WorldWideScience

Sample records for functionally related transcripts

  1. Myocardin-related transcription factors are required for cardiac development and function

    OpenAIRE

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2015-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the d...

  2. Myocardin-related transcription factors are required for cardiac development and function

    Science.gov (United States)

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  3. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci.

    Science.gov (United States)

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.

  4. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool.

    Science.gov (United States)

    Auerbach, Raymond K; Chen, Bin; Butte, Atul J

    2013-08-01

    Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.

  5. Transcriptional interference networks coordinate the expression of functionally-related genes clustered in the same genomic loci

    Directory of Open Access Journals (Sweden)

    Zsolt eBoldogkoi

    2012-07-01

    Full Text Available The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organisation, transcription, various post-transcriptional processes and translation. In this study, the Transcriptional Interference Network (TIN hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighbouring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally-linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly-arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely-oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronised cascade of gene expression in functionally-linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular

  6. Validation of aspirin response-related transcripts in patients with coronary artery disease and preliminary investigation on CMTM5 function.

    Science.gov (United States)

    Zhang, J W; Liu, T F; Chen, X H; Liang, W Y; Feng, X R; Wang, L; Fu, Sidney W; McCaffrey, Timothy A; Liu, M L

    2017-08-15

    Aspirin is widely used in the prevention of cardiovascular diseases, but the antiplatelet responses vary from one patient to another. To validate aspirin response related transcripts and illustrate their roles in predicting cardiovascular events, we have quantified the relative expression of 14 transcripts previously identified as related to high on-aspirin platelet reactivity (HAPR) in 223 patients with coronary artery disease (CAD) on regular aspirin treatment. All patients were followed up regularly for cardiovascular events (CVE). The mean age of our enrolled population was 75.80±8.57years. HAPR patients showed no significant differences in terms of co-morbidities and combined drugs. Besides, the relative expression of HLA-DQA1 was significantly lower in low on-aspirin platelet reactivity (LAPR) patients, when compared with HAPR and high normal (HN) group (p=0.028). What's more, the number of arteries involved, HAPR status and the relative expression of CLU, CMTM5 and SPARC were independent risk factors for CVE during follow up (p<0.05). In addition, overexpression of CMTM5 attenuated endothelial cells (ECs) migration and proliferation, with significantly decreased phosphorylated-Akt levels, while its inhibition promoted these processes in vitro (p<0.05).Our study provides evidence that circulating transcripts might be potential biomarkers in predicting cardiovascular events. CMTM5 might exert anti-atherosclerotic effects via suppressing migration and proliferation in the vessel wall. Nevertheless, larger-scale and long-term studies are still needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.

    Science.gov (United States)

    Soler, Marçal; Camargo, Eduardo Leal Oliveira; Carocha, Victor; Cassan-Wang, Hua; San Clemente, Hélène; Savelli, Bruno; Hefer, Charles A; Paiva, Jorge A Pinto; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  8. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has......NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...

  9. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function

    International Nuclear Information System (INIS)

    Hatazawa, Yukino; Minami, Kimiko; Yoshimura, Ryoji; Onishi, Takumi; Manio, Mark Christian; Inoue, Kazuo; Sawada, Naoki; Suzuki, Osamu; Miura, Shinji; Kamei, Yasutomi

    2016-01-01

    The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.

  10. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  11. Activated nuclear transcription factor κB in patients with myocarditis and dilated cardiomyopathy-relation to inflammation and cardiac function

    International Nuclear Information System (INIS)

    Alter, Peter; Rupp, Heinz; Maisch, Bernhard

    2006-01-01

    Objectives and background: Myocarditis is caused by various agents and autoimmune processes. It is unknown whether viral genome persistence represents inactive remnants of previous infections or whether it is attributed to ongoing adverse processes. The latter also applies to the course of autoimmune myocarditis. One principal candidate for an adverse remodeling is nuclear factor-κB (NFκB). Methods: A total of 93 patients with suspected myocarditis/cardiomyopathy was examined. Hemodynamics were assessed by echocardiography as well as right and left heart catheterization. Endomyocardial biopsies were taken from the left ventricle. Biopsies were examined by immunohistochemistry and PCR for viral genomes. Selective immunostaining of activated NFκB was performed. Results: NFκB was increased in patients with myocarditis when compared with controls (11.1 ± 7.1% vs. 5.0 ± 5.3%, P 2 = 0.72, P 2 = 0.43, P < 0.02). Increased activated NFκB was found in adenovirus persistence when compared with controls (P = 0.001). Only a trend of increased NFκB activation was seen in cytomegalovirus persistence. Parvovirus B19 persistence did not affect NFκB activation. Conclusions: Increased activation of NFκB is related to inflammatory processes in myocarditis. Since activated NFκB correlates with left ventricular function, it could be assumed that NFκB activation occurs at early stages of inflammation. Potentially, NFκB could inhibit loss of cardiomyocytes by apoptosis and protect from cardiac dilation. Since NFκB is a crucial key transcription factor of inflammation, its prognostic and future therapeutic relevance should be addressed

  12. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  13. Emerging properties and functional consequences of noncoding transcription

    DEFF Research Database (Denmark)

    Ard, Ryan; Allshire, Robin C; Marquardt, Sebastian

    2017-01-01

    specific lncRNAs, support grows for the notion that the act of transcription rather than the RNA product itself is functionally important in many cases. Indeed, this alternative mechanism might better explain how low-abundance lncRNAs transcribed from noncoding DNA function in organisms. Here, we highlight......Eukaryotic genomes are rich in transcription units encoding "long noncoding RNAs" (lncRNAs). The purpose of all this transcription is unclear since most lncRNAs are quickly targeted for destruction during synthesis or shortly thereafter. As debates continue over the functional significance of many...... some of the recently emerging features that distinguish coding from noncoding transcription and discuss how these differences might have important implications for the functional consequences of noncoding transcription....

  14. Transcription of tandemly repetitive DNA: functional roles.

    Science.gov (United States)

    Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco

    2015-09-01

    A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.

  15. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    Science.gov (United States)

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  16. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor

    Science.gov (United States)

    Chen, Kuan-I.; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-11-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3‧-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.

  17. Recent advances in functional assays of transcriptional enhancers.

    Science.gov (United States)

    Babbitt, Courtney C; Markstein, Michele; Gray, Jesse M

    2015-09-01

    In this special edition of Genomics, we present reviews of the current state of the field in identifying and functionally understanding transcriptional enhancers in cells and developing tissues. Typically several enhancers coordinate the expression of an individual target gene, each controlling that gene's expression in specific cell types at specific times. Until recently, identifying each gene's enhancers had been challenging because enhancers do not occupy prescribed locations relative to their target genes. Recently there have been powerful advances in DNA sequencing and other technologies that make it possible to identify the majority of enhancers in virtually any cell type of interest. The reviews in this edition of Genomics highlight some of these new and powerful approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Functional Programming With Relations

    OpenAIRE

    Hutton, Graham

    1991-01-01

    While programming in a relational framework has much to offer over the functional style in terms of expressiveness, computing with relations is less efficient, and more semantically troublesome. In this paper we propose a novel blend of the functional and relational styles. We identify a class of "causal relations", which inherit some of the bi-directionality properties of relations, but retain the efficiency and semantic foundations of the functional style.

  19. Plant Mediator complex and its critical functions in transcription regulation.

    Science.gov (United States)

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  1. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  2. Functionally significant, rare transcription factor variants in tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Ana Töpf

    Full Text Available Rare variants in certain transcription factors involved in cardiac development cause Mendelian forms of congenital heart disease. The purpose of this study was to systematically assess the frequency of rare transcription factor variants in sporadic patients with the cardiac outflow tract malformation tetralogy of Fallot (TOF.We sequenced the coding, 5'UTR, and 3'UTR regions of twelve transcription factor genes implicated in cardiac outflow tract development (NKX2.5, GATA4, ISL1, TBX20, MEF2C, BOP/SMYD1, HAND2, FOXC1, FOXC2, FOXH, FOXA2 and TBX1 in 93 non-syndromic, non-Mendelian TOF cases. We also analysed Illumina Human 660W-Quad SNP Array data for copy number variants in these genes; none were detected. Four of the rare variants detected have previously been shown to affect transactivation in in vitro reporter assays: FOXC1 p.P297S, FOXC2 p.Q444R, FOXH1 p.S113T and TBX1 p.P43_G61del PPPPRYDPCAAAAPGAPGP. Two further rare variants, HAND2 p.A25_A26insAA and FOXC1 p.G378_G380delGGG, A488_491delAAAA, affected transactivation in in vitro reporter assays. Each of these six functionally significant variants was present in a single patient in the heterozygous state; each of the four for which parental samples were available were maternally inherited. Thus in the 93 TOF cases we identified six functionally significant mutations in the secondary heart field transcriptional network.This study indicates that rare genetic variants in the secondary heart field transcriptional network with functional effects on protein function occur in 3-13% of patients with TOF. This is the first report of a functionally significant HAND2 mutation in a patient with congenital heart disease.

  3. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  4. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  5. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677.

    Science.gov (United States)

    Zhai, Zhengyuan; Douillard, François P; An, Haoran; Wang, Guohong; Guo, Xinghua; Luo, Yunbo; Hao, Yanling

    2014-06-01

    To overcome the deleterious effects of acid stress, Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) elicits an adaptive response to acid stress. In this study, proteomics approach complemented by transcriptional analysis revealed some cellular changes in L. bulgaricus CAUH1 during acid adaptation. We observed an increase of glycolysis-associated proteins, promoting an optimal utilization of carbohydrates. Also, rerouting of the pyruvate metabolism to fatty acid biosynthesis was observed, indicating a possible modification of the cell membrane rigidity and impermeability. In addition, expression of ribosomal protein S1 (RpsA) was repressed; however, the expression of EF-Tu, EF-G and TypA was up-regulated at both protein and transcript levels. This suggests a reduction of protein synthesis in response to acid stress along with possible enhancement of the translational accuracy and protein folding. It is noteworthy that the putative transcriptional regulator Ldb0677 was 1.84-fold up-regulated. Heterologous expression of Ldb0677 was shown to significantly enhance acid resistance in host strain Lactococcus lactis. To clarify its role in transcriptional regulation network, the DNA-binding specificity of Ldb0677 was determined using bacterial one-hybrid and electrophoretic mobility shift assay. The identification of a binding motif (SSTAGACR) present in the promoter regions of 22 genes indicates that it might function as a major regulator in acid stress response in L. bulgaricus. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Site-Specific Incorporation of Functional Components into RNA by an Unnatural Base Pair Transcription System

    Directory of Open Access Journals (Sweden)

    Rie Kawai

    2012-03-01

    Full Text Available Toward the expansion of the genetic alphabet, an unnatural base pair between 7-(2-thienylimidazo[4,5-b]pyridine (Ds and pyrrole-2-carbaldehyde (Pa functions as a third base pair in replication and transcription, and provides a useful tool for the site-specific, enzymatic incorporation of functional components into nucleic acids. We have synthesized several modified-Pa substrates, such as alkylamino-, biotin-, TAMRA-, FAM-, and digoxigenin-linked PaTPs, and examined their transcription by T7 RNA polymerase using Ds-containing DNA templates with various sequences. The Pa substrates modified with relatively small functional groups, such as alkylamino and biotin, were efficiently incorporated into RNA transcripts at the internal positions, except for those less than 10 bases from the 3′-terminus. We found that the efficient incorporation into a position close to the 3′-terminus of a transcript depended on the natural base contexts neighboring the unnatural base, and that pyrimidine-Ds-pyrimidine sequences in templates were generally favorable, relative to purine-Ds-purine sequences. The unnatural base pair transcription system provides a method for the site-specific functionalization of large RNA molecules.

  7. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    Science.gov (United States)

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Functions of public relations

    OpenAIRE

    Baranov G. V.

    2016-01-01

    the article reveals the importance of communication with the public in the implementation of human rights and the ideals of mankind; characterized by the specificity of public relations in the information culture of belief; PR functions are explained on the criterion of optimization of activity of social interactions on the basis of cultural ideals.

  9. Transcriptional regulation of genes related to progesterone production.

    Science.gov (United States)

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  10. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    Directory of Open Access Journals (Sweden)

    Nicolas M Bertagnolli

    Full Text Available To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  11. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies

    Directory of Open Access Journals (Sweden)

    Carles eMarco Llorca

    2014-04-01

    Full Text Available bZIPs and WRKYs are two important plant transcription factor families regulating diverse developmental and stress-related processes. Since a partial overlap in these biological processes is obvious, it can be speculated that they fulfill non-redundant functions in a complex regulatory network. Here, we focus on the regulatory mechanisms that are so far described for bZIPs and WRKYs. bZIP factors need to heterodimerize for DNA-binding and regulation of transcription, and based on a bioinformatics approach, bZIPs can build up more than the double of protein interactions than WRKYs. In contrast, an enrichment of the WRKY DNA-binding motifs can be found in WRKY promoters, a phenomenon which is not observed for the bZIP family. Thus, the two transcription factor families follow two different functional strategies in which WRKYs regulate each other’s transcription in a transcriptional network whereas bZIP action relies on intensive heterodimerization.

  12. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  13. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  14. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Oyoshi Takanori

    2012-01-01

    Full Text Available Abstract The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs, resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT activity in human cells. Transcription regulator EWS (Ewing's sarcoma, which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.

  15. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... regions, the map of transcripts is very complex due to small transcripts from the flanking ends of the transcription unit, the use of multiple start and stop sites for the main transcript, production of multiple functional RNA molecules from the same primary transcript, and RNA molecules made...... by independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  16. Nuclear stability and transcriptional directionality separate functionally distinct RNA species

    DEFF Research Database (Denmark)

    Andersson, Robin; Refsing Andersen, Peter; Valen, Eivind

    2014-01-01

    Mammalian genomes are pervasively transcribed, yielding a complex transcriptome with high variability in composition and cellular abundance. Although recent efforts have identified thousands of new long non-coding (lnc) RNAs and demonstrated a complex transcriptional repertoire produced by protei...

  17. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.

    Science.gov (United States)

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-11-02

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Emerging Functions of Transcription Factors in Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  19. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  20. Regulation of an H-ras-related transcript by parathyroid hormone in rat osteosarcoma cells

    Science.gov (United States)

    Scott, D. K.; Weaver, W. R.; Clohisy, J. C.; Brakenhoff, K. D.; Kahn, A. J.; Partridge, N. C.

    1992-01-01

    The rat osteosarcoma cell line UMR 106-01 is a commonly used model system for the study of osteoblast function. However, it also expresses a phenotype characteristic of transformed cells. To test whether the latter could be accounted for by aberrant oncogene expression, we probed Northern blots of UMR and other osteoblastic cells with a panel of oncogene probes. These blots, when probed with a cDNA specific for v-H-ras, revealed a 7.0-kilobase (kb) H-ras-related transcript (designated HRRT) in UMR 106-01 cells that was not expressed in other osteoblastic cells. Osteoblast-enriched calvarial cells expressed the typical 1.1-kb H-ras mRNA, which was absent in UMR cells. Additionally, Western blots of lysates of UMR cells documented the presence of three proteins immunologically related to H-rasp21. To determine whether HRRT represented a recombinant retrovirus product, Northern blots were probed with a cDNA specific for the highly conserved gag-pol region of Moloney murine leukemia virus. These blots showed parallel cross-reactivity with an apparently identical transcript of 7.0 kb. The 7.0-kb transcripts detected by both v-H-ras and gag-pol probes declined to the same extent after treatment with concentrations of PTH known to inhibit proliferation of these cells. PTH regulated the abundance of HRRT in a time- and dose-dependent manner, with greatest repression of the transcript after 8 h of treatment with 10(-8) M PTH. The decrease in HRRT could not be completely accounted for by changes in transcriptional activity, as determined by nuclear run-on assays.(ABSTRACT TRUNCATED AT 250 WORDS).

  1. Persistent Functional Languages: Toward Functional Relational Databases

    NARCIS (Netherlands)

    Wevers, L.

    2014-01-01

    Functional languages provide new approaches to concurrency control, based on techniques such as lazy evaluation and memoization. We have designed and implemented a persistent functional language based on these ideas, which we plan to use for the implementation of a relational database system. With

  2. Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation

    Directory of Open Access Journals (Sweden)

    Lee Sanghyuk

    2008-09-01

    Full Text Available Abstract Background Sox10, a member of the Sry-related HMG-Box gene family, is a critical transcription factor for several important cell lineages, most notably the neural crest stem cells and the derivative peripheral glial cells and melanocytes. Thus far, only a handful of direct target genes are known for this transcription factor limiting our understanding of the biological network it governs. Results We describe identification of multiple direct regulatory target genes of Sox10 through a procedure based on function and conservation. By combining RNA interference technique and DNA microarray technology, we have identified a set of genes that show significant down-regulation upon introduction of Sox10 specific siRNA into Schwannoma cells. Subsequent comparative genomics analyses led to potential binding sites for Sox10 protein conserved across several mammalian species within the genomic region proximal to these genes. Multiple sites belonging to 4 different genes (proteolipid protein, Sox10, extracellular superoxide dismutase, and pleiotrophin were shown to directly interact with Sox10 by chromatin immunoprecipitation assay. We further confirmed the direct regulation through the identified cis-element for one of the genes, extracellular superoxide dismutase, using electrophoretic mobility shift assay and reporter assay. Conclusion In sum, the process of combining differential expression profiling and comparative genomics successfully led to further defining the role of Sox10, a critical transcription factor for the development of peripheral glia. Our strategy utilizing relatively accessible techniques and tools should be applicable to studying the function of other transcription factors.

  3. WRKY transcription factor superfamily: Structure, origin and functions

    African Journals Online (AJOL)

    terminal ends contain the WRKYGQR amino acid sequence and a zinc-finger motif. WRKY transcription factors can regulate the expression of target genes that contain the W-box elements (C/T)TGAC(C/T) in the promoter regions by specifically ...

  4. Functional characterization of tobacco transcription factor TGA2.1

    DEFF Research Database (Denmark)

    Kegler, C.; Lenk, I.; Krawczyk, S.

    2004-01-01

    Activation sequence-1 (as-1)-like regulatory cis elements mediate transcriptional activation in response to increased levels of plant signalling molecules auxin and salicylic acid (SA). Our earlier work has shown that tobacco cellular as-1-binding complex SARP (salicylic acid responsive protein...

  5. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  6. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis.

    Science.gov (United States)

    Quispe, Ruth L; Justino, Emily B; Vieira, Felipe N; Jaramillo, Michael L; Rosa, Rafael D; Perazzolo, Luciane M

    2016-11-01

    We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  8. Identifying functional transcription factor binding sites in yeast by considering their positional preference in the promoters.

    Directory of Open Access Journals (Sweden)

    Fu-Jou Lai

    Full Text Available Transcription factor binding site (TFBS identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC, to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS. This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.

  9. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts

    KAUST Repository

    Alam, Tanvir

    2016-10-12

    Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna

  10. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts

    KAUST Repository

    Alam, Tanvir; Uludag, Mahmut; Essack, Magbubah; Salhi, Adil; Ashoor, Haitham; Hanks, John B.; Kapfer, Craig Eric; Mineta, Katsuhiko; Gojobori, Takashi; Bajic, Vladimir B.

    2016-01-01

    Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna

  11. Functional statistics and related fields

    CERN Document Server

    Bongiorno, Enea; Cao, Ricardo; Vieu, Philippe

    2017-01-01

    This volume collects latest methodological and applied contributions on functional, high-dimensional and other complex data, related statistical models and tools as well as on operator-based statistics. It contains selected and refereed contributions presented at the Fourth International Workshop on Functional and Operatorial Statistics (IWFOS 2017) held in A Coruña, Spain, from 15 to 17 June 2017. The series of IWFOS workshops was initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008. Since then, many of the major advances in functional statistics and related fields have been periodically presented and discussed at the IWFOS workshops. .

  12. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Ahmad M Khalil

    2008-01-01

    Full Text Available Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1-2% of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5' UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders.

  13. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.

    Science.gov (United States)

    Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A

    2008-04-01

    Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.

  14. Finding related functional neuroimaging volumes

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2004-01-01

    We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving ea...

  15. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    NARCIS (Netherlands)

    Danisman, S.; Dijk, van A.D.J.; Bimbo, A.; Wal, van der F.; Hennig, L.; Folter, de S.; Angenent, G.C.; Immink, R.G.H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and ROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by

  16. Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development

    Directory of Open Access Journals (Sweden)

    Chen Di

    2008-02-01

    Full Text Available Abstract Background pha-4 encodes a forkhead box (FOX A transcription factor serving as the C. elegans pharynx organ identity factor during embryogenesis. Using Serial Analysis of Gene Expression (SAGE, comparison of gene expression profiles between growing stages animals and long-lived, developmentally diapaused dauer larvae revealed that pha-4 transcription is increased in the dauer stage. Results Knocking down pha-4 expression by RNAi during post-embryonic development showed that PHA-4 is essential for dauer recovery, gonad and vulva development. daf-16, which encodes a FOXO transcription factor regulated by insulin/IGF-1 signaling, shows overlapping expression patterns and a loss-of-function post-embryonic phenotype similar to that of pha-4 during dauer recovery. pha-4 RNAi and daf-16 mutations have additive effects on dauer recovery, suggesting these two regulators may function in parallel pathways. Gene expression studies using RT-PCR and GFP reporters showed that pha-4 transcription is elevated under starvation, and a conserved forkhead transcription factor binding site in the second intron of pha-4 is important for the neuronal expression. The vulval transcription of lag-2, which encodes a ligand for the LIN-12/Notch lateral signaling pathway, is inhibited by pha-4 RNAi, indicating that LAG-2 functions downstream of PHA-4 in vulva development. Conclusion Analysis of PHA-4 during post-embryonic development revealed previously unsuspected functions for this important transcriptional regulator in dauer recovery, and may help explain the network of transcriptional control integrating organogenesis with the decision between growth and developmental arrest at the dauer entry and exit stages.

  17. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    Science.gov (United States)

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  18. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  19. Structural-Functional Organization of the Eukaryotic Cell Nucleus and Transcription Regulation: Introduction to This Special Issue of Biochemistry (Moscow).

    Science.gov (United States)

    Razin, S V

    2018-04-01

    This issue of Biochemistry (Moscow) is devoted to the cell nucleus and mechanisms of transcription regulation. Over the years, biochemical processes in the cell nucleus have been studied in isolation, outside the context of their spatial organization. Now it is clear that segregation of functional processes within a compartmentalized cell nucleus is very important for the implementation of basic genetic processes. The functional compartmentalization of the cell nucleus is closely related to the spatial organization of the genome, which in turn plays a key role in the operation of epigenetic mechanisms. In this issue of Biochemistry (Moscow), we present a selection of review articles covering the functional architecture of the eukaryotic cell nucleus, the mechanisms of genome folding, the role of stochastic processes in establishing 3D architecture of the genome, and the impact of genome spatial organization on transcription regulation.

  20. Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice

    International Nuclear Information System (INIS)

    Khan, A.S.; Laigret, F.; Rodi, C.P.

    1987-01-01

    The authors used a synthetic 16-base-pair mink cell focus-forming (MCF) env-specific oligomer as radiolabeled probe to study MCF murine leukemia virus (MuLV)-related transcripts in brain, kidney, liver, spleen, and thymus tissues of AKR mice ranging from 5 weeks to 6 months (mo) of age. Tissue-specific expression of poly(A) + RNAs was seen. In addition, all the tissues tested contained 3.0-kb messages. The transcription of these MCF-related mRNAs was independent of the presence of ecotropic and xenotropic MuLVs. In general, expression of the MCF env-related transcripts appeared to peak at 2 mo of age; these messages were barely detectable in brain, kidney, liver, and spleen tissues after 2 mo and in thymus tissue after 4 mo of age. All of the subgenomic MCF env-related mRNAs appeared to contain the 190-base-pair cellular DNA insert, characteristic of the long terminal repeats associated with endogenous MCF env-related proviruses. No genomic-size (8.4-kb) transcripts corresponding to endogenous MCF-related proviruses were detected. An 8.4-kb MCF env-related mRNA was first seen at 3 mo of age, exclusively in thymus tissue. This species most likely represents the first appearance of a recombinant MCF-related MuLV genome. The transcripts which were detected in thymus tissue might be involved in the generation of leukemogenic MCF viruses

  1. Cis-Natural Antisense Transcripts Are Mainly Co-expressed with Their Sense Transcripts and Primarily Related to Energy Metabolic Pathways during Muscle Development.

    Science.gov (United States)

    Zhao, Yunxia; Hou, Ye; Zhao, Changzhi; Liu, Fei; Luan, Yu; Jing, Lu; Li, Xinyun; Zhu, Mengjin; Zhao, Shuhong

    2016-01-01

    Cis-natural antisense transcripts (cis-NATs) are a new class of RNAs identified in various species. However, the biological functions of cis-NATs are largely unknown. In this study, we investigated the transcriptional characteristics and functions of cis-NATs in the muscle tissue of lean Landrace and indigenous fatty Lantang pigs. In total, 3,306 cis-NATs of 2,469 annotated genes were identified in the muscle tissue of pigs. More than 1,300 cis-NATs correlated with their sense genes at the transcriptional level, and approximately 80% of them were co-expressed in the two breeds. Furthermore, over 1,200 differentially expressed cis-NATs were identified during muscle development. Function annotation showed that the cis-NATs participated in muscle development mainly by co-expressing with genes involved in energy metabolic pathways, including citrate cycle (TCA cycle), glycolysis or gluconeogenesis, mitochondrial activation and so on. Moreover, these cis-NATs and their sense genes abruptly increased at the transition from the late fetal stages to the early postnatal stages and then decreased along with muscle development. In conclusion, the cis-NATs in the muscle tissue of pigs were identified and determined to be mainly co-expressed with their sense genes. The co-expressed cis-NATs and their sense gene were primarily related to energy metabolic pathways during muscle development in pigs. Our results offered novel evidence on the roles of cis-NATs during the muscle development of pigs.

  2. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    International Nuclear Information System (INIS)

    Lindstroem, Mikael S.

    2009-01-01

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-κB, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  3. Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor–mediated disease

    Science.gov (United States)

    Chua, Jason P.; Reddy, Satya L.; Yu, Zhigang; Giorgetti, Elisa; Montie, Heather L.; Mukherjee, Sarmistha; Higgins, Jake; McEachin, Richard C.; Robins, Diane M.; Merry, Diane E.; Iñiguez-Lluhí, Jorge A.; Lieberman, Andrew P.

    2015-01-01

    Expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR) causes neuromuscular degeneration in individuals with spinobulbar muscular atrophy (SBMA). PolyQ AR has diminished transcriptional function and exhibits ligand-dependent proteotoxicity, features that have both been implicated in SBMA; however, the extent to which altered AR transcriptional function contributes to pathogenesis remains controversial. Here, we sought to dissociate effects of diminished AR function from polyQ-mediated proteotoxicity by enhancing the transcriptional activity of polyQ AR. To accomplish this, we bypassed the inhibitory effect of AR SUMOylation (where SUMO indicates small ubiquitin-like modifier) by mutating conserved lysines in the polyQ AR that are sites of SUMOylation. We determined that replacement of these residues by arginine enhances polyQ AR activity as a hormone-dependent transcriptional regulator. In a murine model, disruption of polyQ AR SUMOylation rescued exercise endurance and type I muscle fiber atrophy; it also prolonged survival. These changes occurred without overt alterations in polyQ AR expression or aggregation, revealing the favorable trophic support exerted by the ligand-activated receptor. Our findings demonstrate beneficial effects of enhancing the transcriptional function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may be a potential target for therapeutic intervention in SBMA. PMID:25607844

  4. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  5. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of

  6. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    Science.gov (United States)

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  7. Multiple RNAs from the mouse carboxypeptidase M locus: functional RNAs or transcription noise?

    Directory of Open Access Journals (Sweden)

    Castilho Beatriz A

    2009-02-01

    Full Text Available Abstract Background A major effort of the scientific community has been to obtain complete pictures of the genomes of many organisms. This has been accomplished mainly by annotation of structural and functional elements in the genome sequence, a process that has been centred in the gene concept and, as a consequence, biased toward protein coding sequences. Recently, the explosion of transcriptome data generated and the discovery of many functional non-protein coding RNAs have painted a more detailed and complex scenario for the genome. Here we analyzed the mouse carboxypeptidase M locus in this broader perspective in order to define the mouse CPM gene structure and evaluate the existence of other transcripts from the same genomic region. Results Bioinformatic analysis of nucleotide sequences that map to the mouse CPM locus suggests that, in addition to the mouse CPM mRNA, it expresses at least 33 different transcripts, many of which seem to be non-coding RNAs. We randomly chose to evaluate experimentally four of these extra transcripts. They are expressed in a tissue specific manner, indicating that they are not artefacts or transcriptional noise. Furthermore, one of these four extra transcripts shows expression patterns that differed considerably from the other ones and from the mouse CPM gene, suggesting that there may be more than one transcriptional unit in this locus. In addition, we have confirmed the mouse CPM gene RefSeq sequence by rapid amplification of cDNA ends (RACE and directional cloning. Conclusion This study supports the recent view that the majority of the genome is transcribed and that many of the resulting transcripts seem to be non-coding RNAs from introns of genes or from independent transcriptional units. Although some of the information on the transcriptome of many organisms may actually be artefacts or transcriptional noise, we argue that it can be experimentally evaluated and used to find and define biological

  8. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  9. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    Science.gov (United States)

    Bethuyne, Jonas; De Gieter, Steven; Zwaenepoel, Olivier; Garcia-Pino, Abel; Durinck, Kaat; Verhelle, Adriaan; Hassanzadeh-Ghassabeh, Gholamreza; Speleman, Frank; Loris, Remy; Gettemans, Jan

    2014-01-01

    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations. PMID:25324313

  10. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  11. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Science.gov (United States)

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  12. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Cen Wan

    2017-10-01

    Full Text Available Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  13. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.

    Science.gov (United States)

    Prajapati, Ranjit Kumar; Sengupta, Shreya; Rudra, Paulami; Mukhopadhyay, Jayanta

    2016-01-15

    Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The transcription factor c-Maf controls touch receptor development and function.

    Science.gov (United States)

    Wende, Hagen; Lechner, Stefan G; Cheret, Cyril; Bourane, Steeve; Kolanczyk, Maria E; Pattyn, Alexandre; Reuter, Katja; Munier, Francis L; Carroll, Patrick; Lewin, Gary R; Birchmeier, Carmen

    2012-03-16

    The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.

  15. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    Science.gov (United States)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  16. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    International Nuclear Information System (INIS)

    Garfinkel, S.; Thompson, J.A.; Cohen, R.B.; Brendler, T.; Safer, B.

    1987-01-01

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific 32 P-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect

  17. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    Science.gov (United States)

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  18. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  19. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  20. Low nucleosome occupancy is encoded around functional human transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Daenen Floris

    2008-07-01

    Full Text Available Abstract Background Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors. Results Significant improvement can be expected through the development of a new framework for the modeling and prediction of TFBSs that considers explicitly these higher order sequence properties. It would be particularly interesting to include in the new modeling framework the information present in the nucleosome positioning sequences (NPSs surrounding TFBSs, as it can be hypothesized that genomes use this information to encode the formation of stable nucleosomes over non-functional sites, while functional sites have a more open chromatin configuration. In this report we evaluate the usefulness of the latter feature by comparing the nucleosome occupancy probabilities around experimentally verified human TFBSs with the nucleosome occupancy probabilities around false positive TFBSs and in random sequences. Conclusion We present evidence that nucleosome occupancy is remarkably lower around true functional human TFBSs as compared to non-functional human TFBSs, which supports the use of this feature to improve current TFBS prediction approaches in higher eukaryotes.

  1. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  2. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  3. nalyot, a mutation of the Drosophila myb-related Adf1 transcription factor, disrupts synapse formation and olfactory memory.

    Science.gov (United States)

    DeZazzo, J; Sandstrom, D; de Belle, S; Velinzon, K; Smith, P; Grady, L; DelVecchio, M; Ramaswami, M; Tully, T

    2000-07-01

    nalyot (nal) is a novel olfactory memory mutant of Drosophila, encoding Adf1, a myb-related transcription factor. Following extended training sessions, Adf1 mutants show normal early memory but defective longterm memory. Adf1 shows widespread spatiotemporal expression, yet mutant alleles reveal no discernible disruptions in gross morphology of the nervous system. Studies at the larval neuromuscular junction, however, reveal a role for Adf1 in the modulation of synaptic growth-in contrast to the role established for dCREB2 in the control of synaptic function (Davis et al., 1996). These findings suggest that Adf1 and dCREB2 regulate distinct transcriptional cascades involved in terminal stages of synapse maturation. More generally, Adf1 provides a novel link between molecular mechanisms of developmental and behavioral plasticity.

  4. Collectrin, a homologue of ACE2, its transcriptional control and functional perspectives

    International Nuclear Information System (INIS)

    Zhang Yanling; Wada, Jun

    2007-01-01

    Collectrin is a type I membrane protein and shares significant homology with C-terminal domain of angiotensin-converting enzyme-2 (ACE2). However, collectrin lacks catalytic domain and it suggests the presence of uncharacterized physiological functions of collectrin. Collectrin is transcriptionally regulated by hepatocyte nuclear factor-α and -β and is highly expressed on renal proximal tubules and collecting ducts as well as pancreatic β-cells. Recent in vitro and in vivo studies demonstrated interesting physiological roles of collectrin related to insulin secretion, formation of primary cilia, renal cyst formation and amino acid transport. The common underlying molecular mechanism may be suggested by the evidence that collectrin binds to SNARE complex by interacting with snapin. Collectrin is involved in the process of vesicle transport and membrane fusion and thus it delivers insulin for exocytosis or various membrane proteins to apical plasmalemma and primary cilia. Collectrin may be the new therapeutic target for various pathological processes such as diabetes, polycystic kidney disease, hypertension and aminoaciduria

  5. Non-transcriptional Function of FOXO1/DAF-16 Contributes to Translesion DNA Synthesis.

    Science.gov (United States)

    Daitoku, Hiroaki; Kaneko, Yuta; Yoshimochi, Kenji; Matsumoto, Kaori; Araoi, Sho; Sakamaki, Jun-Ichi; Takahashi, Yuta; Fukamizu, Akiyoshi

    2016-08-22

    Forkhead box O (FOXO; DAF-16 in nematode) transcription factors activate a program of genes that control stress resistance, metabolism, and lifespan. Given the adverse impact of the stochastic DNA damage on organismal development and ageing, we examined the role of FOXO/DAF-16 in UV-induced DNA-damage response. Knockdown of FOXO1, but not FOXO3a, increases sensitivity to UV irradiation when exposed during S phase, suggesting a contribution of FOXO1 to translesion DNA synthesis (TLS), a replicative bypass of UV-induced DNA lesions. Actually, FOXO1 depletion results in a sustained activation of the ATR-Chk1 signaling and a reduction of PCNA monoubiquitination following UV irradiation. FOXO1 does not alter the expression of TLS-related genes but binds to the protein replication protein A (RPA1) that coats single-stranded DNA and acts as a scaffold for TLS. In Caenorhabditis elegans, daf-16 null mutants show UV-induced retardation in larval development and are rescued by overexpressing DAF-16 mutant lacking transactivation domain, but not substitution mutant unable to interact with RPA-1. Thus, our findings demonstrate that FOXO1/DAF-16 is a functional component in TLS independently of its transactivation activity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Targeting artificial transcription factors to the utrophin A promoter: effects on dystrophic pathology and muscle function.

    Science.gov (United States)

    Lu, Yifan; Tian, Chai; Danialou, Gawiyou; Gilbert, Rénald; Petrof, Basil J; Karpati, George; Nalbantoglu, Josephine

    2008-12-12

    Duchenne muscular dystrophy is caused by a genetic defect in the dystrophin gene. The absence of dystrophin results in muscle fiber necrosis and regeneration, leading to progressive muscle fiber loss. Utrophin is a close analogue of dystrophin. A substantial, ectopic expression of utrophin in the extrasynaptic sarcolemma of dystrophin-deficient muscle fibers can prevent deleterious effects of dystrophin deficiency. An alternative approach for the extrasynaptic up-regulation of utrophin involves the augmentation of utrophin transcription via the endogenous utrophin A promoter using custom-designed transcriptional activator proteins with zinc finger (ZFP) motifs. We tested a panel of custom-designed ZFP for their ability to activate the utrophin A promoter. Expression of one such ZFP efficiently increased, in a time-dependent manner, utrophin transcript and protein levels both in vitro and in vivo. In dystrophic mouse (mdx) muscles, administration of adenoviral vectors expressing this ZFP led to significant enhancement of muscle function with decreased necrosis, restoration of the dystrophin-associated proteins, and improved resistance to eccentric contractions. These studies provide evidence that specifically designed ZFPs can act as strong transcriptional activators of the utrophin A promoter. These may thus serve as attractive therapeutic agents for dystrophin deficiency states such as Duchenne muscular dystrophy.

  8. ZNF649, a novel Kruppel type zinc-finger protein, functions as a transcriptional suppressor

    International Nuclear Information System (INIS)

    Yang Hong; Yuan Wuzhou; Wang Ying; Zhu Chuanbing; Liu Bisheng; Wang Yuequn; Yang, Dan; Li Yongqing; Wang Canding; Wu Xiushan; Liu Mingyao

    2005-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporo-spatial manner. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here we report the identification and characterization of a novel human zinc-finger gene named ZNF649. The cDNA of ZNF649 is 3176 bp, encoding a protein of 505 amino acids in the nuclei. Northern blot analysis indicates that ZNF649 is expressed in most of the examined human adult and embryonic tissues. ZNF649 is a transcription suppressor when fused to GAL-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF649 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF649 protein may act as a transcriptional repressor in mitogen-activated protein kinase signaling pathway to mediate cellular functions

  9. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland.

    Science.gov (United States)

    Shiue, Yow-Ling; Chen, Lih-Ren; Chen, Chih-Feng; Chen, Yi-Ling; Ju, Jhy-Phen; Chao, Ching-Hsien; Lin, Yuan-Ping; Kuo, Yu-Ming; Tang, Pin-Chi; Lee, Yen-Pai

    2006-09-15

    To identify transcripts related to high egg production expressed specifically in the hypothalamus and pituitary gland of the chicken, two subtracted cDNA libraries were constructed. Two divergently selected strains of Taiwan Country Chickens (TCCs), B (sire line) and L2 (dam line) were used; they had originated from a single population and were further subjected (since 1982) to selection for egg production to 40 wk of age and body weight/comb size, respectively. A total of 324 and 370 clones were identified from the L2-B (L2-subtract-B) and the B-L2 subtracted cDNA libraries, respectively. After sequencing and annotation, 175 and 136 transcripts that represented 53 known and 65 unknown non-redundant sequences were characterized in the L2-B subtracted cDNA library. Quantitative reverse-transcription (RT)-PCR was used to screen the mRNA expression levels of 32 randomly selected transcripts in another 78 laying hens from five different strains. These strains included the two original strains (B and L2) used to construct the subtracted cDNA libraries and an additional three commercial strains, i.e., Black- and Red-feather TCCs and Single-Comb White Leghorn (WL) layer. The mRNA expression levels of 16 transcripts were significantly higher in the L2 than in the B strain, whereas the mRNA expression levels of nine transcripts, BDH, NCAM1, PCDHA@, PGDS, PLAG1, PRL, SAR1A, SCG2 and STMN2, were significantly higher in two high egg production strains, L2 and Single-Comb WL; this indicated their usefulness as molecular markers of high egg production.

  10. Information processing in the transcriptional regulatory network of yeast: Functional robustness

    Directory of Open Access Journals (Sweden)

    Dehmer Matthias

    2009-03-01

    Full Text Available Abstract Background Gene networks are considered to represent various aspects of molecular biological systems meaningfully because they naturally provide a systems perspective of molecular interactions. In this respect, the functional understanding of the transcriptional regulatory network is considered as key to elucidate the functional organization of an organism. Results In this paper we study the functional robustness of the transcriptional regulatory network of S. cerevisiae. We model the information processing in the network as a first order Markov chain and study the influence of single gene perturbations on the global, asymptotic communication among genes. Modification in the communication is measured by an information theoretic measure allowing to predict genes that are 'fragile' with respect to single gene knockouts. Our results demonstrate that the predicted set of fragile genes contains a statistically significant enrichment of so called essential genes that are experimentally found to be necessary to ensure vital yeast. Further, a structural analysis of the transcriptional regulatory network reveals that there are significant differences between fragile genes, hub genes and genes with a high betweenness centrality value. Conclusion Our study does not only demonstrate that a combination of graph theoretical, information theoretical and statistical methods leads to meaningful biological results but also that such methods allow to study information processing in gene networks instead of just their structural properties.

  11. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  12. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Science.gov (United States)

    2011-01-01

    Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed

  13. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    Full Text Available Abstract Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA and abscisic acid (ABA are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up

  14. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.; Clarke, S. L.; Guturu, H.; Chen, J.; Schaar, B. T.; McLean, C. Y.; Bejerano, G.

    2013-01-01

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  15. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.

    2013-02-04

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  16. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    Science.gov (United States)

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  17. Transcriptional effects of glucocorticoid receptors in the dentate gyrus increase anxiety-related behaviors.

    Directory of Open Access Journals (Sweden)

    Nadège Sarrazin

    Full Text Available The Glucocorticoid Receptor (GR is a transcription factor ubiquitously expressed in the brain. Activation of brain GRs by high levels of glucocorticoid (GC hormones modifies a large variety of physiological and pathological-related behaviors. Unfortunately the specific cellular targets of GR-mediated behavioral effects of GC are still largely unknown. To address this issue, we generated a mutated form of the GR called DeltaGR. DeltaGR is a constitutively transcriptionally active form of the GR that is localized in the nuclei and activates transcription without binding to glucocorticoids. Using the tetracycline-regulated system (Tet-OFF, we developed an inducible transgenic approach that allows the expression of the DeltaGR in specific brain areas. We focused our study on a mouse line that expressed DeltaGR almost selectively in the glutamatergic neurons of the dentate gyrus (DG of the hippocampus. This restricted expression of the DeltaGR increased anxiety-related behaviors without affecting other behaviors that could indirectly influence performance in anxiety-related tests. This behavioral phenotype was also associated with an up-regulation of the MAPK signaling pathway and Egr-1 protein in the DG. These findings identify glutamatergic neurons in the DG as one of the cellular substrate of stress-related pathologies.

  18. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    International Nuclear Information System (INIS)

    Grierson, Patrick M.; Acharya, Samir; Groden, Joanna

    2013-01-01

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription

  19. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, Patrick M. [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Acharya, Samir, E-mail: samir.acharya@osumc.edu [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.

  20. Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Chenshuang Li

    2018-01-01

    Full Text Available Neural EGFL like 1 (Nell-1 is essential for chondrogenic differentiation, maturation, and regeneration. Our previous studies have demonstrated that Nell-1’s pro-chondrogenic activities are predominantly reliant upon runt-related transcription factor 3 (Runx3-mediated Indian hedgehog (Ihh signaling. Here, we identify the nuclear factor of activated T-cells 1 (Nfatc1 as the key transcriptional factor mediating the Nell-1 → Runx3 signal transduction in chondrocytes. Using chromatin immunoprecipitation assay, we were able to determine that Nfatc1 binds to the −833–−810 region of the Runx3-promoter in response to Nell-1 treatment. By revealing the Nell-1 → Nfatc1 → Runx3 → Ihh cascade, we demonstrate the involvement of Nfatc1, a nuclear factor of activated T-cells, in chondrogenesis, while providing innovative insights into developing a novel therapeutic strategy for cartilage regeneration and other chondrogenesis-related conditions.

  1. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  2. Relative expression of the products of glyoxylate bypass operon: contributions of transcription and translation.

    OpenAIRE

    Chung, T; Resnik, E; Stueland, C; LaPorte, D C

    1993-01-01

    Although the genes of the aceBAK operon are expressed from the same promoter, the relative cellular levels of their products are approximately 0.3:1:0.003. Gene and operon fusions with lacZ were constructed to characterize this differential expression. The upshift in expression between aceB and aceA resulted from differences in translational efficiency. In contrast, inefficient translation and premature transcriptional termination contributed to the downshift in expression between aceA and ac...

  3. Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains

    Science.gov (United States)

    Jacob, Yves; Real, Eléonore; Tordo, Noël

    2001-01-01

    Lyssaviruses, the causative agents of rabies encephalitis, are distributed in seven genotypes. The phylogenetically distant rabies virus (PV strain, genotype 1) and Mokola virus (genotype 3) were used to develop a strategy to identify functional homologous interactive domains from two proteins (P and N) which participate in the viral ribonucleoprotein (RNP) transcription-replication complex. This strategy combined two-hybrid and green fluorescent protein–reverse two-hybrid assays in Saccharomyces cerevisiae to analyze protein-protein interactions and a reverse genetic assay in mammalian cells to study the transcriptional activity of the reconstituted RNP complex. Lyssavirus P proteins contain two N-binding domains (N-BDs), a strong one encompassing amino acid (aa) 176 to the C terminus and a weak one in the 189 N-terminal aa. The N-terminal portion of P (aa 52 to 189) also contains a homomultimerization site. Here we demonstrate that N-P interactions, although weaker, are maintained between proteins of the different genotypes. A minimal transcriptional module of the P protein was obtained by fusing the first 60 N-terminal aa containing the L protein binding site to the C-terminal strong N-BD. Random mutation of the strong N-BD on P protein identified three highly conserved K residues crucial for N-P interaction. Their mutagenesis in full-length P induced a transcriptionally defective RNP. The analysis of homologous interactive domains presented here and previously reported dissections of the P protein allowed us to propose a model of the functional interaction network of the lyssavirus P protein. This model underscores the central role of P at the interface between L protein and N-RNA template. PMID:11559793

  4. Differences in relative amounts of two novel mutant HEXA transcripts in a juvenile TSD Druze patient

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, L.; Navon, R. [Tel Aviv Univ. (Israel)]|[Sapir Medical Center, Kfar Sava (Israel)

    1994-09-01

    An Israeli-Druze patient with juvenile Tay-Sachs disease, born to first cousins, was found to be a compound heterozygote for two novel mutant HEXA alleles. SSCP analysis of the parents` genomic DNA revealed alterations in both exons 5 and 8. Direct sequencing showed a novel missense mutation T{sup 835}{r_arrow}C (Ser{sup 279}{r_arrow}Pro) in exon 8, of maternal origin. The mutant allele of paternal origin carried a novel double mutation in exon 5, (i) a C{sup 496} deletion, resulting in a frameshift and eventually a stop codon, (ii) a C{sup 496}{r_arrow}G transition which is a silent mutation. Both these latter mutations occur in the same codon. New restriction sites for ScrFI were introduced into the two mutant alleles, enabling rapid screening for their presence. In order to detect differences of the relative levels of the transcripts originating from the two mutant alleles, we applied allele-specific transcripts polymerase chain reaction (AST-PCR) to the RNA extractions prepared from the heterozygous parents (each carry a normal and mutant allele). In order to distinguish between the transcripts originating from the normal allele and those originating from each of the mutant alleles, the transcripts were digested by ScrFI. A severe depletion of the mRNA coded by the allele carrying the mutation in exon 5 was found. The phenomena corresponds with citations in the literature in cases of stop mutations. The allele carrying the transversion in exon 8, contrary to our expectations, also had a distinctly lower level of transcripts. The AST-PCR approach offers a molecular tool to study allele-specific gene expression in heterozygous individuals.

  5. Novel Functions for TAF7, a Regulator of TAF1-independent Transcription

    OpenAIRE

    Devaiah, Ballachanda N.; Lu, Hanxin; Gegonne, Anne; Sercan, Zeynep; Zhang, Hongen; Clifford, Robert J.; Lee, Maxwell P.; Singer, Dinah S.

    2010-01-01

    The transcription factor TFIID components TAF7 and TAF1 regulate eukaryotic transcription initiation. TAF7 regulates transcription initiation of TAF1-dependent genes by binding to the acetyltransferase (AT) domain of TAF1 and inhibiting the enzymatic activity that is essential for transcription. TAF7 is released from the TAF1-TFIID complex upon completion of preinitiation complex assembly, allowing transcription to initiate. However, not all transcription is TAF1-dependent, and the role of TA...

  6. Transcriptional and Genomic Targets of Neural Stem Cells for Functional Recovery after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Le Zhang

    2017-01-01

    Full Text Available Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and it is widely believed that neural cell death occurs after exposure to blood metabolites or subsequently damaged cells. Neural stem cells (NSCs, which maintain neurogenesis and are found in subgranular zone and subventricular zone, are thought to be an endogenous neuroprotective mechanism for these brain injuries. However, due to the complexity of NSCs and their microenvironment, current strategies cannot satisfactorily enhance functional recovery after hemorrhagic stroke. It is well known that transcriptional and genomic pathways play important roles in ensuring the normal functions of NSCs, including proliferation, migration, differentiation, and neural reconnection. Recently, emerging evidence from the use of new technologies such as next-generation sequencing and transcriptome profiling has provided insight into our understanding of genomic function and regulation of NSCs. In the present article, we summarize and present the current data on the control of NSCs at both the transcriptional and genomic levels. Using bioinformatics methods, we sought to predict novel therapeutic targets of endogenous neurogenesis and exogenous NSC transplantation for functional recovery after hemorrhagic stroke, which could also advance our understanding of its pathophysiology.

  7. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Conde, J; Baptista, P V; De la Fuente, J M

    2010-01-01

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  8. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); De la Fuente, J M, E-mail: pmvb@fct.unl.pt [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-12-17

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  9. Completely monotonic functions related to logarithmic derivatives of entire functions

    DEFF Research Database (Denmark)

    Pedersen, Henrik Laurberg

    2011-01-01

    The logarithmic derivative l(x) of an entire function of genus p and having only non-positive zeros is represented in terms of a Stieltjes function. As a consequence, (-1)p(xml(x))(m+p) is a completely monotonic function for all m ≥ 0. This generalizes earlier results on complete monotonicity...... of functions related to Euler's psi-function. Applications to Barnes' multiple gamma functions are given....

  10. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    Science.gov (United States)

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  11. Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence.

    Science.gov (United States)

    Terasaki, Kaori; Ramirez, Sydney I; Makino, Shinji

    2016-10-01

    Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, causes periodic outbreaks in livestocks and humans in countries of the African continent and Middle East. RVFV NSs protein, a nonstructural protein, is a major virulence factor that exhibits several important biological properties. These include suppression of general transcription, inhibition of IFN-β promoter induction and degradation of double-stranded RNA-dependent protein kinase R. Although each of these biological functions of NSs are considered important for countering the antiviral response in the host, the individual contributions of these functions towards RVFV virulence remains unclear. To examine this, we generated two RVFV MP-12 strain-derived mutant viruses. Each carried mutations in NSs that specifically targeted its general transcription inhibition function without affecting its ability to degrade PKR and inhibit IFN-β promoter induction, through its interaction with Sin3-associated protein 30, a part of the repressor complex at the IFN-β promoter. Using these mutant viruses, we have dissected the transcription inhibition function of NSs and examined its importance in RVFV virulence. Both NSs mutant viruses exhibited a differentially impaired ability to inhibit host transcription when compared with MP-12. It has been reported that NSs suppresses general transcription by interfering with the formation of the transcription factor IIH complex, through the degradation of the p62 subunit and sequestration of the p44 subunit. Our study results lead us to suggest that the ability of NSs to induce p62 degradation is the major contributor to its general transcription inhibition property, whereas its interaction with p44 may not play a significant role in this function. Importantly, RVFV MP-12-NSs mutant viruses with an impaired general transcription inhibition function showed a reduced cytotoxicity in cell culture and attenuated virulence in young mice

  12. Survival-related profile, pathways, and transcription factors in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Anne P G Crijns

    2009-02-01

    Full Text Available BACKGROUND: Ovarian cancer has a poor prognosis due to advanced stage at presentation and either intrinsic or acquired resistance to classic cytotoxic drugs such as platinum and taxoids. Recent large clinical trials with different combinations and sequences of classic cytotoxic drugs indicate that further significant improvement in prognosis by this type of drugs is not to be expected. Currently a large number of drugs, targeting dysregulated molecular pathways in cancer cells have been developed and are introduced in the clinic. A major challenge is to identify those patients who will benefit from drugs targeting these specific dysregulated pathways.The aims of our study were (1 to develop a gene expression profile associated with overall survival in advanced stage serous ovarian cancer, (2 to assess the association of pathways and transcription factors with overall survival, and (3 to validate our identified profile and pathways/transcription factors in an independent set of ovarian cancers. METHODS AND FINDINGS: According to a randomized design, profiling of 157 advanced stage serous ovarian cancers was performed in duplicate using approximately 35,000 70-mer oligonucleotide microarrays. A continuous predictor of overall survival was built taking into account well-known issues in microarray analysis, such as multiple testing and overfitting. A functional class scoring analysis was utilized to assess pathways/transcription factors for their association with overall survival. The prognostic value of genes that constitute our overall survival profile was validated on a fully independent, publicly available dataset of 118 well-defined primary serous ovarian cancers. Furthermore, functional class scoring analysis was also performed on this independent dataset to assess the similarities with results from our own dataset. An 86-gene overall survival profile discriminated between patients with unfavorable and favorable prognosis (median survival, 19

  13. Transcription factors involved in the regulation of natural killer cell development and function: an update

    Directory of Open Access Journals (Sweden)

    Martha Elia Luevano

    2012-10-01

    Full Text Available Natural Killer (NK cells belong to the innate immune system and are key effectors in the immune response against cancer and infection. Recent studies have contributed to the knowledge of events controlling NK cell fate. The use of knockout mice has enabled the discovery of key transcription factors (TFs essential for NK cell development and function. Yet, unwrapping the downstream targets of these TFs and their influence on NK cells remains a challenge. In this review we discuss the latest TFs described to be involved in the regulation of NK cell development and maturation.

  14. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  15. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    Science.gov (United States)

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  16. Commutation relations for functions of operators

    International Nuclear Information System (INIS)

    Transtrum, Mark K.; Van Huele, Jean-Francois S.

    2005-01-01

    We derive an expression for the commutator of functions of operators with constant commutations relations in terms of the partial derivatives of these functions. This result extends the well-known commutation relation between one operator and a function of another operator. We discuss the range of applicability of the formula with examples in quantum mechanics

  17. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  18. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator.

    Science.gov (United States)

    Maity, Tuhin S; Jha, Ramesh K; Strauss, Charlie E M; Dunbar, John

    2012-07-01

    Understanding how binding of a transcription factor to an operator is influenced by the operator sequence is an ongoing quest. It facilitates discovery of alternative binding sites as well as tuning of transcriptional regulation. We investigated the behavior of the Escherichia coli Lac repressor (LacI) protein with a large set of lac O(1) operator variants. The 114 variants examined contained a mean of 2.9 (range 0-4) mutations at positions -4, -2, +2 and +4 in the minimally required 17 bp operator. The relative affinity of LacI for the operators was examined by quantifying expression of a GFP reporter gene and Rosetta structural modeling. The combinations of mutations in the operator sequence created a wide range of regulatory behaviors. We observed variations in the GFP fluorescent signal among the operator variants of more than an order of magnitude under both uninduced and induced conditions. We found that a single nucleotide change may result in changes of up to six- and 12-fold in uninduced and induced GFP signals, respectively. Among the four positions mutated, we found that nucleotide G at position -4 is strongly correlated with strong repression. By Rosetta modeling, we found a significant correlation between the calculated binding energy and the experimentally observed transcriptional repression strength for many operators. However, exceptions were also observed, underscoring the necessity for further improvement in biophysical models of protein-DNA interactions. © 2012 The Authors Journal compilation © 2012 FEBS.

  19. [The function of transcription factor P63 and its signaling pathway during limb development].

    Science.gov (United States)

    Ma, Wei; Tian, Wen

    2014-08-01

    The development of human limb is controlled by several transcription factors and signaling pathways, which are organized in precise time- and space-restricted manners. Recent studies showed that P63 and its signaling pathway play important roles in this process. Transcription factor P63, one member of the P53 family, is characterized by a similar amino acid domain, plays a crucial role in the development of limb and ectoderm differentiation, especially with its DNA binding domain, and sterile alpha motif domains. Mutated P63 gene may produce abnormal transcription factor P63 which can affect the signaling pathway. Furthermore, defective signaling protein in structure and/or quantity is synthesized though the pathway. Eventually, members of the signaling protein family are involved in the regulation of differentiation and development of stem cell, which causes deformity of limbs. In brief, three signaling pathways are related to the digit formation along three axes, including SHH-ZPA, FGFs-AER and Lmx1B-Wnt7a-En1. Each contains numerous signaling molecules which are integrated in self-regulatory modules that assure the acquisition or the correct digit complements. These finding has brought new clues for deciphering the etiology of congenital limb malformation and may provide alternatives for both prevention and treatment.

  20. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  1. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Yubing

    2012-12-01

    Full Text Available Abstract Background Brown planthopper (BPH, Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT. We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1. We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC of more than 2.0 (P10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice.

  2. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Taulan, M.; Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-01-01

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  3. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2011-12-01

    Full Text Available The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1, an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus.

  4. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs.

    Science.gov (United States)

    Ichiyanagi, Kenji

    2013-01-01

    Short interspersed elements (SINEs) are a class of retrotransposons, which amplify their copy numbers in their host genomes by retrotransposition. More than a million copies of SINEs are present in a mammalian genome, constituting over 10% of the total genomic sequence. In contrast to the other two classes of retrotransposons, long interspersed elements (LINEs) and long terminal repeat (LTR) elements, SINEs are transcribed by RNA polymerase III. However, like LINEs and LTR elements, the SINE transcription is likely regulated by epigenetic mechanisms such as DNA methylation, at least for human Alu and mouse B1. Whereas SINEs and other transposable elements have long been thought as selfish or junk DNA, recent studies have revealed that they play functional roles at their genomic locations, for example, as distal enhancers, chromatin boundaries and binding sites of many transcription factors. These activities imply that SINE retrotransposition has shaped the regulatory network and chromatin landscape of their hosts. Whereas it is thought that the epigenetic mechanisms were originated as a host defense system against proliferation of parasitic elements, this review discusses a possibility that the same mechanisms are also used to regulate the SINE-derived functions.

  5. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

    Science.gov (United States)

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2010-05-01

    Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

  6. Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement

    Institute of Scientific and Technical Information of China (English)

    Zhao-Shi Xu; Ming Chen; Lian-Cheng Li; You-Zhi Ma

    2011-01-01

    Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressful conditions. The AP2/ERF transcription factors are known to regulate diverse processes of plant development and stress responses.In this study, the molecular characteristics and biological functions of AP2/ERFs in a variety of plant species were analyzed. AP2/ERFs,especially those in DREB and ERF subfamilies, are ideal candidates for crop improvement because their overexpression enhances tolerances to drought, salt, freezing, as well as resistances to multiple diseases in the transgenic plants. The comprehensive analysis of physiological functions is useful in elucidating the biological roles of AP2/ERF family genes in gene interaction, pathway regulation, and defense response under stress environments, which should provide new opportunities for the crop tolerance engineering.

  7. Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis

    Directory of Open Access Journals (Sweden)

    Olga Villamizar

    2016-06-01

    Full Text Available This paper describes data related to a research article titled, “Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death” [1]. Long noncoding RNAs (lncRNAs are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis. Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf described in the research article. Also included are 5′ untranslated sequences (UTR for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34+ cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34+ cells transduced using mock conditions or with lentivirus particles encoding for Saf.

  8. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1

    International Nuclear Information System (INIS)

    Genrich, Geeske; Kruppa, Marcus; Lenk, Lennart; Helm, Ole; Broich, Anna; Freitag-Wolf, Sandra; Röcken, Christoph; Sipos, Bence; Schäfer, Heiner; Sebens, Susanne

    2016-01-01

    Nuclear factor E2 related factor-2 (Nrf2) is an oxidative stress inducible transcription factor being essential in regulating cell homeostasis. Thus, acute induction of Nrf2 in epithelial cells exposed to inflammation confers protection from oxidative cell damage and mutagenesis supporting an anti-tumorigenic role for Nrf2. However, pancreatic ductal adenocarcinoma (PDAC) is characterized by persistent Nrf2 activity conferring therapy resistance which points to a pro-tumorigenic role of Nrf2. A similar dichotomous role in tumorigenesis is described for the Transforming Growth Factor-beta 1 (TGF-β1). The present study therefore aimed at elucidating whether the switch of Nrf2 function towards a tumor promoting one relates to the modulation of TGF-β1 induced cell responses and whether this might occur early in PDAC development. In situ analysis comprised immunohistochemical stainings of activated (phosphorylated) Nrf2 and Ki67 in pancreatic tissues containing normal ducts and pancreatic intraepithelial neoplasia (PanINs). In vitro, Nrf2 levels in benign (H6c7-pBp), premalignant (H6c7-kras) and malignant (Colo357) pancreatic ductal epithelial cells were modulated by Nrf2 specific siRNA or Nrf2 overexpression. Then, the effect of Nrf2 alone and in combination with TGF-β1 on cell growth and survival was investigated by cell counting, Ki67 staining and apoptosis assays. The underlying cell signaling was investigated by western blotting. Statistical analysis was performed by Shapiro-Wilk test for normal distribution. Parametric data were analyzed by one-way ANOVA, while non-parametric data were analyzed by Kruskal-Wallis one-way ANOVA on ranks. Significantly elevated expression of activated Nrf2 and Ki67 could be detected in PanINs but not in normal pancreatic ductal epithelium. While the effect of Nrf2 on basal cell growth of H6c7-pBp, H6c7-kras and Colo357 cells was minor, it clearly attenuated the growth inhibiting effects of TGF-β1 in all cell lines. This enhanced

  9. Cloning and functional characterisation of avian transcription factor E2A

    Directory of Open Access Journals (Sweden)

    Meyer Kerstin B

    2004-06-01

    Full Text Available Abstract Background During B lymphocyte development the E2A gene is a critical regulator of cell proliferation and differentiation. With regards to the immunoglobulin genes the E2A proteins contribute to the regulation of gene rearrangement, expression and class switch recombination. We are now using the chicken cell line DT40 as a model system to further analyse the function of E2A. Results Here we report the cloning and functional analysis of the transcription factor E2A from chicken. Using RACE PCR on the chicken lymphoma cell line DT40 we have isolated full-length clones for the two E2A splice variants E12 and E47. Sequence conservation between the human and chicken proteins is extensive: the basic-helix-loop-helix DNA binding domain of human and chicken E47 and E12 are 93% and 92% identical, respectively. In addition high levels of conservation are seen in activation domain I, the potential NLS and the ubiquitin ligase interaction domain. E2A is expressed in a variety of tissues in chicken, with higher levels of expression in organs rich in immune cells. We demonstrate that chicken E12 and E47 proteins are strong transcriptional activators whose function depends on the presence of activation domain I. As in mammals, the dominant negative proteins Id1 and Id3 can inhibit the function of chicken E47. Conclusions The potential for homologous recombination in DT40 allows the genetic dissection of biochemical pathways in somatic cells. With the cloning of avian E2A and the recent description of an in vitro somatic hypermutation assay in this cell line, it should now be possible to dissect the potential role of E2A in the regulation of somatic hypermutation and gene conversion.

  10. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    International Nuclear Information System (INIS)

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential (ΔΨ m ). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression

  11. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    Science.gov (United States)

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Proving relations between modular graph functions

    International Nuclear Information System (INIS)

    Basu, Anirban

    2016-01-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links. (paper)

  13. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  14. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops

    Directory of Open Access Journals (Sweden)

    Dagmara Podzimska-Sroka

    2015-07-01

    Full Text Available Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.

  15. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  16. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2018-03-01

    Full Text Available Tanshinones are a class of bioactive components in the traditional Chinese medicine Salvia miltiorrhiza, and their biosynthesis and regulation have been widely studied. Current studies show that basic leucine zipper (bZIP proteins regulate plant secondary metabolism, growth and developmental processes. However, the bZIP transcription factors involved in tanshinone biosynthesis are unknown. Here, we conducted the first genome-wide survey of the bZIP gene family and analyzed the phylogeny, gene structure, additional conserved motifs and alternative splicing events in S. miltiorrhiza. A total of 70 SmbZIP transcription factors were identified and categorized into 11 subgroups based on their phylogenetic relationships with those in Arabidopsis. Moreover, seventeen SmbZIP genes underwent alternative splicing events. According to the transcriptomic data, the SmbZIP genes that were highly expressed in the Danshen root and periderm were selected. Based on the prediction of bZIP binding sites in the promoters and the co-expression analysis and co-induction patterns in response to Ag+ treatment via quantitative real-time polymerase chain reaction (qRT-PCR, we concluded that SmbZIP7 and SmbZIP20 potentially participate in the regulation of tanshinone biosynthesis. These results provide a foundation for further functional characterization of the candidate SmbZIP genes, which have the potential to increase tanshinone production. KEY WORDS: bZIP genes, Salvia miltiorrhiza, Phylogenetic analysis, Expression pattern analysis, Tanshinone biosynthesis

  17. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-09-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.

  18. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    Science.gov (United States)

    Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.

  19. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity.

    Directory of Open Access Journals (Sweden)

    Li Jia

    Full Text Available The androgen receptor (AR is a steroid-activated transcription factor that binds at specific DNA locations and plays a key role in the etiology of prostate cancer. While numerous studies have identified a clear connection between AR binding and expression of target genes for a limited number of loci, high-throughput elucidation of these sites allows for a deeper understanding of the complexities of this process.We have mapped 189 AR occupied regions (ARORs and 1,388 histone H3 acetylation (AcH3 loci to a 3% continuous stretch of human genomic DNA using chromatin immunoprecipitation (ChIP microarray analysis. Of 62 highly reproducible ARORs, 32 (52% were also marked by AcH3. While the number of ARORs detected in prostate cancer cells exceeded the number of nearby DHT-responsive genes, the AcH3 mark defined a subclass of ARORs much more highly associated with such genes -- 12% of the genes flanking AcH3+ARORs were DHT-responsive, compared to only 1% of genes flanking AcH3-ARORs. Most ARORs contained enhancer activities as detected in luciferase reporter assays. Analysis of the AROR sequences, followed by site-directed ChIP, identified binding sites for AR transcriptional coregulators FoxA1, CEBPbeta, NFI and GATA2, which had diverse effects on endogenous AR target gene expression levels in siRNA knockout experiments.We suggest that only some ARORs function under the given physiological conditions, utilizing diverse mechanisms. This diversity points to differential regulation of gene expression by the same transcription factor related to the chromatin structure.

  20. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  1. Distinct mechanisms of nuclear accumulation regulate the functional consequence of E2F transcription factors

    NARCIS (Netherlands)

    Allen, K.E.; Luna, S. de la; Kerkhoven, R.M.; Bernards, R.A.; Thangue, N.B. La

    1997-01-01

    Transcription factor E2F plays an important role in coordinating and integrating early cell cycle progression with the transcription apparatus. It is known that physiological E2F arises when a member of two families of proteins, E2F and DP, interact as E2F/DP heterodimers and that transcriptional

  2. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    Science.gov (United States)

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (Pgenes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants

  3. Discovery of functional and approximate functional dependencies in relational databases

    Directory of Open Access Journals (Sweden)

    Ronald S. King

    2003-01-01

    Full Text Available This study develops the foundation for a simple, yet efficient method for uncovering functional and approximate functional dependencies in relational databases. The technique is based upon the mathematical theory of partitions defined over a relation's row identifiers. Using a levelwise algorithm the minimal non-trivial functional dependencies can be found using computations conducted on integers. Therefore, the required operations on partitions are both simple and fast. Additionally, the row identifiers provide the added advantage of nominally identifying the exceptions to approximate functional dependencies, which can be used effectively in practical data mining applications.

  4. Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function

    Directory of Open Access Journals (Sweden)

    Hüttemann Maik

    2010-07-01

    Full Text Available Abstract Background SIN3 is a transcriptional repressor protein known to regulate many genes, including a number of those that encode mitochondrial components. Results By monitoring RNA levels, we find that loss of SIN3 in Drosophila cultured cells results in up-regulation of not only nuclear encoded mitochondrial genes, but also those encoded by the mitochondrial genome. The up-regulation of gene expression is accompanied by a perturbation in ATP levels in SIN3-deficient cells, suggesting that the changes in mitochondrial gene expression result in altered mitochondrial activity. In support of the hypothesis that SIN3 is necessary for normal mitochondrial function, yeast sin3 null mutants exhibit very poor growth on non-fermentable carbon sources and show lower levels of ATP and reduced respiration rates. Conclusions The findings that both yeast and Drosophila SIN3 affect mitochondrial activity suggest an evolutionarily conserved role for SIN3 in the control of cellular energy production.

  5. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  6. TLE3 Is a Dual-Function Transcriptional Coregulator of Adipogenesis

    DEFF Research Database (Denmark)

    Villanueva, Claudio J; Waki, Hironori; Godio, Cristina

    2011-01-01

    PPARγ and Wnt signaling are central positive and negative regulators of adipogenesis, respectively. Here we identify the groucho family member TLE3 as a transcriptional integrator of the PPARγ and Wnt pathways. TLE3 is a direct target of PPARγ that participates in a feed-forward loop during...... adipocyte differentiation. TLE3 enhances PPARγ activity and functions synergistically with PPARγ on its target promoters to stimulate adipogenesis. At the same time, induction of TLE3 during differentiation provides a mechanism for termination of Wnt signaling. TLE3 antagonizes TCF4 activation by β......-catenin in preadipocytes, thereby inhibiting Wnt target gene expression and reversing β-catenin-dependent repression of adipocyte gene expression. Transgenic expression of TLE3 in adipose tissue in vivo mimics the effects of PPARγ agonist and ameliorates high-fat-diet-induced insulin resistance. Our data suggest that TLE3...

  7. De Novo Transcriptome Assembly (NGS) of Curcuma longa L. Rhizome Reveals Novel Transcripts Related to Anticancer and Antimalarial Terpenoids

    Science.gov (United States)

    Jayakumar, Vasanthan; Damodaran, Anand C.; Rao, Sudha Narayana; Katta, Mohan A. V. S. K.; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C.

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa. PMID:23468859

  8. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  9. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  10. Polymorphisms in signal transducer and activator of transcription 3 and lung function in asthma

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2005-06-01

    Full Text Available Abstract Background Identifying genetic determinants for lung function is important in providing insight into the pathophysiology of asthma. Signal transducer and activator of transcription 3 is a transcription factor latent in the cytoplasm; the gene (STAT3 is activated by a wide range of cytokines, and may play a role in lung development and asthma pathogenesis. Methods We genotyped six single nucleotide polymorphisms (SNPs in the STAT3 gene in a cohort of 401 Caucasian adult asthmatics. The associations between each SNP and forced expiratory volume in 1 second (FEV1, as a percent of predicted, at the baseline exam were tested using multiple linear regression models. Longitudinal analyses involving repeated measures of FEV1 were conducted with mixed linear models. Haplotype analyses were conducted using imputed haplotypes. We completed a second association study by genotyping the same six polymorphisms in a cohort of 652 Caucasian children with asthma. Results We found that three polymorphisms were significantly associated with baseline FEV1: homozygotes for the minor alleles of each polymorphism had lower FEV1 than homozygotes for the major alleles. Moreover, these associations persisted when we performed an analysis on repeated measures of FEV1 over 8 weeks. A haplotypic analysis based on the six polymorphisms indicated that two haplotypes were associated with baseline FEV1. Among the childhood asthmatics, one polymorphism was associated with both baseline FEV1 and the repeated measures of FEV1 over 4 years. Conclusion Our results indicate that genetic variants in STAT3, independent of asthma treatment, are determinants of FEV1 in both adults and children with asthma, and suggest that STAT3 may participate in inflammatory pathways that have an impact on level of lung function.

  11. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  12. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    International Nuclear Information System (INIS)

    Bergstralh, Daniel T.; Conti, Brian J.; Moore, Chris B.; Brickey, W. June; Taxman, Debra J.; Ting, Jenny P.-Y.

    2007-01-01

    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1β) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF I 48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells

  14. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  15. Functional Characterization of Tea (Camellia sinensis MYB4a Transcription Factor Using an Integrative Approach

    Directory of Open Access Journals (Sweden)

    Mingzhuo Li

    2017-06-01

    Full Text Available Green tea (Camellia sinensis, Cs abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways.Highlight: A tea (Camellia

  16. Functional characterization of the copper transcription factor AfMac1 from Aspergillus fumigatus.

    Science.gov (United States)

    Park, Yong-Sung; Kim, Tae-Hyoung; Yun, Cheol-Won

    2017-07-03

    Although copper functions as a cofactor in many physiological processes, copper overload leads to harmful effects in living cells. Thus, copper homeostasis is tightly regulated. However, detailed copper metabolic pathways have not yet been identified in filamentous fungi. In this report, we investigated the copper transcription factor AfMac1 ( A spergillus f umigatus Mac1 homolog) and identified its regulatory mechanism in A. fumigatus AfMac1 has domains homologous to the DNA-binding and copper-binding domains of Mac1 from Saccharomyces cerevisiae , and AfMac1 efficiently complemented Mac1 in S. cerevisiae Expression of Afmac1 resulted in CTR1 up-regulation, and mutation of the DNA-binding domain of Afmac1 failed to activate CTR1 expression in S. cerevisiae The Afmac1 deletion strain of A. fumigatus failed to grow in copper-limited media, and its growth was restored by introducing ctrC We found that AfMac1 specifically bound to the promoter region of ctrC based on EMSA. The AfMac1-binding motif 5'-TGTGCTCA-3' was identified from the promoter region of ctrC , and the addition of mutant ctrC lacking the AfMac1-binding motif failed to up-regulate ctrC in A. fumigatus Furthermore, deletion of Afmac1 significantly reduced strain virulence and activated conidial killing activity by neutrophils and macrophages. Taken together, these results suggest that AfMac1 is a copper transcription factor that regulates cellular copper homeostasis in A. fumigatus . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica.

    Science.gov (United States)

    Feng, Kai; Xu, Zhi-Sheng; Que, Feng; Liu, Jie-Xia; Wang, Feng; Xiong, Ai-Sheng

    2018-02-01

    This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.

  18. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    Science.gov (United States)

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD

  19. Transcriptional regulation of pancreas development and β-cell function [Review].

    Science.gov (United States)

    Fujitani, Yoshio

    2017-05-30

    A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.

  20. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire.

    Science.gov (United States)

    Wang, Qunqing; Han, Changzhi; Ferreira, Adriana O; Yu, Xiaoli; Ye, Wenwu; Tripathy, Sucheta; Kale, Shiv D; Gu, Biao; Sheng, Yuting; Sui, Yangyang; Wang, Xiaoli; Zhang, Zhengguang; Cheng, Baoping; Dong, Suomeng; Shan, Weixing; Zheng, Xiaobo; Dou, Daolong; Tyler, Brett M; Wang, Yuanchao

    2011-06-01

    The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.

  1. Phenomenological relation between distribution and fragmentation functions

    International Nuclear Information System (INIS)

    Ma Boqiang; Schmidt, Ivan; Soffer, Jacques; Yang Jianjun

    2002-01-01

    We study the relation between the quark distribution function q(x) and the fragmentation function D q (z) based on a general form D q (x)=C(z)z α q(z) for valence and sea quarks. By adopting two known parametrizations of quark distributions for the proton, we find three simple options for the fragmentation functions that can provide a good description of the available experimental data on proton production in e + e - inelastic annihilation. These three options support the revised Gribov-Lipatov relation D q (z)=zq(z) at z→1, as an approximate relation for the connection between distribution and fragmentation functions. The three options differ in the sea contributions and lead to distinct predictions for antiproton production in the reaction p+p→p-bar+X, thus they are distinguishable in future experiments at RHIC-BNL

  2. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  3. MADS interactomics : towards understanding the molecular mechanisms of plant MADS-domain transcription factor function

    NARCIS (Netherlands)

    Smaczniak, C.D.

    2013-01-01

    Protein-protein and protein-DNA interactions are essential for the molecular action of transcription factors. By combinatorial binding to target gene promoters, transcription factors are able to up- or down-regulate the expression of these genes. MADS-domain proteins comprise a large family of

  4. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.

    Science.gov (United States)

    Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien

    2012-01-01

    The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.

  5. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  6. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Zhou Pingkun; Sui Jianli

    2002-01-01

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  7. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function

    Science.gov (United States)

    Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover

    2014-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.

  8. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    NARCIS (Netherlands)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first

  9. Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Ubaid Ullah

    2018-02-01

    Full Text Available Regulatory T (Treg cells are critical in regulating the immune response. In vitro induced Treg (iTreg cells have significant potential in clinical medicine. However, applying iTreg cells as therapeutics is complicated by the poor stability of human iTreg cells and their variable suppressive activity. Therefore, it is important to understand the molecular mechanisms of human iTreg cell specification. We identified hypermethylated in cancer 1 (HIC1 as a transcription factor upregulated early during the differentiation of human iTreg cells. Although FOXP3 expression was unaffected, HIC1 deficiency led to a considerable loss of suppression by iTreg cells with a concomitant increase in the expression of effector T cell associated genes. SNPs linked to several immune-mediated disorders were enriched around HIC1 binding sites, and in vitro binding assays indicated that these SNPs may alter the binding of HIC1. Our results suggest that HIC1 is an important contributor to iTreg cell development and function.

  10. Caenorhabditis elegans DAF-16/FOXO Transcription Factor and Its Mammalian Homologs Associate with Age-Related Disease

    NARCIS (Netherlands)

    Hesp, K.; Smant, G.; Kammenga, J.E.

    2015-01-01

    The insulin/IGF-1 signaling pathway is evolutionarily conserved and its function is mediated largely by FOXO transcription factors. Reduced insulin/IGF-1 signaling leads to translocation of FOXO proteins from the cytoplasm to the nucleus where they activate a set of genes that mediate oxidative

  11. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna

    International Nuclear Information System (INIS)

    Vandegehuchte, Michiel B.; De Coninck, Dieter; Vandenbrouck, Tine; De Coen, Wim M.; Janssen, Colin R.

    2010-01-01

    A reduced level of DNA methylation has recently been described in both Zn-exposed and non-exposed offspring of Daphnia magna exposed to Zn. The hypothesis examined in this study is that DNA hypomethylation has an effect on gene transcription. A second hypothesis is that accumulative epigenetic effects can affect gene transcription in non-exposed offspring from parents with an exposure history of more than one generation. Transcriptional gene regulation was studied with a cDNA microarray. In the exposed and non-exposed hypomethylated daphnids, a large proportion of common genes were similarly up- or down-regulated, indicating a possible effect of the DNA hypomethylation. Two of these genes can be mechanistically involved in DNA methylation reduction. The similar transcriptional regulation of two and three genes in the F 0 and F 1 exposed daphnids on one hand and their non-exposed offspring on the other hand, could be the result of a one-generation temporary transgenerational epigenetic effect, which was not accumulative. - Zn-induced DNA hypomethylation is related to gene transcription in Daphnia magna and Zn exposure potentially induced limited temporary transgenerational effects on gene transcription.

  12. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.

    Science.gov (United States)

    Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael

    2017-11-01

    Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.

  13. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  14. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training.

    Directory of Open Access Journals (Sweden)

    Sellamuthu S Gounder

    Full Text Available Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2 through antioxidant response cis-elements (AREs and are impaired in the aging heart. Whereas acute exercise stress (AES activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (~2 months, aging mouse (>23 months hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES, but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day for ~6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.

  15. Requirement of the Epithelium-specific Ets Transcription Factor Spdef for Mucous Gland Cell Function in the Gastric Antrum*

    OpenAIRE

    Horst, David; Gu, Xuesong; Bhasin, Manoj; Yang, Quanli; Verzi, Michael; Lin, Dongxu; Joseph, Marie; Zhang, Xiaobo; Chen, Wei; Li, Yi-Ping; Shivdasani, Ramesh A.; Libermann, Towia A.

    2010-01-01

    Mucus-secreting cells of the stomach epithelium provide a protective barrier against damage that might result from bacterial colonization or other stimuli. Impaired barrier function contributes to chronic inflammation and cancer. Knock-out mice for the epithelium-specific transcription factor Spdef (also called Pdef) have defects in terminal differentiation of intestinal and bronchial secretory cells. We sought to determine the physiologic function of Spdef in the stomach, another site of sig...

  16. Systems Biological Determination of the Epi-Genomic Structure Function Relation: : Nucleosomal Association Changes, Intra/Inter Chromosomal Architecture, Transcriptional Structure Relationship, Simulations of Nucleosomal/Chromatin Fiber/Chromosome Architecture and Dynamics, System Biological/Medical Result Integration via the GLOBE 3D Genome Platform.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); P.R. Cook (Peter); K. Rippe (Karsten); Gernot Längst; G. Wedemann (Gero); F.G. Grosveld (Frank)

    2010-01-01

    textabstractDespite our knowledge of the sequence of the human genome, the relation of its three-dimensional dynamic architecture with its function – the storage and expression of genetic information – remains one of the central unresolved issues of our age. It became very clear meanwhile that this

  17. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  18. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    Science.gov (United States)

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  19. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivities of virus functions

    International Nuclear Information System (INIS)

    Eglin, R.P.; Gugerli, P.; Wildy, P.

    1980-01-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription; unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II). (U.K.)

  20. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  1. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells.

    Science.gov (United States)

    Miles, Wayne O; Korenjak, Michael; Griffiths, Lyra M; Dyer, Michael A; Provero, Paolo; Dyson, Nicholas J

    2014-10-01

    Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE). © 2014 The Authors.

  2. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    Science.gov (United States)

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  3. NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland.

    Science.gov (United States)

    Ziros, Panos G; Habeos, Ioannis G; Chartoumpekis, Dionysios V; Ntalampyra, Eleni; Somm, Emmanuel; Renaud, Cédric O; Bongiovanni, Massimo; Trougakos, Ioannis P; Yamamoto, Masayuki; Kensler, Thomas W; Santisteban, Pilar; Carrasco, Nancy; Ris-Stalpers, Carrie; Amendola, Elena; Liao, Xiao-Hui; Rossich, Luciano; Thomasz, Lisa; Juvenal, Guillermo J; Refetoff, Samuel; Sykiotis, Gerasimos P

    2018-06-01

    The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated

  4. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    Science.gov (United States)

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  5. Genome-wide identification and function analyses of heat shock transcription factors in potato

    Directory of Open Access Journals (Sweden)

    Ruimin eTang

    2016-04-01

    Full Text Available Heat shock transcription factors (Hsfs play vital roles in the regulation of tolerance to various stresses in living organisms. To dissect the mechanisms of the Hsfs in potato adaptation to abiotic stresses, genome and transcriptome analyses of Hsf gene family were investigated in Solanum tuberosum L. Twenty-seven StHsf members were identified by bioinformatics and phylogenetic analyses and were classified into A, B and C groups according to their structural and phylogenetic features. StHsfs in the same class shared similar gene structures and conserved motifs. The chromosomal location analysis showed that 27 Hsfs were located in 10 of 12 chromosomes (except chromosome 1 and chromosome 5 and that 18 of these genes formed 9 paralogous pairs. Expression profiles of StHsfs in 12 different organs and tissues uncovered distinct spatial expression patterns of these genes and their potential roles in the process of growth and development. Promoter and quantitative real-time polymerase chain reaction (qRT-PCR detections of StHsfs were conducted and demonstrated that these genes were all responsive to various stresses. StHsf004, StHsf007, StHsf009, StHsf014 and StHsf019 were constitutively expressed under non-stress conditions, and some specific Hsfs became the predominant Hsfs in response to different abiotic stresses, indicating their important and diverse regulatory roles in adverse conditions. A co-expression network between StHsfs and StHsf-co-expressed genes was generated based on the publicly-available potato transcriptomic databases and identified key candidate StHsfs for further functional studies.

  6. Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis.

    Science.gov (United States)

    Giatromanolaki, Alexandra; Sivridis, Efthimios; Kalamida, Dimitra; Koukourakis, Michael I

    2017-06-01

    Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior. The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1-stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia-related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF-7 cancer cell line. Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P factor 2-alpha (HIF-2α) (P = .01, r = 0.25) expression and inversely with progesterone receptor (P = .01, r = 0.22). High vascular density was directly linked with LAMP2a (P = .05, r = 0.18) and cathepsin D (P = .005, r = 0.28). In Kaplan-Meier survival analysis, TFEB and cathepsin D expression were related to an ominous prognosis (P = .001 and P = .03, respectively). In multivariate analysis, TFEB expression sustained its independent prognostic significance (P = .05, hazard ratio 2.1). In in vitro experiments, acidity triggered overexpression of TFEB and nuclear translocation. Intense TFEB expression and lysosomal biogenesis, evident in one fourth of early breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  8. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus.

    Directory of Open Access Journals (Sweden)

    Pingfang Li

    Full Text Available Brassinosteroids (BRs, a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14, a putative ankyrin-repeat protein, an F-box protein (PP2, and a major latex, pathogenesis-related (MLP-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.

  9. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  10. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    Science.gov (United States)

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  12. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gan Lijun

    2011-12-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors (single-repeat MYBs play important roles in controlling trichome patterning in Arabidopsis. It was proposed that single-repeat MYBs negatively regulate trichome formation by competing with GLABRA1 (GL1 for binding GLABRA3/ENHANCER OF GLABRA3 (GL3/EGL3, thus inhibiting the formation of activator complex TTG1(TRANSPARENT TESTA GLABRA1-GL3/EGL3-GL1 that is required for the activation of GLABRA2 (GL2, whose product is a positive regulator of trichome formation. Previously we identified a novel single-repeat MYB transcription factor, TRICHOMELESS1 (TCL1, which negatively regulates trichome formation on the inflorescence stems and pedicels by directly suppressing the expression of GL1. Results We analyzed here the role of TRICHOMELESS2 (TCL2, a previously-uncharacterized single-repeat MYB transcription factor in trichome patterning in Arabidopsis. We showed that TCL2 is closely related to TCL1, and like TCL1 and other single-repeat MYBs, TCL2 interacts with GL3. Overexpression of TCL2 conferred glabrous phenotype while knockdown of TCL2 via RNAi induced ectopic trichome formation on the inflorescence stems and pedicels, a phenotype that was previously observed in tcl1 mutants. These results suggested that TCL2 may have overlapping function with TCL1 in controlling trichome formation on inflorescences. On the other hand, although the transcription of TCL2, like TCL1, is not controlled by the activator complex formed by GL1 and GL3, and TCL2 and TCL1 proteins are more than 80% identical at the amino acid level, the expression of TCL2 under the control of TCL1 promoter only partially recovered the mutant phenotype of tcl1, implying that TCL2 and TCL1 are not fully functional equivalent. Conclusions TCL2 function redundantly with TCL1 in controlling trichome formation on inflorescences, but they are not fully functional equivalent. Transcription of TCL2 is not controlled by activator complex

  13. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms.

    Science.gov (United States)

    Jauch, Eike; Wecklein, Heike; Stark, Felix; Jauch, Mandy; Raabe, Thomas

    2006-06-07

    Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.

  14. Novel estrogen receptor-related Transcripts in Marisa cornuarietis; a freshwater snail with reported sensitivity to estrogenic chemicals.

    Science.gov (United States)

    Bannister, Richard; Beresford, Nicola; May, Denise; Routledge, Edwin J; Jobling, Susan; Rand-Weaver, Mariann

    2007-04-01

    We have isolated novel molluskan steroid receptor transcripts orthologous to vertebrate estrogen receptors (ERs) and estrogen receptor-related receptors (ERRs) from the freshwater snail Marisa cornuarietis. Radiolabeled ligand binding analyses showed that neither recombinant receptor protein specifically bound 17beta-estradiol over the range applied (0.3-9.6 nM). These novel receptor transcripts have thus been designated mcER-like and mcERR respectively. Quantitative PCR revealed mcER-like to be expressed ubiquitously throughout a range of male and female structures studied, including neural and reproductive tissues. Highest absolute levels were seen in the male penis-sheath complex. The mcERR mRNA was also expressed ubiquitously throughout all male and female tissues analyzed here, with very low absolute transcript numbers in female accessory sex structures compared to other tissues.

  15. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    Science.gov (United States)

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification of novel small molecules that inhibit STAT3-dependent transcription and function.

    Directory of Open Access Journals (Sweden)

    Iryna Kolosenko

    Full Text Available Activation of Signal Transducer and Activator of Transcription 3 (STAT3 has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z' = 0,8. This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set. Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.

  17. Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution

    Directory of Open Access Journals (Sweden)

    Singh Rama S

    2008-08-01

    Full Text Available Abstract Background Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully sequenced genomes of three Caenorhabditid nematode species as well as genome information from additional more distantly related organisms (fruit fly, mouse, and human we sought to identify orthologous TFs and characterized their patterns of evolution. Results We identified 988 TF genes in C. elegans, and inferred corresponding sets in C. briggsae and C. remanei, containing 995 and 1093 TF genes, respectively. Analysis of the three gene sets revealed 652 3-way reciprocal 'best hit' orthologs (nematode TF set, approximately half of which are zinc finger (ZF-C2H2 and ZF-C4/NHR types and HOX family members. Examination of the TF genes in C. elegans and C. briggsae identified the presence of significant tandem clustering on chromosome V, the majority of which belong to ZF-C4/NHR family. We also found evidence for lineage-specific duplications and rapid evolution of many of the TF genes in the two species. A search of the TFs conserved among nematodes in Drosophila melanogaster, Mus musculus and Homo sapiens revealed 150 reciprocal orthologs, many of which are associated with important biological processes and human diseases. Finally, a comparison of the sequence, gene interactions and function indicates that nematode TFs conserved across phyla exhibit significantly more interactions and are enriched in genes with annotated mutant phenotypes compared to those that lack orthologs in other species. Conclusion Our study represents the first comprehensive genome-wide analysis of TFs across three nematode species and other organisms. The findings indicate substantial conservation of transcription

  18. Understanding large multiprotein complexes: applying a multiple allosteric networks model to explain the function of the Mediator transcription complex.

    Science.gov (United States)

    Lewis, Brian A

    2010-01-15

    The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.

  19. Transcript Abundance of Photorhabdus Insect-Related (Pir Toxin in Manduca sexta and Galleria mellonella Infections

    Directory of Open Access Journals (Sweden)

    Anaïs Castagnola

    2016-09-01

    Full Text Available In this study, we assessed pirAB toxin transcription in Photorhabdus luminescens laumondii (strain TT01 (Enterobacteriaceae by comparing mRNA abundance under in vivo and in vitro conditions. In vivo assays considered both natural and forced infections with two lepidopteran hosts: Galleria mellonella and Manduca sexta. Three portals of entry were utilized for the forced infection assays: (a integument; (b the digestive route (via mouth and anus; and (c the tracheal route (via spiracles. We also assessed plu4093-2 transcription during the course of a natural infection; this is when the bacteria are delivered by Heterorhabditis bacteriophora nematodes. Transcript abundance in G. mellonella was higher than in M. sexta at two of the observed time points: 15 and 18 h. Expression of pirAB plu4093-2 reached above endogenous control levels at 22 h in G. mellonella but not in M. sexta. Overall, pirAB plu4093-2 transcripts were not as highly expressed in M. sexta as in G. mellonella, from 15 to 22 h. This is the first study to directly compare pirAB plu4093-2 toxin transcript production considering different portals of entry.

  20. Psychophysical function in age-related maculopathy.

    LENUS (Irish Health Repository)

    Neelam, Kumari

    2012-02-01

    Age-related macular degeneration (AMD), the late stage of age-related maculopathy (ARM), is the leading cause of blind registration in developed countries. The visual loss in AMD occurs due to dysfunction and death of photoreceptors (rods and cones) secondary to an atrophic or a neovascular event. The psychophysical tests of vision, which depend on the functional status of the photoreceptors, may detect subtle alterations in the macula before morphological fundus changes are apparent ophthalmoscopically, and before traditional measures of visual acuity exhibit deterioration, and may be a useful tool for assessing and monitoring patients with ARM. Furthermore, worsening of these visual functions over time may reflect disease progression, and some of these, alone or in combination with other parameters, may act as a prognostic indicator for identifying eyes at risk for developing neovascular AMD. Lastly, psychophysical tests often correlate with subjective and relatively undefined symptoms in patients with early ARM, and may reflect limitation of daily activities for ARM patients. However, clinical studies investigating psychophysical function have largely been cross-sectional in nature, with small sample sizes, and lack consistency in terms of the grading and classification of ARM. This article aims to comprehensively review the literature germane to psychophysical tests in ARM, and to furnish the reader with an insight into this complex area of research.

  1. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    Science.gov (United States)

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation.

    Science.gov (United States)

    Lemieux, Bruno; Blanchette, Marco; Monette, Anne; Mouland, Andrew J; Wellinger, Raymund J; Chabot, Benoit

    2015-01-01

    The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity of the transcription elongation factor P-TEFb. Consistent with this hypothesis, the transcription of the reporter gene was stimulated when the catalytic component of P-TEFb, CDK9, was inhibited with DRB. While low levels of A1/A2 stimulated the association of RNA polymerase II with the reporter gene, they also increased the association of CDK9 with the repressor 7SK RNA, and compromised the recovery of promoter-distal transcription on the Kitlg gene after the release of pausing. Transcriptome analysis revealed that more than 50% of the genes whose expression was affected by the siRNA-mediated depletion of A1/A2 were also affected by DRB. RNA polymerase II-chromatin immunoprecipitation assays on DRB-treated and A1/A2-depleted cells identified a common set of repressed genes displaying increased occupancy of polymerases at promoter-proximal locations, consistent with pausing. Overall, our results suggest that lowering the levels of hnRNP A1/A2 elicits defective transcription elongation on a fraction of P-TEFb-dependent genes, hence favoring the transcription of P-TEFb-independent genes.

  3. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation.

    Directory of Open Access Journals (Sweden)

    Bruno Lemieux

    Full Text Available The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity of the transcription elongation factor P-TEFb. Consistent with this hypothesis, the transcription of the reporter gene was stimulated when the catalytic component of P-TEFb, CDK9, was inhibited with DRB. While low levels of A1/A2 stimulated the association of RNA polymerase II with the reporter gene, they also increased the association of CDK9 with the repressor 7SK RNA, and compromised the recovery of promoter-distal transcription on the Kitlg gene after the release of pausing. Transcriptome analysis revealed that more than 50% of the genes whose expression was affected by the siRNA-mediated depletion of A1/A2 were also affected by DRB. RNA polymerase II-chromatin immunoprecipitation assays on DRB-treated and A1/A2-depleted cells identified a common set of repressed genes displaying increased occupancy of polymerases at promoter-proximal locations, consistent with pausing. Overall, our results suggest that lowering the levels of hnRNP A1/A2 elicits defective transcription elongation on a fraction of P-TEFb-dependent genes, hence favoring the transcription of P-TEFb-independent genes.

  4. Effects of Replication and Transcription on DNA Structure-Related Genetic Instability.

    Science.gov (United States)

    Wang, Guliang; Vasquez, Karen M

    2017-01-05

    Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.

  5. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection

    OpenAIRE

    Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.

    2017-01-01

    Understanding host?enteric virus interactions has been limited by the inability to culture nontransformed small intestinal epithelial cells and to infect animal models with human viruses. We report epithelial responses in human small intestinal enteroid cultures from different individuals following infection with human rotavirus (HRV), a model enteric pathogen. RNA-sequencing and functional assays revealed type III IFN as the dominant transcriptional response that activates interferon-stimula...

  6. Structural and functional studies on the pituitary-specific transcription factor Pit-1

    NARCIS (Netherlands)

    Augustijn, K.D.

    2002-01-01

    Pit-1 is a pituitary specific transcription factor that plays a central role in the development and maintenance of a number of cell lineages in the anterior pituitary gland. In these cell lineages, Pit-1 is required for the selective expression of the growth hormone (GH), prolactin (PRL) and the

  7. The simian immunodeficiency virus targets central cell cycle functions through transcriptional repression in vivo.

    Directory of Open Access Journals (Sweden)

    Carl-Magnus Hogerkorp

    Full Text Available A massive and selective loss of CD4+ memory T cells occurs during the acute phase of immunodeficiency virus infections. The mechanism of this depletion is poorly understood but constitutes a key event with implications for progression. We assessed gene expression of purified T cells in Rhesus Macaques during acute SIVmac239 infection in order to define mechanisms of pathogenesis. We observe a general transcriptional program of over 1,600 interferon-stimulated genes induced in all T cells by the infection. Furthermore, we identify 113 transcriptional changes that are specific to virally infected cells. A striking downregulation of several key cell cycle regulator genes was observed and shared promotor-region E2F binding sites in downregulated genes suggested a targeted transcriptional control of an E2F regulated cell cycle program. In addition, the upregulation of the gene for the fundamental regulator of RNA polymerase II, TAF7, demonstrates that viral interference with the cell cycle and transcriptional regulation programs may be critical components during the establishment of a pathogenic infection in vivo.

  8. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair

    NARCIS (Netherlands)

    G.S. Winkler (Sebastiaan); U. Fiedler; W. Vermeulen (Wim); F. Coin (Frédéric); R.D. Wood (Richard); H.T.M. Timmers (Marc); G. Weeda (Geert); J.H.J. Hoeijmakers (Jan); S.J. Araú jo; J-M. Egly (Jean-Marc)

    2000-01-01

    textabstractTFIIH is a multisubunit protein complex involved in RNA polymerase II transcription and nucleotide excision repair, which removes a wide variety of DNA lesions including UV-induced photoproducts. Mutations in the DNA-dependent ATPase/helicase subunits of TFIIH, XPB and

  9. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    International Nuclear Information System (INIS)

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-01-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  10. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance.

    Science.gov (United States)

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-07-05

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.

  11. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance

    International Nuclear Information System (INIS)

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-01-01

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable

  12. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function.

    Science.gov (United States)

    Wong, S W; Schaffer, P A

    1991-05-01

    Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.

  13. Survival of Listeria monocytogenes in simulated gastrointestinal system and transcriptional profiling of stress- and adhesion-related genes

    DEFF Research Database (Denmark)

    Jiang, Lingli; Olesen, Inger; Andersen, Thomas

    2010-01-01

    -related genes after exposure to the conditions similar to those encountered in the mouth, stomach, and small intestine. None of the L. monocytogenes strains investigated could survive in the gastric juice at pH 2.5 or 3.0. Their survival increased at higher pH (3.5 and 4.0) in the gastric stress. Relative...... afterpassing through the simulated gastrointestinal tract, whereas that of the adhesion-related gene ami was downregulated. Taken together, this study revealed that L. monocytogenes strains enhanced the expression of stressrelated genes and decreased the transcription of adhesion-related gene in order...

  14. Minoxidil may suppress androgen receptor-related functions.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  15. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control.

    Science.gov (United States)

    Zheng, Ke-wei; Xiao, Shan; Liu, Jia-quan; Zhang, Jia-yu; Hao, Yu-hua; Tan, Zheng

    2013-05-01

    G-quadruplex formation in genomic DNA is considered to regulate transcription. Previous investigations almost exclusively focused on intramolecular G-quadruplexes formed by DNA carrying four or more G-tracts, and structure formation has rarely been studied in physiologically relevant processes. Here, we report an almost entirely neglected, but actually much more prevalent form of G-quadruplexes, DNA:RNA hybrid G-quadruplexes (HQ) that forms in transcription. HQ formation requires as few as two G-tracts instead of four on a non-template DNA strand. Potential HQ sequences (PHQS) are present in >97% of human genes, with an average of 73 PHQSs per gene. HQ modulates transcription under both in vitro and in vivo conditions. Transcriptomal analysis of human tissues implies that maximal gene expression may be limited by the number of PHQS in genes. These features suggest that HQs may play fundamental roles in transcription regulation and other transcription-mediated processes.

  16. Transcriptional and functional differences in stem cell populations isolated from Extraocular and Limb muscles

    DEFF Research Database (Denmark)

    Pacheco-Pinedo, Eugenia Cristina; Budak, Murat T; Zeiger, Ulrike

    2008-01-01

    The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct...... from other skeletal muscles that the term: allotype has been coined to highlight EOM-group-specific properties. We hypothesized that increased and distinct stem cells may underlie the continual myogenesis noted in EOM. The side population (SP) stem cells were isolated and studied. EOMs had 15x higher...... SP cell content compared to limb muscles. Expression profiling revealed 348 transcripts that define the EOM-SP transcriptome. Over 92% of transcripts were SP-specific, as they were absent in previous whole-muscle microarray studies. Cultured EOM-SP cells revealed superior in vitro proliferative...

  17. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.

    Science.gov (United States)

    Prabha, Swayam; Rao, Desirazu N; Nagaraja, Valakunja

    2011-04-29

    Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd) deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD) comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD) containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC) increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.

  18. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.

    Directory of Open Access Journals (Sweden)

    Swayam Prabha

    Full Text Available Transcription coupled nucleotide excision repair (TC-NER is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.

  19. Structural and functional conservation of CLEC-2 with the species-specific regulation of transcript expression in evolution.

    Science.gov (United States)

    Wang, Lan; Ren, Shifang; Zhu, Haiyan; Zhang, Dongmei; Hao, Yuqing; Ruan, Yuanyuan; Zhou, Lei; Lee, Chiayu; Qiu, Lin; Yun, Xiaojing; Xie, Jianhui

    2012-08-01

    CLEC-2 was first identified by sequence similarity to C-type lectin-like molecules with immune functions and has been reported as a receptor for the platelet-aggregating snake venom toxin rhodocytin and the endogenous sialoglycoprotein podoplanin. Recent researches indicate that CLEC-2-deficient mice were lethal at the embryonic stage associated with disorganized and blood-filled lymphatic vessels and severe edema. In view of a necessary role of CLEC-2 in the individual development, it is of interest to investigate its phylogenetic homology and highly conserved functional regions. In this work, we reported that CLEC-2 from different species holds with an extraordinary conservation by sequence alignment and phylogenetic tree analysis. The functional structures including N-linked oligosaccharide sites and ligand-binding domain implement a structural and functional conservation in a variety of species. The glycosylation sites (N120 and N134) are necessary for the surface expression CLEC-2. CLEC-2 from different species possesses the binding activity of mouse podoplanin. Nevertheless, the expression of CLEC-2 is regulated with a species-specific manner. The alternative splicing of pre-mRNA, a regulatory mechanism of gene expression, and the binding sites on promoter for several key transcription factors vary between different species. Therefore, CLEC-2 shares high sequence homology and functional identity. However the transcript expression might be tightly regulated by different mechanisms in evolution.

  20. The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts

    DEFF Research Database (Denmark)

    Silla, Toomas; Karadoulama, Evdoxia; Mąkosa, Dawid

    2018-01-01

    , containing polyadenylated (pA+) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA+ RNA foci with "pA-tail exosome targeting (PAXT) connection" components MTR4, ZFC3H1, and PABPN1......Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci...... but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA+ RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export...

  1. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling

    DEFF Research Database (Denmark)

    Jensen, Michael K; Kjaersgaard, Trine; Nielsen, Michael M.

    2010-01-01

    -termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show......TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators...... of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C...

  2. Regulation of Cited2 expression provides a functional link between translational and transcriptional responses during hypoxia

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Savelkouls, Kim; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2007-01-01

    Background and purpose: Protein synthesis rates are greatly reduced under hypoxic conditions as a consequence of an overall inhibition of mRNA translation. Certain specific mRNA species have the ability to escape this general translational repression. At the cellular level this results in differential protein expression during hypoxic conditions. The objective of this study was to characterize the translational regulation of the postulated HIF-1α antagonist Cited2. Materials and methods: DU145 prostate carcinoma cells and mouse embryonic fibroblasts with a homozygous knock-in mutation for eIF2α (S51A) or wild-type eIF2α were exposed to severe hypoxia after which both total mRNA and efficiently translated mRNA were isolated. Quantitative RT-PCR was used to measure and compare changes in transcription (total mRNA) with changes in translation (efficiently translated mRNA fraction). Results: We show using HIF-1α null MEF cells that transcriptional induction of Cited2 during hypoxia is dependent on HIF-1α. Although global mRNA translation is inhibited during hypoxia Cited2 mRNA remains efficiently translated. An evolutionary conserved upstream open reading frame (uORF) in the 5'UTR of Cited2 did not stimulate translation in an eIF2α dependent manner during hypoxia. Conclusions: Selective translation Cited2 by an eIF2α independent mechanism establishes a link between translation and HIF-1 dependent transcription during hypoxia

  3. The Role of Estrogen Related Receptor in Modulating Estrogen Receptor Mediated Transcription in Breast Cancer Cells

    Science.gov (United States)

    2005-04-01

    tumors correlates with an unfavorable prognosis (Ariazi 2002; Lu 2001; Suzuki 2004; Vanacker 1999). The transcriptional activity of ERRa is not inhibited...SA. 101:6570-5. Needham, M ., S. Raines, J. McPheat, C. Stacey, J. Ellston, S. Hoare, and M . Parker. 2000. Differential interaction of steroid hormone...R. Graves, M . Wright, and B.M. Spiegelman. 1998. A cold- inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829- 39

  4. Transcription factor Fos-Related Antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis

    OpenAIRE

    Maurer, B; Busch, N; Jüngel, A; Pileckyte, M; Gay, R E; Michel, B A; Schett, G; Gay, S; Distler, J; Distler, O

    2009-01-01

    BACKGROUND: -Microvascular damage is one of the first pathological changes in systemic sclerosis. In this study, we investigated the role of Fos-related antigen-2 (Fra-2), a transcription factor of the activator protein-1 family, in the peripheral vasculopathy of systemic sclerosis and examined the underlying mechanisms. Methods and Results-Expression of Fra-2 protein was significantly increased in skin biopsies of systemic sclerosis patients compared with healthy controls, especially in endo...

  5. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  6. Transcriptional profiling of rice treated with MoHrip1 reveal the function of protein elicitor in enhancement of disease resistance and plant growth

    Directory of Open Access Journals (Sweden)

    Shun Lv

    2016-12-01

    Full Text Available MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS-based digital gene expression (DGE profiling was performed to collect the transcriptional data of differentially expressed genes induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA pathway, phytoalexin, transcription factors and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA pathway were activated, while the jasmonic acid (JA signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  7. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth.

    Science.gov (United States)

    Lv, Shun; Wang, Zhenzhen; Yang, Xiufen; Guo, Lihua; Qiu, Dewen; Zeng, Hongmei

    2016-01-01

    MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  8. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD

    International Nuclear Information System (INIS)

    Prokopec, Stephenie D.; Watson, John D.; Lee, Jamie; Pohjanvirta, Raimo; Boutros, Paul C.

    2015-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500 μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6 h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144 h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear. - Highlights: • Differences exist between the toxicity phenotypes to TCDD in male and female mice. • TCDD-mediated transcriptomic differences were identified between the sexes. • Resistant female mice displayed a large, early-onset, transcriptomic response.

  9. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD

    Energy Technology Data Exchange (ETDEWEB)

    Prokopec, Stephenie D.; Watson, John D. [Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto (Canada); Lee, Jamie [Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto (Canada); Department of Pharmacology & Toxicology, University of Toronto, Toronto (Canada); Pohjanvirta, Raimo [Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio Finland (Finland); Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki (Finland); Boutros, Paul C., E-mail: Paul.Boutros@oicr.on.ca [Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto (Canada); Department of Pharmacology & Toxicology, University of Toronto, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2015-04-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500 μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6 h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144 h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear. - Highlights: • Differences exist between the toxicity phenotypes to TCDD in male and female mice. • TCDD-mediated transcriptomic differences were identified between the sexes. • Resistant female mice displayed a large, early-onset, transcriptomic response.

  10. The curvature function in general relativity

    International Nuclear Information System (INIS)

    Hall, G S; MacNay, Lucy

    2006-01-01

    A function, here called the curvature function, is defined and which is constructed explicitly from the type (0, 4) curvature tensor. Although such a function may be defined for any manifold admitting a metric, attention is here concentrated on this function on a spacetime. Some properties of this function are explored and compared with a previous discussion of it given by Petrov

  11. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  12. Dwarf Tiller1, a Wuschel-related homeobox transcription factor, is required for tiller growth in rice.

    Directory of Open Access Journals (Sweden)

    Wenfei Wang

    2014-03-01

    Full Text Available Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that Dwarf Tiller1 (DWT1 controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa. Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a Wuschel-related homeobox (WOX transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA treatment, and some of the slender rice1 (slr1 dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice.

  13. DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice

    Science.gov (United States)

    Wang, Wenfei; Li, Gang; Zhao, Jun; Chu, Huangwei; Lin, Wenhui; Zhang, Dabing; Wang, Zhiyong; Liang, Wanqi

    2014-01-01

    Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that DWARF TILLER1 (DWT1) controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa). Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a WUSCHEL-related homeobox (WOX) transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA) treatment, and some of the slender rice1 (slr1) dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice. PMID:24625559

  14. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    OpenAIRE

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-01-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We...

  15. TFpredict and SABINE: sequence-based prediction of structural and functional characteristics of transcription factors.

    Directory of Open Access Journals (Sweden)

    Johannes Eichner

    Full Text Available One of the key mechanisms of transcriptional control are the specific connections between transcription factors (TF and cis-regulatory elements in gene promoters. The elucidation of these specific protein-DNA interactions is crucial to gain insights into the complex regulatory mechanisms and networks underlying the adaptation of organisms to dynamically changing environmental conditions. As experimental techniques for determining TF binding sites are expensive and mostly performed for selected TFs only, accurate computational approaches are needed to analyze transcriptional regulation in eukaryotes on a genome-wide level. We implemented a four-step classification workflow which for a given protein sequence (1 discriminates TFs from other proteins, (2 determines the structural superclass of TFs, (3 identifies the DNA-binding domains of TFs and (4 predicts their cis-acting DNA motif. While existing tools were extended and adapted for performing the latter two prediction steps, the first two steps are based on a novel numeric sequence representation which allows for combining existing knowledge from a BLAST scan with robust machine learning-based classification. By evaluation on a set of experimentally confirmed TFs and non-TFs, we demonstrate that our new protein sequence representation facilitates more reliable identification and structural classification of TFs than previously proposed sequence-derived features. The algorithms underlying our proposed methodology are implemented in the two complementary tools TFpredict and SABINE. The online and stand-alone versions of TFpredict and SABINE are freely available to academics at http://www.cogsys.cs.uni-tuebingen.de/software/TFpredict/ and http://www.cogsys.cs.uni-tuebingen.de/software/SABINE/.

  16. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  17. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  18. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    International Nuclear Information System (INIS)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro

  19. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions

    DEFF Research Database (Denmark)

    Davis, Margaret R.; Andersson, Robin; Severin, Jessica

    2014-01-01

    in the structure of the extracellular matrix and controlling the bioavailability of TGFβ family members. Genes encoding these proteins show differential expression in mesenchymal cell types which synthesize the extracellular matrix. We have investigated the promoter regions of the seven gene family members using...... of the family members were expressed in a range of mesenchymal and other cell types, often associated with use of alternative promoters or transcription start sites within a promoter in different cell types. FBN3 was the lowest expressed gene, and was found only in embryonic and fetal tissues. The different...

  20. Functional characterization of the transcription factor ZEB1 in epithelial to mesenchymal transition and cancer progression

    International Nuclear Information System (INIS)

    Sultan, A.

    2010-01-01

    Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumourigenesis, transcriptional targets of the E-cadherin repressor ZEB1 in invasive humancancer cells were identified. We show that ZEB1 repressed multiple key determinants of epithelial differentiation and cell-cell adhesion, including the cell polarity genes Crumbs3, HUGL2, PKP3 and Pals1-associated tight junction protein. ZEB1 associated with their endogenous promoters in vivo, and strongly repressed promoter activities in reporter assays. ZEB1 downregulation in undifferentiated cancer cells by RNA interference was sufficient to upregulate expression of these cell polarity genes on the RNA and protein level, to re-establish epithelial features and to impair cell motility in vitro. In human colorectal cancer, ZEB1 expression was limited to the tumour-host interface and was accompanied by loss of intercellular adhesion and tumour cell invasion. EMT-inducing transcriptional repressor ZEB1 promotes colorectal cancer cell metastasis and loss of cell polarity. Thereby, ZEB1 suppresses the expression of cell polarity factors, in particular of Lgl2, which was found to be reduced in colorectal and breast cancers. In invasive ductal and lobular breast cancer, upregulation of ZEB1 was stringently coupled to cancer cell dedifferentiation. The invasion potential of MDA-MB-231, a highly invasive breast cancer cell line, is shown to be under the control of ZEB1. Over-expression of ZEB1downregulates and relocalizes E-Cadherin in MCF7 breast cancer cells; moreover, ZEB1 overexpression results in reduced proliferation rate of these cells. Most importantly, we show that ZEB1 mediated downregulation of E-cadherin involves chromatin modifications. Markers of transcriptionally active chromatin Acetylated H3 and Acetylated

  1. Evolution and Functional Diversification of the GLI Family of Transcription Factors in Vertebrates

    Directory of Open Access Journals (Sweden)

    Amir Ali Abbasi

    2009-05-01

    Full Text Available Background: In vertebrates the “SONIC HEDGEHOG” signalling pathway has been implicated in cell-fate determination, proliferation and the patterning of many different cell types and organs. As the GLI family members (GLI1, GLI2 and GLI3 are key mediators of hedgehog morphogenetic signals, over the past couple of decades they have been extensively scrutinized by genetic, molecular and biochemical means. Thus, a great deal of information is currently available about the functional aspects of GLI proteins in various vertebrate species. To address the roles of GLI genes in diversifying the repertoire of the Hh signalling and deploying them for the vertebrate specifications, in this study we have examined the evolutionary patterns of vertebrate GLI sequences within and between species. Results: Phylogenetic tree analysis suggests that the vertebrate GLI1, GLI2 and GLI3 genes diverged after the separation of urochordates from vertebrates and before the tetrapods-bony fishes split. Lineage specific duplication events were also detected. Estimation of mode and strength of selection acting on GLI orthologs demonstrated that all members of the GLI gene family experienced more relaxed selection in teleost fish than in the mammalian lineage. Furthermore, the GLI1 gene appeared to have been exposed to different functional constraints in fish and tetrapod lineages, whilst a similar level of functional constraints on GLI2 and GLI3 was suggested by comparable average non-synonymous (Ka substitutions across the lineages. A relative rate test suggested that the majority of the paralogous copies of the GLI family analyzed evolved with similar evolutionary rates except GLI1 which evolved at a significantly faster rate than its paralogous counterparts in tetrapods. Conclusions: Our analysis shows that sequence evolutionary patterns of GLI family members are largely correlated with the reported similarities and differences in the functionality of GLI proteins

  2. Functional interrelationship between TFII-I and E2F transcription factors at specific cell cycle gene loci.

    Science.gov (United States)

    Shen, Yong; Nar, Rukiye; Fan, Alex X; Aryan, Mahmoud; Hossain, Mir A; Gurumurthy, Aishwarya; Wassel, Paul C; Tang, Ming; Lu, Jianrong; Strouboulis, John; Bungert, Jörg

    2018-01-01

    Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes. © 2017 Wiley Periodicals, Inc.

  3. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hokyoung Son

    2011-10-01

    Full Text Available Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs resulted in a database of over 11,000 phenotypes (phenome. This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.

  4. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Science.gov (United States)

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  5. Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Suzhen Dong

    Full Text Available BACKGROUND: Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. METHODOLOGY: We assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via exon array analysis of cortical and hippocampal mRNA transcription. The results revealed a transcriptional network interaction of genes involved in neurotransmission, neuronal development, signal transduction, and metabolism in response to the curcumin treatment. CONCLUSIONS: The results suggest a neurogenesis- and cognition-enhancing potential of prolonged curcumin treatment in aged rats, which may be due to its diverse effects on genes related to growth and plasticity.

  6. Curcumin Enhances Neurogenesis and Cognition in Aged Rats: Implications for Transcriptional Interactions Related to Growth and Synaptic Plasticity

    Science.gov (United States)

    Mitchell, E. Siobhan; Xiu, Jin; Tiwari, Jyoti K.; Hu, Yinghe; Cao, Xiaohua; Zhao, Zheng

    2012-01-01

    Background Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. Methodology We assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via exon array analysis of cortical and hippocampal mRNA transcription. The results revealed a transcriptional network interaction of genes involved in neurotransmission, neuronal development, signal transduction, and metabolism in response to the curcumin treatment. Conclusions The results suggest a neurogenesis- and cognition-enhancing potential of prolonged curcumin treatment in aged rats, which may be due to its diverse effects on genes related to growth and plasticity. PMID:22359574

  7. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Wang, Yong [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Weng, Zhiping; Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Harrod, Kevin S. [Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S., E-mail: treena@uab.edu [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-10-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/−} mice

  8. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Wang, Yong; Weng, Zhiping; Elmets, Craig A.; Harrod, Kevin S.; Deshane, Jessy S.; Athar, Mohammad

    2016-01-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4 +/+ wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4 +/− heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca ++ homeostasis. ATO induces Ca ++ -dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca ++ homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4 +/− mice. • Changes in macrophage

  9. Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum.

    Directory of Open Access Journals (Sweden)

    Ruiqin Zhong

    Full Text Available Switchgrass is a promising biofuel feedstock due to its high biomass production and low agronomic input requirements. Because the bulk of switchgrass biomass used for biofuel production is lignocellulosic secondary walls, studies on secondary wall biosynthesis and its transcriptional regulation are imperative for designing strategies for genetic improvement of biomass production in switchgrass. Here, we report the identification and functional characterization of a group of switchgrass transcription factors, including several NACs (PvSWNs and a MYB (PvMYB46A, for their involvement in regulating secondary wall biosynthesis. PvSWNs and PvMYB46A were found to be highly expressed in stems and their expression was closely associated with sclerenchyma cells. Overexpression of PvSWNs and PvMYB46A in Arabidopsis was shown to result in activation of the biosynthetic genes for cellulose, xylan and lignin and ectopic deposition of secondary walls in normally parenchymatous cells. Transactivation and complementation studies demonstrated that PvSWNs were able to activate the SNBE-driven GUS reporter gene and effectively rescue the secondary wall defects in the Arabidopsis snd1 nst1 double mutant, indicating that they are functional orthologs of Arabidopsis SWNs. Furthermore, we showed that PvMYB46A could activate the SMRE-driven GUS reporter gene and complement the Arabidopsis myb46 myb83 double mutant, suggesting that it is a functional ortholog of Arabidopsis MYB46/MYB83. Together, these results indicate that PvSWNs and PvMYB46A are transcriptional switches involved in regulating secondary wall biosynthesis, which provides molecular tools for genetic manipulation of biomass production in switchgrass.

  10. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    International Nuclear Information System (INIS)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping; Fu Zhengwei

    2009-01-01

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 μM Cu or 1.0 and 2.0 μM Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO 2 assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  11. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  12. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  13. Event related desynchronisation predicts functional propriospinal myoclonus

    NARCIS (Netherlands)

    Meppelink, A. M.; Little, S.; Oswal, A.; Erro, R.; Kilner, J.; Tijssen, M. A. J.; Brown, P.; Cordovari, C.; Edwards, M.

    2016-01-01

    Objective: Recent diagnostic criteria for functional movement disorders have proposed a "laboratory supported" level of diagnostic certainty where the clinical diagnosis is supported by a positive test. For functional myoclonus the Bereitschaftspotential (BP) is generally accepted as a positive

  14. Transcription profiling and identification of infection-related genes in Phytophthora cactorum.

    Science.gov (United States)

    Chen, Xiao-Ren; Huang, Shen-Xin; Zhang, Ye; Sheng, Gui-Lin; Zhang, Bo-Yue; Li, Qi-Yuan; Zhu, Feng; Xu, Jing-You

    2018-04-01

    Phytophthora cactorum, an oomycete pathogen, infects more than 200 plant species within several plant families. To gain insight into the repertoire of the infection-related genes of P. cactorum, Illumina RNA-Seq was used to perform a global transcriptome analysis of three life cycle stages of the pathogen, mycelia (MY), zoospores (ZO) and germinating cysts with germ tubes (GC). From over 9.8 million Illumina reads for each library, 18,402, 18,569 and 19,443 distinct genes were identified for MY, ZO and GC libraries, respectively. Furthermore, the transcriptome difference among MY, ZO and GC stages was investigated. Gene ontology (GO) and KEGG pathway enrichment analyses revealed diverse biological functions and processes. Comparative analysis identified a large number of genes that are associated with specific stages and pathogenicity, including 166 effector genes. Of them, most of RXLR and NLP genes showed induction while the majority of CRN genes were down-regulated in GC, the important pre-infection stage, compared to either MY or ZO. And 14 genes encoding small cysteine-rich (SCR) secretory proteins showed differential expression during the developmental stages and in planta. Ectopic expression in the Solanaceae indicated that SCR113 and one elicitin PcINF1 can trigger cell death on Nicotiana benthamiana, tobacco (N. tabacum) and tomato (Solanum lycopersicum) leaves. Neither conserved domain nor homologues of SCR113 in other organisms can be identified. Collectively, our study provides a comprehensive examination of gene expression across three P. cactorum developmental stages and describes pathogenicity-related genes, all of which will help elucidate the pathogenicity mechanism of this destructive pathogen.

  15. DNA-binding specificity and molecular functions of NAC transcription factors

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila

    2005-01-01

    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites....... Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding....... The ability of NAC proteins to dimerize and to bind DNAwas analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding. Thus...

  16. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis.

    Directory of Open Access Journals (Sweden)

    Jaume Pérez-Sánchez

    Full Text Available Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB, to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb. Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc. Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO by vegetable oils (VO in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health.

  17. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-07-01

    Full Text Available Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase. In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The

  18. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function.

    Science.gov (United States)

    Lei, Rihua; Li, Xiaoli; Ma, Zhenbing; Lv, Yan; Hu, Yanru; Yu, Diqiu

    2017-09-01

    Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  20. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  1. Rational design of small molecules that modulate the transcriptional function of the response regulator PhoP.

    Science.gov (United States)

    Qing, Xiaoyu; De Weerdt, Ami; De Maeyer, Marc; Steenackers, Hans; Voet, Arnout

    2018-01-01

    The response regulator PhoP, which is part of the PhoP/PhoQ two-component system, regulates the expression of multiple genes involved in controlling virulence in Salmonella enterica serovar Typhimurium and other species of Gram-negative bacteria. Modulating the phosphorylation-mediated dimerization in the receiver domain may interfere with the transcriptional function of PhoP. In this study, we analyzed the therapeutic potential of the PhoP receiver domain by exploring it as a potential target for drug design. The structural information was then applied to identify the first hit compounds from commercial chemical libraries by combining pharmacophore modelling and docking methods with a GFP (Green Fluorescent Protein)-based promoter-fusion bioassay. In total, one hundred and forty compounds were selected, purchased, and tested for biological activity. Several novel scaffolds showed acceptable potency to modulate the transcriptional function of PhoP, either by enhancing or inhibiting the expression of PhoP-dependent genes. These compounds may be used as the starting point for developing modulators that target the protein-protein interface of the PhoP protein as an alternative strategy against antibiotic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    Science.gov (United States)

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  3. Differential regulation of two FLNA transcripts explains some of the phenotypic heterogeneity in the loss-of-function filaminopathies.

    Science.gov (United States)

    Jenkins, Zandra A; Macharg, Alison; Chang, Cheng-Yee; van Kogelenberg, Margriet; Morgan, Tim; Frentz, Sophia; Wei, Wenhua; Pilch, Jacek; Hannibal, Mark; Foulds, Nicola; McGillivray, George; Leventer, Richard J; García-Miñaúr, Sixto; Sugito, Stuart; Nightingale, Scott; Markie, David M; Dudding, Tracy; Kapur, Raj P; Robertson, Stephen P

    2018-01-01

    Loss-of-function mutations in the X-linked gene FLNA can lead to abnormal neuronal migration, vascular and cardiac defects, and congenital intestinal pseudo-obstruction (CIPO), the latter characterized by anomalous intestinal smooth muscle layering. Survival in male hemizygotes for such mutations is dependent on retention of residual FLNA function but it is unclear why a subgroup of males with mutations in the 5' end of the gene can present with CIPO alone. Here, we demonstrate evidence for the presence of two FLNA isoforms differing by 28 residues at the N-terminus initiated at ATG +1 and ATG +82 . A male with CIPO (c.18_19del) exclusively expressed FLNA ATG +82 , implicating the longer protein isoform (ATG +1 ) in smooth muscle development. In contrast, mutations leading to reduction of both isoforms are associated with compound phenotypes affecting the brain, heart, and intestine. RNA-seq data revealed three distinct transcription start sites, two of which produce a protein isoform utilizing ATG +1 while the third utilizes ATG +82 . Transcripts sponsoring translational initiation at ATG +1 predominate in intestinal smooth muscle, and are more abundant compared with the level measured in fibroblasts. Together these observations describe a new mechanism of tissue-specific regulation of FLNA that could reflect the differing mechanical requirements of these cell types during development. © 2017 Wiley Periodicals, Inc.

  4. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    Science.gov (United States)

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  5. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3 in linseed flax (Linum usitatissimum L..

    Directory of Open Access Journals (Sweden)

    Yanyan Wang

    Full Text Available Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3, which encodes an important component in abscisic acid (ABA signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  6. Developments in functional equations and related topics

    CERN Document Server

    Ciepliński, Krzysztof; Rassias, Themistocles

    2017-01-01

    This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszély equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Staniłsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.

  7. Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology.

    Science.gov (United States)

    Adamopoulos, Panagiotis G; Kontos, Christos K; Scorilas, Andreas

    2018-03-31

    Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer. Copyright © 2018. Published by Elsevier Inc.

  8. The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom.

    Science.gov (United States)

    Picard, Marion Anne-Lise; Cosseau, Céline; Mouahid, Gabriel; Duval, David; Grunau, Christoph; Toulza, Ève; Allienne, Jean-François; Boissier, Jérôme

    2015-07-01

    The Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes have been intensively studied because they represent major transcription factors in the pathways governing sex determination and differentiation. These genes have been identified in animal groups ranging from cnidarians to mammals, and some of the genes functionally studied. Here, we propose to analyze (i) the presence/absence of various Dmrt gene groups in the different taxa across the animal kingdom; (ii) the relative expression levels of the Dmrt genes in each sex; (iii) the specific spatial (by organ) and temporal (by developmental stage) variations in gene expression. This review considers non-mammalian animals at all levels of study (i.e. no particular importance is given to animal models), and using all types of sexual strategy (hermaphroditic or gonochoric) and means of sex determination (i.e. genetic or environmental). To conclude this global comparison, we offer an analysis of the DM domains conserved among the different DMRT proteins, and propose a general sex-specific pattern for each member of the Dmrt gene family. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Relating Functional Groups to the Periodic Table

    Science.gov (United States)

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  10. Primary effect of chemotherapy on the transcription profile of AIDS-related Kaposi's sarcoma

    International Nuclear Information System (INIS)

    Kuyl, Antoinette C van der; Burg, Remco van den; Zorgdrager, Fokla; Dekker, John T; Maas, Jolanda; Noesel, Carel JM van; Goudsmit, Jaap; Cornelissen, Marion

    2002-01-01

    Drugs & used in anticancer chemotherapy have severe effects upon the cellular transcription and replication machinery. From in vitro studies it has become clear that these drugs can affect specific genes, as well as have an effect upon the total transcriptome. Total mRNA from two skin lesions from a single AIDS-KS patient was analyzed with the SAGE (Serial Analysis of Gene Expression) technique to assess changes in the transcriptome induced by chemotherapy. SAGE libraries were constructed from material obtained 24 (KS-24) and 48 (KS-48) hrs after combination therapy with bleomycin, doxorubicin and vincristine. KS-24 and KS-48 were compared to SAGE libraries of untreated AIDS-KS, and to libraries generated from normal skin and from isolated CD4+ T-cells, using the programs USAGE and HTM. SAGE libraries were also compared with the SAGEmap database. In order to assess the primary response of AIDS-related Kaposi's sarcoma (AIDS-KS) to chemotherapy in vivo, we analyzed the transcriptome of AIDS-KS skin lesions from a HIV-1 seropositive patient at two time points after therapy. The mRNA profile was found to have changed dramatically within 24 hours after drug treatment. There was an almost complete absence of transcripts highly expressed in AIDS-KS, probably due to a transcription block. Analysis of KS-24 suggested that mRNA pool used in its construction originated from poly(A) binding protein (PABP) mRNP complexes, which are probably located in nuclear structures known as interchromatin granule clusters (IGCs). IGCs are known to fuse after transcription inhibition, probably affecting poly(A)+RNA distribution. Forty-eight hours after chemotherapy, mRNA isolated from the lesion was largely derived from infiltrating lymphocytes, confirming the transcriptional block in the AIDS-KS tissue. These in vivo findings indicate that the effect of anti-cancer drugs is likely to be more global than up- or downregulation of specific genes, at least in this single patient with

  11. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture.

    Science.gov (United States)

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-09-15

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. © 2016 Eychenne et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems.

    Science.gov (United States)

    Romeo, Tony; Vakulskas, Christopher A; Babitzke, Paul

    2013-02-01

    Originally described as a repressor of gene expression in the stationary phase of growth, CsrA (RsmA) regulates primary and secondary metabolic pathways, biofilm formation, motility, virulence circuitry of pathogens, quorum sensing and stress response systems by binding to conserved sequences in its target mRNAs and altering their translation and/or turnover. While the binding of CsrA to RNA is understood at an atomic level, new mechanisms of gene activation and repression by this protein are still emerging. In the γ-proteobacteria, small non-coding RNAs (sRNAs) use molecular mimicry to sequester multiple CsrA dimers away from mRNA. In contrast, the FliW protein of Bacillus subtilis inhibits CsrA activity by binding to this protein, thereby establishing a checkpoint in flagellum morphogenesis. Turnover of CsrB and CsrC sRNAs in Escherichia coli requires a specificity protein of the GGDEF-EAL domain superfamily, CsrD, in addition to the housekeeping nucleases RNase E and PNPase. The Csr system of E. coli contains extensive autoregulatory circuitry, which governs the expression and activity of CsrA. Interaction of the Csr system with transcriptional regulatory networks results in a variety of complex response patterns. This minireview will highlight basic principles and new insights into the workings of these complex eubacterial regulatory systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity.

    Science.gov (United States)

    Zou, Cheng-Gang; Tu, Qiu; Niu, Jie; Ji, Xing-Lai; Zhang, Ke-Qin

    2013-01-01

    The Caenorhabditis elegans DAF-16 transcription factor is critical for diverse biological processes, particularly longevity and stress resistance. Disruption of the DAF-2 signaling cascade promotes DAF-16 activation, and confers resistance to killing by pathogenic bacteria, such as Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis. However, daf-16 mutants exhibit similar sensitivity to these bacteria as wild-type animals, suggesting that DAF-16 is not normally activated by these bacterial pathogens. In this report, we demonstrate that DAF-16 can be directly activated by fungal infection and wounding in wild-type animals, which is independent of the DAF-2 pathway. Fungal infection and wounding initiate the Gαq signaling cascade, leading to Ca(2+) release. Ca(2+) mediates the activation of BLI-3, a dual-oxidase, resulting in the production of reactive oxygen species (ROS). ROS then activate DAF-16 through a Ste20-like kinase-1/CST-1. Our results indicate that DAF-16 in the epidermis is required for survival after fungal infection and wounding. Thus, the EGL-30-Ca(2+)-BLI-3-CST-1-DAF-16 signaling represents a previously unknown pathway to regulate epidermal damage response.

  14. Inhibition of transcription of abscisic acid in relation to the binding with DNA

    International Nuclear Information System (INIS)

    Basak, Sukla; Basu, P.S.; Biswas, B.B.

    1976-01-01

    Abscisic acid (ABA), a plant substance inhibits RNA synthesis in vivo and vitro. In vitro inhibition by ABA has been demonstrated in isolated RNA polymerase system from coconut endosperm chromatin. This inhibition can be partly reversible with indole acetic acid-receptor protein complex if added in the system. To find the mechanism of inhibition of transcription by ABA, it has been found that ABA (10 -4 -10 -5 M) can bind with DNA and can prevent strand separation. This binding increases the Tm value. ABA binds with DNA but not with RNA. Moreover, ABA can equally bind and prevent denaturation of calfthymus DNA and E. coli DNA. pH optimum for this binding is 8.0. The bound complex is resistant to alkali and alcohol but susceptible to acid below pH 5.0. It has further been demonstrated that free aBA at this pH is changed to another component which has tentatively been identified as lactone form of ABA. (author)

  15. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    Science.gov (United States)

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  16. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo

    Science.gov (United States)

    Colvin, Stephanie C.; Malik, Raleigh E.; Showalter, Aaron D.; Sloop, Kyle W.; Rhodes, Simon J.

    2011-01-01

    The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable. PMID:21149718

  17. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse

    OpenAIRE

    Zhang, Ye; Sloan, Steven A.; Clarke, Laura E.; Caneda, Christine; Plaza, Colton A.; Blumenthal, Paul D.; Vogel, Hannes; Steinberg, Gary K.; Edwards, Michael S. B.; Li, Gordon; Duncan, John A.; Cheshier, Samuel H.; Shuer, Lawrence M.; Chang, Edward F.; Grant, Gerald A.

    2015-01-01

    The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains, and to maintain these cells in serum-free cultures. We found that human astrocytes have similar abilities to murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to exist...

  18. Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function.

    Directory of Open Access Journals (Sweden)

    Cheryl Hemingway

    Full Text Available The WHO estimates around a million children contract tuberculosis (TB annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM. Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB, and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68% of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16 and PTB patients (r2 = 0.71 p = 2x10-16 when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11 and T-cell receptor signalling (p = 6.56E-07. Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003. Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.

  19. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata.

    Science.gov (United States)

    de Brito Alves, José L; de Oliveira, Jéssica M D; Ferreira, Diorginis J S; Barros, Monique A de V; Nogueira, Viviane O; Alves, Débora S; Vidal, Hubert; Leandro, Carol G; Lagranha, Cláudia J; Pirola, Luciano; da Costa-Silva, João H

    2016-12-01

    Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (Pmedulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla. © 2016 John Wiley & Sons Australia, Ltd.

  20. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

    Science.gov (United States)

    Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J

    2012-01-01

    High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (pidentify genetic features that predispose or protect individuals from LD-induced breast cancer.

  1. Whole-genome transcriptional analysis of Escherichia coli during heat inactivation processes related to industrial cooking.

    Science.gov (United States)

    Guernec, A; Robichaud-Rincon, P; Saucier, L

    2013-08-01

    Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value \\[\\mathbf{\\left(}{{\\mathit{F}}^{\\mathit{o}}}_{\\mathbf{70}}^{\\mathbf{10}}\\mathbf{\\right)} \\] of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with F(o) = 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with F(o) = 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media.

  2. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  3. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, R

    2011-06-28

    Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells.\\r\

  4. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae.

    Directory of Open Access Journals (Sweden)

    Óscar Herrero

    Full Text Available Bisphenol S (BPS is an industrial alternative to the endocrine disruptor bisphenol A (BPA, and can be found in many products labeled "BPA-free". Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1 crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3 that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13 which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control were EcR (3.8, ERR (2, E74 (2.4, cyp18a1 (2.5, hsp70 (1.7, hsp40 (2.5, cyp4g (6.4, GPx (1.8, and GST (2.1, while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.

  5. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae).

    Science.gov (United States)

    Herrero, Óscar; Aquilino, Mónica; Sánchez-Argüello, Paloma; Planelló, Rosario

    2018-01-01

    Bisphenol S (BPS) is an industrial alternative to the endocrine disruptor bisphenol A (BPA), and can be found in many products labeled "BPA-free". Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1) crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3) that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13) which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control) were EcR (3.8), ERR (2), E74 (2.4), cyp18a1 (2.5), hsp70 (1.7), hsp40 (2.5), cyp4g (6.4), GPx (1.8), and GST (2.1), while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.

  6. The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription

    DEFF Research Database (Denmark)

    Nielsen, O; Davey, William John; Egel, R

    1992-01-01

    Loss of ras1+ function renders fission yeast cells unable to undergo morphological changes in response to mating pheromones, whereas cells carrying activated mutations in ras1 are hyper-responsive. This has led to the suggestion that the ras1 gene product plays a role in mating pheromone signal...

  7. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.; Schramm, Michael C.; Burra, Dharani Dhar; BinShbreen, Abdulaziz; Jankovic, Boris R.; Chowdhary, Rajesh; Archer, John A.C.; Bajic, Vladimir B.

    2013-01-01

    initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only

  8. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming.

    Science.gov (United States)

    Dalod, Marc; Chelbi, Rabie; Malissen, Bernard; Lawrence, Toby

    2014-05-16

    Dendritic cells (DC) are key regulators of both protective immune responses and tolerance to self-antigens. Soon after their discovery in lymphoid tissues by Steinman and Cohn, as cells with the unique ability to prime naïve antigen-specific T cells, it was realized that DC can exist in at least two distinctive states characterized by morphological, phenotypic and functional changes-this led to the description of DC maturation. It is now well appreciated that there are several subsets of DC in both lymphoid and non-lymphoid tissues of mammals, and these cells show remarkable functional specialization and specificity in their roles in tolerance and immunity. This review will focus on the specific characteristics of DC subsets and how their functional specialization may be regulated by distinctive gene expression programs and signaling responses in both steady-state and in the context of inflammation. In particular, we will highlight the common and distinctive genes and signaling pathways that are associated with the functional maturation of DC subsets. © 2014 The Authors.

  9. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis

    Directory of Open Access Journals (Sweden)

    Saulnier Delphine MA

    2011-07-01

    Full Text Available Abstract Background Lactobacillus reuteri harbors the genes responsible for glycerol utilization and vitamin B12 synthesis within a genetic island phylogenetically related to gamma-Proteobacteria. Within this island, resides a gene (lreu_1750 that based on its genomic context has been suggested to encode the regulatory protein PocR and presumably control the expression of the neighboring loci. However, this functional assignment is not fully supported by sequence homology, and hitherto, completely lacks experimental confirmation. Results In this contribution, we have overexpressed and inactivated the gene encoding the putative PocR in L. reuteri. The comparison of these strains provided metabolic and transcriptional evidence that this regulatory protein controls the expression of the operons encoding glycerol utilization and vitamin B12 synthesis. Conclusions We provide clear experimental evidence for assigning Lreu_1750 as PocR in Lactobacillus reuteri. Our genome-wide transcriptional analysis further identifies the loci contained in the PocR regulon. The findings reported here could be used to improve the production-yield of vitamin B12, 1,3-propanediol and reuterin, all industrially relevant compounds.

  10. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Science.gov (United States)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  11. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development.

    Directory of Open Access Journals (Sweden)

    Diana M Calderón-Noreña

    2015-04-01

    Full Text Available Candida albicans is a major invasive fungal pathogen in humans. An important virulence factor is its ability to switch between the yeast and hyphal forms, and these filamentous forms are important in tissue penetration and invasion. A common feature for filamentous growth is the ability to inhibit cell separation after cytokinesis, although it is poorly understood how this process is regulated developmentally. In C. albicans, the formation of filaments during hyphal growth requires changes in septin ring dynamics. In this work, we studied the functional relationship between septins and the transcription factor Ace2, which controls the expression of enzymes that catalyze septum degradation. We found that alternative translation initiation produces two Ace2 isoforms. While full-length Ace2, Ace2L, influences septin dynamics in a transcription-independent manner in hyphal cells but not in yeast cells, the use of methionine-55 as the initiation codon gives rise to Ace2S, which functions as the nuclear transcription factor required for the expression of cell separation genes. Genetic evidence indicates that Ace2L influences the incorporation of the Sep7 septin to hyphal septin rings in order to avoid inappropriate activation of cell separation during filamentous growth. Interestingly, a natural single nucleotide polymorphism (SNP present in the C. albicans WO-1 background and other C. albicans commensal and clinical isolates generates a stop codon in the ninth codon of Ace2L that mimics the phenotype of cells lacking Ace2L. Finally, we report that Ace2L and Ace2S interact with the NDR kinase Cbk1 and that impairing activity of this kinase results in a defect in septin dynamics similar to that of hyphal cells lacking Ace2L. Together, our findings identify Ace2L and the NDR kinase Cbk1 as new elements of the signaling system that modify septin ring dynamics in hyphae to allow cell-chain formation, a feature that appears to have evolved in specific C

  12. Cloning and characterization of GETS-1, a goldfish Ets family member that functions as a transcriptional repressor in muscle.

    Science.gov (United States)

    Goldman, D; Sapru, M K; Stewart, S; Plotkin, J; Libermann, T A; Wasylyk, B; Guan, K

    1998-10-15

    An Ets transcription factor family member, GETS-1, was cloned from a goldfish retina cDNA library. GETS-1 contains a conserved Ets DNA-binding domain at its N-terminus and is most similar to ternary complex factor (TCF) serum-response-factor protein-1a (SAP-1a). GETS-1 is expressed in many tissues, but is enriched in retina and brain. As with the TCFs SAP-1a and ets-related protein (ERP), overexpression of the GETS-1 promoter suppresses nicotinic acetylcholine receptor epsilon-subunit gene expression in cultured muscle cells. A consensus Ets binding site sequence in the promoter of the epsilon-subunit gene is required for GETS-1-mediated repression. GETS-1 repressor activity is abrogated by overexpression of an activated Ras/mitogen-activated protein kinase (MAP kinase) or by mutation of Ser-405, a MAP kinase phosphorylation site in GETS-1. Fusion proteins created between GETS-1 and the Gal4 DNA-binding domain show that, like other TCFs, GETS-1 contains a C-terminal activation domain that is activated by a Ras/MAP kinase signalling cascade. Interestingly, mutation of Ser-405 located within this activation domain abrogated transcriptional activation of the fusion protein.

  13. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model.

    Science.gov (United States)

    Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui

    2017-09-01

    Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.

  14. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  15. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Science.gov (United States)

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  16. Transcriptional profiling of primary endometrial epithelial cells following acute HIV-1 exposure reveals gene signatures related to innate immunity.

    Science.gov (United States)

    Zahoor, Muhammad Atif; Woods, Matthew William; Dizzell, Sara; Nazli, Aisha; Mueller, Kristen M; Nguyen, Philip V; Verschoor, Chris P; Kaushic, Charu

    2018-04-01

    Genital epithelial cells (GECs) line the mucosal surface of the female genital tract (FGT) and are the first cells that interface with both commensal microbiota and sexually transmitted pathogens. Despite the protective barrier formed by GECs, the FGT is a major site of HIV-1 infection. This highlights the importance of studying the interaction of HIV-1 and GECs. Using microarray analysis, we characterized the transcriptional profile of primary endometrial GECs grown in the presence or absence of physiological levels of E2 (10 -9  mol/L) or P4 (10 -7  mol/L) following acute exposure to HIV-1 for 6 hours. Acute exposure of primary endometrial GECs to HIV-1 resulted in the expression of genes related to inflammation, plasminogen activation, adhesion and diapedesis and interferon response. Interestingly, exposure to HIV-1 in the presence of E2 and P4 resulted in differential transcriptional profiles, suggesting that the response of primary endometrial GECs to HIV-1 exposure is modulated by female sex hormones. The gene expression signature of endometrial GECs indicates that the response of these cells may be key to determining host susceptibility to HIV-1 and that sex hormones modulate these interactions. This study allows us to explore possible mechanisms that explain the hormone-mediated fluctuation of HIV-1 susceptibility in women. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Cloning and expression analysis of transcription factor RrTTG1 related to prickle development in rose (Rosa Rugosa

    Directory of Open Access Journals (Sweden)

    Feng Li-Guo

    2015-01-01

    Full Text Available A prickle is an acuminate protuberance formed by the deformation of plant trichomes together with a few cortical cells. It is a type of multicellular eglandular trichome with special morphology, which originates from the phloem but is not connected to the xylem. Rosa rugosa is an important ornamental/commercial plant and an important raw material in the food and perfume industries. However, the firm prickles on its stems are inconvenient to field management, the harvesting of flowers and garden management. The TTG1 transcription factor related to the development of prickle was isolated from R. rugosa in the present study. Its expression patterns in different tissues and varieties were analyzed. Results showed the expression level of the RrTTG1 gene was highest in the leaves, followed by the stems, but was lower in the pericarps and petals. Moreover, the higher expression level of the RrTTG1 gene in all tissues of the ‘Ciguo rose’, as compared with that of the ‘Weihai wild rose’, follows the results of field morphological observation. Therefore, the RrTTG1 transcription factor is likely to regulate the development of rose prickles. This study allows for further discussion on the molecular mechanisms of prickle formation and development in R. rugosa and provides a molecular basis for the cultivation of roses with fewer or no prickles via genetic engineering.

  18. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  19. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    Science.gov (United States)

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  1. Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans.

    Science.gov (United States)

    Vandeputte, Patrick; Pradervand, Sylvain; Ischer, Françoise; Coste, Alix T; Ferrari, Sélène; Harshman, Keith; Sanglard, Dominique

    2012-07-01

    The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

  2. Sarcopenia and Age-Related Endocrine Function

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2012-01-01

    Full Text Available Sarcopenia, the age-related loss of skeletal muscle, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, and an increased risk of fall-related injuries. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, numerous targets exist for drug discovery. In this paper, we summarize the current understanding of the endocrine contribution to sarcopenia and provide an update on hormonal intervention to try to improve endocrine defects. Myostatin inhibition seems to be the most interesting strategy for attenuating sarcopenia other than resistance training with amino acid supplementation. Testosterone supplementation in large amounts and at low frequency improves muscle defects with aging but has several side effects. Although IGF-I is a potent regulator of muscle mass, its therapeutic use has not had a positive effect probably due to local IGF-I resistance. Treatment with ghrelin may ameliorate the muscle atrophy elicited by age-dependent decreases in growth hormone. Ghrelin is an interesting candidate because it is orally active, avoiding the need for injections. A more comprehensive knowledge of vitamin-D-related mechanisms is needed to utilize this nutrient to prevent sarcopenia.

  3. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    Science.gov (United States)

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Refined functional relations for the elliptic SOS model

    Energy Technology Data Exchange (ETDEWEB)

    Galleas, W., E-mail: w.galleas@uu.nl [ARC Centre of Excellence for the Mathematics and Statistics of Complex Systems, University of Melbourne, VIC 3010 (Australia)

    2013-02-21

    In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang-Baxter relation and its solution is given in terms of multiple contour integrals.

  5. Relations between correlation functions in gauge field theory

    International Nuclear Information System (INIS)

    Simonov, Yu. A.; Shevchenko, V. I.

    1997-01-01

    Exact relations between vacuum correlations of non-Abelian field strengths are obtained. With the aid of exterior differentiation, the invariant parts of a given correlation function are expressed in terms of higher order correlation functions. The corollaries of these relations for the behavior of nonperturbative correlation functions at small and large distances are deduced

  6. Refined functional relations for the elliptic SOS model

    International Nuclear Information System (INIS)

    Galleas, W.

    2013-01-01

    In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang–Baxter relation and its solution is given in terms of multiple contour integrals.

  7. Functional and transcriptomic analysis of the key unfolded protein response transcription factor HacA in Aspergillus oryzae.

    Science.gov (United States)

    Zhou, Bin; Xie, Jingyi; Liu, Xiaokai; Wang, Bin; Pan, Li

    2016-11-15

    HacA is a conserved basic leucine zipper transcription factor that serves as the master transcriptional regulator in the unfolded protein response (UPR). To comprehensively evaluate the role of HacA in Aspergillus oryzae, a homokaryotic hacA disruption mutant (HacA-DE) and a strain that expressed a constitutively active form of HacA (HacA-CA) were successfully generated, and transcriptome analyses of these mutants were performed. Growth and phenotypic profiles demonstrated that hyphal growth and sporulation were impaired in the HacA-DE and HacA-CA strains that were grown on complete and minimal media, and the growth impairment was more pronounced for the HacA-CA strain. Compared with a wild-type (WT) strain, the transcriptome results indicated that differentially expressed genes in these mutants mainly fell into four categories: the protein secretory pathway, amino acid metabolism, lipid metabolism, and carbohydrate metabolism. Furthermore, we identified 80 and 36 genes of the secretory pathway whose expression significantly differed in the HacA-CA strain (compared with the WT and HacA-DE strains) and HacA-DE strain (compared with the WT strain), respectively, which mostly belonged to protein folding/UPR, glycosylation, and vesicle transport processes. Both the HacA-CA and HacA-DE strains exhibited reduced expression of extracellular enzymes, especially amylolytic enzymes, which resulted from the activation of the repression under secretion stress mechanism in response to endoplasmic reticulum stress. Collectively, our results suggest that the function of HacA is important not only for UPR induction, but also for growth and fungal physiology, as it serves to reduce secretion stress in A. oryzae. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of Pb(Ⅱ) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription.

    Science.gov (United States)

    Xiong, Bang; Zhang, Wei; Chen, Lin; Lin, Kuang-Fei; Guo, Mei-Jin; Wang, Wei-Liang; Cui, Xin-Hong; Bi, Hua-Song; Wang, Bin

    2014-11-01

    Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms. Copyright © 2013 Wiley Periodicals, Inc.

  9. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  10. Normal forms for characteristic functions on n-ary relations

    NARCIS (Netherlands)

    D.J.N. van Eijck (Jan)

    2004-01-01

    textabstractFunctions of type (n) are characteristic functions on n-ary relations. Keenan established their importance for natural language semantics, by showing that natural language has many examples of irreducible type (n) functions, i.e., functions of type (n) that cannot be represented as

  11. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice.

    Science.gov (United States)

    Qin, Kunhua; Zhang, Ning; Zhang, Zhao; Nipper, Michael; Zhu, Zhenxin; Leighton, Jake; Xu, Kexin; Musi, Nicolas; Wang, Pei

    2018-04-01

    Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability

  12. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    Science.gov (United States)

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  13. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection

    Science.gov (United States)

    Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.

    2017-01-01

    The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942

  14. Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism.

    Science.gov (United States)

    López-Berges, Manuel S; Schäfer, Katja; Hera, Concepción; Di Pietro, Antonio

    2014-01-01

    Velvet is a conserved protein complex that functions as a regulator of fungal development and secondary metabolism. In the soil-inhabiting pathogen Fusarium oxysporum, velvet governs mycotoxin production and virulence on plant and mammalian hosts. Here we report a previously unrecognized role of the velvet complex in regulation of nitrate metabolism. F. oxysporum mutants lacking VeA or LaeA, two key components of the complex, were impaired in growth on the non-preferred nitrogen sources nitrate and nitrite. Both velvet and the general nitrogen response GATA factor AreA were required for transcriptional activation of nitrate (nit1) and nitrite (nii1) reductase genes under de-repressing conditions, as well as for the nitrate-triggered increase in chromatin accessibility at the nit1 locus. AreA also contributed to chromatin accessibility and expression of two velvet-regulated gene clusters, encoding biosynthesis of the mycotoxin beauvericin and of the siderophore ferricrocin. Thus, velvet and AreA coordinately orchestrate primary and secondary metabolism as well as virulence functions in F. oxysporum. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain.

    Science.gov (United States)

    Tornow, J; Zeng, X; Gao, W; Santangelo, G M

    1993-01-01

    In Saccharomyces cerevisiae, efficient expression of glycolytic and translational component genes requires two DNA binding proteins, RAP1 (which binds to UASRPG) and GCR1 (which binds to the CT box). We generated deletions in GCR1 to test the validity of several different models for GCR1 function. We report here that the C-terminal half of GCR1, which includes the domain required for DNA binding to the CT box in vitro, can be removed without affecting GCR1-dependent transcription of either the glycolytic gene ADH1 or the translational component genes TEF1 and TEF2. We have also identified an activation domain within a segment of the GCR1 protein (the N-terminal third) that is essential for in vivo function. RAP1 and GCR1 can be co-immunoprecipitated from whole cell extracts, suggesting that they form a complex in vivo. The data are most consistent with a model in which GCR1 is attracted to DNA through contact with RAP1. Images PMID:8508768

  16. Cognitive Function Related to Environmental Exposure to ...

    Science.gov (United States)

    Background: The towns of Marietta and East Liverpool (EL), Ohio, have been identified as having elevated manganese (Mn) in air due to industrial pollution. Objectives: To evaluate relationships between environmental Mn (Mn-air) exposure and distance from the source and cognitive function in residents of two Ohio towns. Methods: Data were obtained from an EPA-sponsored study comparing two towns exposed to Mn-air (Marietta and EL). A cross-sectional design was used. The same inclusion/exclusion criteria and procedures were applied in the two towns. A neuropsychological screening test battery was administered to study participants (EL=86, Marietta=100) which included Stroop Color Word Test, Animal Naming, Auditory Consonant Trigrams (ACT) and Rey-O. To estimate Mn-air, U.S.EPA’s AERMOD dispersion model was used. Distance from source was calculated based on participants’ residential address and air miles from industrial facility emitting Mn-air. A binary logistic regression model controlling for annual household income was used to examine distance from source and neuropsychological outcomes Results: There were no age, sex, or employment status differences between the two towns. Years education was lower in EL (mean (M)=12.9) than Marietta (M=14.6) and years residency in town were higher in EL (M=47.0) than Marietta (M=36.1). EL participants resided closer to the Mn source than Marietta (M=1.12 vs M=4.75 air miles). Mn-air concentrations were higher in EL (M=0

  17. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  18. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation.

    Directory of Open Access Journals (Sweden)

    Jennifer R Stevens

    Full Text Available Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of 'cryptic' promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4-Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4-Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the

  19. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function

    Directory of Open Access Journals (Sweden)

    Cory A. Rubel

    2016-10-01

    Full Text Available Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2 are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage.

  20. Changes in transcript related to osmosis and intracellular ion homeostasis in Paulownia tomentosa under salt stress

    Directory of Open Access Journals (Sweden)

    Guoqiang eFan

    2016-03-01

    Full Text Available Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including plant hormone signal transduction, RNA transporter, protein processing in endoplasmic reticulum and plant-pathogen interaction, which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land.

  1. Comparative analysis of behavioral and transcriptional variation underlying CO2 sensory neuron function and development in Drosophila.

    Science.gov (United States)

    Pan, Jia Wern; McLaughlin, Joi; Yang, Haining; Leo, Charles; Rambarat, Paula; Okuwa, Sumie; Monroy-Eklund, Anaïs; Clark, Sabrina; Jones, Corbin D; Volkan, Pelin Cayirlioglu

    2017-10-02

    Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO 2 as well as the transcriptional profile of key developmental regulators of CO 2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO 2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO 2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO 2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO 2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO 2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO 2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO 2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO 2 -evoked behavioral responses across species.

  2. The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis.

    Science.gov (United States)

    Foyer, Christine H; Karpinska, Barbara; Krupinska, Karin

    2014-04-19

    Chloroplasts are important sensors of environment change, fulfilling key roles in the regulation of plant growth and development in relation to environmental cues. Photosynthesis produces a repertoire of reductive and oxidative (redox) signals that provide information to the nucleus facilitating appropriate acclimation to a changing light environment. Redox signals are also recognized by the cellular innate immune system allowing activation of non-specific, stress-responsive pathways that underpin cross tolerance to biotic-abiotic stresses. While these pathways have been intensively studied in recent years, little is known about the different components that mediate chloroplast-to-nucleus signalling and facilitate cross tolerance phenomena. Here, we consider the properties of the WHIRLY family of proteins and the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) in relation to chloroplast redox signals that facilitate the synergistic co-activation of gene expression pathways and confer cross tolerance to abiotic and biotic stresses. We propose a new hypothesis for the role of WHIRLY1 as a redox sensor in chloroplast-to-nucleus retrograde signalling leading to cross tolerance, including acclimation and immunity responses. By virtue of its association with chloroplast nucleoids and with nuclear DNA, WHIRLY1 is an attractive candidate coordinator of the expression of photosynthetic genes in the nucleus and chloroplasts. We propose that the redox state of the photosynthetic electron transport chain triggers the movement of WHIRLY1 from the chloroplasts to the nucleus, and draw parallels with the regulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1).

  3. Novel Variants in ZNF34 and Other Brain-Expressed Transcription Factors are Shared Among Early-Onset MDD Relatives

    Science.gov (United States)

    Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.

    2018-01-01

    There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146

  4. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    Science.gov (United States)

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    Science.gov (United States)

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons.

    Science.gov (United States)

    De Stasio, Elizabeth A; Mueller, Katherine P; Bauer, Rosemary J; Hurlburt, Alexander J; Bice, Sophie A; Scholtz, Sophie L; Phirke, Prasad; Sugiaman-Trapman, Debora; Stinson, Loraina A; Olson, Haili B; Vogel, Savannah L; Ek-Vazquez, Zabdiel; Esemen, Yagmur; Korzynski, Jessica; Wolfe, Kelsey; Arbuckle, Bonnie N; Zhang, He; Lombard-Knapp, Gaelen; Piasecki, Brian P; Swoboda, Peter

    2018-03-01

    Regulatory Factor X (RFX) transcription factors (TFs) are best known for activating genes required for ciliogenesis in both vertebrates and invertebrates. In humans, eight RFX TFs have a variety of tissue-specific functions, while in the worm Caenorhabditis elegans , the sole RFX gene, daf-19 , encodes a set of nested isoforms. Null alleles of daf-19 confer pleiotropic effects including altered development with a dauer constitutive phenotype, complete absence of cilia and ciliary proteins, and defects in synaptic protein maintenance. We sought to identify RFX/ daf-19 target genes associated with neuronal functions other than ciliogenesis using comparative transcriptome analyses at different life stages of the worm. Subsequent characterization of gene expression patterns revealed one set of genes activated in the presence of DAF-19 in ciliated sensory neurons, whose activation requires the daf-19c isoform, also required for ciliogenesis. A second set of genes is downregulated in the presence of DAF-19, primarily in nonsensory neurons. The human orthologs of some of these neuronal genes are associated with human diseases. We report the novel finding that daf-19a is directly or indirectly responsible for downregulation of these neuronal genes in C. elegans by characterizing a new mutation affecting the daf-19a isoform ( tm5562 ) and not associated with ciliogenesis, but which confers synaptic and behavioral defects. Thus, we have identified a new regulatory role for RFX TFs in the nervous system. The new daf-19 candidate target genes we have identified by transcriptomics will serve to uncover the molecular underpinnings of the pleiotropic effects that daf-19 exerts on nervous system function. Copyright © 2018 by the Genetics Society of America.

  7. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; A randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, De Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm J.H.M.; Wit, De Nicole J.W.; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  8. Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi

    NARCIS (Netherlands)

    Ökmen, B.; Collemare, J.; Griffiths, S.A.; Burgt, van der A.; Cox, R.; Wit, de P.J.G.M.

    2014-01-01

    Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. ¿cfwor1

  9. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, de Paul; Boekschoten, Mark; Govers, Coen; Pieters, Harm J.H.M.; Wit, de Nicole; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement,

  10. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  11. Gender-related aspects of transmasculine people's vocal situations: insights from a qualitative content analysis of interview transcripts.

    Science.gov (United States)

    Azul, David

    2016-11-01

    Transmasculine people assigned female gender at birth but who do not identify with this classification have traditionally received little consideration in the voice literature. Existing analyses tend to be focused on evaluating speaker voice characteristics, whereas other factors that contribute to the production of vocal gender have remained underexplored. Most studies rely on researcher-centred perspectives, whereas very little is known about how transmasculine people themselves experience and make sense of their vocal situations. To explore how participants described their subjective gender positionings; which gender attributions they wished to receive from others; which gender they self-attributed to their voices; which gender attributions they had received from others; and how far participants were satisfied with the gender-related aspects of their vocal situations. Transcripts of semi-structured interviews with 14 German-speaking transmasculine people served as the original data corpus. Sections in which participants described the gender-related aspects of their vocal situations and that were relevant to the current research objectives were selected and explored using qualitative content analysis. The analysis revealed diverse accounts pertaining to the factors that contribute to the production of vocal gender for individual participants and variable levels of satisfaction with vocal gender presentation and attribution. Transmasculine people need to be regarded as a heterogeneous population and clinical practice needs to follow a client-centred, individualized approach. © 2016 Royal College of Speech and Language Therapists.

  12. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    Science.gov (United States)

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co

  13. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    Directory of Open Access Journals (Sweden)

    Xiaolin Xiao

    2014-01-01

    Full Text Available Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states. Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based and humans (mRNA-sequencing-based and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi

  14. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    International Nuclear Information System (INIS)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven

    2015-01-01

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma

  15. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven, E-mail: sven.pahlman@med.lu.se

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  16. Relations among several nuclear and electronic density functional reactivity indexes

    Science.gov (United States)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  17. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables....... It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms...

  18. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis.

    Science.gov (United States)

    Maurer, Britta; Busch, Nicole; Jüngel, Astrid; Pileckyte, Margarita; Gay, Renate E; Michel, Beat A; Schett, Georg; Gay, Steffen; Distler, Jörg; Distler, Oliver

    2009-12-08

    Microvascular damage is one of the first pathological changes in systemic sclerosis. In this study, we investigated the role of Fos-related antigen-2 (Fra-2), a transcription factor of the activator protein-1 family, in the peripheral vasculopathy of systemic sclerosis and examined the underlying mechanisms. Expression of Fra-2 protein was significantly increased in skin biopsies of systemic sclerosis patients compared with healthy controls, especially in endothelial and vascular smooth muscle cells. Fra-2 transgenic mice developed a severe loss of small blood vessels in the skin that was paralleled by progressive skin fibrosis at 12 weeks of age. The reduction in capillary density was preceded by a significant increase in apoptosis in endothelial cells at week 9 as detected by immunohistochemistry. Similarly, suppression of Fra-2 by small interfering RNA prevented human microvascular endothelial cells from staurosporine-induced apoptosis and improved both the number of tubes and the cumulative tube lengths in the tube formation assay. In addition, cell migration in the scratch assay and vascular endothelial growth factor-dependent chemotaxis in a modified Boyden chamber assay were increased after transfection of human microvascular endothelial cells with Fra-2 small interfering RNA, whereas proliferation was not affected. Fra-2 is present in human systemic sclerosis and may contribute to the development of microvasculopathy by inducing endothelial cell apoptosis and by reducing endothelial cell migration and chemotaxis. Fra-2 transgenic mice are a promising preclinical model to study the mechanisms and therapeutic approaches of the peripheral vasculopathy in systemic sclerosis.

  19. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    Science.gov (United States)

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    Science.gov (United States)

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Structure and Function of the Ankyrin Repeats in the Sw14/Sw16 Transcription Complex of Budding Yeast

    National Research Council Canada - National Science Library

    Breeden, Linda

    1998-01-01

    ANK repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins, including oncogenes and tumor suppressors We have previously...

  2. Transcriptional profiles of pilocytic astrocytoma are related to their three different locations, but not to radiological tumor features

    International Nuclear Information System (INIS)

    Zakrzewski, Krzysztof; Jarząb, Michał; Pfeifer, Aleksandra; Oczko-Wojciechowska, Małgorzata; Jarząb, Barbara; Liberski, Paweł P.; Zakrzewska, Magdalena

    2015-01-01

    Pilocytic astrocytoma is the most common type of brain tumor in the pediatric population, with a generally favorable prognosis, although recurrences or leptomeningeal dissemination are sometimes also observed. For tumors originating in the supra-or infratentorial location, a different molecular background was suggested, but plausible correlations between the transcriptional profile and radiological features and/or clinical course are still undefined. The purpose of this study was to identify gene expression profiles related to the most frequent locations of this tumor, subtypes based on various radiological features, and the clinical pattern of the disease. Eighty six children (55 males and 31 females) with histologically verified pilocytic astrocytoma were included in this study. Their age at the time of diagnosis ranged from fourteen months to seventeen years, with a mean age of seven years. There were 40 cerebellar, 23 optic tract/hypothalamic, 21 cerebral hemispheric, and two brainstem tumors. According to the radiological features presented on MRI, all cases were divided into four subtypes: cystic tumor with a non-enhancing cyst wall; cystic tumor with an enhancing cyst wall; solid tumor with central necrosis; and solid or mainly solid tumor. In 81 cases primary surgical resection was the only and curative treatment, and in five cases progression of the disease was observed. In 47 cases the analysis was done by using high density oligonucleotide microarrays (Affymetrix HG-U133 Plus 2.0) with subsequent bioinformatic analyses and confirmation of the results by independent RT-qPCR (on 39 samples). Bioinformatic analyses showed that the gene expression profile of pilocytic astrocytoma is highly dependent on the tumor location. The most prominent differences were noted for IRX2, PAX3, CXCL14, LHX2, SIX6, CNTN1 and SIX1 genes expression even within different compartments of the supratentorial region. Analysis of the genes potentially associated with radiological

  3. Relations between the functions of autobiographical memory and psychological wellbeing.

    Science.gov (United States)

    Waters, Theodore E A

    2014-01-01

    Researchers have proposed that autobiographical memory serves three basic functions in everyday life: self-definition, social connection, and directing behaviour (e.g., Bluck, Alea, Habermas, & Rubin, 2005). However, no research has examined relations between the functions of autobiographical memory and healthy functioning (i.e., psychological wellbeing). The present research examined the relations between the self, social, and directive functions of autobiographical memory and three factors of psychological wellbeing in single and recurring autobiographical memories. A total of 103 undergraduate students were recruited and provided ratings of each function for four autobiographical memories (two single, two recurring events). Results found that individuals who use their autobiographical memories to serve self, social, and directive functions reported higher levels of Purpose and Communion and Positive Relationships, and that these relations differ slightly by event type.

  4. Physiological changes and sHSPs genes relative transcription in relation to the acquisition of seed germination during maturation of hybrid rice seed.

    Science.gov (United States)

    Zhu, Li-Wei; Cao, Dong-Dong; Hu, Qi-Juan; Guan, Ya-Jing; Hu, Wei-Min; Nawaz, Aamir; Hu, Jin

    2016-03-30

    During the production of early hybrid rice seed, the seeds dehydrated slowly and retained high moisture levels when rainy weather lasted for a couple of days, and the rice seeds easily occurred pre-harvest sprouting (PHS) along with high temperature. Therefore it is necessary to harvest the seeds before the PHS occurred. The seeds of hybrid rice (Oryza sativa L. subsp. indica) cv. Qianyou No1 that harvests from 19 to 28 days after pollination (DAP) all had high seed vigour. The seed moisture content at 10 DAP was 36.1%, and declined to 28.6% at 19 DAP; the contents of soluble sugar and total starch increased significantly with the development of seeds. The soluble protein content, the level of abscisic acid (ABA) and gibberellin (GA3 ), and ascorbate peroxidase (APX) activity continued to decrease from 10 DAP to 19 DAP. The seeds at 19 DAP had the highest peroxidase (POD) activity and lowest catalase (CAT) activity while the superoxide dismutase (SOD) activity had no significant difference among the different developing periods. The relative expressions of genes 64S Hsp18.0 and Os03g0267200 transcripts increased significantly from 10 to 19 DAP, and then decreased. However, no significant change was recorded in soluble protein, sugar and GA3 after 16 DAP, and they all significantly correlated with seed viability and vigour during the process of seed maturity. The seeds of hybrid rice Qianyou No1 had a higher viability and vigour when harvested from 19 DAP to 28 DAP, the transcription levels of 64S Hsp18.0 and Os03g0267200 increased significantly from 10 DAP to 19 DAP and the highest value was recorded at 19 DAP. The seeds could be harvested as early as 19 DAP without negative influence on seed vigour and viability. © 2015 Society of Chemical Industry.

  5. Phenomenological structure functions and Gribov-Lipatov relation

    International Nuclear Information System (INIS)

    Choudhary, D.K.; Misra, A.K.

    1987-01-01

    An analysis of the Giribov-Lipatov relation using the phenomenological forms of the structure function F 2 ep is made. The analysis indicate breakdown of the relation at PETRA energies. Plausible reasons of the breakdown of Gribov-Lipatov relation are discussed together with its phenomenological form. 33 refs., 6 figures. (author)

  6. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  7. Logarithmically complete monotonicity of a function related to the Catalan-Qi function

    Directory of Open Access Journals (Sweden)

    Qi Feng

    2016-08-01

    Full Text Available In the paper, the authors find necessary and sufficient conditions such that a function related to the Catalan-Qi function, which is an alternative generalization of the Catalan numbers, is logarithmically complete monotonic.

  8. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    Science.gov (United States)

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  9. A Dual Phenotype of Periventricular Nodular Heterotopia and Frontometaphyseal Dysplasia in One Patient Caused by a Single FLNA Mutation Leading to Two Functionally Different Aberrant Transcripts

    Science.gov (United States)

    Zenker, Martin; Rauch, Anita; Winterpacht, Andreas; Tagariello, Andreas; Kraus, Cornelia; Rupprecht, Thomas; Sticht, Heinrich; Reis, André

    2004-01-01

    Two disorders, periventricular nodular heterotopia (PVNH) and a group of skeletal dysplasias belonging to the oto-palato-digital (OPD) spectrum, are caused by FLNA mutations. They are considered mutually exclusive because of the different presumed effects of the respective FLNA gene mutations, leading to loss of function (PVNH) and gain of function (OPD), respectively. We describe here the first patient manifesting PVNH in combination with frontometaphyseal dysplasia, a skeletal dysplasia of the OPD-spectrum. A novel de novo mutation, 7315C→A in exon 45 of the FLNA gene, was identified. It leads to two aberrant transcripts, one full-length transcript with the point mutation causing a substitution of a highly conserved leucine residue (L2439M) and a second shortened transcript lacking 21 bp due to the creation of an ectopic splice donor site in exon 45. We propose that the dual phenotype is caused by two functionally different, aberrant filamin A proteins and therefore represents an exceptional model case of allelic gain-of-function and loss-of-function phenotypes due to a single mutational event. PMID:14988809

  10. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  11. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  12. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    International Nuclear Information System (INIS)

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-01-01

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: ► Global genome repair of (6-4) photoproducts is fully active in mitotic cells. ► DNA in condensed mitotic chromatin does not seem inaccessible or inert. ► Mitotic transcriptional repression may impair transcription-coupled repair.

  13. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum.

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    Full Text Available Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  14. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    Science.gov (United States)

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  15. An example concerning Sadullaev's boundary relative extremal functions

    OpenAIRE

    Wiegerinck, Jan

    2018-01-01

    We exhibit a smoothly bounded domain $\\Omega$ with the property that for suitable $K\\subset\\partial \\Omega$ and $z\\in \\Omega$ the "Sadullaev boundary relative extremal functions" satisfy the inequality $\\omega_1(z,K,\\Omega)

  16. Orbits in general relativity: the Jacobian elliptic function

    Energy Technology Data Exchange (ETDEWEB)

    Miro Rodriguez, C

    1987-03-11

    The Jacobian elliptic functions are applied to the motion of nonzero-rest-mass particles in the Schwarzschild geometry. The bound and unbound trajectories are analysed together with their classical and special-relativity limits.

  17. Relation between the Fukui function and the Coulomb hole

    Indian Academy of Sciences (India)

    Unknown

    More precisely, in Density Functional The- ory (DFT), the Fukui function f(r) is the derivative of the density ρ(r) relative to the total number of electrons N at constant external potential vext:1,2 f(r) = [∂ρ(r)/∂N]vext. (1). The reactivity of a molecule is more easily discussed by using a discrete index, the condensed Fukui function.

  18. Disseminated Tuberculosis and Chronic Mucocutaneous Candidiasis in a Patient with a Gain-of-Function Mutation in Signal Transduction and Activator of Transcription 1

    Directory of Open Access Journals (Sweden)

    Sigifredo Pedraza-Sánchez

    2017-12-01

    Full Text Available In humans, recessive loss-of-function mutations in STAT1 are associated with mycobacterial and viral infections, whereas gain-of-function (GOF mutations in STAT1 are associated with a type of primary immunodeficiency related mainly, but not exclusively, to chronic mucocutaneous candidiasis (CMC. We studied and established a molecular diagnosis in a pediatric patient with mycobacterial infections, associated with CMC. The patient, daughter of a non-consanguineous mestizo Mexican family, had axillary adenitis secondary to BCG vaccination and was cured with resection of the abscess at 1-year old. At the age of 4 years, she had a supraclavicular abscess with acid-fast-staining bacilli identified in the soft tissue and bone, with clinical signs of disseminated infection and a positive Gene-X-pert test, which responded to anti-mycobacterial drugs. Laboratory tests of the IL-12/interferon gamma (IFN-γ circuit showed a higher production of IL-12p70 in the whole blood from the patient compared to healthy controls, when stimulated with BCG and BCG + IFN-γ. The whole blood of the patient produced 35% less IFN-γ compared to controls assessed by ELISA and flow cytometry, but IL-17 producing T cells from patient were almost absent in PBMC stimulated with PMA plus ionomycin. Signal transduction and activator of transcription 1 (STAT1 was hyperphosphorylated at tyrosine 701 in response to IFN-γ and -α, as demonstrated by flow cytometry and Western blotting in fresh blood mononuclear cells and in Epstein-Barr virus lymphoblastoid cell lines (EBV-LCLs; phosphorylation of STAT1 in EBV-LCLs from the patient was resistant to inhibition by staurosporine but sensitive to ruxolitinib, a Jak phosphorylation inhibitor. Genomic DNA sequencing showed a de novo mutation in STAT1 in cells from the patient, absent in her parents and brother; a known T385M missense mutation in the DNA-binding domain of the transcription factor was identified, and it is a GOF

  19. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici.

    Directory of Open Access Journals (Sweden)

    Mohd Aamir

    Full Text Available The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37 were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold followed by SolyWRKY37 (1.93 fold gene was found at 24 hrs which further increased at 48 hrs (5.0 fold. In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs. However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein

  20. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici).

    Science.gov (United States)

    Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh; Singh, Surendra

    2018-01-01

    The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK

  1. Relation between entropy functional of Keizer and information theory

    International Nuclear Information System (INIS)

    Freidkin, E.S.; Nettleton, R.E.

    1990-01-01

    An equation given by Keizer which relates the second-order functional derivative of the steady-state entropy to the inverse fluctuation correlation function is satisified by the information-theoretic entropy if the equation is extended to arbitrary nonequilibrium states

  2. Ludic Function of Precedent-Related Phenomena in Media Discourse

    Directory of Open Access Journals (Sweden)

    Yu. M. Velykoroda

    2016-12-01

    Full Text Available The aim of this paper is to determine the ludic function of precedent-related phenomena as a type of intertextuality. The analysis is done on the basis of relevance theoretic approach, through which we aim to show the additional cognitive effect which is created by precedent-related phenomena in media discourse, and this comic effect serves as a foundation for the ludic function of these units.

  3. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density.

    Science.gov (United States)

    Liu, Pan; Liu, Jie; Dong, Huixue; Sun, Jiaqiang

    2018-02-01

    Bread wheat (Triticum aestivum) spike architecture is an important agronomic trait. The Q gene plays a key role in the domestication of bread wheat spike architecture. However, the regulatory mechanisms of Q expression and transcriptional activity remain largely unknown. In this study, we show that overexpression of bread wheat tae-miR172 caused a speltoid-like spike phenotype, reminiscent of that in wheat plants with the q gene. The reduction in Q transcript levels in the tae-miR172 overexpression transgenic bread wheat lines suggests that the Q expression can be suppressed by tae-miR172 in bread wheat. Indeed, our RACE analyses confirmed that the Q mRNA is targeted by tae-miR172 for cleavage. According to our analyses, the Q protein is localized in nucleus and confers transcriptional repression activity. Meanwhile, the Q protein could physically interact with the bread wheat transcriptional co-repressor TOPLESS (TaTPL). Specifically, the N-terminal ethylene-responsive element binding factor-associated amphiphilic repression (EAR) (LDLNVE) motif but not the C-terminal EAR (LDLDLR) motif of Q protein mediates its interaction with the CTLH motif of TaTPL. Moreover, we show that the N-terminal EAR motif of Q protein is also essentially required for the transcriptional repression activity of Q protein. Taken together, we reveal the functional regulation of Q protein by tae-miR172 and transcriptional co-repressor TaTPL in controlling the bread wheat spike architecture. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. A module of human peripheral blood mononuclear cell transcriptional network containing primitive and differentiation markers is related to specific cardiovascular health variables.

    Directory of Open Access Journals (Sweden)

    Leni Moldovan

    Full Text Available Peripheral blood mononuclear cells (PBMCs, including rare circulating stem and progenitor cells (CSPCs, have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their co-expressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene, defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p<0.03 with age (R2 = -0.23, vascular stiffness (R2 = -0.24, and central aortic pressure (R2 = -0.19 and positively correlated with body mass index (R2 = 0.72, in women. The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72±22% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional

  5. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    International Nuclear Information System (INIS)

    Morita, Tsuyoshi; Hayashi, Ken’ichiro

    2013-01-01

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction

  6. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Tsuyoshi, E-mail: tsuyo@nbiochem.med.osaka-u.ac.jp; Hayashi, Ken’ichiro

    2013-08-02

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction.

  7. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Schaeper, Nina D; Prpic, Nikola-Michael; Wimmer, Ernst A

    2009-08-01

    The genes encoding the closely related zinc finger transcription factors Buttonhead (Btd) and D-Sp1 are expressed in the developing limb primordia of Drosophila melanogaster and are required for normal growth of the legs. The D-Sp1 homolog of the red flour beetle Tribolium castaneum, Sp8 (appropriately termed Sp8/9), is also required for the proper growth of the leg segments. Here we report on the isolation and functional study of the Sp8/9 gene from the milkweed bug Oncopeltus fasciatus. We show that Sp8/9 is expressed in the developing appendages throughout development and that the downregulation of Sp8/9 via RNAi leads to antennae, rostrum, and legs with shortened and fused segments. This supports a conserved role of Sp8/9 in allometric leg segment growth. However, all leg segments including the claws are present and the expression of the leg genes Distal-less, dachshund, and homothorax are proportionally normal, thus providing no evidence for a role of Sp8/9 in appendage specification.

  8. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    Science.gov (United States)

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein

    International Nuclear Information System (INIS)

    Chen Yao; Zhou Guangjin; Yu Min; He Yungang; Tang Wei; Lai Jianhua; He Jie; Liu Wanguo; Tan Deyong

    2005-01-01

    Serum plays an important role in the regulation of cell cycle and cell growth. To identify novel serum-inhibitory factors and study their roles in cell cycle regulation, we performed mRNA differential display analysis of U251 cells in the presence or absence of serum and cloned a novel gene encoding the human mitochondrial transcription termination factor-like protein (mTERFL). The full-length mTERFL cDNA has been isolated and the genomic structure determined. The mTERFL gene consists of three exons and encodes 385 amino acids with 52% sequence similarity to the human mitochondrial transcription termination factor (mTERF). However, mTERFL and mTERF have an opposite expression pattern in response to serum. The expression of mTERFL is dramatically inhibited by the addition of serum in serum-starved cells while the mTERF is rather induced. Northern blot analysis detected three mTERFL transcripts of 1.7, 3.2, and 3.5 kb. Besides the 3.2 kb transcript that is unique to skeletal muscle, other two transcripts express predominant in heart, liver, pancreas, and skeletal muscle. Expression of the GFP-mTERFL fusion protein in HeLa cells localized it to the mitochondria. Furthermore, ectopic expression of mTERFL suppresses cell growth and arrests cells in the G1 stage demonstrated by MTT and flow cytometry analysis. Collectively, our data suggest that mTERFL is a novel mTERF family member and a serum-inhibitory factor probably participating in the regulation of cell growth through the modulation of mitochondrial transcription

  10. Adler Function, DIS sum rules and Crewther Relations

    International Nuclear Information System (INIS)

    Baikov, P.A.; Chetyrkin, K.G.; Kuehn, J.H.

    2010-01-01

    The current status of the Adler function and two closely related Deep Inelastic Scattering (DIS) sum rules, namely, the Bjorken sum rule for polarized DIS and the Gross-Llewellyn Smith sum rule are briefly reviewed. A new result is presented: an analytical calculation of the coefficient function of the latter sum rule in a generic gauge theory in order O(α s 4 ). It is demonstrated that the corresponding Crewther relation allows to fix two of three colour structures in the O(α s 4 ) contribution to the singlet part of the Adler function.

  11. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  12. Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions

    International Nuclear Information System (INIS)

    Rudaz, S.

    1990-01-01

    Asymptotic series for the Hurwitz zeta function, its derivative, and related functions (including the Riemann zeta function of odd integer argument) are derived as an illustration of a simple, direct method of broad applicability, inspired by the calculus of finite differences

  13. De Novo Transcriptome Sequence Assembly and Identification of AP2/ERF Transcription Factor Related to Abiotic Stress in Parsley (Petroselinum crispum)

    OpenAIRE

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation...

  14. Olfaction Is Related to Motor Function in Older Adults.

    Science.gov (United States)

    Tian, Qu; Resnick, Susan M; Studenski, Stephanie A

    2017-08-01

    Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  16. Approaches to organizing public relations functions in healthcare.

    Science.gov (United States)

    Guy, Bonnie; Williams, David R; Aldridge, Alicia; Roggenkamp, Susan D

    2007-01-01

    This article provides health care audiences with a framework for understanding different perspectives of the role and functions of public relations in healthcare organizations and the resultant alternatives for organizing and enacting public relations functions. Using an example of a current issue receiving much attention in US healthcare (improving rates of organ donation), the article provides examples of how these different perspectives influence public relations goals and objectives, definitions of 'public', activities undertaken, who undertakes them and where they fit into the organizational hierarchy.

  17. Constructing and deriving reciprocal trigonometric relations: a functional analytic approach.

    Science.gov (United States)

    Ninness, Chris; Dixon, Mark; Barnes-Holmes, Dermot; Rehfeldt, Ruth Anne; Rumph, Robin; McCuller, Glen; Holland, James; Smith, Ronald; Ninness, Sharon K; McGinty, Jennifer

    2009-01-01

    Participants were pretrained and tested on mutually entailed trigonometric relations and combinatorially entailed relations as they pertained to positive and negative forms of sine, cosine, secant, and cosecant. Experiment 1 focused on training and testing transformations of these mathematical functions in terms of amplitude and frequency followed by tests of novel relations. Experiment 2 addressed training in accordance with frames of coordination (same as) and frames of opposition (reciprocal of) followed by more tests of novel relations. All assessments of derived and novel formula-to-graph relations, including reciprocal functions with diversified amplitude and frequency transformations, indicated that all 4 participants demonstrated substantial improvement in their ability to identify increasingly complex trigonometric formula-to-graph relations pertaining to same as and reciprocal of to establish mathematically complex repertoires.

  18. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal

    2018-01-01

    WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.

  19. Genetic and functional dissection of HTRA1 and LOC387715 in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Zhenglin Yang

    2010-02-01

    Full Text Available A common haplotype on 10q26 influences the risk of age-related macular degeneration (AMD and encompasses two genes, LOC387715 and HTRA1. Recent data have suggested that loss of LOC387715, mediated by an insertion/deletion (in/del that destabilizes its message, is causally related with the disorder. Here we show that loss of LOC387715 is insufficient to explain AMD susceptibility, since a nonsense mutation (R38X in this gene that leads to loss of its message resides in a protective haplotype. At the same time, the common disease haplotype tagged by the in/del and rs11200638 has an effect on the transcriptional upregulation of the adjacent gene, HTRA1. These data implicate increased HTRA1 expression in the pathogenesis of AMD and highlight the importance of exploring multiple functional consequences of alleles in haplotypes that confer susceptibility to complex traits.

  20. Functional Genomic investigation of Peroxisome Proliferator-Activated Receptor Gamma (PPARG mediated transcription response in gastric cancer

    Directory of Open Access Journals (Sweden)

    Karthikeyan Selvarasu

    2017-10-01

    Full Text Available Cancer is a complex and progressive multi-step disorder that results from the transformation of normal cells to malignant derivatives. Several oncogenic signaling pathways are involved in this transformation. PPARG (Peroxisome proliferator-activated receptor gamma mediated transcription and signaling is involved in few cancers. We have investigated the PPARG in gastric tumors. The objective of the present study was to investigate the PPARG mediated transcriptional response in gastric tumors. Gene-set based and pathway focused gene-set enrichment analysis of available PPARG signatures in gastric tumor mRNA profiles shows that PPARG mediated transcription is highly activated in intestinal sub-type of gastric tumors. Further, we have derived the PPARG associated genes in gastric cancer and their expression was identified for the association with the better survival of the patients. Analysis of the PPARG associated genes reveals their involvement in mitotic cell cycle process, chromosome organization and nuclear division. Towards identifying the association with other oncogenic signaling process, E2F regulated genes were found associated with PPARG mediated transcription. The current results reveal the possible stratification of gastric tumors based on the PPARG gene expression and the possible development of PPARG targeted gastric cancer therapeutics. The identified PPARG regulated genes were identified to be targetable by pioglitazone and rosiglitazone. The identification of PPARG genes also in the normal stomach tissues reveal the possible involvement of these genes in the normal physiology of stomach and needs to be investigated.

  1. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively

    DEFF Research Database (Denmark)

    Sichien, Dorine; Scott, Charlotte L; Martens, Liesbet

    2016-01-01

    Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the ide...

  2. Molecular Characterization of a Leaf Senescence-Related Transcription Factor BrWRKY75 of Chinese Flowering Cabbage

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2016-09-01

    Full Text Available WRKY is a plant-specific transcription factor (TF involved in the regulation of many biological processes; however, its role in leaf senescence of leafy vegetables remains unknown. In the present work, a WRKY TF, termed BrWRKY75 was isolated from Chinese flowering cabbage [Brassica rapa L. ssp. chinensis (L. Mokino var. utilis Tsen et Lee]. Analysis of deduced amino acid sequence and the phylogenetic tree showed that BrWRKY75 has high homology with WRKY75 from Brassica oleracea and Arabidopsis thaliana, and belongs to the II c sub-group. Sub-cellular localization and transcriptional activity analysis revealed that BrWRKY75 is a nuclear protein with transcriptional repression activity, and was up-regulated during leaf senescence. Electrophoretic mobility shift assay confirmed that BrWRKY75 directly bound to the W-box (TTGAC cis-element. Collectively, these results provide a basis for further investigation of the transcriptional regulation of Chinese flowering cabbage leaf senescence.

  3. Impact of nitrogen concentration on validamycin A production and related gene transcription in fermentation of Streptomyces hygroscopicus 5008.

    Science.gov (United States)

    Wei, Zhen-Hua; Bai, Linquan; Deng, Zixin; Zhong, Jian-Jiang

    2012-09-01

    Validamycin A (VAL-A) is an important and widely used agricultural antibiotic. In this study, statistical screening designs were applied to identify significant medium variables for VAL-A production and to find their optimal levels. The optimized medium caused 70% enhancement of VAL-A production. The difference between optimized medium and original medium suggested that low nitrogen source level might attribute to the enhancement of VAL-A production. The addition of different nitrogen sources to the optimized medium inhibited VAL-A production, which confirmed the importance of nitrogen concentration for VAL-A production. Furthermore, differences in structural gene transcription and enzyme activity between the two media were assayed. The results showed that lower nitrogen level in the optimized medium could regulate VAL-A production in gene transcriptional level. Our previous study indicated that the transcription of VAL-A structural genes could be enhanced at elevated temperature. In this work, the increased fermentation temperature from 37 to 42 °C with the optimized medium enhanced VAL-A production by 39%, which testified to the importance of structural gene transcription in VAL-A production. The information is useful for further VAL-A production enhancement.

  4. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress

    DEFF Research Database (Denmark)

    Olesen, Inger; Jespersen, Lene

    2010-01-01

    Relative gene transcription and virulence potential, as measured by a Caco-2 adhesion assay, were investigated for three enterohemorrhagic Escherichia coli (EHEC) strains after long-term adaptation for 24 h to acid (BHI pH 5.5) and salt (BHI 4.5% (w/v) NaCl) stress. Five virulence genes (eae, lpf...... compared to EDL933 (O157:H7, raw hamburger). Long-term adaptation to salt stress significantly increased the adhesion of all three EHEC strains to Caco-2 compared to the non-stressed controls. The present study shows that long-term adaptation to food related stress factors such as acid and salt is capable...... of changing the relative transcription of important virulence and stress response genes and increasing the virulence potential as measured by adhesion to the human colonic epithelial cell line, Caco-2....

  5. Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jonathan Krell

    Full Text Available The growth arrest-specific transcript 5 gene (GAS5 encodes a long noncoding RNA (lncRNA and hosts a number of small nucleolar RNAs (snoRNAs that have recently been implicated in multiple cellular processes and cancer. Here, we investigate the relationship between DNA damage, p53, and the GAS5 snoRNAs to gain further insight into the potential role of this locus in cell survival and oncogenesis both in vivo and in vitro.We used quantitative techniques to analyse the effect of DNA damage on GAS5 snoRNA expression and to assess the relationship between p53 and the GAS5 snoRNAs in cancer cell lines and in normal, pre-malignant, and malignant human colorectal tissue and used biological techniques to suggest potential roles for these snoRNAs in the DNA damage response.GAS5-derived snoRNA expression was induced by DNA damage in a p53-dependent manner in colorectal cancer cell lines and their levels were not affected by DICER. Furthermore, p53 levels strongly correlated with GAS5-derived snoRNA expression in colorectal tissue.In aggregate, these data suggest that the GAS5-derived snoRNAs are under control of p53 and that they have an important role in mediating the p53 response to DNA damage, which may not relate to their function in the ribosome. We suggest that these snoRNAs are not processed by DICER to form smaller snoRNA-derived RNAs with microRNA (miRNA-like functions, but their precise role requires further evaluation. Furthermore, since GAS5 host snoRNAs are often used as endogenous controls in qPCR quantifications we show that their use as housekeeping genes in DNA damage experiments can lead to inaccurate results.

  6. Structure-function relations in physiology education: Where's the mechanism?

    Science.gov (United States)

    Lira, Matthew E; Gardner, Stephanie M

    2017-06-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  7. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miriam Sansó

    Full Text Available Transcript elongation by RNA polymerase II (RNAPII is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1 plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb, in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell

  8. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline; Wæhrens, Eva Elisabet Ejlersen

    2016-01-01

    INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...... as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established...

  9. Hand-related physical function in rheumatic hand conditions

    DEFF Research Database (Denmark)

    Klokker, Louise; Terwee, Caroline B; Wæhrens, Eva Ejlersen

    2016-01-01

    as well as those items from the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) item bank that are relevant to patients with rheumatic hand conditions. Selection will be based on consensus among reviewers. Content validity of selected items will be established......INTRODUCTION: There is no consensus about what constitutes the most appropriate patient-reported outcome measurement (PROM) instrument for measuring physical function in patients with rheumatic hand conditions. Existing instruments lack psychometric testing and vary in feasibility...... and their psychometric qualities. We aim to develop a PROM instrument to assess hand-related physical function in rheumatic hand conditions. METHODS AND ANALYSIS: We will perform a systematic search to identify existing PROMs to rheumatic hand conditions, and select items relevant for hand-related physical function...

  10. Relations of mitochondrial genetic variants to measures of vascular function.

    Science.gov (United States)

    Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel

    2018-05-01

    Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  11. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells.

    Science.gov (United States)

    Schauwecker, Suzanne M; Kim, J Julie; Licht, Jonathan D; Clevenger, Charles V

    2017-02-10

    The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Eukaryotic evolutionary transitions are associated with extreme codon bias in functionally-related proteins.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins--perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair--a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function--which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins--perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor--which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation.

  13. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus.

    Directory of Open Access Journals (Sweden)

    Wei Chi

    Full Text Available The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus. How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male from the rice field eel to investigate changes in transcriptional level during the sex reversal process.Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes. These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary.This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.

  14. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  15. [Impact of thymic function in age-related immune deterioration].

    Science.gov (United States)

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  16. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets

    Science.gov (United States)

    2017-01-01

    CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089

  17. Functional Independent Scaling Relation for ORR/OER Catalysts

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Dickens, Colin F.

    2016-01-01

    reactions. Here, we show that the oxygen-oxygen bond in the OOH* intermediate is, however, not well described with the previously used class of exchange-correlation functionals. By quantifying and correcting the systematic error, an improved description of gaseous peroxide species versus experimental data...... and a reduction in calculational uncertainty is obtained. For adsorbates, we find that the systematic error largely cancels the vdW interaction missing in the original determination of the scaling relation. An improved scaling relation, which is fully independent of the applied exchange-correlation functional...

  18. Hypergeometric series recurrence relations and some new orthogonal functions

    International Nuclear Information System (INIS)

    Wilson, J.A.

    1978-01-01

    A set of hypergeometric orthogonal polynomials, a set of biorthogonal rational functions generalizing them, and some new three-term relations for hypergeometric series containing properties of these functions are exhibited. The orthogonal polynomials depend on four free parameters, and their orthogonality relations include as special or limiting cases the orthogonalities for the classical polynomials, the Hahn and dual Hahn polynomials, Pollaczek's polynomials orthogonal on an infinite interval, and the 6-j symbols of angular momentum in quantum mechanics. Their properties include a second-order difference equation and a Rodrigues-type formula involving a divided difference operator

  19. The role of the transcription factor Tcf-1 for the development and the function of NK cells

    OpenAIRE

    Gehrig, J.

    2014-01-01

    Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incomple...

  20. Relative transcription of Listeria monocytogenes virulence genes in liver pâtés with varying NaCl content

    DEFF Research Database (Denmark)

    Olesen, Inger; Thorsen, Line; Jespersen, Lene

    2010-01-01

    three liver pâtés with reduced NaCl content of which one also has been supplied with organic acids (Ca-acetate and Ca-lactate). The three strains (EGD-e: reference strain; O57: more NaCl sensitive; 6896: more NaCl tolerant) were selected out of twelve strains based on their growth in BHI broth adjusted......B for both O57 and 6896 were significantly higher when the strains were grown in BHI compared to the standard liver pâté. Reducing the NaCl content of the standard liver pâté did not change relative transcription levels of prfA, inlA, sigB or clpC (except for prfA in O57 and sigB in 6896). However......, the presence of Ca-acetate and Ca-lactate induced relative transcription of the stress response gene, clpC, for all three strains. This study demonstrates that relative microbial gene transcription can be measured in complex food matrices and points to the need for designing experimental set-ups in real food...

  1. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.

    Science.gov (United States)

    Junker, Astrid; Mönke, Gudrun; Rutten, Twan; Keilwagen, Jens; Seifert, Michael; Thi, Tuyet Minh Nguyen; Renou, Jean-Pierre; Balzergue, Sandrine; Viehöver, Prisca; Hähnel, Urs; Ludwig-Müller, Jutta; Altschmied, Lothar; Conrad, Udo; Weisshaar, Bernd; Bäumlein, Helmut

    2012-08-01

    The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Preschooler Sleep Patterns Related to Cognitive and Adaptive Functioning

    Science.gov (United States)

    Keefe-Cooperman, Kathleen; Brady-Amoon, Peggy

    2014-01-01

    Research Findings: Preschoolers' sleep patterns were examined related to cognitive and adaptive functioning. The sample consisted of 874 typically developing preschool children with a mean age of 40.01 months. Parent/caregiver reports of children's sleep pattern factors, Stanford-Binet 5 intelligence scale scores, and Behavior Assessment System…

  3. How Executive Functions Are Related to Intelligence in Williams Syndrome

    Science.gov (United States)

    Osorio, Ana; Cruz, Raquel; Sampaio, Adriana; Garayzabal, Elena; Martinez-Regueiro, Rocio; Goncalves, Oscar F.; Carracedo, Angel; Fernandez-Prieto, Montse

    2012-01-01

    Williams syndrome is characterized by impairments in executive functions (EFs). However, it remains unknown how distinct types of EFs relate to intelligence in this syndrome. The present study analyzed performance on working memory, inhibiting and shifting, and its links to IQ in a sample of 17 individuals with WS, and compared them with a group…

  4. Expression and functional analysis of apoptosis-related gene ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... conducted a molecular cloning and functional analysis to study a specific silkworm gene BmICAD related to apoptosis. .... blocking with 5% non-fat milk for 1 h at room temperature, the .... requirements for all next experiments.

  5. The Relational Humor Inventory: Functions of Humor in Close Relationships.

    Science.gov (United States)

    DeKoning, E.; Weiss, R. L.

    2002-01-01

    This study describes the development of a self-report measure of functional humor in relationships. People were asked to report on their own and their partner's use of humor in the marriage. The Relational Humor Inventory proved to be a useful instrument for tapping important positive and negative relationship behaviors. (Contains 30 references, 4…

  6. The Relation between Television Exposure and Executive Function among Preschoolers

    Science.gov (United States)

    Nathanson, Amy I.; Aladé, Fashina; Sharp, Molly L.; Rasmussen, Eric E.; Christy, Katheryn

    2014-01-01

    This study investigated the relations between television exposure during the preschool years and the development of executive function (EF). Data were gathered from 107 parents of preschoolers who provided information on children's television viewing, background television exposure, exposure to specific televised content, and the age at which…

  7. Assessment of biochemical liver function tests in relation to age ...

    African Journals Online (AJOL)

    Background and Objective: Multiorgan failure including liver dysfunction is a common finding in sickle cell anemia (SCA) patients, the cause of which is multifactorial with advancing age said to be a major determinant. There is a paucity of data on liver function among SCA patients in relation to age in northern Nigerian ...

  8. Age-Related Difference in Functional Brain Connectivity of Mastication

    Science.gov (United States)

    Lin, Chia-shu; Wu, Ching-yi; Wu, Shih-yun; Lin, Hsiao-Han; Cheng, Dong-hui; Lo, Wen-liang

    2017-01-01

    The age-related decline in motor function is associated with changes in intrinsic brain signatures. Here, we investigated the functional connectivity (FC) associated with masticatory performance, a clinical index evaluating general masticatory function. Twenty-six older adults (OA) and 26 younger (YA) healthy adults were recruited and assessed using the masticatory performance index (MPI) and resting-state functional magnetic resonance imaging (rs-fMRI). We analyzed the rs-fMRI FC network related to mastication, which was constructed based on 12 bilateral mastication-related brain regions according to the literature. For the OA and the YA group, we identified the mastication-related hubs, i.e., the nodes for which the degree centrality (DC) was positively correlated with the MPI. For each pair of nodes, we identified the inter-nodal link for which the FC was positively correlated with the MPI. The network analysis revealed that, in the YA group, the FC between the sensorimotor cortex, the thalamus (THA) and the cerebellum was positively correlated with the MPI. Consistently, the cerebellum nodes were defined as the mastication-related hubs. In contrast, in the OA group, we found a sparser connection within the sensorimotor regions and cerebellum and a denser connection across distributed regions, including the FC between the superior parietal lobe (SPL), the anterior insula (aINS) and the dorsal anterior cingulate cortex (dACC). Compared to the YA group, the network of the OA group also comprised more mastication-related hubs, which were spatially distributed outside the sensorimotor regions, including the right SPL, the right aINS, and the bilateral dACC. In general, the findings supported the hypothesis that in OA, higher masticatory performance is associated with a widespread pattern of mastication-related hubs. Such a widespread engagement of multiple brain regions associated with the MPI may reflect an increased demand in sensorimotor integration, attentional

  9. On functional relations between reduced distribution functions and entropy production by non-Hamiltonian perturbations

    International Nuclear Information System (INIS)

    Dobbertin, R.

    1976-01-01

    Functional relations are derived which link the reduced distribution functions of a classical N-particle system through the entropy production due to microscopic deviations from hamiltonian dynamics. These relations have been used in an earlier paper for the closure of the BBGKY-hierarchy and may be useful for the establishment of collective particle models in particular and the understanding of irreversibility in general. (Auth.)

  10. Identifying Functional Neighborhoods within the Cell Nucleus: Proximity Analysis of Early S-Phase Replicating Chromatin Domains to Sites of Transcription, RNA Polymerase II, HP1γ, Matrin 3 and SAF-A

    Science.gov (United States)

    Malyavantham, Kishore S; Bhattacharya, Sambit; Barbeitos, Marcos; Mukherjee, Lopamudra; Xu, Jinhui; Fackelmayer, Frank O; Berezney, Ronald

    2009-01-01

    Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1γ, nascent transcript sites (TS), active DNA replicating sites in early S phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture. PMID:18618731

  11. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  12. A family of tridiagonal pairs and related symmetric functions

    International Nuclear Information System (INIS)

    Baseilhac, Pascal

    2006-01-01

    A family of tridiagonal pairs which appear in the context of quantum integrable systems is studied in detail. The corresponding eigenvalue sequences, eigenspaces and the block tridiagonal structure of their matrix realizations with respect the dual eigenbasis are described. The overlap functions between the two dual bases are shown to satisfy a coupled system of recurrence relations and a set of discrete second-order q-difference equations which generalize those associated with the Askey-Wilson orthogonal polynomials with a discrete argument. Normalizing the fundamental solution to unity, the hierarchies of solutions are rational functions of one discrete argument, explicitly derived in some simplest examples. The weight function which ensures the orthogonality of the system of rational functions defined on a discrete real support is given

  13. Relation between functional mobility and dynapenia in institutionalized frail elderly.

    Science.gov (United States)

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.

  14. A family of tridiagonal pairs and related symmetric functions

    Energy Technology Data Exchange (ETDEWEB)

    Baseilhac, Pascal [Laboratoire de Mathematiques et Physique Theorique CNRS/UMR 6083, Federation Denis Poisson, Universite de Tours, Parc de Grandmont, 37200 Tours (France)

    2006-09-22

    A family of tridiagonal pairs which appear in the context of quantum integrable systems is studied in detail. The corresponding eigenvalue sequences, eigenspaces and the block tridiagonal structure of their matrix realizations with respect the dual eigenbasis are described. The overlap functions between the two dual bases are shown to satisfy a coupled system of recurrence relations and a set of discrete second-order q-difference equations which generalize those associated with the Askey-Wilson orthogonal polynomials with a discrete argument. Normalizing the fundamental solution to unity, the hierarchies of solutions are rational functions of one discrete argument, explicitly derived in some simplest examples. The weight function which ensures the orthogonality of the system of rational functions defined on a discrete real support is given.

  15. Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti.

    Science.gov (United States)

    Oryan, Alireza; Wahedi, Azizia; Paluzzi, Jean-Paul V

    2018-03-04

    To cope with stressful events such as flight, organisms have evolved various regulatory mechanisms, often involving control by endocrine-derived factors. In insects, two stress-related factors include the gonadotropin-releasing hormone-related peptides adipokinetic hormone (AKH) and corazonin (CRZ). AKH is a pleiotropic hormone best known as a substrate liberator of proteins, lipids, and carbohydrates. Although a universal function has not yet been elucidated, CRZ has been shown to have roles in pigmentation, ecdysis or act as a cardiostimulatory factor. While both these neuropeptides and their respective receptors (AKHR and CRZR) have been characterized in several organisms, details on their specific roles within the disease vector, Aedes aegypti, remain largely unexplored. Here, we obtained three A. aegypti AKHR transcript variants and further identified the A. aegypti CRZR receptor. Receptor expression using a heterologous functional assay revealed that these receptors exhibit a highly specific response for their native ligands. Developmental quantitative expression analysis of CRZR revealed enrichment during the pupal and adult stages. In adults, quantitative spatial expression analysis revealed CRZR transcript in a variety of organs including head, thoracic ganglia, primary reproductive organs (ovary and testis), as well as male carcass. This suggest CRZ may play a role in ecdysis, and neuronal expression of CRZR indicates a possible role for CRZ within the nervous system. Quantitative developmental expression analysis of AKHR identified significant transcript enrichment in early adult stages. AKHR transcript was observed in the head, thoracic ganglia, accessory reproductive tissues and the carcass of adult females, while it was detected in the abdominal ganglia and enriched significantly in the carcass of adult males, which supports the known function of AKH in energy metabolism. Collectively, given the enrichment of CRZR and AKHR in the primary and

  16. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  17. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  18. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence.

    Science.gov (United States)

    Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra

    2012-04-01

    This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.

  19. State-related functional integration and functional segregation brain networks in schizophrenia.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D

    2013-11-01

    Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.

  20. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  1. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Sheo Shankar Pandey

    2016-11-01

    Full Text Available Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc. Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in

  2. Copper and hypoxia modulate transcriptional and mitochondrial functional-biochemical responses in warm acclimated rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Sappal, Ravinder; Fast, Mark; Purcell, Sara; MacDonald, Nicole; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2016-01-01

    To survive in changing environments fish utilize a wide range of biological responses that require energy. We examined the effect of warm acclimation on the electron transport system (ETS) enzymes and transcriptional responses to hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11 °C; control) and warm (20 °C) temperatures for 3 weeks followed by exposure to Cu, hypoxia or both for 24 h. Activities of ETS enzyme complexes I-IV (CI–CIV) were measured in liver and gill mitochondria. Analyses of transcripts encoding for proteins involved in mitochondrial respiration (cytochrome c oxidase subunits 4-1 and 2: COX4-1 and COX4-2), metal detoxification/stress response (metallothioneins A and B: MT-A and MT-B) and energy sensing (AMP-activated protein kinase α1: AMPKα1) were done in liver mitochondria, and in whole liver and gill tissues by RT-qPCR. Warm acclimation inhibited activities of ETS enzymes while effects of Cu and hypoxia depended on the enzyme and thermal acclimation status. The genes encoding for COX4-1, COX4-2, MT-A, MT-B and AMPKα1 were strongly and tissue-dependently altered by warm acclimation. While Cu and hypoxia clearly increased MT-A and MT-B transcript levels in all tissues, their effects on COX4-1, COX4-2 and AMPKα1 mRNA levels were less pronounced. Importantly, warm acclimation differentially altered COX4-2/COX4-1 ratio in liver mitochondria and gill tissue. The three stressors showed both independent and joint actions on activities of ETS enzymes and transcription of genes involved in energy metabolism, stress response and metals homeostasis. Overall, we unveiled novel interactive effects that should not be overlooked in real world situations wherein fish normally encounter multiple stress factors. - Highlights: • Joint and individual effects of copper, hypoxia and warm acclimation differ quantitatively. • Energy metabolism genes are differentially altered by multiple stressors.

  3. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    Science.gov (United States)

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Relation between visual function index and falls-related factors in patients with age-related cataract

    Directory of Open Access Journals (Sweden)

    Mei-Na Huang

    2016-01-01

    Full Text Available AIM:To investigate the relation between vision function index and falls-related factors in patients with age-related cataract.METHODS:Ninety-six patients with age-related cataract were interviewed using a seven-item visual function questionnaire(VF-7, then classified into poor, moderate, or good visual function group. The differences of the three groups on visual acuity, balance and mobility function, cognition, depressive symptoms, self-reported fear of falling were analyzed. RESULTS:The patients in poor visual function group had older age, tendency to depression, was more afraid of falling, compared with groups with higher score in VF-7, and they had worse visual acuity, performed worse on all balance and mobility tests. CONCLUSION:Poor visual function is related to worse visual acuity, weaker balance and mobility performance in patients with age-related cataract. The VF-7, as a simple and convenient self-reported method, can be used as a falling risk monitoring in patients with age-related cataract.

  5. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes

    Science.gov (United States)

    Defrance, Matthieu; Vu Manh, Thien-Phong; Azouz, Abdulkader; Detavernier, Aurélie; Hoyois, Alice; Das, Jishnu; Bizet, Martin; Pollet, Emeline; Tabbuso, Tressy; Calonne, Emilie; van Gisbergen, Klaas; Dalod, Marc; Fuks, François; Goriely, Stanislas

    2018-01-01

    Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer. PMID:29488879

  6. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function

    Directory of Open Access Journals (Sweden)

    Brendan E. Russ

    2017-12-01

    Full Text Available Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs, we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+ chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.

  7. Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-related Transcripts

    Directory of Open Access Journals (Sweden)

    Christin Weissleder

    2016-11-01

    Full Text Available Neuroblasts exist within the human subependymal zone (SEZ; however, it is debated to what extent neurogenesis changes during normal aging. It is also unknown how precursor proliferation may correlate with the generation of neuronal and glial cells or how expression of growth factors and receptors may change throughout the adult lifespan. We provided evidence of dividing cells in the human SEZ in conjunction with a dramatic age-related decline (n=50; 21-103 years of mRNAs indicative of proliferating cells (Ki67 and immature neurons (doublecortin. Microglia mRNA (ionized calcium-binding adapter molecule 1 increased during aging, whereas transcript levels of stem/precursor cells (glial fibrillary acidic protein delta and achaete-scute homolog 1, astrocytes (vimentin and glial fibrillary acidic protein and oligodendrocytes (oligodendrocyte lineage transcription factor 2 remained stable. Epidermal growth factor receptor (EGFR and fibroblast growth factor 2 (FGF2 mRNAs increased throughout adulthood, while transforming growth factor alpha (TGFα, EGF, Erb-B2 receptor tyrosine kinase 4 (ErbB4 and FGF receptor 1 (FGFR1 mRNAs were unchanged across adulthood. Cell proliferation mRNA positively correlated with FGFR1 transcripts. Immature neuron and oligodendrocyte expression positively correlated with TGFα and ErbB4 mRNAs, whilst astrocyte transcripts positively correlated with EGF, FGF2 and FGFR1 mRNAs. Microglia mRNA positively correlated with EGF and FGF2 expression. Our findings indicate that neurogenesis in the human SEZ continues well into adulthood, although proliferation and neuronal differentiation may decline across adulthood. We suggest that mRNA expression of EGF- and FGF-related family members do not become limited during aging and may modulate neuronal and glial fate determination in the SEZ throughout human life.

  8. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis.

    Science.gov (United States)

    Zhong, Shilong; Han, Weichao; Hou, Chuqi; Liu, Junjin; Wu, Lili; Liu, Menghua; Liang, Zhi; Lin, Haoming; Zhou, Lili; Liu, Shuwen; Tang, Lan

    2017-01-01

    Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the Grey sWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.

  9. Prebiotics as functional food ingredients preventing diet-related diseases.

    Science.gov (United States)

    Florowska, A; Krygier, K; Florowski, T; Dłużewska, E

    2016-05-18

    This paper reviews the potential of prebiotic-containing foods in the prevention or postponement of certain diet-related diseases, such as cardiovascular diseases with hypercholesterolemia, osteoporosis, diabetes, gastrointestinal infections and gut inflammation. Also the data on prebiotics as food ingredients and their impact on food product quality are presented. Prebiotics are short chain carbohydrates that are resistant to the digestion process in the upper part of the digestive system, are not absorbed in any segment of the gastrointestinal system, and finally are selectively fermented by specific genera of colonic bacteria. The mechanisms of the beneficial impacts of prebiotics on human health are very difficult to specify directly, because their health-promoting functions are related to fermentation by intestinal microflora. The impact of prebiotics on diet-related diseases in many ways also depends on the products of their fermentation. Prebiotics as functional food ingredients also have an impact on the quality of food products, due to their textural and gelling properties. Prebiotics as food additives can be very valuable in the creation of functional food aimed at preventing or postponing many diet-related diseases. They additionally have beneficial technological properties which improve the quality of food products.

  10. SUMO-Dependent Synergism Involving Heat Shock Transcription Factors with Functions Linked to Seed Longevity and Desiccation Tolerance

    Directory of Open Access Journals (Sweden)

    Raúl Carranco

    2017-06-01

    Full Text Available A transcriptional synergism between HaHSFA9 (A9 and HaHSFA4a (A4a contributes to determining longevity and desiccation tolerance of sunflower (Helianthus annuus, L. seeds. Potential lysine SUMOylation sites were identified in A9 and A4a and mutated to arginine. We show that A9 is SUMOylated in planta at K38. Although we did not directly detect SUMOylated A4a in planta, we provide indirect evidence from transient expression experiments indicating that A4a is SUMOylated at K172. Different combinations of wild type and SUMOylation site mutants of A9 and A4a were analyzed by transient expression in sunflower embryos and leaves. Although most of the precedents in literature link SUMOylation with repression, the A9 and A4a synergism was fully abolished when the mutant forms for both factors were combined. However, the combination of mutant forms of A9 and A4a did not affect the nuclear retention of A4a by A9; therefore, the analyzed mutations would affect the synergism after the mutual interaction and nuclear co-localization of A9 and A4a. Our results suggest a role for HSF SUMOylation during late, zygotic, embryogenesis. The SUMOylation of A9 (or A4a would allow a crucial, synergic, transcriptional effect that occurs in maturing sunflower seeds.

  11. Copper Sensing Function of Drosophila Metal-Responsive Transcription Factor-1 Is Mediated By a Tetranuclear Cu(I) Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Hua, H.; Balamurugan, K.; Kong, X.; Zhang, L.; George, G.N.; Georgiev, O.; Schaffner, W.; Giedroc, D.P.

    2009-05-12

    Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence {sup 547}CNCTNCKCDQTKSCHGGDC{sup 565} are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that the cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1 strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu{sub 4}-S{sub 6}] cage structure, characterized by a core of trigonally S{sub 3} coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu{sub 4}-L{sub 6} (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).

  12. Dataset on differential gene expression analysis for splenic transcriptome profiling and the transcripts related to six immune pathways in grass carp

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella” (Li et al. 2016 [1]. Please refer to this article for interpretation of the data. Data provided in this submission are comprised of the expression levels of unigenes, significantly differentially expressed genes(DEGs, significant enrichment GO term and KEGG pathway of DEGs, and information of the transcripts assigned to six immune pathways.

  13. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    International Nuclear Information System (INIS)

    Staab, Adrian; Einsele, Hermann; Flentje, Michael; Vordermark, Dirk; Loeffler, Jürgen; Said, Harun M; Diehlmann, Désirée; Katzer, Astrid; Beyer, Melanie; Fleischer, Markus; Schwab, Franz; Baier, Kurt

    2007-01-01

    Hypoxia-inducible factor-1 (HIF-1) overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O 2 , 12 h) conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h). Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER') compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

  14. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.

    Science.gov (United States)

    Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi

    2006-01-01

    Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.

  15. Saccharomyces cerevisiae Linker Histone Hho1p Functionally Interacts with Core Histone H4 and Negatively Regulates the Establishment of Transcriptionally Silent Chromatin*

    OpenAIRE

    Yu, Qun; Kuzmiak, Holly; Zou, Yanfei; Olsen, Lars; Defossez, Pierre-Antoine; Bi, Xin

    2009-01-01

    Saccharomyces cerevisiae linker histone Hho1p is not essential for cell viability, and very little is known about its function in vivo. We show that deletion of HHO1 (hho1Δ) suppresses the defect in transcriptional silencing caused by a mutation in the globular domain of histone H4. hho1Δ also suppresses the reduction in HML silencing by the deletion of SIR1 that is involved in the establishment of silent chromatin at HML. We further show that hho1Δ suppresses chan...

  16. What happens in the thymus does not stay in the thymus: how T cells recycle the CD4+-CD8+ lineage commitment transcriptional circuitry to control their function

    Science.gov (United States)

    Vacchio, Melanie S.; Bosselut, Rémy

    2016-01-01

    MHC-restricted CD4+ and CD8+ T cell are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. While the transcriptional control of CD4+-CD8+ lineage choice in the thymus is now better understood, less was known about what maintains the CD4+- and CD8+-lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in post-thymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4+-CD8+ lineage commitment in the thymus, is critical for CD4+ T cell helper functions. PMID:27260768

  17. A Key Role for NF-κB Transcription Factor c-Rel in T-Lymphocyte-Differentiation and Effector Functions

    Directory of Open Access Journals (Sweden)

    Alexander Visekruna

    2012-01-01

    Full Text Available The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65, c-Rel, RelB, and the precursor proteins NF-κB1 (p105 and NF-κB2 (p100, that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.

  18. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  19. Transfer Relations Between Landscape Functions - The Hydrological Point of View

    Science.gov (United States)

    Fohrer, N.; Lenhart, T.; Eckhardt, K.; Frede, H.-G.

    EC market policies and regional subsidy programs have an enormous impact on local land use. This has far reaching consequences on various landscape functions. In the joint research project SFB299 at the Giessen University the effect of land use options on economic, ecological and hydrological landscape functions are under investigation. The continuous time step model SWAT-G (Eckhardt et al., 2000; Arnold et al., 1998) is employed to characterize the influence of land use patterns on hydrological processes. The model was calibrated and validated employing a split sample approach. For two mesoscale watersheds (Aar, 60 km2; Dietzhölze, 81 km2) located in the Lahn-Dill- Bergland, Germany, different land use scenarios were analyzed with regard to their hydrological impact. Additionally the effect of land use change was analyzed with an ecological and an agro-economic model. The impact of the stepwise changing land use was expressed as trade off relations between different landscape functions.

  20. Are we moving towards functioning agricultural markets and trade relations?

    DEFF Research Database (Denmark)

    Brosig, Stephan; Glauben, Thomas; Levkovych, Inna

    2016-01-01

    We introduce a special feature on the functioning of international agricultural markets. This feature is motivated by the increased interest in the functioning of commodity markets raised by unprecedented price turbulences since 2008, major structural changes through changed roles of emerging...... economies and related concerns regarding food security. We argue that the delineation of non-functioning markets from markets that adequately adjusted to adverse framework conditions lacks theoretical foundation. We discuss the relevance of some results on institutions for agricultural markets in emerging...... and transition countries. A synthesis of the articles included in the special feature is provided by highlighting the selection of topics that span a topical range covering price formation on world and domestic markets, market power and trade policy modelling....

  1. Cone pathway function in relation to asymmetric carotid artery stenosis

    DEFF Research Database (Denmark)

    Kofoed, Peter Kristian; Munch, Inger Christine; Holfort, Stig K

    2013-01-01

    Purpose:  To examine retinal function in relation to retinal perfusion pressure in patients with carotid artery stenosis. Methods:  Thirteen patients with carotid artery stenosis without clinical eye disease underwent assessment of ophthalmic artery systolic blood pressure (OSP) by ocular...... pneumoplethysmography, carotid artery obstructive disease by ultrasonography, intraocular pressure by applanation tonometry, retinal perfusion by fluorescein angiography and retinal function by multifocal electroretinography (mfERG). Data analysis compared the eye on the most stenotic side with the fellow eye...... pressure (p = 0.0028, 0.011, 0.041 for N1, P1, N2 implicit times, respectively, and p = 0.0086, 0.016, 0.040 for N1, P1, N2 for amplitudes, respectively, corrected for OSP). Conclusion:  Cone function deviation was observed in clinically healthy eyes on the side with highest degree of carotid artery...

  2. Learning related modulation of functional retrieval networks in man.

    Science.gov (United States)

    Petersson, K M; Sandblom, J; Gisselgård, J; Ingvar, M

    2001-07-01

    The medial temporal lobe has been implicated in studies of episodic memory tasks involving spatio-temporal context and object-location conjunctions. We have previously demonstrated that an increased level of practice in a free-recall task parallels a decrease in the functional activity of several brain regions, including the medial temporal lobe, the prefrontal, the anterior cingulate, the anterior insular, and the posterior parietal cortices, that in concert demonstrate a move from elaborate controlled processing towards a higher degree of automaticity. Here we report data from two experiments that extend these initial observations. We used a similar experimental approach but probed for effects of retrieval paradigms and stimulus material. In the first experiment we investigated practice related changes during recognition of object-location conjunctions and in the second during free-recall of pseudo-words. Learning in a neural network is a dynamic consequence of information processing and network plasticity. The present and previous PET results indicate that practice can induce a learning related functional restructuring of information processing. Different adaptive processes likely subserve the functional re-organisation observed. These may in part be related to different demands for attentional and working memory processing. It appears that the role(s) of the prefrontal cortex and the medial temporal lobe in memory retrieval are complex, perhaps reflecting several different interacting processes or cognitive components. We suggest that an integrative interactive perspective on the role of the prefrontal and medial temporal lobe is necessary for an understanding of the processing significance of these regions in learning and memory. It appears necessary to develop elaborated and explicit computational models for prefrontal and medial temporal functions in order to derive detailed empirical predictions, and in combination with an efficient use and development of

  3. The use of generalized functions and distributions in general relativity

    International Nuclear Information System (INIS)

    Steinbauer, R; Vickers, J A

    2006-01-01

    We review the extent to which one can use classical distribution theory in describing solutions of Einstein's equations. We show that there are a number of physically interesting cases which cannot be treated using distribution theory but require a more general concept. We describe a mathematical theory of nonlinear generalized functions based on Colombeau algebras and show how this may be applied in general relativity. We end by discussing the concept of singularity in general relativity and show that certain solutions with weak singularities may be regarded as distributional solutions of Einstein's equations. (topical review)

  4. Relation between functional mobility and dynapenia in institutionalized frail elderly

    OpenAIRE

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (sho...

  5. Relation between functional mobility and dynapenia in institutionalized frail elderly

    OpenAIRE

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges Junior, Noé Gomes

    2017-01-01

    ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups ...

  6. Narcissistic personality disorder: relations with distress and functional impairment.

    Science.gov (United States)

    Miller, Joshua D; Campbell, W Keith; Pilkonis, Paul A

    2007-01-01

    This study examined the construct validity of narcissistic personality disorder (NPD) by examining the relations between NPD and measures of psychologic distress and functional impairment both concurrently and prospectively across 2 samples. In particular, the goal was to address whether NPD typically "meets" criterion C of the DSM-IV definition of Personality Disorder, which requires that the symptoms lead to clinically significant distress or impairment in functioning. Sample 1 (n = 152) was composed of individuals receiving psychiatric treatment, whereas sample 2 (n = 151) was composed of both psychiatric patients (46%) and individuals from the community. Narcissistic personality disorder was linked to ratings of depression, anxiety, and several measures of impairment both concurrently and at 6-month follow-up. However, the relations between NPD and psychologic distress were (a) small, especially in concurrent measurements, and (b) largely mediated by impaired functioning. Narcissistic personality disorder was most strongly related to causing pain and suffering to others, and this relationship was significant even when other Cluster B personality disorders were controlled. These findings suggest that NPD is a maladaptive personality style which primarily causes dysfunction and distress in interpersonal domains. The behavior of narcissistic individuals ultimately leads to problems and distress for the narcissistic individuals and for those with whom they interact.

  7. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yang [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China); Wang Jianshe; Wei Yanhong; Zhang Hongxia; Xu Muqi [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Dai Jiayin [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China)], E-mail: daijy@ioz.ac.cn

    2008-09-29

    The effects of acute perfluorododecanoic acid (PFDoA) exposure on the induction of oxidative stress and alteration of mitochondrial gene expression were studied in the livers of female zebrafish (Danio rerio). Female zebrafish were exposed to PFDoA via a single intraperitoneal injection (0, 20, 40, or 80 {mu}g PFDoA/g body weight) and were then sacrificed 48 h, 96 h, or seven days post-PFDoA administration. PFDoA-treated fish exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. Glutathione (GSH) content and catalase (CAT) activity decreased significantly at 48 h post-injection while superoxide dismutase (SOD) activity was initially decreased at 48 h post-injection but was then elevated by seven days post-injection. The activity of glutathione peroxidase (GPx) increased at 48 h and seven days compared to control fish, although the increased level at seven days post-injection was decreased compared to the level at 48 h post-injection. Lipid peroxidation levels were increased at seven days post-injection, while no apparent induction was observed at 48 h or 96 h post-injection. The mRNA expression of medium-chain fatty acid dehydrogenase (MCAD) was induced, while the transcriptional expression of liver fatty acid binding protein (L-FABP), peroxisome proliferating activating receptor {alpha} (PPAR{alpha}), carnitine palmitoyl-transferase I (CPT-I), uncoupling protein 2 (UCP-2), and Bcl-2 were significantly inhibited. Furthermore, the transcriptional expression of peroxisomal fatty acyl-CoA oxidase (ACOX), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD) did not exhibit significant changes following PFDoA treatment. No significant changes were noted in the transcriptional expression of genes involved in mitochondrial respiratory chain and ATP synthesis, including cytochrome c oxidase subunit I (COXI), NADH dehydrogenase subunit I (NDI), and ATP synthase F0 subunit 6

  8. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver

    International Nuclear Information System (INIS)

    Liu Yang; Wang Jianshe; Wei Yanhong; Zhang Hongxia; Xu Muqi; Dai Jiayin

    2008-01-01

    The effects of acute perfluorododecanoic acid (PFDoA) exposure on the induction of oxidative stress and alteration of mitochondrial gene expression were studied in the livers of female zebrafish (Danio rerio). Female zebrafish were exposed to PFDoA via a single intraperitoneal injection (0, 20, 40, or 80 μg PFDoA/g body weight) and were then sacrificed 48 h, 96 h, or seven days post-PFDoA administration. PFDoA-treated fish exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. Glutathione (GSH) content and catalase (CAT) activity decreased significantly at 48 h post-injection while superoxide dismutase (SOD) activity was initially decreased at 48 h post-injection but was then elevated by seven days post-injection. The activity of glutathione peroxidase (GPx) increased at 48 h and seven days compared to control fish, although the increased level at seven days post-injection was decreased compared to the level at 48 h post-injection. Lipid peroxidation levels were increased at seven days post-injection, while no apparent induction was observed at 48 h or 96 h post-injection. The mRNA expression of medium-chain fatty acid dehydrogenase (MCAD) was induced, while the transcriptional expression of liver fatty acid binding protein (L-FABP), peroxisome proliferating activating receptor α (PPARα), carnitine palmitoyl-transferase I (CPT-I), uncoupling protein 2 (UCP-2), and Bcl-2 were significantly inhibited. Furthermore, the transcriptional expression of peroxisomal fatty acyl-CoA oxidase (ACOX), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD) did not exhibit significant changes following PFDoA treatment. No significant changes were noted in the transcriptional expression of genes involved in mitochondrial respiratory chain and ATP synthesis, including cytochrome c oxidase subunit I (COXI), NADH dehydrogenase subunit I (NDI), and ATP synthase F0 subunit 6 (ATPo6). These

  9. Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification.

    Science.gov (United States)

    Dougherty, Edward J; Guo, Chunhua; Simons, S Stoney; Chow, Carson C

    2012-01-01

    Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available.

  10. Vitamin B12 Deficiency in Relation to Functional Disabilities

    Directory of Open Access Journals (Sweden)

    Heather E. Rasmussen

    2013-11-01

    Full Text Available This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12 deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES were categorized in relation to three previously used definitions of B12 deficiency: (1 serum B12 20 μmol/L; and (3 serum B12 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds (95% confidence intervals, p value: 9.70 (2.24, 42.07, 0.004 and report greater total disability, 19.61 (6.22, 61.86 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid. Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.

  11. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    DEFF Research Database (Denmark)

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered

    2005-01-01

    in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1......,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter...... and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting...

  12. Structure-Function Relationships in the Gas-Sensing Heme-Dependent Transcription Factors RcoM and DNR

    Science.gov (United States)

    Bowman, Hannah E.

    Transition metals play an important role in many biological processes, however, they are also toxic at high concentrations. Therefore, the uptake and efflux of these metals must be tightly regulated by the cell. Bacteria have evolved a variety of pathways and regulatory systems to monitor the presence and concentration of metals in the cellular environment. A key component of those systems are transcription factors that either "sense metals" or use "metal sensors". The first class of these proteins have metals as their allosteric effector ligand. The second class of these proteins utilize transition metal containing cofactors to sense other environmental cues through the specific chemistry afforded by the cofactor. Chapter 1 reviews the current literature regarding both types of transcription factors. The focus of this work has been on two heme-containing, gas-sensing transcription factors found in bacteria, RcoM (regulator of CO metabolism) and DNR (dissimilative nitrate respiration regulator). RcoM is a CO-dependent protein found in Burkholderia xenovorans and sits upstream of the cox operon for oxidative CO metabolism. RcoM senses the presence of CO, as well as changes in redox potential, through a ligand switch process at its heme cofactor. Chapter 2 details spectroscopic characterization of several methionine mutants to identify the Fe(II) ligand trans to His 74. That study concludes that Met104 acts as the CO-replacable ligand. Met105, while not the ligand, does play an important role in reversibility of the ligand switch process. RcoM has a unique tertiary structure that combines a sensory domain and a DNA-binding domain normally found in two-component systems. Chapter 3 provides evidence that RcoM adopts a dimeric state. Further biophysical and structural characterization gives further insight into how the two domains are organized and the implications for the DNA-binding mechanism. DNR is a NO-sensing transcription factor from Pseudomonas aeruginosa and

  13. The NAD-Dependent Deacetylase Sirtuin-1 Regulates the Expression of Osteogenic Transcriptional Activator Runt-Related Transcription Factor 2 (Runx2 and Production of Matrix Metalloproteinase (MMP-13 in Chondrocytes in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Koh Terauchi

    2016-06-01

    Full Text Available Aging is one of the major pathologic factors associated with osteoarthritis (OA. Recently, numerous reports have demonstrated the impact of sirtuin-1 (Sirt1, which is the NAD-dependent deacetylase, on human aging. It has been demonstrated that Sirt1 induces osteogenic and chondrogenic differentiation of mesenchymal stem cells. However, the role of Sirt1 in the OA chondrocytes still remains unknown. We postulated that Sirt1 regulates a hypertrophic chondrocyte lineage and degeneration of articular cartilage through the activation of osteogenic transcriptional activator Runx2 and matrix metalloproteinase (MMP-13 in OA chondrocytes. To verify whether sirtuin-1 (Sirt1 regulates chondrocyte activity in OA, we studied expressions of Sirt1, Runx2 and production of MMP-13, and their associations in human OA chondrocytes. The expression of Sirt1 was ubiquitously observed in osteoarthritic chondrocytes; in contrast, Runx2 expressed in the osteophyte region in patients with OA and OA model mice. OA relating catabolic factor IL-1βincreased the expression of Runx2 in OA chondrocytes. OA chondrocytes, which were pretreated with Sirt1 inhibitor, inhibited the IL-1β-induced expression of Runx2 compared to the control. Since the Runx2 is a promotor of MMP-13 expression, Sirt1 inactivation may inhibit the Runx2 expression and the resultant down-regulation of MMP-13 production in chondrocytes. Our findings suggest thatSirt1 may regulate the expression of Runx2, which is the osteogenic transcription factor, and the production of MMP-13 from chondrocytes in OA. Since Sirt1 activity is known to be affected by several stresses, including inflammation and oxidative stress, as well as aging, SIRT may be involved in the development of OA.

  14. Transcriptional and functional analysis of the effects of magnolol: inhibition of autolysis and biofilms in Staphylococcus aureus.

    Science.gov (United States)

    Wang, Dacheng; Jin, Qi; Xiang, Hua; Wang, Wei; Guo, Na; Zhang, Kaiyu; Tang, Xudong; Meng, Rizeng; Feng, Haihua; Liu, Lihui; Wang, Xiaohong; Liang, Junchao; Shen, Fengge; Xing, Mingxun; Deng, Xuming; Yu, Lu

    2011-01-01

    The targeting of Staphylococcus aureus biofilm structures are now gaining interest as an alternative strategy for developing new types of antimicrobial agents. Magnolol (MOL) shows inhibitory activity against S. aureus biofilms and Triton X-100-induced autolysis in vitro, although there are no data regarding the molecular mechanisms of MOL action in bacteria. The molecular basis of the markedly reduced autolytic phenotype and biofilm inhibition triggered by MOL were explored using transcriptomic analysis, and the transcription of important genes were verified by real-time RT-PCR. The inhibition of autolysis by MOL was evaluated using quantitative bacteriolytic assays and zymographic analysis, and antibiofilm activity assays and confocal laser scanning microscopy were used to elucidate the inhibition of biofilm formation caused by MOL in 20 clinical isolates or standard strains. The reduction in cidA, atl, sle1, and lytN transcript levels following MOL treatment was consistent with the induced expression of their autolytic repressors lrgA, lrgB, arlR, and sarA. MOL generally inhibited or reversed the expression of most of the genes involved in biofilm production. The growth of S. aureus strain ATCC 25923 in the presence of MOL dose-dependently led to decreases in Triton X-100-induced autolysis, extracellular murein hydrolase activity, and the amount of extracellular DNA (eDNA). MOL may impede biofilm formation by reducing the expression of cidA, a murein hydrolase regulator, to inhibit autolysis and eDNA release, or MOL may directly repress biofilm formation. MOL shows in vitro antimicrobial activity against clinical and standard S. aureus strains grown in planktonic and biofilm cultures, suggesting that the structure of MOL may potentially be used as a basis for the development of drugs targeting biofilms.

  15. Transcriptional and functional analysis of the effects of magnolol: inhibition of autolysis and biofilms in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Dacheng Wang

    Full Text Available BACKGROUND: The targeting of Staphylococcus aureus biofilm structures are now gaining interest as an alternative strategy for developing new types of antimicrobial agents. Magnolol (MOL shows inhibitory activity against S. aureus biofilms and Triton X-100-induced autolysis in vitro, although there are no data regarding the molecular mechanisms of MOL action in bacteria. METHODOLOGY/PRINCIPAL FINDINGS: The molecular basis of the markedly reduced autolytic phenotype and biofilm inhibition triggered by MOL were explored using transcriptomic analysis, and the transcription of important genes were verified by real-time RT-PCR. The inhibition of autolysis by MOL was evaluated using quantitative bacteriolytic assays and zymographic analysis, and antibiofilm activity assays and confocal laser scanning microscopy were used to elucidate the inhibition of biofilm formation caused by MOL in 20 clinical isolates or standard strains. The reduction in cidA, atl, sle1, and lytN transcript levels following MOL treatment was consistent with the induced expression of their autolytic repressors lrgA, lrgB, arlR, and sarA. MOL generally inhibited or reversed the expression of most of the genes involved in biofilm production. The growth of S. aureus strain ATCC 25923 in the presence of MOL dose-dependently led to decreases in Triton X-100-induced autolysis, extracellular murein hydrolase activity, and the amount of extracellular DNA (eDNA. MOL may impede biofilm formation by reducing the expression of cidA, a murein hydrolase regulator, to inhibit autolysis and eDNA release, or MOL may directly repress biofilm formation. CONCLUSIONS/SIGNIFICANCE: MOL shows in vitro antimicrobial activity against clinical and standard S. aureus strains grown in planktonic and biofilm cultures, suggesting that the structure of MOL may potentially be used as a basis for the development of drugs targeting biofilms.

  16. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light

    Directory of Open Access Journals (Sweden)

    Abu Imran Baba

    2018-04-01

    Full Text Available The Calcium-Dependent Protein Kinase (CDPK-Related Kinase family (CRKs consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT. However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.

  18. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Family functioning in paediatric obsessive compulsive and related disorders.

    Science.gov (United States)

    Murphy, Yolanda E; Flessner, Christopher A

    2015-11-01

    Research among youths with obsessive compulsive disorder (OCD) has shown a significant relationship between illness severity, treatment outcome, and the family environment yet little work has been undertaken among the broader class of obsessive compulsive and related disorders (OCRDs) - Trichotillomania, body dysmorphic disorder (BDD), skin picking disorder (SPD), and hoarding. The aim of this study was to (1) review the family functioning literature among paediatric OCRDs, (2) address limitations to previous studies, and (3) highlight areas in need of further research. A review of the literature was conducted using several databases (i.e., Google Scholar, PubMed, ScienceDirect) and employing key search terms (e.g., 'family functioning', 'paediatric OCD'). The resultant articles examined several domains subsumed under the broader heading of family environment including parental mental health, parenting practices, family dynamics, family involvement with symptoms, and family emotional climate. The literature reviewed demonstrated a strong relationship between paediatric OCD and adverse family functioning (e.g., parental symptoms of anxiety and depression, family accommodation, family strain and stress, parental guilt and fear) in all identified domains. While family functioning research in paediatric HPD was relatively scant, research suggested similar familial dysfunction (e.g., limited independence, low family cohesion, family violence). Collectively, only 1 article, examining BDD, assessed family functioning within other OCRDs. This review supports the need for further research in the OCRDs. Limitations to the available literature and targeted suggestions for future research are discussed. The domains of family environment in this study indicate specific family functioning deficits that may serve as aetiological and/or maintenance factors in paediatric OCRDs, possibly contributing to the understanding of these complex disorders. The recognition of family deficits

  20. Developmental and functional expression of miRNA-stability related genes in the nervous system.

    Science.gov (United States)

    de Sousa, Érica; Walter, Lais Takata; Higa, Guilherme Shigueto Vilar; Casado, Otávio Augusto Nocera; Kihara, Alexandre Hiroaki

    2013-01-01

    In the nervous system, control of gene expression by microRNAs (miRNAs) has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We first detected two genes in the retina that have been associated to miRNA stability, XRN2 and PAPD4. These genes are highly expressed during retinal development, however with distinct subcellular localization. We investigated whether these proteins are regulated during specific phases of the cell cycle. Combined analyses of nuclei position in neuroblastic layer and labeling using anti-cyclin D1 revealed that both proteins do not accumulate in S or M phases of the cell cycle, being poorly expressed in progenitor cells. Indeed, XRN2 and PAPD4 were observed mainly after neuronal differentiation, since low expression was also observed in astrocytes, endothelial and microglial cells. XRN2 and PAPD4 are expressed in a wide variety of neurons, including horizontal, amacrine and ganglion cells. To evaluate the functional role of both genes, we carried out experiments addressed to the retinal adaptation in response to different ambient light conditions. PAPD4 is upregulated after 3 and 24 hours of dark- adaptation, revealing that accumulation of this protein is governed by ambient light levels. Indeed, the fast and functional regulation of PAPD4 was not related to changes in gene expression, disclosing that control of protein levels occurs by post-transcriptional mechanisms. Furthermore, we were able to quantify changes in PAPD4 in specific amacrine cells after dark -adaptation, suggesting for circuitry-related roles in visual perception. In summary, in this study we first described the

  1. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function.

    Science.gov (United States)

    Nishiguchi, Koji M; Friedman, James S; Sandberg, Michael A; Swaroop, Anand; Berson, Eliot L; Dryja, Thaddeus P

    2004-12-21

    Mice lacking the transcription factor Nrl have no rod photoreceptors and an increased number of short-wavelength-sensitive cones. Missense mutations in NRL are associated with autosomal dominant retinitis pigmentosa; however, the phenotype associated with the loss of NRL function in humans has not been reported. We identified two siblings who carried two allelic mutations: a predicted null allele (L75fs) and a missense mutation (L160P) altering a highly conserved residue in the domain involved in DNA-binding-site recognition. In vitro luciferase reporter assays demonstrated that the NRL-L160P mutant had severely reduced transcriptional activity compared with the WT NRL protein, consistent with a severe loss of function. The affected patients had night blindness since early childhood, consistent with a severe reduction in rod function. Color vision was normal, suggesting the