due to sequestration of herbicide away from its site of action by either binding to cell walls or other means. We measured paraquat binding to a cell wall fraction in resistant and susceptible biotypes of H. glaucum to determine whether differences in binding of paraquat to cell walls could explain herbicide resistance. The cell wall fraction was isolated from leaves of resistant and susceptible biotypes and incubated with 14 C-labelled paraquat. Of the total paraquat - absorbed by a cell wall preparation, about 80% remains strongly bind to the cell wall and doesn't readily exchange with solution in the absence of divalent cations. Divalent cations (Ca 2+ ,putrescine and paraquat) can competitively exchange for paraquat tightly bound to the cell wall. From kinetic experiments it seems that there are two types of binding sites in the cell wall with different affinities for paraquat. No significant differences between cell wall, characteristics of resistant and susceptible biotypes of H. glaucum have been found in any of our experiments. Therefore, increased binding of paraquat to the cell wall appears not to be a mechanism for exclusion of paraquat in resistant biotype

  9. Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in Fungal Keratitis.

    Science.gov (United States)

    Xie, Yanting; Zhang, Hongmin; Liu, Susu; Chen, Guoming; He, Siyu; Li, Zhijie; Wang, Liya

    2018-05-30

    The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.

  10. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard

    2015-01-01

    organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion...... have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying......The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise...

  11. Secondary cell wall formation in Cryptococcus neoformans as a rescue mechanism against acid-induced autolysis.

    Science.gov (United States)

    Farkas, Vladimír; Takeo, Kanji; Maceková, Danka; Ohkusu, Misako; Yoshida, Soichi; Sipiczki, Matthias

    2009-03-01

    Growth of the opportunistic yeast pathogen Cryptococcus neoformans in a synthetic medium containing yeast nitrogen base and 1.0-3.0% glucose is accompanied by spontaneous acidification of the medium, with its pH decreasing from the initial 5.5 to around 2.5 in the stationary phase. During the transition from the late exponential to the stationary phase of growth, many cells died as a consequence of autolytic erosion of their cell walls. Simultaneously, there was an increase in an ecto-glucanase active towards beta-1,3-glucan and having a pH optimum between pH 3.0 and 3.5. As a response to cell wall degradation, some cells developed an unusual survival strategy by forming 'secondary' cell walls underneath the original ones. Electron microscopy revealed that the secondary cell walls were thicker than the primary ones, exposing bundles of polysaccharide microfibrils only partially masked by an amorphous cell wall matrix on their surfaces. The cells bearing secondary cell walls had a three to five times higher content of the alkali-insoluble cell wall polysaccharides glucan and chitin, and their chitin/glucan ratio was about twofold higher than in cells from the logarithmic phase of growth. The cell lysis and the formation of the secondary cell walls could be suppressed by buffering the growth medium between pH 4.5 and 6.5.

  12. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  13. Fungal Community and Ligninolytic Enzyme Activities in Quercus deserticola Trel. Litter from Forest Fragments with Increasing Levels of Disturbance

    Directory of Open Access Journals (Sweden)

    Jesús A. Rosales-Castillo

    2017-12-01

    Full Text Available Litter fungal communities and their ligninolytic enzyme activities (laccase, Mn-peroxidase, and lignin-peroxidase play a vital role in forest biogeochemical cycles by breaking down plant cell wall polymers, including recalcitrant lignin. However, litter fungal communities and ligninolytic enzyme activities have rarely been studied in Neotropical, non-coniferous forests. Here, we found no significant differences in litter ligninolytic enzyme activities from well preserved, moderately disturbed, and heavily disturbed Quercus deserticola Trel. forests in central Mexico. However, we did find seasonal effects on enzyme activities: during the dry season, we observed lower laccase, and increased Mn-peroxidase and lignin-peroxidase activities, and in the rainy season, Mn-peroxidase and lignin-peroxidase activities were lower, while laccase activity peaked. Fungal diversity (Shannon-Weaver and Simpson indices based on ITS-rDNA analyses decreased with increased disturbance, and principal component analysis showed that litter fungal communities are structured differently between forest types. White-rot Polyporales and Auriculariales only occurred in the well preserved forest, and a high number of Ascomycota were shared between forests. While the degree of forest disturbance significantly affected the litter fungal community structure, the ligninolytic enzyme activities remained unaffected, suggesting functional redundancy and a possible role of generalist Ascomycota taxa in litter delignification. Forest conservation and restoration strategies must account for leaf litter and its associated fungal community.

  14. Structure of the cell wall of mango after application of ionizing radiation

    Science.gov (United States)

    Silva, Josenilda M.; Villar, Heldio P.; Pimentel, Rejane M. M.

    2012-11-01

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane.

  15. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief (Marie-José); I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of

  16. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  17. Towards a molecular understanding of symbiont function: Identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Lange Lene

    2008-02-01

    Full Text Available Abstract Background Leaf-cutting ants live in symbiosis with a fungus that they rear for food by providing it with live plant material. Until recently the fungus' main inferred function was to make otherwise inaccessible cell wall degradation products available to the ants, but new studies have shed doubt on this idea. To provide evidence for the cell wall degrading capacity of the attine ant symbiont, we designed PCR primers from conserved regions of known xylanase genes, to be used in PCR with genomic DNA from the symbiont as template. We also measured xylanase, cellulase and proteinase activities in the fungus gardens in order to investigate the dynamics of degradation activities. Results We cloned a xylanase gene from the mutualistic fungus of Acromyrmex echinatior, determined its protein sequence, and inserted it in a yeast expression vector to confirm its substrate specificity. Our results show that the fungus has a functional xylanase gene. We also show by lab experiments in vivo that the activity of fungal xylanase and cellulase is not evenly distributed, but concentrated in the lower layer of fungus gardens, with only modest activity in the middle layer where gongylidia are produced and intermediate activity in the newly established top layer. This vertical distribution appears to be negatively correlated with the concentration of glucose, which indicates a directly regulating role of glucose, as has been found in other fungi and has been previously suggested for the ant fungal symbiont. Conclusion The mutualistic fungus of Acromyrmex echinatior has a functional xylanase gene and is thus presumably able to at least partially degrade the cell walls of leaves. This finding supports a saprotrophic origin of the fungal symbiont. The observed distribution of enzyme activity leads us to propose that leaf-substrate degradation in fungus gardens is a multi-step process comparable to normal biodegradation of organic matter in soil ecosystems

  18. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    Science.gov (United States)

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule

  19. Plant Physiology: FERONIA Defends the Cell Walls against Corrosion.

    Science.gov (United States)

    Verger, Stéphane; Hamant, Olivier

    2018-03-05

    A new study uncovers the role of wall sensing and remodeling in the plant response to salt stress, identifying the FERONIA receptor kinase as a key player in that process, likely through direct sensing of cell wall pectins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Host-Pathogen Interactions: I. A Correlation Between α-Galactosidase Production and Virulence 1

    Science.gov (United States)

    English, Patricia D.; Albersheim, Peter

    1969-01-01

    Resistance or susceptibility of Red Kidney, Pinto and Small White beans (Phaseolus vulgaris) to the alpha, beta, and gamma strains of Colletotrichum lindemuthianum was either confirmed or established. These fungal strains secrete α-galactosidase, β-galactosidase and β-xylosidase when grown on cell walls isolated from the hypocotyls of any of the above bean varieties. These enzymes effectively degrade cell walls isolated from susceptible 5-day old hypocotyls but degrade only slightly the walls isolated from resistant 18-day old hypocotyls. The amounts of the β-galactosidase and β-xylosidase secreted by the 3 fungal strains are relatively low and are approximately equivalent. The secretion of these 2 enzymes is not dependent upon the bean variety from which the hypocotyl cell walls used as a carbon source were isolated. However, the fungal strains secrete greater amounts of α-galactosidase when grown on hypocotyl cell walls isolated from susceptible plants than when grown on walls from resistant plants. Virulent isolates of the fungus, when grown on hypocotyl cell walls isolated from a susceptible plant, secrete more α-galactosidase than do attenuated (avirulent) isolates of the same fungal strain grown under the same conditions. The α-galactosidase secreted by each of the fungal strains is capable of removing galactose from the hypocotyl cell walls of each bean variety tested. Galactose is removed from the cell walls of each variety at the same rate regardless of whether the cell walls were isolated from a susceptible or resistant plant. PMID:16657049

  1. Genome-Wide Association Mapping for Cell Wall Composition and Properties in Temperate Grasses

    DEFF Research Database (Denmark)

    Bellucci, Andrea

    with a wide range of chemical bounds. At present the interest in plant cell wall is growing due to the possibility to convert ligno-cellulosic biomass (e.g. agricultural residues) into bioethanol but also for the benefits to human health of some cell wall constituents found in cereals, in particular beta......-glucans. Plant cell wall biosynthesis is regulated by a large number of genes and regulatory factors but very few of these are known and characterized. This PhD project aimed to the identification of putative candidate genes involved in plant cell wall composition and properties using a genome wide (GWAS......) approach. The species investigate were wheat, barley and B. distachyon, considered a model plant for temperate cereals. Agronomical traits as yield and plant height were also included in the analysis along with cell wall composition and saccharification properties. Several marker-trait associations were...

  2. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  3. The best time of cytotoxicity for extracted cell wall from Lactobacillus casei and paracasei in K562 cell line

    Directory of Open Access Journals (Sweden)

    Riki M

    2013-02-01

    Full Text Available Background: The aim of this study was to evaluate the effect of extracted cell walls from Lactobacillus casei and Lactobacillus paracasei as probiotic bacteria (isolated from common carp intestine on K562 and the role of cell concentration on the results of MTT [3-(4,5-Dimethylthiazol-2-yl2,5- Diphenyl tetrazolium Bromide] test.Methods: For this purpose, bacteria were cultured in specific medium (MRS broth at anaerobic condition for 24-48 hour. After incubation period culture medium was centri-fuged, then the cells were washed twice with PBS buffer to remove additional medium. Finally, collected bacterial cell disrupted by Sonication and cell walls were separated from other components by centrifugation. After that, different concentrations of cell walls (500, 1000, 2000 and 4000 µg/ml were prepared in RPMI medium for each bacteria, separately. Then anticancer properties of the cell walls were determined in vitro at 12, 24, 48 and 72 h, also the effect of K562 concentration was assayed with MTT technique.Results: The results showed extracted cell wall from both probiotic statistically (P=0.098 have anti turmeric properties in K562 and their properties will arise in relation with concentration. As well as, we found that the number of cell had not any affect on the result of MTT assay.Conclusion: We conclude that the cytotoxicity property of extracted cell wall is related in the type of bacteria, but this anticancer property would warrant further study on the clinical application of extracted cell wall.

  4. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    Science.gov (United States)

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  5. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea.

    Directory of Open Access Journals (Sweden)

    Xinping Hao

    Full Text Available Age-related hearing loss (presbycusis is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1-3 month-old and aged (2-2.5 year-old mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10(+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10(+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10(+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10(+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10(+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the

  6. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    Science.gov (United States)

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  7. Glycoprotein of the wall of sycamore tissue-culture cells.

    Science.gov (United States)

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  8. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155

    Directory of Open Access Journals (Sweden)

    De Buck Jeroen

    2010-04-01

    Full Text Available Abstract Background The usually non-pathogenic soil bacterium Mycobacterium smegmatis is commonly used as a model mycobacterial organism because it is fast growing and shares many features with pathogenic mycobacteria. Proteomic studies of M. smegmatis can shed light on mechanisms of mycobacterial growth, complex lipid metabolism, interactions with the bacterial environment and provide a tractable system for antimycobacterial drug development. The cell wall proteins are particularly interesting in this respect. The aim of this study was to construct a reference protein map for these proteins in M. smegmatis. Results A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis and LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. smegmatis. An enzymatic cell surface shaving method was used to determine the surface-exposed proteins. As a result, a total of 390 cell wall proteins and 63 surface-exposed proteins were identified. Further analysis of the 390 cell wall proteins provided the theoretical molecular mass and pI distributions and determined that 26 proteins are shared with the surface-exposed proteome. Detailed information about functional classification, signal peptides and number of transmembrane domains are given next to discussing the identified transcriptional regulators, transport proteins and the proteins involved in lipid metabolism and cell division. Conclusion In short, a comprehensive profile of the M. smegmatis cell wall subproteome is reported. The current research may help the identification of some valuable vaccine and drug target candidates and provide foundation for the future design of preventive, diagnostic, and therapeutic strategies against mycobacterial diseases.

  9. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Shao Ning; Lu Shaoxin; Wickstrom, Eric; Panchapakesan, Balaji

    2007-01-01

    Molecular targeting and photodynamic therapy have shown great potential for selective cancer therapy. We hypothesized that monoclonal antibodies that are specific to the IGF1 receptor and HER2 cell surface antigens could be bound to single wall carbon nanotubes (SWCNT) in order to concentrate SWCNT on breast cancer cells for specific near-infrared phototherapy. SWCNT functionalized with HER2 and IGF1R specific antibodies showed selective attachment to breast cancer cells compared to SWCNT functionalized with non-specific antibodies. After the complexes were attached to specific cancer cells, SWCNT were excited by ∼808 nm infrared photons at ∼800 mW cm -2 for 3 min. Viability after phototherapy was determined by Trypan blue exclusion. Cells incubated with SWCNT/non-specific antibody hybrids were still alive after photo-thermal treatment due to the lack of SWNT binding to the cell membrane. All cancerous cells treated with IGF1R and HER2 specific antibody/SWCNT hybrids and receiving infrared photons showed cell death after the laser excitation. Quantitative analysis demonstrated that all the cells treated with SWCNT/IGF1R and HER2 specific antibody complex were completely destroyed, while more than 80% of the cells with SWCNT/non-specific antibody hybrids remained alive. Following multi-component targeting of IGF1R and HER2 surface receptors, integrated photo-thermal therapy in breast cancer cells led to the complete destruction of cancer cells. Functionalizing SWCNT with antibodies in combination with their intrinsic optical properties can therefore lead to a new class of molecular delivery and cancer therapeutic systems

  10. Single-Walled Carbon Nanotubes in Solar Cells.

    Science.gov (United States)

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  11. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    Science.gov (United States)

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  12. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna

    2014-01-01

    Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity for the proanthocyanidins, one of the commercial tannins being bound up to 61% in the experiment. Comparison of the molecular mass distribution of the commercial enological tannins in solution, before and after fining, suggested that cell walls affinity for proanthocyanidins was more related with the proanthocyanidin molecular mass than with their percentage of galloylation. These interactions may have some enological implications, especially as regards the time of commercial tannins addition to the must/wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    Richmond, P.A.; Metraux, J.P.

    1984-01-01

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  14. Bio-Activity and Dereplication-Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Tanja Thorskov Bladt

    2013-11-01

    Full Text Available The purpose of this study was to identify and characterize fungal natural products (NPs with in vitro bioactivity towards leukemia cells. We based our screening on a combined analytical and bio-guided approach of LC-DAD-HRMS dereplication, explorative solid-phase extraction (E-SPE, and a co-culture platform of CLL and stromal cells. A total of 289 fungal extracts were screened and we tracked the activity to single compounds in seven of the most active extracts. The novel ophiobolin U was isolated together with the known ophiobolins C, H, K as well as 6-epiophiobolins G, K and N from three fungal strains in the Aspergillus section Usti. Ophiobolins A, B, C and K displayed bioactivity towards leukemia cells with induction of apoptosis at nanomolar concentrations. The remaining ophiobolins were mainly inactive or only slightly active at micromolar concentrations. Dereplication of those ophiobolin derivatives possessing different activity in combination with structural analysis allowed a correlation of the chemical structure and conformation with the extent of bioactivity, identifying the hydroxy group at C3 and an aldehyde at C21, as well as the A/B-cis ring structure, as indispensible for the strong activity of the ophiobolins. The known compounds penicillic acid, viridicatumtoxin, calbistrin A, brefeldin A, emestrin A, and neosolaniol monoacetate were identified from the extracts and also found generally cytotoxic.

  15. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    Science.gov (United States)

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A cytochemical and immunocytochemical analysis of the wall labyrinth apparatus in leaf transfer cells in Elodea canadensis.

    Science.gov (United States)

    Ligrone, Roberto; Vaughn, Kevin C; Rascio, Nicoletta

    2011-04-01

    Transfer cells are plant cells specialized in apoplast/symplast transport and characterized by a distinctive wall labyrinth apparatus. The molecular architecture and biochemistry of the labyrinth apparatus are poorly known. The leaf lamina in the aquatic angiosperm Elodea canadensis consists of only two cell layers, with the abaxial cells developing as transfer cells. The present study investigated biochemical properties of wall ingrowths and associated plasmalemma in these cells. Leaves of Elodea were examined by light and electron microscopy and ATPase activity was localized cytochemically. Immunogold electron microscopy was employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. The plasmalemma associated with the wall labyrinth is strongly enriched in light-dependent ATPase activity. The wall ingrowths and an underlying wall layer share an LM11 epitope probably associated with glucuronoarabinoxylan and a CCRC-M7 epitope typically associated with rhamnogalacturonan I. No labelling was observed with LM10, an antibody that recognizes low-substituted and unsubstituted xylan, a polysaccharide consistently associated with secondary cell walls. The JIM5 and JIM7 epitopes, associated with homogalacturonan with different degrees of methylation, appear to be absent in the wall labyrinth but present in the rest of cell walls. The wall labyrinth apparatus of leaf transfer cells in Elodea is a specialized structure with distinctive biochemical properties. The high level of light-dependent ATPase activity in the plasmalemma lining the wall labyrinth is consistent with a formerly suggested role of leaf transfer cells in enhancing inorganic carbon inflow. The wall labyrinth is a part of the primary cell wall. The discovery that the wall ingrowths in Elodea have an antibody-binding pattern divergent, in part, from that of the rest of cell wall suggests that their carbohydrate composition is modulated in relation to transfer

  17. Biosorption and bioaccumulation of thallium by thallium-tolerant fungal isolates.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Xiao, Tangfu; Jia, Yanlong; Ning, Zengping; Sun, Min; Liu, Yizhang; Jiang, Tao

    2015-11-01

    Little is known about the biosorption and bioaccumulation capacity of thallium (Tl) by microorganisms that occur in Tl-polluted soil. The present study focused on characterizing the biosorption and bioaccumulation of Tl by Tl-tolerant fungi isolated from Tl-polluted soils. Preliminary data showed a positive correlation between the biomass and the biosorbed Tl content. The Tl-tolerant strains were capable of bioaccumulating Tl, up to 7189 mg kg(-1) dry weight. The subcellular distribution of Tl showed obvious compartmentalization: cytoplasm ≫ cell wall > organelle. The majority of Tl (up to 79%) was found in the cytoplasm, suggesting that intracellular compartmentalization appeared to be responsible for detoxification. These findings further suggest the applicability of the fungal isolates for cleanup of Tl in Tl-polluted water and soil.

  18. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    Science.gov (United States)

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  19. MECHANISM OF ACTION OF ANTIBIOTICS WHICH INHIBIT SYNTHESIS OF BACTERIAL CELL WALL

    Directory of Open Access Journals (Sweden)

    Indira Mujezinović

    2013-03-01

    Full Text Available Bacterial cell possess a cell wall, which is a main difference from mammalian cells. Its basic function is to provide the strength of bacteria, keeps its shape and provides an unusually high internal osmotic pressure. Synthesis of (construction of bacterial cell wall occurs in at least three phases. All of these three phases can be influence by a variety of antibiotics in way to inhibit its synthesis. The most important drugs that act in this manner are ß-lactam antibiotics (penicillins, cephalosporins, cephamycins and other ß-lactams. They interfere with the synthesis of the bacterial cell wall peptidoglycan. After attachment to penicillin binding proteins (PBP on bacteria, they inhibit the transpeptidation enzyme that cross-links the peptide chain attached to the backbone of the peptidoglycan. The final bactericidal event is the inactivation of an inhibitor of autolytic enzymes in the cell wall, wich leads to lysis of the bacteria. Vancomycin inhibits the release of the building block unit from the carrier, thus preventing its addition to the growing end of the peptidoglycan. Cycloserine, which is a structural analogue of D-alanine, prevents the addition of the two terminal alanine residue to the initial tripeptide side-chain on N-acetylmuramic acid by competitive inhibition. Bacitracin interferes with the regeneration of the lipid carrier by blocking its dephosphorylation. Key words: bacterial cell wall, paptidoglycan, antibiotics, ß-lactams

  20. Heater Choice, Dampness and Mould Growth in 26 New Zealand Homes: A Study of Propensity for Mould Growth Using Encapsulated Fungal Spores

    Directory of Open Access Journals (Sweden)

    Mikael Boulic

    2015-02-01

    Full Text Available The relationship between the use of unflued gas heaters (UGH, N = 14 and heat pump heaters (HP, N = 12 located in the living rooms, and mould growth on the living room and bedroom walls, of 26 New Zealand (NZ occupied homes was investigated during winter. Two methods were employed to evaluate the potential of mould growth on walls: (i measurement of daily hyphal growth rate using a fungal detector (encapsulated fungal spores; and (ii estimation of fungal contamination based on a four level scale visual inspection. The average wall psychrometric conditions were significantly different between the two heater type groups, in both the living rooms and the bedrooms with the UGH user homes being colder and damper than HP user homes. The UGHs were found to be a significant additional source of moisture in the living rooms which dramatically increased the capacity for fungi to grow on wall surfaces. The average daily hyphal growth rates were 4 and 16 times higher in the living rooms and in the bedrooms of the UGH user homes, respectively. Results from both mould detection methods gave good agreement, showing that the use of a fungal detector was an efficient method to predict the potential of mould growth on the inside of the external walls in NZ homes.