Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions
International Nuclear Information System (INIS)
Citro, R; Palo, S De; Orignac, E; Pedri, P; Chiofalo, M-L
2008-01-01
Ultracold bosonic and fermionic quantum gases confined to quasi-one-dimensional (1D) geometry are promising candidates for probing fundamental concepts of Luttinger liquid (LL) physics. They can also be exploited for devising applications in quantum information processing and precision measurements. Here, we focus on 1D dipolar Bose gases, where evidence of super-strong coupling behavior has been demonstrated by analyzing the low-energy static and dynamical structures of the fluid at zero temperature by a combined reptation quantum Monte Carlo (RQMC) and bosonization approach. Fingerprints of LL behavior emerge in the whole crossover from the already strongly interacting Tonks-Girardeau at low density to a dipolar density wave regime at high density. We have also shown that a LL framework can be effectively set up and utilized to describe this strongly correlated crossover physics in the case of confined 1D geometries after using the results for the homogeneous system in LL hydrodynamic equations within a local density approximation. This leads to the prediction of observable quantities such as the frequencies of the collective modes of the trapped dipolar gas under the more realistic conditions that could be found in ongoing experiments. The present paper provides a description of the theoretical framework in which the above results have been worked out, making available all the detailed derivations of the hydrodynamic Luttinger equations for the inhomogeneous trapped gas and of the correlation functions for the homogeneous system
Dipolar quantum gases of erbium
International Nuclear Information System (INIS)
Frisch, A.
2014-01-01
Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures
Dipolar modulation of Large-Scale Structure
Yoon, Mijin
For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.
Exact solutions for chemical bond orientations from residual dipolar couplings
International Nuclear Information System (INIS)
Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.
2002-01-01
New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd
Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere
Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.
2017-12-01
Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.
International Nuclear Information System (INIS)
Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.
2013-01-01
We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers
Dipolar and spinor bosonic systems
Yukalov, V. I.
2018-05-01
The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.
Thermodynamics of Dipolar Chain Systems
DEFF Research Database (Denmark)
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....
Dipolarization Fronts from Reconnection Onset
Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.
2012-12-01
Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.
Designing Hysteresis with Dipolar Chains
Concha, Andrés; Aguayo, David; Mellado, Paula
2018-04-01
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Independent EEG sources are dipolar.
Directory of Open Access Journals (Sweden)
Arnaud Delorme
Full Text Available Independent component analysis (ICA and blind source separation (BSS methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA; best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison.
Thermodynamics of Dipolar Chain Systems
International Nuclear Information System (INIS)
Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S.
2013-01-01
The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments. (author)
Evaluation of magnetic dipolar terms in molecules
International Nuclear Information System (INIS)
Muniz, R.B.; Brandi, H.S.; Maffeo, B.
1977-01-01
The magnetic dipolar parameter b for several values of the internuclear distance in the molecule F 2 - is evaluated. The difficulties appearing in the calculations are discussed and a manner to overcome them is presented [pt
Imaging using long range dipolar field effects
International Nuclear Information System (INIS)
Gutteridge, Sarah
2002-01-01
The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)
Longitudinal expansion of field line dipolarization
Saka, O.; Hayashi, K.
2017-11-01
We examine the substorm expansions that started at 1155 UT 10 August 1994 in the midnight sector focusing on the longitudinal (eastward) expansion of field line dipolarization in the auroral zone. Eastward expansion of the dipolarization region was observed in all of the H, D, and Z components. The dipolarization that started at 1155 UT (0027 MLT) from 260° of geomagnetic longitude (CMO) expanded to 351°(PBQ) in about 48 min. The expansion velocity was 0.03-0.04°/s, or 1.9 km/s at 62°N of geomagnetic latitude. The dipolarization region expanding to the east was accompanied by a bipolar event at the leading edge of the expansion in latitudes equatorward of the westward electrojet (WEJ). In the midnight sector at the onset meridian, the Magnetospheric Plasma Analyzer (MAP) on board geosynchronous satellite L9 measured electrons and ions between 10 eV and 40 keV. We conclude from the satellite observations that this dipolarization was characterized by the evolution of temperature anisotropies, an increase of the electron and ion temperatures, and a rapid change in the symmetry axis of the temperature tensor. The field line dipolarization and its longitudinal expansion were interpreted in terms of the slow MHD mode triggered by the current disruption. We propose a new magnetosphere-ionosphere coupling (MI-coupling) mechanism based on the scenario that transmitted westward electric fields from the magnetosphere in association with expanding dipolarization produced electrostatic potential (negative) in the ionosphere through differences in the mobility of collisional ions and collisionless electrons. The field-aligned currents that emerged from the negative potential region are arranged in a concentric pattern around the negative potential region, upward toward the center and downward on the peripheral.
Dipolar ferromagnets and glasses (invited)
International Nuclear Information System (INIS)
Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.
1991-01-01
What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations
Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices
International Nuclear Information System (INIS)
Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.
2016-01-01
Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.
Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices
Energy Technology Data Exchange (ETDEWEB)
Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)
2016-09-16
Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.
Ultracold Dipolar Gases in Optical Lattices
Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.
2011-01-01
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...
International Nuclear Information System (INIS)
Furman, G.B.; Panich, A.M.; Goren, S.D.
1998-01-01
The phenomena of spin diffusion and spin lattice relaxation of nuclear dipolar order in solids containing paramagnetic impurities (PI) is considered. We show that at the beginning of the relaxation process the diffusion vanishing regime realizes with non-exponential time dependence, R(t) ∼ exp [- (t/T 1d ) α ], where T 1d ∼ C p -1/α , C p is PI's concentration. For a homogeneous distribution of Pis and nuclear spins, α=Q/6, where Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into q-dimensional subsystems, each containing one PI, yield- ing α= (Q + q) /6. This result coincides with experimental data for CaF 2 doped with 0.8 - 10 -3 ωt % of Mn 2+ , where the non-exponential decay of the dipolar signal with α= 0.83 has been observed [3]. Fitting the experimental data yields a good agreement with T 1d = 66 ms . For another independent check of the obtained results we use dependence of the relaxation time on impurities concentration. In accordance that 1/α=1.2 , we have T 1d ∼ C p -1 '. 2 . Exactly this dependence on impurity concentration of the relaxation time has been found in the experiment. Then the relaxation regime starts as a non-exponential time dependent, proceed asymptotically to an to an exponential function of time, to so called diffusion limited relaxation regime with relaxation time T 1d D is inversely depends on impurities concentration. This kind of relaxation behavior of the dipolar order takes place in the experiment [2]. Using experimental results [2] from this two regime we can estimate the diffusion coefficient of the nuclear dipolar order in CaF 2 , which gives for typical values of impurity concentration C p ∼ 10 18 cm 3 the diffusion coefficient of dipolar order in the interval D ∼ 10 -11 -i- 10 -12 cm 2 /sec which is coincide to the case of Zeeman energy spin diffusion
Fundamental ecology is fundamental.
Courchamp, Franck; Dunne, Jennifer A; Le Maho, Yvon; May, Robert M; Thébaud, Christophe; Hochberg, Michael E
2015-01-01
The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Heterogeneous dipolar theory of the exponential pile
International Nuclear Information System (INIS)
Mastrangelo, P.V.
1981-01-01
We present a heterogeneous theory of the exponential pile, closely related to NORDHEIM-SCALETTAR's. It is well adapted to lattice whose pitch is relatively large (D-2O, grahpite) and the dimensions of whose channels are not negligible. The anisotropy of neutron diffusion is taken into account by the introduction of dipolar parameters. We express the contribution of each channel to the total flux in the moderator by means of multipolar coefficients. In order to be able to apply conditions of continuity between the flux and their derivatives, on the side of the moderator, we develop in a Fourier series the fluxes found at the periphery of each channel. Using Wronski's relations of Bessel's functions, we express the multipolar coefficients of the surfaces of each channel, on the side of the moderator, by means of the harmonics of each flux and their derivatives. We retain only monopolar (A 0 sub(g)) and dipolar (A 1 sub(g)) coefficients; those of a higher order are ignored. We deduce from these coefficients the systems of homogeneous equations of the exponential pile with monopoles on their own and monopoles plus dipoles. It should be noted that the systems of homogeneous equations of the critical pile are contained in those of the exponential pile. In another article, we develop the calculation of monopolar and dipolar heterogeneous parameters. (orig.)
Existence of solitary waves in dipolar quantum gases
Antonelli, Paolo; Sparber, Christof
2011-01-01
We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.
Existence of solitary waves in dipolar quantum gases
Antonelli, Paolo
2011-02-01
We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.
Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices
International Nuclear Information System (INIS)
Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.
2011-01-01
Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.
Non-dipolar gauge links for transverse-momentum-dependent pion wave functions
International Nuclear Information System (INIS)
Wang, Y.M.
2016-01-01
I discuss the factorization-compatible definitions of transverse-momentum-dependent (TMD) pion wave functions which are fundamental theory inputs entering QCD factorization formulae for many hard exclusive processes. I will first demonstrate that the soft subtraction factor introduced to remove both rapidity and pinch singularities can be greatly reduced by making the maximal use of the freedom to construct the Wilson-line paths when defining the TMD wave functions. I will then turn to show that the newly proposed TMD definition with non-dipolar Wilson lines is equivalent to the one with dipolar gauge links and with a complicated soft function, to all orders of the perturbative expansion in the strong coupling, as far as the infrared behavior is concerned. (author)
Ultracold chromium: a dipolar quantum gas
International Nuclear Information System (INIS)
Pfau, T.; Stuhler, J.; Griesmaier, A.; Fattori, M.; Koch, T.
2005-01-01
We report on our recent achievement of a Bose-Einstein condensate in a gas of chromium atoms. Peculiar electronic and magnetic properties of chromium require the implementation of novel cooling strategies. We observe up to ∼ 10 5 condensed 52 Cr atoms after forced evaporation within a crossed optical dipole trap. Due to its large magnetic moment (6μ B ), the dipole-dipole interaction strength in chromium is comparable with the one of the van der Waals interaction. We prove the anisotropic nature of the dipolar interaction by releasing the condensate from a cigar shaped trap and observe, in time of flight measurements, the change of the aspect-ratio for different in-trap orientations of the atomic dipoles. We also report on the recent observation of 14 Feshbach resonances in elastic collisions between polarized ultra-cold 52 Cr atoms. This is the first Ballistic expansion of a dipolar quantum gas: The anisotropic interaction leads to a different expansion dynamics for the case of the magnetic dipoles aligned with the symmetry axis of the cigar shaped trap as compared with the dipoles oriented perpendicular to the axis of the cigar. The straight lines correspond to the theoretical expectation according to mean field theory without free parameters. observation of collisional Feshbach resonances in an atomic species with more than one valence electron. Moreover, such resonances constitute an important tool towards the realization of a purely dipolar interacting gas because they can be used to change strength and sign of the van der Waals interaction. (author)
Mechanism and regioselectivity of 1,3-dipolar cycloaddition ...
Indian Academy of Sciences (India)
1,3-Dipolar cycloaddition; sulphur-centred 1,3-dipoles; regioselectivity; DFT reactivity indices;. FMO theory. 1. Introduction. Five-membered heterocyclic compounds can be gene- rated by addition of a 1,3-dipole to a dipolarophile under a 1,3-dipolar cycloaddition (1,3-DC) reaction which is well known as pericyclic reaction.
Critical Time Crystals in Dipolar Systems.
Ho, Wen Wei; Choi, Soonwon; Lukin, Mikhail D; Abanin, Dmitry A
2017-07-07
We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017)NATUAS0028-083610.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.
Cluster and Double Star observations of dipolarization
Directory of Open Access Journals (Sweden)
R. Nakamura
2005-11-01
Full Text Available We studied two types of dipolarization events with different IMF conditions when Cluster and Double Star (TC-1 were located in the same local time sector: 7 August 2004, 18:00-24:00 UT, during a disturbed southward/northward IMF interval, and 14 August 2004, 21:00-24:00 UT, when the IMF was stably northward. Cluster observed dipolarization as well as fast flows during both intervals, but this was not the case for TC-1. For both events the satellites crossed near the conjugate location of the MIRACLE stations. By using multi-point analysis techniques, the direction/speed of the propagation is determined using Cluster and is then compared with the disturbances at TC-1 to discuss its spatial/temporal scale. The propagation direction of the B_{Z} disturbance at Cluster was mainly dawnward with a tailward component for 7 August and with a significant Earthward component for 14 August associated with fast flows. We suggest that the role of the midtail fast flows can be quite different in the dissipation process depending on the condition of the IMF and resultant configuration of the tail.
Perturbation theories for the dipolar fluids
International Nuclear Information System (INIS)
Lee, L.L.; Chung, T.H.
1983-01-01
We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out
International Nuclear Information System (INIS)
Sidebottom, D.L.; Green, P.F.; Brow, R.K.
1997-01-01
We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion σ(ω)∝ω n , where n∼0.67, but frequently the dielectric response is analyzed using the electrical modulus M * (ω)=1/var-epsilon * (ω), where var-epsilon * (ω)=var-epsilon(ω)-iσ(ω)/ω is the complex permittivity. We reexamine two specific examples where the shape of M * (ω) changes in response to changes in (a) temperature and (b) ion concentration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes in the shape of M * (ω) occur in the absence of changes in the scaling properties of σ(ω), for which n remains constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which var-epsilon * (ω) likewise exhibits changes in shape on approach to the glass transition. Guided by similarities of M * (ω) in ionic glasses and var-epsilon * (ω) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon and co-workers for var-epsilon * (ω) of dipolar relaxation also appears valid for M * (ω) in the ionic case. While this suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how the dielectric response can be scaled in a linear manner using an alternative data representation. copyright 1997 The American Physical Society
Dipolar vortex structures in magnetized rotating plasma
International Nuclear Information System (INIS)
Liu Jixing
1990-01-01
Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)
Characterizing Ion Flows Across a Dipolarization Front
Arnold, H.; Drake, J. F.; Swisdak, M.
2017-12-01
In light of the Magnetospheric Multiscale Mission (MMS) moving to study predominately symmetric magnetic reconnection in the Earth's magnetotail, it is of interest to investigate various methods for determining the relative location of the satellites with respect to the x line or a dipolarization front. We use a 2.5 dimensional PIC simulation to explore the dependence of various characteristics of a front, or flux bundle, on the width of the front in the dawn-dusk direction. In particular, we characterize the ion flow in the x-GSM direction across the front. We find a linear relationship between the width of a front, w, and the maximum velocity of the ion flow in the x-GSM direction, Vxi, for small widths: Vxi/VA=w/di*1/2*(mVA2)/Ti*Bz/Bxwhere m, VA, di, Ti, Bz, and Bx are the ion mass, upstream Alfven speed, ion inertial length, ion temperature, and magnetic fields in the z-GSM and x-GSM directions respectively. However, once the width reaches around 5 di, the relationship gradually approaches the well-known theoretical limit for ion flows, the upstream Alfven speed. Furthermore, we note that there is a reversal in the Hall magnetic field near the current sheet on the positive y-GSM side of the front. This reversal is most likely due to conservation of momentum in the y-GSM direction as the ions accelerate towards the x-GSM direction. This indicates that while the ions are primarily energized in the x-GSM direction by the front, they transfer energy to the electromagnetic fields in the y-GSM direction. The former energy transfer is greater than the latter, but the reversal of the Hall magnetic field drags the frozen-in electrons along with it outside of the front. These simulations should better able researchers to determine the relative location of a satellite crossing a dipolarization front.
Asymptotic behavior of local dipolar fields in thin films
Energy Technology Data Exchange (ETDEWEB)
Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)
2016-10-15
A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.
The quantum coherence of disordered dipolar bosonic gas
International Nuclear Information System (INIS)
Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui
2013-01-01
We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)
Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation
Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.
2018-02-01
We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.
Dipolar dark matter with massive bigravity
International Nuclear Information System (INIS)
Blanchet, Luc; Heisenberg, Lavinia
2015-01-01
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model
Jet Dipolarity: Top Tagging with Color Flow
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Jankowiak, Martin; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC
2011-08-12
A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high p{sub T}. The impressive resolution of the ATLAS and CMS detectors means that a typical QCD jet at the LHC deposits energy in {Omicron}(10-100) calorimeter cells. Such fine-grained calorimetry allows for jets to be studied in much greater detail than previously, with sophisticated versions of current techniques making it possible to measure more than just the bulk properties of jets (e.g. event jet multiplicities or jet masses). One goal of the LHC is to employ these techniques to extend the amount of information available from each jet, allowing for a broader probe of the properties of QCD. The past several years have seen significant progress in developing such jet substructure techniques. A number of general purpose tools have been developed, including: (i) top-tagging algorithms designed for use at both lower and higher p{sub T} as well as (ii) jet grooming techniques such as filtering, pruning, and trimming, which are designed to improve jet mass resolution. Jet substructure techniques have also been studied in the context of specific particle searches, where they have been shown to substantially extend the reach of traditional search techniques in a wide variety of scenarios, including for example boosted Higgses, neutral spin-one resonances, searches for supersymmetry, and many others. Despite these many successes, however, there is every reason to expect that there remains room for refinement of jet substructure techniques.
Cluster Observations of Multiple Dipolarization Fronts
Hwang, Kyoung-Joo; Goldstein, Melvyn L.; Lee, Ensang; Pickett, Jolene S.
2011-01-01
We present Cluster observations of a series of dipolarization fronts (DF 1 to 6) at the central current sheet in Earth's magnetotail. The velocities of fast earthward flow following behind each DF 1-3, are comparable to the Alfven velocity, indicating that the flow bursts might have been generated by bursty reconnection that occurred tailward of the spacecraft. Based on multi-spacecraft timing analysis, DF normals are found to propagate mainly earthward at $160-335$ km/s with a thickness of 900-1500 km, which corresponds to the ion inertial length or gyroradius scale. Each DF is followed by significant fluctuations in the $x$ and $y$ components of the magnetic field whose peaks are found 1-2 minutes after the DF passage. These $(B_{x},B_{y} )$-fluctuations propagate dawnward (mainly) and earthward. Strongly enhanced field-aligned beams are observed coincidently with $(B_{x},B_{y})$ fluctuations, while an enhancement of cross-tail currents is associated with the DFs. From the observed pressure imbalance and flux-tube entropy changes between the two regions separated by the DF, we speculate that interchange instability destabilizes the DFs and causes the deformation of the mid-tail magnetic topology. This process generates significant field-aligned currents, and might power the auroral brightening in the ionosphere. However, this event is neither associated with the main substorm auroral breakup nor the poleward expansion, which might indicate that the observed multiple DFs have been dissipated before they reach the inner plasma sheet boundary.
Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies
DEFF Research Database (Denmark)
Varón, M.; Beleggia, M; Kasama, T
2013-01-01
order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μ(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm...... cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present...... nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies....
Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains
International Nuclear Information System (INIS)
Klokkenburg, M; Erne, B H; Mendelev, V; Ivanov, A O
2008-01-01
Theories and simulations have demonstrated that field-induced dipolar chains affect the static magnetic properties of ferrofluids. Experimental verification, however, has been complicated by the high polydispersity of the available ferrofluids, and the morphology of the dipolar chains was left to the imagination. We now present the concentration- and field-dependent magnetization of particularly well-defined ferrofluids, with a low polydispersity, three different average particle sizes, and with dipolar chains that were imaged with and without magnetic field using cryogenic transmission electron microscopy. At low concentrations, the magnetization curves obey the Langevin equation for noninteracting dipoles. Magnetization curves for the largest particles strongly deviate from the Langevin equation but quantitatively agree with a recently developed mean-field model that incorporates the field-dependent formation and alignment of flexible dipolar chains. The combination of magnetic results and in situ electron microscopy images provides original new evidence for the effect of dipolar chains on the field-dependent magnetization of ferrofluids
Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms
Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman
2018-04-01
We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.
International Nuclear Information System (INIS)
Mamica, S; Krawczyk, M; Lévy, J-C S
2014-01-01
We use a microscopic theory taking into account the dipolar and nearest-neighbour exchange interactions for exploring spin-wave excitations in two-dimensional magnetic dots in the vortex state. Normal modes of different profiles are observed: azimuthal and radial modes, as well as fundamental (quasiuniform) and highly localized modes. We examine the dependence of the frequencies and profiles of these modes on the dipolar-to-exchange interaction ratio and the size of the dot. Special attention is paid to some particular modes, including the lowest mode in the spectrum and the evolution of its profile, and the fundamental mode, the frequency of which proves almost independent of the dipolar-to-exchange interaction ratio. We also provide a selective overview of the experimental, analytical and numerical results from the literature, where different profiles of the lowest mode are reported. We attribute this diversity to the competition between the dipolar and exchange interactions. Finally, we study the hybridization of the modes, show the multi-mode hybridization and explain the selection rules. (paper)
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
Quantum states with topological properties via dipolar interactions
Energy Technology Data Exchange (ETDEWEB)
Peter, David
2015-06-25
This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.
Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals
International Nuclear Information System (INIS)
Leon, H; Estevez-Rams, E
2009-01-01
A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.
Harmonically trapped dipolar fermions in a two-dimensional square lattice
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.; Bruun, Georg
2012-01-01
We consider dipolar fermions in a two-dimensional square lattice and a harmonic trapping potential. The anisotropy of the dipolar interaction combined with the lattice leads to transitions between phases with density order of different symmetries. We show that the attractive part of the dipolar...
Singh, Harjit
2011-01-01
""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag
Electron dynamics during substorm dipolarization in Mercury's magnetosphere
Directory of Open Access Journals (Sweden)
D. C. Delcourt
2005-11-01
Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.
Functionalization of Graphene via 1,3-Dipolar Cycloaddition
Quintana, Mildred; Spyrou, Konstantinos; Grzelczak, Marek; Browne, Wesley R.; Rudolf, Petra; Prato, Maurizio
Few-layer graphenes (FLG) produced by dispersion and exfoliation of graphite in N-methylpyrrolidone were successfully functionalized using the 1,3-dipolar cycloaddition of azomethine ylides. The amino functional groups attached to graphene sheets were quantified by the Kaiser test. These amino
Dipolar fluid-wall systems. Beyond the image potential
International Nuclear Information System (INIS)
Boudh-hir, M.E.
1989-02-01
The case of dipolar fluid in front of an ideal wall is examined. The surface-fluid system is introduced as a limit case of a binary mixture Using the diagrammatic development, the expansion of the one-particle distribution function is given. 16 refs
Acceleration and Precipitation of Electrons during Substorm Dipolarization Events
Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond
Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron
Karttunen, Hannu; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan
2007-01-01
Fundamental Astronomy gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The fifth edition of this successful undergraduate textbook has been extensively modernized and extended in the parts dealing with the Milky Way, extragalactic astronomy and cosmology as well as with extrasolar planets and the solar system (as a consequence of recent results from satellite missions and the new definition by the International Astronomical Union of planets, dwarf planets and small solar-system bodies). Furthermore a new chapter on astrobiology has been added. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers.
International Nuclear Information System (INIS)
Pradhan, T.
1975-01-01
The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)
Social exploration of 1D games
DEFF Research Database (Denmark)
Valente, Andrea; Marchetti, Emanuela
2013-01-01
In this paper the apparently meaningless concept of a 1 dimensional computer game is explored, via netnography. A small number of games was designed and implemented, in close contact with online communities of players and developers, providing evidence that 1 dimension is enough to produce...... interesting gameplay, to allow for level design and even to leave room for artistic considerations on 1D rendering. General techniques to re-design classic 2D games into 1D are also emerging from this exploration....
Fundamental safety principles. Safety fundamentals
International Nuclear Information System (INIS)
2006-01-01
This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste
Fundamental safety principles. Safety fundamentals
International Nuclear Information System (INIS)
2007-01-01
This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste
Redmond, W H
2001-01-01
This chapter outlines current marketing practice from a managerial perspective. The role of marketing within an organization is discussed in relation to efficiency and adaptation to changing environments. Fundamental terms and concepts are presented in an applied context. The implementation of marketing plans is organized around the four P's of marketing: product (or service), promotion (including advertising), place of delivery, and pricing. These are the tools with which marketers seek to better serve their clients and form the basis for competing with other organizations. Basic concepts of strategic relationship management are outlined. Lastly, alternate viewpoints on the role of advertising in healthcare markets are examined.
Thermal entanglement and teleportation in a dipolar interacting system
Energy Technology Data Exchange (ETDEWEB)
Castro, C.S., E-mail: ccastro@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil); Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Av. Nestor de Mello Pita, n. 535, 45.300-000 Amargosa, BA (Brazil); Duarte, O.S.; Pires, D.P.; Soares-Pinto, D.O. [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, São Carlos, 13560-970 SP (Brazil); Reis, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil)
2016-04-22
Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation. - Highlights: • The effects of a dipolar interaction between two spins on their degree of entanglement and non-locality is reported. • The model presents some degree of non-locality and entanglement at a given coupling parameters. • It is shown how the magnetic anisotropies can influence the fidelity of teleportation.
Coherent manipulation of dipolar coupled spins in an anisotropic environment
Baibekov, E. I.; Gafurov, M. R.; Zverev, D. G.; Kurkin, I. N.; Malkin, B. Z.; Barbara, B.
2014-11-01
We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaW O4 crystals with different concentrations of N d3 + ions.
Quantum phases of dipolar rotors on two-dimensional lattices.
Abolins, B P; Zillich, R E; Whaley, K B
2018-03-14
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Dipolar and quadrupolar defects in a transport line
International Nuclear Information System (INIS)
Leleux, G.; Nghiem, P.
1991-01-01
The defects on a transport line of linear accelerator are studied. A transport line where the elements are influenced by the design or position defects is analyzed. Only dipolar and quadrupolar defects are considered, and the coupling betwen transversal motions are excluded. The data from the literature and those calculated by transfer matrices are compared. The defects on a line are considered from an analytical point of view. Closed optical structures are also studied [fr
Quantum phases of dipolar rotors on two-dimensional lattices
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy
International Nuclear Information System (INIS)
León, H.
2013-01-01
The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.
Stacking of purines in water: the role of dipolar interactions in caffeine.
Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A
2016-05-11
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
International Nuclear Information System (INIS)
Hauke, Philipp; Cucchietti, Fernando M; Lewenstein, Maciej; Mueller-Hermes, Alexander; Banuls, Mari-Carmen; Ignacio Cirac, J
2010-01-01
Systems with long-range interactions show a variety of intriguing properties: they typically accommodate many metastable states, they can give rise to spontaneous formation of supersolids, and they can lead to counterintuitive thermodynamic behavior. However, the increased complexity that comes with long-range interactions strongly hinders theoretical studies. This makes a quantum simulator for long-range models highly desirable. Here, we show that a chain of trapped ions can be used to quantum simulate a one-dimensional (1D) model of hard-core bosons with dipolar off-site interaction and tunneling, equivalent to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this model in detail, employing perturbative mean-field theory, exact diagonalization and quasi-exact numerical techniques (density-matrix renormalization group and infinite time-evolving block decimation). We find that the complete devil's staircase-an infinite sequence of crystal states existing at vanishing tunneling-spreads to a succession of lobes similar to the Mott lobes found in Bose-Hubbard models. Investigating the melting of these crystal states at increased tunneling, we do not find (contrary to similar 2D models) clear indications of supersolid behavior in the region around the melting transition. However, we find that inside the insulating lobes there are quasi-long-range (algebraic) correlations, as opposed to models with nearest-neighbor tunneling, that show exponential decay of correlations.
A new approach for applying residual dipolar couplings as restraints in structure elucidation
International Nuclear Information System (INIS)
Meiler, Jens; Blomberg, Niklas; Nilges, Michael; Griesinger, Christian
2000-01-01
Residual dipolar couplings are useful global structural restraints. The dipolar couplings define the orientation of a vector with respect to the alignment tensor. Although the size of the alignment tensor can be derived from the distribution of the experimental dipolar couplings, its orientation with respect to the coordinate system of the molecule is unknown at the beginning of structure determination. This causes convergence problems in the simulated annealing process. We therefore propose a protocol that translates dipolar couplings into intervector projection angles, which are independent of the orientation of the alignment tensor with respect to the molecule. These restraints can be used during the whole simulated annealing protocol
Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO ...
Indian Academy of Sciences (India)
1-D ZnO nanorods and PPy/1-D ZnO nanocomposites were prepared by the surfactant-assisted precipitation and in situ polymerization method, respectively. The synthesized nanorods and nanocomposites were characterized by UV–Vis spectrophotometer, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction ...
1D Printing of Recyclable Robots
DEFF Research Database (Denmark)
Cellucci, Daniel; MacCurdy, Robert; Lipson, Hod
2017-01-01
Recent advances in 3D printing are revolutionizing manufacturing, enabling the fabrication of structures with unprecedented complexity and functionality. Yet biological systems are able to fabricate systems with far greater complexity using a process that involves assembling and folding a linear...... string. Here, we demonstrate a 1D printing system that uses an approach inspired by the ribosome to fabricate a variety of specialized robotic automata from a single string of source material. This proof-ofconcept system involves both a novel manufacturing platform that configures the source material...... using folding and a computational optimization tool that allows designs to be produced from the specification of high-level goals. We show that our 1D printing system is able to produce three distinct robots from the same source material, each of which is capable of accomplishing a specialized...
The effect of dipolar interaction on the magnetic isotope effect
DEFF Research Database (Denmark)
Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita
2010-01-01
A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...... interaction is responsible for the effect. Our calculations provide support for the proposed mechanism....
Magnetic holes in the dipolarized magnetotail: ion and electron anisotropies
Shustov, P.; Artemyev, A.; Zhang, X. J.; Yushkov, E.; Petrukovich, A. A.
2017-12-01
We conduct statistics on magnetic holes observed by THEMIS spacecraft in the near-Earth magnetotail. Groups of holes are detected after dipolarizations in the quiet, equatorial plasma sheet. Magnetic holes are characterized by significant magnetic field depressions (up to 50%) and strong electron currents ( 10-50 nA/m2), with spatial scales much smaller than the ion gyroradius. These magnetic holes are populated by hot (>10 keV), transversely anisotropic electrons supporting the pressure balance. We present statistical properties of these sub-ion scale magnetic holes and discuss possible mechanisms on the hole formation.
Dipolar interaction in arrays of magnetic nanotubes
International Nuclear Information System (INIS)
Velázquez-Galván, Y; Martínez-Huerta, J M; Encinas, A; De La Torre Medina, J; Danlée, Y; Piraux, L
2014-01-01
The dipolar interaction field in arrays of nickel nanotubes has been investigated on the basis of expressions derived from the effective demagnetizing field of the assembly as well as magnetometry measurements. The model incorporates explicitly the wall thickness and aspect ratio, as well as the spatial order of the nanotubes. The model and experiment show that the interaction field in nanotubes is smaller than that in solid nanowires due to the packing fraction reduction in tubes related to their inner cavity. Finally, good agreement between the model and experiment is found for the variation of the interaction field as a function of the tube wall thickness. (paper)
Spreading dynamics of 2D dipolar Langmuir monolayer phases.
Heinig, P; Wurlitzer, S; Fischer, Th M
2004-07-01
We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.
Synchronization of spin torque nano-oscillators through dipolar interactions
International Nuclear Information System (INIS)
Chen, Hao-Hsuan; Wu, Jong-Ching; Horng, Lance; Lee, Ching-Ming; Chang, Ching-Ray; Chang, Jui-Hang
2014-01-01
In an array of spin-torque nano-oscillators (STNOs) that combine a perpendicular polarized fixed layer with strong in-plane anisotropy in the free layers, magnetic dipolar interactions can effectively phase-lock the array, thus further enhancing the power of the output microwave signals. We perform a qualitative analysis of the synchronization of an array based on the Landau-Lifshitz-Gilbert equation, with a spin-transfer torque that assumes strong in-plane anisotropy. Finally, we present the numerical results for four coupled STNOs to provide further evidence for the proposed theory
Synchronization of spin torque nano-oscillators through dipolar interactions
Energy Technology Data Exchange (ETDEWEB)
Chen, Hao-Hsuan, E-mail: d95222014@ntu.edu.tw; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw; Horng, Lance [Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China); Lee, Ching-Ming [Graduate School of Materials Science, National Yunlin University of Science and Technology, Douliou, 64002, Taiwan (China); Chang, Ching-Ray, E-mail: crchang@phys.ntu.edu.tw; Chang, Jui-Hang [Department of Physics and Center for Quantum Sciences and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)
2014-04-07
In an array of spin-torque nano-oscillators (STNOs) that combine a perpendicular polarized fixed layer with strong in-plane anisotropy in the free layers, magnetic dipolar interactions can effectively phase-lock the array, thus further enhancing the power of the output microwave signals. We perform a qualitative analysis of the synchronization of an array based on the Landau-Lifshitz-Gilbert equation, with a spin-transfer torque that assumes strong in-plane anisotropy. Finally, we present the numerical results for four coupled STNOs to provide further evidence for the proposed theory.
Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy
International Nuclear Information System (INIS)
Ohtori, Hiroyuki; Iwano, Kaoru; Takeichi, Yasuo; Ono, Kanta; Mitsumata, Chiharu; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira
2014-01-01
Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.
Evidence for several dipolar quasi-invariants in liquid crystals
Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.
2013-10-01
The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.
Observation of roton mode population in a dipolar quantum gas
Chomaz, L.; van Bijnen, R. M. W.; Petter, D.; Faraoni, G.; Baier, S.; Becher, J. H.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.
2018-05-01
The concept of a roton, a special kind of elementary excitation forming a minimum of energy at finite momentum, has been essential for the understanding of the properties of superfluid 4He (ref. 1). In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated2. In the realm of highly controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite their weakly interacting character3. This prospect has raised considerable interest4-12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetization axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases13.
Finite-size corrections in simulation of dipolar fluids
Belloni, Luc; Puibasset, Joël
2017-12-01
Monte Carlo simulations of dipolar fluids are performed at different numbers of particles N = 100-4000. For each size of the cubic cell, the non-spherically symmetric pair distribution function g(r,Ω) is accumulated in terms of projections gmnl(r) onto rotational invariants. The observed N dependence is in very good agreement with the theoretical predictions for the finite-size corrections of different origins: the explicit corrections due to the absence of fluctuations in the number of particles within the canonical simulation and the implicit corrections due to the coupling between the environment around a given particle and that around its images in the neighboring cells. The latter dominates in fluids of strong dipolar coupling characterized by low compressibility and high dielectric constant. The ability to clean with great precision the simulation data from these corrections combined with the use of very powerful anisotropic integral equation techniques means that exact correlation functions both in real and Fourier spaces, Kirkwood-Buff integrals, and bridge functions can be derived from box sizes as small as N ≈ 100, even with existing long-range tails. In the presence of dielectric discontinuity with the external medium surrounding the central box and its replica within the Ewald treatment of the Coulombic interactions, the 1/N dependence of the gmnl(r) is shown to disagree with the, yet well-accepted, prediction of the literature.
Yuan, Wen-Kui; Cui, Tao; Liu, Wei; Wen, Li-Rong; Li, Ming
2018-03-16
A new CuI/1,10-phen-catalyzed reaction for the synthesis of 3-ylideneoxindoles from readily available isatins and ethyl isocyanoacetate, in which ethyl isocyanoacetate acts as a latent two-carbon donor like the Wittig reagent, is reported. A tandem procedure including 1,3-dipolar cycloaddition/inverse 1,3-dipolar ring opening/olefination allows the preparation of 3-ylideneoxindoles with broad functional group tolerance.
D1/D5 systems in N=4 string theories
International Nuclear Information System (INIS)
Gava, Edi; Hammou, Amine B.; Morales, Jose F.; Narain, Kumar S.
2001-01-01
We propose CFT descriptions of the D1/D5 system in a class of freely acting Z 2 orbifolds/orientifolds of type IIB theory, with sixteen unbroken supercharges. The CFTs describing D1/D5 systems involve N=(4,4) or N=(4,0) sigma models on (R 3 xS 1 xT 4 x(T 4 ) N /S N )/Z 2 , where the action of Z 2 is diagonal and its precise nature depends on the model. We also discuss D1(D5)-brane states carrying non-trivial Kaluza-Klein charges, which correspond to excitations of two-dimensional CFTs of the type (R 3 xS 1 xT 4 ) N /S N xZ 2 N . The resulting multiplicities for two-charge bound states are shown to agree with the predictions of U-duality. We raise a puzzle concerning the multiplicities of three-charge systems, which is generically present in all vacuum configurations with sixteen unbroken supercharges studied so far, including the more familiar type IIB on K3 case: the constraints put on BPS counting formulae by U-duality are apparently in contradiction with any CFT interpretation. We argue that the presence of RR backgrounds appearing in the symmetric product CFT may provide a resolution of this puzzle. Finally, we show that the whole tower of D-instanton corrections to certain 'BPS saturated couplings' in the low energy effective actions match with the corresponding one-loop threshold corrections on the dual fundamental string side
A Framework for Low-Communication 1-D FFT
Directory of Open Access Journals (Sweden)
Ping Tak Peter Tang
2013-01-01
Full Text Available In high-performance computing on distributed-memory systems, communication often represents a significant part of the overall execution time. The relative cost of communication will certainly continue to rise as compute-density growth follows the current technology and industry trends. Design of lower-communication alternatives to fundamental computational algorithms has become an important field of research. For distributed 1-D FFT, communication cost has hitherto remained high as all industry-standard implementations perform three all-to-all internode data exchanges (also called global transposes. These communication steps indeed dominate execution time. In this paper, we present a mathematical framework from which many single-all-to-all and easy-to-implement 1-D FFT algorithms can be derived. For large-scale problems, our implementation can be twice as fast as leading FFT libraries on state-of-the-art computer clusters. Moreover, our framework allows tradeoff between accuracy and performance, further boosting performance if reduced accuracy is acceptable.
Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.
Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L
2017-08-04
Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.
Two-dimensional discrete solitons in dipolar Bose-Einstein condensates
International Nuclear Information System (INIS)
Gligoric, Goran; Stepic, Milutin; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.
2010-01-01
We analyze the formation and dynamics of bright unstaggered solitons in the disk-shaped dipolar Bose-Einstein condensate, which features the interplay of contact (collisional) and long-range dipole-dipole (DD) interactions between atoms. The condensate is assumed to be trapped in a strong optical-lattice potential in the disk's plane, hence it may be approximated by a two-dimensional (2D) discrete model, which includes the on-site nonlinearity and cubic long-range (DD) interactions between sites of the lattice. We consider two such models, which differ by the form of the on-site nonlinearity, represented by the usual cubic term, or more accurate nonpolynomial one, derived from the underlying three-dimensional Gross-Pitaevskii equation. Similar results are obtained for both models. The analysis is focused on the effects of the DD interaction on fundamental localized modes in the lattice (2D discrete solitons). The repulsive isotropic DD nonlinearity extends the existence and stability regions of the fundamental solitons. New families of on-site, inter-site, and hybrid solitons, built on top of a finite background, are found as a result of the interplay of the isotropic repulsive DD interaction and attractive contact nonlinearity. By themselves, these solutions are unstable, but they evolve into robust breathers which exist on an oscillating background. In the presence of the repulsive contact interactions, fundamental localized modes exist if the DD interaction (attractive isotropic or anisotropic) is strong enough. They are stable in narrow regions close to the anticontinuum limit, while unstable solitons evolve into breathers. In the latter case, the presence of the background is immaterial.
Quantum simulation and quantum information processing with molecular dipolar crystals
International Nuclear Information System (INIS)
Ortner, M.
2011-01-01
In this thesis interactions between dipolar crystals and neutral atoms or separated molecules have been investigated. They were motivated to realize new kinds of lattice models in mixtures of atoms and polar molecules where an MDC functions as an underlying periodic lattice structure for the second species. Such models bring out the peculiar features of MDC's, that include a controllable, potentially sub-optical wavelength periodicity and strong particle phonon interactions. Only stable collisional configurations have been investigated, excluding chemical reactions between the substituents, and crystal distortions beyond the scope of perturbation theory. The system was treated in the polaron picture where particles of the second species are dressed by surrounding crystal phonons. To describe the competition between coherent and incoherent dynamics of the polarons, a master equation in the Brownian motion limit was used with phonons treated as a thermal heat bath. It was shown analytically that in a wide range of realistic parameters the corrections to the coherent time evolution are small, and that the dynamics of the dressed particles can be described by an effective extended Hubbard model with controllable system parameters. The last chapter of this thesis contains a proposal for QIP with cold polar molecules that, in contrast to previous works, uses an MDC as a quantum register. It was motivated by the unique features of dipolar molecules and to exploit the peculiar physical conditions in dipolar crystals. In this proposal the molecular dipole moments were tailored by non-local fields to include a small, switchable, state-dependent dipole moment in addition to the large internal state independent moment that stabilizes the crystal. It was shown analytically that a controllable, non-trivial phonon-mediated interaction can be generated that exceeds non-trivial, direct dipole-dipole couplings. The addressability problem due to high crystal densities was overcome by
1D-VAR Retrieval Using Superchannels
Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen
2008-01-01
Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.
Layers of Cold Dipolar Molecules in the Harmonic Approximation
DEFF Research Database (Denmark)
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
We consider the N-body problem in a layered geometry containing cold polar molecules with dipole moments that are polarized perpendicular to the layers. A harmonic approximation is used to simplify the hamiltonian and bound state properties of the two-body inter-layer dipolar potential are used...... to adjust this effective interaction. To model the intra-layer repulsion of the polar molecules, we introduce a repulsive inter-molecule potential that can be parametrically varied. Single chains containing one molecule in each layer, as well as multi-chain structures in many layers are discussed...... and their energies and radii determined. We extract the normal modes of the various systems as measures of their volatility and eventually of instability, and compare our findings to the excitations in crystals. We find modes that can be classified as either chains vibrating in phase or as layers vibrating against...
Electron Jet Detected by MMS at Dipolarization Front
Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.
2018-01-01
Using MMS high-resolution measurements, we present the first observation of fast electron jet (Ve 2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness ( 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron-jet-driven current (E ṡ je ≈ 2 E ṡ ji), rather than the ion current suggested in previous studies.
Synthesis of Spiroisoxazolines by 1,3-Dipolar Cycloaddition
Directory of Open Access Journals (Sweden)
Peter Ertl
1997-04-01
Full Text Available The cycloaddition of the chiral nitrile oxide 1 to 1-R-substituted 3,3-methylene-5,5-dimethyl-2-pyrrolidinones 2 (where R is H, n-butyl-, 1,1-dimethylethoxycarbonyl-, 1-methylethenyl- and acetyl- proceeds regioselectively under the formation of spiroisoxazolines, namely 7-R-substituted-6-oxo-8,8-dimethyl-1-oxa-2,7-diazaspiro[4,4]non-2-enes 5 and 6. The asymmetric induction expected by the a-chiral centre of the nitrile oxide 1 was not very effective, diastereoisomers 5 and 6 were formed in an approximate 50:50 ratio. The stereoselectivity of the 1,3-dipolar cycloaddition of the arylnitrile oxide 7 with the chiral lactam 3 and the achiral lactone 4 are investigated. The attack of the 1,3-dipole occurred from the less hindered face of the dipolarophile 3 and 4, giving the major isomer 8 and 10, respectively.
Nuclear dipolar magnetism around one microkelvin in calciumhydroxide
International Nuclear Information System (INIS)
Marks, J.
1985-01-01
This thesis is devoted to a study of dipolar magnetism of the proton spins in Ca(OH) 2 . First, cooling techniques are described. The energy of different spin configurations are calculated in the Weiss-field approximation. Crystallographic characteristics of Ca(OH) 2 are described, as well as a method to produce monocrystals and a method for crystal doping using 1.5 MeV electron beams. It is shown that the polarization mechanism of the proton spins in Ca(OH) 2 doped with O 2 - centra is the 'Solid Effect'. Susceptibility measurements are presented as a function of the polarization. Results imply that both at positive and at negative temperatures state ordering sets in, characterized by a plateau in the susceptibility. (Auth/G.J.P.)
Hidden magnetism in periodically modulated one dimensional dipolar fermions
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
Drag Effect in Double-Layer Dipolar Fermi Gases
International Nuclear Information System (INIS)
Tanatar, B; Renklioglu, B; Oktel, M O
2014-01-01
We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system
International Nuclear Information System (INIS)
Demene, Helene; Ducat, Thierry; Barthe, Philippe; Delsuc, Marc-Andre; Roumestand, Christian
2002-01-01
The present study deals with the relevance of using mobility-averaged dipolar couplings for the structure refinement of flexible proteins. The 68-residue protein p8 MTCP1 has been chosen as model for this study. Its solution state consists mainly of three α-helices. The two N-terminal helices are strapped in a well-determined α-hairpin, whereas, due to an intrinsic mobility, the position of the third helix is less well defined in the NMR structure. To further characterize the degrees of freedom of this helix, we have measured the dipolar coupling constants in the backbone of p8 MTCP1 in a bicellar medium. We show here that including D HN dip dipolar couplings in the structure calculation protocol improves the structure of the α-hairpin but not the positioning of the third helix. This is due to the motional averaging of the dipolar couplings measured in the last helix. Performing two calculations with different force constants for the dipolar restraints highlights the inconstancy of these mobility-averaged dipolar couplings. Alternatively, prior to any structure calculations, comparing the values of the dipolar couplings measured in helix III to values back-calculated from an ideal helix demonstrates that they are atypical for a helix. This can be partly attributed to mobility effects since the inclusion of the 15 N relaxation derived order parameter allows for a better fit
Equilibrium phases of dipolar lattice bosons in the presence of random diagonal disorder
Zhang, C.; Safavi-Naini, A.; Capogrosso-Sansone, B.
2018-01-01
Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a controlled manner. In an effort to understand the interplay between disorder, dipolar interactions, and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo simulations by the worm algorithm. We study the ground-state phase diagram at a fixed half-integer filling factor for which the clean system is either a superfluid at a lower dipolar interaction strength or a checkerboard solid at a larger dipolar interaction strength. We find that, even for weak dipolar interactions, superfluidity is destroyed in favor of a Bose glass at a relatively low disorder strength. Interestingly, in the presence of disorder, superfluidity persists for values of the dipolar interaction strength for which the clean system is a checkerboard solid. At a fixed disorder strength, as the dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction is further increased, the system eventually develops extended checkerboard patterns in the density distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible for a finite residual compressibility, are present in the density distribution. Finally, we study the robustness of the superfluid phase against thermal fluctuations.
Particle-in-cell Simulation of Dipolarization Front Associated Whistlers
Lin, D.; Scales, W.; Ganguli, G.; Crabtree, C. E.
2017-12-01
Dipolarization fronts (DFs) are dipolarized magnetic field embedded in the Earthward propagating bursty bulk flows (BBFs), which separates the hot, tenuous high-speed flow from the cold, dense, and slowly convecting surrounding plasma [Runov et al. 2011]. Broadband fluctuations have been observed at DFs including the electromagnetic whistler waves and electrostatic lower hybrid waves in the Very Low Frequency (VLF) range [e.g., Zhou et al. 2009, Deng et al. 2010]. There waves are suggested to be able heat electrons and play a critical role in the plasma sheet dynamics [Chaston et al., 2012, Angelopoulos et al., 2013]. However, their generation mechanism and role in the energy conversion are still under debate. The gradient scale of magnetic field, plasma density at DFs in the near-Earth magnetotail is comparable to or lower than the ion gyro radius [Runov et al., 2011, Fu et al., 2012, Breuillard et al., 2016]. Such strongly inhomogeneous configuration could be unstable to the electron-ion hybrid (EIH) instability, which arises from strongly sheared transverse flow and is in the VLF range [Ganguli et al. 1988, Ganguli et al. 2014]. The equilibrium of the EIH theory implies an anisotropy of electron temperature, which are likely to drive the whistler waves observed in DFs [Deng et al., 2010, Gary et al., 2011]. In order to better understand how the whistler waves are generated in DFs and whether the EIH theory is applicable, a fully electromagnetic particle-in-cell (EMPIC) model is used to simulate the EIH instability with similar equilibrium configurations in DF observations. The EMPIC model deals with three dimensions in the velocity space and two dimensions in the configuration space, which is quite ready to include the third configuration dimension. Simulation results will be shown in this presentation.
Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail
Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.
2017-12-01
Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.
Chiral-glass transition in a diluted dipolar-interaction Heisenberg system
International Nuclear Information System (INIS)
Zhang Kaicheng; Liu Guibin; Zhu Yan
2011-01-01
Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.
Many-body formation and dissociation of a dipolar chain crystal
International Nuclear Information System (INIS)
You, Jhih-Shih; Wang, Daw-Wei
2014-01-01
We propose an experimental scheme to effectively assemble chains of dipolar gases with a uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature easily controlled by the initial lattice potential and the external field strength during processing. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation dominates the classical energy and the compressibility diverges at the phase boundary. The experimental implication of such a dipolar chain crystal and its quantum phase transition is also discussed. (paper)
1-D hybrid code for FRM dynamics
International Nuclear Information System (INIS)
Stark, R.A.; Miley, G.H.
1985-01-01
A 1-D radial hybrid code has been written to study the start-up of the FRM via neutral-beam injection. This code, named FROST (Field Reversed One-dimensional STart-up), models the plasma as azimuthal symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. This method is designed to be more efficient than those employing particle tracking, since the characteristic timescale of the simulation is the ion slowing down time, rather than the much shorter cyclotron period. A time-differentiated Grad-Shafranov equation couples the ion current to massless fluid equations describing electrons and low energy ions. Flux coordinates are used in this fluid model, in preference to an Eulerian framework, so that coupling of plasma at the two different radii of a closed flux surface may be treated with ease. Since a fluid treatment for electrons is invalid near a field null, a separate model for the electron current has been included for this region, a unique feature. Results of simulation of injection into a 2XIIB-like plasma are discussed. Electron currents are found to retard, but not prevent reversal of the magnetic field at the plasma center
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
Regio- and stereochemistry of 1,3-dipolar cycloaddition of nitrile oxides to alkenes
International Nuclear Information System (INIS)
Litvinovskaya, Raisa P; Khripach, Vladimir A
2001-01-01
The published data on the chemistry of intermolecular 1,3-dipolar cycloaddition of nitrile oxides to different types of alkene derivatives are systematised. Various aspects of stereo- and regiochemistry of this reaction are considered. The bibliography includes 182 references.
Structures and dynamics in a two-dimensional dipolar dust particle system
Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.
2018-05-01
The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.
Cluster-cluster aggregation of Ising dipolar particles under thermal noise
Suzuki, Masaru; Kun, Ferenc; Ito, Nobuyasu
2009-01-01
The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1
The phase transition in the anisotropic Heisenberg model with long range dipolar interactions
International Nuclear Information System (INIS)
Mól, L.A.S.; Costa, B.V.
2014-01-01
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems
Statistical mechanics of molecular fluids. The RHNC theory applied to hard dipolar spheres
International Nuclear Information System (INIS)
Lombardero, M.; Lado, F.; Abascal, J.L.F.; Lago, S.; Enciso, E.
1988-01-01
The RHNC (reference hipernetted chain) equation, together with an optimization criterion which extremalizes the Helmholtz free energy, is used to obtain structural, thermodynamic, and dielectric properties of a system made up of hard dipolar spheres. The comparison with simulation results is made in the same boundary conditions and then the properties of an infinite system are evaluated for a variaty of states at different densities and dipolar moments. (Author)
Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics
Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.
2017-12-01
Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.
AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Landi, Gabriel T., E-mail: gtlandi@gmail.com [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Arantes, Fabiana R. [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Cornejo, Daniel R. [Instituto de Física da Universidade de São Paulo, São Paulo 05508-090 (Brazil); Bakuzis, Andris F. [Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia-GO (Brazil); Andreu, Irene; Natividad, Eva [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza 50018 (Spain)
2017-01-01
The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed within nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field approximation, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple technique to address the presence of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. - Highlights: We discuss the importance of the dipolar interaction in magnetic nanoparticle samples. It is shown that AC susceptibility may be used to estimate the extent of this interaction. We develop a model that accounts for particle aggregation. The theoretical model is then fitted to distinct magnetite samples.
New Developments in Spin Labels for Pulsed Dipolar EPR
Directory of Open Access Journals (Sweden)
Alistair J. Fielding
2014-10-01
Full Text Available Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR techniques allow small magnetic couplings to be measured (e.g., <50 MHz providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Testing physical models for dipolar asymmetry with CMB polarization
Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.
2017-12-01
The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.
Phase transitions in random uniaxial systems with dipolar interactions
International Nuclear Information System (INIS)
Schuster, H.G.
1977-01-01
The critical behaviour of random uniaxial ferromagnetic (ferroelectric) systems with both short range and long range dipolar interactions is investigated, using the field theoretic renormalization method of Brezin et al. for the free energy above and below transition point Tsub(c). The randomness is due to externally introduced fluctuations in the short range interactions (quenched case) or (and) magneto-elastic coupling to the lattice (annealed case). Strong deviations in the critical behaviour with respect to the pure systems are found. In the quenched case, e.g., the specific heat C and the coefficient f 2 (of M 3 in the equation of state, where M is the magnetization) change from C proportional to abs ln abs t abs abssup(1/3), f 2 proportional to abs ln abs t abs abs sup(1/3), f 2 proportional to abs ln abs t abs abs -1 in the pure system to C = A+- + C+-exp[-4√ 3 106 abs ln abs t abs abs], f 2 proportional to abs ln abs t abs abs sup(-1/2) (where t = (T-Tsub(c)) / Tsub(c) is the reduced temperature and A+-, C+- are constants) in the random situation. (orig.) [de
Focal mechanism of seismic events with a dipolar component
Directory of Open Access Journals (Sweden)
R. Console
1995-06-01
Full Text Available In this paper we model the geometry of a seismic source as a dislocation occurring on an elemental flat fault in an arbitrary direction with respect to the fault plane. This implies the use of a fourth parameter in addition to the three usual ones describing a simple double couple mechanism. We applied the radiation pattern obtained from the theory to a computer code written for the inversion of the observation data (amplitudes and polarities of the first onsets recorded by a network of stations. It allows the determination of the fault mechanism gener- alized in the above mentioned way. The computer code was verified on synthetic data and then applied to real data recorded by the seismic network operated by the Ente Nazionale per l'Energia Elettrica (ENEL, monitoring the geothermal field of Larderello. The experimental data show that for some events the source mechanism exhibits a significant dipolar component. However, due to the high standard deviation of the amplitude data, F-test applied to the results of the analysis shows that only for two events the confidence level for the general- ized model exceeds 90%.
Classical and quantum phases of low-dimensional dipolar systems
Energy Technology Data Exchange (ETDEWEB)
Cartarius, Florian
2016-09-22
In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit
Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.
2017-12-01
Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.
Understanding the anisotropic ion distributions within magnetotail dipolarizing flux bundles
Zhou, X.; Runov, A.; Angelopoulos, V.; Birn, J.
2017-12-01
Dipolarizing flux bundles (DFBs), earthward-propagating structures with enhanced northward magnetic field (Bz) component, are usually believed to carry a different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, are recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFBs. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFBs, whereas for lower κ values the ions inside the DFBs become more isotropic. Here we utilize a simple, test-particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the ion anisotropy originates from successive ion reflections and reentries to the DFBs, during which the ions can be consecutively accelerated in the perpendicular direction by the DFB-carried electric field. This acceleration process may be interrupted, however, when the magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories are most stochastic outside the DFB region, which makes the reflected ions less likely to return to the DFBs for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected towards Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between the magnetotail and the inner magneosphere.
Physics of Substorm Growth Phase, Onset, and Dipolarization
Energy Technology Data Exchange (ETDEWEB)
C.Z. Cheng
2003-10-22
A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.
Physics of Substorm Growth Phase, Onset, and Dipolarization
International Nuclear Information System (INIS)
Cheng, C.Z.
2003-01-01
A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m 2 as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization
Exchange Rates and Fundamentals.
Engel, Charles; West, Kenneth D.
2005-01-01
We show analytically that in a rational expectations present-value model, an asset price manifests near-random walk behavior if fundamentals are I (1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs,…
The structure of the interface in the solvent mediated interaction of dipolar surfaces
International Nuclear Information System (INIS)
Dzhavakhidze, P.G.; Levadny, V.G.
1987-08-01
Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs
DEFF Research Database (Denmark)
van der Laan, Paul; Sørensen, Niels N.
2017-01-01
A one-dimensional version of EllipSys, labeled as EllipSys1D is presented. Three atmospheric boundary layer test cases are used to show that results of EllipSys1D are exactly the same or very similar as results of EllipSys3D, while EllipSys1D uses 3 to 4 orders of magnitude less CPU hours compared...
Tunnel-induced Dipolar Resonances in a Double-well Potential.
Schulz, Bruno; Saenz, Alejandro
2016-11-18
A system of two dipolar particles that are confined in a double-well potential and interact via a realistic isotropic interaction potential is investigated as a protoype for ultracold atoms with a magnetic dipole moment or ultracold dipolar heteronuclear diatomic molecules in double-well traps or in optical lattices. The resulting energy spectrum is discussed as a function of the dipole-dipole interaction strength. The variation of the strength of the dipole-dipole interaction is found to lead to various resonance phenomena. Among those are the previously discussed inelastic confinement-induced resonances as well as the dipole-induced resonances. It is found that the double-well potential gives rise to a new type of resonances, tunnel-induced dipolar ones. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dipolar Antiferromagnetism and Quantum Criticality in LiErF4
International Nuclear Information System (INIS)
Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik
2012-01-01
Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.
Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis
2014-12-01
Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.
The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.
Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri
2011-06-21
In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar
Park, Dowoo; Jeong, Seung Doo; Ishida, Masatoshi; Lee, Chang-Hee
2014-08-25
Several regioselectively π-extended, pyrrole fused porphyrinoids have been synthesized by the 1,3-dipolar cycloaddition of meso-alkylidene-(benzi)porphyrins. Pd(II) complexes gave oxidation resistant, bis-pyrrole fused adducts. The repeated 1,3-dipolar cycloaddition followed by oxidation-reduction of pentaphyrin analogs afforded π-extended porphyrin analogs.
McGrath, Nicholas A.
2012-01-01
Diazo compounds, which can be accessed directly from azides by deimidogenation, are shown to be extremely versatile dipoles in 1,3-dipolar cycloaddition reactions with a cyclooctyne. The reactivity of a diazo compound can be much greater or much less than its azide analog, and is enhanced markedly in polar-protic solvents. These reactivities are predictable from frontier molecular orbital energies. The most reactive diazo compound exhibited the highest known second-order rate constant to date for a dipolar cycloaddition with a cycloalkyne. These data provide a new modality for effecting chemoselective reactions in a biological context. PMID:23227302
1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides.
Aronoff, Matthew R; Gold, Brian; Raines, Ronald T
2016-04-01
The diazo group has untapped utility in chemical biology. The tolerance of stabilized diazo groups to cellular metabolism is comparable to that of azido groups. However, chemoselectivity has been elusive, as both groups undergo 1,3-dipolar cycloadditions with strained alkynes. Removing strain and tuning dipolarophile electronics yields diazo group selective 1,3-dipolar cycloadditions that can be performed in the presence of an azido group. For example, diazoacetamide but not its azido congener react with dehydroalanine residues, as in the natural product nisin.
Simulation of transverse beam splitting using time-dependent dipolar or quadrupolar kicks
Capoani, Federico
2017-01-01
Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.
Energy Technology Data Exchange (ETDEWEB)
Wang Hong; Eberstadt, Matthias; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories (United States)
1998-10-15
A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.
An initial boundary value problem for modeling a piezoelectric dipolar body
Marin, Marin; Öchsner, Andreas
2018-03-01
This study deals with the first initial boundary value problem in elasticity of piezoelectric dipolar bodies. We consider the most general case of an anisotropic and inhomogeneous elastic body having a dipolar structure. For two different types of restrictions imposed on the problem data, we prove two results regarding the uniqueness of solution, by using a different but accessible method. Then, the mixed problem is transformed in a temporally evolutionary equation on a Hilbert space, conveniently constructed based on the problem data. With the help of a known result from the theory of semigroups of operators, the existence and uniqueness of the weak solution for this equation are proved.
Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene
Shi, Xueliang
2015-10-08
Quinoidal thia-acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2-sulfur migration was observed during the Friedel-Crafts alkylation reaction. The analogues display a closed-shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole-dipole and [C-H⋯π]/[C-H⋯S] interactions.
Ground-state candidate for the classical dipolar kagome Ising antiferromagnet
Chioar, I. A.; Rougemaille, N.; Canals, B.
2016-06-01
We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.
Energy Device Applications of Synthesized 1D Polymer Nanomaterials.
Huang, Long-Biao; Xu, Wei; Hao, Jianhua
2017-11-01
1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Islamic fundamentalism in Indonesia
Nagy, Sandra L.
1996-01-01
This is a study of Islamic fundamentalism in Indonesia. Islamic fundamentalism is defined as the return to the foundations and principles of Islam including all movements based on the desire to create a more Islamic society. After describing the practices and beliefs of Islam, this thesis examines the three aspects of universal Islamic fundamentalism: revivalism, resurgence, and radicalism. It analyzes the role of Islam in Indonesia under Dutch colonial rule, an alien Christian imperialist po...
Babu, V
2014-01-01
Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav
Energy Technology Data Exchange (ETDEWEB)
Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)
2014-10-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
International Nuclear Information System (INIS)
Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko
2014-01-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
International Nuclear Information System (INIS)
Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.
1984-01-01
Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more
Wave Vector Dependent Susceptibility at T>Tc in a Dipolar Ising Ferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Holmes, L. M:; Guggenheim, H. J.
1974-01-01
The wave-vector-dependent susceptibility of LiTbF4 has been investigated by means of neutron scattering. The observations show a singularity of the susceptibility near wave vector Q=0 which is characteristic of the dipolar Coulomb interaction and good agreement with theory is obtained...
A kinetic study of 1,3-dipolar cycloadditions in micellar media
Rispens, T; Engberts, JBFN
2003-01-01
The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl
Electron dynamics during substorm dipolarization in Mercury's magnetosphere
Directory of Open Access Journals (Sweden)
D. C. Delcourt
2005-11-01
Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.
On the Gross–Pitaevskii equation for trapped dipolar quantum gases
Carles, Ré mi; Markowich, Peter A; Sparber, Christof
2008-01-01
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.
Exploring strain-promoted 1,3-dipolar cycloadditions of end functionalized polymers
Ledin, Petr A; Kolishetti, Nagesh; Hudlikar, Manish S; Boons, Geert-Jan
2014-01-01
Strain-promoted 1,3-dipolar cycloaddition of cyclooctynes with 1,3-dipoles such as azides, nitrones, and nitrile oxides, are of interest for the functionalization of polymers. In this study, we have explored the use of a 4-dibenzocyclooctynol (DIBO)-containing chain transfer agent in reversible
Residual dipolar couplings : a new technique for structure determination of proteins in solution
van Lune, Frouktje Sapke
2004-01-01
The aim of the work described in this thesis was to investigate how residual dipolar couplings can be used to resolve or refine the three-dimensional structure of one of the proteins of the phosphoenol-pyruvate phosphotransferase system (PTS), the main transport system for carbohydrates in
Czech Academy of Sciences Publication Activity Database
Kobr, L.; Zhao, K.; Shen, K.; Comotti, A.; Bracco, S.; Shoemaker, R. K.; Sozzani, P.; Clark, N.A.; Price, J. C.; Rogers, C. T.; Michl, Josef
2012-01-01
Roč. 134, č. 24 (2012), s. 10122-10131 ISSN 0002-7863 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional research plan: CEZ:AV0Z40550506 Keywords : controlled rotary motion * solid-state dynamics * aromatic nanochannels * NMR-spectroscopy * single-molecule Subject RIV: CC - Organic Chemistry Impact factor: 10.677, year: 2012
Inclusion Compound Based Approach to Arrays of Artificial Dipolar Molecular Rotors: Bulk Inclusions
Czech Academy of Sciences Publication Activity Database
Kobr, L.; Zhao, K.; Shen, Y.; Polívková, Kateřina; Shoemaker, R. K.; Clark, N.A.; Price, J. C.; Rogers, C. T.; Michl, Josef
2013-01-01
Roč. 78, č. 5 (2013), s. 1768-1777 ISSN 0022-3263 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : solid-state dynamics * phosphonitrilic compounds * aromatic nanochannels * triethylamine Subject RIV: CC - Organic Chemistry Impact factor: 4.638, year: 2013
Czech Academy of Sciences Publication Activity Database
Kobr, L.; Zhao, K.; Shen, Y.; Shoemaker, R. K.; Rogers, C. T.; Michl, Josef
2014-01-01
Roč. 14, č. 2 (2014), s. 559-568 ISSN 1528-7483 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : aromatic nanochannels * single-molecule * dynamics Subject RIV: CC - Organic Chemistry Impact factor: 4.891, year: 2014
Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics
Sparber, Christof; Markowich, Peter; Huang, Zhongyi
2010-01-01
We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.
The structure of the interface in the solvent-mediated interaction of dipolar surfaces
International Nuclear Information System (INIS)
Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.
1988-01-01
Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated
On the Gross–Pitaevskii equation for trapped dipolar quantum gases
Carles, Rémi
2008-09-29
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.
Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium
DEFF Research Database (Denmark)
Aikawa, K.; Frisch, A.; Mark, M.
2014-01-01
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...
Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces
Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon
2011-01-01
The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The
ATR kinase regulates its attenuation via PPM1D phosphatase ...
Indian Academy of Sciences (India)
Debadrita Bhattacharya
2018-02-07
Feb 7, 2018 ... generated in response to ultraviolet and ionizing radiation (Lu et al. 2005a, b; Cha ... nocopy' each other's effects by uncovering persistent ATR signalling that in ...... been shown to indirectly stabilize PPM1D by mediating the.
Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.
Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich
2016-04-01
High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. Georg Thieme Verlag KG Stuttgart · New York.
Synthesis, characterization, and physical properties of 1D nanostructures
Marley, Peter Mchael
The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room
Relativities of fundamentality
McKenzie, Kerry
2017-08-01
S-dualities have been held to have radical implications for our metaphysics of fundamentality. In particular, it has been claimed that they make the fundamentality status of a physical object theory-relative in an important new way. But what physicists have had to say on the issue has not been clear or consistent, and in particular seems to be ambiguous between whether S-dualities demand an anti-realist interpretation of fundamentality talk or merely a revised realism. This paper is an attempt to bring some clarity to the matter. After showing that even antecedently familiar fundamentality claims are true only relative to a raft of metaphysical, physical, and mathematical assumptions, I argue that the relativity of fundamentality inherent in S-duality nevertheless represents something new, and that part of the reason for this is that it has both realist and anti-realist implications for fundamentality talk. I close by discussing the broader significance that S-dualities have for structuralist metaphysics and for fundamentality metaphysics more generally.
TBC1D24 genotype–phenotype correlation
Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico
2016-01-01
Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533
Sethy, Dasaratha; Chakraborty, Hirak
2016-10-01
The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail
Frühauff, D.; Glassmeier, K.-H.
2017-11-01
In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.
Impact of CD1d deficiency on metabolism.
Directory of Open Access Journals (Sweden)
Maya E Kotas
Full Text Available Invariant natural killer T cells (iNKTs are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.
Schubert, Thomas F
2015-01-01
This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to
Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review
Directory of Open Access Journals (Sweden)
Kuen-Song Lin
2010-09-01
Full Text Available The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D ceria (CeO2 nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials.
Fundamentals of electrochemical science
Oldham, Keith
1993-01-01
Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals
International Nuclear Information System (INIS)
Townsend, R.P.
1993-01-01
In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)
Koji Nakamura; Yumi Saita
2007-01-01
This paper examines the long-term relationship between macro economic fundamentals and the weighted-average land price indicators, which are supposed to be more appropriate than the official land price indicators when analyzing their impacts on the macro economy. In many cases, we find the cointegrating relationships between the weighted-average land price indicators and the discounted present value of land calculated based on the macro economic fundamentals indicators. We also find that the ...
Fundamentals of structural dynamics
Craig, Roy R
2006-01-01
From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e
Information security fundamentals
Peltier, Thomas R
2013-01-01
Developing an information security program that adheres to the principle of security as a business enabler must be the first step in an enterprise's effort to build an effective security program. Following in the footsteps of its bestselling predecessor, Information Security Fundamentals, Second Edition provides information security professionals with a clear understanding of the fundamentals of security required to address the range of issues they will experience in the field.The book examines the elements of computer security, employee roles and r
Religious fundamentalism and conflict
Muzaffer Ercan Yılmaz
2006-01-01
This study provides an analytical discussion for the issue of religious fundamentalism and itsrelevance to conflict, in its broader sense. It is stressed that religious fundamentalism manifests itself in twoways: nonviolent intolerance and violent intolerance. The sources of both types of intolerance and theirconnection to conflict are addressed and discussed in detail. Further research is also suggested on conditionsconnecting religion to nonviolent intolerance so as to cope with the problem...
Mulholland, Henry
1968-01-01
Fundamentals of Statistics covers topics on the introduction, fundamentals, and science of statistics. The book discusses the collection, organization and representation of numerical data; elementary probability; the binomial Poisson distributions; and the measures of central tendency. The text describes measures of dispersion for measuring the spread of a distribution; continuous distributions for measuring on a continuous scale; the properties and use of normal distribution; and tests involving the normal or student's 't' distributions. The use of control charts for sample means; the ranges
Directory of Open Access Journals (Sweden)
Massimo Pigliucci
2006-06-01
Full Text Available The many facets of fundamentalism. There has been much talk about fundamentalism of late. While most people's thought on the topic go to the 9/11 attacks against the United States, or to the ongoing war in Iraq, fundamentalism is affecting science and its relationship to society in a way that may have dire long-term consequences. Of course, religious fundamentalism has always had a history of antagonism with science, and – before the birth of modern science – with philosophy, the age-old vehicle of the human attempt to exercise critical thinking and rationality to solve problems and pursue knowledge. “Fundamentalism” is defined by the Oxford Dictionary of the Social Sciences1 as “A movement that asserts the primacy of religious values in social and political life and calls for a return to a 'fundamental' or pure form of religion.” In its broadest sense, however, fundamentalism is a form of ideological intransigence which is not limited to religion, but includes political positions as well (for example, in the case of some extreme forms of “environmentalism”.
Thermoelectric Power Factor Limit of a 1D Nanowire
Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes
2018-04-01
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.
Valley-symmetric quasi-1D transport in ballistic graphene
Lee, Hu-Jong
We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.
Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization
Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.
2018-05-01
The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a
Fundamental vortices, wall-crossing, and particle-vortex duality
Energy Technology Data Exchange (ETDEWEB)
Hwang, Chiung; Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Yoshida, Yutaka [Research Institute for Mathematical Sciences, Kyoto University,Kyoto 606-8502 (Japan)
2017-05-18
We explore 1d vortex dynamics of 3d supersymmetric Yang-Mills theories, as inferred from factorization of exact partition functions. Under Seiberg-like dualities, the 3d partition function must remain invariant, yet it is not a priori clear what should happen to the vortex dynamics. We observe that the 1d quivers for the vortices remain the same, and the net effect of the 3d duality map manifests as 1d Wall-Crossing phenomenon; although the vortex number can shift along such duality maps, the ranks of the 1d quiver theory are unaffected, leading to a notion of fundamental vortices as basic building blocks for topological sectors. For Aharony-type duality, in particular, where one must supply extra chiral fields to couple with monopole operators on the dual side, 1d wall-crossings of an infinite number of vortex quiver theories are neatly and collectively encoded by 3d determinant of such extra chiral fields. As such, 1d wall-crossing of the vortex theory encodes the particle-vortex duality embedded in the 3d Seiberg-like duality. For N=4, the D-brane picture is used to motivate this 3d/1d connection, while, for N=2, this 3d/1d connection is used to fine-tune otherwise ambiguous vortex dynamics. We also prove some identities of 3d supersymmetric partition functions for the Aharony duality using this vortex wall-crossing interpretation.
A model with isospin doublet U(1)D gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2018-05-01
We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
Numerical simulation of Ge solar cells using D-AMPS-1D code
Energy Technology Data Exchange (ETDEWEB)
Barrera, Marcela, E-mail: barrera@tandar.cnea.gov.ar [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Rubinelli, Francisco [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC)-CONICET, Gueemes 3450, Santa Fe 3000 (Argentina); Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avenida Complutense 30, Madrid 28040 (Spain); Pla, Juan [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)
2012-08-15
A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.
Numerical simulation of Ge solar cells using D-AMPS-1D code
International Nuclear Information System (INIS)
Barrera, Marcela; Rubinelli, Francisco; Rey-Stolle, Ignacio; Plá, Juan
2012-01-01
A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.
Quantum electrodynamics with 1D arti cial atoms
DEFF Research Database (Denmark)
Javadi, Alisa
A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... as expected from the theory. The value of g(2)(0) is around 1.08. The results con_rm the observation of an on-chip giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to investigate the e_ect of Anderson localization on the electrodynamics of QDs in PCWs. A large...
Diffusion and particle mobility in 1D system
International Nuclear Information System (INIS)
Borman, V.D.; Johansson, B.; Skorodumova, N.V.; Tronin, I.V.; Tronin, V.N.; Troyan, V.I.
2006-01-01
The transport properties of one-dimensional (1D) systems have been studied theoretically. Contradictory experimental results on molecular transport in quasi-1D systems, such as zeolite structures, when both diffusion transport acceleration and the existence of the diffusion mode with lower particle mobility (single-file diffusion ( 2 >∼t 1/2 )) have been reported, are consolidated in a consistent model. Transition from the single-file diffusion mode to an Einstein-like diffusion 2 >∼t with diffusion coefficient increasing with the density has been predicted to occur at large observation times
Nonreciprocity of edge modes in 1D magnonic crystal
International Nuclear Information System (INIS)
Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J.W.; Krawczyk, M.; Nikitov, S.
2015-01-01
Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films. - Highlights: • Magnetostatic surface spin waves in 1D magnonic crystals were studied theoretically. • Mathematical model is based on plane wave method. • Mathematical model was applied to different types of magnonic crystals. • Stop band formation and nonreciprocity were obtained
Flood hazard assessment using 1D and 2D approaches
Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi
2013-04-01
The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2
International Nuclear Information System (INIS)
Kotyatkina, Anna I; Zhabinsky, Vladimir N; Khripach, Vladimir A
2001-01-01
The published data on the use of 1,3-dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural compounds and their analogues are systematised and reviewed. The bibliography includes 145 references.
Dick, Erik
2015-01-01
This book explores the working principles of all kinds of turbomachines. The same theoretical framework is used to analyse the different machine types. Fundamentals are first presented and theoretical concepts are then elaborated for particular machine types, starting with the simplest ones.For each machine type, the author strikes a balance between building basic understanding and exploring knowledge of practical aspects. Readers are invited through challenging exercises to consider how the theory applies to particular cases and how it can be generalised. The book is primarily meant as a course book. It teaches fundamentals and explores applications. It will appeal to senior undergraduate and graduate students in mechanical engineering and to professional engineers seeking to understand the operation of turbomachines. Readers will gain a fundamental understanding of turbomachines. They will also be able to make a reasoned choice of turbomachine for a particular application and to understand its operation...
Arguing against fundamentality
McKenzie, Kerry
This paper aims to open up discussion on the relationship between fundamentality and naturalism, and in particular on the question of whether fundamentality may be denied on naturalistic grounds. A historico-inductive argument for an anti-fundamentalist conclusion, prominent within the contemporary metaphysical literature, is examined; finding it wanting, an alternative 'internal' strategy is proposed. By means of an example from the history of modern physics - namely S-matrix theory - it is demonstrated that (1) this strategy can generate similar (though not identical) anti-fundamentalist conclusions on more defensible naturalistic grounds, and (2) that fundamentality questions can be empirical questions. Some implications and limitations of the proposed approach are discussed.
Smith, Peter
2013-01-01
Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera
Infosec management fundamentals
Dalziel, Henry
2015-01-01
Infosec Management Fundamentals is a concise overview of the Information Security management concepts and techniques, providing a foundational template for both experienced professionals and those new to the industry. This brief volume will also appeal to business executives and managers outside of infosec who want to understand the fundamental concepts of Information Security and how it impacts their business decisions and daily activities. Teaches ISO/IEC 27000 best practices on information security management Discusses risks and controls within the context of an overall information securi
Homeschooling and religious fundamentalism
Directory of Open Access Journals (Sweden)
Robert Kunzman
2010-10-01
Full Text Available This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to contemporary culture; suspicion of institutional authority and professional expertise; parental control and centrality of the family; and interweaving of faith and academics. It is important to recognize, however, that fundamentalism exists on a continuum; conservative religious homeschoolers resist liberal democratic values to varying degrees, and efforts to foster dialogue and accommodation with religious homeschoolers can ultimately help strengthen the broader civic fabric.
Fundamentals of continuum mechanics
Rudnicki, John W
2014-01-01
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ
Pragmatic electrical engineering fundamentals
Eccles, William
2011-01-01
Pragmatic Electrical Engineering: Fundamentals introduces the fundamentals of the energy-delivery part of electrical systems. It begins with a study of basic electrical circuits and then focuses on electrical power. Three-phase power systems, transformers, induction motors, and magnetics are the major topics.All of the material in the text is illustrated with completely-worked examples to guide the student to a better understanding of the topics. This short lecture book will be of use at any level of engineering, not just electrical. Its goal is to provide the practicing engineer with a practi
Fundamentals of reactor chemistry
International Nuclear Information System (INIS)
Akatsu, Eiko
1981-12-01
In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)
Directory of Open Access Journals (Sweden)
Manjunatha Narayanarao
2016-12-01
Full Text Available A new series of spiropyrrolidine compounds containing indole/indazole moieties as side chains have been accomplished via a one-pot multicomponent synthesis. The method uses the 1,3-dipolar cycloaddition reaction between N-alkylvinylindole/indazole and azomethine ylides, prepared in situ from cyclic/acyclic amino acids. The 1,3-dipolar cycloaddition proceeds efficiently under thermal conditions to afford the regio- and stereospecific cyclic adducts.
International Nuclear Information System (INIS)
Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles
2003-01-01
We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms
Liu, Yu; Begin-Colin, Sylvie; Pichon, Benoît P; Leuvrey, Cedric; Ihiawakrim, Dris; Rastei, Mircea; Schmerber, Guy; Vomir, Mircea; Bigot, Jean Yves
2014-10-21
The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.
Arrays of dipolar molecular rotors in Tris(o-phenylenedioxy) cyclotriphosphazene.
Zhao, Ke; Dron, Paul I; Kaleta, Jiří; Rogers, Charles T; Michl, Josef
2014-01-01
Regular two-dimensional or three-dimensional arrays of mutually interacting dipolar molecular rotors represent a worthy synthetic objective. Their dielectric properties, including possible collective behavior, will be a sensitive function of the location of the rotors, the orientation of their axes, and the size of their dipoles. Host-guest chemistry is one possible approach to gaining fine control over these factors. We describe the progress that has been achieved in recent years using tris (o-phenylenedioxy)cyclotriphosphazene as a host and a series of rod-shaped dipolar molecular rotors as guests. Structures of both surface and bulk inclusion compounds have been established primarily by solid-state nuclear magnetic resonance (NMR) and powder X-ray diffraction (XRD) techniques. Low-temperature dielectric spectroscopy revealed rotational barriers as low as 1.5 kcal/mol, but no definitive evidence for collective behavior has been obtained so far.
Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations
Energy Technology Data Exchange (ETDEWEB)
Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)
2016-12-01
We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.
Energy Technology Data Exchange (ETDEWEB)
Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetic, Nanjing University of Information Science and Technology, Nanjing, 210044 (China)
2015-02-23
In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.
Quantum-well exciton dipolar interaction: Polarization-dependence and Z-LT splitting
International Nuclear Information System (INIS)
Nguyen Ba An.
1996-12-01
We calculate the exciton dipolar interaction in a semiconductor quantum well. The explicit polarization-dependence, i.e, the dependence on both the exciton dipole moment μ-vector and its inplane wavevector k-vector is derived. The obtained results for the three modes (L, T and Z modes) of the long-range part of the dipolar interaction satisfy the polarization sum rule for any parameters. In the long wavelength limit there is a Z-LT splitting which decreases as the well width increases reflecting a crossover from strict 2D to quasi-2D. A rough crossover from quasi-2D to 3D is also described. (author). 18 refs, 4 figs
Energy Technology Data Exchange (ETDEWEB)
Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.
2007-07-01
Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.
International Nuclear Information System (INIS)
Ferdinand, A; Probst, A-C; Birringer, R; Michels, A; Kaul, S N
2014-01-01
We report on how nanocrystal size affects the critical behaviour of the rare-earth metal Gd near the ferromagnetic-to-paramagnetic phase transition. The asymptotic critical behaviour of the coarse-grained polycrystalline sample (with an average crystallite size of L≅100 μm) is that of a (pure) uniaxial dipolar ferromagnet, as is the case with single crystal Gd, albeit the width of the asymptotic critical region (ACR) is reduced. As the grain size approaches ∼30 nm, the ACR is so narrow that it could not be accessed in the present experiments. Inaccessibly narrow ACR for L ∼ 30 nm and continuous increase in the width of the ACR as L decreases from 16 to 9.5 nm basically reflect a crossover to the random uniaxial dipolar fixed point caused by the quenched random exchange disorder prevalent at the internal interfaces (grain boundaries). (paper)
Energy Technology Data Exchange (ETDEWEB)
Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)
2013-08-15
High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.
International Nuclear Information System (INIS)
Sarrafi, Yaghoub; Asghari, Asieh; Sadatshahabi, Marzieh; Hamzehloueian, Mahshid; Alimohammadi, Kamal
2013-01-01
An efficient one-pot three-component procedure for the synthesis of novel spiroacenaphthene pyrroloisoquinolines with high regioselectivity is described. These compounds were prepared from 1,3-dipolar cycloaddition of an azomethine ylide generated from acenaphthenequinone and 1,2,3,4-tetrahydroisoquinoline via [1,5]-H shift, with chalcone and nitrostyrene derivatives as dipolarophiles. The structure and stereochemistry of the cycloadducts have been established by single crystal X-ray structure and spectroscopic techniques. (author)
Enantioselective 1,3-dipolar cycloadditions of diazoacetates with electron-deficient olefins.
Sibi, Mukund P; Stanley, Levi M; Soeta, Takahiro
2007-04-12
[reaction: see text] A general strategy for highly enantioselective 1,3-dipolar cycloaddition of diazoesters to beta-substituted, alpha-substituted, and alpha,beta-disubstituted alpha,beta-unsaturated pyrazolidinone imides is described. Cycloadditions utilizing less reactive alpha,beta-disubstituted dipolarophiles require elevated reaction temperatures, but still provide the corresponding pyrazolines with excellent enantioselectivities. Finally, an efficient synthesis of (-)-manzacidin A employing this cycloaddition methodology as a key step is illustrated.
NMR studies on 1,3-dipolar cycloaddition of nitrile oxides to norbornenes
International Nuclear Information System (INIS)
Gucma, Mirosław; Gołębiewski, W. Marek; Krawczyk, Maria
2013-01-01
The 1,3-dipolar cycloaddition reaction of nitrile oxides to norbornenes substituted with an acrylate-derived moiety was examined. Only adducts to norbornene system were formed with a good exo selectivity and complete site-selectivity. Structures of the products were elucidated by an extensive application of electrospray ionization-mass spectrometry (ESI-MS) and 2D 1 H and 13 C nuclear magnetic resonance (NMR). (author)
On nonlinear dynamics of a dipolar exciton BEC in two-layer graphene
International Nuclear Information System (INIS)
Berman, O.L.; Kezerashvili, R.Ya.; Kolmakov, G.V.
2012-01-01
The nonlinear dynamics of a Bose–Einstein condensate (BEC) of dipolar excitons in two-layer graphene is studied. It is demonstrated that a steady turbulent state is formed in this system. A comparison between the dynamics of the exciton BEC in two-layer graphene and those in GaAs/AlGaAs coupled quantum wells shows that turbulence is a general effect in a BEC.
The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization
Ono, Y.; Nosé, M.; Christon, S. P.; Lui, A. T. Y.
2009-05-01
We statistically examine changes in the composition of two different ion species, proton and oxygen ions, in the near-Earth plasma sheet (X = -16 R E ˜ -6 R E ) during substorm-associated dipolarization. We use 10 years of energetic (9-212 keV/e) ion data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particles and ion composition (EPIC) instrument on board the Geotail spacecraft. The results are as follows: (1) Although the percentage increase in the energy density of O+ ions before and after a dipolarization exceeds that of H+ ions in the low-energy range (9-36 keV/e), this property is not evident in the high-energy range (56-212 keV/e); (2) the energy spectrum of H+ and that of O+ become harder after dipolarization in almost all events; and (3) in some events the energy spectrum of O+ becomes harder than that of H+ as reported by previous studies, and, importantly, in other events, the spectrum of H+ becomes harder than that of O+. In order to investigate what mechanism causes these observational results, we focus on magnetic field fluctuations during dipolarization. It is found that the increase of the spectrum slope is positively correlated with the power of waves whose frequencies are close to the gyrofrequency of H+ or O+, respectively (the correlation coefficient is 0.48 for H+ and 0.68 for O+). In conclusion, ions are nonadiabatically accelerated by the electric field induced by the magnetic field fluctuations whose frequencies are close to their gyrofrequencies.
Long-range dipolar order and dispersion forces in polar liquids
Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene
2017-11-01
Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.
NMR studies on 1,3-dipolar cycloaddition of nitrile oxides to norbornenes
Energy Technology Data Exchange (ETDEWEB)
Gucma, Miroslaw; Golebiewski, W. Marek; Krawczyk, Maria, E-mail: golebiewski@ipo.waw.pl [Institute of Industrial Organic Chemistry, Warsaw (Poland)
2013-05-15
The 1,3-dipolar cycloaddition reaction of nitrile oxides to norbornenes substituted with an acrylate-derived moiety was examined. Only adducts to norbornene system were formed with a good exo selectivity and complete site-selectivity. Structures of the products were elucidated by an extensive application of electrospray ionization-mass spectrometry (ESI-MS) and 2D {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR). (author)
Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures
International Nuclear Information System (INIS)
Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido
2009-01-01
We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.
Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures
Energy Technology Data Exchange (ETDEWEB)
Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf [Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium); Maes, Guido, E-mail: Jian.Ye@imec.b [Chemistry Department, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium)
2009-11-18
We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.
Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures
Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf
2009-11-01
We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.
Energy Technology Data Exchange (ETDEWEB)
Sarrafi, Yaghoub; Asghari, Asieh; Sadatshahabi, Marzieh, E-mail: ysarrafi@umz.ac.ir [Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran (Iran, Islamic Republic of); Hamzehloueian, Mahshid [Department of Chemistry, Jouybar Branch, Islamic Azad University, Jouybar (Iran, Islamic Republic of); Alimohammadi, Kamal [Department of Chemistry, Dr. Shariati Branch, University of Farhangian, Sari (Iran, Islamic Republic of)
2013-12-01
An efficient one-pot three-component procedure for the synthesis of novel spiroacenaphthene pyrroloisoquinolines with high regioselectivity is described. These compounds were prepared from 1,3-dipolar cycloaddition of an azomethine ylide generated from acenaphthenequinone and 1,2,3,4-tetrahydroisoquinoline via [1,5]-H shift, with chalcone and nitrostyrene derivatives as dipolarophiles. The structure and stereochemistry of the cycloadducts have been established by single crystal X-ray structure and spectroscopic techniques. (author)
Crystal structure, characterization and magnetic properties of a 1D ...
Indian Academy of Sciences (India)
Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA. Regular Article Volume 128 Issue 6 June 2016 pp 913-920 ...
Quantitative 1D saturation profiles on chalk by NMR
DEFF Research Database (Denmark)
Olsen, Dan; Topp, Simon; Stensgaard, Anders
1996-01-01
Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...
Anti-cytokine therapies in T1D
DEFF Research Database (Denmark)
Nepom, Gerald T; Ehlers, Mario; Mandrup-Poulsen, Thomas
2013-01-01
Therapeutic targeting of proinflammatory cytokines is clinically beneficial in several autoimmune disorders. Several of these cytokines are directly implicated in the pathogenesis of type 1 diabetes, suggesting opportunities for design of clinical trials in type 1 diabetes that incorporate select...... suitable for modulating the immune response in T1D....
Non-cooperative Brownian donkeys: A solvable 1D model
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Inverse parameter identification for a branching 1 D arterial network
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2012-07-01
Full Text Available In this paper we investigate the invertability of a branching 1 D arterial blood flow network. We limit our investigation to a single bifurcating vessel, where the material properties, unloaded areas and variables characterizing the input and output...
Wakker, K.F.
2015-01-01
This book deals with the motion of the center of mass of a spacecraft; this discipline is generally called astrodynamics. The book focuses on an analytical treatment of the motion of spacecraft and provides insight into the fundamentals of spacecraft orbit dynamics. A large number of topics are
International Nuclear Information System (INIS)
Wright, A.C.D.
2002-01-01
This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations
Fundamentals and Optimal Institutions
DEFF Research Database (Denmark)
Gonzalez-Eiras, Martin; Harmon, Nikolaj Arpe; Rossi, Martín
2016-01-01
of regulatory institutions such as revenue sharing, salary caps or luxury taxes. We show, theoretically and empirically, that these large differences in adopted institutions can be rationalized as optimal responses to differences in the fundamental characteristics of the sports being played. This provides...
Fundamentals of convolutional coding
Johannesson, Rolf
2015-01-01
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual
Industrial separation processes : fundamentals
Haan, de A.B.; Bosch, Hans
2013-01-01
Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,
Fundamental partial compositeness
DEFF Research Database (Denmark)
Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea
2016-01-01
We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Unde...
Grenoble Fundamental Research Department
International Nuclear Information System (INIS)
1979-01-01
A summary of the various activities of the Fundamental Research Institute, Grenoble, France is given. The following fields are covered: Nuclear physics, solid state physics, physical chemistry, biology and advanced techniques. Fore more detailed descriptions readers are referred to scientific literature [fr
Fundamentals of Fire Phenomena
DEFF Research Database (Denmark)
Quintiere, James
analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...
Fundamental Metallurgy of Solidification
DEFF Research Database (Denmark)
Tiedje, Niels
2004-01-01
The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from...
Fundamentals of Diesel Engines.
Marine Corps Inst., Washington, DC.
This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…
International Nuclear Information System (INIS)
Thomas, R.H.
1980-01-01
This introduction discusses advances in the fundamental sciences which underlie the applied science of health physics and radiation protection. Risk assessments in nuclear medicine are made by defining the conditions of exposure, identification of adverse effects, relating exposure with effect, and estimation of the overall risk for ionizing radiations
Fundamentals of plasma physics
Bittencourt, J A
1986-01-01
A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.
Fast fundamental frequency estimation
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom
2017-01-01
Modelling signals as being periodic is common in many applications. Such periodic signals can be represented by a weighted sum of sinusoids with frequencies being an integer multiple of the fundamental frequency. Due to its widespread use, numerous methods have been proposed to estimate the funda...
Two-phase 1D+1D model of a DMFC: development and validation on extensive operating conditions range
Energy Technology Data Exchange (ETDEWEB)
Casalegno, A.; Marchesi, R.; Parenti, D. [Dipartimento di Energetica, Politecnico di Milano (Italy)
2008-02-15
A two-phase 1D+1D model of a direct methanol fuel cell (DMFC) is developed, considering overall mass balance, methanol transport in gas phase through anode diffusion layer, methanol and water crossover. The model is quantitatively validated on an extensive range of operating conditions, 24 polarisation curves. The model accurately reproduces DMFC performance in the validation range and, outside this, it is able to predict values under feasible operating conditions. Finally, the estimations of methanol crossover flux are qualitatively and quantitatively similar to experimental measures and the main local quantities' trends are coherent with results obtained with more complex models. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions
Keleş, Ahmet; Zhao, Erhai
2018-05-01
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Topological defect formation in rotating binary dipolar Bose–Einstein condensate
International Nuclear Information System (INIS)
Zhang, Xiao-Fei; Han, Wei; Jiang, Hai-Feng; Liu, Wu-Ming; Saito, Hiroki; Zhang, Shou-Gang
2016-01-01
We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point out that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.
Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations
Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.
2009-06-01
We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.
Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations
Directory of Open Access Journals (Sweden)
O. Le Contel
2009-06-01
Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.
Bose-Einstein condensation and study of inelastic collisions due to dipolar interactions
International Nuclear Information System (INIS)
Beaufils, Q.
2009-01-01
Its large magnetic moment in the ground state makes chromium a good candidate for the study of dipolar interactions in a degenerate gas. We have built an experimental setup for trapping and cooling atoms of "5"2Cr down to Bose-Einstein condensation (BEC). Evaporative cooling takes place in a purely optical trap, which is loaded from the magneto-optical trap using a novel process of continuous accumulation of metastable states. We produce a condensate of typically 15000 atoms in a time of 15 s. We have studied the possibility to bring all the Zeeman substates of a chromium BEC to degeneracy in a non-zero static magnetic field, using a radiofrequency (rf) magnetic field, and demonstrated a new process of rf-assisted dipolar relaxation. We have also studied a narrow Feshbach resonance induced by dipolar interaction, which implies a d-wave collisional channel. We analyzed this resonance in the presence of a rf magnetic field and we reinterpreted rf association of molecules as a mere Feshbach resonance between rf dressed states. Finally, we have set up an optical lattice in the perspective of studying the effects of dipole-dipole interactions in reduced dimension. (author)
Phase transitions to dipolar clusters and charge density waves in high T{sub c} superconductors
Energy Technology Data Exchange (ETDEWEB)
Saarela, M., E-mail: Mikko.Saarela@oulu.fi [Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Kusmartsev, F.V. [Department of Physics, Loughborough University, LE11 3TU (United Kingdom)
2017-02-15
We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.
Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.
2018-04-01
Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.
Phase transitions to dipolar clusters and charge density waves in high T_c superconductors
International Nuclear Information System (INIS)
Saarela, M.; Kusmartsev, F.V.
2017-01-01
We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.
Fundamentals of differential beamforming
Benesty, Jacob; Pan, Chao
2016-01-01
This book provides a systematic study of the fundamental theory and methods of beamforming with differential microphone arrays (DMAs), or differential beamforming in short. It begins with a brief overview of differential beamforming and some popularly used DMA beampatterns such as the dipole, cardioid, hypercardioid, and supercardioid, before providing essential background knowledge on orthogonal functions and orthogonal polynomials, which form the basis of differential beamforming. From a physical perspective, a DMA of a given order is defined as an array that measures the differential acoustic pressure field of that order; such an array has a beampattern in the form of a polynomial whose degree is equal to the DMA order. Therefore, the fundamental and core problem of differential beamforming boils down to the design of beampatterns with orthogonal polynomials. But certain constraints also have to be considered so that the resulting beamformer does not seriously amplify the sensors’ self noise and the mism...
Frohlich, Cliff
Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).
Fundamental superstrings as holograms
International Nuclear Information System (INIS)
Dabholkar, A.; Murthy, S.
2007-06-01
The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d ( d = 3, . . . , 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings. (author)
Fundamental superstrings as holograms
International Nuclear Information System (INIS)
Dabholkar, Atish; Murthy, Sameer
2008-01-01
The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d (d = 3, ..., 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings
2004-01-01
Discussing what is fundamental in a variety of fields, biologist Richard Dawkins, physicist Gerardus 't Hooft, and mathematician Alain Connes spoke to a packed Main Auditorium at CERN 15 October. Dawkins, Professor of the Public Understanding of Science at Oxford University, explained simply the logic behind Darwinian natural selection, and how it would seem to apply anywhere in the universe that had the right conditions. 't Hooft, winner of the 1999 Physics Nobel Prize, outlined some of the main problems in physics today, and said he thinks physics is so fundamental that even alien scientists from another planet would likely come up with the same basic principles, such as relativity and quantum mechanics. Connes, winner of the 1982 Fields Medal (often called the Nobel Prize of Mathematics), explained how physics is different from mathematics, which he described as a "factory for concepts," unfettered by connection to the physical world. On 16 October, anthropologist Sharon Traweek shared anecdotes from her ...
International Nuclear Information System (INIS)
Bateman, J.E.
1994-01-01
The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)
Fundamentals of Filament Interaction
2017-05-19
AFRL-AFOSR-VA-TR-2017-0110 FUNDAMENTALS OF FILAMENT INTERACTION Martin Richardson UNIVERSITY OF CENTRAL FLORIDA Final Report 06/02/2017 DISTRIBUTION...of Filament Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA95501110001 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Richardson 5d. PROJECT...NAME OF RESPONSIBLE PERSON Martin Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) 407-823-6819 Standard Form
Fundamentals of radiological protection
International Nuclear Information System (INIS)
Wells, J.; Mill, A.J.; Charles, M.W.
1978-05-01
The basic processes of living cells which are relevant to an understanding of the interaction of ionizing radiation with man are described. Particular reference is made to cell death, cancer induction and genetic effects. This is the second of a series of reports which present the fundamentals necessary for an understanding of the bases of regulatory criteria such as those recommended by the International Commision on Radiological Protection (ICRP). Others consider basic radiation physics and the biological effects of ionizing radiation. (author)
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Fundamentals of queueing theory
Gross, Donald; Thompson, James M; Harris, Carl M
2013-01-01
Praise for the Third Edition ""This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented.""-IIE Transactions on Operations Engineering Thoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than pre
High voltage engineering fundamentals
Kuffel, E; Hammond, P
1984-01-01
Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over
Biomedical engineering fundamentals
Bronzino, Joseph D
2014-01-01
Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia
International Nuclear Information System (INIS)
Wollaber, Allan Benton
2016-01-01
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Fundamental concepts on energy
International Nuclear Information System (INIS)
Rodriguez, M.H.
1998-01-01
The fundamental concepts on energy and the different forms in which it is manifested are presented. Since it is possible to transform energy in a way to other, the laws that govern these transformations are discussed. The energy transformation processes are an essential compound in the capacity humanizes to survive and be developed. The energy use brings important economic aspects, technical and political. Because this, any decision to administer energy system will be key for our future life
Fundamentals of powder metallurgy
International Nuclear Information System (INIS)
Khan, I.H.; Qureshi, K.A.; Minhas, J.I.
1988-01-01
This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)
Fundamentals of Physical Volcanology
Marsh, Bruce
2010-04-01
Fundamentals haunt me. Certain words ignite unavoidable trains of thought, trains that begin in a cascade, unexpectedly leaping chasm after chasm, rushing from single words to whole paragraphs to full books to men's lives. So it is with me with seeing the word “fundamental” in print. I cannot evade the euphoric excitement of thinking that someone has found something terribly original and simple, understandable by every journeyman, explaining everything.
Fundamentals of radiological protection
International Nuclear Information System (INIS)
Mill, A.J.; Charles, M.W.; Wells, J.
1978-04-01
A review is presented of basic radiation physics with particular relevance to radiological protection. The processes leading to the production and absorption of ionising radiation are outlined, and the important dosimetric quantities and their units of measurements. The review is the first of a series of reports presenting the fundamentals necessary for an understanding of the basis of regulatory criteria such as those recommended by the ICRP. (author)
Energy Technology Data Exchange (ETDEWEB)
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Fundamentals of Structural Geology
Pollard, David D.; Fletcher, Raymond C.
2005-09-01
Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors
Burov, Alexey
Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?
Sandia reactor kinetics codes: SAK and PK1D
International Nuclear Information System (INIS)
Pickard, P.S.; Odom, J.P.
1978-01-01
The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time
Developing 1D nanostructure arrays for future nanophotonics
Directory of Open Access Journals (Sweden)
Cooke DG
2006-01-01
Full Text Available AbstractThere is intense and growing interest in one-dimensional (1-D nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS templated growth using nano-channel alumina (NCA, and deposition of 1-D structures with glancing angle deposition (GLAD. As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers.
Partial breaking of N = 1, D = 10 supersymmetry
International Nuclear Information System (INIS)
Bellucci, S.
1999-01-01
In this paper is described the spontaneous partial breaking of N =1, D =10 supersymmetry to N = (1, 0), d = 6 and its dimensionally-reduced versions in the framework of nonlinear realizations. The basic Goldstone superfield is N = (1, 0), d = 6 hyper multiplet superfield satisfying a nonlinear generalization of the standard hyper multiplet constraint. It is here interpreted the generalized constraint as the manifestly world volume supersymmetric form of equations of motion of the type 1 super 5-brane in D 10. The related issues here addressed are a possible existence of brane extension of off-shell hyper multiplet actions, the possibility to utilize vector N = (1, 0), d =6 supermultiplet as the Goldstone one, and the description of 1/4 breaking of N =1, D = 11 supersymmetry
Development of 1D Liner Compression Code for IDL
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Applications of AMPS-1D for solar cell simulation
Zhu, Hong; Kalkan, Ali Kaan; Hou, Jingya; Fonash, Stephen J.
1999-03-01
The AMPS-1D PC computer program is now used by over 70 groups world-wide for detector and solar cell analysis. It has proved to be a very powerful tool in understanding device operation and physics for single crystal, poly-crystalline and amorphous structures. For example, AMPS-1D has been successful in explaining the "red kink" [1] and the "transient effect" in CdS/CIGS poly-crystalline solar cells. It has been used to show that thin film poly-Si structures, with reasonable light trapping, are capable of competitive solar cell conversion efficiencies. In the case of a-Si:H structures, it has been used, for example, to settle the discrepancies in bandgap measurement, to predict the effective QE>1 phenomenon later seen in these materials [2], to determine the relative roles of interface and bulk properties, and to point the direction toward 16% triple junction structures. In general AMPS-1D is used for cell and detector design, material parameter sensitivity studies, and parameter extraction. Recently we have shown that it can be used to determine optimum structure and light and voltage biasing conditions in the material parameter extraction function. Information on AMPS can be found at www.psu.edu/dept/AMPS/amps_web/AMPS.html and at other web sites set up by user groups.
Coupling of Nod1D and HOTCHANNEL: static case
International Nuclear Information System (INIS)
Gomez T, A.M.; Ovando C, R.
2003-01-01
In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)
MARG1D: One dimensional outer region matching data code
International Nuclear Information System (INIS)
Tokuda, Shinji; Watanabe, Tomoko.
1995-08-01
A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)
Directory of Open Access Journals (Sweden)
Duane Knudson
2007-09-01
Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones
Mathematical analysis fundamentals
Bashirov, Agamirza
2014-01-01
The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o
Fundamentals of semiconductor devices
Lindmayer, Joseph
1965-01-01
Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.
Fundamentals of radiological protection
International Nuclear Information System (INIS)
Charles, M.W.; Wells, J.; Mill, A.J.
1978-04-01
A brief review is presented of the early and late effects of ionising radiation on man, with particular emphasis on those aspects of importance in radiological protection. The terminology and dose response curves, are explained. Early effects on cells, tissues and whole organs are discussed. Late somatic effects considered include cancer and life-span shortening. Genetic effects are examined. The review is the third of a series of reports which present the fundamentals necessary for an understanding of the basis of regulatory criteria, such as those of the ICRP. (u.K.)
Fundamental concepts of mathematics
Goodstein, R L
Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people
Fundamental composite electroweak dynamics
DEFF Research Database (Denmark)
Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying
2017-01-01
Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....
Fundamentals of Project Management
Heagney, Joseph
2011-01-01
With sales of more than 160,000 copies, Fundamentals of Project Management has helped generations of project managers navigate the ins and outs of every aspect of this complex discipline. Using a simple step-by-step approach, the book is the perfect introduction to project management tools, techniques, and concepts. Readers will learn how to: ò Develop a mission statement, vision, goals, and objectives ò Plan the project ò Create the work breakdown structure ò Produce a workable schedule ò Understand earned value analysis ò Manage a project team ò Control and evaluate progress at every stage.
Morris, Carla C
2015-01-01
Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills. In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets. Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay. Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions
Fundamentals of attosecond optics
Chang, Zenghu
2011-01-01
Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th
Scientific and technological fundamentals
International Nuclear Information System (INIS)
Roethemeyer, H.
1991-01-01
Specific ultimate repositories in a given geological formation have to be assessed on the basis of a safety analysis, taking into account the site specifics of the repository system 'Overall geological situation - ultimate disposal facility - waste forms'. The fundamental possibilities and limits of waste disposal are outlined. Orientation values up to about 10 6 years are derived for the isolation potential of ultimate disposal mines, and about 10 4 years for the calculation of effects of emplaced radioactive wastes also on man. (DG) [de
Fundamental of biomedical engineering
Sawhney, GS
2007-01-01
About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta
Fundamental formulas of physics
1960-01-01
The republication of this book, unabridged and corrected, fills the need for a comprehensive work on fundamental formulas of mathematical physics. It ranges from simple operations to highly sophisticated ones, all presented most lucidly with terms carefully defined and formulas given completely. In addition to basic physics, pertinent areas of chemistry, astronomy, meteorology, biology, and electronics are also included.This is no mere listing of formulas, however. Mathematics is integrated into text, for the most part, so that each chapter stands as a brief summary or even short textbook of
Franc, Jean-Pierre
2005-01-01
The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently. Furthermore, it is hoped that a better knowledge of the cavitation phenomenon will allow engineers to create systems using it positively. Examples in the literature show the feasibility of this approach.
Getzlaff, Mathias
2007-01-01
In the last decade a tremendous progress has taken place in understanding the basis of magnetism, especially in reduced dimensions. In the first part, the fundamentals of magnetism are conveyed for atoms and bulk-like solid-state systems providing a basis for the understanding of new phenomena which exclusively occur in low-dimensional systems as the giant magneto resistance. This wide field is discussed in the second part and illustrated by copious examples. This textbook is particularly suitable for graduate students in physical and materials sciences. It includes numerous examples, exercises, and references.
DOE fundamentals handbook: Chemistry
International Nuclear Information System (INIS)
1993-01-01
The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems
Electronic circuits fundamentals & applications
Tooley, Mike
2015-01-01
Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The
Nanomachines fundamentals and applications
Wang, Joseph
2013-01-01
This first-hand account by one of the pioneers of nanobiotechnology brings together a wealth of valuable material in a single source. It allows fascinating insights into motion at the nanoscale, showing how the proven principles of biological nanomotors are being transferred to artificial nanodevices.As such, the author provides engineers and scientists with the fundamental knowledge surrounding the design and operation of biological and synthetic nanomotors and the latest advances in nanomachines. He addresses such topics as nanoscale propulsions, natural biomotors, molecular-scale machin
Saleh, Bahaa E A
2007-01-01
Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan
DOE fundamentals handbook: Chemistry
International Nuclear Information System (INIS)
1993-01-01
This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)
Coupling of Nod1D and HOTCHANNEL: static case; Acoplamiento de Nod1D y HOTCHANNEL: caso estatico
Energy Technology Data Exchange (ETDEWEB)
Gomez T, A.M. [IPN-ESFM, 07738 Mexico D.F. (Mexico); Ovando C, R. [IIE-Gcia. de Energia Nuclear, Cuernavaca, Morelos (Mexico)]. e-mail: rovando@iie.org.mx
2003-07-01
In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)
Quantum simulation of 2D topological physics in a 1D array of optical cavities.
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-07-06
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
Testing Our Fundamental Assumptions
Kohler, Susanna
2016-06-01
Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these
Overduin, James; Everitt, Francis; Worden, Paul; Mester, John
2012-09-01
The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 1013 to one part in 1018 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels.
International Nuclear Information System (INIS)
Overduin, James; Everitt, Francis; Worden, Paul; Mester, John
2012-01-01
The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 10 13 to one part in 10 18 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels. (paper)
Quivers, words and fundamentals
International Nuclear Information System (INIS)
Mattioli, Paolo; Ramgoolam, Sanjaye
2015-01-01
A systematic study of holomorphic gauge invariant operators in general N=1 quiver gauge theories, with unitary gauge groups and bifundamental matter fields, was recently presented in http://dx.doi.org/10.1007/JHEP04(2013)094. For large ranks a simple counting formula in terms of an infinite product was given. We extend this study to quiver gauge theories with fundamental matter fields, deriving an infinite product form for the refined counting in these cases. The infinite products are found to be obtained from substitutions in a simple building block expressed in terms of the weighted adjacency matrix of the quiver. In the case without fundamentals, it is a determinant which itself is found to have a counting interpretation in terms of words formed from partially commuting letters associated with simple closed loops in the quiver. This is a new relation between counting problems in gauge theory and the Cartier-Foata monoid. For finite ranks of the unitary gauge groups, the refined counting is given in terms of expressions involving Littlewood-Richardson coefficients.
Cell Migration in 1D and 2D Nanofiber Microenvironments.
Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J
2018-03-01
Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.
Extended-Range Ultrarefractive 1D Photonic Crystal Prisms
Ting, David Z.
2007-01-01
A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained
Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations
Directory of Open Access Journals (Sweden)
O. Le Contel
2009-06-01
Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T_{⊥e}/T_{||e}>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β_{||e} (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.
Energy Technology Data Exchange (ETDEWEB)
Moscoso-Londoño, O., E-mail: omoscoso@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); Tancredi, P. [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), CONICET, C1063ACV Buenos Aires (Argentina); Muraca, D. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC (UFABC), Av. Dos Estados, 5001, Santo André, SP (Brazil); Mendoza Zélis, P.; Coral, D.; Fernández van Raap, M.B. [Instituto de Física, Universidad Nacional de La Plata (UNLP), CONICET, CC.67, 1900 La Plata, Buenos Aires (Argentina); Wolff, U.; Neu, V.; Damm, C. [IFW Dresden, Leibniz Institute for Solid State and Materials Research, Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Oliveira, C.L.P. de [Instituto de Física, Universidade de São Paulo, São Paulo 05314970 (Brazil); Pirota, K.R. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); and others
2017-04-15
Controlled magnetic granular materials with different concentrations of magnetite nanoparticles immersed in a non-conducting polymer matrix were synthesized and, their macroscopic magnetic observables analyzed in order to advance towards a better understanding of the magnetic dipolar interactions and its effects on the obtained magnetic parameters. First, by means of X-ray diffraction, transmission electron microscopy, small angle X-ray scattering and X-ray absorption fine structure an accurate study of the structural properties was carried out. Then, the magnetic properties were analyzed by means of different models, including those that consider the magnetic interactions through long-range dipolar forces as: the Interacting Superparamagnetic Model (ISP) and the Vogel-Fulcher law (V-F). In systems with larger nanoparticle concentrations, magnetic results clearly indicate that the role played by the dipolar interactions affects the magnetic properties, giving rise to obtaining magnetic and structural parameters without physical meaning. Magnetic parameters as the effective anisotropic constant, magnetic moment relaxation time and mean blocking temperature, extracted from the application of the ISP model and V-F Law, were used to simulate the zero-field-cooling (ZFC) and field-cooling curves (FC). A comparative analysis of the simulated, fitted and experimental ZFC/FC curves suggests that the current models depict indeed our dilute granular systems. Notwithstanding, for concentrated samples, the ISP model infers that clustered nanoparticles are being interpreted as single entities of larger magnetic moment and volume, effect that is apparently related to a collective and complex magnetic moment dynamics within the cluster. - Highlights: • Nanoparticle architecture into matrices determines the composite magnetic response. • Magnetically diluted or compacted systems are useful to study magnetism at nanoscale. • Particle aggregation into the matrices was examined
Ultrafast responses of dipolar and octupolar compounds with dipicolinate as an electron acceptor
Energy Technology Data Exchange (ETDEWEB)
Wang, Yaochuan, E-mail: ycwang@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Siyuan; Liu, Dajun; Wang, Guiqiu [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Xiao, Haibo [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)
2016-11-01
Two dipolar compounds with dipicolinate as electron acceptor group named trans-dimethyl-4-[4’-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (M-1), trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (P-1) as well as a P-1 based multi-branched octupolar compound {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N,N-bis{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]} aniline (P-3) with intense two-photon fluorescence emission properties are systematically investigated by using steady-state absorption and fluorescence spectroscopy, Z-scan, and two-photon excited fluorescence (TPF) method. The two-photon absorption cross section of octupolar compound P-3 in THF solution is determined to be 376 GM, which is approximately 12 times greater than that of dipolar counterpart P-1 (32 GM). Transient absorption spectroscopy is employed to investigate the excited state dynamics of the dipolar and octupolar compounds. The formation and relaxation lifetimes of the intra-molecular charge transfer (ICT) state are determined to be in the ranges of several picoseconds and several-hundreds of picoseconds, respectively, for all the three compounds in THF solutions. An extended π-conjugated system and increased intra-molecular cooperative effect are responsible for the observed large two-photon absorption character. - Highlights: • Octupolar compound gain 12-fold enhancement of two photon absorption. • Dynamic properties of intra-molecular charge transfer state are determined. • Cooperative effect is responsible for great increase of two photon character.
Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts
Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang
2017-05-01
Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.
1D energy transport in a strongly scattering laboratory model
International Nuclear Information System (INIS)
Wijk, Kasper van; Scales, John A.; Haney, Matthew
2004-01-01
Radiative transfer (RT) theory is often invoked to describe energy propagation in strongly scattering media. Fitting RT to measured wave field intensities is rather different at late times, when the transport is diffusive, than at intermediate times (around one extinction mean free time), when ballistic and diffusive behavior coexist. While there are many examples of late-time RT fits, we describe ultrasonic multiple scattering measurements with RT over the entire range of times--from ballistic to diffusive. In addition to allowing us to retrieve the scattering and absorption mean free paths independently, our results also support theoretical predictions in 1D that suggest an intermediate regime of diffusive (nonlocalized) behavior
ESO science data product standard for 1D spectral products
Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg
2016-07-01
The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.
1D-transport properties of single superconducting lead nanowires
DEFF Research Database (Denmark)
Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.
2003-01-01
of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...
1-D blood flow modelling in a running human body.
Szabó, Viktor; Halász, Gábor
2017-07-01
In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.
1D equation for toroidal momentum transport in a tokamak
International Nuclear Information System (INIS)
Rozhansky, V A; Senichenkov, I Yu
2010-01-01
A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.
1D models for condensation induced water hammer in pipelines
International Nuclear Information System (INIS)
Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas
2013-01-01
Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)
1D models for condensation induced water hammer in pipelines
Energy Technology Data Exchange (ETDEWEB)
Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)
2013-03-15
Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)
Absolute carrier phase effects in the two-color excitation of dipolar molecules
International Nuclear Information System (INIS)
Brown, Alex; Meath, W.J.; Kondo, A.E.
2002-01-01
The pump-probe excitation of a two-level dipolar (d≠0) molecule, where the pump frequency is tuned to the energy level separation while the probe frequency is extremely small, is examined theoretically as an example of absolute phase control of excitation processes. The state populations depend on the probe field's absolute carrier phase but are independent of the pump field's absolute carrier phase. Interestingly, the absolute phase effects occur for pulse durations much longer and field intensities much weaker than those required to see such effects in single pulse excitation
Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench.
Khatami, Ehsan; Pupillo, Guido; Srednicki, Mark; Rigol, Marcos
2013-08-02
We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find indications that they fail if the system is integrable both before and after quenching.
Synthesis and 1,3-Dipolar Cycloaddition Reactions of Chiral Maleimides
Directory of Open Access Journals (Sweden)
Lubor Fisera
1997-02-01
Full Text Available New routes to the synthesis of various novel chiral maleimides are described. The oxabicyclic anhydride 2 readily available exo-Diels-Alder adduct of furan and maleic anhydride was used as a vehicle, which in turn reacted with hydrochlorides of amino acids 3a-f in the presence of Et3N with release of furan to give the requisite novel chiral imides 4a-f in good to moderate yields. The stereoselectivity of 1,3-dipolar cycloaddition of nitrile oxides with prepared chiral imides 4a-f is investigated.
Directory of Open Access Journals (Sweden)
Wilson Silva do Nascimento
2010-04-01
Full Text Available Naphthoquinones are known according to their important bio-activities, such as their antitumoral and topoisomerase inhibition properties. From 2-azido (3 or 2,3-diacetylene-1,4-naphthoquinone (4 it was possible to obtain triazole derivatives (naphthoquinonic. This work describes the synthesis of two novel molecules, with triazole groups linked to 1,4-naphthoquinone using the 1,3-dipolar cycloaddition and Sonogashira reactions. The synthetic strategy followed two routes (Scheme 1. First, we synthesized the 2-bromo-1,4-naphthoquinone (2, yield 98% by using Br2 and CH3CO2H, and then used it to obtain 2-azido-1,4-naphthoquinone (3, yield 62% from compound 1, along with ethanolic solution (reflux and NaN3. Finally, we prepared 1,2,3-triazole compounds (4a, b by 1,3-dipolar cycloaddition, involving compound (3 and terminal acetylenes (phenylacetylene, a and glycoside (b using Cu(OAc2 and ascorbate, under argon atmosphere. During the second step, 2,3-dibromo-1,4-naphthoquinone was prepared using Br2/CH2Cl2 at room temperature. From compound (5 it was possible to synthesize (6, catalyzed by Pd(PPh32Cl2/CuI/Et3N, under argon atmosphere, in 40% yield. The 1,3-dipolar cycloaddition reactions involving 2-azido-1,4-naphthoquinone (3 and alkynes (a, yield 23% and b, yield 30% were conducted using the solvent system, (1:1 terc-BuOH/H2O/r.t/ 20 mol% of Cu(OAc2 and sodium ascorbate, under stirring during 24 hours. The reaction involving 2,3-dibromo-1,4-naphthoquinone (5, yield 65% and phenylacetylene was prepared using the solvent mixture (2:1 DMSO/CHCl3 and catalytic amount of CuI/Pd(PPh32Cl2. The final products were characterized by elemental analysis and spectrometric techniques (IR, NMR 1H and 13C. Two novel triazole compounds were synthesized from naphthoquinones by 1,3-dipolar cycloaddition from suitable 1,4-naphthoquinones obtained by Sonogashira couplings.
Triazol-substituted titanocenes by strain-driven 1,3-dipolar cycloadditions
Directory of Open Access Journals (Sweden)
Andreas Gansäuer
2014-07-01
Full Text Available An operationally simple, convenient, and mild strategy for the synthesis of triazole-substituted titanocenes via strain-driven 1,3-dipolar cycloadditions between azide-functionalized titanocenes and cyclooctyne has been developed. It features the first synthesis of titanocenes containing azide groups. These compounds constitute ‘second-generation’ functionalized titanocene building blocks for further synthetic elaboration. Our synthesis is modular and large numbers of the complexes can in principle be prepared in short periods of time. Some of the triazole-substituted titanocenes display high cyctotoxic activity against BJAB cells. Comparison of the most active complexes allows the identification of structural features essential for biological activity.
Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies
Runov, A.; Angelopoulos, V.; Artemyev, A.; Birn, J.; Pritchett, P. L.; Zhou, X.-Z.
2017-06-01
Taking advantage of multipoint observations from a repeating configuration of the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes separated by 1 to 2 Earth radii (RE) along X, Y, and Z in the geocentric solar magnetospheric system (GSM), we study ion distribution functions collected by the probes during three dipolarizing flux bundle (DFB) events observed at geocentric distances 9 energy and twice the thermal energy, although the distribution in the ambient plasma sheet was isotropic. The anisotropic ion distribution in DFBs injected toward the inner magnetosphere may provide the free energy for waves and instabilities, which are important elements of particle energization.
International Nuclear Information System (INIS)
Barrientos, Laura G.; Dolan, Caroline; Gronenborn, Angela M.
2000-01-01
Media employed for imparting partial alignment onto solute molecules have recently attracted considerable attention, since they permit the measurement of NMR parameters for solute biomolecules commonly associated with solid state NMR. Here we characterize a medium which is based on a quasi-ternary surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide. We demonstrate that dilute solutions of this system can exist in liquid crystalline phases which orient in the magnetic field and allow the measurement of residual dipolar couplings under a variety of conditions. The present system is extremely versatile and robust, tolerating different buffer conditions, temperature ranges and concentrations
Dipolar oscillations in a quantum degenerate Fermi-Bose atomic mixture
International Nuclear Information System (INIS)
Ferlaino, F; Brecha, R J; Hannaford, P; Riboli, F; Roati, G; Modugno, G; Inguscio, M
2003-01-01
We study the dynamics of coupled dipolar oscillations in a Fermi-Bose mixture of 40 K and 87 Rb atoms. This low-energy collective mode is strongly affected by the interspecies interactions. Measurements are performed in the classical and quantum degenerate regimes and reveal the crucial role of the statistical properties of the mixture. At the onset of quantum degeneracy, we investigate the role of Pauli blocking and superfluidity for K and Rb atoms, respectively, resulting in a change in the collisional interactions
Fluctuation and dipolar interaction effects on the pinning of domain walls
International Nuclear Information System (INIS)
Chui, S.T.
2001-01-01
We discuss the effect of the dipolar interaction on the pinning of domain walls. Domain walls are usually pinned near the boundaries between grains. Magnetic charges accumulated at the domain wall make the wall more unstable and easier to depin. We discuss how the grain-orientation and thermal fluctuations affect these magnetic charges and hence the depinning of the domain walls. Our results are illustrated by finite temperature Monte Carlo simulation on periodic arrays of large cells separated by walls consisting of faces of pyramids
New fluorescent dipolar pyrazine derivatives for non-doped red organic light-emitting diodes
International Nuclear Information System (INIS)
Gao Baoxiang; Zhou Quanguo; Geng Yanhou; Cheng Yanxiang; Ma Dongge; Xie Zhiyuan; Wang Lixiang; Wang Fosong
2006-01-01
Dipolar fluorescent compounds containing electron-accepting pyrazine-2,3-dicarbonitrile and electron-donating arylamine moiety have been designed and synthesized. The optical and electrochemical properties of these compounds can be adjusted by changing π-bridge length and the donor (D) strength. Organic light-emitting devices based on these compounds are fabricated. Saturated red emission of (0.67, 0.33) and the external quantum efficiency as high as 1.41% have been demonstrated for one of these compounds
Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates
Wang, Wei; Li, Jinbin
2018-03-01
Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.
Fundamentals of Structural Engineering
Connor, Jerome J
2013-01-01
Fundamentals of Structural Engineering provides a balanced, seamless treatment of both classic, analytic methods and contemporary, computer-based techniques for conceptualizing and designing a structure. The book’s principle goal is to foster an intuitive understanding of structural behavior based on problem solving experience for students of civil engineering and architecture who have been exposed to the basic concepts of engineering mechanics and mechanics of materials. Making it distinct from many other undergraduate textbooks, the authors of this text recognize the notion that engineers reason about behavior using simple models and intuition they acquire through problem solving. The approach adopted in this text develops this type of intuition by presenting extensive, realistic problems and case studies together with computer simulation, which allows rapid exploration of how a structure responds to changes in geometry and physical parameters. This book also: Emphasizes problem-based understanding of...
Making physics more fundamental
Energy Technology Data Exchange (ETDEWEB)
Anon.
1988-07-15
The stellar death throes of supernovae have been seen and admired since time immemorial. However last year's was the first to come under the combined scrutiny of space-borne radiation detectors and underground neutrino monitors as well as terrestrial optical telescopes and even gravity wave antennae. The remarkable results underline the power of modern physics to explain and interrelate processes in the furthest reaches of the cosmos and the deep interior of nuclear particles. In recent years this common ground between 'Big Bang' cosmology and particle physics has been regularly trodden and retrodden in the light of fresh new insights and new experimental results, and thinking has steadily converged. In 1983, the first Symposium on Astronomy, Cosmology and Fundamental Physics, organized by CERN and the European Southern Observatory (ESO), was full of optimism, with new ideas ('inflation') to explain how the relatively small variations in the structure of the Universe could have arisen through the quantum structure of the initial cataclysm.
Digital Fourier analysis fundamentals
Kido, Ken'iti
2015-01-01
This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...
Fundamentals of sustainable neighbourhoods
Friedman, Avi
2015-01-01
This book introduces architects, engineers, builders, and urban planners to a range of design principles of sustainable communities and illustrates them with outstanding case studies. Drawing on the author’s experience as well as local and international case studies, Fundamentals of Sustainable Neighbourhoods presents planning concepts that minimize developments' carbon footprint through compact communities, adaptable and expandable dwellings, adaptable landscapes, and smaller-sized yet quality-designed housing. This book also: Examines in-depth global strategies for minimizing the residential carbon footprint, including district heating, passive solar gain, net-zero residences, as well as preserving the communities' natural assets Reconsiders conceptual approaches in building design and urban planning to promote a better connection between communities and nature Demonstrates practical applications of green architecture Focuses on innovative living spaces in urban environments
Fundamental partial compositeness
Sannino, Francesco
2016-11-07
We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.
Theory of fundamental interactions
International Nuclear Information System (INIS)
Pestov, A.B.
1992-01-01
In the present article the theory of fundamental interactions is derived in a systematic way from the first principles. In the developed theory there is no separation between space-time and internal gauge space. Main equations for basic fields are derived. In is shown that the theory satisfies the correspondence principle and gives rise to new notions in the considered region. In particular, the conclusion is made about the existence of particles which are characterized not only by the mass, spin, charge but also by the moment of inertia. These are rotating particles, the particles which represent the notion of the rigid body on the microscopical level and give the key for understanding strong interactions. The main concepts and dynamical laws for these particles are formulated. The basic principles of the theory may be examined experimentally not in the distant future. 29 refs
Lowrie, William
1997-10-01
This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.
International Nuclear Information System (INIS)
Ishii, Keizo
1997-01-01
Elemental analysis based on the particle induced x-ray emission (PIXE) is a novel technique to analyze trace elements. It is a very simple method, its sensitivity is very high, multiple elements in a sample can be simultaneously analyzed and a few 10 μg of a sample is enough to be analyzed. Owing to these characteristics, the PIXE analysis is now used in many fields (e.g. biology, medicine, dentistry, environmental pollution, archaeology, culture assets etc.). Fundamentals of the PIXE analysis are described here: the production of characteristic x-rays and inner shell ionization by heavy charged particles, the continuous background in PIXE spectrum, quantitative formulae of the PIXE analysis, the detection limit of PIXE analysis, etc. (author)
Automotive electronics design fundamentals
Zaman, Najamuz
2015-01-01
This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs. A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.
Fundamental partial compositeness
International Nuclear Information System (INIS)
Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena
2016-01-01
We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2)_R-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Yen, William M; Yamamoto, Hajime
2006-01-01
Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...
Fundamentals of thinking, patterns
Gafurov, O. M.; Gafurov, D. O.; Syryamkin, V. I.
2018-05-01
The authors analyze the fundamentals of thinking and propose to consider a model of the brain based on the presence of magnetic properties of gliacytes (Schwann cells) because of their oxygen saturation (oxygen has paramagnetic properties). The authors also propose to take into account the motion of electrical discharges through synapses causing electric and magnetic fields as well as additional effects such as paramagnetic resonance, which allows combining multisensory object-related information located in different parts of the brain. Therefore, the events of the surrounding world are reflected and remembered in the cortex columns, thus, creating isolated subnets with altered magnetic properties (patterns) and subsequently participate in recognition of objects, form a memory, and so on. The possibilities for the pattern-based thinking are based on the practical experience of applying methods and technologies of artificial neural networks in the form of a neuroemulator and neuromorphic computing devices.
Constitutive modeling and control of 1D smart composite structures
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
Blood flow quantification using 1D CFD parameter identification
Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir
2014-03-01
Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.
Modeling atrazine transport in soil columns with HYDRUS-1D
Directory of Open Access Journals (Sweden)
John Leju Celestino Ladu
2011-09-01
Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.
Analytic study of 1D diffusive relativistic shock acceleration
Energy Technology Data Exchange (ETDEWEB)
Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)
2017-10-01
Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.
Residual dipolar couplings in sup 3 sup 1 P MAS spectra of PPh sub 3 substituted cobalt complexes
Szalontai, G
2002-01-01
Residual dipolar couplings between sup 3 sup 1 P- sup 5 sup 9 Co spin pairs were studied in sup 3 sup 1 P MAS spectra of mono- and dinuclear cobalt-triphenylphosphine complexes. These spectra can provide important information such as the scalar coupling between the dipolar phosphorus and the quadrupolar cobalt nuclei normally not available from solution phase studies. In case of complementary (NQR or x-ray) data even the relative orientation of the interacting shielding, dipolar, scalar couplings, and electric field gradient tensors or internuclear distances can be determined. Examples are shown both for well resolved and practically unresolved cases, factors which possibly control the spectral resolution are discussed in detail. (author)
International Nuclear Information System (INIS)
Dahlke Ojennus, Deanna; Mitton-Fry, Rachel M.; Wuttke, Deborah S.
1999-01-01
Large residual 15 N- 1 H dipolar couplings have been measured in a Src homology II domain aligned at Pf1 bacteriophage concentrations an order of magnitude lower than used for induction of a similar degree of alignment of nucleic acids and highly acidic proteins. An increase in 1 H and 15 N protein linewidths and a decrease in T 2 and T 1 ρ relaxation time constants implicates a binding interaction between the protein and phage as the mechanism of alignment. However, the associated increased linewidth does not preclude the accurate measurement of large dipolar couplings in the aligned protein. A good correlation is observed between measured dipolar couplings and predicted values based on the high resolution NMR structure of the SH2 domain. The observation of binding-induced protein alignment promises to broaden the scope of alignment techniques by extending their applicability to proteins that are able to interact weakly with the alignment medium
Directory of Open Access Journals (Sweden)
Shenghan Jiang
2014-09-01
Full Text Available In topologically ordered quantum states of matter in (2+1D (spacetime dimensions, the braiding statistics of anyonic quasiparticle excitations is a fundamental characterizing property that is directly related to global transformations of the ground-state wave functions on a torus (the modular transformations. On the other hand, there are theoretical descriptions of various topologically ordered states in (3+1D, which exhibit both pointlike and looplike excitations, but systematic understanding of the fundamental physical distinctions between phases, and how these distinctions are connected to quantum statistics of excitations, is still lacking. One main result of this work is that the three-dimensional generalization of modular transformations, when applied to topologically ordered ground states, is directly related to a certain braiding process of looplike excitations. This specific braiding surprisingly involves three loops simultaneously, and can distinguish different topologically ordered states. Our second main result is the identification of the three-loop braiding as a process in which the worldsheets of the three loops have a nontrivial triple linking number, which is a topological invariant characterizing closed two-dimensional surfaces in four dimensions. In this work, we consider realizations of topological order in (3+1D using cohomological gauge theory in which the loops have Abelian statistics and explicitly demonstrate our results on examples with Z_{2}×Z_{2} topological order.
International Nuclear Information System (INIS)
Benova, E.; Ghanashev, I.; Zhelyazkov, I.
1992-01-01
The modelling of isotropic plasma columns sustained by travelling electromagnetic waves in the dipolar mode (angular dependence exp imφ, m=±1) shows that the m=±1 modes have identical dispersion characteristics. In the presence of an external static magnetic field, however, the modes behave rather differently. This observation arose in studying the axial structures of magnetized plasma columns surrounded by vacuum and produced by travelling electromagnetic waves in the dipolar modes. We examine the propagation of electromagnetic waves along a homogeneous cold plasma column of radius R and electron number density n immersed in an axial constant magnetic field. (author) 3 refs., 3 figs
Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations
Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.
2017-12-01
Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'braking).
Dipolar flow theory of the universe in relation to astronomical observations and universe axis
International Nuclear Information System (INIS)
Mullick, U.P.
1975-01-01
An attempt has been made to establish Dipolar continuous flow theory of the universe through corroborations from astronomical observations of the positions of nebulae made earlier by astronomers. It is shown that the line through groups of nebulae in Nubecula Major in Southern Sky Region 5, passing through Earth points towards the near side pole A of the universe. Also the angles the plane parallel to universe polar plane x-x and passing through Earth, makes with the Milky Way disc is about 70 0 towards universe pole B, and about 110 0 towards nearside universe pole A. It is also shown that the two nebulae M 31 and M 33 and the groups of nebulae in Megallenic clouds, in Nebecula Major are between planes passing through universe equatorial axis y-y and plant Ysub(E)-Ysub(E) passing through Earth and parallel to universe equatorial plane Y-Y. Besides, the huge red star Betelgeux and the great Nebula in Orion in sky Region 9 are also between these two planes. These observations the author claims accord with his Dipolar Theory. (author)
Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids
International Nuclear Information System (INIS)
Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco
2014-01-01
We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler–Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the “pair amplitude” √(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation–dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density–density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: •We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. •We have calculated the effective inter-particle interaction and the dynamical density–density response function. •We have shown that an undamped zero sound mode exists at any value of the interaction strength
Effect of simple solutes on the long range dipolar correlations in liquid water
Energy Technology Data Exchange (ETDEWEB)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)
2016-03-14
Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.
Effect of Dipolar Interactions on the Magnetization of Single-Molecule Magnets in a cubic lattice
Alcantara Ortigoza, Marisol
2005-03-01
Since the one-body tunnel picture of single-molecule magnets (SMM) is not always sufficient to explain the fine structure of experimental hysteresis loops, the effect of intermolecular dipolar interactions has been investigated on an ensemble of 100 3D-systems of 5X5X4 particles, each with spin S = 5, arranged in a cubic lattice. We have solved the Landau-Lifshitz-Gilbert equation for several values of the damping constant, the field sweep rate and the lattice constant. We find that the smaller the damping constant is, the stronger the maximum field needs to be to produce hysteresis. Furthermore, the shape of the hysteresis loops also depends on the damping constant. We also find that the system magnetizes and demagnetizes faster with decreasing sweep rates, resulting in smaller hysteresis loops. Variations of the lattice constant within realistic values (1.5nm and 2.5nm) show that the dipolar interaction plays an important role in magnetic hysteresis by controlling the relaxation process. Examination of temperature dependencies (0.1K and 0.7K) of the above will be presented and compared with recent experimental data on SMM.
Characteristics of high-latitude precursor flows ahead of dipolarization fronts
Li, Jia-Zheng; Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Liu, Jiang; Pan, Dong-Xiao; Zong, Qiu-Gang
2017-05-01
Dipolarization fronts (DFs), earthward propagating structures in the magnetotail current sheet characterized by sharp enhancements of northward magnetic field, are capable of converting electromagnetic energy into particle kinetic energy. The ions previously accelerated and reflected at the DFs can contribute to plasma flows ahead of the fronts, which have been identified as DF precursor flows in both the near-equatorial plasma sheet and far from it, near the plasma sheet boundary. Using observations from the THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, we show that the earthward particle and energy flux enhancements ahead of DFs are statistically larger farther away from the neutral sheet (at high latitudes) than in the near-equatorial region. High-latitude particle and energy fluxes on the DF dawnside are found to be significantly greater than those on the duskside, which is opposite to the dawn-dusk asymmetries previously found near the equatorial region. Using forward and backward tracing test-particle simulations, we then explain and reproduce the observed latitude-dependent characteristics of DF precursor flows, providing a better understanding of ion dynamics associated with dipolarization fronts.
Supra Arcade Downflows with XRT Informed by Dipolarization Fronts with THEMIS
Kobelski, Adam; Savage, Sabrina L.; Malaspina, David M.
2016-01-01
Magnetic reconnection can rapidly reconfigure the magnetic field of the corona, accelerating plasma through the site of reconnection. Ambiguities due to the nature of remote sensing have complicated the interpretation of observations of the inflowing and outflowing plasma in reconnecting regions. In particular, the interpretation of sunward moving density depletions above flare arcades (known as Supra Arcade Downflows - SADs) is still debated. Hinode/XRT has provided a wealth of observations for SADs and helped inform our current understanding of these structures. SADs have been interpreted as wakes behind newly reconnected and outflowing loops (Supra Arcade Downflowing Loops - SADLs). Models have shown the plausibility of this interpretation, though this interpretation has not yet been fully accepted. We present here observations of newly reconnected outflowing loops observed via in situ instruments in the magnetosphere. These observations, provided by five THEMIS spacecraft, show that around retracting loops (dipolarization fronts in this context) similar dynamic temperature and density structures are found as seen in SADs. We compare data from multiple SADs and dipolarization fronts to show that the observational signatures implied in the corona can be directly observed in similar plasma regimes in the magnetosphere, strongly favoring the interpretation of SADs as wakes behind retracting loops.
Fundamentals of ergonomic exoskeleton robots
Schiele, A.
2008-01-01
This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a
Traveling waves in a continuum model of 1D schools
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
MX chains: 1-D analog of CuO planes?
International Nuclear Information System (INIS)
Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.
1989-01-01
We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs
Quadratic Finite Element Method for 1D Deterministic Transport
International Nuclear Information System (INIS)
Tolar, D R Jr.; Ferguson, J M
2004-01-01
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms
Fundamental Physics with Antihydrogen
Hangst, J. S.
Antihydrogen—the antimatter equivalent of the hydrogen atom—is of fundamental interest as a test bed for universal symmetries—such as CPT and the Weak Equivalence Principle for gravitation. Invariance under CPT requires that hydrogen and antihydrogen have the same spectrum. Antimatter is of course intriguing because of the observed baryon asymmetry in the universe—currently unexplained by the Standard Model. At the CERN Antiproton Decelerator (AD) [1], several groups have been working diligently since 1999 to produce, trap, and study the structure and behaviour of the antihydrogen atom. One of the main thrusts of the AD experimental program is to apply precision techniques from atomic physics to the study of antimatter. Such experiments complement the high-energy searches for physics beyond the Standard Model. Antihydrogen is the only atom of antimatter to be produced in the laboratory. This is not so unfortunate, as its matter equivalent, hydrogen, is one of the most well-understood and accurately measured systems in all of physics. It is thus very compelling to undertake experimental examinations of the structure of antihydrogen. As experimental spectroscopy of antihydrogen has yet to begin in earnest, I will give here a brief introduction to some of the ion and atom trap developments necessary for synthesizing and trapping antihydrogen, so that it can be studied.
Strings and fundamental physics
International Nuclear Information System (INIS)
Baumgartl, Marco; Brunner, Ilka; Haack, Michael
2012-01-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Fundamentals of precision medicine
Divaris, Kimon
2018-01-01
Imagine a world where clinicians make accurate diagnoses and provide targeted therapies to their patients according to well-defined, biologically-informed disease subtypes, accounting for individual differences in genetic make-up, behaviors, cultures, lifestyles and the environment. This is not as utopic as it may seem. Relatively recent advances in science and technology have led to an explosion of new information on what underlies health and what constitutes disease. These novel insights emanate from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, as well as epigenomics and exposomics—such ‘omics data can now be generated at unprecedented depth and scale, and at rapidly decreasing cost. Making sense and integrating these fundamental information domains to transform health care and improve health remains a challenge—an ambitious, laudable and high-yield goal. Precision dentistry is no longer a distant vision; it is becoming part of the rapidly evolving present. Insights from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, and epigenomics and exposomics have reached an unprecedented depth and scale. Much more needs to be done, however, for the realization of precision medicine in the oral health domain. PMID:29227115
Strings and fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik
2012-07-01
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)
Fundamentals of klystron testing
International Nuclear Information System (INIS)
Caldwell, J.W. Jr.
1978-08-01
Fundamentals of klystron testing is a text primarily intended for the indoctrination of new klystron group test stand operators. It should significantly reduce the familiarization time of a new operator, making him an asset to the group sooner than has been experienced in the past. The new employee must appreciate the mission of SLAC before he can rightfully be expected to make a meaningful contribution to the group's effort. Thus, the introductory section acquaints the reader with basic concepts of accelerators in general, then briefly describes major physical aspects of the Stanford Linear Accelerator. Only then is his attention directed to the klystron, with its auxiliary systems, and the rudiments of klystron tube performance checks. It is presumed that the reader is acquainted with basic principles of electronics and scientific notation. However, to preserve the integrity of an indoctrination guide, tedious technical discussions and mathematical analysis have been studiously avoided. It is hoped that the new operator will continue to use the text for reference long after his indoctrination period is completed. Even the more experienced operator should find that particular sections will refresh his understanding of basic principles of klystron testing
Making physics more fundamental
International Nuclear Information System (INIS)
Anon.
1988-01-01
The stellar death throes of supernovae have been seen and admired since time immemorial. However last year's was the first to come under the combined scrutiny of space-borne radiation detectors and underground neutrino monitors as well as terrestrial optical telescopes and even gravity wave antennae. The remarkable results underline the power of modern physics to explain and interrelate processes in the furthest reaches of the cosmos and the deep interior of nuclear particles. In recent years this common ground between 'Big Bang' cosmology and particle physics has been regularly trodden and retrodden in the light of fresh new insights and new experimental results, and thinking has steadily converged. In 1983, the first Symposium on Astronomy, Cosmology and Fundamental Physics, organized by CERN and the European Southern Observatory (ESO), was full of optimism, with new ideas ('inflation') to explain how the relatively small variations in the structure of the Universe could have arisen through the quantum structure of the initial cataclysm
International Nuclear Information System (INIS)
Abdelmalik, W.E.Y.
2011-01-01
This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.
Fundamentals of Quantum Mechanics
Tang, C. L.
2005-06-01
Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors
Fundamentals of nuclear chemistry
International Nuclear Information System (INIS)
Majer, V.
1982-01-01
The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de
Axial turbomachine modelling with a 1D axisymmetric approach
International Nuclear Information System (INIS)
Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis
2007-01-01
This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results
Fundamentals - longitudinal motion
International Nuclear Information System (INIS)
Weng, W.T.
1989-01-01
There are many ways to accelerate charged particles to high energy for physics research. Each has served its purpose but eventually has encountered fundamental limitations of one kind or another. Looking at the famous Livingston curve, the initial birth and final level-off of all types of accelerators is seen. In fact, in the mid-80s we personally witnessed the creation of a new type of collider - the Stanford Linear Collider. Also witnessed, was the resurgence of study into novel methods of acceleration. This paper will cover acceleration and longitudinal motion in a synchrotron. A synchrotron is a circular accelerator with the following three characteristics: (1) Magnetic guiding (dipole) and confinement (quadrupole) components are placed in a small neighborhood around the equilibrium orbit. (2) Particles are kept in resonance with the radio-frequency electric field indefinitely to achieve acceleration to higher energies. (3) Magnetic fields are varied adiabatically with the energy of the particle. D. Edwards described the transverse oscillations of particles in a synchrotron. Here the author talks about the longitudinal oscillations of particles. The phase stability principle was invented by V. Veksler and E. McMillan independently in 1945. The phase stability and strong focusing principle, invented by Courant and Livingston in 1952, enabled the steady energy gain of accelerators and storage rings witnessed during the past 30 years. This paper is a unified overview of the related rf subjects in an accelerator and a close coupling between accelerator physics and engineering practices, which is essential for the major progress in areas such as high intensity synchrotrons, a multistage accelerator complex, and anti-proton production and cooling, made possible in the past 20 years
Directory of Open Access Journals (Sweden)
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Fundamentals of Space Medicine
Clément, Gilles
2005-03-01
A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the
Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles
Allia, Paolo; Tiberto, Paola
2011-12-01
Isothermal magnetization and initial dc susceptibility of spheroidal, nearly monodisperse magnetite nanoparticles (typical diameter: 8 nm) prepared by a standard thermo-chemical route have been measured between 10 and 300 K. The samples contained magnetite nanoparticles in the form of either a dried powder (each nanoparticle being surrounded by a stable oleic acid shell as a result of the preparation procedure) or a solid dispersion in PEGDA-600 polymer; different nanoparticle (NP) concentrations in the polymer were studied. In all samples the NPs were not tightly agglomerated nor their ferromagnetic cores were directly touching. The high-temperature inverse magnetic susceptibility is always found to follow a linear law as a function of T, crossing the horizontal axis at negative temperatures ranging from 175 to about 1,000 K. The deviation from the standard superparamagnetic behavior is related to dipolar interaction among NPs; however, a careful analysis makes it hard to conclude that such a behavior originates from a dominant antiferromagnetic character of the interaction. The results are well explained considering that the studied samples are in the interacting superparamagnetic (ISP) regime. The ISP model is basically a mean field theory which allows one to straightforwardly account for the role of magnetic dipolar interaction in a NP system. The model predicts the existence of specific scaling laws for the reduced magnetization which have been confirmed in all studied samples. The interaction of each magnetic dipole moment with the local, random dipolar field produced by the other dipoles results in the presence of a large fluctuating energy term whose magnitude is comparable to the static barrier for magnetization reversal/rotation related to magnetic anisotropy. On the basis of the existing theories on thermal crossing of a barrier whose height randomly fluctuates in time it is predicted that the rate of barrier crossing is substantially driven by the rate
Asymmetric 1,3-Dipolar Cycloadditions to 5-(R)-Menthyloxy-2(5H)-Furanone
Rispens, Minze T.; Keller, Erik; Lange, Ben de; Zijlstra, Robert W.J.; Feringa, Bernard
Various diazo compounds, nitrile oxides, nitrones and azomethine ylides were examined in 1,3-dipolar cycloadditions to enantiomerically pure 5-(R)-menthyloxy-2(5H)-furanone 1a. Pyrazoline 9 was obtained in 100% c.y. as a mixture of 2 diastereoisomers in ratios up to 72 : 28, whereas pyrazoline 16
Energy Technology Data Exchange (ETDEWEB)
Dorner, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Baehr, M [HMI, Berlin (Germany); Petitgrand, D [Laboratoire Leon Brillouin (LLB) - Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1997-04-01
Using inelastic neutron scattering with polarisation analysis it was possible, for the first time, to observe simultaneously the two magnetic modes split due to dipolar interaction. This would not have been possible with energy resolution only. An analysis of eigenvectors was also performed. (author). 4 refs.
Czech Academy of Sciences Publication Activity Database
Kobr, L.; Zhao, K.; Shen, X.; Shoemaker, R. K.; Rogers, C. T.; Michl, Josef
2013-01-01
Roč. 25, č. 3 (2013), s. 443-448 ISSN 0935-9648 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Grant - others:NSF(US) CHE 0848663 Institutional support: RVO:61388963 Keywords : inclusion compounds * molecular rotors * ferroelectricity * two-dimensional arrays Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 15.409, year: 2013
DEFF Research Database (Denmark)
Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.
2018-01-01
from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly...
Thermalization threshold in models of 1D fermions
Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram
2013-03-01
The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.
Three-field modeling for MARS 1-D code
International Nuclear Information System (INIS)
Hwang, Moonkyu; Lim, Ho-Gon; Jeong, Jae-Jun; Chung, Bub-Dong
2006-01-01
In this study, the three-field modeling of the two-phase mixture is developed. The finite difference equations for the three-field equations thereafter are devised. The solution scheme has been implemented into the MARS 1-D code. The three-field formulations adopted are similar to those for MARS 3-D module, in a sense that the mass and momentum are treated separately for the entrained liquid and continuous liquid. As in the MARS-3D module, the entrained liquid and continuous liquid are combined into one for the energy equation, assuming thermal equilibrium between the two. All the non-linear terms are linearized to arrange the finite difference equation set into a linear matrix form with respect to the unknown arguments. The problems chosen for the assessment of the newly added entrained field consist of basic conceptual tests. Among the tests are gas-only test, liquid-only test, gas-only with supplied entrained liquid test, Edwards pipe problem, and GE level swell problem. The conceptual tests performed confirm the sound integrity of the three-field solver
XBWR, 1-D Xe Transients for BWR in Axial Geometry
International Nuclear Information System (INIS)
Forti, G.
1980-01-01
1 - Nature of the physical problem solved: 1-D xenon transients for BWRs in axial geometry. 2 - Method of solution: XBWR couples a two group neutron diffusion calculation in plane geometry with a two phase flow cooling channel calculation and the heat conduction in the typical fuel rod. The program allows following any given power time schedule, such as shut-down and restart, day-night power variation etc., while the reactor is being kept critical by control rod movement, variable poisoning of the core, or coolant flow recirculation rate. The xenon and iodine concentrations variation is evaluated pointwise (up to 100 points) by analytical solution for successive fixed time steps. At the end of each time step a new distribution of fluxes, power, voids and temperatures is obtained, which is consistent with the reactor critical condition as it is got by variation of the control parameter taking into account the feedbacks. The new flux distribution is used as input for xenon and iodine concentrations evolution in the next time step
The molecular spin filter constructed from 1D organic chain
International Nuclear Information System (INIS)
Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan
2014-01-01
We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fe n+1 (C 6 H 4 ) n ). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [−1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fe n+1 and (C 6 H 4 ) n . In addition, negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain. The results can help us understand the spin transport properties of organic molecular chain. - Highlights: • Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect. • The effect of spin polarization origin from both of Fe n+1 and (C 6 H 4 ) n . • Negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain
Parallelization of elliptic solver for solving 1D Boussinesq model
Tarwidi, D.; Adytia, D.
2018-03-01
In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.
Giant magnons in the D1-D5 system
International Nuclear Information System (INIS)
David, Justin R.; Sahoo, Bindusar
2008-01-01
We study giant magnons in the the D1-D5 system from both the boundary CFT and as classical solutions of the string sigma model in AdS 3 x S 3 x T 4 . Re-examining earlier studies of the symmetric product conformal field theory we argue that giant magnons in the symmetric product are BPS states in a centrally extended SU(1|1) x SU(1|1) superalgebra with two more additional central charges. The magnons carry these additional central charges locally but globally they vanish. Using a spin chain description of these magnons and the extended superalgebra we show that these magnons obey a dispersion relation which is periodic in momentum. We then identify these states on the string theory side and show that here too they are BPS in the same centrally extended algebra and obey the same dispersion relation which is periodic in momentum. This dispersion relation arises as the BPS condition for the extended algebra and is similar to that of magnons in N = 4 Yang-Mills
Cellular reprogramming dynamics follow a simple 1D reaction coordinate
Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.
2018-01-01
Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.
Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media
Directory of Open Access Journals (Sweden)
Albinali Ali
2016-07-01
Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.
Effective theory of black holes in the 1/D expansion
International Nuclear Information System (INIS)
Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro
2015-01-01
The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
Treebak, Jonas T; Pehmøller, Christian; Kristensen, Jonas M; Kjøbsted, Rasmus; Birk, Jesper B; Schjerling, Peter; Richter, Erik A; Goodyear, Laurie J; Wojtaszewski, Jørgen F P
2014-01-15
We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/β2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.
Communication technology update and fundamentals
Grant, August E
2010-01-01
New communication technologies are being introduced at an astonishing rate. Making sense of these technologies is increasingly difficult. Communication Technology Update and Fundamentals is the single best source for the latest developments, trends, and issues in communication technology. Featuring the fundamental framework along with the history and background of communication technologies, Communication Technology Update and Fundamentals, 12th edition helps you stay ahead of these ever-changing and emerging technologies.As always, every chapter ha
Fundamentals of ergonomic exoskeleton robots
Schiele, A.
2008-01-01
This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a new theoretical framework for analyzing physical human robot interaction (pHRI) with exoskeletons, and (2) a clear set of design rules of how to build wearable, portable exoskeletons to easily and...
Courtney, Joseph M; Rienstra, Chad M
2016-08-01
We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.
Density functional theory investigation of two-dimensional dipolar fermions in a harmonic trap
International Nuclear Information System (INIS)
Ustunel, Hande; Abedinpour, Saeed H; Tanatar, B
2014-01-01
We investigate the behavior of polarized dipolar fermions in a two-dimensional harmonic trap in the framework of the density functional theory (DFT) formalism using the local density approximation. We treat only a few particles interacting moderately. Important results were deduced concerning key characteristics of the system such as total energy and particle density. Our results indicate that, at variance with Coulombic systems, the exchange- correlation component was found to provide a large contribution to the total energy for a large range of interaction strengths and particle numbers. In addition, the density profiles of the dipoles are shown to display important features around the origin that is not possible to capture by earlier, simpler treatments of such systems
DEFF Research Database (Denmark)
Stamate, Eugen; Draghici, M.
2012-01-01
A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used...... to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field...... in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O-2 mixtures was almost similar with that by positive ions reaching 700 nm/min. (C) 2012 American Institute of Physics...
Srivastava, Madhur; Freed, Jack H
2017-11-16
Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems
International Nuclear Information System (INIS)
Wang, Ken Kang-Hsin; Ye Zhen
2003-01-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass
International Nuclear Information System (INIS)
Zhang Kai-Cheng; Liu Yong; Chi Feng
2014-01-01
Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.
2017-12-01
Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.
Nikitin, E E; Troe, J
2010-09-16
Approximate analytical expressions are derived for the low-energy rate coefficients of capture of two identical dipolar polarizable rigid rotors in their lowest nonresonant (j(1) = 0 and j(2) = 0) and resonant (j(1) = 0,1 and j(2) = 1,0) states. The considered range extends from the quantum, ultralow energy regime, characterized by s-wave capture, to the classical regime described within fly wheel and adiabatic channel approaches, respectively. This is illustrated by the table of contents graphic (available on the Web) that shows the scaled rate coefficients for the mutual capture of rotors in the resonant state versus the reduced wave vector between the Bethe zero-energy (left arrows) and classical high-energy (right arrow) limits for different ratios δ of the dipole-dipole to dispersion interaction.
Long-range transverse Ising model built with dipolar condensates in two-well arrays
International Nuclear Information System (INIS)
Li, Yongyao; Pang, Wei; Xu, Jun; Lee, Chaohong; Malomed, Boris A; Santos, Luis
2017-01-01
Dipolar Bose–Einstein condensates in an array of double-well potentials realize an effective transverse Ising model with peculiar inter-layer interactions, that may result under proper conditions in an anomalous first-order ferromagnetic–antiferromagnetic phase transition, and non-trivial phases due to frustration. The considered setup allows as well for the study of Kibble–Zurek defect formation, whose kink statistics follows that expected from the universality class of the mean-field one-dimensional transverse Ising model. Furthermore, random occupation of each layer of the stack leads to random effective Ising interactions and local transverse fields, that may lead to the Anderson-like localization of imbalance perturbations. (paper)
Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature
International Nuclear Information System (INIS)
Kestner, J. P.; Das Sarma, S.
2010-01-01
The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.
Energy Technology Data Exchange (ETDEWEB)
Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)
2017-03-15
The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.
Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin
2015-09-01
For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems
Chang, Zhiwei; Halle, Bertil
2017-08-01
In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft
Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties
International Nuclear Information System (INIS)
Ivanov, A.O.; Kantorovich, S.S.; Rovigatti, L.; Tavares, J.M.; Sciortino, F.
2015-01-01
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DHS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole–dipole magnetic interaction increases. It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (ρ) of DHS plays a crucial part in this transition: at a very low ρ only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of ρ. The average ring size is found to be a slower increasing function of ρ when compared to that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the ρ-dependence of the initial magnetic susceptibility (χ) when the temperature decreases. The rings due to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. - Highlights: • Found structural chain-to-ring transition at low temperature sheds the light on the no-man's-land of the phase diagram of dipolar hard sphere gas. • Particle concentration plays a crucial part: at high dilution only chains and rings are observed, otherwise different branched structures occur. • The dramatic influence of the ring formation on the concentration dependence of the initial magnetic susceptibility when temperature decreases
Fundamental volatility is regime specific
Arnold, I.J.M.; MacDonald, R.; Vries, de C.G.
2006-01-01
A widely held notion holds that freely floating exchange rates are excessively volatile when judged against fundamentals and when moving from fixed to floating exchange rates. We re-examine the data and conclude that the disparity between the fundamentals and exchange rate volatility is more
From nonfinite to finite 1D arrays of origami tiles.
Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L
2014-06-17
average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing.
DEFF Research Database (Denmark)
Jacque, C M; Baumann, N A; Bock, E
1976-01-01
Seven antigens specific to the nervous tissue were measured in both Jimpy and control mice. The D5 and the GFA protein, both components of the glia, are strongly increased in the mutant while the neuronal components 14-3-2, synaptin C1, D1, D2 and D3 are unchanged....
DEFF Research Database (Denmark)
Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller
2014-01-01
We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers e...
Harnessing the Efficiency of 0(1D) Insertion Reactions for Prebiotic Astrochemistry
Widicus Weaver, Susanna
We propose a THz spectroscopic study of the small prebiotic molecules aminomethanol, methanediol, and methoxymethanol. These target molecules are predicted as the dominant products of photo-driven grain surface chemistry in interstellar environments, and are precursors to important prebiotic molecules like sugars and amino acids. These molecules are also expected to be major contributors to the spectral line density in the submillimeter spectral surveys from the Herschel and SOFIA observatories. We will use our custom mixing source to produce these molecules through O(1D) insertion reactions with the precursor molecules methyl amine, methanol, and dimethyl ether, respectively. We will then record their rotational spectra across the THz frequency range using our existing submillimeter spectrometer. This research will increase the science return from NASA missions because the target molecules serve as tracers of the simplest organic chemistry that can occur in starforming regions. This chemistry begins with methanol, which is the predominant organic molecule observed in interstellar ices. Methanol photodissociation leads to small organic radicals such as CH3O, CH2OH, and CH3. These radicals can undergo combination reactions on interstellar ices to form many of the complex organic molecules that are routinely observed in star-forming regions. Our target molecules aminomethanol, methanediol, and methoxymethanol are some of the simplest molecules that can form from this type of chemistry, and serve as tracers of ice mantle liberation in star-forming regions. These molecules also participate in gas-phase reactions that lead to amino acids and sugars, and as such are fundamentally important prebiotic molecules in interstellar environments. These types of small organic molecules also have high spectral line density, and are major contributors to line confusion in observational spectral surveys such as those conducted by Herschel and SOFIA. Therefore, the proposed research
Fundamental principles of heat transfer
Whitaker, Stephen
1977-01-01
Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int
Fundamental number theory with applications
Mollin, Richard A
2008-01-01
An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition Removal of all advanced material to be even more accessible in scope New fundamental material, including partition theory, generating functions, and combinatorial number theory Expa
International Nuclear Information System (INIS)
Fushman, David; Cowburn, David
1999-01-01
Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D-parallel /D-perpendicular -1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D-parallel /D-perpendicular ≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems
Quantum mechanics I the fundamentals
Rajasekar, S
2015-01-01
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.
Are fundamental constants really constant
International Nuclear Information System (INIS)
Norman, E.B.
1986-01-01
Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed
Fundamentals of modern unsteady aerodynamics
Gülçat, Ülgen
2010-01-01
This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.
Energy Technology Data Exchange (ETDEWEB)
Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)
2014-09-14
We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.
International Nuclear Information System (INIS)
Meiler, Jens; Peti, Wolfgang; Griesinger, Christian
2000-01-01
A program, DipoCoup, is presented that allows to search the protein data bank for proteins which have a three dimensional fold that is at least partially homologous to a protein under investigation. The three dimensional homology search uses secondary structure alignment based on chemical shifts and dipolar couplings or pseudocontact shifts for the three dimensional orientation of secondary structure elements. Moreover, the program offers additional tools for handling and analyzing dipolar couplings
Fundamentals of electronic image processing
Weeks, Arthur R
1996-01-01
This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.
Qualitative insights on fundamental mechanics
Mardari, G. N.
2002-01-01
The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. They cannot be predicted, because they cannot have internal causes. However, it is possible to describe them in the language of classical mechanics. We invoke philosophical reas...
Directory of Open Access Journals (Sweden)
Klaus Banert
2014-09-01
Full Text Available Cyclooctyne and cycloocten-5-yne undergo, at room temperature, a 1,3-dipolar cycloaddition with dialkyl acetylenedicarboxylates 1a,b to generate furan-derived short-lived intermediates 2, which can be trapped by two additional equivalents of 1a,b or alternatively by methanol, phenol, water or aldehydes to yield polycyclic products 3b–d, orthoesters 4a–c, ketones 5 or epoxides 6a,b, respectively. Treatment of bis(trimethylsilyl acetylenedicarboxylate (1c with cyclooctyne leads to the ketone 7 via retro-Brook rearrangement of the dipolar intermediate 2c. In all cases, the products are formed with perfect atom economy.
International Nuclear Information System (INIS)
Zhang Aixia; Xue Jukui
2012-01-01
We propose a scheme to reveal the interplay between dipole–dipole interaction (DDI), inter-level coupling and macroscopic phase transitions in dipolar condensates. By considering a macroscopic sample of dipolar bosons in triple-well potentials, DDI-induced coupling between the inter-level physics and the macroscopic phase transitions is presented. When the DDI exceeds certain thresholds, the degeneracy of the two lowest energy levels and the excitation of new eigenstates occur, respectively. Interestingly, these thresholds give the boundaries of various quantum phase transitions. That is, the quantum phase transitions are the consequence of the levels' degeneracy and the new eigenstates' excitation. Furthermore, DDI-induced long-range macroscopic Josephson oscillations are observed and long-range coherent quantum transportation is achieved. Our results give clear proof of the interplay between the multi-level physics and quantum phase transitions, and also provide a way for designing the long-range coherent quantum transportation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pochapsky, Thomas C., E-mail: pochapsk@brandeis.edu; Pochapsky, Susan S.; Ju Tingting [Brandeis University, Department of Chemistry (United States); Hoefler, Chris [Brandeis University, Department of Biochemistry (United States); Liang Jue [Brandeis University, Department of Chemistry (United States)
2006-02-15
Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O{sub 2}) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni{sup 2+}-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings into the structural refinement alters the relative orientations of several structural features significantly, and improves local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made, and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance of these differences is considered.
Li, H.; Guo, L.; Zhou, M.; Cheng, Q.; Yu, X.; Huang, S.; Pang, Y.
2017-12-01
In this paper, we report the observation of the off-equatorial depolarization front structures by Magnetospheric Multiscale (MMS) mission at around X -8Re in the Earth's magnetotail. The dipolarization front was located at the flow rebounce region associated with a parallel electron beam. A large lower frequency electromagnetic wave fluctuation at the depolarization front is observed with the frequency near the ion gyrofrequency, left-handed polarization and a parallel propagation. A parallel current attributed to an electron beam coexist with the wave. The wave is believed to be generated by the current-driven ion cyclotron instability. Such instability is important because of its potential contribution to global electromagnetic energy conversion at the dipolarization front.
Van-der-Waals interaction of atoms in dipolar Rydberg states
Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.
2018-02-01
An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
International Nuclear Information System (INIS)
Urban, Jeffry Todd
2004-01-01
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
Energy Technology Data Exchange (ETDEWEB)
Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)
2004-01-01
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an
Valeriani, M; Restuccia, D; Di Lazzaro, V; Le Pera, D; Barba, C; Tonali, P; Mauguiere, F
1998-06-01
Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.
International Nuclear Information System (INIS)
Pérez Alcázar, G.A.; Zamora, L.E.; Tabares, J.A.; Piamba, J.F.; González, J.M.; Greneche, J.M.; Martinez, A.; Romero, J.J.; Marco, J.F.
2013-01-01
Powders of melted disordered Fe 50 Mn 10 Al 40 alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 μm showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: ► The effect of particle size in microsized powders of Fe 50 Mn 10 Al 40 melted disordered alloy is studied. ► Dipolar magnetic interaction between particles exists and this changes with the particle size. ► For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. ► RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).
Decreasing Distortion Energies without Strain: Diazo-Selective 1,3-Dipolar Cycloadditions.
Gold, Brian; Aronoff, Matthew R; Raines, Ronald T
2016-07-15
The diazo group has attributes that complement those of the azido group for applications in chemical biology. Here, we use computational analyses to provide insights into the chemoselectivity of the diazo group in 1,3-dipolar cycloadditions. Dipole distortion energies are responsible for ∼80% of the overall energetic barrier for these reactions. Here, we show that diazo compounds, unlike azides, provide an opportunity to decrease that barrier substantially without introducing strain into the dipolarophile. The ensuing rate enhancement is due to the greater nucleophilic character of a diazo group compared to that of an azido group, which can accommodate decreased distortion energies without predistortion. The tuning of distortion energies with substituents in a diazo compound or dipolarophile can enhance reactivity and selectivity in a predictable manner. Notably, these advantages of diazo groups are amplified in water. Our findings provide a theoretical framework that can guide the design and application of both diazo compounds and azides in "orthogonal" contexts, especially for biological investigations.
Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.
Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha
2017-06-30
Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.
International Nuclear Information System (INIS)
Montalvao, Rinaldo W.; De Simone, Alfonso; Vendruscolo, Michele
2012-01-01
Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.
Independent alignment of RNA for dynamic studies using residual dipolar couplings
Energy Technology Data Exchange (ETDEWEB)
Bardaro, Michael F.; Varani, Gabriele, E-mail: varani@chem.washington.edu [University of Washington, Department of Chemistry (United States)
2012-09-15
Molecular motion and dynamics play an essential role in the biological function of many RNAs. An important source of information on biomolecular motion can be found in residual dipolar couplings which contain dynamics information over the entire ms-ps timescale. However, these methods are not fully applicable to RNA because nucleic acid molecules tend to align in a highly collinear manner in different alignment media. As a consequence, information on dynamics that can be obtained with this method is limited. In order to overcome this limitation, we have generated a chimeric RNA containing both the wild type TAR RNA, the target of our investigation of dynamics, as well as the binding site for U1A protein. When U1A protein was bound to the portion of the chimeric RNA containing its binding site, we obtained independent alignment of TAR by exploiting the physical chemical characteristics of this protein. This technique can allow the extraction of new information on RNA dynamics, which is particularly important for time scales not covered by relaxation methods where important RNA motions occur.
Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R
2014-04-05
The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere
International Nuclear Information System (INIS)
Caillol, Jean-Michel; Trulsson, Martin
2014-01-01
We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all the formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects
Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas
2018-06-01
Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.
Cluster-cluster aggregation of Ising dipolar particles under thermal noise
Suzuki, Masaru
2009-08-14
The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1) to crystalline (D2) through fractal structures (D1.45), where D is the fractal dimension. By calculating the bending energy of the chainlike structure, it is found that the transition temperature is associated with the energy gap between the chainlike and crystalline configurations. The aggregation dynamics changes from being dominated by attraction to diffusion involving changes in the dynamic exponent z=0.2 to 0.5. In the region of temperature where the fractal clusters grow, different growth rates are observed between charged and neutral clusters. Using the Smoluchowski equation with a twofold kernel, this hetero-aggregation process is found to result from two types of dynamics: the diffusive motion of neutral clusters and the weak attractive motion between charged clusters. The fact that changes in structures and dynamics take place at the same time suggests that transitions in the structure of clusters involve marked changes in the dynamics of the aggregation processes. © 2009 The American Physical Society.
Directory of Open Access Journals (Sweden)
Lars Jäger
2016-09-01
Full Text Available Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl-N-phenylamino]-biphenyl (NPB with the polar electron transporting material tris-(8-hydroxyquinolate aluminum (Alq3. Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.
Jäger, Lars; Schmidt, Tobias D.; Brütting, Wolfgang
2016-09-01
Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) with the polar electron transporting material tris-(8-hydroxyquinolate) aluminum (Alq3). Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.
Dipolar-Biased Tunneling of Magnetization in Crystals of Single Molecule Magnets
Awaga, Kunio
2007-03-01
The molecular cluster Mn12 has attracted much interest as a single-molecule magnet (SMM) and as a multi-redox system. It has a high-spin ground state of S=10 and a strong uniaxial magnetic anisotropy, and the combination of the two natures makes an effective potential barrier between the up and down spin states. At low temperatures, the magnetization curve exhibited a hysteresis loop and the quantum tunneling of magnetization (QTM). In the present work, we studied the structure and magnetic properties of the mixed-metal SMM, Mn11Cr, through the analysis of Mn11Cr/Mn12 mixed crystal. High-frequency EPR spectra were well explained by assuming that Mn11Cr was in a ground spin-state of S=19/2 with nearly the same EPR parameter set as for Mn12. QTM in Mn11Cr was observed with the same field interval as for Mn12. The magnetization of Mn11Cr and Mn12 in the mixed crystal can be independently manipulated by utilizing the difference between their coercive fields. The resonance fields of QTM in Mn11Cr are significantly affected by the magnetization direction of Mn12, suggesting the effect of dipolar-biased tunneling. Besides SMM, we would also like to report the unusual magnetic properties of spherical hollow nanomagnets, the electrical properties of heterocyclic thiazyl radicals, and their possible applications in spintronics and organic electronics.
Schwarz, G; Savko, P
1982-01-01
Dielectric constant and loss of the membrane-active peptide alamethicin in octanol/dioxane mixtures have been measured at frequencies between 5 kHz and 50 MHz. On the basis of a rotational mechanism of dipolar orientation, the observed dispersion provides information regarding size, shape, and dipole moment of the structural entities which the solute may assume in media of diverse lipophilicity. Particularly detailed results are obtained in a pure octanol solvent where an apparent molecular weight of alamethicin could be determined. It turns out that in this quite lipophilic medium most of the peptide material exists as a monomer particle that has approximate length and diameter of 35 and 13 A, respectively. It carries a dipole moment of approximately 75 Debye units (directed nearly parallel to the long axis). At our concentrations of a few milligrams per milliliters, appreciable formation of dimers by head-to-tail linkage is indicated. When the octanol content is reduced by adding greater amounts of dioxane, larger particles are encountered. This is accompanied by a decrease of the effective polarity. The inherent increase of hydrophilicity in the dioxane-enriched solvent apparently favors another monomer conformation that has a low dipole moment and easily aggregates to some kind of micelle. PMID:7115881
Nanoscale smoothing and the analysis of interfacial charge and dipolar densities
International Nuclear Information System (INIS)
Junquera, Javier; Cohen, Morrel H; Rabe, Karin M
2007-01-01
The interface properties of interest in multilayers include interfacial charge densities, dipole densities, band offsets, and screening lengths, among others. Most such properties are inaccessible to direct measurements, but are key to understanding the physics of the multilayers. They are contained within first-principles electronic structure computations but are buried within the vast amount of quantitative information those computations generate. Thus far, they have been extracted from the numerical data by heuristic nanosmoothing procedures which do not necessarily provide results independent of the smoothing process. In the present paper we develop the theory of nanosmoothing, establishing procedures for both unpolarized and polarized systems which yield interfacial charge and dipole densities and band offsets invariant to the details of the smoothing procedures when the criteria we have established are met. We show also that dipolar charge densities, i.e. the densities of charge transferred across the interface, and screening lengths are not invariant. We illustrate our procedure with a toy model in which real, transversely averaged charge densities are replaced by sums of Gaussians. (topical review)
Role of lower hybrid waves in ion heating at dipolarization fronts
Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.
2017-05-01
One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.
Formation of classical crystals of dipolar particles in a helical geometry
International Nuclear Information System (INIS)
Pedersen, J K; Fedorov, D V; Jensen, A S; Zinner, N T
2014-01-01
We consider crystal formation of particles with dipole–dipole interactions that are confined to move in a one-dimensional helical geometry with their dipole moments oriented along the symmetry axis of the confining helix. The stable classical lowest-energy configurations are found to be chain structures for a large range of pitch-to-radius ratios for a relatively low density of dipoles and a moderate total number of particles. The classical normal mode spectra support the chain interpretation through both structure and distinct degeneracies, depending discretely on the number of dipoles per revolution. A larger total number of dipoles leads to a clusterization where the dipolar chains move closer to each other. This implies a change in the local density and the emergence of two length scales, one for the cluster size and one for the inter-cluster distance along the helix. Starting from three dipoles per revolution, this implies a breaking of the initial periodicity to form a cluster of two chains close together and a third chain removed from the cluster. This is driven by the competition between in-chain and out-of-chain interactions, or alternatively by the side-by-side repulsion and the head-to-tail attraction in the system. The speed of sound propagates along the chains. It is independent of the number of chains, although it does depend on the geometry. (paper)
On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles
Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Artemyev, Anton V.; Birn, Joachim
2018-01-01
Dipolarizing flux bundles (DFBs), earthward propagating structures with enhanced northward magnetic field Bz, are usually believed to carry a distinctly different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, have been recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFB. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFB, whereas for lower κ values the DFB ions become more isotropic. Here we utilize a simple, test particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the anisotropy originates from successive ion reflections and reentries to the DFB, during which the ions are consecutively accelerated in the perpendicular direction by the DFB-associated electric field. This consecutive acceleration may be interrupted, however, when magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories become stochastic outside the DFB, which makes the reflected ions less likely to return to the DFB for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected toward Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between magnetotail and inner magnetosphere.
Measurement of imino {sup 1}H-{sup 1}H residual dipolar couplings in RNA
Energy Technology Data Exchange (ETDEWEB)
Latham, Michael P. [University of Toronto, Department of Molecular Genetics (Canada); Pardi, Arthur [University of Colorado, Department of Chemistry and Biochemistry, 215 UCB (United States)], E-mail: arthur.pardi@colorado.edu
2009-02-15
Imino {sup 1}H-{sup 15}N residual dipolar couplings (RDCs) provide additional structural information that complements standard {sup 1}H-{sup 1}H NOEs leading to improvements in both the local and global structure of RNAs. Here, we report measurement of imino {sup 1}H-{sup 1}H RDCs for the Iron Responsive Element (IRE) RNA and native E. coli tRNA{sup Val} using a BEST-Jcomp-HMQC2 experiment. {sup 1}H-{sup 1}H RDCs are observed between the imino protons in G-U wobble base pairs and between imino protons on neighboring base pairs in both RNAs. These imino {sup 1}H-{sup 1}H RDCs complement standard {sup 1}H-{sup 15}N RDCs because the {sup 1}H-{sup 1}H vectors generally point along the helical axis, roughly perpendicular to {sup 1}H-{sup 15}N RDCs. The use of longitudinal relaxation enhancement increased the signal-to-noise of the spectra by {approx}3.5-fold over the standard experiment. The ability to measure imino {sup 1}H-{sup 1}H RDCs offers a new restraint, which can be used in NMR domain orientation and structural studies of RNAs.
Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals
Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.
2018-04-01
Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.
Magnetic history dependence of metastable states in thin films with dipolar interactions
International Nuclear Information System (INIS)
Iglesias, Oscar; Labarta, Amilcar
2000-01-01
We present the results of a Monte Carlo simulation of the ground state and magnetic relaxation of a model of a thin film consisting of a two-dimensional square lattice of Heisenberg spins with perpendicular anisotropy K, exchange J and long-range dipolar interactions g. We have studied the ground state configurations of this system for a wide range of the interaction parameters J/g, K/g by means of the simulated annealing procedure, showing that the model is able to reproduce the different magnetic configurations found in real samples. We have found the existence of a certain range of K/g, J/g values for which in-plane and out-of-plane configurations are quasi-degenerated in energy. We show that when a system in this region of parameters is perturbed by an external force that is subsequently removed, different kinds of ordering may be induced depending on the followed procedure. In particular, simulations of relaxations from saturation under an AC demagnetizing field or in zero field are in qualitative agreement with recent experiments on epitaxial and granular alloy thin films, which show a wide variety of magnetic patterns depending on their magnetic history
Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik
2012-08-16
The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.
Measurement of one-bond 15N-13C' dipolar couplings in medium sized proteins
International Nuclear Information System (INIS)
Chou, James J.; Delaglio, Frank; Bax, Ad
2000-01-01
A simple and accurate method is described for measurement of 1 J C'N splittings in isotopically enriched proteins. The method is of the quantitative J correlation type, and the 1 J C'N splitting is derived from the relative intensity in two 3D TROSY-HNCO spectra with 1 J C'N dephasing intervals of ∼1/(2 1 J C'N ) (reference intensity) and ∼1/ 1 J C'N (residual intensity). If the two spectra are recorded under identical conditions and with the same number of scans, the random error in the 1 J C'N value extracted in this manner is inversely related to the signal-to-noise (S/N) in the reference spectrum. A S/N of 30:1 in the reference spectrum yields random errors of less than 0.2 Hz in the extracted 1 J C'N value. Dipolar couplings obtained from the difference in 1 J C'N splitting in the isotropic and liquid crystalline phase for the C-terminal domain of calmodulin are in excellent agreement with its 1.68-A crystal structure, but agree considerably less with the 2.2-A structure
Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J
2014-09-01
NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.
Fundamental physics in particle traps
International Nuclear Information System (INIS)
Quint, Wolfgang; Vogel, Manuel
2014-01-01
The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.
Fundamental limit of light trapping in grating structures
Yu, Zongfu
2010-08-11
We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.
RFID design fundamentals and applications
Lozano-Nieto, Albert
2010-01-01
RFID is an increasingly pervasive tool that is now used in a wide range of fields. It is employed to substantiate adherence to food preservation and safety standards, combat the circulation of counterfeit pharmaceuticals, and verify authenticity and history of critical parts used in aircraft and other machinery-and these are just a few of its uses. Goes beyond deployment, focusing on exactly how RFID actually worksRFID Design Fundamentals and Applications systematically explores the fundamental principles involved in the design and characterization of RFID technologies. The RFID market is expl
Fundamentals of multicore software development
Pankratius, Victor; Tichy, Walter F
2011-01-01
With multicore processors now in every computer, server, and embedded device, the need for cost-effective, reliable parallel software has never been greater. By explaining key aspects of multicore programming, Fundamentals of Multicore Software Development helps software engineers understand parallel programming and master the multicore challenge. Accessible to newcomers to the field, the book captures the state of the art of multicore programming in computer science. It covers the fundamentals of multicore hardware, parallel design patterns, and parallel programming in C++, .NET, and Java. It
Qualitative insights on fundamental mechanics
International Nuclear Information System (INIS)
Mardari, Ghenadie N
2007-01-01
The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. Moreover, such models must also contain discrete identical entities with constant properties. These conclusions appear to support the work of Kaniadakis on subquantum mechanics. A qualitative analysis is offered to suggest compatibility with relevant phenomena, as well as to propose new means for verification
Astrophysical probes of fundamental physics
International Nuclear Information System (INIS)
Martins, C.J.A.P.
2009-01-01
I review the motivation for varying fundamental couplings and discuss how these measurements can be used to constrain fundamental physics scenarios that would otherwise be inaccessible to experiment. I highlight the current controversial evidence for varying couplings and present some new results. Finally I focus on the relation between varying couplings and dark energy, and explain how varying coupling measurements might be used to probe the nature of dark energy, with some advantages over standard methods. In particular I discuss what can be achieved with future spectrographs such as ESPRESSO and CODEX.
Astrophysical probes of fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Martins, C.J.A.P. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2009-10-15
I review the motivation for varying fundamental couplings and discuss how these measurements can be used to constrain fundamental physics scenarios that would otherwise be inaccessible to experiment. I highlight the current controversial evidence for varying couplings and present some new results. Finally I focus on the relation between varying couplings and dark energy, and explain how varying coupling measurements might be used to probe the nature of dark energy, with some advantages over standard methods. In particular I discuss what can be achieved with future spectrographs such as ESPRESSO and CODEX.
The fundamentals of mathematical analysis
Fikhtengol'ts, G M
1965-01-01
The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i
The fundamental interactions of matter
International Nuclear Information System (INIS)
Falla, D.F.
1977-01-01
Elementary particles are here discussed, in the context of the extent to which the fundamental interactions are related to the elementary constituents of matter. The field quanta related to the four fundamental interactions (electromagnetic, strong,weak and gravitational) are discussed within an historical context beginning with the conception of the photon. The discovery of the mesons and discoveries relevant to the nature of the heavy vector boson are considered. Finally a few recent speculations on the properties of the graviton are examined. (U.K.)
Forming a complex with MHC class I molecules interferes with mouse CD1d functional expression.
Directory of Open Access Journals (Sweden)
Renukaradhya J Gourapura
Full Text Available CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of mouse CD1d on the surface of cells. Low pH (3.0 acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.
Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle.
Vichaiwong, Kanokwan; Purohit, Suneet; An, Ding; Toyoda, Taro; Jessen, Niels; Hirshman, Michael F; Goodyear, Laurie J
2010-10-15
TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab-GAP (GTPase-activating protein) that is highly expressed in skeletal muscle, but little is known about TBC1D1 regulation and function. We studied TBC1D1 phosphorylation on three predicted AMPK (AMP-activated protein kinase) phosphorylation sites (Ser231, Ser660 and Ser700) and one predicted Akt phosphorylation site (Thr590) in control mice, AMPKα2 inactive transgenic mice (AMPKα2i TG) and Akt2-knockout mice (Akt2 KO). Muscle contraction significantly increased TBC1D1 phosphorylation on Ser231 and Ser660, tended to increase Ser700 phosphorylation, but had no effect on Thr590. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) also increased phosphorylation on Ser231, Ser660 and Ser700, but not Thr590, whereas insulin only increased Thr590 phosphorylation. Basal and contraction-stimulated TBC1D1 Ser231, Ser660 and Ser700 phosphorylation were greatly reduced in AMPKα2i TG mice, although contraction still elicited a small increase in phosphorylation. Akt2 KO mice had blunted insulin-stimulated TBC1D1 Thr590 phosphorylation. Contraction-stimulated TBC1D1 Ser231 and Ser660 phosphorylation were normal in high-fat-fed mice. Glucose uptake in vivo was significantly decreased in tibialis anterior muscles overexpressing TBC1D1 mutated on four predicted AMPK phosphorylation sites. In conclusion, contraction causes site-specific phosphorylation of TBC1D1 in skeletal muscle, and TBC1D1 phosphorylation on AMPK sites regulates contraction-stimulated glucose uptake. AMPK and Akt regulate TBC1D1 phosphorylation, but there must be additional upstream kinases that mediate TBC1D1 phosphorylation in skeletal muscle.
Exercise increases TBC1D1 phosphorylation in human skeletal muscle
Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders
2011-01-01
Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS
The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack
Energy Technology Data Exchange (ETDEWEB)
Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-24
This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.
Another argument against fundamental scalars
International Nuclear Information System (INIS)
Joglekar, S.D.
1990-01-01
An argument, perhaps not as strong, which is based on the inclusion of interaction with external gravity into a theory describing strong, electromagnetic and weak interactions is presented. The argument is related to the basis of the common belief which favours a renormalizable action against a non-renormalizable action as a candidate for a fundamental theory. (author). 12 refs
Fundamentals of Welding. Teacher Edition.
Fortney, Clarence; And Others
These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…
Composing Europe's Fundamental Rights Area
DEFF Research Database (Denmark)
Storgaard, Louise Halleskov
2015-01-01
The article offers a perspective on how the objective of a strong and coherent European protection standard pursued by the fundamental rights amendments of the Lisbon Treaty can be achieved, as it proposes a discursive pluralistic framework to understand and guide the relationship between the EU...
Summary: fundamental interactions and processes
International Nuclear Information System (INIS)
Koltun, D.S.
1982-01-01
The subjects of the talks of the first day of the workshop are discussed in terms of fundamental interactions, dynamical theory, and relevant degrees of freedom. Some general considerations are introduced and are used to confront the various approaches taken in the earlier talks
Fundamental Composite (Goldstone) Higgs Dynamics
DEFF Research Database (Denmark)
Cacciapaglia, G.; Sannino, Francesco
2014-01-01
We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the conden...... searches of new physics at the Large Hadron Collider....
Fundamentals of Biomass pellet production
DEFF Research Database (Denmark)
Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar
2005-01-01
Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...
Energy informatics: Fundamentals and standardization
Directory of Open Access Journals (Sweden)
Biyao Huang
2017-06-01
Full Text Available Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy system, and the convergence of energy system and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.
Experiments in Fundamental Neutron Physics
Nico, J. S.; Snow, W. M.
2006-01-01
Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.
Brake Fundamentals. Automotive Articulation Project.
Cunningham, Larry; And Others
Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…
FUNdamental Movement in Early Childhood.
Campbell, Linley
2001-01-01
Noting that the development of fundamental movement skills is basic to children's motor development, this booklet provides a guide for early childhood educators in planning movement experiences for children between 4 and 8 years. The booklet introduces a wide variety of appropriate practices to promote movement skill acquisition and increased…
Fundamentals: IVC and Computer Science
Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.
The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly
Different Variants of Fundamental Portfolio
Directory of Open Access Journals (Sweden)
Tarczyński Waldemar
2014-06-01
Full Text Available The paper proposes the fundamental portfolio of securities. This portfolio is an alternative for the classic Markowitz model, which combines fundamental analysis with portfolio analysis. The method’s main idea is based on the use of the TMAI1 synthetic measure and, in limiting conditions, the use of risk and the portfolio’s rate of return in the objective function. Different variants of fundamental portfolio have been considered under an empirical study. The effectiveness of the proposed solutions has been related to the classic portfolio constructed with the help of the Markowitz model and the WIG20 market index’s rate of return. All portfolios were constructed with data on rates of return for 2005. Their effectiveness in 2006- 2013 was then evaluated. The studied period comprises the end of the bull market, the 2007-2009 crisis, the 2010 bull market and the 2011 crisis. This allows for the evaluation of the solutions’ flexibility in various extreme situations. For the construction of the fundamental portfolio’s objective function and the TMAI, the study made use of financial and economic data on selected indicators retrieved from Notoria Serwis for 2005.
Credit cycles and macro fundamentals
Koopman, S.J.; Kraeussl, R.G.W.; Lucas, A.; Monteiro, A.
2009-01-01
We use an intensity-based framework to study the relation between macroeconomic fundamentals and cycles in defaults and rating activity. Using Standard and Poor's U.S. corporate rating transition and default data over the period 1980-2005, we directly estimate the default and rating cycle from micro
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Experimental tests of fundamental symmetries
Jungmann, K. P.
2014-01-01
Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;
Escola de ensino fundamental(s em movimento – movimento na escola de ensino fundamental
Directory of Open Access Journals (Sweden)
Reiner Hildebrandt-Stramann
2007-12-01
Full Text Available A escola de ensino fundamental na Alemanha sofreu movimento nos últimos 15 anos, porque, entre outros motivos, entrou movimento nessas escolas. Esse jogo de palavras chama atenção a duas linhas de trabalho que determinam a discussão na atual pedagogia escolar. O presente trabalho revela essas duas perspectivas. Uma das linhas está relacionada ao atual processo de mudança na pedagogia escolar. Essa prediz que a escola de ensino fundamental deve ser um lugar de aprendizagem e de vivência para as crianças. A outra linha tem a ver com o jogo de palavras ancorado a esses processos da pedagogia do movimento, a qual ganha cada vez maiores dimensões. A escola de ensino fundamental deve ser vista sob a perspectiva do movimento e transformada em um lugar de movimento.
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
Cα chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR
International Nuclear Information System (INIS)
Yao Xiaolan; Yamaguchi, Satoru; Hong Mei
2002-01-01
The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets
Energy Technology Data Exchange (ETDEWEB)
Ozaki, N.; Lappalainen, J.; Linnoila, M. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others
1995-04-24
Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.
International Nuclear Information System (INIS)
Linderoth, T R; Horch, S; Petersen, L; Laegsgaard, E; Stensgaard, I; Besenbacher, F
2005-01-01
The technique of scanning tunnelling microscopy (STM) uniquely allows dynamic processes on surfaces to be followed directly in real space and at atomic resolution. Results for the 551225 surface diffusion of Pt adatoms and clusters on the anisotropic, missing row reconstructed Pt(110)-(1 x 2) surface are briefly reviewed. Mass transport in this system is entirely one-dimensional (1D) since, at low adatom coverage, atoms and clusters are confined to the missing row troughs. In this paper, we therefore address the question if Pt/Pt(110)-(1 x 2) is a 1D model system to study late stage growth phenomena such as island ripening? From STM measurements, we quantify the morphology changes resulting from annealing a surface configuration with small 1D Pt islands in the missing row troughs to temperatures in the interval 369-395 K. Interestingly, the resulting increase in island sizes (ripening) cannot be accounted for by the known island and adatom mobilities within a 1D model. An explanation is provided from dynamic, time-resolved 'STM-movies' that directly reveal two novel island-mediated mechanisms for inter-trough mass transport which cause the Pt/Pt(110)-(1 x 2) system not to be purely 1D at the higher surface coverage used in the annealing experiments
Modeling of 1D motion of interstitial clusters in iron under HVEM irradiation
International Nuclear Information System (INIS)
Satoh, Y.; Hamaoka, T.; Matsui, H.
2007-01-01
Full text of publication follows: We examined 1D motion of interstitial clusters in Fe under electron irradiation at room temperature using high voltage electron microscopy (HVEM). We found that some impurities have essential effects on the experimental 1D motion behavior. The characteristics of experimental 1D motion were obtained as follows: 1) 1D motion appears as discrete jumps (namely, stepwise positional changes) at irregular intervals. 2) Sometimes a set of several successive jumps occurs between certain two points (back and forth motion). 3) The frequency of 1D jumps is almost proportional to the electron beam intensity, while the distribution of 1D jump distance does not change much with the intensity. Very few 1D jumps are observed with a 200 kV TEM at room temperature. 4) The distance and the frequency of 1D jumps are greatly reduced in a specimen of low purities. Taking account for effects of impurities, we propose a mechanism of the experimental 1D jumps, as follows. Small interstitial clusters are regarded to be essentially mobile as crowdion bundles. Then interstitial clusters in a stationary state are trapped by impurity atom(s), due to elastic interactions between impurities and crowdion bundle. The electron irradiation changes the cluster into a mobile state by a detrapping: for example, the impurity atom is displaced to apart from the crowdion bundle. Then the crowdion bundle makes a free 1D migration until it is trapped by another impurity atom. Because of small activation energy for 1D migration, we cannot observe the detailed 1D random walk process, but a stepwise positional change from an impurity to another impurity. The average size of interstitial clusters observed in the present experiments was around 5 nm, corresponding to a bundle of 300 crowdions. In a rough estimate assuming that an impurity atom on any crowdion in the crowdion bundle prevent the migration of the bundle, the mean free path is about 75 nm and 7.5 nm at the impurity
Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.
Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G
2015-01-01
CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.
CD1d-Restricted Type II NKT Cells Reactive With Endogenous Hydrophobic Peptides.
Nishioka, Yusuke; Masuda, Sakiko; Tomaru, Utano; Ishizu, Akihiro
2018-01-01
NKT cells belong to a distinct subset of T cells that recognize hydrophobic antigens presented by major histocompatibility complex class I-like molecules, such as CD1d. Because NKT cells stimulated by antigens can activate or suppress other immunocompetent cells through an immediate production of a large amount of cytokines, they are regarded as immunological modulators. CD1d-restricted NKT cells are classified into two subsets, namely, type I and type II. CD1d-restricted type I NKT cells express invariant T cell receptors (TCRs) and react with lipid antigens, including the marine sponge-derived glycolipid α-galactosylceramide. On the contrary, CD1d-restricted type II NKT cells recognize a wide variety of antigens, including glycolipids, phospholipids, and hydrophobic peptides, by their diverse TCRs. In this review, we focus particularly on CD1d-restricted type II NKT cells that recognize endogenous hydrophobic peptides presented by CD1d. Previous studies have demonstrated that CD1d-restricted type I NKT cells usually act as pro-inflammatory cells but sometimes behave as anti-inflammatory cells. It has been also demonstrated that CD1d-restricted type II NKT cells play opposite roles to CD1d-restricted type I NKT cells; thus, they function as anti-inflammatory or pro-inflammatory cells depending on the situation. In line with this, CD1d-restricted type II NKT cells that recognize type II collagen peptide have been demonstrated to act as anti-inflammatory cells in diverse inflammation-induction models in mice, whereas pro-inflammatory CD1d-restricted type II NKT cells reactive with sterol carrier protein 2 peptide have been demonstrated to be involved in the development of small vessel vasculitis in rats.
A rational route to SCM materials based on a 1-D cobalt selenocyanato coordination polymer.
Boeckmann, Jan; Näther, Christian
2011-07-07
Thermal annealing of a discrete complex with terminal SeCN anions and monodentate coligands enforces the formation of a 1D cobalt selenocyanato coordination polymer that shows slow relaxation of the magnetization. Therefore, this approach offers a rational route to 1D materials that might show single chain magnetic behaviour. This journal is © The Royal Society of Chemistry 2011
Influence of lipid rafts on CD1d presentation by dendritic cells
DEFF Research Database (Denmark)
Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie
2011-01-01
corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...
Development of a 3D consistent 1D neutronics model for reactor core simulation
International Nuclear Information System (INIS)
Lee, Ki Bog; Joo, Han Gyu; Cho, Byung Oh; Zee, Sung Quun
2001-02-01
In this report a 3D consistent 1D model based on nonlinear analytic nodal method is developed to reproduce the 3D results. During the derivation, the current conservation factor (CCF) is introduced which guarantees the same axial neutron currents obtained from the 1D equation as the 3D reference values. Furthermore in order to properly use 1D group constants, a new 1D group constants representation scheme employing tables for the fuel temperature, moderator density and boron concentration is developed and functionalized for the control rod tip position. To test the 1D kinetics model with CCF, several steady state and transient calculations were performed and compared with 3D reference values. The errors of K-eff values were reduced about one tenth when using CCF without significant computational overhead. And the errors of power distribution were decreased to the range of one fifth or tenth at steady state calculation. The 1D kinetics model with CCF and the 1D group constant functionalization employing tables as a function of control rod tip position can provide preciser results at the steady state and transient calculation. Thus it is expected that the 1D kinetics model derived in this report can be used in the safety analysis, reactor real time simulation coupled with system analysis code, operator support system etc.
Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L
2007-02-01
Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.
International Nuclear Information System (INIS)
Meier-Abt, F.; Hammann-Haenni, A.; Stieger, B.; Ballatori, N.; Boyer, J.L.
2007-01-01
Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [ 3 H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km ∼ 0.4 μM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki ∼ 150 μM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km ∼ 2.2 μM) and microcystin-LR (Km ∼ 27 μM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostα/β, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin
Fundamentals of condensed matter physics
Cohen, Marvin L
2016-01-01
Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...
DOE Fundamentals Handbook: Classical Physics
International Nuclear Information System (INIS)
1992-06-01
The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment
Fundamentals of estuarine physical oceanography
Bruner de Miranda, Luiz; Kjerfve, Björn; Castro Filho, Belmiro Mendes de
2017-01-01
This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time. In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.
Protection of fundamental rights today
International Nuclear Information System (INIS)
Meyer-Abich, K.M.
1984-01-01
Technical developments can both change the methods of dealing with existing conflicts, and cause new conflicts. Meyer-Abich analyzes five conflicts caused by the technological development in the solution of which the constitutional, liberal, and democratic protection of fundamental rights is not at all guaranteed. Meyer-Abich thinks that these new conflicts can be solved in the framework of the liberal constitutional state, if legal and political consequences are taken in order to guarantee the uncharged protection of fundamental rights under changing conditions. The necessary reforms can, however, only be realized if the way how state and science see themselves changes. Both have to give up their one-sidedness into which have been pushed by conflict which havbe been caused by the scientific and technical development. Only then it will be possible to solve the jemerging conflicts without eopardizing the integritiy of the society. (orig.) [de
THE FUNDAMENTS OF EXPLANATORY CAUSES
Directory of Open Access Journals (Sweden)
Lavinia Mihaela VLĂDILĂ
2015-07-01
Full Text Available The new Criminal Code in the specter of the legal life the division of causes removing the criminal feature of the offence in explanatory causes and non-attributable causes. This dichotomy is not without legal and factual fundaments and has been subjected to doctrinaire debates even since the period when the Criminal Code of 1969 was still in force. From our perspective, one of the possible legal fundaments of the explanatory causes results from that the offence committed is based on the protection of a right at least equal with the one prejudiced by the action of aggression, salvation, by the legal obligation imposed or by the victim’s consent.
Modern measurements fundamentals and applications
Petri, D; Carbone, P; Catelani, M
2015-01-01
This book explores the modern role of measurement science for both the technically most advanced applications and in everyday and will help readers gain the necessary skills to specialize their knowledge for a specific field in measurement. Modern Measurements is divided into two parts. Part I (Fundamentals) presents a model of the modern measurement activity and the already recalled fundamental bricks. It starts with a general description that introduces these bricks and the uncertainty concept. The next chapters provide an overview of these bricks and ﬁnishes (Chapter 7) with a more general and complex model that encompasses both traditional (hard) measurements and (soft) measurements, aimed at quantifying non-physical concepts, such as quality, satisfaction, comfort, etc. Part II (Applications) is aimed at showing how the concepts presented in Part I can be usefully applied to design and implement measurements in some very impor ant and broad ﬁelds. The editors cover System Identiﬁcation (Chapter 8...
Fundamental investigations of catalyst nanoparticles
DEFF Research Database (Denmark)
Elkjær, Christian Fink
and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...
Fundamentals of electronic systems design
Lienig, Jens
2017-01-01
This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.
Fundamental research in developing countries
International Nuclear Information System (INIS)
Moravesik, M.J.
1964-01-01
Technical assistance is today a widespread activity. Large numbers of persons with special qualifications in the applied sciences go to the developing countries to work on specific research and development projects, as do educationists on Fulbright or other programmes - usually to teach elementary or intermediate courses. But I believe that until now it has been rare for a person primarily interested in fundamental research to go to one of these countries to help build up advanced education and pure research work. Having recently returned from such an assignment, and having found it a most stimulating and enlightening experience, I feel moved to urge strongly upon others who may be in a position to do so that they should seek similar experience themselves. The first step is to show that advanced education and fundamental research are badly needed in the under-developed countries.
TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient
International Nuclear Information System (INIS)
Wolbarst, A.
2015-01-01
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient
Energy Technology Data Exchange (ETDEWEB)
Wolbarst, A. [Univ Kentucky (United States)
2015-06-15
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
Fundamentals of plastic optical fibers
Koike, Yasuhiro
2014-01-01
Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,
DOE fundamentals handbook: Material science
International Nuclear Information System (INIS)
1993-01-01
This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)
Directory of Open Access Journals (Sweden)
Sujan Chowdhury
2011-01-01
Full Text Available Novel one-dimensional (1D ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several general synthesis routes as including soft and hard template-assemble phenomenon for the preparation of 1D cerium oxide are discussed. This preparation phenomenon is consisting with low cost and ecofriendly. Nanometer-sized 1D structure provides a high-surface area that can interact with methanol and carbon-monoxide reaction. Overall, nanometer-sized structure provides desirable properties, such as easy recovery and regeneration. As a result, the use of 1D cerium has been suitable for catalytic application of reforming. In this paper, we describe the 1D cerium oxide syntheses route and then summarize their properties in the field of CO oxidation and steam reforming of methanol approach.
Non-thermal distribution of O(1D) atoms in the night-time thermosphere
Yee, Jeng-Hwa
1988-01-01
The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.
Fundamental requirements for petrochemical development
International Nuclear Information System (INIS)
Flint, G. B.
1999-01-01
The development of NOVA Chemicals over the past 20 years is described as an illustration of how the petrochemical industry provides markets for natural gas, natural gas liquids and the products of crude oil distillation, and functions as a conduit for upgrading products which would otherwise be sold into the fuel market. Some fundamental characteristics of the business which are foundations for competitiveness are reviewed in the process. These fundamentals help to understand why the industry locates in certain geographic regions of the world, which are often remote from end-use markets. Chief among these fundamentals is access to an adequate supply of appropriately priced feedstock; this is the single most important reason why chemical companies continue to emphasize developments in areas of the world where feedstock are advantageously priced. The cost of operations is equally significant. Cost depends not so much on location but on the scale of operations, hence the tendency towards large scale plants. Plant and product rationalization, technology and product development synergies and leverage with suppliers are all opportunities for cost reduction throughout the product supply chain. The combination of lower natural gas cost in Alberta, the lower fixed cost of extraction and the economies of scale achieved by large scale operation (five billion pounds per year of polyethylene production capacity) are the crucial factors that will enable NOVA Chemicals to maintain its competitive position and to weather the highs and lows in industry price fluctuations
International Nuclear Information System (INIS)
Suzuki, Yohichi; Tanimura, Yoshitaka
2007-01-01
Electron transfer reaction in a polar solvent is modeled by a solute dipole surrounded by dipolar molecules with simple rotational dynamics posted on the three-dimensional distorted lattice sites. The interaction energy between the solute and solvent dipoles as a reaction coordinate is adopted and free energy landscapes are calculated by generating all possible states for a 26 dipolar system and by employing Wang-Landau sampling algorithm for a 92 dipolar system. For temperatures higher than the energy scale of dipole-dipole interactions, the free energy landscapes for the small reaction coordinate region have quadratic shape as predicted by Marcus [Rev. Mod. Phys. 65, 599 (1993)] whereas for the large reaction coordinate region, the landscapes exhibit a nonquadratic shape. When the temperature drops, small notched structures appear on the free energy profiles because of the frustrated interactions among dipoles. The formation of notched structure is analyzed with statistical approach and it is shown that the amplitude of notched structure depend upon the segment size of the reaction coordinate and is characterized by the interaction energy among the dipoles. Using simulated free energy landscapes, the authors calculate the reaction rates as a function of the energy gap for various temperatures. At high temperature, the reactions rates follow a bell shaped (inverted parabolic) energy gap law in the small energy gap regions, while it becomes steeper than the parabolic shape in a large energy gap regions due to the nonquadratic shape of the free energy landscape. The peak position of parabola also changes as the function of temperature. At low temperature, the profile of the reaction rates is no longer smooth because of the many local minima of the free energy landscape
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Mao, Zhuo-Ya; Liu, Yi-Wen; Han, Pan; Dong, Han-Qing; Si, Chang-Mei; Wei, Bang-Guo; Lin, Guo-Qiang
2018-02-16
An efficient and step-economical approach to access functionalized pyrrolizidine derivatives by a one-pot tandem sequence, including an aldol condensation and subsequent 1,3-dipolar cycloaddition process, has been developed, starting from acetone, aldehyde, and proline. A number of substituted aromatic aldehydes were amenable to this transformation, and the desired products, racemic 7a-7w and chiral 9a-9m, were obtained with excellent regioselectivities and outstanding diastereoselectivities. Moreover, in situ NMR studies revealed MgSO 4 could effectively promote the aldol condensation pathway in this tandem process.
International Nuclear Information System (INIS)
Perfetti, E.
2006-11-01
Modelling fluid-rock interactions as well as mixing and unmixing phenomena in geological processes requires robust equations of state (EOS) which must be applicable to systems containing water, gases over a broad range of temperatures and pressures. Cubic equations of state based on the Van der Waals theory (e. g. Soave-Redlich-Kwong or Peng-Robinson) allow simple modelling from the critical parameters of the studied fluid components. However, the accuracy of such equations becomes poor when water is a major component of the fluid since neither association trough hydrogen bonding nor dipolar interactions are accounted for. The Helmholtz energy of a fluid may be written as the sum of different energetic contributions by factorization of partition function. The model developed in this thesis for the pure H 2 O and H 2 S considers three contributions. The first contribution represents the reference Van der Waals fluid which is modelled by the SRK cubic EOS. The second contribution accounts for association through hydrogen bonding and is modelled by a term derived from Cubic Plus Association (CPA) theory. The third contribution corresponds to the dipolar interactions and is modelled by the Mean Spherical Approximation (MSA) theory. The resulting CPAMSA equation has six adjustable parameters, which three represent physical terms whose values are close to their experimental counterpart. This equation results in a better reproduction of the thermodynamic properties of pure water than obtained using the classical CPA equation along the vapour-liquid equilibrium. In addition, extrapolation to higher temperatures and pressure is satisfactory. Similarly, taking into account dipolar interactions together with the SRK cubic equation of state for calculating molar volume of H 2 S as a function of pressure and temperature results in a significant improvement compared to the SRK equation alone. Simple mixing rules between dipolar molecules are proposed to model the H 2 O-H 2 S