WorldWideScience

Sample records for functionally important motions

  1. Increased Range of Motion Is Important for Functional Outcome and Satisfaction After Total Knee Arthroplasty in Asian Patients.

    Ha, Chul-Won; Park, Yong-Beom; Song, Young-Suk; Kim, Jun-Ho; Park, Yong-Geun

    2016-06-01

    Although range of motion (ROM) is considered as an important factor for good outcome after total knee arthroplasty (TKA), the association of the degree of ROM with functional outcome and patient satisfaction is debated. We, therefore, investigated whether increased ROM would affect functional outcome and patient satisfaction after TKA in Asian patients. We reviewed 630 patients who underwent primary TKA with minimum 2-year follow-up. Clinical outcomes were evaluated by Knee Society (KS) score, Western Ontario and McMaster Universities osteoarthritis index, and high-flexion knee score. Patient satisfaction was evaluated using a validated questionnaire. The association of ROM and change in ROM (cROM) with clinical outcomes and satisfaction were analyzed using partial correlation analysis and multiple median regression analysis. All functional scores showed significant correlation with postoperative ROM (r = 0.129, P = .001 in Knee Society score; r = -0.101, P = .012 in Western Ontario and McMaster Universities osteoarthritis index; r = 0.183, P satisfaction (r = 0.192, P = .005). Postoperative ROM and cROM were revealed as predisposing factors affecting function outcome using multivariable regression analysis. cROM was found as a predisposing factor affecting satisfaction. Based on the results of this study, ROM positively associated with functional outcome and cROM positively associated with patient satisfaction after TKA. These findings suggest that increased ROM after TKA is an important factor for functional outcome and satisfaction in Asian patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. High-risk subgroup of inferior myocardial infarction. Importance of anterior wall motion and right ventricular function

    Nishimura, Tsunehiko; Yasuda, Tsunehiro; Gold, H K; Leinbach, R C; Boucher, C A; McKusick, K A; Strauss, H W

    1986-12-01

    To identify high-risk subgroups of inferior myocardial infarction, 75 patients presenting with their first inferior infarction were investigated by sequential gated blood pool scans. The patients were divided into four groups based on the right ventricular function (RVF) and anterior wall motion (AWM) of the left ventricle by scan at the time of admission. A second blood pool scan was performed at ten days to evaluate RV and LV function. Thirty-eight patients had cardiac catheterization before discharge and all patients were followed up for one year to determine their clinical outcome. Depressed RVF and reduced AWM were observed in 26 (35%) (Group A); depressed RVF and normal AWM were found in 20 (27%) (Group B); reduced AWM and normal RVE in 10 (13%) (Group C); and normal RVF and AWM in 19 (25%) (Group D). The mean values of biventricular function (LVEF, RVEF) in groups A, B, C, and D were (44.9 +- 8.4%, 32.5 +- 9.9%), (59.9 +- 8.6%, 34.5 +- 8.0%), (44.9 +- 15.7%, 48.2 +- 3.3%), and (60.4 +- 9.1%, 51.6 +- 10.6%), respectively, at admission. In serial measurements, LVEF did not change significantly in any group, however, RVEF improved nearly 10 points in groups A and B at 10 days. Group A also had the highest incidence (82 %) of left anterior descending coronary artery involvement, and the highest mean creatine phosphokinase levels (762 +- 318 U/1): Furthermore, group A had a high incidence of major complications during their hospital course and high mortality during the one-year follow-up. These data clearly identified group A as a high-risk subgroup of patients with inferior infarction.

  3. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  4. Structural Motion Grammar for Universal Use of Leap Motion: Amusement and Functional Contents Focused

    Byungseok Lee

    2018-01-01

    Full Text Available Motions using Leap Motion controller are not standardized while the use of it is spreading in media contents. Each content defines its own motions, thereby creating confusion for users. Therefore, to alleviate user inconvenience, this study categorized the commonly used motion by Amusement and Functional Contents and defined the Structural Motion Grammar that can be universally used based on the classification. To this end, the Motion Lexicon was defined, which is a fundamental motion vocabulary, and an algorithm that enables real-time recognition of Structural Motion Grammar was developed. Moreover, the proposed method was verified by user evaluation and quantitative comparison tests.

  5. Dynamic response function and large-amplitude dissipative collective motion

    Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.

    1993-05-01

    Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)

  6. Adaptive Importance Sampling with a Rapidly Varying Importance Function

    Booth, Thomas E.

    2000-01-01

    It is known well that zero-variance Monte Carlo solutions are possible if an exact importance function is available to bias the random walks. Monte Carlo can be used to estimate the importance function. This estimated importance function then can be used to bias a subsequent Monte Carlo calculation that estimates an even better importance function; this iterative process is called adaptive importance sampling.To obtain the importance function, one can expand the importance function in a basis such as the Legendre polynomials and make Monte Carlo estimates of the expansion coefficients. For simple problems, Legendre expansions of order 10 to 15 are able to represent the importance function well enough to reduce the error geometrically by ten orders of magnitude or more. The more complicated problems are addressed in which the importance function cannot be represented well by Legendre expansions of order 10 to 15. In particular, a problem with a cross-section notch and a problem with a discontinuous cross section are considered

  7. Chief Business Officers' Functions: Responsibilities and Importance.

    Calver, Richard A.; Vogler, Daniel E.

    1985-01-01

    Reports on a survey of 177 chief business officers of public community colleges regarding their responsibilities and the importance they assigned to various role functions. Highlights findings concerning the perceived importance of fiscal/financial duties; endowments as a job function; role in shared planning; and personal attention given to…

  8. Importance sampling the Rayleigh phase function

    Frisvad, Jeppe Revall

    2011-01-01

    Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....

  9. State operator, constants of the motion, and Wigner functions: The two-dimensional isotropic harmonic oscillator

    Dahl, Jens Peder; Schleich, W. P.

    2009-01-01

    For a closed quantum system the state operator must be a function of the Hamiltonian. When the state is degenerate, additional constants of the motion enter the play. But although it is the Weyl transform of the state operator, the Wigner function is not necessarily a function of the Weyl...... transforms of the constants of the motion. We derive conditions for which this is actually the case. The Wigner functions of the energy eigenstates of a two-dimensional isotropic harmonic oscillator serve as an important illustration....

  10. Functional importance of PAI-1 glycosylation

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    2001-01-01

    Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-glycosylated PAI-1 could be conferred upon PAI-1 expressed in HEK293 cells by mutational inactivation of one or the other glycosylation site. These findings reveal a novel functional role for glycosylation of a serpin. The glycosylation sites are localised between a-helix H and b-strand 2C and b-strand 3C and a...

  11. Growth of a Functionally Important Lexicon.

    Zechmeister, Eugene B.; And Others

    1995-01-01

    Uses a dictionary-sampling method and multiple-choice testing of word knowledge to estimate the lexicon size of junior-high students, college students, and older adults. Suggests that there may yet be a role for direct instruction in affecting lexicon size of functionally important words. (SR)

  12. Visualizing functional motions of membrane transporters with molecular dynamics simulations.

    Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad

    2013-01-29

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.

  13. Description of nuclear collective motion by Wigner function moments

    Balbutsev, E.B.

    1996-01-01

    The method is presented in which the collective motion is described by the dynamic equations for the nuclear integral characteristics. The 'macroscopic' dynamics is formulated starting from the equations of the microscopic theory. This is done by taking the phase space moments of the Wigner function equation. The theory is applied to the description of collective excitations with multipolarities up to λ=5. (author)

  14. Path probability of stochastic motion: A functional approach

    Hattori, Masayuki; Abe, Sumiyoshi

    2016-06-01

    The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.

  15. Random functions via Dyson Brownian Motion: progress and problems

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-01-01

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C"2 locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  16. Random functions via Dyson Brownian Motion: progress and problems

    Wang, Gaoyuan; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen,Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  17. Functional importance of PAI-1 glycosylation

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    susceptible PAI-1 variant was not necessarily the one used when raising the antibody. This and other observations indicated that the carbohydrate moieties or the glycosylation sites are unlikely to be part of the epitopes for these antibodies. The antibody susceptibility characteristic for non......Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-linked glycosylation. Biochemical analysis of PAI-1 variants with substitutions of the Asn residues in each of these sites and expression in human embryonic kidney 293 (HEK293) cells showed that only Asn211 and Asn 267, but not Asn331 are glycosylated, and revealed a differential composition of the carbohydrate...

  18. Numerical computation of generalized importance functions

    Gomit, J.M.; Nasr, M.; Ngyuen van Chi, G.; Pasquet, J.P.; Planchard, J.

    1981-01-01

    Thus far, an important effort has been devoted to developing and applying generalized perturbation theory in reactor physics analysis. In this work we are interested in the calculation of the importance functions by the method of A. Gandini. We have noted that in this method the convergence of the iterative procedure adopted is not rapid. Hence to accelerate this convergence we have used the semi-iterative technique. Two computer codes have been developed for one and two dimensional calculations (SPHINX-1D and SPHINX-2D). The advantage of our calculation was confirmed by some comparative tests in which the iteration number and the computing time were highly reduced with respect to classical calculation (CIAP-1D and CIAP-2D). (orig.) [de

  19. The Importance of Lower Mantle Structure to Plate Stresses and Plate Motions

    Holt, W. E.; Wang, X.; Ghosh, A.

    2016-12-01

    Plate motions and plate stresses are widely assumed as the surface expression of mantle convection. The generation of plate tectonics from mantle convection has been studied for many years. Lithospheric thickening (or ridge push) and slab pull forces are commonly accepted as the major driving forces for the plate motions. However, the importance of the lower mantle to plate stresses and plate motions remains less clear. Here, we use the joint modeling of lithosphere and mantle dynamics approach of Wang et al. (2015) to compute the tractions originating from deeper mantle convection and follow the method of Ghosh et al. (2013) to calculate gravitational potential energy per unit area (GPE) based on Crust 1.0 (Laske et al., 2013). Absolute values of deviatoric stresses are determined by the body force distributions (GPE gradients and traction magnitudes applied at the base of the lithosphere). We use the same relative viscosity model that Ghosh et al. (2013) used, and we solve for one single adjustable scaling factor that multiplies the entire relative viscosity field to provide absolute values of viscosity throughout the lithosphere. This distribution of absolute values of lithosphere viscosities defines the magnitudes of surface motions. In this procedure, the dynamic model first satisfies the internal constraint of no-net-rotation of motions. The model viscosity field is then scaled by the single factor until we achieve a root mean square (RMS) minimum between computed surface motions and the kinematic no-net-rotation (NNR) model of Kreemer et al. (2006). We compute plate stresses and plate motions from recently published global tomography models (over 70 based on Wang et al., 2015). We find that RMS misfits are significantly reduced when details of lower mantle structure from the latest tomography models are added to models that contain only upper and mid-mantle density distributions. One of the key reasons is that active upwelling from the Large Low Shear

  20. Importance and functions of European grasslands.

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  1. Functionals of Brownian motion, localization and metric graphs

    Comtet, Alain; Desbois, Jean; Texier, Christophe

    2005-01-01

    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed: some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schroedinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of planar Brownian motion. (topical review)

  2. Functionalized molecules studied by STM: motion, switching and reactivity

    Grill, Leonhard

    2008-01-01

    Functionalized molecules represent the central issue of molecular nanotechnology. Scanning tunnelling microscopy (STM) is a powerful method to investigate such molecules, because it allows us to image them with sub-molecular resolution when adsorbed on a surface and can be used at the same time as a tool to manipulate single molecules in a controlled way. Such studies permit deep insight into the conformational, mechanical and electronic structure and thus functionalities of the molecules. In this review, recent experiments on specially designed molecules, acting as model systems for molecular nanotechnology, are reviewed. The presented studies focus on key functionalities: lateral rolling and hopping motion on a supporting surface, the switching behaviour of azobenzene derivatives by using the STM tip and the controlled reactivity of molecular side groups, which enable the formation of covalently bound molecular nanoarchitectures. (topical review)

  3. Yellow filters can improve magnocellular function: motion sensitivity, convergence, accommodation, and reading.

    Ray, N J; Fowler, S; Stein, J F

    2005-04-01

    The magnocellular system plays an important role in visual motion processing, controlling vergence eye movements, and in reading. Yellow filters may boost magnocellular activity by eliminating inhibitory blue input to this pathway. It was found that wearing yellow filters increased motion sensitivity, convergence, and accommodation in many children with reading difficulties, both immediately and after three months using the filters. Motion sensitivity was not increased using control neutral density filters. Moreover, reading-impaired children showed significant gains in reading ability after three months wearing the filters compared with those who had used a placebo. It was concluded that yellow filters can improve magnocellular function permanently. Hence, they should be considered as an alternative to corrective lenses, prisms, or exercises for treating poor convergence and accommodation, and also as an aid for children with reading problems.

  4. Advanced methods on the evaluation of design earthquake motions for important power constructions

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  5. Bending-Twisting Motions and Main Interactions in Nucleoplasmin Nuclear Import.

    Marcos Tadeu Geraldo

    Full Text Available Alpha solenoid proteins play a key role in regulating the classical nuclear import pathway, recognizing a target protein and transporting it into the nucleus. Importin-α (Impα is the solenoid responsible for cargo protein recognition, and it has been extensively studied by X-ray crystallography to understand the binding specificity. To comprehend the main motions of Impα and to extend the information about the critical interactions during carrier-cargo recognition, we surveyed different conformational states based on molecular dynamics (MD and normal mode (NM analyses. Our model of study was a crystallographic structure of Impα complexed with the classical nuclear localization sequence (cNLS from nucleoplasmin (Npl, which was submitted to multiple 100 ns of MD simulations. Representative conformations were selected for calculating the 87 lowest frequencies NMs of vibration, and a displacement approach was applied along each NM. Based on geometric criteria, using the radius of curvature and inter-repeat angles as the reference metrics, the main motions of Impα were described. Moreover, we determined the salt bridges, hydrogen bonds and hydrophobic interactions in the Impα-NplNLS interface. Our results show the bending and twisting motions participating in the recognition of nuclear proteins, allowing the accommodation and adjustment of a classical bipartite NLS sequence. The essential contacts for the nuclear import were also described and were mostly in agreement with previous studies, suggesting that the residues in the cNLS linker region establish important contacts with Impα adjusting the cNLS backbone. The MD simulations combined with NM analysis can be applied to the Impα-NLS system to help understand interactions between Impα and cNLSs and the analysis of non-classic NLSs.

  6. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  7. Predicting the wheel rolling resistance regarding important motion parameters using the artificial neural network

    F Gheshlaghi

    2016-04-01

    Full Text Available Introduction: Rolling resistance is one of the most substantial energy losses when the wheel moves on soft soil. Rolling resistance value optimization will help to improve energy efficiency. Accurate modeling of the interaction soil-tire is an important key to this optimization and has eliminated the need for costly field tests and has reduced the time required to test. Rolling resistance will change because of the tire and wheel motion parameters and characteristics of the ground surface. Some tire design parameters are more important such as the tire diameter, width, tire aspect ratio, lugs form, inflation pressure and mechanical properties of tire structure. On the other hand, the soil or ground surface characteristics include soil type; moisture content and bulk density have an important role in this phenomenon. In addition, the vertical load and the wheel motion parameters such as velocity and tire slip are the other factors which impact on tire rolling resistance. According to same studies about the rolling resistance of the wheel, the wheel is significantly affected by the dynamic load. Tire inflation pressure impacted on rolling resistance of tires that were moving on hard surfaces. Studies showed that the rolling resistance of tires with low inflation pressure (less than 100 kPa was too high. According to Zoz and Griss researches, increasing the tire pressure increases rolling resistance on soft soil but reduces the rolling resistance of on-road tires and tire-hard surface interaction. Based on these reports, the effect of velocity on tire rolling resistance for tractors and vehicles with low velocity (less than 5 meters per second is usually insignificant. According to Self and Summers studies, rolling resistance of the wheel is dramatically affected by dynamic load on the wheel. Artificial Neural Network is one of the best computational methods capable of complex regression estimation which is an advantage of this method compared with

  8. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  9. The importance of stimulus noise analysis for self-motion studies.

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  10. Ambient Noise Green's Function Simulation of Long-Period Ground Motions for Reverse Faulting

    Miyake, H.; Beroza, G. C.

    2009-12-01

    Long-time correlation of ambient seismic noise has been demonstrated as a useful tool for strong ground motion prediction [Prieto and Beroza, 2008]. An important advantage of ambient noise Green's functions is that they can be used for ground motion simulation without resorting to either complex 3-D velocity structure to develop theoretical Green’s functions, or aftershock records for empirical Green’s function analysis. The station-to-station approach inherent to ambient noise Green’s functions imposes some limits to its application, since they are band-limited, applied at the surface, and for a single force. We explore the applicability of this method to strong motion prediction using the 2007 Chuetsu-oki, Japan, earthquake (Mw 6.6, depth = 9 km), which excited long-period ground motions in and around the Kanto basin almost 200 km from the epicenter. We test the performance of ambient noise Green's function for long-period ground motion simulation. We use three components of F-net broadband data at KZK station, which is located near the source region, as a virtual source, and three components of six F-net stations in and around the Kanto basin to calculate the response. An advantage to applying this approach in Japan is that ambient-noise sources are active in diverse directions. The dominant period of the ambient noise for the F-net datasets is mostly 7 s over the year, and amplitudes are largest in winter. This period matches the dominant periods of the Kanto and Niigata basins. For the 9 components of the ambient noise Green’s functions, we have confirmed long-period components corresponding to Love wave and Rayleigh waves that can be used for simulation of the 2007 Chuetsu-oki earthquake. The relative amplitudes, phases, and durations of the ambient noise Green’s functions at the F-net stations in and around the Kanto basin respect to F-net KZK station are fairly well matched with those of the observed ground motions for the 2007 Chuetsu

  11. Molecular Motions in Functional Self-Assembled Nanostructures

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  12. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  13. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. 'Magnetic Resonance Motion Imaging' for functional diagnosis of the musculo-skeletal system

    Friedrich, K.M.

    2002-06-01

    Purpose: radiological studies of joint and spine function are an important part of the diagnosis and therapy management for musculo-skeletal diseases affecting range-of-motion. The objective of this study was to investigate the integration and developement of the clinical application of currently available MR-tomographic techniques, which can be summarized as 'Magnetic Resonance Motion Imaging (MRMI)'. Material and methods: five healthy volunteers (three women and two men; mean age 21.8?4.4) and ten patients (eight women and two men; mean age 31.4?12.6) took part in the study. A total of 21 examinations with real-time motion-MRI were performed on selected peripheric joints (seven patellofemoral joints, six femorotibial joints, one cervical spine, two wrists, three ankles and two temporomandibular joints) with a 1.0T unit (Philips Intera T10) using T1-weighted gradient-echo and opposed-phase imaging sequences. For the examination of the patellofemoral joint, the femorotibial joint, the wrist and the tmj a dedicated positioning-device was used. Results were correlated with static MR-Images. Results: the quickly parcticable sequence of the examinations was not straining for the patients. The quality of imaging was only insignificantly lower as compared with static gradient-echo sequences. No artifacts were seen which could influence the evaluation. The visualisation of motions was very good. The quantification of the maximum extent of dysfunctions could be judged better with a higher sensitivity in real-time-mode than in static images. Conclusion: from the results of this study a three-step-plan for the radiodiagnostic procedure in cases of functional disorders of selected joints and the spine can be deduced, which uses static MR-imaging as first step. In case of unsolved questions MRMI is done (step 2). To obtain measurements, static MR-Images at different points of the motion range(kinematic MR-Imaging) should be done (step 3). This plan of 'motion-MRI' is well

  15. Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points.

    Siegel, Joshua S; Power, Jonathan D; Dubis, Joseph W; Vogel, Alecia C; Church, Jessica A; Schlaggar, Bradley L; Petersen, Steven E

    2014-05-01

    Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Copyright © 2013 Wiley Periodicals, Inc.

  16. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Ashina, Messoud; Boas, David A

    2012-01-01

    Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS datasets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.

  17. Adaptively Learning an Importance Function Using Transport Constrained Monte Carlo

    Booth, T.E.

    1998-01-01

    It is well known that a Monte Carlo estimate can be obtained with zero-variance if an exact importance function for the estimate is known. There are many ways that one might iteratively seek to obtain an ever more exact importance function. This paper describes a method that has obtained ever more exact importance functions that empirically produce an error that is dropping exponentially with computer time. The method described herein constrains the importance function to satisfy the (adjoint) Boltzmann transport equation. This constraint is provided by using the known form of the solution, usually referred to as the Case eigenfunction solution

  18. Modeling of hand function by mapping the motion of individual muscle voxels with MR imaging velocity tagging

    Drace, J.; Pele, N.; Herfkens, R.J.

    1990-01-01

    This paper reports on a method to correlate the three-dimensional (3D) motion of the fingers with the complex motion of the intrinsic, flexor, and extensor muscles. A better understanding of hand function is important to the medical, surgical, and rehabilitation treatment of patients with arthritic, neurogenic, and mechanical hand dysfunctions. Static, high-resolution MR volumetric imaging defines the 3D shape of each individual bone in the hands of three subjects and three patients. Single-section velocity-tagging sequences (VIGOR) are performed through the hand and forearm, while the actual 3D motion of the hand is computed from the MR model and readings of fiber-optic goniometers attached to each finger. The accuracy of the velocity tagging is also tested with a motion phantom

  19. estimating an aggregate import demand function for ghana

    Administrator

    we estimate an import demand function for Ghana for the period 1970 to ... results also indicate that economic growth (real GDP) and depreciation in the ... 80% of shocks to real exchange rates, merchandise imports and GDP ... imports; capital goods, 43 percent; intermediate ... merchandise imports (World Bank, 2004). For.

  20. Importance of congestive heart failure and interaction of congestive heart failure and left ventricular systolic function on prognosis in patients with acute myocardial infarction

    Køber, L; Torp-Pedersen, C; Pedersen, O D

    1996-01-01

    or persistent. Wall motion index and CHF are correlated. Furthermore, there is an interaction between wall motion index and CHF. The prognostic importance of wall motion index depends on whether patients have CHF or not: the risk ratio associated with decreasing 1 wall motion index unit is 3.0 (2.6 to 3......Left ventricular (LV) systolic function and congestive heart failure (CHF) are important predictors of long-term mortality after acute myocardial infarction. The importance of transient CHF and the interaction of CHF and LV function on prognosis has not been studied in detail previously....... In the TRAndolapril Cardiac Evaluation Study, 6,676 consecutive patients with acute myocardial infarction 1 to 6 days earlier had LV systolic function quantified as wall motion index (echocardiography), which is closely correlated to LV ejection fraction. To study the interaction of CHF and wall motion index on long...

  1. Exponential functionals of Brownian motion, I: Probability laws at fixed time

    Matsumoto, Hiroyuki; Yor, Marc

    2005-01-01

    This paper is the first part of our survey on various results about the distribution of exponential type Brownian functionals defined as an integral over time of geometric Brownian motion. Several related topics are also mentioned.

  2. Global motion perception is associated with motor function in 2-year-old children.

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, Pmotor scores (r 2 =0.06, pmotor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The importance of being equivalent: Newton's two models of one-body motion

    Pourciau, Bruce

    2004-05-01

    As an undergraduate at Cambridge, Newton entered into his "Waste Book" an assumption that we have named the Equivalence Assumption (The Younger): "If a body move progressively in some crooked line [about a center of motion] ..., [then this] crooked line may bee conceived to consist of an infinite number of streight lines. Or else in any point of the croked line the motion may bee conceived to be on in the tangent". In this assumption, Newton somewhat imprecisely describes two mathematical models, a "polygonal limit model" and a "tangent deflected model", for "one-body motion", that is, for the motion of a "body in orbit about a fixed center", and then claims that these two models are equivalent. In the first part of this paper, we study the Principia to determine how the elder Newton would more carefully describe the polygonal limit and tangent deflected models. From these more careful descriptions, we then create Equivalence Assumption (The Elder), a precise interpretation of Equivalence Assumption (The Younger) as it might have been restated by Newton, after say 1687. We then review certain portions of the Waste Book and the Principia to make the case that, although Newton never restates nor even alludes to the Equivalence Assumption after his youthful Waste Book entry, still the polygonal limit and tangent deflected models, as well as an unspoken belief in their equivalence, infuse Newton's work on orbital motion. In particular, we show that the persuasiveness of the argument for the Area Property in Proposition 1 of the Principia depends crucially on the validity of Equivalence Assumption (The Elder). After this case is made, we present the mathematical analysis required to establish the validity of the Equivalence Assumption (The Elder). Finally, to illustrate the fundamental nature of the resulting theorem, the Equivalence Theorem as we call it, we present three significant applications: we use the Equivalence Theorem first to clarify and resolve questions

  4. Importance of predictor variables for models of chemical function

    U.S. Environmental Protection Agency — Importance of random forest predictors for all classification models of chemical function. This dataset is associated with the following publication: Isaacs , K., M....

  5. Estimating Aggregate Import-Demand Function In Nigeria: A Co ...

    This paper investigates the behaviour of Nigeria's aggregate imports between the periods 1980-2005. In the empirical analysis of the aggregate import demand function for Nigeria, cointegration and Error Correction modeling approaches have been used. Our econometric estimates suggest that real GDP largely explains ...

  6. Integrals of the motion, Green functions, and coherent states of dynamical systems

    Dodonov, V.V.; Malkin, I.A.; Man'ko, V.I.

    1975-01-01

    The connection between the integrals of the motion of a quantum system and its Green function is established. The Green function is shown to be the eigenfunction of the integrals of the motion which describe initial points of the system trajectory in the phase space of average coordinates and moments. The explicit expressions for the Green functions of the N-dimensional system with the Hamiltonians which is the most general quadratic form of coordinates and momenta with time-dependent coefficients is obtained in coordinate, momentum, and coherent states representations. The Green functions of the nonstationary singular oscillator and of the stationary Schroedinger equation are also obtained. (author)

  7. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis

    2012-01-01

    a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55....... Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields......%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data....

  8. Uniform risk functionals for characterization of strong earthquake ground motions

    Anderson, J.G.; Trifunac, M.D.

    1978-01-01

    A uniform risk functional (e.g., Fourier spectrum, response spectrum, duration, etc.) is defined so that the probability that it is exceeded by some earthquake during a selected period of time is independent of the frequency of seismic waves. Such a functional is derived by an independent calculation, at each frequency, for the probability that the quantity being considered will be exceeded. Different aspects of the seismicity can control the amplitude of a uniform risk functional in different frequency ranges, and a uniform risk functional does not necessarily describe the strong shaking from any single earthquake. To be useful for calculating uniform risk functionals, a scaling relationship must provide an independent estimate of amplitudes of the functional in several frequency bands. The scaling relationship of Trifunac (1976) for Fourier spectra satisfies this requirement and further describes the distribution of spectral amplitudes about the mean trend; here, it is applied to find uniform risk Fourier amplitude spectra. In an application to finding the uniform risk spectra at a realistic site, this method is quite sensitive to the description of seismicity. Distinct models of seismicity, all consistent with our current level of knowledge of an area, can give significantly different risk estimates

  9. Risk Importance Determination Process of CANDU Maintenance Rule Function

    Seo, Mi Ro; Jo, Ha Yan; Hwang, Mi Jeong

    2009-01-01

    In Korea, Maintenance Rule (MR) programs development for all PWR were completed. However, in case of PHWR (CANDU type, Wolsong Unit 1,2,3,4), the study of MR program was delayed, since the design concepts and operating experiences are different from those of PWR. This paper describes the process and results for the risk importance determination process of functions in scope. The risk importance was determined by PSA Basic Event Mapping and Delphi method. For Delphi evaluation, Delphi evaluation item for CANDU need to be developed because the design and normal operation functions are different from PWR

  10. Direct fragmentation of quarkonia including Fermi motion using light-cone wave function

    Nobary, M.A. Gomshi [Razi University, Department of Physics, Faculty of Science, Kermanshah (Iran); A.E.O.I., Center for Theoretical Physics and Mathematics, Tehran (Iran); Javadi, B. [Razi University, Department of Physics, Faculty of Science, Kermanshah (Iran)

    2005-07-01

    We investigate the effect of Fermi motion on the direct fragmentation of the J/{psi} and {upsilon} states employing a light-cone wave function. Consistent with such a wave function we set up the kinematics of a heavy quark fragmenting into quarkonia such that the Fermi motion of the constituents splits into a longitudinal as well as a transverse direction and thus calculate the fragmentation functions for these states. In the framework of our investigation, we estimate that the fragmentation probabilities of J/{psi} and {upsilon} may increase at least up to 14 percent when including this degree of freedom. (orig.)

  11. Logging cuts the functional importance of invertebrates in tropical rainforest.

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  12. Logging cuts the functional importance of invertebrates in tropical rainforest

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  13. Anyonic partition functions and windings of planar Brownian motion

    Desbois, J.; Heinemann, C.; Ouvry, S.

    1995-01-01

    The computation of the N-cycle Brownian paths contribution F N (α) to the N-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that F N 0 (α)=product k=1 N-1 [1-(N/k)α]. In the paramount three-anyon case, one can show that F 3 (α) is built by linear states belonging to the bosonic, fermionic, and mixed representations of S 3

  14. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E

    2017-09-11

    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  15. Uncertainty importance analysis using parametric moment ratio functions.

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2014-02-01

    This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.

  16. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  17. Rudimentary functions:Important reminders of history and relationship

    Natalia Y. Collings

    2018-03-01

    Full Text Available Background. When Vygotsky suggested the term rudimentary functions for psychological phenomena, he drew a parallel with organismic rudiments that existed and continue to exist in a number of biological species. These rudiments used to play an important role in the life of an organism and allow us to study that life in the process of its development. Vygotsky originally gave three explicit examples of psychological rudimentary functions: 1 attributing an important decision to the result of a solitaire card game, 2 tying a knot in a handkerchief in order to remember and do something later, and 3 counting on one’s fingers. Objective. The purpose of this article is to offer a contemporary overview and paths for development of L.S. Vygotsky’s notion of rudimentary function. Design. This paper, in the genre of a theoretical article, drew on existing research and theoretical literature to advance a theory. I analyzed Vygotsky’s original example of a solitaire game and similar actions (for example, flipping a coin, arguing that these actions represent key events mediating choice and exercising human will over affect. I then focused on three more psychological functions that fit Vygotsky’s definition of rudiments: 1 photographic memory and déjà vu as instances of historically primitive eidetic memory, 2 talking to oneself aloud as a rudiment of a key event forming the self-regulatory mechanism of inner speech in childhood, and 3 fantasizing, which could remind us of our young age, when imagination readily created what was lacking in external world. Results. This analysis allowed me to vividly illustrate the historical and relational focus of Vygotsky’s theories. Conclusions. Rudimentary functions, often perceived as mysterious, in their simplicity can be powerful reminders that historically primitive functions do not disappear, but enter complex relationships with other psychological functions, and that many relationships are possible within

  18. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  19. Dynamic of functional indicators’ changes of students having harmful habits (on example of smoking under influence of organized motion functioning

    Pidpomoga A.Y.

    2015-02-01

    Full Text Available Purpose: determination of organized motion functioning on functional indicators and somatic health of 1st-2nd year students, who have harmful habits. Material: In experiment 286 students participated. Pedagogic experiment was conducted in form of optional classes (3 times a week during 9 academic months. Results: we determined percentage of smoking students and their motivation to certain kinds of sports. Considering students’ motivation appropriate trainings were organized. Results of functional state indicators and somatic health level of smoking students, practicing and not practicing organized motion functioning have been presented. Conclusions: it was found that students are attracted by specific kinds of motor functioning. Among offered kinds of sports outdoor games, athletic gymnastic were preferred. The least attractive kinds were: bicycle sport, non- traditional kinds, gymnastic, chess.

  20. Dynamic of functional indicators’ changes of students having harmful habits (on example of smoking under influence of organized motion functioning

    A.Y. Pidpomoga

    2015-04-01

    Full Text Available Purpose: determination of organized motion functioning on functional indicators and somatic health of 1 st-2 nd year students, who have harmful habits. Material: In experiment 286 students participated. Pedagogic experiment was conducted in form of optional classes (3 times a week during 9 academic months. Results: we determined percentage of smoking students and their motivation to certain kinds of sports. Considering students’ motivation appropriate trainings were organized. Results of functional state indicators and somatic health level of smoking students, practicing and not practicing organized motion functioning have been presented. Conclusions: it was found that students are attracted by specific kinds of motor functioning. Among offered kinds of sports outdoor games, athletic gymnastic were preferred. The least attractive kinds were: bicycle sport, non- traditional kinds, gymnastic, chess.

  1. Assessment of otolith function using cervical and ocular vestibular evoked myogenic potentials in individuals with motion sickness.

    Singh, Niraj Kumar; Pandey, Preeti; Mahesh, Soumya

    2014-01-01

    The involvement of otolith organs in motion sickness has long been debated; however, equivocal findings exist in literature. The present study thus aimed at evaluating the otolith functioning in individuals with motion sickness. Cervical and ocular vestibular evoked myogenic potentials were recorded from 30 individuals with motion sickness, 30 professional drivers and 30 healthy individuals. The results revealed no significant difference in latencies and amplitudes between the groups (p>0.05). Nonetheless, thresholds were significantly elevated and inter-aural asymmetry ratio significantly higher in motion sickness susceptible group (p otolithic function seem the likely reasons behind motion sickness susceptibility.

  2. A canonical process for estimation of convex functions : The "invelope" of integrated Brownian motion +t4

    Groeneboom, P.; Jongbloed, G.; Wellner, J.A.

    2001-01-01

    A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely

  3. Critical comparison between equation of motion-Green's function methods and configuration interaction methods: analysis of methods and applications

    Freed, K.F.; Herman, M.F.; Yeager, D.L.

    1980-01-01

    A description is provided of the common conceptual origins of many-body equations of motion and Green's function methods in Liouville operator formulations of the quantum mechanics of atomic and molecular electronic structure. Numerical evidence is provided to show the inadequacies of the traditional strictly perturbative approaches to these methods. Nonperturbative methods are introduced by analogy with techniques developed for handling large configuration interaction calculations and by evaluating individual matrix elements to higher accuracy. The important role of higher excitations is exhibited by the numerical calculations, and explicit comparisons are made between converged equations of motion and configuration interaction calculations for systems where a fundamental theorem requires the equality of the energy differences produced by these different approaches. (Auth.)

  4. Assessment of left ventricular wall motion and function by cross-sectional echocardiography

    Ono, Akifumi; Hirata, Shunkichi; Ishikawa, Kyozo

    1982-01-01

    The clinical efficacy of cross-sectional echocardiography (CSE) was evaluated with M-mode echocardiography and radionuclide cardioangiography (RCG) in 50 cases including 30 patients with myocardial infarction. Segmental wall motion by CSE was highly correlated with segmental wall motion and left ventricular ejection fraction by RCG (r = 0.89 in the former, r = -0.84 in the latter). On the other hand, the left ventricular ejection fraction by M-mode echocardiography revealed a fairly well correlation with that by RCG ( r = 0.68). These results suggest that, as compared with RCG, CSE is quite useful in an evaluation of left ventricular function and in a detection of segmental wall motion abnormalities. (author)

  5. Motion of a damped oscillating sphere as a function of the medium viscosity

    Mendoza-Arenas, J J; Perico, E L D; Fajardo, F

    2010-01-01

    In this paper, an experimental setup for undergraduate courses to study the damped harmonic motion of a sphere inside a fluid as a function of the medium viscosity is presented. To observe the dependence of the oscillation of the sphere on the medium viscosity, different concentrations of glycerin in water were used. The sphere is suspended on the end of a spring and its displacement is indirectly obtained using a force sensor. To describe the sphere motion, a drag force different from that given by Stokes' law is used. Our experimental results fit satisfactorily when semiempirical coefficients are introduced in the model. The frequency and relaxation time of the sphere oscillations diminish as the concentration of glycerin increases. Boundary effects due to the fluid container size are studied. We found that when the container size decreases the oscillations decay more rapidly due to a greater resistance to the motion of the sphere.

  6. Evaluation of cardiac motion and function by cine magnetic resonance imaging

    Kondo, Takeshi; Kurokawa, Hiroshi; Anno, Hirofumi

    1992-01-01

    Cardiac cine magnetic resonance imaging (MRI) was studied to evaluate the cardiac motion and function, and a water-stream phantom study was performed to clarify whether it was possible to quantitatively assess the valvular regurgitation flow by the size of the flow void. In normal subjects, the left ventricular (LV) epicardial apex swung up to the base only a few millimeters, and the mitral annulus ring moved about 14 mm as mean value toward the apex during systole. Those motions of mitral annulus ring may contribute to the left atrial filling. The LV longitudinal shortening and torsions were shown by the tagging method. This tagging method was the best method for estimating cardiac motions. Cardiac cine MRI using software including a modified Simpson's method program and a wall motion analysis program was useful for routine LV volumetry and wall motion analysis because it was a simple and reliable method. Our water-stream phantom studies demonstrated that it might be difficult to perform quantitative evaluation of valvular regurgitation flow by using only the size of the flow void without acquiring information relating to the orifice area. (author)

  7. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  8. The functional importance of disease-associated mutation

    Klein Teri E

    2002-09-01

    Full Text Available Abstract Background For many years, scientists believed that point mutations in genes are the genetic switches for somatic and inherited diseases such as cystic fibrosis, phenylketonuria and cancer. Some of these mutations likely alter a protein's function in a manner that is deleterious, and they should occur in functionally important regions of the protein products of genes. Here we show that disease-associated mutations occur in regions of genes that are conserved, and can identify likely disease-causing mutations. Results To show this, we have determined conservation patterns for 6185 non-synonymous and heritable disease-associated mutations in 231 genes. We define a parameter, the conservation ratio, as the ratio of average negative entropy of analyzable positions with reported mutations to that of every analyzable position in the gene sequence. We found that 84.0% of the 231 genes have conservation ratios less than one. 139 genes had eleven or more analyzable mutations and 88.0% of those had conservation ratios less than one. Conclusions These results indicate that phylogenetic information is a powerful tool for the study of disease-associated mutations. Our alignments and analysis has been made available as part of the database at http://cancer.stanford.edu/mut-paper/. Within this dataset, each position is annotated with the analysis, so the most likely disease-causing mutations can be identified.

  9. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  10. Dominance of free wall radial motion in global right ventricular function of heart transplant recipients.

    Lakatos, Bálint Károly; Tokodi, Márton; Assabiny, Alexandra; Tősér, Zoltán; Kosztin, Annamária; Doronina, Alexandra; Rácz, Kristóf; Koritsánszky, Kinga Bianka; Berzsenyi, Viktor; Németh, Endre; Sax, Balázs; Kovács, Attila; Merkely, Béla

    2018-03-01

    Assessment of right ventricular (RV) function using conventional echocardiography might be inadequate as the radial motion of the RV free wall is often neglected. Our aim was to quantify the longitudinal and the radial components of RV function using three-dimensional (3D) echocardiography in heart transplant (HTX) recipients. Fifty-one HTX patients in stable cardiovascular condition without history of relevant rejection episode or chronic allograft vasculopathy and 30 healthy volunteers were enrolled. RV end-diastolic (EDV) volume and total ejection fraction (TEF) were measured by 3D echocardiography. Furthermore, we quantified longitudinal (LEF) and radial ejection fraction (REF) by decomposing the motion of the RV using the ReVISION method. RV EDV did not differ between groups (HTX vs control; 96 ± 27 vs 97 ± 2 mL). In HTX patients, TEF was lower, however, tricuspid annular plane systolic excursion (TAPSE) decreased to a greater extent (TEF: 47 ± 7 vs 54 ± 4% [-13%], TAPSE: 11 ± 5 vs 21 ± 4 mm [-48%], P < .0001). In HTX patients, REF/TEF ratio was significantly higher compared to LEF/TEF (REF/TEF vs LEF/TEF: 0.58 ± 0.10 vs 0.27 ± 0.08, P < .0001), while in controls the REF/TEF and LEF/TEF ratio was similar (0.45 ± 0.07 vs 0.47 ± 0.07). Current results confirm the superiority of radial motion in determining RV function in HTX patients. Parameters incorporating the radial motion are recommended to assess RV function in HTX recipients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  12. Study of the perception of visual motion in amblyopia using functional MRI

    Lu Guangming; Zhang Zhiqiang; Zhou Wenzhen; Zheng Ling; Yin Jie; Liang Ping

    2006-01-01

    Objective: To research the pathophysiological mechanism of anisometropic and strabismic amblyopia through observation of the cortex activation under the stimulus of visual motion using functional MRI (fMRI). Methods: Seven patients with anisometropic amblyopia and 10 patients with strabismic amblyopia were examined under the stimulus with the paradigm that task and control states were rotating and stationary grating with 1.5 T MR scanners. The data were processed using software of SPM offline, and the result was analyzed with single subject. An index of interocular difference of activation (IDA) was set for Mann-Whitney rank sum test to denote the extension of difference between activation of each eye. Results: There appeared activation on bilaterally occipital lobe in both group of amblyopia patients. There was mild activation on frontal lobe when amblyopic eyes were stimulated, but no activation when sound eyes. The MT area was regarded as region of interesting when analyzed, the activation of all sound eyes was stronger than amblyopic eyes in 7 anisometropic amblyopia patients. There were 5 patients whose level of activation of amblyopic eye's were lower than sound eye, and four were higher than sound eye, among the strabismic amblyopia patients except one patient's activation was none. There was statistical difference between IDA value of two groups (Z=2.382, P=0.017). Conclusion: There are more cortex areas activated of amblyopic eye than sound eye when single eye is stimulated. The function of visual motion maybe has been affected in anisometropic amblyopia. In strabismic amblyopia, the function of visual motion may relate to the underlying mechanism of strabismic, which suggests, as for the impairment of perception of visual motion, there is difference between two types of amblyopia. (authors)

  13. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  14. Motion estimation for cardiac functional analysis using two x-ray computed tomography scans.

    Fung, George S K; Ciuffo, Luisa; Ashikaga, Hiroshi; Taguchi, Katsuyuki

    2017-09-01

    This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77

  15. Similar range of motion and function after resurfacing large-head or standard total hip arthroplasty

    Penny, Jeannette Østergaard; Ovesen, Ole; Varmarken, Jens-Erik

    2013-01-01

    BACKGROUND AND PURPOSE: Large-size hip articulations may improve range of motion (ROM) and function compared to a 28-mm THA, and the low risk of dislocation allows the patients more activity postoperatively. On the other hand, the greater extent of surgery for resurfacing hip arthroplasty (RHA......° (35), 232° (36), and 225° (30) respectively, but the differences were not statistically significant. The 3 groups were similar regarding Harris hip score, UCLA activity score, step rate, and sick leave. INTERPRETATION: Head size had no influence on range of motion. The lack of restriction allowed...... for large articulations did not improve the clinical and patient-perceived outcomes. The more extensive surgical procedure of RHA did not impair the rehabilitation. This project is registered at ClinicalTrials.gov under # NCT01113762....

  16. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Ruppel Mirjana

    2017-09-01

    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  17. Inter-slice motion correction using spatiotemporal interpolation for functional magnetic resonance imaging of the moving fetus

    Limperopoulos, Catherine; You, Wonsang

    2017-01-01

    Fetal motion continues to be one of the major artifacts in in-utero functional MRI; interestingly few methods have been developed to address fetal motion correction. In this study, we propose a robust method for motion correction in fetal fMRI by which both inter-slice and inter-volume motion artifacts are jointly corrected. To accomplish this, an original volume is temporally split into odd and even slices, and then voxel intensities are spatially and temporally interpolated in the process o...

  18. Electromagnetic radiation damping of charges in external gravitational fields (weak field, slow motion approximation). [Harmonic coordinates, weak field slow-motion approximation, Green function

    Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.

  19. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  20. The scaling behavior of hand motions reveals self-organization during an executive function task

    Anastas, Jason R.; Stephen, Damian G.; Dixon, James A.

    2011-05-01

    Recent approaches to cognition explain cognitive phenomena in terms of interaction-dominant dynamics. In the current experiment, we extend this approach to executive function, a construct used to describe flexible, goal-oriented behavior. Participants were asked to perform a widely used executive function task, card sorting, under two conditions. In one condition, participants were given a rule with which to sort the cards. In the other condition, participants had to induce the rule from experimenter feedback. The motion of each participant’s hand was tracked during the sorting task. Detrended fluctuation analysis was performed on the inter-point time series using a windowing strategy to capture changes over each trial. For participants in the induction condition, the Hurst exponent sharply increased and then decreased. The Hurst exponents for the explicit condition did not show this pattern. Our results suggest that executive function may be understood in terms of changes in stability that arise from interaction-dominant dynamics.

  1. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  2. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  3. Seafloor ecosystem functioning: the importance of organic matter priming

    Van Nugteren, P.; Moodley, L.; Brummer, G.J.; Heip, C.H.R.; Herman, P.M.J.; Middelburg, J.J.

    2009-01-01

    Organic matter (OM) remineralization may be considered a key function of the benthic compartment of marine ecosystems and in this study we investigated if the input of labile organic carbon alters mineralization of indigenous sediment OM (OM priming). Using 13C-enriched diatoms as labile tracer

  4. Is recreational hunting important for landscape multi-functionality?

    Lund, Jens Friis; Jensen, Frank Søndergaard

    2017-01-01

    Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity, and prese......Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity......, and preservation of valued and/or threatened animal and plant species. Recreational hunting may thus contribute to preserve and enhance landscape multifunctionality. Yet, little is known about the importance of hunting interests in motivating such landscape management. In this article, we seek to shed light...

  5. The importance of team functioning to natural resource planning outcomes.

    Stern, Marc J; Predmore, S Andrew

    2012-09-15

    In its recent history, the U.S. Forest Service is among many federal land management agencies struggling with questions concerning why its planning procedures are sometimes inefficient, perform poorly in the eyes of the public, and fail to deliver outputs that advance agency mission. By examining a representative sample of National Environmental Policy Act (NEPA) processes conducted by the agency between 2007 and 2009, we provide new insights into what drives outcomes in these planning processes. We examined team leaders' perceptions of the following outcomes: achievement of agency goals and NEPA mandates, process efficiency, public relations, and team outcomes. The most consistently important predictors of positive outcomes were team harmony and a clearly empowered team leader. Other factors, such as perceptions of the use of best science, a clear and unambiguous purpose and need, team turnover (personnel changes during the process), extra-agency engagement, and intra-agency relations, were also important, but played a less consistent role. The findings suggest the importance of empowering team leaders and team members through enhancing elements of discretion, responsibility, clear role definition, collaborative interdisciplinary deliberation, and perceived self-efficacy. The results also suggest the importance of genuine concern and respect for participating publics and effective inter-agency coordination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Perturbation theory and importance functions in integral transport formulations

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  7. Functional Mitochondria Are Important for the Effect of Resveratrol

    Widlund, Anne Lykkegaard; Baral, Kaushal; Dalgaard, Louise Torp

    2017-01-01

    Resveratrol (Resv) is a polyphenol reported to modulate mitochondrial activity. The aim was to use HeLa and 143B cells to characterize the action of Resv on mitochondrial activity, cell size and proliferation using wild type (WT) and Rho 0 cells deficient in mitochondrial DNA. In both HeLa WT and......, but not in Rho 0 when treated with Resv. Overall, the findings presented indicate that functional mitochondria are a prerequisite for cell enlargement by Resv....

  8. Chimeric β-Lactamases: Global Conservation of Parental Function and Fast Time-Scale Dynamics with Increased Slow Motions

    Clouthier, Christopher M.; Morin, Sébastien; Gobeil, Sophie M. C.; Doucet, Nicolas; Blanchet, Jonathan; Nguyen, Elisabeth; Gagné, Stéphane M.; Pelletier, Joelle N.

    2012-01-01

    Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions. PMID:23284969

  9. Hydrogen Exchange Differences between Chemoreceptor Signaling Complexes Localize to Functionally Important Subdomains

    2015-01-01

    The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes. PMID:25420045

  10. A Motion Planning Approach to Studying Molecular Motions

    Amato, Nancy M.; Tapia, Lydia; Thomas, Shawna

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer's disease

  11. firestar--advances in the prediction of functionally important residues.

    Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L

    2011-07-01

    firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php.

  12. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  13. Understanding the Importance of the Teres Minor for Shoulder Function: Functional Anatomy and Pathology.

    Williams, Matthew D; Edwards, Thomas Bradley; Walch, Gilles

    2018-03-01

    Although the teres minor is often overlooked in a normal shoulder, it becomes a key component in maintaining shoulder function when other rotator cuff tendons fail. The teres minor maintains a balanced glenohumeral joint and changes from an insignificant to the most significant external rotator in the presence of major rotator cuff pathology. The presence or absence of the teres minor provides prognostic information on the outcomes of reverse total shoulder arthroplasty and tendon transfers. Clinical tests include the Patte test, the Neer dropping sign, the external rotation lag sign, and the Hertel drop sign. Advanced imaging of the teres minor can be used for classification using the Walch system. Understanding the function and pathology surrounding the teres minor is paramount in comprehensive management of the patient with shoulder pathology. Appropriate clinical examination and imaging of the teres minor are important for preoperative stratification and postoperative expectations.

  14. The importance of phrenic nerve preservation and its effect on long-term postoperative lung function after pneumonectomy.

    Kocher, Gregor J; Poulson, Jannie Lysgaard; Blichfeldt-Eckhardt, Morten Rune; Elle, Bo; Schmid, Ralph A; Licht, Peter B

    2016-04-01

    The importance of phrenic nerve preservation during pneumonectomy remains controversial. We previously demonstrated that preservation of the phrenic nerve in the immediate postoperative period preserved lung function by 3-5% but little is known about its long-term effects. We, therefore, decided to investigate the effect of temporary ipsilateral cervical phrenic nerve block on dynamic lung volumes in mid- to long-term pneumonectomy patients. We investigated 14 patients after a median of 9 years post pneumonectomy (range: 1-15 years). Lung function testing (spirometry) and fluoroscopic and/or sonographic assessment of diaphragmatic motion on the pneumonectomy side were performed before and after ultrasonographic-guided ipsilateral cervical phrenic nerve block by infiltration with lidocaine. Ipsilateral phrenic nerve block was successfully achieved in 12 patients (86%). In the remaining 2 patients, diaphragmatic motion was already paradoxical before the nerve block. We found no significant difference on dynamic lung function values (FEV1 'before' 1.39 ± 0.44 vs FEV1 'after' 1.38 ± 0.40; P = 0.81). Induction of a temporary diaphragmatic palsy did not significantly influence dynamic lung volumes in mid- to long-term pneumonectomy patients, suggesting that preservation of the phrenic nerve is of greater importance in the immediate postoperative period after pneumonectomy. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.

    Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam

    2005-06-01

    Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.

  16. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter

    2018-01-01

    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability......-two patients were randomized to either 4 months of physiotherapist-supervised, moderate, progressive, strength training (n = 50), physiotherapist-supervised NW (n = 50), or unsupervised HBE (n = 52). Maximal isometric hip and thigh muscle strength and leg extensor power and active hip ROM were assessed...... at baseline 2, 4, and 12 months. RESULTS: Intention-to-treat-analyses did not show any significant between-group differences for improvements in muscle strength and power or ROM at any time points. Short-term significant (p

  17. Published attenuation functions compared to 6/29/1992 Little Skull Mountain earthquake motion

    Hofmann, R.B.; Ibrahim, A.K.

    1994-01-01

    Several western U.S. strong motion acceleration earthquake attenuation functions are compared to peak accelerations recorded during the 6/29/1992 Little Skull Mountain, Nevada earthquake. The comparison revealed that there are several definitions of site-to-source distance and at least two definitions of peak acceleration in use. Probabilistic seismic hazard analysis (PSHA) codes typically estimate accelerations assuming point sources. The computer code, SEISM 1, was developed for the eastern U.S. where ground acceleration is usually defined in terms of epicentral distance. Formulae whose distance definitions require knowledge of the earthquake fault slip zone dimensions may predict very different near-field accelerations when epicentral distance is used. Approximations to achieve more consistent PSHA results are derived

  18. Analysis of projectile motion with quadratic air resistance from a nonzero height using the Lambert W function

    Chokri Hadj Belgacem

    2017-03-01

    Full Text Available Using the Lambert W function, the quadratic resisted projectile motion with an approximation of low-angle trajectory has been studied where the launching point is assumed to be higher than the landing point. Analytical solutions for the range and the time of flight are presented in terms of the secondary branch of the Lambert function W−1.

  19. Respiration-Correlated Image Guidance Is the Most Important Radiotherapy Motion Management Strategy for Most Lung Cancer Patients

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte; Brink, Carsten; Juhler-Nøttrup, Trine

    2012-01-01

    Purpose: The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population. Materials and Methods: Images were acquired from 46 lung cancer patients participating in four separate protocols at three institutions in Europe and the United States. Seven patients were imaged using fluoroscopy, and 39 patients were imaged using 4DCT. The magnitude of respiratory tumor motion was measured. The required treatment field margins were calculated using a statistical recipe (van Herk M, et al. Int J Radiat Oncol Biol Phys 2000;474:1121–1135), with magnitudes of all uncertainties, except respiratory peak-to-peak displacement, the same for all patients, taken from literature. Required margins for respiratory motion management were calculated using the residual respiratory tumor motion for each patient for various motion management strategies. Margin reductions for respiration management were calculated using 4DCT, 4D-IG, and gated beam delivery. Results: The median tumor motion magnitude was 4.4 mm for the 46 patients (range 0–29.3 mm). This value corresponded to required treatment field margins of 13.7 to 36.3 mm (median 14.4 mm). The use of 4DCT, 4D-IG, and beam gating required margins that were reduced by 0 to 13.9 mm (median 0.5 mm), 3 to 5.2 mm (median 5.1 mm), and 0 to 7 mm (median 0.2 mm), respectively, to a total of 8.5 to 12.4 mm (median 8.6 mm). Conclusion: A respiratory management strategy for lung cancer radiotherapy including planning on 4DCT scans and daily image guidance provides a potential reduction of 37% to 47% in treatment field margins. The 4D image guidance strategy was the most effective strategy for >85% of the patients.

  20. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging.

    Mao, Wei; Zhou, Jianjun; Zeng, Mengsu; Ding, Yuqin; Qu, Lijie; Chen, Caizhong; Ding, Xiaoqiang; Wang, Yaqiong; Fu, Caixia

    2018-05-01

    Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. Prospective study. In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. 1.5T. All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P Imaging 2018;47:1251-1259. © 2017 International Society for Magnetic Resonance in Medicine.

  1. A computer-assisted test for the electrophysiological and psychophysical measurement of dynamic visual function based on motion contrast.

    Wist, E R; Ehrenstein, W H; Schrauf, M; Schraus, M

    1998-03-13

    A new test is described that allows for electrophysiological and psychophysical measurement of visual function based on motion contrast. In a computer-generated random-dot display, completely camouflaged Landolt rings become visible only when dots within the target area are moved briefly while those of the background remain stationary. Thus, detection of contours and the location of the gap in the ring rely on motion contrast (form-from-motion) instead of luminance contrast. A standard version of this test has been used to assess visual performance in relation to age, in screening professional groups (truck drivers) and in clinical groups (glaucoma patients). Aside from this standard version, the computer program easily allows for various modifications. These include the option of a synchronizing trigger signal to allow for recording of time-locked motion-onset visual-evoked responses, the reversal of target and background motion, and the displacement of random-dot targets across stationary backgrounds. In all instances, task difficulty is manipulated by changing the percentage of moving dots within the target (or background). The present test offers a short, convenient method to probe dynamic visual functions relying on surprathreshold motion-contrast stimuli and complements other routine tests of form, contrast, depth, and color vision.

  2. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  3. Anterior cervical decompression and fusion on neck range of motion, pain, and function: a prospective analysis.

    Landers, Merrill R; Addis, Kate A; Longhurst, Jason K; Vom Steeg, Bree-lyn; Puentedura, Emilio J; Daubs, Michael D

    2013-11-01

    Intractable cervical radiculopathy secondary to stenosis or herniated nucleus pulposus is commonly treated with an anterior cervical decompression and fusion (ACDF) procedure. However, there is little evidence in the literature that demonstrates the impact such surgery has on long-term range of motion (ROM) outcomes. The objective of this study was to compare cervical ROM and patient-reported outcomes in patients before and after a 1, 2, or 3 level ACDF. Prospective, nonexperimental. Forty-six patients. The following were measured preoperatively and also at 3 and 6 months after ACDF: active ROM (full and painfree) in three planes (ie, sagittal, coronal, and horizontal), pain visual analog scale, Neck Disability Index, and headache frequency. Patients undergoing an ACDF for cervical radiculopathy had their cervical ROM measured preoperatively and also at 3 and 6 months after the procedure. Neck Disability Index and pain visual analog scale values were also recorded at the same time. Both painfree and full active ROM did not change significantly from the preoperative measurement to the 3-month postoperative measurement (ps>.05); however, painfree and full active ROM did increase significantly in all three planes of motion from the preoperative measurement to the 6-month postoperative measurement regardless of the number of levels fused (ps≤.023). Visual analog scale, Neck Disability Index, and headache frequency all improved significantly over time (ps≤.017). Our results suggest that patients who have had an ACDF for cervical radiculopathy will experience improved ROM 6 months postoperatively. In addition, patients can expect a decrease in pain, an improvement in neck function, and a decrease in headache frequency. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evaluation of older driver head functional range of motion using portable immersive virtual reality.

    Chen, Karen B; Xu, Xu; Lin, Jia-Hua; Radwin, Robert G

    2015-10-01

    The number of drivers over 65 years of age continues to increase. Although neck rotation range has been identified as a factor associated with self-reported crash history in older drivers, it was not consistently reported as indicators of older driver performance or crashes across previous studies. It is likely that drivers use neck and trunk rotation when driving, and therefore the functional range of motion (ROM) (i.e. overall rotation used during a task) of older drivers should be further examined. Evaluate older driver performance in an immersive virtual reality, simulated, dynamic driving blind spot target detection task. A cross-sectional laboratory study recruited twenty-six licensed drivers (14 young between 18 and 35 years, and 12 older between 65 to 75 years) from the local community. Participants were asked to detect targets by performing blind spot check movements while neck and trunk rotation was tracked. Functional ROM, target detection success, and time to detection were analyzed. In addition to neck rotation, older and younger drivers on average rotated their trunks 9.96° and 18.04°, respectively. The younger drivers generally demonstrated 15.6° greater functional ROM (p<.001), were nearly twice as successful in target detection due to target location (p=.008), and had 0.46 s less target detection time (p=.016) than the older drivers. Assessing older driver functional ROM may provide more comprehensive assessment of driving ability than neck ROM. Target detection success and time to detection may also be part of the aging process as these measures differed between driver groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Robust motion correction and outlier rejection of in vivo functional MR images of the fetal brain and placenta during maternal hyperoxia

    You, Wonsang; Serag, Ahmed; Evangelou, Iordanis E.; Andescavage, Nickie; Limperopoulos, Catherine

    2017-01-01

    Subject motion is a major challenge in functional magnetic resonance imaging studies (fMRI) of the fetal brain and placenta during maternal hyperoxia. We propose a motion correction and volume outlier rejection method for the correction of severe motion artifacts in both fetal brain and placenta. The method is optimized to the experimental design by processing different phases of acquisition separately. It also automatically excludes high-motion volumes and all the missing data are regressed ...

  6. Robust motion correction and outlier rejection of in vivo functional MR images of the fetal brain and placenta during maternal hyperoxia

    You, Wonsang; Serag, Ahmed; Evangelou, Iordanis E.; Andescavage, Nickie; Limperopoulos, Catherine

    2015-01-01

    Subject motion is a major challenge in functional magnetic resonance imaging studies (fMRI) of the fetal brain and placenta during maternal hyperoxia. We propose a motion correction and volume outlier rejection method for the correction of severe motion artifacts in both fetal brain and placenta. The method is optimized to the experimental design by processing different phases of acquisition separately. It also automatically excludes high-motion volumes and all the missing data are regressed ...

  7. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  8. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  9. Synthetic strong ground motions for engineering design utilizing empirical Green`s functions

    Hutchings, L.J.; Jarpe, S.P.; Kasameyer, P.W.; Foxall, W.

    1996-04-11

    We present a methodology for developing realistic synthetic strong ground motions for specific sites from specific earthquakes. We analyzed the possible ground motion resulting from a M = 7.25 earthquake that ruptures 82 km of the Hayward fault for a site 1.4 km from the fault in the eastern San Francisco Bay area. We developed a suite of 100 rupture scenarios for the Hayward fault earthquake and computed the corresponding strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the statistical distribution of engineering parameters, we introduce a probabilistic component into the deterministic hazard calculation. Engineering parameters of synthesized ground motions agree with those recorded from the 1995 Kobe, Japan and the 1992 Landers, California earthquakes at similar distances and site geologies.

  10. Function of a fly motion-sensitive neuron matches eye movements during free flight.

    Roland Kern

    2005-06-01

    Full Text Available Sensing is often implicitly assumed to be the passive acquisition of information. However, part of the sensory information is generated actively when animals move. For instance, humans shift their gaze actively in a sequence of saccades towards interesting locations in a scene. Likewise, many insects shift their gaze by saccadic turns of body and head, keeping their gaze fixed between saccades. Here we employ a novel panoramic virtual reality stimulator and show that motion computation in a blowfly visual interneuron is tuned to make efficient use of the characteristic dynamics of retinal image flow. The neuron is able to extract information about the spatial layout of the environment by utilizing intervals of stable vision resulting from the saccadic viewing strategy. The extraction is possible because the retinal image flow evoked by translation, containing information about object distances, is confined to low frequencies. This flow component can be derived from the total optic flow between saccades because the residual intersaccadic head rotations are small and encoded at higher frequencies. Information about the spatial layout of the environment can thus be extracted by the neuron in a computationally parsimonious way. These results on neuronal function based on naturalistic, behaviourally generated optic flow are in stark contrast to conclusions based on conventional visual stimuli that the neuron primarily represents a detector for yaw rotations of the animal.

  11. Calculation of Monte Carlo importance functions for use in nuclear-well logging calculations

    Soran, P.D.; McKeon, D.C.; Booth, T.E.

    1989-07-01

    Importance sampling is essential to the timely solution of Monte Carlo nuclear-logging computer simulations. Achieving minimum variance (maximum precision) of a response in minimum computation time is one criteria for the choice of an importance function. Various methods for calculating importance functions will be presented, new methods investigated, and comparisons with porosity and density tools will be shown. 5 refs., 1 tab

  12. The importance of position and path repeatability on force at the knee during six-DOF joint motion.

    Darcy, Shon P; Gil, Jorge E; Woo, Savio L-Y; Debski, Richard E

    2009-06-01

    Mechanical devices, such as robotic manipulators have been designed to measure joint and ligament function because of their ability to position a diarthrodial joint in six degrees-of-freedom with fidelity. However, the precision and performance of these testing devices vary. Therefore, the objective of this study was to determine the effect of systematic errors in position and path repeatability of two high-payload robotic manipulators (Manipulators 1 and 2) on the resultant forces at the knee. Using a porcine knee, the position and path repeatability of these manipulators were determined during passive flexion-extension with a coordinate measuring machine. The position repeatability of Manipulator 1 was 0.3 mm in position and 0.2 degrees in orientation while Manipulator 2 had a better position repeatability of 0.1 mm in position and 0.1 degrees in orientation throughout the range of positions examined. The corresponding variability in the resultant force at the knee for these assigned positions was 32+/-33 N for Manipulator 1 and 4+/-1 N for Manipulator 2. Furthermore, the repeatability of the trajectory of each manipulator while moving between assigned positions (path repeatability) was 0.8 mm for Manipulator 1 while the path repeatability for Manipulator 2 was improved (0.1 mm). These path discrepancies produced variability in the resultant force at the knee of 44+/-24 and 21+/-8 N, respectively, for Manipulators 1 and 2 primarily due to contact between the articular surfaces of the tibia and femur. Therefore, improved position and path repeatability yields lower variability in the resultant forces at the knee. Although position repeatability has been the most common criteria for evaluating biomechanical testing devices, the current study has clearly demonstrated that path repeatability can have an even larger effect on the variability in resultant force at the knee. Consequently, the repeatability of the path followed by the joint throughout its prescribed

  13. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications

    Chen Ying; Lo, Joseph Y.; Dobbins, James T. III

    2007-01-01

    Digital breast tomosynthesis is a three-dimensional imaging technique that provides an arbitrary set of reconstruction planes in the breast from a limited-angle series of projection images acquired while the x-ray tube moves. Traditional shift-and-add (SAA) tomosynthesis reconstruction is a common mathematical method to line up each projection image based on its shifting amount to generate reconstruction slices. With parallel-path geometry of tube motion, the path of the tube lies in a plane parallel to the plane of the detector. The traditional SAA algorithm gives shift amounts for each projection image calculated only along the direction of x-ray tube movement. However, with the partial isocentric motion of the x-ray tube in breast tomosynthesis, small objects such as microcalcifications appear blurred (for instance, about 1-4 pixels in blur for a microcalcification in a human breast) in traditional SAA images in the direction perpendicular to the direction of tube motion. Some digital breast tomosynthesis algorithms reported in the literature utilize a traditional one-dimensional SAA method that is not wholly suitable for isocentric motion. In this paper, a point-by-point back projection (BP) method is described and compared with traditional SAA for the important clinical task of evaluating morphology of small objects such as microcalcifications. Impulse responses at different three-dimensional locations with five different combinations of imaging acquisition parameters were investigated. Reconstruction images of microcalcifications in a human subject were also evaluated. Results showed that with traditional SAA and 45 deg. view angle of tube movement with respect to the detector, at the same height above the detector, the in-plane blur artifacts were obvious for objects farther away from x-ray source. In a human subject, the appearance of calcifications was blurred in the direction orthogonal to the tube motion with traditional SAA. With point-by-point BP, the

  14. The Functionality of Facial Appearance and Its Importance to a Korean Population

    Young Jun Kim

    2013-11-01

    Full Text Available BackgroundMany people have an interest in the correction of facial scars or deformities caused by trauma. The increasing ability to correct such flaws has been one of the reasons for the increase in the popularity of facial plastic surgery. In addition to its roles in communication, breathing, eating, olfaction and vision, the appearance of the face also plays an important role in human interactions, including during social activities. However, studies on the importance of the functional role of facial appearance. As a function of the face are scare. Therefore, in the present study, we evaluated the importance of the functions of the face in Korea.MethodsWe conducted an online panel survey of 300 participants (age range, 20-70 years. Each respondent was administered the demographic data form, Facial Function Assessment Scale, Rosenberg Self-Esteem Scale, and standard gamble questionnaires.ResultsIn the evaluation on the importance of facial functions, a normal appearance was considered as important as communication, breathing, speech, and vision. Of the 300 participants, 85% stated that a normal appearance is important in social activities.ConclusionsThe results of this survey involving a cross-section of the Korean population indicated that a normal appearance was considered one of the principal facial functions. A normal appearance was considered more important than the functions of olfaction and expression. Moreover, a normal appearance was determined to be an important facial function for leading a normal life in Korea.

  15. Determination of GMPE functional form for an active region with limited strong motion data: application to the Himalayan region

    Bajaj, Ketan; Anbazhagan, P.

    2018-01-01

    Advancement in the seismic networks results in formulation of different functional forms for developing any new ground motion prediction equation (GMPE) for a region. Till date, various guidelines and tools are available for selecting a suitable GMPE for any seismic study area. However, these methods are efficient in quantifying the GMPE but not for determining a proper functional form and capturing the epistemic uncertainty associated with selection of GMPE. In this study, the compatibility of the recent available functional forms for the active region is tested for distance and magnitude scaling. Analysis is carried out by determining the residuals using the recorded and the predicted spectral acceleration values at different periods. Mixed effect regressions are performed on the calculated residuals for determining the intra- and interevent residuals. Additionally, spatial correlation is used in mixed effect regression by changing its likelihood function. Distance scaling and magnitude scaling are respectively examined by studying the trends of intraevent residuals with distance and the trend of the event term with magnitude. Further, these trends are statistically studied for a respective functional form of a ground motion. Additionally, genetic algorithm and Monte Carlo method are used respectively for calculating the hinge point and standard error for magnitude and distance scaling for a newly determined functional form. The whole procedure is applied and tested for the available strong motion data for the Himalayan region. The functional form used for testing are five Himalayan GMPEs, five GMPEs developed under NGA-West 2 project, two from Pan-European, and one from Japan region. It is observed that bilinear functional form with magnitude and distance hinged at 6.5 M w and 300 km respectively is suitable for the Himalayan region. Finally, a new regression coefficient for peak ground acceleration for a suitable functional form that governs the attenuation

  16. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function

    Hindle, Kayla B.; Whitcomb, Tyler J.; Briggs, Wyatt O.; Hong, Junggi

    2012-01-01

    Proprioceptive neuromuscular facilitation (PNF) is common practice for increasing range of motion, though little research has been done to evaluate theories behind it. The purpose of this study was to review possible mechanisms, proposed theories, and physiological changes that occur due to proprioceptive neuromuscular facilitation techniques. Four theoretical mechanisms were identified: autogenic inhibition, reciprocal inhibition, stress relaxation, and the gate control theory. The studies suggest that a combination of these four mechanisms enhance range of motion. When completed prior to exercise, proprioceptive neuromuscular facilitation decreases performance in maximal effort exercises. When this stretching technique is performed consistently and post exercise, it increases athletic performance, along with range of motion. Little investigation has been done regarding the theoretical mechanisms of proprioceptive neuromuscular facilitation, though four mechanisms were identified from the literature. As stated, the main goal of proprioceptive neuromuscular facilitation is to increase range of motion and performance. Studies found both of these to be true when completed under the correct conditions. These mechanisms were found to be plausible; however, further investigation needs to be conducted. All four mechanisms behind the stretching technique explain the reasoning behind the increase in range of motion, as well as in strength and athletic performance. Proprioceptive neuromuscular facilitation shows potential benefits if performed correctly and consistently. PMID:23487249

  17. Neutron importance and the generalized Green function for the conventionally critical reactor with normalized neutron distribution

    Khromov, V.V.

    1978-01-01

    The notion of neutron importance when applied to nuclear reactor statics problems described by time-independent homogeneous equations of neutron transport with provision for normalization of neutron distribution is considered. An equation has been obtained for the function of neutron importance in a conditionally critical reactor with respect to an arbitrary nons linear functional determined for the normalized neutron distribution. Relation between this function and the generalized Green function of the selfconjugated operator of the reactor equation is determined and the formula of small perturbations for the functionals of a conditionally critical reactor is deduced

  18. Sensing Movement: Microsensors for Body Motion Measurement

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  19. The influence of conformational fluctuations on enzymatic activity: modelling the functional motion of β-secretase

    Neri, M; Cascella, M; Micheletti, C

    2005-01-01

    Considerable insight into the functional activity of proteins and enzymes can be obtained by studying the low energy conformational distortions that the biopolymer can sustain. We carry out the characterization of these large scale structural changes for a protein of considerable pharmaceutical interest, the human β-secretase. Starting from the crystallographic structure of the protein, we use the recently introduced β-Gaussian model to identify, with negligible computational expenditure, the most significant distortions occurring in thermal equilibrium and the associated timescales. The application of this strategy helps us to gain considerable insight into the putative functional movements and, furthermore, allows us to identify a handful of key regions in the protein which have an important mechanical influence on the enzymatic activity despite being spatially distant from the active site. The results obtained within the Gaussian model are validated through an extensive comparison against an all-atom molecular dynamics simulation

  20. Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging.

    Bonhomme, Gabrielle R; Liu, Grant T; Miki, Atsushi; Francis, Ellie; Dobre, M-C; Modestino, Edward J; Aleman, David O; Haselgrove, John C

    2006-12-01

    Motion perception abnormalities and extrastriate abnormalities have been suggested in amblyopia. Functional MRI (fMRI) and motion stimuli were used to study whether interocular differences in activation are detectable in motion-sensitive cortical areas in patients with anisometropic amblyopia. We performed fMRI at 1.5 T 4 control subjects (20/20 OU), 1 with monocular suppression (20/25), and 2 with anisometropic amblyopia (20/60, 20/800). Monocular suppression was thought to be form fruste of amblyopia. The experimental stimulus consisted of expanding and contracting concentric rings, whereas the control condition consisted of stationary concentric rings. Activation was determined by contrasting the 2 conditions for each eye. Significant fMRI activation and comparable right and left eye activation was found in V3a and V5 in all control subjects (Average z-values in L vs R contrast 0.42, 0.43) and in the subject with monocular suppression (z = 0.19). The anisometropes exhibited decreased extrastriate activation in their amblyopic eyes compared with the fellow eyes (zs = 2.12, 2.76). Our data suggest motion-sensitive cortical structures may be less active when anisometropic amblyopic eyes are stimulated with moving rings. These results support the hypothesis that extrastriate cortex is affected in anisometropic amblyopia. Although suggestive of a magnocellular defect, the exact mechanism is unclear.

  1. OBSERVER RATING VERSUS THREE-DIMENSIONAL MOTION ANALYSIS OF LOWER EXTREMITY KINEMATICS DURING FUNCTIONAL SCREENING TESTS: A SYSTEMATIC REVIEW.

    Maclachlan, Liam; White, Steven G; Reid, Duncan

    2015-08-01

    Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation. To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests. Systematic review. A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks. Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (≥ 80%) but not specificity values (≥ 50%>%). Drop-jump task agreement ranged from poor ( 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 198 (peak knee flexion) were found in

  2. Left ventricular regional myocardial motion and twist function in repaired tetralogy of Fallot evaluated by magnetic resonance tissue phase mapping

    Chang, Meng-Chu; Peng, Hsu-Hsia; Wu, Ming-Ting; Weng, Ken-Pen; Su, Mao-Yuan; Menza, Marius; Huang, Hung-Chieh

    2018-01-01

    We aimed to characterise regional myocardial motion and twist function in the left ventricles (LV) in patients with repaired tetralogy of Fallot (rTOF) and preserved LV global function. We recruited 47 rTOF patients and 38 age-matched normal volunteers. Tissue phase mapping (TPM) was performed for evaluating the LV myocardial velocity in longitudinal, radial, and circumferential (Vz, Vr, and VOe) directions in basal, middle, and apical slices. The VOe peak-to-peak (PTP) during systolic phases, the rotation angle of each slice, and VOe inconsistency were computed for evaluating LV twist function and VOe dyssynchrony. As compared to the controls, the rTOF patients presented decreased RV ejection fraction (RVEF) (p = 0.002) and preserved global LV ejection fraction (LVEF). They also demonstrated decreased systolic and diastolic Vz in several LV segments and higher diastolic Vr in the septum (all p < 0.05). A lower VOe PTP, higher VOe inconsistency, and reduced peak net rotation angle (all p < 0.05) were observed. The aforementioned indices demonstrated an altered LV twist function in rTOF patients in an early disease stage. MR TPM could provide information about early abnormalities of LV regional motion and twist function in rTOF patients with preserved LV global function. (orig.)

  3. Left ventricular regional myocardial motion and twist function in repaired tetralogy of Fallot evaluated by magnetic resonance tissue phase mapping

    Chang, Meng-Chu; Peng, Hsu-Hsia [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Wu, Ming-Ting [Kaohsiung Veterans General Hospital, Department of Radiology, Kaohsiung (China); National Yang-Ming University, Faculty of Medicine, Taipei (China); Weng, Ken-Pen [National Yang-Ming University, Faculty of Medicine, Taipei (China); Kaohsiung Veterans General Hospital, Department of Pediatrics, Kaohsiung (China); Shu-Zen Junior College of Medicine and Management, Department of Physical Therapy, Kaohsiung (China); Su, Mao-Yuan [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Menza, Marius [Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Huang, Hung-Chieh [Kaohsiung Veterans General Hospital, Department of Radiology, Kaohsiung (China)

    2018-01-15

    We aimed to characterise regional myocardial motion and twist function in the left ventricles (LV) in patients with repaired tetralogy of Fallot (rTOF) and preserved LV global function. We recruited 47 rTOF patients and 38 age-matched normal volunteers. Tissue phase mapping (TPM) was performed for evaluating the LV myocardial velocity in longitudinal, radial, and circumferential (Vz, Vr, and VOe) directions in basal, middle, and apical slices. The VOe peak-to-peak (PTP) during systolic phases, the rotation angle of each slice, and VOe inconsistency were computed for evaluating LV twist function and VOe dyssynchrony. As compared to the controls, the rTOF patients presented decreased RV ejection fraction (RVEF) (p = 0.002) and preserved global LV ejection fraction (LVEF). They also demonstrated decreased systolic and diastolic Vz in several LV segments and higher diastolic Vr in the septum (all p < 0.05). A lower VOe PTP, higher VOe inconsistency, and reduced peak net rotation angle (all p < 0.05) were observed. The aforementioned indices demonstrated an altered LV twist function in rTOF patients in an early disease stage. MR TPM could provide information about early abnormalities of LV regional motion and twist function in rTOF patients with preserved LV global function. (orig.)

  4. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  5. On the first crossing distributions in fractional Brownian motion and the mass function of dark matter haloes

    Hiotelis, Nicos [1st Lyceum of Athens, Ipitou 15, Plaka, 10557, Athens (Greece); Popolo, Antonino Del, E-mail: adelpopolo@oact.inaf.it, E-mail: hiotelis@ipta.demokritos.gr [Dipartimento di Fisica e Astronomia, University Of Catania, Viale Andrea Doria 6, 95125, Catania (Italy)

    2017-03-01

    We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions are in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.

  6. The prognostic importance of lung function in patients admitted with heart failure

    Iversen, Kasper Karmark; Kjaergaard, Jesper; Akkan, Dilek

    2010-01-01

    The purpose of the present study was to determine the prognostic importance for all-cause mortality of lung function variables obtained by spirometry in an unselected group of patients admitted with heart failure (HF).......The purpose of the present study was to determine the prognostic importance for all-cause mortality of lung function variables obtained by spirometry in an unselected group of patients admitted with heart failure (HF)....

  7. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle

    Craven, Galen T.; Nitzan, Abraham

    2018-01-01

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  8. Perceived difficulty, importance, and satisfaction with physical function in COPD patients

    Berry Michael J

    2004-03-01

    Full Text Available Abstract Background Research suggests that patients' satisfaction with their physical functioning (SPF is a critical component of HRQL. This study was designed to examine the extent to which perceptions of physical function and the value placed on physical function are related to satisfaction ratings. The sample consisted of older adults suffering from a progressively debilitating disease, chronic obstructive pulmonary disease (COPD. Methods During baseline assessments, COPD patients participating in a randomized controlled physical activity trial completed measures of SPF, perceived difficulty, and perceived importance. Results An ANCOVA controlling for age and gender indicated that perceived difficulty, perceived importance, and their interaction accounted for 43% of the variance in SPF. Additionally, participants were most satisfied with important tasks that they performed with little difficulty. Participants were least satisfied with important tasks that they perceived as highly difficult. Conclusion The results of the present study indicate that not being able to perform valued tasks produces discontent that is reflected in lower rating of satisfaction with physical functioning. Clearly, the significance of loss in function to individual patients is related to the importance of the functional activities that may be compromised. These data have implications for the scope of patient assessment in clinical care and for the conceptual basis of future research in the area of physical functioning.

  9. Seismic margin reviews of nuclear power plants: Identification of important functions and systems

    Prassinos, P.G.; Moore, D.L.; Amico, P.J.

    1987-01-01

    The results from the review of the seven utility-sponsored seismic PRAs plus the Zion SSMRP have been used to develop some insights regarding the importance of various systems and functions to seismic margins. By taking this information and combining it with the fragility insights we can develop some functional/systemic screening guideline for margin studies. This screening approach will greatly reduce the scope of the analysis. It is possible only to come to conclusions regarding the importance of plant systems and safety functions for PWRs, for which six plants were studied. For PWRs, it is possible to categorize plant safety functions as belonging to one of two groups, one of which is important to the assessment of seismic margins and one of which is not. The important functional group involves only two functions that must be considered for estimating seismic margin. These two functions are shutting down the nuclear reaction and providing cooling to the reactor core in the time period immediately following the seismic event (that is, the injection phase or pre-residual heat removal time period). It is possible to reasonably estimate the seismic margin of the plant by performing a study only involving the analysis of the plant systems and structure which are required in order to perform the two functions. Such analysis must include an assessment of a complete set of seismic initiating events. (orig./HP)

  10. Enhanced finite difference scheme for the neutron diffusion equation using the importance function

    Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza

    2016-01-01

    Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.

  11. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  12. Neural Response to Biological Motion in Healthy Adults Varies as a Function of Autistic-Like Traits

    Meghan H. Puglia

    2017-07-01

    Full Text Available Perception of biological motion is an important social cognitive ability that has been mapped to specialized brain regions. Perceptual deficits and neural differences during biological motion perception have previously been associated with autism, a disorder classified by social and communication difficulties and repetitive and restricted interests and behaviors. However, the traits associated with autism are not limited to diagnostic categories, but are normally distributed within the general population and show the same patterns of heritability across the continuum. In the current study, we investigate whether self-reported autistic-like traits in healthy adults are associated with variable neural response during passive viewing of biological motion displays. Results show that more autistic-like traits, particularly those associated with the communication domain, are associated with increased neural response in key regions involved in social cognitive processes, including prefrontal and left temporal cortices. This distinct pattern of activation might reflect differential neurodevelopmental processes for individuals with varying autistic-like traits, and highlights the importance of considering the full trait continuum in future work.

  13. Symmetry-Adapted Ro-vibrational Basis Functions for Variational Nuclear Motion Calculations: TROVE Approach.

    Yurchenko, Sergei N; Yachmenev, Andrey; Ovsyannikov, Roman I

    2017-09-12

    We present a general, numerically motivated approach to the construction of symmetry-adapted basis functions for solving ro-vibrational Schrödinger equations. The approach is based on the property of the Hamiltonian operator to commute with the complete set of symmetry operators and, hence, to reflect the symmetry of the system. The symmetry-adapted ro-vibrational basis set is constructed numerically by solving a set of reduced vibrational eigenvalue problems. In order to assign the irreducible representations associated with these eigenfunctions, their symmetry properties are probed on a grid of molecular geometries with the corresponding symmetry operations. The transformation matrices are reconstructed by solving overdetermined systems of linear equations related to the transformation properties of the corresponding wave functions on the grid. Our method is implemented in the variational approach TROVE and has been successfully applied to many problems covering the most important molecular symmetry groups. Several examples are used to illustrate the procedure, which can be easily applied to different types of coordinates, basis sets, and molecular systems.

  14. Cumulative Lung Dose for Several Motion Management Strategies as a Function of Pretreatment Patient Parameters

    Hugo, Geoffrey D.; Campbell, Jonathon; Zhang Tiezhi; Yan Di

    2009-01-01

    Purpose: To evaluate patient parameters that may predict for relative differences in cumulative four-dimensional (4D) lung dose among several motion management strategies. Methods and Materials: Deformable image registration and dose accumulation were used to generate 4D treatment plans for 18 patients with 4D computed tomography scans. Three plans were generated to simulate breath hold at normal inspiration, target tracking with the beam aperture, and mid-ventilation aperture (control of the target at the mean daily position and application of an iteratively computed margin to compensate for respiration). The relative reduction in mean lung dose (MLD) between breath hold and mid-ventilation aperture (ΔMLD BH ) and between target tracking and mid-ventilation aperture (ΔMLD TT ) was calculated. Associations between these two variables and parameters of the lesion (excursion, size, location, and deformation) and dose distribution (local dose gradient near the target) were also calculated. Results: The largest absolute and percentage differences in MLD were 1.0 Gy and 21.5% between breath hold and mid-ventilation aperture. ΔMLD BH was significantly associated (p TT was significantly associated with excursion, deformation, and local dose gradient. A linear model was constructed to represent ΔMLD vs. excursion. For each 5 mm of excursion, target tracking reduced the MLD by 4% compared with the results of a mid-ventilation aperture plan. For breath hold, the reduction was 5% per 5 mm of excursion. Conclusions: The relative difference in MLD among different motion management strategies varied with patient and tumor characteristics for a given dosimetric target coverage. Tumor excursion is useful to aid in stratifying patients according to appropriate motion management strategies.

  15. Efficacy of the Yumeiho therapy massage on Repositioning error, Range of motion trunk Flexation and functional power in women volleyball players with Hyper lordosis

    Yousef yarahmadi

    2018-03-01

    Conclusion: results showed that the effect of Yumeiho therapy massage on repositioning error, Flexation range of motion trunk and functional power had a significant. It therapists recommended to include Yumeiho therapy massage in order to enhance these variables.

  16. Functional outcome of tongue motions with selective hypoglossal nerve stimulation in patients with obstructive sleep apnea.

    Heiser, C; Maurer, J T; Steffen, A

    2016-05-01

    Selective upper airway stimulation of the hypoglossal nerve is a novel therapy option for obstructive sleep apnea. Different tongue motions were observed after surgery during active therapy. We examined tongue motions in 14 patients (mean age 51 ± 10 years) who received an implantation of an upper airway stimulation system (Inspire Medical Systems) from September 2013 to February 2014 in three different implantation centers in Germany after surgery. Sleep recording was performed preoperatively: 2 months (M02) and 6 months (M06) after surgery. There were three different tongue motions observed after surgery at 1 month (M01), M02, and M06 after surgery: bilateral protrusion (BP), right protrusion (RP), and mixed activation (MA). At M01: 10 BP, 2 RP, and 2 MA; at M02: 12 BP, 0 RP, and 2 MA; and at M06: 12 BP, 0 RP, and 2 MA could be detected. The average apnea-hypopnea index (AHI) was reduced from 32.5 ± 14.2/h before surgery to 17.9 ± 23.3/h at M02 and 14.1 ± 19.8/h at M06. An increased reduction in AHI was found in BP and RP group (Baseline: 29.6 ± 12.6/h; M02: 12.06 ± 14.1/h; M06: 9.7 ± 12.6/h) compared to the MA group (Baseline 49.6 ± 13.8/h; M02: 49.7 ± 5.1/h; M06: 40.5 ± 4.1/h). These findings suggest that the postoperative tongue motions in upper airway stimulation are associated with the therapy outcome. The stimulation electrode placement on the hypoglossal nerve for selective muscle recruitment may play a role in the mechanism of action.

  17. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method for the calculation of neutron importance function in fissionable assemblies for all criticality conditions, based on Monte Carlo calculations. The neutron importance function has an important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating the adjoint flux while solving the adjoint weighted transport equation based on deterministic methods. However, in complex geometries these calculations are very complicated. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on the physical concept of neutron importance has been introduced for calculating the neutron importance function in sub-critical, critical and super-critical conditions. For this propose a computer program has been developed. The results of the method have been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries. The correctness of these results has been confirmed for all three criticality conditions. Finally, the efficiency of the method for complex geometries has been shown by the calculation of neutron importance in Miniature Neutron Source Reactor (MNSR) research reactor

  18. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    Feghhi, S. A. H.; Afarideh, H.; Shahriari, M.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method to calculate neutron importance function in fissionable assemblies for all criticality conditions, using Monte Carlo Method. The neutron importance function has a well important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating adjoint flux through out solving the Adjoint weighted transport equation with deterministic methods. However, in complex geometries these calculations are very difficult. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on physical concept of neutron importance has been introduced for calculating neutron importance function in sub-critical, critical and supercritical conditions. For this means a computer program has been developed. The results of the method has been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries and their correctness has been approved for all three criticality conditions. Ultimately, the efficiency of the method for complex geometries has been shown by calculation of neutron importance in MNSR research reactor

  19. On the analysis of condylar path versus real motion of the temporomandibular joint: application for Sicat Function.

    Kordaß, Bernd; Ruge, Sebastian

    2015-01-01

    Analysis of temporomandibular joint (TMJ) function using condylar path tracings is a challenge in functionally oriented dentistry. In most cases, reference points on the skin surface over the TMJ region are defined as "arbitrary", "individual" or "kinematic" condylar hinge axis points, which are displayed as "condylar paths" in motion. To what extent these reference points represent the actual condylar paths in each individual patient is ultimately unclear because the geometric relationship of the actual condyle to the selected reference point is usually unknown. Depending on the location of the point on the condyle and the centers of rotation of mandibular movement, these trajectories can vary greatly during combined rotational and sliding movements (eg, opening and closing movements of the mandible); this represents a grid of points located in the vicinity of the TMJ. To record the actual condylar path as the movement trajectory of a given point (eg, the condylar center), technological solutions are needed with which to link the tracing technology with the appropriate imaging technology capable of scanning the condyle, including the points of interest, and displaying them in real dynamic motion. Sicat Function (Sicat, D-Bonn) is such a solution. Sicat Function links cone beam computed tomography (CBCT) scans (made using the Galileos CBCT scanner; Sirona, Bensheim, Germany) with ultrasound-based, three-dimensional (3D) functional jaw movement recordings of the mandible (made using the JMT+ Jaw Motion Tracker; Sicat, Bonn, Germany). Digital images of the dental arches acquired with the intraoral scanner Cerec system (Sirona) can also be superimposed. This results in the generation of a 3D model of the bony mandible, including the TMJ, which reproduces the 3D real dynamic movement of the condyles simultaneously with that of the condylar paths at defined points (with the condylar centers being a particular point of interest). Sicat Function is an integrated, digital

  20. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions.

    Tao, Guohua; Miller, William H

    2011-07-14

    An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations.

  1. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  2. The importance of phrenic nerve preservation and its effect on long-term postoperative lung function after pneumonectomy

    Kocher, Gregor J; Lysgaard, Jannie; Blichfeldt-Eckhardt, Morten Rune

    2016-01-01

    %). In the remaining 2 patients, diaphragmatic motion was already paradoxical before the nerve block. We found no significant difference on dynamic lung function values (FEV1 'before' 1.39 ± 0.44 vs FEV1 'after' 1.38 ± 0.40; P = 0.81). CONCLUSIONS: Induction of a temporary diaphragmatic palsy did not significantly...

  3. Tools for functional analysis of faults and methods of fault-stable motion control

    Timofeev, A.V.

    2003-01-01

    In this article a big attention is given to the problems of functional diagnostics, when control and faults diagnostics are made in real time simultaneously in the process of functioning of controlled dynamical systems

  4. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  5. Optimizing health system response to patient's needs: an argument for the importance of functioning information.

    Hopfe, Maren; Prodinger, Birgit; Bickenbach, Jerome E; Stucki, Gerold

    2017-06-06

    Current health systems are increasingly challenged to meet the needs of a growing number of patients living with chronic and often multiple health conditions. The primary outcome of care, it is argued, is not merely curing disease but also optimizing functioning over a person's life span. According to the World Health Organization, functioning can serve as foundation for a comprehensive picture of health and augment the biomedical perspective with a broader and more comprehensive picture of health as it plays out in people's lives. The crucial importance of information about patient's functioning for a well-performing health system, however, has yet to be sufficiently appreciated. This paper argues that functioning information is fundamental in all components of health systems and enhances the capacity of health systems to optimize patients' health and health-related needs. Beyond making sense of biomedical disease patterns, health systems can profit from using functioning information to improve interprofessional collaboration and achieve cross-cutting disease treatment outcomes. Implications for rehabilitation Functioning is a key health outcome for rehabilitation within health systems. Information on restoring, maintaining, and optimizing human functioning can strengthen health system response to patients' health and rehabilitative needs. Functioning information guides health systems to achieve cross-cutting health outcomes that respond to the needs of the growing number of individuals living with chronic and multiple health conditions. Accounting for individuals functioning helps to overcome fragmentation of care and to improve interprofessional collaboration across settings.

  6. Effects of gastrocnemius recession on ankle motion, strength, and functional outcomes: a systematic review and national healthcare database analysis.

    Gianakos, Arianna; Yasui, Youichi; Murawski, Christopher D; Kennedy, John G

    2016-04-01

    The purpose of this systematic review was to report the effects of gastrocnemius recession on ankle dorsiflexion range of motion, function, and push-off power. The MEDLINE and EMBASE databases were reviewed with terms "gastrocnemius recession". The inclusion criteria were: (1) clinical studies, (2) published in a peer-reviewed journal within the past 10 years, and (3) published in English. Excluded were: (1) review articles, (2) cadaveric studies, (3) studies including patients under the age of 18 years, (4) studies evaluating a neurologic condition, (5) level of evidence 5, and (6) Quality of Evidence Score fashion with variable results, but of these, no study reported a return to normal power. The mean complication rate was 14%. The available evidence supports that GR improves functional outcomes and increases dorsiflexion range of motion. Furthermore, GR affects gait kinematics, which may cause compensatory effects at the knee, ankle, and subtalar joints. Evidence has shown that power does not return to normal levels. Clinicians may utilize these data clinically to determine whether patients may benefit from GR or not. IV.

  7. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  8. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both

  9. Vocal fold motion impairment in patients with multiple system atrophy: evaluation of its relationship with swallowing function.

    Higo, R; Tayama, N; Watanabe, T; Nitou, T; Takeuchi, S

    2003-07-01

    Vocal fold motion impairment (VFMI), especially vocal fold abductor paralysis, is frequently seen in multiple system atrophy (MSA). Since the regulation system of laryngeal function is closely related to swallowing function, swallowing function is considered to be more involved in MSA patients with VFMI than in patients that do not have VFMI. However, the relationship between dysphagia and VFMI in MSA patients has not been systematically explored. To elucidate the relationship between VFMI and dysphagia in MSA. We evaluated swallowing function of 36 MSA patients with and without VFMI, by videofluoroscopy, and investigated the relationship between VFMI and pharyngeal swallowing function. VFMI was found in 17 patients (47.2%). Patients with VFMI had advanced severity of the disease. Although there was a tendency for bolus stasis at the pyriform sinus and the upper oesophageal sphincter opening to be more involved in patients with VFMI, statistical analysis did not show significant differences in swallowing function of MSA patients between with and without VFMI. In contrast, patients who underwent a tracheotomy ultimately required tube feeding or a laryngectomy. Appearance of VFMI is a sign of disease progression but does not necessary mean patients should change their way of taking nutrition. However, MSA patients who need a tracheotomy might have advanced to a high-risk group for dysphagia. Appropriate evaluation and treatment for VFMI and dysphagia are required to maintain patients' quality of life in MSA.

  10. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  11. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.

    Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K

    2015-01-22

    The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. A recursive Monte Carlo method for estimating importance functions in deep penetration problems

    Goldstein, M.

    1980-04-01

    A pratical recursive Monte Carlo method for estimating the importance function distribution, aimed at importance sampling for the solution of deep penetration problems in three-dimensional systems, was developed. The efficiency of the recursive method was investigated for sample problems including one- and two-dimensional, monoenergetic and and multigroup problems, as well as for a practical deep-penetration problem with streaming. The results of the recursive Monte Carlo calculations agree fairly well with Ssub(n) results. It is concluded that the recursive Monte Carlo method promises to become a universal method for estimating the importance function distribution for the solution of deep-penetration problems, in all kinds of systems: for many systems the recursive method is likely to be more efficient than previously existing methods; for three-dimensional systems it is the first method that can estimate the importance function with the accuracy required for an efficient solution based on importance sampling of neutron deep-penetration problems in those systems

  14. Estimation of functional failure probability of passive systems based on adaptive importance sampling method

    Wang Baosheng; Wang Dongqing; Zhang Jianmin; Jiang Jing

    2012-01-01

    In order to estimate the functional failure probability of passive systems, an innovative adaptive importance sampling methodology is presented. In the proposed methodology, information of variables is extracted with some pre-sampling of points in the failure region. An important sampling density is then constructed from the sample distribution in the failure region. Taking the AP1000 passive residual heat removal system as an example, the uncertainties related to the model of a passive system and the numerical values of its input parameters are considered in this paper. And then the probability of functional failure is estimated with the combination of the response surface method and adaptive importance sampling method. The numerical results demonstrate the high computed efficiency and excellent computed accuracy of the methodology compared with traditional probability analysis methods. (authors)

  15. The importance of the radial electric field (Er) on interpretation of motional Stark effect measurements of the q profile in DIII-D high performance plasmas

    Rice, B.W.; Lao, L.L.; Burrell, K.H.; Greenfield, C.M.; Lin-Liu, Y.R.

    1997-06-01

    The development of enhanced confinement regimes such as negative central magnetic shear (NCS) and VH-mode illustrates the importance of the q profile and ExB velocity shear in improving stability and confinement in tokamak plasmas. Recently, it was realized that the large values of radial electric field observed in these high performance plasmas, up to 200 kV/m in DIII-D, have an effect on the interpretation of motional Stark effect (MSE) measurements of the q profile. It has also been shown that, with additional MSE measurements, one can extract a direct measurement of E r in addition to the usual poloidal field measurement. During a recent vent on DIII-D, 19 additional MSE channels with new viewing angles were added (for a total of 35 channels) in order to descriminate between the neutral beam v b x B electric field and the plasma E r field. In this paper, the system upgrade will be described and initial measurements demonstrating simultaneous measurement of the q and E r profiles will be presented

  16. Ground-Motion Simulations of the 2008 Ms8.0 Wenchuan, China, Earthquake Using Empirical Green's Function Method

    Zhang, W.; Zhang, Y.; Yao, X.

    2010-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. There were about 90,000 persons killed. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and “quake lakes” which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, we simulate the near-field strong ground motions of this great event based on the empirical Green’s function method (EGF). Referring to the published inversion source models, at first, we assume that there are three asperities on the rupture area and choose three different small events as the EGFs. Then, we identify the parameters of the source model using a genetic algorithm (GA). We calculate the synthetic waveforms based on the obtained source model and compare with the observed records. Our result shows that for most of the synthetic waveforms agree very well with the observed ones. The result proves the validity and the stability of the method. Finally, we forward the near-field strong ground motions near the source region and try to explain the damage distribution caused by the great earthquake.

  17. Superaging correlation function and ergodicity breaking for Brownian motion in logarithmic potentials.

    Dechant, A; Lutz, E; Kessler, D A; Barkai, E

    2012-05-01

    We consider an overdamped Brownian particle moving in a confining asymptotically logarithmic potential, which supports a normalized Boltzmann equilibrium density. We derive analytical expressions for the two-time correlation function and the fluctuations of the time-averaged position of the particle for large but finite times. We characterize the occurrence of aging and nonergodic behavior as a function of the depth of the potential, and we support our predictions with extensive Langevin simulations. While the Boltzmann measure is used to obtain stationary correlation functions, we show how the non-normalizable infinite covariant density is related to the superaging behavior.

  18. Perceived stress and cognitive function in older adults: which aspect of perceived stress is important?

    Korten, Nicole C M; Comijs, Hannie C; Penninx, Brenda W J H; Deeg, Dorly J H

    2017-04-01

    Few studies examined the association between perceived stress and cognitive function in older adults. This study will examine which aspects of perceived stress especially impact cognitive function. Cross-sectional data of 1099 older adults between 64 and 100 years from the Longitudinal Aging Study Amsterdam were used. Perceived stress and its subscales perceived helplessness and perceived self-efficacy were measured with the Perceived Stress Scale. Cognitive function was assessed regarding memory, processing speed and executive function. Univariate and multivariate linear regression analyses were performed between the stress measures and the domains of cognitive function. Perceived stress was associated with worse processing speed, direct and delayed recall, semantic fluency and digit span backwards (range β = -0.10; -0.11; p cognitive function, also after adjustment for depressive symptoms or sense of mastery (range β = 0.10; 0.18; p cognitive functions. Perceived self-efficacy might be an important factor in reducing stress and the prevention of cognitive decline. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Spectral Data Captures Important Variability Between and Among Species and Functional Types

    Townsend, P. A.; Serbin, S. P.; Kingdon, C.; Singh, A.; Couture, J. J.; Gamon, J. A.

    2013-12-01

    Narrowband spectral data in the visible, near and shortwave infrared (400-2500 nm) are being used increasingly in plant ecology to characterize the biochemical, physiological and water status of vegetation, as well as community composition. In particular, spectroscopic data have recently received considerable attention for their capacity to discriminate plants according to functional properties or 'optical types.' Such measurements can be acquired from airborne/satellite remote sensing imagery or field spectrometers and are commonly used to directly estimate or infer properties important to photosynthesis, carbon and water fluxes, nutrient dynamics, phenology, and disturbance. Spectral data therefore represent proxies for measurements that are otherwise time consuming or expensive to make, and - more importantly - provide the opportunity to characterize the spatial and temporal variability of taxonomic or functional groups. We have found that spectral variation within species and functional types can in fact exceed the variation between types. As such, we recommend that the traditional quantification of characteristics defining species and/or functional types must be modified to include the range of variability in those properties. We provide four examples of the importance of spectral data for describing within-species/functional type variation. First, within temperate forests, the spectral properties of foliage vary considerably with canopy position. This variability is strongly related to differences in specific leaf area between shade- and sun-lit leaves, and the resulting differences among leaves in strategies for light harvesting, photosynthesis, and leaf longevity. These results point to the need to better characterize leaf optical properties throughout a canopy, rather than basing the characterization of ecosystem functioning on only the sunlit portion of the canopy crown. Second, we show considerable differences in optical properties of foliage from

  20. MOTION ARTIFACT REDUCTION IN FUNCTIONAL NEAR INFRARED SPECTROSCOPY SIGNALS BY AUTOREGRESSIVE MOVING AVERAGE MODELING BASED KALMAN FILTERING

    MEHDI AMIAN

    2013-10-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a technique that is used for noninvasive measurement of the oxyhemoglobin (HbO2 and deoxyhemoglobin (HHb concentrations in the brain tissue. Since the ratio of the concentration of these two agents is correlated with the neuronal activity, fNIRS can be used for the monitoring and quantifying the cortical activity. The portability of fNIRS makes it a good candidate for studies involving subject's movement. The fNIRS measurements, however, are sensitive to artifacts generated by subject's head motion. This makes fNIRS signals less effective in such applications. In this paper, the autoregressive moving average (ARMA modeling of the fNIRS signal is proposed for state-space representation of the signal which is then fed to the Kalman filter for estimating the motionless signal from motion corrupted signal. Results are compared to the autoregressive model (AR based approach, which has been done previously, and show that the ARMA models outperform AR models. We attribute it to the richer structure, containing more terms indeed, of ARMA than AR. We show that the signal to noise ratio (SNR is about 2 dB higher for ARMA based method.

  1. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  2. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  3. The importance of hydrology in restoration of bottomland hardwood wetland functions

    Hunter, R.G.; Faulkner, S.P.; Gibson, K.A.

    2008-01-01

    Bottomland hardwood (BLH) forests have important biogeochemical functions and it is well known that certain structural components, including pulsed hydrology, hydric soils, and hydrophytic vegetation, enhance these functions. It is unclear, however, how functions of restored BLH wetlands compare to mature, undisturbed wetlands. We measured a suite of structural and functional attributes in replicated natural BLH wetlands (NAT), restored BLH wetlands with hydrology re-established (RWH), and restored BLH wetlands without hydrology re-established (RWOH) in this study. Trees were replanted in all restored wetlands at least four years prior to the study and those wetlands with hydrology re-established had flashboard risers placed in drainage ditches to allow seasonal surface flooding. Vegetation, soils, and selected biogeochemical functions were characterized at each site. There was a marked difference in woody vegetation among the wetlands that was due primarily to site age. There was also a difference in herbaceous vegetation among the restored sites that may have been related to differences in age or hydrology. Water table fluctuations of the RWH wetlands were comparable to those of the NAT wetlands. Thus, placing flashboard risers in existing drainage ditches, along with proper management, can produce a hydroperiod that is similar to that of a relatively undisturbed BLH. Average length of saturation within the upper 15 cm of soils was 37, 104, and 97 days for RWOH, RWH, and NAT, respectively. Soil moisture, denitrification potential, and soluble organic carbon concentrations differed among wetland sites, but soil carbon and nitrogen concentrations, heterotrophic microbial activity, and readily mineralizable carbon concentrations did not. Significant linear relationships were also found between soil moisture and heterotrophic microbial activity, readily mineralizable carbon, and soluble organic carbon. In addition, sedimentation rates were higher in NAT and RWH

  4. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  5. The importance of functional form in optimal control solutions of problems in population dynamics

    Runge, M.C.; Johnson, F.A.

    2002-01-01

    Optimal control theory is finding increased application in both theoretical and applied ecology, and it is a central element of adaptive resource management. One of the steps in an adaptive management process is to develop alternative models of system dynamics, models that are all reasonable in light of available data, but that differ substantially in their implications for optimal control of the resource. We explored how the form of the recruitment and survival functions in a general population model for ducks affected the patterns in the optimal harvest strategy, using a combination of analytical, numerical, and simulation techniques. We compared three relationships between recruitment and population density (linear, exponential, and hyperbolic) and three relationships between survival during the nonharvest season and population density (constant, logistic, and one related to the compensatory harvest mortality hypothesis). We found that the form of the component functions had a dramatic influence on the optimal harvest strategy and the ultimate equilibrium state of the system. For instance, while it is commonly assumed that a compensatory hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this to depend on the form of the recruitment function, in part because of differences in the optimal steady-state population density. This work has strong direct consequences for those developing alternative models to describe harvested systems, but it is relevant to a larger class of problems applying optimal control at the population level. Often, different functional forms will not be statistically distinguishable in the range of the data. Nevertheless, differences between the functions outside the range of the data can have an important impact on the optimal harvest strategy. Thus, development of alternative models by identifying a single functional form, then choosing different parameter combinations from extremes on the likelihood

  6. Moral Complexity: The Fatal Attraction of Truthiness and the Importance of Mature Moral Functioning.

    Narvaez, Darcia

    2010-03-01

    Recently, intuitionist theories have been effective in capturing the academic discourse about morality. Intuitionist theories, like rationalist theories, offer important but only partial understanding of moral functioning. Both can be fallacious and succumb to truthiness: the attachment to one's opinions because they "feel right," potentially leading to harmful action or inaction. Both intuition and reasoning are involved in deliberation and expertise. Both are malleable from environmental and educational influence, making questions of normativity-which intuitions and reasoning skills to foster-of utmost importance. Good intuition and reasoning inform mature moral functioning, which needs to include capacities that promote sustainable human well-being. Individual capacities for habituated empathic concern and moral metacognition-moral locus of control, moral self-regulation, and moral self-reflection-comprise mature moral functioning, which also requires collective capacities for moral dialogue and moral institutions. These capacities underlie moral innovation and are necessary for solving the complex challenges humanity faces. © The Author(s) 2010.

  7. The important role of stratum corneum lipids for the cutaneous barrier function.

    van Smeden, J; Janssens, M; Gooris, G S; Bouwstra, J A

    2014-03-01

    The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The importance of the ligation of the inferior thyroid artery in parathyroid function after subtotal thyroidectomy

    Araujo Filho Vergilius José Furtado de

    2000-01-01

    Full Text Available We prospectively studied the effects of the ligation of the inferior thyroid artery (ITA on postoperative hypoparathyroidism in 48 patients who underwent functional subtotal thyroidectomy. Patients were randomized into two groups: A, with bilateral ligation of the ITA and B, without ligation of the ITA. Parathyroid function was checked preoperatively and after surgery by clinical examination and measurement of total calcium, intact PTH, urinary calcium, and AMPc. RESULTS: A significant incidence of postoperative hypocalcemia occurred: 17% in group A and 13% in B on the 4th postoperative day. Six months later, the incidence was 5% in Group A and 0% in Group B. These differences were not statistically significant between the two groups, and neither were any of the other clinical and laboratory observations. CONCLUSION: The ligation of the ITA was not an important causal factor for the occurrence of postoperative hypocalcemia after subtotal thyroidectomy.

  9. Insights into the importance of oxygen functional groups in carbon reactions with oxygen containing gases

    John Zhu, Max Lu

    2005-01-01

    The role of pore structure of carbon in carbon-related adsorptions and reactions has been extensively investigated. However the studies on the role of surface chemistry of carbon are limited. In this paper, we present the importance of oxygen functional groups in carbon reactions with oxygen-containing gases. It is found that there is a good correlation between the electronic structures and reactivities of carbon edge sites. Zigzag sites are more active in oxygen adsorption because of the unpaired electrons and armchair sites are less active in oxygen adsorption due to the triple character. However, the desorption of semi-quinone oxygen from zigzag sites needs a bond energy ca. 30% higher than that of o-quinone oxygen from armchair edge sites. CO 2 and H 2 O adsorb on carbon surface much less favorably than O 2 . H 2 O is first physically adsorbed on the virgin graphite surface followed by chemisorption through oxygen atom approaching the carbon edge site and the movements of two hydrogen atoms to produce H 2 . The adsorption mechanism of H 2 O is different from that for CO 2 , but the final result is quite similar, i.e. producing only semi-quinone oxygen. Based upon the above studies, a new generalized mechanism, as shown in Fig. 1, is developed and can account for all the important kinetic phenomena of carbon-gas reactions. The key point is that in CO 2 /H 2 O-carbon reaction only semi-quinone formed; while, in O 2 -carbon reaction, semi-quinone, o-quinone (at lower pressure), and off-plane epoxy oxygen (at relatively higher pressure) can be formed. This is the main reason for the different reaction kinetics of O 2 -carbon reaction and CO 2 /H 2 O-carbon reactions as observed experimentally. The oxygen functional groups of carbon can be characterized by XPS, PZC (point of zero charge), IEP (isoelectric point) and TPD (temperature-programmed desorption), which were used in our previous studies. We treated the carbon surface with different acids, finding that HNO 3

  10. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function

    Chun, Moon-Hyun; Han, Seok-Jung; Tak, Nam-IL

    2000-01-01

    A simple measure of uncertainty importance using the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The entire change of CDFs is quantified in terms of the metric distance between two CDFs. The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, while most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution

  11. The Importance of Social Cognition in Improving Functional Outcomes in Schizophrenia

    Javed, Afzal; Charles, Asha

    2018-01-01

    Social cognition has become recognized as an important driver of functional outcomes and overall recovery in patients with schizophrenia, mediating the relationship between neurocognition and social functioning. Since antipsychotic therapy targeting remission of clinical symptoms has been shown to have a limited impact on social cognition, there has been an increasing drive to develop therapeutic strategies to specifically improve social cognition in schizophrenia. We sought to review current evidence relating to social cognition in schizophrenia and its clinical implications, including interventions designed to target the core domains of social cognition (emotion processing, theory of mind, attributional bias, and social perception) as a means of improving functional outcomes and thereby increasing the likelihood of recovery. Relevant articles were identified by conducting a literature search in PubMed using the search terms “schizophrenia” AND “cognition” AND “social functioning,” limited to Title/Abstract, over a time period of the past 10 years. Current evidence demonstrates that schizophrenia is associated with impairments in all four core domains of social cognition, during the pre-first-episode, first-episode, early, and chronic phases of the disease, and that such impairments are important determinants of functional outcome. Interventions targeting the four core domains of social cognition comprise psychosocial approaches (social cognition training programs) and pharmacological therapies. Social cognition training programs targeting multiple and specific core domains of social cognition have shown promise in improving social cognition skills, which, in some cases, has translated into improvements in functional outcomes. Use of some psychosocial interventions has additionally resulted in improvements in clinical symptoms and/or quality of life. Pharmacological therapies, including oxytocin and certain antipsychotics, have yielded more mixed

  12. The Importance of Social Cognition in Improving Functional Outcomes in Schizophrenia

    Afzal Javed

    2018-04-01

    Full Text Available Social cognition has become recognized as an important driver of functional outcomes and overall recovery in patients with schizophrenia, mediating the relationship between neurocognition and social functioning. Since antipsychotic therapy targeting remission of clinical symptoms has been shown to have a limited impact on social cognition, there has been an increasing drive to develop therapeutic strategies to specifically improve social cognition in schizophrenia. We sought to review current evidence relating to social cognition in schizophrenia and its clinical implications, including interventions designed to target the core domains of social cognition (emotion processing, theory of mind, attributional bias, and social perception as a means of improving functional outcomes and thereby increasing the likelihood of recovery. Relevant articles were identified by conducting a literature search in PubMed using the search terms “schizophrenia” AND “cognition” AND “social functioning,” limited to Title/Abstract, over a time period of the past 10 years. Current evidence demonstrates that schizophrenia is associated with impairments in all four core domains of social cognition, during the pre-first-episode, first-episode, early, and chronic phases of the disease, and that such impairments are important determinants of functional outcome. Interventions targeting the four core domains of social cognition comprise psychosocial approaches (social cognition training programs and pharmacological therapies. Social cognition training programs targeting multiple and specific core domains of social cognition have shown promise in improving social cognition skills, which, in some cases, has translated into improvements in functional outcomes. Use of some psychosocial interventions has additionally resulted in improvements in clinical symptoms and/or quality of life. Pharmacological therapies, including oxytocin and certain antipsychotics, have

  13. Association between glycemic load and cognitive function in community-dwelling older adults: Results from the Brain in Motion study.

    Garber, Anna; Csizmadi, Ilona; Friedenreich, Christine M; Sajobi, Tolulope T; Longman, Richard S; Tyndall, Amanda V; Drogos, Lauren L; Davenport, Margie H; Poulin, Marc J

    2017-07-17

    Impaired glucose tolerance is a risk factor for non-age-related cognitive decline and is also associated with measures of physical activity (PA) and cardiorespiratory fitness (CRF). A low glycemic load (GL) diet can aid in the management of blood glucose levels, but little is known about its effect on cognition with poor glucoregulation. We assessed the relation between GL and cognitive function by glucoregulation and possible mediatory effects by CRF and PA in older adults from the Brain in Motion Study. A cross-sectional analysis of 194 cognitively healthy adults aged ≥55 years (mean = 65.7, SD = 6.1) was conducted. GL was assessed using a quantitative food frequency questionnaire, and glucoregulation was characterized on the HOMA-IR index. Subjects also completed a cognitive assessment, CRF testing, a validated self-reported PA questionnaire, and a blood draw. Multiple linear regression models adjusted for significant covariates were used to evaluate the relation between GL and cognition, and mediation by CRF and PA was also assessed. GL was inversely associated with global cognition (β = -0.014; 95% CI -0.024, -0.004) and figural memory (β = -0.035; 95% CI -0.052, -0.018) in subjects with poor glucoregulation. Neither CRF nor PA mediated these relations. In subjects with good glucoregulation, no association was found between GL and cognitive function (p > 0.05). A low GL diet is associated with better cognitive function in older adults with poor glucoregulation. This study provides supportive evidence for the role of GL in maintaining better cognitive function during the aging process. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  15. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. A research on the importance function used in the calculation of the fracture probability through the optimum method

    Zegong, Zhou; Changhong, Liu

    1995-01-01

    On the basis of the research into original distribution function as the importance function after shifting an appropriate distance, this paper takes the variation of similar ratio of the original function to the importance function as the objective function, the optimum shifting distance obtained by use of an optimization method. The optimum importance function resulting from the optimization method can ensure that the number of Monte Carlo simulations is decreased and at the same time the good estimates of the yearly failure probabilities are obtained

  17. On the importance of the 2nd readout as a function of dose

    Batel, V.I.; Alves, J.G.; Rangel, S.; Abrantes, J.N.

    2005-01-01

    Full text: The individual monitoring service at ITN-DPRSN is based on a TLD dosimetry system. The system is comprised of two 6600 Harshaw readers and on the Harshaw 8814 TL card and holder containing two LiF:Mg,Ti (TLD-100) detectors for the evaluation of H p (10) and H p (0.07). As part of our normal reading procedure, after the readout for dose evaluation a second reading is always carried out before the dosemeters are considered ready for another use and shipped to clients. Second readouts produce the residual signal and confirm the dosemeter is reset. However, it is a time-consuming task and particularly in the low dose cases, the question arises whether it could be avoided? In this paper the importance of a second readout was evaluated and is presented. Four experiments were performed using two groups of twenty-five randomly selected dosemeters. In each group the dosemeters were organized in sets of five and each set was irradiated to a different dose of 0.5, 1, 5, 10 and 50 mSv and processed. This was repeated for ten times. In the first experiment the dosemeters were read for dose evaluation and a second readout was always performed. In the second experiment the second readout was suppressed. The third and fourth experiments were as the first and second, but the dosemeters were irradiated to an additional dose of 0.50 mSv in between. The results obtained from experiments one and two, evaluate the importance of the second readout on the reproducibility of the measurement as a function of dose. Experiments three and four also provide information on the capacity to detect an intermediate low dose of 0.5 mSv, as a function of dose, for the normal reading procedure and when the second readout is avoided. In this paper the importance of the second readout is studied performing reproducibility measurements as a function of dose and by testing the capacity to detect the 0.5 mSv intermediate dose also as a function of dose. (author)

  18. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  19. Perifoveal function in patients with North Carolina macular dystrophy: the importance of accounting for fixation locus.

    Seiple, William; Szlyk, Janet P; Paliga, Jennifer; Rabb, Maurice F

    2006-04-01

    To quantify the extent of visual function losses in patients with North Carolina Macular Dystrophy (NCMD) and to demonstrate the importance of accounting for eccentric fixation when making comparisons with normal data. Five patients with NCMD who were from a single family were examined. Multifocal electroretinograms (mfERGs) and psychophysical assessments of acuity and luminance visual field sensitivities were measured throughout the central retina. Comparisons of responses from equivalent retinal areas were accomplished by shifting normal templates to be centered at the locus of fixation for each patient. Losses of psychophysically measured visual function in patients with NCMD extend to areas adjacent to the locations of visible lesions. The multifocal ERG amplitude was reduced only within the area of visible lesion. Multifocal ERG implicit times were delayed throughout the entire central retinal area assessed. ERG timing is a sensitive assay of retinal function, and our results indicate that NCMD has a widespread effect at the level of the mid and outer retina. The findings also demonstrated that it is necessary to account for fixation locus and to ensure that equivalent retinal areas are compared when testing patients with macular disease who have eccentric fixation.

  20. Limits of Science and the Importance of Epistemological Functions of Religion

    Qodratullah Qorbani

    2012-12-01

    Full Text Available Human is encountered by many metaphysical, scientific, religious and other fundamentalquestions which Science, and its potentials, can answer some of them, specially in the material realm.In fact, empirical science is limited to the material world, and it can’t answer human’s fundamentalquestions of his/her living. Then human can’t provide all his/her epistemological requirements byempirical science. In addition, contemporary human’s scientism caused many problems for him/her.Human tried to make empirical science as a worldview which caused some important andfundamental crisis. So he/she needs metaphysical, religious and other sources to know aboutsupernatural facts. Fulfilling this, he/she has to use religious teachings, because religions, in particulardivine ones, have many basic functions. They can make man aware about immaterial realms andexistents including God, origin and resurrection of man, the world system etc. They can give areasonable explanation of the origin and resurrection of human’s life and the meaning of human’sevolution in the mundane universe, and the philosophy of living by explaining the nature of Goodnessand Evil. Religions give some ethical and religious laws to manage and control his/her individual andsocial treatments. In fact, through religious teachings,man can take a suitable framework to managehis/her living, for example, by them man can determine functional results of his/her scientific andtechnological activities. In addition, religions can draw the spiritual future of human’s mundaneliving, and give a good motivation to get mundane and spiritual happiness. In the other word, man,only by the help of religious teachings, can take his/her fundamental requirements. Then, byconsidering the contemporary human epistemological crisis and important limits of human’sknowledge and science, there is the only way to refer to divine religions teachings. In this paper, it istried to explain religion functions in

  1. Relationships among range of motion, functional mobility, and quality of life in children and adolescents after limb-sparing surgery for lower-extremity sarcoma.

    Marchese, Victoria G; Spearing, Elena; Callaway, Lulie; Rai, Shesh N; Zhang, Lijun; Hinds, Pamela S; Carlson, Claire A; Neel, Michael D; Rao, Bhaskar N; Ginsberg, Jill

    2006-01-01

    The study was designed to examine relationships between range of motion (ROM), functional mobility, and quality of life (QL) in patients with lower-extremity sarcoma (LES) after limb-sparing surgery Sixty-eight patients with LES (age, 10-26 years) participated. The patients performed hip flexion, hip extension, knee flexion, and knee extension, Timed Up and Down Stairs (TUDS), Timed Up and Go (TUG), nine-minute run-walk (9-min), and completed the QL measure, Short-Form-36 version two (SF-36v2). Significant correlations (p < 0.01) were found between hip extension and SF-36v2 physical component scale (PCS; r = 0.33), TUDS (r = -0.32), TUG (r = -0.33); hip flexion and TUDS (r = -0.31), TUG (r = -0.39), 9-min (r = 0.44); knee flexion and TUDS (r = -0.52), TUG (r = -0.40), 9-min (r = 0.37); SF-36v2 PCS and TUDS (r = -0.56), TUG (r = -0.51), 9-min (r = 0.60). ROM correlates with functional mobility and QL in patients with LES after limb-sparing surgery. ROM exercises are important component of a physical therapy program for children and adolescents with LES.

  2. The application of 3D Zernike moments for the description of "model-free" molecular structure, functional motion, and structural reliability.

    Grandison, Scott; Roberts, Carl; Morris, Richard J

    2009-03-01

    Protein structures are not static entities consisting of equally well-determined atomic coordinates. Proteins undergo continuous motion, and as catalytic machines, these movements can be of high relevance for understanding function. In addition to this strong biological motivation for considering shape changes is the necessity to correctly capture different levels of detail and error in protein structures. Some parts of a structural model are often poorly defined, and the atomic displacement parameters provide an excellent means to characterize the confidence in an atom's spatial coordinates. A mathematical framework for studying these shape changes, and handling positional variance is therefore of high importance. We present an approach for capturing various protein structure properties in a concise mathematical framework that allows us to compare features in a highly efficient manner. We demonstrate how three-dimensional Zernike moments can be employed to describe functions, not only on the surface of a protein but throughout the entire molecule. A number of proof-of-principle examples are given which demonstrate how this approach may be used in practice for the representation of movement and uncertainty.

  3. Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3.

    Bedard, James E J; Purnell, Jennifer D; Ware, Stephanie M

    2007-01-15

    Missense, frameshift and nonsense mutations in the zinc finger transcription factor ZIC3 cause heterotaxy as well as isolated congenital heart disease. Previously, we developed transactivation and subcellular localization assays to test the function of ZIC3 point mutations. Aberrant cytoplasmic localization suggested that the pathogenesis of ZIC3 mutations results, at least in part, from failure of appropriate cellular trafficking. To further investigate this hypothesis, the nucleocytoplasmic shuttling properties of ZIC3 have been examined. Subcellular localization assays designed to span the entire open-reading frame of wild-type and mutant ZIC3 proteins identified the presence of nucleocytoplasmic transport signals. ZIC3 domain mapping indicates that a relatively large region containing the zinc finger binding sites and a known GLI interacting domain is required for transport to the nucleus. Site-directed mutagenesis of critical residues within two putative nuclear localization signals (NLSs) leads to loss of nuclear localization. No further decrease was observed when both NLS sites were mutated, suggesting that mutation of either NLS site is sufficient for loss of importin-mediated nuclear localization. Additionally, we identify a cryptic CRM-1-dependent nuclear export signal (NES) within ZIC3, and identify a mutation within this region in a patient with heterotaxy. These results provide the first evidence that control of cellular trafficking of ZIC3 is critical for function and suggest a possible mechanism for transcriptional control during left-right patterning. Identification of mutations in mapped NLS or NES domains in heterotaxy patients demonstrates the functional importance of these domains in cardiac morphogenesis and allows for integration of structural analysis with developmental function.

  4. Functional resilience of microbial ecosystems in soil: How important is a spatial analysis?

    König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin

    2015-04-01

    Microbial life in soil is exposed to fluctuating environmental conditions influencing the performance of microbially mediated ecosystem services such as biodegradation of contaminants. However, as this environment is typically very heterogeneous, spatial aspects can be expected to play a major role for the ability to recover from a stress event. To determine key processes for functional resilience, simple scenarios with varying stress intensities were simulated within a microbial simulation model and the biodegradation rate in the recovery phase monitored. Parameters including microbial growth and dispersal rates were varied over a typical range to consider microorganisms with varying properties. Besides an aggregated temporal monitoring, the explicit observation of the spatio-temporal dynamics proved essential to understand the recovery process. For a mechanistic understanding of the model system, scenarios were also simulated with selected processes being switched-off. Results of the mechanistic and the spatial view show that the key factors for functional recovery with respect to biodegradation after a simple stress event depend on the location of the observed habitats. The limiting factors near unstressed areas are spatial processes - the mobility of the bacteria as well as substrate diffusion - the longer the distance to the unstressed region the more important becomes the process growth. Furthermore, recovery depends on the stress intensity - after a low stress event the spatial configuration has no influence on the key factors for functional resilience. To confirm these results, we repeated the stress scenarios but this time including an additional dispersal network representing a fungal network in soil. The system benefits from an increased spatial performance due to the higher mobility of the degrading microorganisms. However, this effect appears only in scenarios where the spatial distribution of the stressed area plays a role. With these simulations we

  5. A new formulation for the importance function in the kinetics of subcritical reactors

    Silva, Cristiano da; Senra Martinez, Aquilino; Carvalho da Silva, Fernando

    2012-01-01

    Highlights: ► In this paper we propose a new formulation for the importance function in the kinetics of subcritical systems. ► We analyze the relevance of an external neutron source for the subcritical interval 0.95 eff eff is the multiplication factor according to the physical properties of the nuclear reactor. For the purposes of validation of the proposed method we will use, as a reference method, the expansion in modes of the time-dependent neutron flux for the solution of the onedimensional diffusion equation. It will be presented results that demonstrate the precision of the proposed method when compared to the conventional point kinetic equations. The results show that the new point kinetic equations are rather precise in the subcriticality range considered.

  6. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  7. The Important Role of Carbohydrates in the Flavor, Function, and Formulation of Oral Nutritional Supplements

    Smaro Kokkinidou

    2018-06-01

    Full Text Available Patients who are malnourished or at-risk for malnutrition often benefit from the consumption of oral nutritional supplements (ONS. ONS supply a range of micro- and macro-nutrients, and they can be used to supplement a diet or provide total nutrition. Since ONS are specially formulated products, all ONS ingredients—including carbohydrates—are added ingredients. This may seem to be at odds with the growing public health discourse on the need to reduce “added sugars” in the diet. However, carbohydrate is an essential nutrient for human health and is a critical ingredient in ONS. Helping to educate patients on the value of “added sugars” in ONS may be useful to improve compliance with nutritional recommendations when ONS are indicated. This perspective paper reviews the important roles of “added sugars” in ONS, in terms of flavor, function, and product formulation.

  8. Low work-function thermionic emission and orbital-motion-limited ion collection at bare-tether cathodic contact

    Chen, Xin, E-mail: xin.chen@upm.es; Sanmartín, J. R., E-mail: juanr.sanmartin@upm.es [Departamento de Física Aplicada, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, 28040 Madrid (Spain)

    2015-05-15

    With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge of the emitted electrons decreases the electric field that accelerates them outwards, and could even reverse it for high enough emission, producing a potential hollow. In this work, at the conditions of high bias and relatively low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the probe response due to electrons emitted by the negatively biased cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between sheath and the quasineutral region. The space-charge-limited condition is located. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers.

  9. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  10. Phylogenomic detection and functional prediction of genes potentially important for plant meiosis.

    Zhang, Luoyan; Kong, Hongzhi; Ma, Hong; Yang, Ji

    2018-02-15

    Meiosis is a specialized type of cell division necessary for sexual reproduction in eukaryotes. A better understanding of the cytological procedures of meiosis has been achieved by comprehensive cytogenetic studies in plants, while the genetic mechanisms regulating meiotic progression remain incompletely understood. The increasing accumulation of complete genome sequences and large-scale gene expression datasets has provided a powerful resource for phylogenomic inference and unsupervised identification of genes involved in plant meiosis. By integrating sequence homology and expression data, 164, 131, 124 and 162 genes potentially important for meiosis were identified in the genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii and Pogonatum aloides, respectively. The predicted genes were assigned to 45 meiotic GO terms, and their functions were related to different processes occurring during meiosis in various organisms. Most of the predicted meiotic genes underwent lineage-specific duplication events during plant evolution, with about 30% of the predicted genes retaining only a single copy in higher plant genomes. The results of this study provided clues to design experiments for better functional characterization of meiotic genes in plants, promoting the phylogenomic approach to the evolutionary dynamics of the plant meiotic machineries. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prognostic Importance of Pretransplant Functional Capacity After Allogeneic Hematopoietic Cell Transplantation.

    Jones, Lee W; Devlin, Sean M; Maloy, Molly A; Wood, William A; Tuohy, Sharlynn; Espiritu, Noel; Aquino, Jennifer; Kendig, Tiffany; Michalski, Meghan G; Gyurkocza, Boglarka; Schaffer, Wendy L; Ali, Benzar; Giralt, Sergio; Jakubowski, Ann A

    2015-11-01

    The purpose of this study was to investigate the prognostic importance of functional capacity in patients undergoing allogeneic hematopoietic cell transplantation (HCT) for hematological malignancies. Using a retrospective design, 407 patients completed a 6-minute walk distance (6 MWD) test to assess functional capacity before HCT; 193 (47%) completed a 6 MWD test after hospital discharge. Cox proportional hazards regression was used to estimate the risk of nonrelapse mortality (NRM) and overall survival (OS) according to the 6 MWD category (interval, 0.44-0.96) for a 6 MWD ≥ 400 m. A 6 MWD of ≥ 400 m provided incremental information on the prediction of NRM with adjustment for age (p = .032) but not KPS alone (p = .062) or adjustment for other prognostic markers (p = .099). A significant association was found between the 6 MWD and OS (p = .027). A 6 MWD of ≥ 400 m provided incremental information on the prediction of OS with adjustment for age (p = .032) but not for other prognostic markers (p > .05 for all). Patients presenting with a pre-HCT 6 MWD of information beyond that of traditional prognostic markers in HCT. The pretransplant 6-minute walk test is a significant univariate predictor of clinical outcomes in hematological patients beyond age but not beyond that of performance status. On this basis, 6-minute walk distance testing should not be considered part of the standard battery of assessments for risk stratification before hematopoietic cell transplantation. ©AlphaMed Press.

  12. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  13. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for

  14. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Calculation of extended shields in the Monte Carlo method using importance function (BRAND and DD code systems)

    Androsenko, A.A.; Androsenko, P.A.; Kagalenko, I.Eh.; Mironovich, Yu.N.

    1992-01-01

    Consideration is given of a technique and algorithms of constructing neutron trajectories in the Monte-Carlo method taking into account the data on adjoint transport equation solution. When simulating the transport part of transfer kernel the use is made of piecewise-linear approximation of free path length density along the particle motion direction. The approach has been implemented in programs within the framework of the BRAND code system. The importance is calculated in the multigroup P 1 -approximation within the framework of the DD-30 code system. The efficiency of the developed computation technique is demonstrated by means of solution of two model problems. 4 refs.; 2 tabs

  16. The importance of masticatory functional analysis in the diagnostic finding and treatment planning for prosthodontic rehabilitation

    Harry Laksono

    2012-06-01

    Full Text Available Background: The masticatory system as a biologic system is subjected to harmful influences of varying severity. Almost half of routine patients requesting prosthodontic treatment indicated at least one sign or symptom of temporomandibular disorders. Analysis of the masticatory system often neglected by dentist. Untreated temporomandibular disorders may significantly implicated in the perpetuation of the disorder and may interfere with routine prosthodontic clinical procedures. It would be resulted unsuccessful long term goal of prosthodontic rehabilitation because of the uncompleted diagnoses and treatment plan. Purpose: The purpose of this case report was to give the information of the importance of masticatory functional analysis in the diagnostic finding for treatment planning in the prosthodontic rehabilitation. Case: A 45 year - old male patient, partial dentate with reduced chewing efficiency, mild pain in right preauricular region in function, left click in opening mouth, severe attrition on all anterior lower teeth with vertical dimension of occlusion decreased due to loss of posterior support. He wanted to make a new denture. Case management: Record and analyze of active and passive mandibular movement, opening pathway, muscle and temporomandibular joints palpation, load testing, and vertical dimension of occlusion with manual functional analysis (MFA, occlusal condition and radiographic examination. Treatment plan was formulated into 3 phases: stabilization of the masticatory system, definitive treatment and periodical control. The result of this treatment excellent for 1 year evaluation after permanent cementation. Conclusion: Masticatory functional analysis is very important and must be done in the diagnosis finding for treatment planning in every case of prosthodontic rehabilitation.Latar belakang: Sistem pengunyahan sebagai sistem biologis sewaktu-waktu dapat terjadi gangguan dengan berbagai derajat keparahan. Hampir setengah dari

  17. Arthropod Diversity and Functional Importance in Old-Growth Forests of North America

    Timothy Schowalter

    2017-03-01

    Full Text Available Old-growth forests have become rare in North America but provide habitat for unique assemblages of species that often are rare in younger forests. Insects and related arthropods reach their highest diversity in old-growth forests because of their stable moderate temperature and relative humidity and the rich variety of resources represented by high plant species richness and structural complexity. Old-growth arthropod assemblages typically are distinct from those in younger, managed forests. Major subcommunities include the arboreal community that is composed of a rich assemblage of herbivores, fungivores, and their associated predators and parasitoids that function to regulate primary production and nutrient fluxes, the stem zone community that includes bark- and wood-boring species and their associated predators and parasitoids that initiate the decomposition of coarse woody debris, and the forest floor community composed of a variety of detritivores, fungivores, burrowers, and their associated predators and parasitoids that are instrumental in litter decomposition. Insect outbreaks are relatively rare in old-growth forests, where the diversity of resources and predators limit population growth. In turn, insects contribute to plant diversity and limit primary production of host plant species, thereby promoting development of old-growth forest characteristics. Arthropods also provide important functions in decomposition and nutrient cycling that may be lost in younger, managed forests with limited provision of coarse woody debris and accumulated litter. Protection of remnant old-growth forests within the forest matrix may be particularly valuable for maintaining the diversity of plant and arthropod predators that can minimize outbreaks, thereby contributing to resilience to changing environmental conditions.

  18. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.

    Rugmani Padmanabhan Iyer

    Full Text Available SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT and Tris(2-carboxyethylphosphine (TCEP, indicating the possible involvement of disulfide bridge(s. Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.

  19. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse.

    Peng, Tao; Xue, Chenghai; Bi, Jianning; Li, Tingting; Wang, Xiaowo; Zhang, Xuegong; Li, Yanda

    2008-04-26

    Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation) patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1) The vast majority of positively-correlated pairs are old, (2) most of the weakly-correlated pairs are relatively young, and (3) negatively-correlated pairs are a mixture of old and young events. We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.

  20. Structure/Function Analysis of Protein-Protein Interactions and Role of Dynamic Motions in Mercuric Ion Reductase

    Miller, Susan M.

    2005-05-18

    This report summarizes the activities and findings of our structure/function studies of the bacterial detoxification enzyme mercuric ion reductase. The objectives of the work were to obtain crystal structure information for the catalytic core of this enzyme, use the information to investigate the importance of specific parts of the enzyme to its function, and investigate the role of one domain of the enzyme in its function within cells. We describe the accomplishments towards these goals including many structures of the wild type and mutant forms of the enzyme that highlight its interactions with its Hg(II) substrate, elucidation of the role of the N-terminal domain in vitro and in vivo, and elucidation of the roles of at two conserved residues in the core in the mechanism of catalysis.

  1. Inulin and Oligofructosis: a review about functional properties, prebiotic effects and importance for food industry

    Maria Celia de Oliveira Hauly

    2002-01-01

    Full Text Available Nowadays consumers are more conscious about the relation between food and health. Therefore food industry has been looking for food that has a lot of benefits besides good flavor and appearance. Inulin and oligofructose are fructose polimers, vastly found in plants as storage carbohydrates. They present important functional for the food industry. Both inulin and oligofructose have been used as fiber bulk in food products. Differently from other fibers, they do not add flavor, allowing the food to be improved without changing its viscosity. Inulin and oligofructose have similar nutritional properties. Inulin is more indicated for obtaining products with a low fat content such as ice cream, cake and soup, while oligofructose is indicated for yogurt with a low caloric value and in order to mask the residual flavor from high intensity sweeteners used in food preparation. Research has shown that inulin and oligofructose have prebiotic effects because they are not digestible and they can develop bifidogenic effects, improving the intestinal microflora. The simultaneous use of inulin and oligofructose with probiotic agents in food is recommended for symbiotic effects.

  2. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB

    Zhou, Qingxuan; Zhou, Yan Ning; Jin, Ding Jun

    2017-01-01

    Abstract Escherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The NAD+-dependent protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modification in E. coli. Here, we show that the absence of CobB in a ΔcobB mutant reduces intracellular TopA catalytic activity and increases negative DNA supercoiling. TopA expression level is elevated as topA transcription responds to the increased negative supercoiling. The slow growth phenotype of the ΔcobB mutant can be partially compensated by further increase of intracellular TopA level via overexpression of recombinant TopA. The relaxation activity of purified TopA is decreased by in vitro non-enzymatic acetyl phosphate mediated lysine acetylation, and the presence of purified CobB protects TopA from inactivation by such non-enzymatic acetylation. The specific activity of TopA expressed from His-tagged fusion construct in the chromosome is inversely proportional to the degree of in vivo lysine acetylation during growth transition and growth arrest. These findings demonstrate that E. coli TopA catalytic activity can be modulated by lysine acetylation–deacetylation, and prevention of TopA inactivation from excess lysine acetylation and consequent increase in negative DNA supercoiling is an important physiological function of the CobB protein deacetylase. PMID:28398568

  3. Functional importance of the DNA binding activity of Candida albicans Czf1p.

    Ivana Petrovska

    Full Text Available The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During growth within a semisolid matrix, hyphal growth is positively regulated by the transcriptional regulator Czf1p and negatively by a second key transcriptional regulator, Efg1p. Genetic studies indicate that Czf1p, a member of the zinc-cluster family of transcriptional regulators, exerts its function by opposing the inhibitory influence of Efg1p on matrix-induced filamentous growth. We examined the importance of the two known activities of Czf1p, DNA-binding and interaction with Efg1p. We found that the two activities were separable by mutation allowing us to demonstrate that the DNA-binding activity of Czf1p was essential for its role as a positive regulator of morphogenesis. Surprisingly, however, interactions with Efg1p appeared to be largely dispensable. Our studies provide the first evidence of a key role for the DNA-binding activity of Czf1p in the morphological yeast-to-hyphal transition triggered by matrix-embedded growth.

  4. The prognostic importance of lung function in patients admitted with heart failure.

    Iversen, Kasper Karmark; Kjaergaard, Jesper; Akkan, Dilek; Kober, Lars; Torp-Pedersen, Christian; Hassager, Christian; Vestbo, Jorgen; Kjoller, Erik

    2010-07-01

    The purpose of the present study was to determine the prognostic importance for all-cause mortality of lung function variables obtained by spirometry in an unselected group of patients admitted with heart failure (HF). This was a prospective prognostic study performed as part of the EchoCardiography and Heart Outcome Study (ECHOS). This analysis included 532 patients admitted with a clinical diagnosis of HF. All patients underwent spirometry and echocardiography and the diagnosis of HF was made according to established criteria. Mean forced expiratory volume in 1 s (FEV(1)) was 65% of the predicted value [95% confidence interval (CI) 63-67%], mean forced vital capacity (FVC) was 71% of predicted (95% CI 69-72%), and FEV(1)/FVC was 0.72 (95% CI 0.71-0.73). FEV(1), FVC, and FEV(1)/FVC were all significant prognostic factors for all-cause mortality in univariate analyses. In a multivariate analysis, FEV(1) had independent prognostic value (hazard ratio 0.86 per 10% change, P information for all-cause mortality in patients admitted with HF. Spirometry therefore seems to be worth considering for all patients admitted with HF in order to identify patients at high risk.

  5. How the choice of safety performance function affects the identification of important crash prediction variables.

    Wang, Ketong; Simandl, Jenna K; Porter, Michael D; Graettinger, Andrew J; Smith, Randy K

    2016-03-01

    Across the nation, researchers and transportation engineers are developing safety performance functions (SPFs) to predict crash rates and develop crash modification factors to improve traffic safety at roadway segments and intersections. Generalized linear models (GLMs), such as Poisson or negative binomial regression, are most commonly used to develop SPFs with annual average daily traffic as the primary roadway characteristic to predict crashes. However, while more complex to interpret, data mining models such as boosted regression trees have improved upon GLMs crash prediction performance due to their ability to handle more data characteristics, accommodate non-linearities, and include interaction effects between the characteristics. An intersection data inventory of 36 safety relevant parameters for three- and four-legged non-signalized intersections along state routes in Alabama was used to study the importance of intersection characteristics on crash rate and the interaction effects between key characteristics. Four different SPFs were investigated and compared: Poisson regression, negative binomial regression, regularized generalized linear model, and boosted regression trees. The models did not agree on which intersection characteristics were most related to the crash rate. The boosted regression tree model significantly outperformed the other models and identified several intersection characteristics as having strong interaction effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423

  7. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  8. Near-Fault Broadband Ground Motion Simulations Using Empirical Green's Functions: Application to the Upper Rhine Graben (France-Germany) Case Study

    Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria

    2017-09-01

    Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We

  9. Importance measures

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the following: general concepts of importance measures; example fault tree, used to illustrate importance measures; Birnbaum's structural importance; criticality importance; Fussel-Vesely importance; upgrading function; risk achievement worth; risk reduction worth

  10. Geomicrobiology of Hydrothermal Vents in Yellowstone Lake: Phylogenetic and Functional Analysis suggest Importance of Geochemistry (Invited)

    Inskeep, W. P.; Macur, R.; Jay, Z.; Clingenpeel, S.; Tenney, A.; Lavalvo, D.; Shanks, W. C.; McDermott, T.; Kan, J.; Gorby, Y.; Morgan, L. A.; Yooseph, S.; Varley, J.; Nealson, K.

    2010-12-01

    Yellowstone Lake (Yellowstone National Park, WY, USA) is a large, high-altitude, fresh-water lake that straddles the most recent Yellowstone caldera, and is situated on top of significant hydrothermal activity. An interdisciplinary study is underway to evaluate the geochemical and geomicrobiological characteristics of several hydrothermal vent environments sampled using a remotely operated vehicle, and to determine the degree to which these vents may influence the biology of this young freshwater ecosystem. Approximately six different vent systems (locations) were sampled during 2007 and 2008, and included water obtained directly from the hydrothermal vents as well as biomass and sediment associated with these high-temperature environments. Thorough geochemical analysis of these hydrothermal environments reveals variation in pH, sulfide, hydrogen and other potential electron donors that may drive primary productivity. The concentrations of dissolved hydrogen and sulfide were extremely high in numerous vents sampled, especially the deeper (30-50 m) vents located in the Inflated Plain, West Thumb, and Mary Bay. Significant dilution of hydrothermal fluids occurs due to mixing with surrounding lake water. Despite this, the temperatures observed in many of these hydrothermal vents range from 50-90 C, and elevated concentrations of constituents typically associated with geothermal activity in Yellowstone are observed in waters sampled directly from vent discharge. Microorganisms associated with elemental sulfur mats and filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5-6) were dominated by members of the deeply-rooted bacterial Order Aquificales, but also contain thermophilic members of the domain Archaea. Assembly of metagenome sequence from the Inflated Plain vent biomass and to a lesser extent, West Thumb vent biomass reveal the importance of Sulfurihydrogenibium-like organisms, also important in numerous terrestrial geothermal

  11. Optic neuropathies--importance of spatial distribution of mitochondria as well as function.

    Yu Wai Man, C Y; Chinnery, P F; Griffiths, P G

    2005-01-01

    Optic neuropathies such as Leber's hereditary optic neuropathy, dominant optic atrophy and toxic amblyopia are an important cause of irreversible visual failure. Although they are associated with a defect of mitochondrial energy production, their pathogenesis is poorly understood. A common feature to all these disorders is relatively selective degeneration of the papillomacular bundle of retinal ganglion cells resulting central or caecocentral visual field defects. The striking similarity in the pattern of clinical involvement seen with these disparate disorders suggests a common pathway in their aetiology. The existing hypothesis that the optic nerve head has higher energy demands than other tissues making it uniquely dependent on oxidative phosporylation is not satisfactory. First, other ocular tissues such as photoreceptors, which are more dependent on oxidative phosporylation are not affected. Second, other mitochondrial disorders, which have a greater impact on mitochondrial energy function, do not affect the optic nerve. The optic nerve head has certain unique ultra structural features. Ganglion cell axons exit the eye through a perforated collagen plate, the lamina cribrosa. There is a sharp discontinuity in the density of mitochondria at the optic nerve head, with a very high concentration in the prelaminar nerve fibre layer and low concentration behind the lamina. This has previously been attributed to a mechanical hold up of axoplasmic flow, which has itself been proposed as a factor in the pathogenesis of a number of optic neuropathies. More recent evidence shows that mitochondrial distribution reflects the different energy requirements of the unmyelinated prelaminar axons in comparison to the myelinated retrolaminar axons. The heterogeous distribution of mitochondria is actively maintained to support conduction through the optic nerve head. We propose that factors that disrupt the heterogeneous distribution of mitochondria can result in ganglion cell

  12. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditional Monte Carlo simulation of ''real'' particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ''black box''. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases

  13. Estimation of Import and Export demand Functions Using Bilateral Trade Data ___ the case of Pakistan

    Jahanzaib Haider; Muhammad Afzal; Farah Riaz

    2011-01-01

    We estimated the import and export elasticities of Pakistan trade with traditional trade partners and some Asian countries to see the dynamics of Pakistan trade from 1973 to 2008. OLS results suggest that income is the principal determinant of exports and imports. Pakistan exports are cointegrated with Japan and USA while the imports are cointegrated with UAE and USA. Pakistan imports and exports are cointegrated with Bangladesh and Sri Lanka but not with India and China. Income and exchange ...

  14. Dizziness and Motion Sickness

    ... that extends into the inner ear can completely destroy both the hearing and equilibrium function of that ... motion sickness: •Do not read while traveling •Avoid sitting in the rear seat •Do not sit in ...

  15. Identifying faecal impaction is important for ensuring the timely diagnosis of childhood functional constipation

    Modin, Line; Walsted, Anne-Mette; Jakobsen, Marianne Skytte

    2015-01-01

    AIM: Most research on functional constipation has been carried out at a tertiary level. We focused this study on a secondary-level hospital outpatients' department, assessing the distribution of diagnostic criteria for childhood functional constipation and evaluating the consequences of current...... diagnostic practice based on current guidelines. METHODS: We enrolled 235 children, aged two to 16 years of age, with functional constipation according to the Rome III criteria and assessed them using medical histories and physical examinations, including rectal examinations and ultrasound measurements...... the timely diagnosis of childhood functional constipation at the secondary care level. Ultrasound examination proved a reliable alternative to rectal examination or abdominal radiography when identifying faecal impaction....

  16. Point kinetics equations for subcritical systems based on the importance function associated to an external neutron source

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2015-01-01

    Highlights: • We define the new function importance. • We calculate the kinetic parameters Λ, β, Γ and Q to: 0.95, 0.96, 0.97, 0.98 and 0.99. • We compared the results with those obtained by the main important functions. • We found that the calculated kinetic parameters are physically consistent. - Abstract: This paper aims to determine the parameters for a new set of equations of point kinetic subcritical systems, based on the concept of importance of Heuristic Generalized Perturbation Theory (HGPT). The importance function defined here is related to both the subcriticality and the external neutron source worth (which keeps the system at steady state). The kinetic parameters defined in this work are compared with the corresponding parameters when adopting the importance functions proposed by Gandini and Salvatores (2002), Dulla et al. (2006) and Nishihara et al. (2003). Furthermore, the point kinetics equations developed here are solved for two different transients, considering the parameters obtained with different importance functions. The results collected show that there is a similar behavior of the solution of the point kinetics equations, when used with the parameters obtained by the importance functions proposed by Gandini and Salvatores (2002) and Dulla et al. (2006), specially near the criticality. However, this is not verified as the system gets farther from criticality

  17. Human motion retrieval from hand-drawn sketch.

    Chao, Min-Wen; Lin, Chao-Hung; Assa, Jackie; Lee, Tong-Yee

    2012-05-01

    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users’ expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.

  18. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  19. Persistence of the prognostic importance of left ventricular systolic function and heart failure after myocardial infarction: 17-year follow-up of the TRACE register.

    Kümler, Thomas; Gislason, Gunnar Hilmar; Køber, Lars; Torp-Pedersen, Christian

    2010-08-01

    Left ventricular systolic function and presence of heart failure (HF) are important prognostic factors and dictate future therapeutic strategies after myocardial infarction (MI). We evaluated persistence of the prognostic importance of left ventricular dysfunction and HF in consecutive MI patients screened for entry in the Trandolopril Cardiac Evaluation Registry (TRACE) study. The study population comprised 6676 MI patients screened for entry into the TRACE study, a double-blind, randomized, parallel group, placebo-controlled study of trandolapril vs. placebo in patients with left ventricular dysfunction after MI. In unadjusted analysis, patients with reduced left ventricular function and HF continued to show increased mortality. Landmark analysis and Cox proportional-hazards models showed that wall motion index (WMI) was a significant prognostic factor until 10 years of follow-up with hazard ratios ranging between 0.74 [confidence interval (CI) 0.71-0.78] and 0.90 (CI 0.82-0.98) associated with a 12% improvement in left ventricular ejection fraction (0.4 WMI units). The prognostic significance of HF persisted for 8 years with hazard ratios between 1.47 (CI 1.21-1.78) and 2.62 (95% CI 2.30-2.98) for the first 8 years. When assessed during the index MI, WMI and HF carry prognostic information for up to 10 years.

  20. Functional outcomes of child and adolescent mental disorders. Current disorder most important but psychiatric history matters as well

    Ormel, Johan; Oerlemans, Anoek; Raven, Dennis; Laceulle, O.M.; Hartman, Catharina; Veenstra, Rene; Verhulst, F; Vollebergh, W.A.M.; Rosmalen, J.G.M.; Reijneveld, Sijmen A.; Oldehinkel, Tineke

    2017-01-01

    Background. Various sources indicate that mental disorders are the leading contributor to the burden of disease among youth. An important determinant of functioning is current mental health status. This study investigated whether psychiatric history has additional predictive power when predicting

  1. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape

    Lohbeck, M.W.M.; Bongers, F.; Martinez-Ramos, M.; Poorter, L.

    2016-01-01

    Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity

  2. Insights from Cognitive Neuroscience: The Importance of Executive Function for Early Reading Development and Education

    Cartwright, Kelly B.

    2012-01-01

    Research Findings: Executive function begins to develop in infancy and involves an array of processes, such as attention, inhibition, working memory, and cognitive flexibility, which provide the means by which individuals control their own behavior, work toward goals, and manage complex cognitive processes. Thus, executive function plays a…

  3. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  4. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose: To quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials: Four-dimensional Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3 cc) and motion amplitudes (3-30 mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity, and 2-year local control rate (2y-LC). Results: Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ ≈ 3 mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor 2.8 compared with a larger spot size (σ ≈ 13 mm). Using a smaller spot size to treat a tumor with 30-mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V 20 are <0.6 Gy(RBE) and <1.7%, respectively. Conclusions: For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments using smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the

  5. An Analysis of the Importance of Selected Functions of Counseling Centers in Public Colleges in the State of Maryland.

    Gross, Thomas S.; And Others

    Counseling center directors at colleges in the state of Maryland were asked to rate the importance of several selected functions of their counseling centers. The functions rated were: (1) psychological problem counseling; (2) reading and study skills assistance; (3) testing; (4) academic advisement; (5) college orientation; (6) evening student…

  6. The efficacy of interactive, motion capture-based rehabilitation on functional outcomes in an inpatient stroke population: a randomized controlled trial.

    Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran Dk; Bird, Marie-Louise

    2018-02-01

    To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Randomized controlled clinical trial. Two subacute hospital rehabilitation units in Australia. In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8-40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (-3.0 to 5.0) cm) with no difference between groups ( P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) ( P = 0.04). No adverse events were recorded during therapy. Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant.

  7. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    Zun-rong Wang

    2017-01-01

    Full Text Available Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238.

  8. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong

    2017-01-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328

  9. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.

    Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong

    2017-11-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

  10. Non-pharmacological modification of endothelial function: An important lesson for clinical practice

    Monika Szulińska

    2018-03-01

    The impact of endothelial function in the complex pathology of cardiovascular diseases reflects a number of scientific proofs showing favorable effects of non-pharmacological interventions in endothelial dysfunction treatment.

  11. Reorganization of Functional Brain Maps After Exercise Training: Importance of Cerebellar-Thalamic-Cortical Pathway

    Holschneider, DP; Yang, J; Guo, Y; Maarek, J-M I

    2007-01-01

    Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs.

  12. Importance of the correlation contribution for local hybrid functionals: range separation and self-interaction corrections.

    Arbuznikov, Alexei V; Kaupp, Martin

    2012-01-07

    Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.

  13. SU-E-J-164: Estimation of DVH Variation for PTV Due to Interfraction Organ Motion in Prostate VMAT Using Gaussian Error Function

    Lewis, C; Jiang, R; Chow, J

    2015-01-01

    Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describing the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system

  14. Prediction of strong ground motion based on scaling law of earthquake

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  15. The Importance of REST for Development and Function of Beta Cells

    Martin, David; Grapin-Botton, Anne

    2017-01-01

    that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST......Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among...... these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes...

  16. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects

    Lin, Kai, E-mail: kai-lin@northwestern.edu; Collins, Jeremy D.; Chowdhary, Varun; Markl, Michael; Carr, James C.

    2016-10-15

    Highlights: • Heart deformation analysis (HDA) can quantify global and regional cardiac function. • HDA works based on cine CMR images without the needs of operator interaction. • HDA-derived cardiac motion indices are reproducible. - Abstract: Objective: To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Materials and methods: Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results: HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5 ± 9.65%), LVM (105.88 ± 21.93 g), peak Drr (0.29 ± 0.11 cm), Vrr-sys (2.14 ± 0.72 cm/s), Err (0.17 ± 0.08), Ecc (−0.08 ± 0.03), SRr-sys (0.91 ± 0.44s{sup −1}) and SRc-sys (−0.64 ± 0.27s{sup −1}) compared to the other two groups. HCM patients demonstrated increased LVM (171.69 ± 34.19) and lower peak Vcc-dia (0.78 ± 0.30 cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC = 0.664–0.942, CoV = 15.1%–37

  17. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects

    Lin, Kai; Collins, Jeremy D.; Chowdhary, Varun; Markl, Michael; Carr, James C.

    2016-01-01

    Highlights: • Heart deformation analysis (HDA) can quantify global and regional cardiac function. • HDA works based on cine CMR images without the needs of operator interaction. • HDA-derived cardiac motion indices are reproducible. - Abstract: Objective: To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Materials and methods: Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results: HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5 ± 9.65%), LVM (105.88 ± 21.93 g), peak Drr (0.29 ± 0.11 cm), Vrr-sys (2.14 ± 0.72 cm/s), Err (0.17 ± 0.08), Ecc (−0.08 ± 0.03), SRr-sys (0.91 ± 0.44s −1 ) and SRc-sys (−0.64 ± 0.27s −1 ) compared to the other two groups. HCM patients demonstrated increased LVM (171.69 ± 34.19) and lower peak Vcc-dia (0.78 ± 0.30 cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC = 0.664–0.942, CoV = 15.1%–37

  18. The Importance of Clinical and Diagnostic Markers of Aggression of Non-Functional Pituitary Adenomas

    Yu.M. Urmanova

    2015-09-01

    Full Text Available Sixty patients with non-functional pituitary adenomas were observed. Most patients had large-cell chromophobe pituitary adenomas (81.6%. Small-cell chromophobe adenomas occurred in 10 % cases. Only 1 patient (3.3 % had giant carcinoma with regrowth and metastasis into the brain. Markers of aggression of non-functional pituitary adenomas are the young age of a patient, expressed first symptoms of disease manifestation, large size of tumor, asymmetry and deformation of pituitary, invasion of tumor to the neighboring tissues/arteries/cavernous sinus, presence of small cell and dark-cell chromophobe adenoma, panhypopituitarism.

  19. Functions important to nuclear power plant safety, and training and qualification of personnel

    1996-01-01

    The requirements for the safe operation of the organisation attending to direct operational, the maintenance and the technical support functions of a nuclear power plant are defined in the guide. The basic education, work experience and medical fitness for the job required during recruitment, the requirements relating to the initial training of a person for his job and certain job-specific approvals granted separately are presented. General requirements for the training function and for the refresher and continuing training arranged by the licence-holder are also set out. (1 ref.)

  20. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products.

    Meckfessel, Matthew H; Brandt, Staci

    2014-07-01

    Ceramides (CERs) are epidermal lipids that are important for skin barrier function. Much research has been devoted to identifying the numerous CERs found in human skin and their function. Alterations in CER content are associated with a number of skin diseases such as atopic dermatitis. Newer formulations of skin-care products have incorporated CERs into their formulations with the goal of exogenously applying CERs to help skin barrier function. CERs are a complex class of molecules and because of their growing ubiquity in skin-care products, a clear understanding of their role in skin and use in skin-care products is essential for clinicians treating patients with skin diseases. This review provides an overview of the structure, function, and importance of skin CERs in diseased skin and how CERs are being used in skin-care products to improve or restore skin barrier function. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  1. Prognostic importance of renal function in patients with early heart failure and mild left ventricular dysfunction

    Smilde, Tom; Hillege, Hans; Voors, Adriaan; Dunselman, P.H.J.; Van Veldhuisen, D.J.

    2004-01-01

    We evaluated the prognostic value of renal function in an initially “untreated” population with mild heart failure and compared the prognosis of this population with a matched controlled population. During a follow-up of 13 years (mean 11.7), 90 patients (56%) died. Mortality was higher compared

  2. How Language Learners Can Improve Their Emotional Functioning: Important Psychological and Psychospiritual Theories

    Oxford, Rebecca L.

    2015-01-01

    Emotion is "the primary human motive" (MacIntyre, 2002, p. 61). The human brain is an emotional brain, creating relationships among thought, emotion, and motivation in a complex dynamic system (Dörnyei, 2009). Emotion "functions as an amplifier, providing the intensity, urgency, and energy to propel our behavior" in…

  3. Self-Monitoring Interventions for At-Risk Middle School Students: The Importance of Considering Function

    Briere, Donald E., III; Simonsen, Brandi

    2011-01-01

    Self-monitoring is a popular, efficient, and effective intervention that is associated with improved academic and social behavior for students across age and ability levels. To date, this is the first study to directly compare the outcomes of self-monitoring functionally relevant and non-relevant replacement behaviors. Specifically, we used an…

  4. Recovery of important physiological functions in 3D culture of immortal hepatocytes

    Wrzesinski, Krzysztof; Fey, S. J.

    2011-01-01

    to grow human liver cells in ‘3 dimensional’ cultures so that they behave very similar to the liver in our bodies. By growing the immortal hepatocytes in specially designed bioreactors they form small pieces of ‘pseudotissue’ which exhibit several of the functions seen in the adult liver. We have grown...

  5. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  6. The Importance of Take-Out Food Packaging Attributes: Conjoint Analysis and Quality Function Deployment Approach

    Lestari Widaningrum, Dyah

    2014-03-01

    This research aims to investigate the importance of take-out food packaging attributes, using conjoint analysis and QFD approach among consumers of take-out food products in Jakarta, Indonesia. The conjoint results indicate that perception about packaging material (such as paper, plastic, and polystyrene foam) plays the most important role overall in consumer perception. The clustering results that there is strong segmentation in which take-out food packaging material consumer consider most important. Some consumers are mostly oriented toward the colour of packaging, while another segment of customers concerns on packaging shape and packaging information. Segmentation variables based on packaging response can provide very useful information to maximize image of products through the package's impact. The results of House of Quality development described that Conjoint Analysis - QFD is a useful combination of the two methodologies in product development, market segmentation, and the trade off between customers' requirements in the early stages of HOQ process

  7. Collisional redistribution of radiation. II - The effects of degeneracy on the equations of motion for the density matrix. III - The equation of motion for the correlation function and the scattered spectrum

    Burnett, K.; Cooper, J.

    1980-01-01

    The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.

  8. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  9. Providing information and enabling transactions: which website function is more important for success?

    Hoekstra, Janny C.; Huizingh, Eelko K.R.E.; Bijmolt, Tammo H.A.; Krawczyk, Adriana

    2015-01-01

    In this study, we propose and test a chain of effects from website content, through informational and transactional success to overall website success and company performance. This framework enables us to determine the relative importance of the informational and transaction-related website

  10. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Bai, Yang; Huang, Wan; Ma, Li-Tian; Jiang, Jian-Li; Chen, Zhi-Nan

    2014-01-01

    Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation. PMID:24739808

  11. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Yang Bai

    2014-04-01

    Full Text Available Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  12. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

    Griffiths, Jennifer R.; Kadin, Martina; Nascimento, Francisco J. A.

    2017-01-01

    and function is strongly affected by anthropogenic pressures, however there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling...... processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study, and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic......Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure...

  13. Distribution dynamics and functional importance of NHERF1 in regulation of Mrp-2 trafficking in hepatocytes.

    Karvar, Serhan; Suda, Jo; Zhu, Lixin; Rockey, Don C

    2014-10-15

    Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) is a multifunctional scaffolding protein that interacts with receptors and ion transporters in its PDZ domains and with the ezrin-radixin-moesin (ERM) family of proteins in its COOH terminus. The role of NHERF1 in hepatocyte function remains largely unknown. We examine the distribution and physiological significance of NHERF1 and multidrug resistance-associated protein 2 (Mrp-2) in hepatocytes. A WT radixin binding site mutant (F355R) and NHERF1 PDZ1 and PDZ2 domain adenoviral mutant constructs were tagged with yellow fluorescent protein and expressed in polarized hepatocytes to study localization and function of NHERF1. Cellular distribution of NHERF1 and radixin was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate (CMFDA) assay was used to characterize Mrp-2 function. Similar to Mrp-2, WT NHERF1 and the NHERF1 PDZ2 deletion mutant were localized to the canalicular membrane. In contrast, the radixin binding site mutant (F355R) and the NHERF1 PDZ1 deletion mutant, which interacts poorly with Mrp-2, were rarely associated with the canalicular membrane. Knockdown of NHERF1 led to dramatically impaired CMFDA secretory response. Use of CMFDA showed that the NHERF1 PDZ1 and F355R mutants were devoid of a secretory response, while WT NHERF1-infected cells exhibited increased secretion of glutathione-methylfluorescein. The data indicate that NHERF1 interacts with Mrp-2 via the PDZ1 domain of NHERF1 and, furthermore, that NHERF1 is essential for maintaining the localization and function of Mrp-2. Copyright © 2014 the American Physiological Society.

  14. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.

    Webb, Matthew H; Terauds, Aleks; Tulloch, Ayesha; Bell, Phil; Stojanovic, Dejan; Heinsohn, Robert

    2017-10-01

    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists. © 2017 Society for Conservation Biology.

  15. Hippocampal volumes are important predictors for memory function in elderly women

    Adolfsdottir Steinunn

    2009-08-01

    Full Text Available Abstract Background Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years. Methods Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT. To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis. Results APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results. Conclusion Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.

  16. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies.

    Varga, G; DenBesten, P; Rácz, R; Zsembery, Á

    2017-08-18

    Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  17. The import and function of diatom and plant frataxins in the mitochondrion of Trypanosoma brucei

    Long, Shaojun; Vávrová, Zuzana; Lukeš, Julius

    2008-01-01

    Roč. 162, č. 1 (2008), s. 100-104 ISSN 0166-6851 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * diatom * evolutionary conservativeness * import Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.951, year: 2008

  18. Importance sampling and histogrammic representations of reactivity functions and product distributions in Monte Carlo quasiclassical trajectory calculations

    Faist, M.B.; Muckerman, J.T.; Schubert, F.E.

    1978-01-01

    The application of importance sampling as a variance reduction technique in Monte Carlo quasiclassical trajectory calculations is discussed. Two measures are proposed which quantify the quality of the importance sampling used, and indicate whether further improvements may be obtained by some other choice of importance sampling function. A general procedure for constructing standardized histogrammic representations of differential functions which integrate to the appropriate integral value obtained from a trajectory calculation is presented. Two criteria for ''optimum'' binning of these histogrammic representations of differential functions are suggested. These are (1) that each bin makes an equal contribution to the integral value, and (2) each bin has the same relative error. Numerical examples illustrating these sampling and binning concepts are provided

  19. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.

    Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika

    2017-06-01

    Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation

    Májeková, M.; Paal, T.; Plowman, Nichola S.; Bryndová, Michala; Kasari, L.; Norberg, A.; Weiss, Matthias; Bishop, T. R.; Luke, S. H.; Sam, Kateřina; Le Bagousse-Pinguet, Y.; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Roč. 11, č. 2 (2016), č. článku e0149270. E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36098G; GA ČR(CZ) GP14-32024P; GA ČR GAP505/12/1296 Grant - others:GA JU(CZ) 156/2013/P Institutional support: RVO:60077344 ; RVO:67985939 Keywords : data incompleteness * functional diversity * species abundance Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (BU-J) Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149270

  1. Importance of orthodontic movement in interdisciplinary treatment for restoring esthetics and functional occlusion

    Carlos Henrique Guimarães

    2015-01-01

    Full Text Available This article describes interdisciplinary treatment conducted in adult patients, 49-year-old, with periodontal problems, losses and dental inclination, occlusal trauma, localized bone loss, and necessity of rehabilitation with dental implants. Alignment and leveling of the teeth, the molars uprighting with cantilever, and space closure were performed the treatment was facilitated by periodic periodontal control. The resultant occlusion was stable throughout a 5-year retention period. In conclusion, interdisciplinary treatment combined with periodontics, orthodontics, implantodontist, and restorative dentistry was useful for improving the patient′s oral health, function, and esthetics.

  2. TECHNOLOGICAL AND FUNCTIONAL PROPERTIES OF LACTIC ACID BACTERIA: THE IMPORTANCE OF THESE MICROORGANISMS FOR FOOD

    Amanda de Souza Motta

    2015-12-01

    Full Text Available Eacters of coccus or rods Gram-positive, catalase negative, non-sporulating, which produce lactic acid as the major end product during the fermentation of carbohydrates. When applied on food, provides beneficial effects to consumers through its functional and technological properties. With this the present review article, explore the potential application of lactic acid bacteria in food. The following genera are considered the principal lactic acid bacteria: Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. These cultures have been used as starter or adjunct cultures for the fermentation of foods and beverages due to their contributions to the sensorial characteristics of these products and by microbiological stability. Their probiotic properties have also been investigated. More recent studies by indigenous cultures have received increased attention in light of the search for isolated cultures of a given raw material and a certain region. These microorganisms are being investigated for its functional and technological potential that may be applied in product development with its own characteristics and designation of origin. Those properties will be discussed in the present review in order to highlight the performance of these bacteria and the high degree of control over the fermentation process and standardization of the final product. The use of autochthonous cultures will be considered due the increase of studies of new cultures of lactic acid bacteria isolated of milk and meat of distinct products.

  3. Post-surgical functional recovery, lumbar lordosis, and range of motion associated with MR-detectable redundant nerve roots in lumbar spinal stenosis.

    Chen, Jinshui; Wang, Juying; Wang, Benhai; Xu, Hao; Lin, Songqing; Zhang, Huihao

    2016-01-01

    T1- and T2-weighted magnetic resonance images (MRI) can reveal lumbar redundant nerve roots (RNRs), a result of chronic compression and nerve elongation associated with pathogenesis of cauda equina claudication (CEC) in degenerative lumbar canal stenosis (DLCS). The study investigated effects of lumbar lordosis angle and range of motion on functional recovery in lumbar stenosis patents with and without RNRs. A retrospective study was conducted of 93 lumbar spinal stenosis patients who underwent decompressive surgery. Eligible records were assessed by 3 independent blinded radiologists for presence or absence of RNRs on sagittal T2-weighted MR (RNR and non-RNR groups), pre- and post-operative JOA score, lumbar lordosis angle, and range of motion. Of 93 total patients, the RNR group (n=37, 21/37 female) and non-RNR group (n=56; 31/56 female) had similar preoperative conditions (JOA score) and were not significantly different in age (mean 64.19 ± 8.25 vs. 62.8 ± 9.41 years), symptom duration (30.92 ± 22.43 vs. 28.64 ± 17.40 months), or follow-up periods (17.35 ± 4.02 vs. 17.75 ± 4.29 mo) (all p>0.4). The non-RNR group exhibited significantly better final JOA score (p=0.015) and recovery rate (p=0.002). RNR group patients exhibited larger lumbar lordosis angles in the neutral position (p=0.009) and extension (p=0.021) and larger range of motion (p=0.008). Poorer surgical outcomes in patients with RNRs indicated that elevated lumbar lordosis angle and range of motion increased risks of RNR formation, which in turn may cause poorer post-surgical recovery, this information is possibly useful in prognostic assessment of lumbar stenosis complicated by RNRs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of range of motion and function of subjects with reverse anatomy Bayley-Walker shoulder replacement with those of normal subjects.

    Masjedi, Milad; Lovell, Cara; Johnson, Garth R

    2011-12-01

    Patients with rotator cuff tear and degenerative shoulder joint disease commonly experience severe pain and reduced performance during activities of daily living. A popular way to treat these patients is by means of reverse anatomy shoulder prosthesis. Studying the kinematics of subjects with reverse anatomy implant would be useful in order to gain knowledge about functionality of different designs. It is hypothesized that the kinematics of these subjects, in the absence of rotator cuff muscles, differs from that of normal subjects. In this study the upper limb kinematics of 12 subjects with a Bayley-Walker reverse anatomy shoulder prosthesis while performing tasks common in everyday activities and those that represent the range of motion was analyzed and compared to that of 12 normal subjects. Each patient also completed an Oxford Shoulder Score. Substantial reduction in the Bayley-Walker subjects' ranges of motion was observed compared to normal subjects. The mean abduction angle decreased from 109° (±20) for normal subjects to 64° (±25). A similar trend was observed during flexion and axial rotation tasks. Furthermore, the normal group showed less variable ranges of motion performing the standard tasks, whereas for the prosthetic group this varied greatly, which is likely to be dependent on muscle strength. Although the decreased range of motion was prominent, subjects were able to complete most of the tasks by compensating with their elbow and trunk. The most challenging task for Bayley-Walker subjects was lifting an object to head height. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Cancer treatment in childhood and testicular function: the importance of the somatic environment

    Stukenborg, Jan-Bernd; Jahnukainen, Kirsi; Hutka, Marsida

    2018-01-01

    Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment. PMID:29351905

  6. Hot and Cool Executive Functions in Adolescence: Development and Contributions to Important Developmental Outcomes

    Poon, Kean

    2018-01-01

    Despite significant theoretical advancement in the area of child neuropsychology, limited attention has been paid to the developmental features of adolescence. The present study intends to address this issue in relation to executive function (EF). EF refers to the psychological processes that underlie goal-directed behavior; recent studies separate cool EF (psychological process involves pure logic and critical analysis) and hot EF (psychological process driven by emotion). Although neurological findings suggest that adolescence is a sensitive period for EF development, data on comparing the developmental progression in hot or cool EFs is highly missing. Moreover, while evidence has confirmed the relationships between EF and day-to-day functioning, whether and how hot and cool EFs contribute to core developmental outcomes in adolescence is still remained unknown. The current study aims to enhance our understanding of the development and impacts of hot and cool EFs in adolescence. A total of 136 typically developing adolescents from age 12 to 17 completed four cool EF tasks including Backward digit span, Contingency naming test, Stockings of Cambridge, and Stroop Color and Word test, and one hot task on Cambridge gambling task. Data on academic performance and psychological adjustment was also collected. Results showed that cool and hot EF exhibited different patterns of age-related growth in adolescence. Specifically, cool EF ascended with age while hot EF showed a bell-shaped development. Moreover, there were correlations among cool EF measures but no association between cool and hot EFs. Further, cool EF was a better predictor of academic performance, while hot EF uniquely related to emotional problems. The results provide evidence for the association among cool EF tests and the differentiation of hot and cool EFs. The bell-shaped development of hot EF might suggest a period of heightened risk-taking propensity in middle adolescence. Given the plastic nature of

  7. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  8. Hot and Cool Executive Functions in Adolescence: Development and Contributions to Important Developmental Outcomes

    Kean Poon

    2018-01-01

    Full Text Available Despite significant theoretical advancement in the area of child neuropsychology, limited attention has been paid to the developmental features of adolescence. The present study intends to address this issue in relation to executive function (EF. EF refers to the psychological processes that underlie goal-directed behavior; recent studies separate cool EF (psychological process involves pure logic and critical analysis and hot EF (psychological process driven by emotion. Although neurological findings suggest that adolescence is a sensitive period for EF development, data on comparing the developmental progression in hot or cool EFs is highly missing. Moreover, while evidence has confirmed the relationships between EF and day-to-day functioning, whether and how hot and cool EFs contribute to core developmental outcomes in adolescence is still remained unknown. The current study aims to enhance our understanding of the development and impacts of hot and cool EFs in adolescence. A total of 136 typically developing adolescents from age 12 to 17 completed four cool EF tasks including Backward digit span, Contingency naming test, Stockings of Cambridge, and Stroop Color and Word test, and one hot task on Cambridge gambling task. Data on academic performance and psychological adjustment was also collected. Results showed that cool and hot EF exhibited different patterns of age-related growth in adolescence. Specifically, cool EF ascended with age while hot EF showed a bell-shaped development. Moreover, there were correlations among cool EF measures but no association between cool and hot EFs. Further, cool EF was a better predictor of academic performance, while hot EF uniquely related to emotional problems. The results provide evidence for the association among cool EF tests and the differentiation of hot and cool EFs. The bell-shaped development of hot EF might suggest a period of heightened risk-taking propensity in middle adolescence. Given the

  9. Using the Functional Reach Test for Probing the Static Stability of Bipedal Standing in Humanoid Robots Based on the Passive Motion Paradigm

    Jacopo Zenzeri

    2013-01-01

    Full Text Available The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.

  10. On the function and importance of research design in existential-phenomenological qualitative research

    Feilberg, Casper

    inquiry. This is very different from the research traditions within the social sciences, which traditionally emphasizes the importance of research design and a controlled inquiry, even with respect to qualitative research. Social research is traditionally divided into three phases: planning, execution...... in a convincing way. This principle of controlled inquiry manifests itself in different ways within qualitative and quantitative traditions of social science research. But still, is this principle also applicable and relevant with respect to qualitative human science research? I think so. I hence make...... the argument that there would be a fruitful contribution to much phenomenological research from a greater emphasis on research design and controlled inquiry. But is it possible to combine these social science research principles with a phenomenological and hermeneutical approach to qualitative research...

  11. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-01-01

    Abstract. Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images. PMID:26157980

  12. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development.

    Jaegle, Martine; Ghazvini, Mehrnaz; Mandemakers, Wim; Piirsoo, Marko; Driegen, Siska; Levavasseur, Francoise; Raghoenath, Smiriti; Grosveld, Frank; Meijer, Dies

    2003-06-01

    The genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during development and tissue regeneration in adults following damage. In this report we demonstrate the involvement of a third transcription factor, the POU domain factor Brn-2. We show that Schwann cells express Brn-2 in a developmental profile similar to that of Oct-6 and that Brn-2 gene activation does not depend on Oct-6. Overexpression of Brn-2 in Oct-6-deficient Schwann cells, under control of the Oct-6 Schwann cell enhancer (SCE), results in partial rescue of the developmental delay phenotype, whereas compound disruption of both Brn-2 and Oct-6 results in a much more severe phenotype. Together these data strongly indicate that Brn-2 function largely overlaps with that of Oct-6 in driving the transition from promyelinating to myelinating Schwann cells.

  13. Dual Sensory Loss and Depressive Symptoms: The Importance of Hearing, Daily Functioning and Activity Engagement

    Kim Matthew Kiely

    2013-12-01

    Full Text Available Background: The association between dual sensory loss (DSL and mental health has been well established. However, most studies have relied on self-report data and lacked measures that would enable researchers to examine causal pathways between DSL and depression. This study seeks to extend this research by examining the effects of DSL on mental health, and identify factors that explain the longitudinal associations between sensory loss and depressive symptoms. Methods: Piecewise linear-mixed models were used to analyse 16-years of longitudinal data collected on up to five occasions from 1611 adults (51% men aged between 65 and 103 years. Depressive symptoms were assessed by the Centre for Epidemiological Studies Depression (CES-D. Vision loss (VL was defined by corrected visual acuity greater than 0.3 logMAR in the better eye, blindness or glaucoma. Hearing loss (HL was defined by pure tone average (PTA greater than 25 dB in the better hearing ear. Analyses were adjusted for socio-demographics, medical conditions, lifestyle behaviours, Activities of Daily Living (ADLs, cognitive function, and social engagement. Results: Unadjusted models indicated that higher levels of depressive symptoms were associated with HL (B=1.16, SE=0.33 and DSL (B=2.15, SE=0.39 but not VL. Greater rates of change in depressive symptoms were also evident after the onset of HL (B=0.16, SE=0.06, p

  14. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  15. Effect of halloysite nanotubes on the structure and function of important multiple blood components

    Wu, Keke; Feng, Ru; Jiao, Yanpeng; Zhou, Changren

    2017-01-01

    Many researchers have investigated the application of halloysite nanotubes (HNTs) in biomedicine, because of their special nanoscale hollow tubular structure. Although the cytocompatibility of HNTs has been studied, their blood compatibility has not been systematically investigated. In this work, the effect of HNTs on the structure and function of different blood components has been studied, including the morphology and hemolysis of red blood cells (RBCs). Based on scanning electron microscopy (SEM) observations, optical density test and flow cytometry analysis, we found that HNTs can affect the morphology and membrane integrity of RBCs in phosphate buffered saline (PBS) in a content-dependent way. In particular, based on UV–vis absorption spectra, fluorescence spectra and circular dichroism (CD) spectra, HNTs can alter the secondary structure and conformation of human fibrinogen and γ-globulins. In addition, the detection of biomarker molecules C3a and C5a in plasma suggests that HNTs can trigger complement activation. In the blood clotting assay, HNTs were found to significantly prolong the activated partial thromboplastin time (APTT), shorten the prothrombin time (PT) of platelet-poor plasma (PPP), and change the thromboelastography (TEG) parameters of whole blood coagulation. Furthermore, confocal laser scanning microscopy and flow cytometry analysis were used to test intracellular uptake by macrophages, and the cellular uptake of HNTs in the RAW 264.7 was found to be content-dependent, but not time-dependent. These findings provide insight for the potential use of HNTs as biofriendly nanocontainers for biomaterials in vivo. - Highlights: • Comprehensive study of blood compatibility halloysite nanotubes (HNTs) is processed. • We examine and analyze the effect of HNTs on conformation changes of three plasma proteins. • We prove HNTs can affect blood components at high content but little at low content. • We prove HNTs could be used as biomaterials

  16. Effect of halloysite nanotubes on the structure and function of important multiple blood components.

    Wu, Keke; Feng, Ru; Jiao, Yanpeng; Zhou, Changren

    2017-06-01

    Many researchers have investigated the application of halloysite nanotubes (HNTs) in biomedicine, because of their special nanoscale hollow tubular structure. Although the cytocompatibility of HNTs has been studied, their blood compatibility has not been systematically investigated. In this work, the effect of HNTs on the structure and function of different blood components has been studied, including the morphology and hemolysis of red blood cells (RBCs). Based on scanning electron microscopy (SEM) observations, optical density test and flow cytometry analysis, we found that HNTs can affect the morphology and membrane integrity of RBCs in phosphate buffered saline (PBS) in a content-dependent way. In particular, based on UV-vis absorption spectra, fluorescence spectra and circular dichroism (CD) spectra, HNTs can alter the secondary structure and conformation of human fibrinogen and γ-globulins. In addition, the detection of biomarker molecules C3a and C5a in plasma suggests that HNTs can trigger complement activation. In the blood clotting assay, HNTs were found to significantly prolong the activated partial thromboplastin time (APTT), shorten the prothrombin time (PT) of platelet-poor plasma (PPP), and change the thromboelastography (TEG) parameters of whole blood coagulation. Furthermore, confocal laser scanning microscopy and flow cytometry analysis were used to test intracellular uptake by macrophages, and the cellular uptake of HNTs in the RAW 264.7 was found to be content-dependent, but not time-dependent. These findings provide insight for the potential use of HNTs as biofriendly nanocontainers for biomaterials in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of halloysite nanotubes on the structure and function of important multiple blood components

    Wu, Keke; Feng, Ru; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Zhou, Changren

    2017-06-01

    Many researchers have investigated the application of halloysite nanotubes (HNTs) in biomedicine, because of their special nanoscale hollow tubular structure. Although the cytocompatibility of HNTs has been studied, their blood compatibility has not been systematically investigated. In this work, the effect of HNTs on the structure and function of different blood components has been studied, including the morphology and hemolysis of red blood cells (RBCs). Based on scanning electron microscopy (SEM) observations, optical density test and flow cytometry analysis, we found that HNTs can affect the morphology and membrane integrity of RBCs in phosphate buffered saline (PBS) in a content-dependent way. In particular, based on UV–vis absorption spectra, fluorescence spectra and circular dichroism (CD) spectra, HNTs can alter the secondary structure and conformation of human fibrinogen and γ-globulins. In addition, the detection of biomarker molecules C3a and C5a in plasma suggests that HNTs can trigger complement activation. In the blood clotting assay, HNTs were found to significantly prolong the activated partial thromboplastin time (APTT), shorten the prothrombin time (PT) of platelet-poor plasma (PPP), and change the thromboelastography (TEG) parameters of whole blood coagulation. Furthermore, confocal laser scanning microscopy and flow cytometry analysis were used to test intracellular uptake by macrophages, and the cellular uptake of HNTs in the RAW 264.7 was found to be content-dependent, but not time-dependent. These findings provide insight for the potential use of HNTs as biofriendly nanocontainers for biomaterials in vivo. - Highlights: • Comprehensive study of blood compatibility halloysite nanotubes (HNTs) is processed. • We examine and analyze the effect of HNTs on conformation changes of three plasma proteins. • We prove HNTs can affect blood components at high content but little at low content. • We prove HNTs could be used as biomaterials

  18. Mechanistic Insight into the Host Transcription Inhibition Function of Rift Valley Fever Virus NSs and Its Importance in Virulence.

    Terasaki, Kaori; Ramirez, Sydney I; Makino, Shinji

    2016-10-01

    Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, causes periodic outbreaks in livestocks and humans in countries of the African continent and Middle East. RVFV NSs protein, a nonstructural protein, is a major virulence factor that exhibits several important biological properties. These include suppression of general transcription, inhibition of IFN-β promoter induction and degradation of double-stranded RNA-dependent protein kinase R. Although each of these biological functions of NSs are considered important for countering the antiviral response in the host, the individual contributions of these functions towards RVFV virulence remains unclear. To examine this, we generated two RVFV MP-12 strain-derived mutant viruses. Each carried mutations in NSs that specifically targeted its general transcription inhibition function without affecting its ability to degrade PKR and inhibit IFN-β promoter induction, through its interaction with Sin3-associated protein 30, a part of the repressor complex at the IFN-β promoter. Using these mutant viruses, we have dissected the transcription inhibition function of NSs and examined its importance in RVFV virulence. Both NSs mutant viruses exhibited a differentially impaired ability to inhibit host transcription when compared with MP-12. It has been reported that NSs suppresses general transcription by interfering with the formation of the transcription factor IIH complex, through the degradation of the p62 subunit and sequestration of the p44 subunit. Our study results lead us to suggest that the ability of NSs to induce p62 degradation is the major contributor to its general transcription inhibition property, whereas its interaction with p44 may not play a significant role in this function. Importantly, RVFV MP-12-NSs mutant viruses with an impaired general transcription inhibition function showed a reduced cytotoxicity in cell culture and attenuated virulence in young mice

  19. The importance of GRAS to the functional food and nutraceutical industries

    Burdock, George A.; Carabin, Ioana G.; Griffiths, James C.

    2006-01-01

    At a time when 150 million Americans spend over $20.5 billion on functional foods, nutraceuticals and dietary supplements, the Food and Drug Administration (FDA) is doing little to ensure that all the safe and efficacious products that could come to the market are allowed to do so. FDA has only responded slowly and reluctantly to Congressional action and to mandates from the Courts to implement the law. Additionally, FDA had set the bar too high for Health Claims and was forced by the Courts to implement a more reasonable standard, but the response, Qualified Health Claims, has failed to gain the confidence of the public because of the confusing wording of the claims demanded by FDA. Congressional efforts to assure consumer access to dietary supplements have been met with similar resistance from FDA. The Dietary Supplement Health and Education Act (DSHEA) was the product of a compromise with a lower threshold for demonstration of safety (reasonable expectation of no harm) that would be met by consumer self-policing and assumption of some risk. FDA has thwarted this effort by raising the bar for New Dietary Ingredient Notifications (NDIN) to what appears to be the higher threshold for the safety of food ingredients (reasonable certainty of no harm)-FDA apparently sees these two safety thresholds as a distinction without a difference. As a result, increasing numbers of dietary supplement manufacturers, unwilling to gamble the future of their products to a system that provides little hope for the FDA's response of 'no objection', have committed the additional resources necessary to obtain Generally Recognized As Safe (GRAS) status for their supplements. The pressure on FDA and Congress for change is again building with increased dissatisfaction among consumers as the result of confusing labels. A second force for change will be a need to uncouple the FDA mandated substance-disease relationship and return to the substance-claim relationship to allow for progress in

  20. A fast band–Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    Aliaga, José I., E-mail: aliaga@uji.es [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain); Alonso, Pedro [Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València (Spain); Badía, José M. [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain); Chacón, Pablo [Dept. Biological Chemical Physics, Rocasolano Physics and Chemistry Institute, CSIC, Madrid (Spain); Davidović, Davor [Rudjer Bošković Institute, Centar za Informatiku i Računarstvo – CIR, Zagreb (Croatia); López-Blanco, José R. [Dept. Biological Chemical Physics, Rocasolano Physics and Chemistry Institute, CSIC, Madrid (Spain); Quintana-Ortí, Enrique S. [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain)

    2016-03-15

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  1. A fast band–Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    Aliaga, José I.; Alonso, Pedro; Badía, José M.; Chacón, Pablo; Davidović, Davor; López-Blanco, José R.; Quintana-Ortí, Enrique S.

    2016-01-01

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  2. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

    Martinez-Outschoorn, Ubaldo; Sotgia, Federica; Lisanti, Michael P

    2014-04-01

    metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression. Copyright © 2014. Published by Elsevier Inc.

  3. Distribution-based estimates of minimum clinically important difference in cognition, arm function and lower body function after slow release-fampridine treatment of patients with multiple sclerosis

    Jensen, H B; Mamoei, Sepehr; Ravnborg, M.

    2016-01-01

    OBJECTIVE: To provide distribution-based estimates of the minimal clinical important difference (MCID) after slow release fampridine treatment on cognition and functional capacity in people with MS (PwMS). METHOD: MCID values were determined after SR-Fampridine treatment in 105 PwMS. Testing...

  4. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Kunjan D Rana

    Full Text Available Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  5. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation.

    Tao, Guohua; Miller, William H

    2012-09-28

    An efficient time-dependent (TD) Monte Carlo (MC) importance sampling method has recently been developed [G. Tao and W. H. Miller, J. Chem. Phys. 135, 024104 (2011)] for the evaluation of time correlation functions using the semiclassical (SC) initial value representation (IVR) methodology. In this TD-SC-IVR method, the MC sampling uses information from both time-evolved phase points as well as their initial values, and only the "important" trajectories are sampled frequently. Even though the TD-SC-IVR was shown in some benchmark examples to be much more efficient than the traditional time-independent sampling method (which uses only initial conditions), the calculation of the SC prefactor-which is computationally expensive, especially for large systems-is still required for accepted trajectories. In the present work, we present an approximate implementation of the TD-SC-IVR method that is completely prefactor-free; it gives the time correlation function as a classical-like magnitude function multiplied by a phase function. Application of this approach to flux-flux correlation functions (which yield reaction rate constants) for the benchmark H + H(2) system shows very good agreement with exact quantum results. Limitations of the approximate approach are also discussed.

  6. 19 CFR 210.26 - Other motions.

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Other motions. 210.26 Section 210.26 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.26 Other motions. Motions pertaining to discovery shall be filed in...

  7. Human motion simulation predictive dynamics

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  8. Direct flow/motion, coils, and field strength concerns in MRI

    Moran, P.R.

    1986-01-01

    Specific flow/motion bipolar phase-gradient encodings are interlaced into MR sequences for direct NMR imaging of motion quantities, velocity, acceleration, etc. This allows evaluation of the functional properties of tissue, blood flow, heart-wall velocity, vortical-eddies in vascular disease, and perfusion assessment. Attention to fundamentals and basics is important in designing successful flow/motion imaging sequences. 2 refs.; 5 figs

  9. Functional Exercise and Physical Fitness Post Stroke: The Importance of Exercise Maintenance for Motor Control and Physical Fitness after Stroke

    Birgitta Langhammer

    2012-01-01

    Full Text Available It is argued that all stroke patients, indifferent of disability, have the same possibility to improve with training. The aim of the study was to follow and register functional improvements in two groups with different functional capacities at baseline for a period of 36 months. Stroke patients were recruited and divided into groups related to their functional status at baseline. During the acute rehabilitation, both groups received functional task-oriented training, followed by regular self- or therapeutic driven training the first year after stroke and varied exercise patterns the following 24 months. The participants were tested on admission, and at three, six, twelve, and thirty-six months after the onset of stroke. Both groups improved functional activity up to six months which then stabilized up to twelve months to decline somewhat at thirty-six months after stroke. Change scores indicate a greater potential for rehabilitation in the MAS ≤35 in relation to group MAS >35 although the functional capacity was higher in the latter. This indicates the importance of maintaining exercise and training for all persons after stroke.

  10. Localized motion in random matrix decomposition of complex financial systems

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian

    2017-04-01

    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  11. Function and importance of p63 in normal oral mucosa and squamous cell carcinoma of the head and neck

    Thurfjell, Niklas; Coates, Philip J; Boldrup, Linda

    2005-01-01

    BACKGROUND/AIMS: Squamous cell carcinoma of the head and neck (HNSCC) is the 6th most common malignancy worldwide with a 5-year survival that has not improved over the last 20-25 years. Factors of prognostic significance for this tumour type include the presence of regional lymph node metastasis...... and amplification of chromosome 3q21-29, where the p63 gene is located. This gene encodes 6 proteins and is crucial for formation of the oral mucosa, teeth, salivary glands and skin. Each of the 6 different p63 proteins has different characteristics and functions, where some resemble the tumour suppressor protein p......53, whilst others have functions that oppose p53. METHODS: To understand the function and importance of p63 in oral mucosa and tumour development we have studied protein as well as mRNA expression in normal oral mucosa and tumours. RESULTS/CONCLUSION: Expression of p63 proteins differs between...

  12. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  13. A Motion Planning Approach to Studying Molecular Motions

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  14. Effects of Lumbar Core Stability Exercise Programme on Knee Pain, Range of Motion, and Function Post Anterior Cruciate Ligament Reconstruction

    Priyanka Panchal

    2017-12-01

    Conclusion: Institutional conventional exercise protocol is effective in reducing pain and improving the ROM post and lumbar core stability exercise programme is effective in improving function, post ACL reconstruction.

  15. Designing a compact MRI motion phantom

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  16. Morphing technique reveals intact perception of object motion and disturbed perception of emotional expressions by low-functioning adolescents with Autism Spectrum Disorder.

    Han, Bora; Tijus, Charles; Le Barillier, Florence; Nadel, Jacqueline

    2015-12-01

    A morphing procedure has been designed to compare directly the perception of emotional expressions and of moving objects. Morphing tasks were presented to 12 low-functioning teenagers with Autism Spectrum Disorder (LF ASD) compared to 12 developmental age-matched typical children and a group presenting ceiling performance. In a first study, when presented with morphed stimuli of objects and emotional faces, LF ASD showed an intact perception of object change of state together with an impaired perception of emotional facial change of state. In a second study, an eye-tracker recorded visual exploration of morphed emotional stimuli displayed by a human face and a robotic set-up. Facing the morphed robotic stimuli, LF ASD displayed equal duration of fixations toward emotional regions and toward mechanical sources of motion, while the typical groups tracked the emotional regions only. Altogether the findings of the two studies suggest that individuals with ASD process motion rather than emotional signals when facing facial expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Can the Functional Movement Screen™ be used to capture changes in spine and knee motion control following 12 weeks of training?

    Frost, David M; Beach, Tyson A C; Campbell, Troy L; Callaghan, Jack P; McGill, Stuart M

    2017-01-01

    To examine whether objective measures of spine and frontal plane knee motion exhibited during Functional Movement Screen™ (FMS) task performance changed following a movement-guided fitness (MOV) and conventional fitness (FIT) exercise intervention. Secondary analysis of a randomized controlled experiment. Before and after 12 weeks of exercise, participants' kinematics were quantified while performing the FMS and a series of general whole-body movement tasks. Biomechanics laboratory. Fifty-two firefighters were assigned to MOV, FIT, or a control (CON) group. Peak lumbar spine flexion/extension, lateral bend and axial twist, and frontal plane knee motion. The post-training kinematic changes exhibited by trainees while performing the FMS tasks were similar in magnitude (effect size  0.5). Whether graded qualitatively, or quantitatively via kinematic analyses, the FMS may not be a viable tool to detect movement-based exercise adaptations. Amendments to the FMS tasks and/or scoring method are needed before it can be used for reasons beyond appraising the ability to move freely, symmetrically, and without pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of McGill stabilization exercises and conventional physiotherapy on pain, functional disability and active back range of motion in patients with chronic non-specific low back pain.

    Ghorbanpour, Arsalan; Azghani, Mahmoud Reza; Taghipour, Mohammad; Salahzadeh, Zahra; Ghaderi, Fariba; Oskouei, Ali E

    2018-04-01

    [Purpose] The aim of this study was to compare the effects of "McGill stabilization exercises" and "conventional physiotherapy" on pain, functional disability and active back flexion and extension range of motion in patients with chronic non-specific low back pain. [Subjects and Methods] Thirty four patients with chronic non-specific low back pain were randomly assigned to McGill stabilization exercises group (n=17) and conventional physiotherapy group (n=17). In both groups, patients performed the corresponding exercises for six weeks. The visual analog scale (VAS), Quebec Low Back Pain Disability Scale Questionnaire and inclinometer were used to measure pain, functional disability, and active back flexion and extension range of motion, respectively. [Results] Statistically significant improvements were observed in pain, functional disability, and active back extension range of motion in McGill stabilization exercises group. However, active back flexion range of motion was the only clinical symptom that statistically increased in patients who performed conventional physiotherapy. There was no significant difference between the clinical characteristics while compared these two groups of patients. [Conclusion] The results of this study indicated that McGill stabilization exercises and conventional physiotherapy provided approximately similar improvement in pain, functional disability, and active back range of motion in patients with chronic non-specific low back pain. However, it appears that McGill stabilization exercises provide an additional benefit to patients with chronic non-specific low back, especially in pain and functional disability improvement.

  19. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  20. Effects of two proprioceptive training programs on ankle range of motion, pain, functional and balance performance in individuals with ankle sprain.

    Lazarou, Lazaros; Kofotolis, Nikolaos; Pafis, Georgios; Kellis, Eleftherios

    2017-09-08

    Following ankle sprain, residual symptoms are often apparent, and proprioceptive training is a treatment approach. Evidence, however, is limited and the optimal program has to be identified. To investigate the effects of two post-acute supervised proprioceptive training programs in individuals with ankle sprain. Participants were recruited from a physiotherapy center for ankle sprain rehabilitation. In a pre-post treatment, blinded-assessor design, 22 individuals were randomly allocated to a balance or a proprioceptive neuromuscular facilitation (PNF) group. Both groups received 10 rehabilitation sessions, within a six-week period. Dorsiflexion range of motion (ROM), pain, functional and balance performance were assessed at baseline, at the end of training and eight weeks after training. Follow-up data were provided for 20 individuals. Eight weeks after training, statistically significant (pfunctional performance measures for both balance and PNF groups. Eight weeks after training, significant (pfunctional performance in individuals with sprain. Balance programs are also recommended for pain relief.

  1. A synchronous surround increases the motion strength gain of motion.

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  2. Renal function trajectory is more important than chronic kidney disease stage for managing patients with chronic kidney disease.

    Rosansky, Steven J

    2012-01-01

    Management of patients with chronic kidney disease (CKD) emphasizes a current level of function as calculated from the modification of diet in renal disease glomerulofiltration rate equations (eGFR) and proteinuria for staging of CKD. Change in a patient's eGFR over time (renal function trajectory) is an additional and potentially more important consideration in deciding which patients will progress to the point where they will require renal replacement therapy (RRT). Many patients with CKD 3-5 have stable renal function for years. Proteinuria/albuminuria is a primary determinant of renal trajectory which may be slowed by medications that decrease proteinuria and/or aggressively lower blood pressure. A renal trajectory of >3 ml/min/1.73 m(2)/year may relate to a need for closer renal follow-up and increased morbidity and mortality. Additional CKD population-based studies need to examine the relationship of renal trajectory to: baseline renal function; acute kidney injury episodes; age, race, sex and primary etiologies of renal disease; blood pressure control and therapies; dietary protein intake; blood glucose control in diabetics and the competitive risk of death versus the requirement for renal replacement therapy. In the elderly CKD 4 population with significant comorbidities and slow decline in renal function, the likelihood of death prior to the need for RRT should be considered before placing AV access for dialysis. Prediction models of renal progression must account for the competitive risk of death as well as stable or improved renal function to be clinically useful. Copyright © 2012 S. Karger AG, Basel.

  3. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.

    Saraiya, Ashesh A; Lamichhane, Tek N; Chow, Christine S; SantaLucia, John; Cunningham, Philip R

    2008-02-22

    The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.

  4. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  5. Cardiac functional mapping for thallium-201 myocardial perfusion, washout, wall motion and phase using single-photon emission computed tomography (SPECT)

    Nakajima, Kenichi; Bunko, Hisashi; Taniguchi, Mitsuru; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi; Hirano, Takako; Wani, Hidenobu.

    1986-01-01

    A method for three-dimensional functional mapping of Tl-201 myocardial uptake, washout, wall motion and phase was developed using SPECT. Each parameter was mapped using polar display in the same format. Normal values were determined in Tl-201 exercise study in 16 patients. Myocardial counts were lower in the septum and inferior wall and the difference of counts between anterior and inferior walls were greater in man compared with the perfusion pattern in woman. Washout was slower at septum and inferior wall in man, and slightly slower at inferior wall in woman. In gated blood-pool tomography, length-based and count-based Fourier analyses were applied to calculate the parameters of contraction and phase. The results of both Fourier analyses generally agreed; however, the area of abnormality was slightly different. Phase maps were useful for the assessment of asynergy as well as in patients with conduction disorders. These cardiac functional maps using SPECT were considered to be effective for the understanding of three-dimensional informations of cardiac function. (author)

  6. Example-based human motion denoising.

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  7. Peripheral vision of youths with low vision: motion perception, crowding, and visual search.

    Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S

    2012-08-24

    Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.

  8. Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search

    Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.

    2012-01-01

    Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766

  9. Simulated earthquake ground motions

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  10. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.

    Sengupta, Abhronil; Shim, Yong; Roy, Kaushik

    2016-12-01

    Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by  ∼  100× in comparison to a corresponding digital/analog CMOS neuron implementation.

  11. A Primer on Elliptic Functions with Applications in Classical Mechanics

    Brizard, Alain J.

    2009-01-01

    The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…

  12. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  13. Functional outcomes of child and adolescent mental disorders. Current disorder most important but psychiatric history matters as well.

    Ormel, J; Oerlemans, A M; Raven, D; Laceulle, O M; Hartman, C A; Veenstra, R; Verhulst, F C; Vollebergh, W; Rosmalen, J G M; Reijneveld, S A; Oldehinkel, A J

    2017-05-01

    Various sources indicate that mental disorders are the leading contributor to the burden of disease among youth. An important determinant of functioning is current mental health status. This study investigated whether psychiatric history has additional predictive power when predicting individual differences in functional outcomes. We used data from the Dutch TRAILS study in which 1778 youths were followed from pre-adolescence into young adulthood (retention 80%). Of those, 1584 youths were successfully interviewed, at age 19, using the World Health Organization Composite International Diagnostic Interview (CIDI 3.0) to assess current and past CIDI-DSM-IV mental disorders. Four outcome domains were assessed at the same time: economic (e.g. academic achievement, social benefits, financial difficulties), social (early motherhood, interpersonal conflicts, antisocial behavior), psychological (e.g. suicidality, subjective well-being, loneliness), and health behavior (e.g. smoking, problematic alcohol, cannabis use). Out of the 19 outcomes, 14 were predicted by both current and past disorders, three only by past disorders (receiving social benefits, psychiatric hospitalization, adolescent motherhood), and two only by current disorder (absenteeism, obesity). Which type of disorders was most important depended on the outcome. Adjusted for current disorder, past internalizing disorders predicted in particular psychological outcomes while externalizing disorders predicted in particular health behavior outcomes. Economic and social outcomes were predicted by a history of co-morbidity of internalizing and externalizing disorder. The risk of problematic cannabis use and alcohol consumption dropped with a history of internalizing disorder. To understand current functioning, it is necessary to examine both current and past psychiatric status.

  14. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

    Paila, Yamuna D; Richardson, Lynn GL; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001 PMID:26999824

  15. Cognitive and functional impairment in patients suffering from stroke: the importance of cognitive assessment for Occupational Therapy intervention

    Andressa de Oliveira Ferro

    2013-12-01

    Full Text Available Abstract: Introduction: Stroke (CVA can generate motor, sensory and cognitive development deficits, affecting the individual’s performance in daily activities. Changes in any cognitive area can affect the individual’s occupational engagement. Objective: To evaluate the cognitive and functional capacity in patients suffering from stroke, showing the importance of cognitive assessment for occupational therapy intervention. Method: A comparative study with cross-sectional sampling of 44 subjects aged 30-80 years, both sexes. The subjects were divided in three groups: Adult: 11 individuals affected by stroke, 30-59 years old; Elderly: 10 individuals affected by stroke, 60-80 years old; Control: 23 normal subjects, 30-80 years old. Tests applied: MMSE, Clock Test, Test of tracks A and B, and functional capacity (BOMFAQ. Results: Cognitive changes were identified in the Adult and Elderly groups. The Adult group showed poorer performance on the Clock test (visuospatial and executive functions compared with the Control group. The Adult and Elderly groups presented worse performance in the Track A test (attention compared with the Control group. In the Track B test (visual attention, graphomotor skills, and mental flexibility, applied with absolute numbers, no significant differences were observed between the Adult and Elderly groups and the Control group, but cognitive impairment was perceived when the test was applied with categories. The Adult group showed higher prevalence of moderate/severe impairment in the carrying out of daily activities. Conclusion: As a rule, individuals suffering from stroke, in addition to having impaired functional capacity, present cognitive impairments that can negatively impact the performance of daily tasks, whether they are occupational, leisure or self-care activities. Accordingly, we observed the need to evaluate cognitive rehabilitation for better targeting and quality of life improvement.

  16. On the equations of motion

    Jannussis, A.; Streclas, A.; Sourlas, D.; Vlachos, K.

    1977-01-01

    Using the theorem of the derivative of a function of operators with respect to any parameter, we can find the equation of motion of a system in classical mechanics, in canonical as well as in non-canonical mechanics

  17. FUNCTIONAL IMPROVEMENT UP TO SIX MONTHS AFTER TOTAL KNEE ARTHROPLASTY: MEASURED BY KNEE RANGE OF MOTION AND SELF-REPORTED QUESTIONNAIRE

    Mirjana Kocić

    2015-12-01

    Full Text Available The primary aim of this study was to assess knee range of motion (ROM as well as patients’ reported pain, stiffness and function up to six months after total knee arthroplasty (TKA. The secondary aim was to analyze the extent to which knee ROM correlates with patient-rated outcome. A prospective study included 60 patients with primary TKA for osteorthritis, admitted at Physical Medicine and Rehabilitation Clinic from April 2009 to October 2014. The patients were evaluated at 4 time points: at admission and at discharge, as well as at follow-up at 3 and at 6 months after surgery. The outcome parameters included: active knee ROM, as well as pain, stiffness and function according to self reported Western Ontario and McMaster Universities Osteoarthritis (WOMAC questionnaire. Statistically highly significant improvement in flexion and extension was observed from admission to all other assessment time points (p<0.001. Also, statistically significant improvement of all three WOMAC subscales (pain, stiffness and function was found between all assessments points (p<0.001. According to values of Spearman correlation coefficient, there was significant negative correlation of flexion with all WOMAC subscales at all assessment points, whereas correlation of extension with any assessed outcome parameter was without significance. It can be concluded that in TKA patients all outcome measures improved significantly from admission to 6 months follow-up. Knee flexion ROM negatively and moderately to strongly correlated with pain, stiffness and function, whereas correlation of extension with any assessed outcome measure was without significance.

  18. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism.

    Li, Jian; Yu, Haiyang; Wang, Sijian; Wang, Wei; Chen, Qian; Ma, Yanmin; Zhang, Yi; Wang, Tao

    2018-01-01

    Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.

  19. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions.

    Jiang, Tingting; Raviram, Ramya; Snetkova, Valentina; Rocha, Pedro P; Proudhon, Charlotte; Badri, Sana; Bonneau, Richard; Skok, Jane A; Kluger, Yuval

    2016-10-14

    Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3'Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  1. Importance of Collateralization in Patients With Large Artery Intracranial Occlusive Disease: Long-Term Longitudinal Assessment of Cerebral Hemodynamic Function

    Larissa McKetton

    2018-04-01

    Full Text Available Patients with large artery intracranial occlusive disease (LAICOD are at risk for both acute ischemia and chronic hypoperfusion. Collateral circulation plays an important role in prognosis, and imaging plays an essential role in diagnosis, treatment planning, and prognosis of patients with LAICOD. In addition to standard structural imaging, assessment of cerebral hemodynamic function is important to determine the adequacy of collateral supply. Among the currently available methods of assessment of cerebral hemodynamic function, measurement of cerebrovascular reactivity (CVR using blood oxygen level-dependent (BOLD MRI and precisely controlled CO2 has shown to be a safe, reliable, reproducible, and clinically useful method for long-term assessment of patients. Here, we report a case of long-term follow-up in a 28-year-old Caucasian female presented to the neurology clinic with a history of TIAs and LAICOD of the right middle cerebral artery (MCA. Initial structural MRI showed a right MCA stenosis and a small right coronal radiate lacunar infarct. Her CVR study showed a large area of impaired CVR with a paradoxical decrease in BOLD signal with hypercapnia involving the right MCA territory indicating intracerebral steal. The patient was managed medically with anticoagulant and antiplatelet therapy and was followed-up for over 9 years with both structural and functional imaging. Cortical thickness (CT measures were longitudinally assessed from a region of interest that was applied to subsequent time points in the cortical region exhibiting steal physiology and in the same region of the contralateral healthy hemisphere. In the long-term follow-up, the patient exhibited improvement in her CVR as demonstrated by the development of collaterals with negligible changes to CT. Management of patients with LAICOD remains challenging since no revascularization strategies have shown efficacy except in patients with moyamoya disease. Management is well

  2. Importance of Collateralization in Patients With Large Artery Intracranial Occlusive Disease: Long-Term Longitudinal Assessment of Cerebral Hemodynamic Function.

    McKetton, Larissa; Venkatraghavan, Lakshmikumar; Poublanc, Julien; Sobczyk, Olivia; Crawley, Adrian P; Rosen, Casey; Silver, Frank L; Duffin, James; Fisher, Joseph A; Mikulis, David J

    2018-01-01

    Patients with large artery intracranial occlusive disease (LAICOD) are at risk for both acute ischemia and chronic hypoperfusion. Collateral circulation plays an important role in prognosis, and imaging plays an essential role in diagnosis, treatment planning, and prognosis of patients with LAICOD. In addition to standard structural imaging, assessment of cerebral hemodynamic function is important to determine the adequacy of collateral supply. Among the currently available methods of assessment of cerebral hemodynamic function, measurement of cerebrovascular reactivity (CVR) using blood oxygen level-dependent (BOLD) MRI and precisely controlled CO 2 has shown to be a safe, reliable, reproducible, and clinically useful method for long-term assessment of patients. Here, we report a case of long-term follow-up in a 28-year-old Caucasian female presented to the neurology clinic with a history of TIAs and LAICOD of the right middle cerebral artery (MCA). Initial structural MRI showed a right MCA stenosis and a small right coronal radiate lacunar infarct. Her CVR study showed a large area of impaired CVR with a paradoxical decrease in BOLD signal with hypercapnia involving the right MCA territory indicating intracerebral steal. The patient was managed medically with anticoagulant and antiplatelet therapy and was followed-up for over 9 years with both structural and functional imaging. Cortical thickness (CT) measures were longitudinally assessed from a region of interest that was applied to subsequent time points in the cortical region exhibiting steal physiology and in the same region of the contralateral healthy hemisphere. In the long-term follow-up, the patient exhibited improvement in her CVR as demonstrated by the development of collaterals with negligible changes to CT. Management of patients with LAICOD remains challenging since no revascularization strategies have shown efficacy except in patients with moyamoya disease. Management is well defined for acute

  3. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte

    2015-01-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  4. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM.

    McPhee, Joseph B; Mena, Patricio; Zhang, Yue; Bliska, James B

    2012-07-01

    Pathogenic Yersinia species modulate host immune responses through the activity of a plasmid-encoded type III secretion system and its associated effector proteins. One effector, YopM, is a leucine-rich-repeat-containing protein that is important for virulence in murine models of Yersinia infection. Although the mechanism by which YopM promotes virulence is unknown, we previously demonstrated that YopM was required for the induction of high levels of the immunosuppressive cytokine interleukin-10 (IL-10) in sera of C57BL/6J mice infected with Yersinia pseudotuberculosis. To determine if IL-10 production is important for the virulence function of YopM, C57BL/6J or congenic IL-10⁻/⁻ mice were infected intravenously with wild-type or yopM mutant Y. pseudotuberculosis strains. Analysis of cytokine levels in serum and bacterial colonization in the spleen and liver showed that YopM is required for IL-10 induction in C57BL/6J mice infected with either the IP32953 or the 32777 strain of Y. pseudotuberculosis, demonstrating that the phenotype is conserved in the species. In single-strain infections, the ability of the 32777ΔyopM mutant to colonize the liver was significantly increased by the delivery of exogenous IL-10 to C57BL/6J mice. In mixed infections, the competitive advantage of a yopM⁺ 32777 strain over an isogenic yopM mutant to colonize spleen and liver, as observed for C57BL/6J mice, was significantly reduced in IL-10⁻/⁻ animals. Thus, by experimentally controlling IL-10 levels in a mouse infection model, we obtained evidence that the induction of this cytokine is an important mechanism by which YopM contributes to Y. pseudotuberculosis virulence.

  5. Psychological factors addressed in cognitive behaviour therapy for paediatric functional abdominal pain: Which are most important to target?

    van der Veek, Shelley M. C.; de Haan, Else; Derkx, H. H. F.; Benninga, Marc A.; Boer, Frits

    2017-01-01

    The effectiveness of cognitive behaviour therapy for paediatric functional abdominal pain leaves room for improvement. We studied which factors addressed in cognitive behaviour therapy relate most strongly to the physical and psychological functioning of children with functional abdominal pain and

  6. Clustering Of Left Ventricular Wall Motion Patterns

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  7. Effectiveness of Serious Games for Leap Motion on the Functionality of the Upper Limb in Parkinson’s Disease: A Feasibility Study

    Edwin Daniel Oña

    2018-01-01

    Full Text Available The design and application of Serious Games (SG based on the Leap Motion sensor are presented as a tool to support the rehabilitation therapies for upper limbs. Initially, the design principles and their implementation are described, focusing on improving both unilateral and bilateral manual dexterity and coordination. The design of the games has been supervised by specialized therapists. To assess the therapeutic effectiveness of the proposed system, a protocol of trials with Parkinson’s patients has been defined. Evaluations of the physical condition of the participants in the study, at the beginning and at the end of the treatment, are carried out using standard tests. The specific measurements of each game give the therapist more detailed information about the patients’ evolution after finishing the planned protocol. The obtained results support the fact that the set of developed video games can be combined to define different therapy protocols and that the information obtained is richer than the one obtained through current clinical metrics, serving as method of motor function assessment.

  8. Effect of motion-induced PET-CT misalignment on cardiac function and myocardial blood flow measured using dynamic 15O-water PET

    Lubberink, Mark; Ebrahimi, M; Harms, Hans

    -CT misalignment on MBF, transmural MBF (MBFt), perfusable tissue fraction (PTF), cardiac output (CO), stroke volume (SV) and left-ventricular ejection fraction (LVEF) based on dynamic 15O-water scans. Methods: 10 patients underwent 6 min PET scans after injection of 400 MBq 15O-water at rest and during adenosine......Aim: Motion-induced PET-CT misalignment artifacts are common in myocardial blood flow (MBF) measurements with 82Rb and 13N-ammonia. For 15O-water, MBF is based on the clearance rate rather than uptake of the tracer. The clearance rate is determined by the shape of the time-activity curve, not its...... amplitude, and is thus not affected by attenuation correction errors. Hence, misalignment is hypothesized not to affect 15O-water-based MBF to any large extent, but it may affect cardiac function measures derived from 15O-water scans. The aim of the present work was to assess the effect of PET...

  9. 19 CFR 210.15 - Motions.

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Motions. 210.15 Section 210.15 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.15 Motions. (a) Presentation and disposition. (1) During the period...

  10. Improved motion description for action classification

    Jain, M.; Jégou, H.; Bouthemy, P.

    2016-01-01

    Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e., camera and scene

  11. Correlation of structural stability with functional remodeling of high-density lipoproteins: the importance of being disordered.

    Guha, Madhumita; Gao, Xuan; Jayaraman, Shobini; Gursky, Olga

    2008-11-04

    High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.

  12. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1 in Arabidopsis thaliana.

    Stefan Burén

    Full Text Available BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native

  13. Motion-induced dose artifacts in helical tomotherapy

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  14. Factors of importance for the functional outcome in orthognathic surgery patients: a prospective study of 118 patients

    Petersen, Jesper Øland; Jensen, John; Melsen, Birte

    2010-01-01

    The aim of this study was to assess the influence of orthognathic surgery on patients' stomatognathic function and, further, to evaluate how post-treatment function relates to satisfaction.......The aim of this study was to assess the influence of orthognathic surgery on patients' stomatognathic function and, further, to evaluate how post-treatment function relates to satisfaction....

  15. Motion in an Asymmetric Double Well

    Brizard, Alain J.; Westland, Melissa C.

    2016-01-01

    The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.

  16. Quantitative Evaluation of 3D Mouse Behaviors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion Tracking

    Sheets, Alison L.; Lai, Po-Lun; Fisher, Lesley C.; Basso, D. Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 pstudies are conducted. By providing scientists with sensitive, quantitative measurement methods, subjectivity and human error is reduced, potentially providing insights leading to breakthroughs in treating human disease. PMID:24058586

  17. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    Tia DiTommaso

    2014-10-01

    Full Text Available The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP. A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1, while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1. The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.

  18. The importance of vitamins D and K for the bone health and immune function in inflammatory bowel disease.

    Iijima, Hideki; Shinzaki, Shinichiro; Takehara, Tetsuo

    2012-11-01

    This review summarizes the recent literature about the roles of vitamins D and K in bone metabolism and immunity-mediated inflammatory processes in inflammatory bowel diseases (IBDs). The levels of vitamins D and K are lower than normal in patients with IBD, especially in Crohn's disease. Although vitamins D and K are important for the maintenance of bone mineral density in non-IBD patients, an association between vitamins D or K and bone metabolism is not apparent in IBD patients. Recent studies showed that vitamins D and K are suggested to have immune-suppressive effects, both in animal models of colitis and human trials. In particular, vitamin D suppresses dendritic and T-cell functions by inhibiting the production of proinflammatory cytokines. Insufficiency of vitamin D is associated with the activated phenotype of IBD. Vitamins D and K potentially contribute to the maintenance of bone health in IBD, but this effect may be diminished by other factors such as steroid use, reduced exposure to sunlight, and inflammatory cytokines. Vitamin D and possibly vitamin K are suggested to be involved in the suppression of immune-mediated inflammation and modulation of disease activity.

  19. Differences in attentional functioning between preterm and full-term children underline the importance of new neuropsychological detection techniques.

    Giordano, V; Fuiko, R; Leiss, U; Brandstetter, S; Hayde, M; Bartha-Doering, E; Klebermaß-Schrehof, K; Weiler, L J

    2017-04-01

    The aim of this study was to investigate specific attentional components in preterm born children who had not yet started school. Between January and December 2011, we assessed 52 preterm and 52 full-term children aged between five years five months and six years two months, of comparable age and gender, at the Medical University of Vienna. Different attentional components were evaluated through selected subtests of the Test of Attentional Performance and the German version of the Wechsler Intelligence Scale for Children. Each child's behaviour was also evaluated using parental ratings and descriptive item-based evaluation during neuropsychological assessment. Children born preterm showed poor attentional performance in sustained attention, focused attention and distractibility, as well as reductions in processing speed in divided attention and flexibility tasks. Children born preterm also showed decreased volitional attention compared with automatic attention. No problems were detected in alertness or inhibition. In addition, a higher rate of aborted tests, decreased motivation and poorer parental ratings were detected among the preterm population compared with full-term born children. Our results highlighted differences in attentional functioning between preterm and full-term children, indicating the importance of new neuropsychological techniques for the detection of specific attentional disorders. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  20. Quantifying the importance of orbital over spin correlations in delta-Pu within density-functional theory

    Soderlind, P

    2008-01-01

    The electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for (delta)-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero

  1. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-01-01

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  2. Auditory Motion Elicits a Visual Motion Aftereffect

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  3. Auditory Motion Elicits a Visual Motion Aftereffect.

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  4. Auditory motion capturing ambiguous visual motion

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  5. The effects of mobilization with movement on dorsiflexion range of motion, dynamic balance, and self-reported function in individuals with chronic ankle instability.

    Gilbreath, Julie P; Gaven, Stacey L; Van Lunen, L; Hoch, Matthew C

    2014-04-01

    Previous studies have examined the effectiveness of a manual therapy intervention known as Mobilization with Movement (MWM) to increase dorsiflexion range of motion (ROM) in individuals with chronic ankle instability (CAI). While a single talocrural MWM treatment has increased dorsiflexion ROM in these individuals, examining the effects of multiple treatments on dorsiflexion ROM, dynamic balance, and self-reported function would enhance the clinical application of this intervention. This study sought to determine if three treatment sessions of talocrural MWM would improve dorsiflexion ROM, Star Excursion Balance Test (SEBT) reach distances, and self-reported function using the Foot and Ankle Ability Measure (FAAM) in individuals with CAI. Eleven participants with CAI (5 Males, 6 Females, age: 21.5 ± 2.2 years, weight: 83.9 ± 15.6 kg, height: 177.7 ± 10.9 cm, Cumberland Ankle Instability Tool: 17.5 ± 4.2) volunteered in this repeated-measures study. Subjects received three MWM treatments over one week. Weight-bearing dorsiflexion ROM (cm), normalized SEBT reach distances (%), and self-reported function (%) were assessed one week before the intervention (baseline), prior to the first MWM treatment (pre-intervention), and 24–48 h following the final treatment (post-intervention). No significant changes were identified in dorsiflexion ROM, SEBT reach distances, or the FAAM-Activities of Daily Living scale (p > 0.05). Significant changes were identified on the FAAM-Sport (p = 0.01). FAAM-Sport scores were significantly greater post-intervention (86.82 ± 9.18%) compared to baseline (77.27 ± 11.09%; p = 0.01) and pre-intervention (79.82 ± 13.45%; p = 0.04). These results indicate the MWM intervention did not improve dorsiflexion ROM, dynamic balance, or patient-centered measures of activities of daily living. However, MWM did improve patient-centered measures of sport-related activities in individuals with CAI.

  6. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis.

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-05-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.

  7. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342

  8. Motion control report

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  9. Joint model of motion and anatomy for PET image reconstruction

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-01-01

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem

  10. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.

    Gozem, Samer; Melaccio, Federico; Valentini, Alessio; Filatov, Michael; Huix-Rotllant, Miquel; Ferré, Nicolas; Frutos, Luis Manuel; Angeli, Celestino; Krylov, Anna I; Granovsky, Alexander A; Lindh, Roland; Olivucci, Massimo

    2014-08-12

    We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

  11. Conversion of light into macroscopic helical motion

    Iamsaard, Supitchaya; Aßhoff, Sarah J.; Matt, Benjamin; Kudernac, Tibor; Cornelissen, Jeroen J. L. M.; Fletcher, Stephen P.; Katsonis, Nathalie

    2014-03-01

    A key goal of nanotechnology is the development of artificial machines capable of converting molecular movement into macroscopic work. Although conversion of light into shape changes has been reported and compared to artificial muscles, real applications require work against an external load. Here, we describe the design, synthesis and operation of spring-like materials capable of converting light energy into mechanical work at the macroscopic scale. These versatile materials consist of molecular switches embedded in liquid-crystalline polymer springs. In these springs, molecular movement is converted and amplified into controlled and reversible twisting motions. The springs display complex motion, which includes winding, unwinding and helix inversion, as dictated by their initial shape. Importantly, they can produce work by moving a macroscopic object and mimicking mechanical movements, such as those used by plant tendrils to help the plant access sunlight. These functional materials have potential applications in micromechanical systems, soft robotics and artificial muscles.

  12. Motion Analysis Based on Invertible Rapid Transform

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  13. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  14. What is the most important factor affecting the cognitive function of obstructive sleep apnea syndrome patients: a single center study

    LI Xiang; LI Yan-peng; WU Hui-juan; ZHANG Lin; ZHAO Zheng-qing; PENG Hua; ZHAO Zhong-xin

    2013-01-01

    Objective Patients with obstructive sleep apnea syndrome (OSAS) usually complain of daytime hypersomnia and decrease in cognitive function, which affects the quality of their work and life. The reason why the cognitive function of OSAS patients decreased remains controversial. The aim of this study is to evaluate the impairment and the main influencing factors of cognitive function in OSAS. Methods There were totally 50 OSAS patients (OSAS group) and 25 volunteers (control group) included i...

  15. Storyboard dalam Pembuatan Motion Graphic

    Satrya Mahardhika; A.F. Choiril Anam Fathoni

    2013-01-01

    Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will ...

  16. Orbit dynamics for unstable linear motion

    Parzen, G.

    1997-01-01

    A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumptions about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function

  17. Orbit dynamics for unstable linear motion

    Parzen, G.

    1996-04-01

    A treatment is given of the orbit dynamics for linear unstable motion that allows for the zeros in the beta function and makes no assumption about the realness of the betatron and phase functions. The phase shift per turn is shown to be related to the beta function and the number of zeros the beta function goes through per turn. The solutions of the equations of motion are found in terms of the beta function

  18. Test suite for image-based motion estimation of the brain and tongue

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that

  19. Quantitative evaluation of 3D mouse behaviors and motor function in the open-field after spinal cord injury using markerless motion tracking.

    Sheets, Alison L; Lai, Po-Lun; Fisher, Lesley C; Basso, D Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study's goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal's silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal's front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement methods

  20. Quantitative evaluation of 3D mouse behaviors and motor function in the open-field after spinal cord injury using markerless motion tracking.

    Alison L Sheets

    Full Text Available Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI. Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study's goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz. Background subtraction was used in each video frame to identify the animal's silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal's front Center of Volume (CoV height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005 and rear CoV height (r = .65 p<.01 were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative

  1. Lentinula edodes and Pleurotus ostreatus: functional food with antioxidant -antimicrobial activityand an important source of Vitamin D and medicinal compounds

    Simone Parola

    2017-10-01

    Full Text Available Background: Mushrooms produce a large amount of medicinal compounds, and are also an optimal source of fibres, proteins, vitamins (like groups B and D, and other micronutrients including potassium, magnesium, etc. Consequently, mushrooms are commonly considered to be functional foods. Many works report the high biological potentials of medicinal mushrooms involving their antibacterial, hypoglycaemic, anticholesterolemic, radical scavenging, and anti-inflammatory effects. Context and purpose of this study: First off, this work aimed to find strains of Lentinula edodes and Pleurotus ostreatus from a bank of edible mushrooms bought from international strain banks (Table I that could possess health benefit related properties, such as a radical scavenging activity (antioxidant effect, antibacterial effects against common pathogenic bacteria, and being able to produce interesting nutrients and secondary metabolites. As the fungal bank comprises of 20 strains of L. edodes and 20 strains of P. ostreatus, a first screening was made by the selection of 13 strains for each mushroom able to grow in multiple wood types or that were particularly productive and had proved good growth reproducibility over the last 5 years. This work also studied the correlation between culture conditions and mushroom quality in terms of the previously reported properties. Comparison among the selected strains was operated by the assessment of antioxidant and antimicrobial activities after different sample treatments. Furthermore, an initial optimization of the analytic techniques was produced for the direct estimation of important secondary metabolites and nutrients by means of HPLC-MS/MS technique. Further research will encompass an evaluation of transformation processes (drying, freezing, rehydration, cooking, etc. impact on radical scavenging, antibacterial activity, and possible degradation/loss of nutraceutically important substances such as vitamin D2, ergothioneine

  2. Motion Simulation of a New Ankle Rehabilitation Device

    Cristina Racu (Cazacu

    2016-06-01

    Full Text Available The ankle structure holds one of the most important role in the human biomechanics. Due to complexity of everyday activities this joint is the most prone to be injured part of the lower limb. For a complete recovery of the locomotion function, recovery exercises are mandatory. The introduction of robotic physical recovery systems represents a modern alternative to traditional recovery. Based on the 3D virtual model and a previous dimensional synthesis of a new ankle rehabilitation device, its motion simulation is presented in this paper, to prove that it may fully recover the range of motion required for this joint.

  3. Application of Multi-Valued Weighting Logical Functions in the Analysis of a Degree of Importance of Construction Parameters on the Example of Hydraulic Valves

    Deptuła, A.

    2014-08-01

    In the optimization process, changes in the construction parameters value influence the behaviour of functions depending on time. Weighting logical coefficients for the stabilisation time are taken into consideration here, i.e., a shorter (better) stabilisation time has a more important (bigger) value of the weighting coefficient. An example of applying weighting logical functions in the analysis of a degree of importance of construction parameters of a hydraulic valve is presented in the paper

  4. Objective and subjective psychosocial functioning in bipolar disorder: an investigation of the relative importance of neurocognition, social cognition and emotion regulation.

    Van Rheenen, Tamsyn E; Rossell, Susan L

    2014-06-01

    People with bipolar disorder (BD) experience significant psychosocial impairment. Understandings of the nature and causes of such impairment is limited by the lack of research exploring the extent to which subjectively reported functioning should be valued as an indicator of objective dysfunction, or examining the relative influence of neurocognition, social cognition and emotion regulation on these important, but different aspects of psychosocial functioning in the context of mania and depression symptoms. This study aimed to address this paucity of research by conducting a comprehensive investigation of psychosocial functioning in a well characterised group of BD patients. Fifty-one BD patients were compared to 52 healthy controls on objectively and subjectively assessed psychosocial outcomes. Relationships between current mood symptoms, psychosocial function and neurocognitive, social cognitive and emotion regulation measures were also examined in the patient group. Patients had significantly worse scores on the global objective and subjective functioning measures relative to controls. In the patient group, although these scores were correlated, regression analyses showed that variance in each of the measures was explained by different predictors. Depressive symptomatology was the most important predictor of global subjective functioning, and neurocognition had a concurrent and important influence with depressive symptoms on objective psychosocial function. Emotion regulation also had an indirect effect on psychosocial functioning via its influence on depressive symptomatology. As this study was cross-sectional in nature, we are unable to draw precise conclusions regarding contributing pathways involved in psychosocial functioning in BD. These results suggest that patients' own evaluations of their subjective functioning represent important indicators of the extent to which their observable function is impaired. They also highlight the importance of

  5. Analytical Analysis of Motion Separability

    Marjan Hadian Jazi

    2013-01-01

    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  6. Alteration of Multiple Cell Membrane Functions in L-6 Myoblasts by T-2 Toxin: An Important Mechanism of Action.

    1986-06-04

    menbrane functions. All are in a range that would in turn be expected to alter other cell functions. Intracellular LEH was reduced 10 min after T-2... Plasma amino F-id changes in guinea pigs injected with T-2 rnycotoxin. Fed. Proc. 42, 625. 20 1111" ll p J IIIý f%𔃻 11 IC IA 114 WEAVER, G.A., MW1•Z, H.J

  7. Motion sickness: a negative reinforcement model.

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  8. Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host-parasite systems.

    Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J

    2018-05-01

    Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  9. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    Noonan, P J; Gunn, R N; Howard, J; Hallett, W A

    2015-01-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown. (paper)

  10. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    Noonan, P. J.; Howard, J.; Hallett, W. A.; Gunn, R. N.

    2015-11-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.

  11. Social network size relates to developmental neural sensitivity to biological motion

    L.A. Kirby

    2018-04-01

    Full Text Available The ability to perceive others’ actions and goals from human motion (i.e., biological motion perception is a critical component of social perception and may be linked to the development of real-world social relationships. Adult research demonstrates two key nodes of the brain’s biological motion perception system—amygdala and posterior superior temporal sulcus (pSTS—are linked to variability in social network properties. The relation between social perception and social network properties, however, has not yet been investigated in middle childhood—a time when individual differences in social experiences and social perception are growing. The aims of this study were to (1 replicate past work showing amygdala and pSTS sensitivity to biological motion in middle childhood; (2 examine age-related changes in the neural sensitivity for biological motion, and (3 determine whether neural sensitivity for biological motion relates to social network characteristics in children. Consistent with past work, we demonstrate a significant relation between social network size and neural sensitivity for biological motion in left pSTS, but do not find age-related change in biological motion perception. This finding offers evidence for the interplay between real-world social experiences and functional brain development and has important implications for understanding disorders of atypical social experience. Keywords: Biological motion, Social networks, Middle childhood, Neural specialization, Brain-behavior relations, pSTS

  12. A factor analysis of Functional Independence and Functional Assessment Measure scores among focal and diffuse brain injury patients: The importance of bi-factor models.

    Gunn, Sarah; Burgess, Gerald H; Maltby, John

    2018-04-28

    To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. An NHS acute acquired brain injury inpatient rehabilitation hospital. Referred sample of 447 adults (835 cases after exclusions) admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation. Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory Factor Analysis suggested a two-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory Factor Analysis suggested a three-factor bi-factor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the Exploratory Factor Analysis, and by a general factor explaining the majority of the variance in scores on Confirmatory Factor Analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (e.g. motor, psychosocial and communication function) following brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018. Published by Elsevier Inc.

  13. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90

    Zheng, Bin

    2018-03-13

    The linker swing motion in the zeolitic imidazolate framework ZIF-90 is investigated by density functional theory (DFT) calculation, molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. The relation between the terminal aldehyde group rotation and the linker swing motion is revealed. The extremely high activation energy of the linker swing motion in ZIF-90 can be attributed to the asymmetric geometry and electron distribution of aldehyde groups. The change in the gate structure resulting from the linker rotation is used to understand the guest adsorption in ZIF-90. This study shows that it is possible to tune the linker swing motion and then the properties of ZIF-90 by manipulating the terminal group rotation. The results highlight the importance of considering the internal freedom effects to correctly describe the linker swing motion and the flexibility of metal-organic frameworks (MOFs).

  14. Motion in radiotherapy

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  15. The Importance of Trunk Muscle Strength for Balance, Functional Performance, and Fall Prevention in Seniors : A Systematic Review

    Granacher, Urs; Gollhofer, Albert; Hortobagyi, Tibor; Kressig, Reto W.; Muehlbauer, Thomas

    Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations.

  16. What is the most important factor affecting the cognitive function of obstructive sleep apnea syndrome patients: a single center study

    LI Xiang

    2013-05-01

    Full Text Available Objective Patients with obstructive sleep apnea syndrome (OSAS usually complain of daytime hypersomnia and decrease in cognitive function, which affects the quality of their work and life. The reason why the cognitive function of OSAS patients decreased remains controversial. The aim of this study is to evaluate the impairment and the main influencing factors of cognitive function in OSAS. Methods There were totally 50 OSAS patients (OSAS group and 25 volunteers (control group included in our study. All of them were monitored by polysomnography (PSG and tested by Continuous Performance Test (CPT, n-back test and Stroop Color?Word Test (CWT to evaluate their sleep condition and cognitive function. Results No significant difference was found between the two groups in total sleep time and sleep efficiency (P > 0.05, for all. Compared with control group, OSAS group had significant increased time of non-rapid eye movement (NREM sleep stage Ⅰ and stage Ⅱ, significant decreased time of stage Ⅲ (P 0.05, for all, while had significant connection with AI and NREM Ⅲ (P < 0.05, for all. The rate of OSAS patients who underwent nasal continuous positive airway pressure (nCPAP treatment was very low, only 8% (4/50. Conclusion The abnormality of OSAS patients' sleep structure is characterized with sleep fragmentation and decrease of NREM Ⅲ, which may be the main factors of cognitive impairment. Exploration of treatment methods targeted on regulating the effected hormones and receptors is meaningful.

  17. Executive Functions as Moderators of the Worked Example Effect: When Shifting Is More Important than Working Memory Capacity

    Schwaighofer, Matthias; Bühner, Markus; Fischer, Frank

    2016-01-01

    Worked examples have proven to be effective for knowledge acquisition compared with problem solving, particularly when prior knowledge is low (e.g., Kalyuga, 2007). However, in addition to prior knowledge, executive functions and fluid intelligence might be potential moderators of the effectiveness of worked examples. The present study examines…

  18. The importance of family functioning, mental health and social and emotional well-being on child oral health.

    Renzaho, A M N; de Silva-Sanigorski, A

    2014-07-01

    To examine the strength of associations between child oral health and aspects of the home environment (child behaviour, parental psychological distress and family functioning) in a large sample of 1- to 12-year-old Australian children. The current study used data from the 2006 Victorian Child Health and Wellbeing Study. Data were obtained on 4590 primary carers. Measures of the family environment included the level of family functioning, parental psychological distress, child's emotion and behavioural problems and the family structure. The odds of children having good oral health status were lower with increasing parental psychological distress and poor family functioning across all age groups, and lower with increasing child mental health or conduct problems among children aged 4 years or older. Socioeconomic factors were also related to child oral health status, but this was significant only among children aged 4-7 years, with the odds of children having good oral health status 68% higher in households with a yearly income ≥AUD$ 60 000 compared with households with income family functioning and the mental health of parents and children into existing systems reaching vulnerable community members may improve child oral health outcomes and reduce the unequal distribution of oral disease across the social gradient. © 2013 John Wiley & Sons Ltd.

  19. Importance of social relationships in the association between sleep duration and cognitive function: data from community-dwelling older Singaporeans.

    Cheng, Grand H-L; Chan, Angelique; Lo, June C

    2017-06-15

    Aging is accompanied by cognitive decline that is escalated in older adults reporting extreme sleep duration. Social relationships can influence health outcomes and thus may qualify the association between sleep duration and cognitive function. The present study examines the moderating effects of marital status, household size, and social network with friends and relatives on the sleep-cognition association among older adults. Data (N = 4,169) came from the Social Isolation, Health, and Lifestyles Survey, a nationally representative survey of community-dwelling older Singaporeans (≥ 60 years). Sleep duration and social relationships were self-reported. Cognitive function was assessed with the Short Portable Mental Status Questionnaire. Regression analysis revealed that the inverted U-shaped association between sleep duration and cognitive function was less profound among older adults who were married (vs. unmarried) and those who had stronger (vs. weaker) social networks. In contrast, it was more prominent among individuals who had more (vs. fewer) household members. Being married and having stronger social networks may buffer against the negative cognitive impact of extreme sleep duration. But larger household size might imply more stress for older persons, and therefore strengthen the sleep duration-cognitive function association. We discuss the potential biological underpinnings and the policy implications of the findings. Although our findings are based on a large sample, replication studies using objective measures of sleep duration and other cognitive measures are needed.

  20. The 90deg excitation function for elastic 12C+12C scattering. The importance of Airy elephants

    McVoy, K.W.; Brandan, M.E.

    1992-01-01

    The 90deg excitation function for elastic 12 C+ 12 C scattering, at laboratory energies between the Coulomb barrier and 130 MeV, exhibits a complex structure of peaks and valleys whose nature has remained an unsolved mystery for more than 20 years. The problem has primarily been caused by the difficulty of choosing from a plethora of discretely ambiguous optical potentials. However, data accumulated above 150 MeV over the last decade have determined unique potentials at these higher energies, and the requirement of continuity downward in energy has recently permitted the determination of a unique set of potentials for angular distributions at energies below 130 MeV, where the excitation-function data exist. These new potentials are used to provide a mean-field (i.e., nonresonant) interpretation of the structure in the 12 C+ 12 C 90deg excitation function between 70 and 130 MeV. Its most prominent minima are found to be Airy minima from nuclear rainbows, with the remaining structure arising primarily from more elementary optical phenomena related to Fraunhofer diffraction. These same potentials are also successful in explaining the details of excitation functions measured very recently at other angles by Morsad. (orig.)

  1. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step

    Leary, K. C. P.; Schmeeckle, M. W.

    2017-12-01

    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  2. The importance of psychosexual counselling in the re-establishment of organic and erotic functions after penile prosthesis implantation.

    Pisano, F; Falcone, M; Abbona, A; Oderda, M; Soria, F; Peraldo, F; Marson, F; Barale, M; Fiorito, C; Gurioli, A; Frea, B; Gontero, P

    2015-01-01

    Although many studies about penile prosthesis implantation (PPI) have been published so far, only a small amount of them take into account patients and partners outcome in terms of satisfaction and erotic function. The aim of this study is to explore the value of psycosexual counselling in and the sexual and erotic function of penile prosthesis recipients. Thirty patients and their partners were randomised into two groups. In arm A (case group) patients and their partners underwent a multistep psychosexual counselling before and after surgery. In arm B (control group) surgery was performed without the specific psychosexual counselling scheme. Specific questionnaires (International Index of Erectile Function (IIEF) and the Sexual Daydreaming Scale (SDS)) were administered before surgery and 12 months afterwards. Twenty-four months postoperatively patients were asked to complete the Global Assessment Questions (GAQ) and the Erectile Dysfunction Inventory of Treatment Satisfaction (EDITS), while their partners were asked to answer to the EDITS partner's section. Between January 2009 and October 2011, we enrolled 30 patients undergoing PPI in our institution (15 in each arm). Twenty-four months postoperative follow-up is available for all of them. No significant differences between the two groups in terms of baseline questionnaires scores were observed. Mean IIEF score was significantly higher in case group (arm A 68.3, arm B 53.4, P-valueerotic function according to SDS was significantly higher in the study group for both patients and their partners. Improvement in satisfaction rates were confirmed at 24 months, with statistically significant scores for EDITS in arm A patients and partners as compared with arm B. PPI with a pre- and postoperative psychosexual counselling scheme resulted in better postoperative sexual activity and erotic function for both patients and partners than PPI alone.

  3. A Movable Phantom Design for Quantitative Evaluation of Motion Correction Studies on High Resolution PET Scanners

    Olesen, Oline Vinter; Svarer, C.; Sibomana, M.

    2010-01-01

    maximization algorithm with modeling of the point spread function (3DOSEM-PSF), and they were corrected for motions based on external tracking information using the Polaris Vicra real-time stereo motion-tracking system. The new automatic, movable phantom has a robust design and is a potential quality......Head movements during brain imaging using high resolution positron emission tomography (PET) impair the image quality which, along with the improvement of the spatial resolution of PET scanners, in general, raises the importance of motion correction. Here, we present a new design for an automatic...

  4. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study

    van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A. B.

    2010-01-01

    Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical

  5. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system

    Hansen, Pernille B L

    2015-01-01

    Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However...

  6. Soft Skills in Higher Education: Importance and Improvement Ratings as a Function of Individual Differences and Academic Performance

    Chamorro-Premuzic, Tomas; Arteche, Adriane; Bremner, Andrew J.; Greven, Corina; Furnham, Adrian

    2010-01-01

    Three UK studies on the relationship between a purpose-built instrument to assess the importance and development of 15 "soft skills" are reported. "Study 1" (N = 444) identified strong latent components underlying these soft skills, such that differences "between-skills" were over-shadowed by differences…

  7. Importance of early physical rehabilitation in improving functional state of vegetative nervous system of women with postmastectomy syndrome

    Tatiana Odynets

    2016-02-01

    Full Text Available Purpose: to determine the expediency of early application of physical rehabilitation to improve the functional state of vegetative nervous system of women with postmastectomy syndrome. Material & Methods: theoretical analysis of scientific and methodical literature, analysis of heart rate variability, methods of mathematical statistics. The study involved 135 women with postmastectomy syndrome who underwent radical mastectomy for Madden. Results: at the end of the research value of high-frequency component of the spectrum was significantly higher in women MG1 compared to MG on 257,72 ms² (p<0,01 and the stress index was lower on 107,01 c. u (p<0,001. Conclusions: the feasibility of early rehabilitation intervention to improve the functional state of the autonomic nervous system is not detected during the year classes on problem-oriented programs.

  8. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population

    Knudsen, N.; Laurberg, P.; Rasmussen, Lone Banke

    2005-01-01

    Context: Increasing prevalence of overweight in the population is a major concern globally; and in the United States, nearly one third of adults were classified as obese at the end of the 20th century. Few data have been presented regarding an association between variations in thyroid function seen...... in the general population and body weight. Objective: The aim of this study was to investigate the association between thyroid function and body mass index (BMI) or obesity in a normal population. Design: A cross-sectional population study (The DanThyr Study) was conducted. Participants: In all, 4649...... participants were investigated, and 4082 were eligible for these analyses after exclusion of subjects with previous or present overt thyroid dysfunction. Main Outcome Measures: The study examined the association between category of serum TSH or serum thyroid hormones and BMI or obesity in multivariate models...

  9. C-Speak Aphasia alternative communication program for people with severe aphasia: importance of executive functioning and semantic knowledge.

    Nicholas, Marjorie; Sinotte, Michele P; Helm-Estabrooks, Nancy

    2011-06-01

    Learning how to use a computer-based communication system can be challenging for people with severe aphasia even if the system is not word-based. This study explored cognitive and linguistic factors relative to how they affected individual patients' ability to communicate expressively using C-Speak Aphasia (CSA), an alternative communication computer program that is primarily picture-based. Ten individuals with severe non-fluent aphasia received at least six months of training with CSA. To assess carryover of training, untrained functional communication tasks (i.e., answering autobiographical questions, describing pictures, making telephone calls, describing a short video, and two writing tasks) were repeatedly probed in two conditions: (1) using CSA in addition to natural forms of communication, and (2) using only natural forms of communication, e.g., speaking, writing, gesturing, drawing. Four of the 10 participants communicated more information on selected probe tasks using CSA than they did without the computer. Response to treatment was also examined in relation to baseline measures of non-linguistic executive function skills, pictorial semantic abilities, and auditory comprehension. Only nonlinguistic executive function skills were significantly correlated with treatment response.

  10. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  11. C-Speak Aphasia Alternative Communication Program for People with Severe Aphasia: Importance of Executive Functioning and Semantic Knowledge

    Nicholas, Marjorie; Sinotte, Michele P.; Helm-Estabrooks, Nancy

    2011-01-01

    Learning how to use a computer-based communication system can be challenging for people with severe aphasia even if the system is not word-based. This study explored cognitive and linguistic factors relative to how they affected individual patients’ ability to communicate expressively using C-Speak Aphasia, (CSA), an alternative communication computer program that is primarily picture-based. Ten individuals with severe non-fluent aphasia received at least six months of training with CSA. To assess carryover of training, untrained functional communication tasks (i.e., answering autobiographical questions, describing pictures, making telephone calls, describing a short video, and two writing tasks) were repeatedly probed in two conditions: 1) using CSA in addition to natural forms of communication, and 2) using only natural forms of communication, e.g., speaking, writing, gesturing, drawing. Four of the ten participants communicated more information on selected probe tasks using CSA than they did without the computer. Response to treatment also was examined in relation to baseline measures of non-linguistic executive function skills, pictorial semantic abilities, and auditory comprehension. Only nonlinguistic executive function skills were significantly correlated with treatment response. PMID:21506045

  12. Motion Transplantation Techniques: A Survey

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  13. Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest

    Wu, Jian; Jansson, P.E.; van der Linden, Leon

    2013-01-01

    Temperate forests are globally important carbon sinks and stocks. Trends in net ecosystem exchange have been observed in a Danish beech forest and this trend cannot be entirely attributed to changing climatic drivers. This study sought to clarify the mechanisms responsible for the observed trend...... for nitrogen demand during mast years is supported by the inter-annual variability in the estimated parameters. The inter-annual variability of photosynthesis parameters was fundamental to the simulation of the trend in carbon fluxes in the investigated beech forest and this demonstrates the importance......, the latent and sensible heat fluxes and the CO2 fluxes decreased the parameter uncertainty considerably compared to using CO2 fluxes as validation data alone. The fitted model was able to simulate the observed carbon fluxes well (R2=0.8, mean error=0.1gCm−2d−1) but did not reproduce the decadal (1997...

  14. Important functions and development ideas of the library and information work in scientific and technical research institutes

    Ye Qingsen

    2010-01-01

    The library and information branch is an important constituent part of a scientific and technic research institute, and is a technically assistant department which is set for scientific and technic research and production. The investigations show that the achievements by the library and information departments are marked in scientific and technic research institutes, and the library and information works play important roles for the existence, development and innovation of the institute in past years. But, the present conditions and statuses are dropped behind, and more problems existed in the library and information departments as a whole. The development ideas are proposed for the library and information work by analyzing the characteristics of nowadays knowledge service, knowledge economy and network information time. (authors)

  15. Can foreign proteins imported into yeast mitochondria interfere with PIM1p protease and/or chaperone function?

    Saveliev, A S; Kovaleva, I E; Novikova, L A; Isaeva, L V; Luzikov, V N

    1999-03-15

    When studying the fate of mammalian apocytochrome P450scc (apo-P450scc) imported in small amounts into isolated yeast mitochondria, we found that it undergoes degradation, this process being retarded if recipient mitochondria are preloaded in vivo (to about 0.2% of total organelle protein) with a fusion protein composed of mammalian adrenodoxin reductase and adrenodoxin (AdR-Ad); in parallel we observed aggregation of apo-P450scc. These effects suggest some overload of Pim1p protease and/or mtHsp70 system by AdR-Ad, as both of them are involved in the degradation of apo-P450scc (see Savel'ev et al. J. Biol. Chem. 273, 20596-20602, 1998). However, under the same conditions AdR-Ad was not able to impede the import of proteins into mitochondria and the development of the mitochondrial respiratory machinery in yeast, the processes requiring the mtHsp70 system and Pim1p, respectively. These data imply that chaperones and Pim1p protease prefer their natural targets in mitochondria to imported foreign proteins. Copyright 1999 Academic Press.

  16. Investigation of nuclide importance to functional requirements related to transport and long-term storage of LWR spent fuel

    Broadhead, B.L.; DeHart, M.D.; Ryman, J.C.; Tang, J.S.; Parks, C.V.

    1995-06-01

    This study investigates the relative importances of the various actinide, fission-product, and light-element isotopes associated with LWR spent fuel with respect to five analysis areas: criticality safety (absorption fractions), shielding (dose rate fractions), curies (fractional curies levels), decay heat (fraction of total watts), and radiological toxicity (fraction of potential committed effective dose equivalent). These rankings are presented for up to six different burnup/enrichment scenarios and at decay times from 2 to 100,000 years. Ranking plots for each of these analysis areas are given in an Appendix for completeness, as well as summary tables in the main body of the report. Summary rankings are presented in terms of high (greater than 10% contribution to the total), medium (between 1% and 10% contribution), and low (less than 1% contribution) for both short- and long-term cooling. When compared with the expected measurement accuracies, these rankings show that most of the important isotopes can be characterized sufficiently for the purpose of radionuclide generation/depletion code validation in each of the analysis areas. Because the main focus of this work is on the relative importances of isotopes associated with L at sign spent fuel, some conclusions may not be applicable to similar areas such as high-level waste (HLW) and nonfuel-bearing components (NFBC)

  17. The importance of the practical training, the retraining and the accreditation of the personnel with regulatory functions

    Menossi, Carlos A.

    2004-01-01

    Medicine, industry, hydrology, research, development and academic scenarios are, nowadays the focus for a wide application of radioisotope techniques of permanently increasing use. This situation should move the governments towards the improvement of their infrastructures and the updating of the nuclear regulatory authorities knowledge. The regulation and control of radioactive sources and its associated practices, to guarantee its safe use and minimize the derived risks from those practices, constitute the main tasks of nuclear regulatory institutions. On the other hand, it is known that personnel with regulatory functions has further interaction with people responsible of facilities and practices (users). In fact, most of these people only have contact with the regulatory authority through the inspector visits, the documents, notes or requirements received. For such a reason, nuclear regulatory authority management success or failure depends fundamentally on the successes or errors occurring in the course of these interactions. Due to it, it should be kept in mind that a successful management of a Nuclear Regulatory Authority implies: a) The users accomplish the effective standards and satisfy the authority requirements, and b) An attitude of respect is induced in the users by the appropriate regulatory function. That is to say because the 'inspectors' possess the necessary technical knowledge. In that sense, with the experience of many years, improvements have been introduced in the radiological protection Post Graduate Course program. This course sponsored by the IAEA has been given in Argentina for 24 years. Such improvements have been made to allow participants that will perform regulatory functions to have enough sessions of practical training, demonstrations, laboratory exercises, case studies and technical visits. This formation course will be supplemented by an accreditation and training on the job. The scope and dimension of the improvements are

  18. Infrasonic induced ground motions

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  19. Hydrological excitation of polar motion by different variables from the GLDAS models

    Winska, Malgorzata; Nastula, Jolanta; Salstein, David

    2017-12-01

    Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.

  20. Importance of thiol-functionalized molecules for the structure and properties of compression-molded glassy wheat gluten bioplastics.

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-11-06

    High-temperature compression molding of wheat gluten at low water levels yields a rigid plastic-like material. We performed a systematic study to determine the effect of additives with multiple thiol (SH) groups on gluten network formation during processing and investigate the impact of the resulting gluten network on the mechanical properties of the glassy end product. To this end, a fraction of the hydroxyl groups of different polyols was converted into SH functionalities by esterifying with 3-mercaptopropionic acid (MPA). The monofunctional additive MPA was evaluated as well. During low-temperature mixing SH-containing additives decreased the gluten molecular weight, whereas protein cross-linking occurred during high-temperature compression molding. The extent of both processes depended on the molecular architecture of the additives and their concentration. After molding, the material strength and failure strain increased without affecting the modulus, provided the additive concentration was low. The strength decreased again at too high concentrations for polyols with low SH functionalization. Attributing these effects solely to the interplay of plasticization and the SH-facilitated introduction of cross-links is inadequate, since an improvement in both strength and failure strain was also observed in the presence of high levels of MPA. It is hypothesized that, regardless of the molecular structure of the additive, the presence of SH-containing groups induces conformational changes which contribute to the mechanical properties of glassy gluten materials.

  1. Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat

    Ageberg, Eva; Bennell, Kim L; Hunt, Michael A

    2010-01-01

    Muscle function may influence the risk of knee injury and outcomes following injury. Clinical tests, such as a single-limb mini squat, resemble conditions of daily life and are easy to administer. Fewer squats per 30 seconds indicate poorer function. However, the quality of movement, such as the ......, such as the medio-lateral knee motion may also be important. The aim was to validate an observational clinical test of assessing the medio-lateral knee motion, using a three-dimensional (3-D) motion analysis system. In addition, the inter-rater reliability was evaluated....

  2. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  3. Ser95, Asn97, and Thr78 are important for the catalytic function of porcine NADP-dependent isocitrate dehydrogenase

    Kim, Tae-Kang; Colman, Roberta F.

    2005-01-01

    The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn2+-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser95, Asn97, and Thr78 are within hydrogen-bonding distance of the γ-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant...

  4. Investigation of Nuclide Importance to Functional Requirements Related to Transport and Long-Term Storage of LWR Spent Fuel

    Broadhead, B.L.

    1995-01-01

    The radionuclide characteristics of light-water-reactor (LWR) spent fuel play key roles in the design and licensing activities for radioactive waste transportation systems, interim storage facilities, and the final repository site. Several areas of analysis require detailed information concerning the time-dependent behavior of radioactive nuclides including (1) neutron/gamma-ray sources for shielding studies, (2) fissile/absorber concentrations for criticality safety determinations, (3) residual decay heat predictions for thermal considerations, and (4) curie and/or radiological toxicity levels for materials assumed to be released into the ground/environment after long periods of time. The crucial nature of the radionuclide predictions over both short and long periods of time has resulted in an increased emphasis on thorough validation for radionuclide generation/depletion codes. Current radionuclide generation/depletion codes have the capability to follow the evolution of some 1600 isotopes during both irradiation and decay time periods. Of these, typically only 10 to 20 nuclides dominate contributions to each analysis area. Thus a quantitative ranking of nuclides over various time periods is desired for each of the analysis areas of shielding, criticality, heat transfer, and environmental dose (radiological toxicity). These rankings should allow for validation and data improvement efforts to be focused only on the most important nuclides. This study investigates the relative importances of the various actinide, fission-product, and light-element isotopes associated with LWR spent fuel with respect to five analysis areas: criticality safety (absorption fractions), shielding (dose rate fractions), curies (fractional curies levels), decay heat (fraction of total watts), and radiological toxicity (fraction of potential committed effective dose equivalent). These rankings are presented for up to six different burnup/enrichment scenarios and at decay times from 2 to

  5. Visual motion perception predicts driving hazard perception ability.

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  6. Rotational damping motion in nuclei

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  7. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stabi...

  8. Parent-Adolescent Informant Discrepancies of Social Skill Importance and Social Skill Engagement for Higher-Functioning Adolescents with Autism Spectrum Disorder

    McMahon, Camilla M.; Solomon, Marjorie

    2015-01-01

    Parent- and adolescent-report of social skill importance and social skill engagement on the Social Skills Rating System (Gresham & Elliott, 1990) were assessed in higher-functioning adolescents with Autism Spectrum Disorder (ASD). Compared to parents, adolescents reported that social skills were less important. Additionally, adolescents reported that they engaged in social skills more frequently than parents reported them to be engaging in social skills. Parents, but not adolescents, reported...

  9. Operator Fractional Brownian Motion and Martingale Differences

    Hongshuai Dai

    2014-01-01

    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  10. Environmental radiological surveillance in perspective: the relative importance of environmental media as a function of effluent pathway and radionuclides

    Denham, D.H.

    1977-10-01

    Most published guidelines for environmental surveillance emphasize the collection and analysis of specific media (e.g. air, water, milk, direct radiation) without total regard for the potential dose impact of the radionuclides expected in or actually present in the effluent streams from nuclear facilities. To determine the relative importance of medium/nuclide combinations in environmental surveillance, the experience at major ERDA sites and at operating nuclear power plants was reviewed. Typical release rates for nuclide groupings (tritium, noble gases, radioiodine, mixed fission or activation products, and transuranics) in those effluent streams were followed through various environmental pathways. By using this scheme the environmental medium which is most prominent in the critical dose pathway to man was determined. It was also possible to determine points of short-or long-term contaminant accumulation. Following these calculations, each medium was ranked for a given nuclide/effluent pathway combination providing the relative importance of sampling specific environmental media with emphasis on the radiation dose to a critical population group. Finally, the results of these environmental pathway studies are presented in tabular form to provide ready reference for environmental surveillance program design or evaluation

  11. Environmental radiological surveillance in perspective: the relative importance of environmental media as a function of effluent pathway and radionuclides

    Denham, D.H.

    1977-01-01

    Most published guidelines for environmental surveillance emphasize the collection and analysis of specific media (e.g. air, water, milk, direct radiation) without total regard for the potential dose impact of the radionuclides expected in or actually present in the effluent streams FR-om nuclear facilities. To determine the relative importance of medium/nuclide combinations in environmental surveillance, the experience at major ERDA sites and at operating nuclear power plants was reviewed. Typical release rates for nuclide groupings (tritium, noble gases, radioiodine, mixed fission or activation products, and transuranics) in those effluent streams were followed through various environmental pathways. By using this scheme the environmental medium which is most prominent in the critical dose pathway to man was determined. It was also possible to determine points of short-or long-term contaminant accumulation. Following these combination providing the relative importance of sampling specific environmental media with emphasis on the radiation dose to a critical population group. Finally, the results of these environmental pathway studies are presented in tabular form to provide ready reference for environmental surveillance program design or evaluation

  12. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method

    Lee, Danny; Pollock, Sean; Keall, Paul, E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW 2298 (Australia); Kim, Taeho [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23219 (United States)

    2016-05-15

    Purpose: The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. Methods: The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. Results: For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole

  13. What is the importance of the psychopedagogical function of a sports trainer in improving club players’ performance?

    Gloria González Campos

    2010-07-01

    Full Text Available In this paper the more evolved tag games are defined and analyzed, that is, those characterized for throwing a soft object in order to hunt running away players. After reviewing the controversy about the adequacy of one of the clearest examples of this group of games, dodgeball, we argue the need to modify the rules to ensure their educational potential, and we consider a proposal of a new games category which could be addressed from an understanding approach. This family of games comes to complement the Almond’s taxonomy (1986 and its curricular consideration could lead to possible implications on the transfer of tactical principles. Similarly, the article analyzes the structural and functional characteristics of this group of games, and defends the use of an, easy to create, homemade equipment, reducing the risk of causing damage to the opponent, and giving students the opportunity to invent their own games

  14. Measuring self-esteem in context: the importance of stability of self-esteem in psychological functioning.

    Kernis, Michael H

    2005-12-01

    In this article, I report on a research program that has focused on the joint roles of stability and level of self-esteem in various aspects of psychological functioning. Stability of self-esteem refers to the magnitude of short-term fluctuations that people experience in their current, contextually based feelings of self-worth. In contrast, level of self-esteem refers to representations of people's general, or typical, feelings of self-worth. A considerable amount of research reveals that self-esteem stability has predictive value beyond the predictive value of self-esteem level. Moreover, considering self-esteem stability provides one way to distinguish fragile from secure forms of high self-esteem. Results from a number of studies are presented and theoretical implications are discussed.

  15. The right supramarginal gyrus is important for proprioception in healthy and stroke affected participants: a functional MRI study

    Ettie eBen-Shabat

    2015-12-01

    Full Text Available Human proprioception is essential for motor control, yet its central processing is still debated. Previous studies of passive movements and illusory vibration have reported inconsistent activation patterns related to proprioception, particularly in high order sensorimotor cortices. We investigated brain activation specific to proprioception, its laterality and changes following stroke. Twelve healthy and three stroke affected individuals with proprioceptive deficits participated. Proprioception was assessed clinically with the Wrist Position Sense Test, and participants underwent functional MRI (fMRI scanning. An event-related study design was used, where each proprioceptive stimulus of passive wrist movement was followed by a motor response of mirror copying with the other wrist. Left (LWP and right (RWP wrist proprioception were tested separately. Laterality indices (LI were calculated for the main cortical regions activated during proprioception. We found proprioception-related brain activation in high order sensorimotor cortices in healthy participants especially in the supramarginal gyrus (SMG LWP z=4.51, RWP z=4.24 and the dorsal premotor cortex (PMd LWP z=4.10, RWP z=3.93. Right hemispheric dominance was observed in the SMG (LI LWP mean 0.41, SD 0.22; RWP 0.29, SD 0.20, and to a lesser degree in the PMd (LI LWP 0.34, SD 0.17; RWP 0.13, SD 0.25. In stroke affected participants the main difference in proprioception-related brain activation was reduced laterality in the right SMG. Our findings indicate that the SMG and PMd play a key role in proprioception probably due to their role in spatial processing and motor control respectively. The findings from stroke affected individuals suggest that decreased right SMG function may be associated with decreased proprioception. We recommend that clinicians pay particular attention to the assessment and rehabilitation of proprioception following right hemispheric lesions

  16. New methods for simulation of fractional Brownian motion

    Yin, Z.M.

    1996-01-01

    We present new algorithms for simulation of fractional Brownian motion (fBm) which comprises a set of important random functions widely used in geophysical and physical modeling, fractal image (landscape) simulating, and signal processing. The new algorithms, which are both accurate and efficient, allow us to generate not only a one-dimensional fBm process, but also two- and three-dimensional fBm fields. 23 refs., 3 figs

  17. Frequency domain performance analysis of nonlinearly controlled motion systems

    Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.

    2007-01-01

    At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity

  18. Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient

    Schousboe, Arne; Sickmann, Helle M; Walls, Anne B

    2010-01-01

    It has been proposed that a considerable fraction of glucose metabolism proceeds via the glycogen-shunt consisting of conversion of glucose units to glycogen residues and subsequent production of glucose-1-phosphate to be metabolized in glycolysis after conversion to glucose-6-phosphate. The impo......It has been proposed that a considerable fraction of glucose metabolism proceeds via the glycogen-shunt consisting of conversion of glucose units to glycogen residues and subsequent production of glucose-1-phosphate to be metabolized in glycolysis after conversion to glucose-6-phosphate....... The importance of this as well as the significance of ATP formed in glycolysis versus that formed by the concerted action of the tricarboxylic acid (TCA) cycle processes and oxidative phosphorylation for maintenance of glutamate transport capacity in astrocytes is discussed. It is argued that glycolytically...

  19. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    Li, Sai Kam; Ho, Sai Fan; Tsui, Kwok Wing; Fung, Kwok Pui; Waye, M.Y. Mary

    2008-01-01

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated

  20. Circular relativistic motion of two identical bodies

    Shavokhina, N.S.

    1983-01-01

    Circular relativistic motion of two bodies as a solution of the earlier obtained equations with a deflecting argument where the self-deflection of the argument is an unknown function of time is considered. In case of circular motion the argument deflection is independent from time and it is the root of the transcendental equation obtained in the paper

  1. Adaptive motion of animals and machines

    Kimura, Hiroshi

    2006-01-01

    ... single function in a control system and mechanism. That is, adaptation in motion is induced at every level from the central nervous system to the musculoskeletal system. Thus, we organized the International Symposium on Adaptive Motion in Animals and Machines (AMAM) for scientists and engineers concerned with adaptation on various levels to be broug...

  2. Helicopter flight simulation motion platform requirements

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  3. Motion correction options in PET/MRI.

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis: a cross-sectional study.

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina

    2017-07-01

    To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.

  5. Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2.

    Yasuhiko, Yukuto; Kitajima, Satoshi; Takahashi, Yu; Oginuma, Masayuki; Kagiwada, Harumi; Kanno, Jun; Saga, Yumiko

    2008-11-01

    The T-box transcription factor Tbx6 controls the expression of Mesp2, which encodes a basic helix-loop-helix transcription factor that has crucial roles in somitogenesis. In cultured cells, Tbx6 binding to the Mesp2 enhancer region is essential for the activation of Mesp2 by Notch signaling. However, it is not known whether this binding is required in vivo. Here we report that an Mesp2 enhancer knockout mouse bearing mutations in two crucial Tbx6 binding sites does not express Mesp2 in the presomitic mesoderm. This absence leads to impaired skeletal segmentation identical to that reported for Mesp2-null mice, indicating that these Tbx6 binding sites are indispensable for Mesp2 expression. T-box binding to the consensus sequences in the Mesp2 upstream region was confirmed by chromatin immunoprecipitation assays. Further enhancer analyses indicated that the number and spatial organization of the T-box binding sites are critical for initiating Mesp2 transcription via Notch signaling. We also generated a knock-in mouse in which the endogenous Mesp2 enhancer was replaced by the core enhancer of medaka mespb, an ortholog of mouse Mesp2. The homozygous enhancer knock-in mouse was viable and showed normal skeletal segmentation, indicating that the medaka mespb enhancer functionally replaced the mouse Mesp2 enhancer. These results demonstrate that there is significant evolutionary conservation of Mesp regulatory mechanisms between fish and mice.

  6. WORKSHOP: Stable particle motion

    Ruggiero, Alessandro G.

    1993-01-01

    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  7. Importance classification

    Mizumachi, Wataru; Kobayashi, Masahide

    2008-01-01

    Conventionally, the design of a nuclear reactor has been performed from a viewpoint of a safety function and the importance on earthquake-proof on the basis of not giving off the mainly included radioactivity outside. In this Niigataken-Chuetsuoki earthquake, there is almost no damage to the system, components and structure on safe also in the earthquake beyond assumption, and the validity of the design was checked. But, the situation peculiar to a big earthquake was also generated. The emergency plan room which should serve as a connection center with the exterior was not able to open a door and use at the beginning. Fire-extinguishing system piping fractured and self-defense fire fighting was not made. And so on. Discussion from the following three viewpoints was performed. 1st: The importance from a viewpoint which should maintain a function also with the disaster in case of an earthquake like an emergency plan room etc. 2nd: In the earthquake, since the safe system and un-safe system was influenced, the importance from a viewpoint which may have influence safely inquired when the un-safe system broke down. 3rd: Although it was not directly related safely, discussion from a viewpoint which influences fear of insecurity, such as taking out smoke, for example, was performed (author)

  8. Vertical Transmission of Hypopituitarism: Critical Importance of Appropriate Interpretation of Thyroid Function Tests and Levothyroxine Therapy During Pregnancy

    Romero, Christopher J.; Radovick, Sally

    2013-01-01

    Background Typically, newborns with congenital hypothyroidism are asymptomatic at birth, having been exposed to euthyroid mothers. However, hypopituitarism may be associated with central hypothyroidism, preserved fertility, and autosomal dominant inheritance, requiring increased attention to thyroid management during pregnancy. Patient Findings A woman with a history of growth hormone deficiency and central hypothyroidism gave birth to a term male neonate appropriate for gestational age. Due to low thyrotropin (TSH) in the second trimester, the levothyroxine dose was decreased by the obstetrician, and free T4 was low throughout the latter half of pregnancy. The neonatal laboratory evaluation showed central hypothyroidism with a low T4 of 2.1 μg/dL (4.5–11.5) and an inappropriately normal TSH of 0.98 uIU/mL (0.5–4.5); undetectable growth hormone, IGF-I, and IGFBP3; a normal cortisol level; and a normal gonadotropin surge. After initiation of levothyroxine in the first week, both tone and feeding tolerance improved. However, the patient was found to have hearing loss, gross motor delay, and speech delay. Summary In this report, we review a case of vertical transmission of a dominant negative POU1F1 mutation in which fetal abnormalities due to the hypothyroxinemic state during gestation may have been exacerbated by a decrease in the mother's levothyroxine dose based on a low TSH in early gestation. Both mother and fetus were unable to synthesize sufficient thyroid hormone, which may be responsible for the patient's clinical presentation. Conclusion This case underscores several important points in the management of women with hypopituitarism. First, it is important that patients and clinicians are both aware of the differences in etiology, as well as appropriate screening and treatment, of primary versus central hypothyroidism. Second, it is necessary to monitor the thyroid hormone status closely during pregnancy to prevent fetal sequelae of maternal

  9. Brief Report: Parent-Adolescent Informant Discrepancies of Social Skill Importance and Social Skill Engagement for Higher-Functioning Adolescents with Autism Spectrum Disorder

    McMahon, Camilla M.; Solomon, Marjorie

    2015-01-01

    Parent- and adolescent-report of social skill importance and social skill engagement on the Social Skills Rating System (Gresham and Elliott in The social skills rating system, American Guidance Service, Circle Pines, 1990) were assessed in higher-functioning adolescents with Autism Spectrum Disorder (ASD). Compared to parents, adolescents…

  10. The Classroom as a Developmental Context for Cognitive Development: A Meta-Analysis on the Importance of Teacher-Student Interactions for Children's Executive Functions

    Vandenbroucke, Loren; Spilt, Jantine; Verschueren, Karine; Piccinin, Claire; Baeyens, Dieter

    2018-01-01

    Executive functions (EFs), important cognitive processes that enable goal-directed behavior, develop due to maturation and environmental stimulation. The current study systematically reviews and synthesizes evidence on the association between teacher-student interactions and EFs. The search resulted in 28 studies, from which 23 studies provided…

  11. Identification of C-terminal hydrophobic residues important for dimerization and all known functions of ParB of Pseudomonas aeruginosa.

    Mierzejewska, J.; Bartosik, A.A.; Macioszek, M.; Plochocka, D.; Thomas, C.M.G.; Jagura-Burdzy, G.

    2012-01-01

    The ParB protein of Pseudomonas aeruginosa is important for growth, cell division, nucleoid segregation and different types of motility. To further understand its function we have demonstrated a vital role of the hydrophobic residues in the C terminus of ParB(P.a.). By in silico modelling of the

  12. A cross-cultural convergent parallel mixed methods study of what makes a cancer-related symptom or functional health problem clinically important

    Giesinger, J.M.; Aaronson, N.K.; Arraras, J.I.; Efficace, F.; Groenvold, M.; Kieffer, J.M.; Loth, F.L.; Petersen, M.A.; Ramage, J.; Tomaszewski, K.A.; Young, T.; Holzner, B.

    2018-01-01

    Objective: In this study, we investigated what makes a symptom or functional impairment clinically important, that is, relevant for a patient to discuss with a health care professional (HCP). This is the first part of a European Organisation for Research and Treatment of Cancer (EORTC) Quality of

  13. Motion of charged particles in the magnetosphere

    Mukherjee, G.K.; Rajaram, R.

    1981-01-01

    The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant shows maximum variation for particles close to 90 0 pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity. (orig.)

  14. The effect of motion on dynamic nuclear polarization: A new theoretical development

    Coffino, A.R.

    1989-01-01

    Dynamic Nuclear Polarization (DNP) is a magnetic resonance technique which uses two different radiation sources: a radiofrequency field and microwave field to radiate nuclei and electrons, respectively. The DNP experiment probes the nature of the interaction between nuclei and electrons. The maximum of the resonance signal from the nucleus is plotted as a function of microwave frequency for the case of the microwaves on and off. The DNP signal is the ratio of these two signals and is termed the enhancement of the nuclear signal. This thesis considers the theory of the DNP signal based on the density matrix formulation of the Stochastic Liouville Equation, which incorporates the spin-spin interactions, spin-field interactions and a stochastic dynamics process which modulates these interactions. The case of one electron coupled to one spin one-half nucleus is considered. Such a formulation has never been developed. The thesis demonstrates that previous partial theories have attempted to incorporate dynamics have been incorrect. This theoretical development demonstrates, for the first time, how dynamics affects the DNP lineshapes. This theory predicts that DNP spectra change smoothly from the no motion to the fast motion region, and reproduces the known analytic answers in both the no-motion and the fast-motion limit. The most important observation of the results is that a DNP signal for a motional rate in the intermediate motional region looks like a superposition of a no-motion and fast-motion signal

  15. Functional and Structural Details about the Fabella: What the Important Stabilizer Looks Like in the Central European Population

    Nicole Helene Hauser

    2015-01-01

    Full Text Available The posterolateral corner of the knee accommodating the fabella complex is of importance in orthopaedic surgery. Unfortunately, there is a lack of data in literature for clinical routine. Therefore, we investigated the fabella’s characteristics, biomechanical nature, and present histologic details. Of special interest were the fabella’s occurrence and position, calcium concentration as long-term load intake indicator, and the histology. Within our analysis, fabellae were found in 30.0% of all datasets, located on the upper part of the posterolateral femoral condyle. The region of fabella contact on this condyle showed a significantly lower calcium concentration than its surroundings. Histologically, the fabella showed no articular cartilage but a clearly distinguishable fabellofibular ligament that consisted of two bundles: one, as already described in literature inserted at the fibular tip, and another part newly described on the top of the lateral meniscus. In its role of stabilizing the soft tissue structures of the posterolateral knee, the fabella seems to serve as suspension for the ligaments evolving from its base. Even though a joint formation of any kind is unlikely, the presence of a fabella needs to be kept in mind during knee examination and any surgical procedures.

  16. Assessing the Functional Limitations of Lipids and Fatty Acids for Diet Determination: The Importance of Tissue Type, Quantity, and Quality

    Lauren Meyer

    2017-11-01

    Full Text Available Lipid and fatty acid (FA analysis is commonly used to describe the trophic ecology of an increasing number of taxa. However, the applicability of these analyses is contingent upon the collection and storage of sufficient high quality tissue, the limitations of which are previously unexplored in elasmobranchs. Using samples from 110 white sharks, Carcharodon carcharias, collected throughout Australia, we investigated the importance of tissue type, sample quantity, and quality for reliable lipid class and FA analysis. We determined that muscle and sub-dermal tissue contain distinct lipid class and FA profiles, and were not directly comparable. Muscle samples as small as 12 mg dry weight (49 mg wet weight, provided reliable and consistent FA profiles, while sub-dermal tissue samples of 40 mg dry weight (186 mg wet weight or greater were required to yield consistent profiles. This validates the suitability of minimally invasive sampling methods such as punch biopsies. The integrity of FA profiles in muscle was compromised after 24 h at ambient temperature (~20°C, making these degraded samples unreliable for accurate determination of dietary sources, yet sub-dermal tissue retained stable FA profiles under the same conditions, suggesting it may be a more robust tissue for trophic ecology work with potentially degraded samples. However, muscle samples archived for up to 16 years in −20°C retain their FA profiles, highlighting that tissue from museum or private collections can yield valid insights into the trophic ecology of marine elasmobranchs.

  17. The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2's function.

    Ly, Thu; Moroz, Natalia; Pappas, Christopher T; Novak, Stefanie M; Tolkatchev, Dmitri; Wooldridge, Dayton; Mayfield, Rachel M; Helms, Gregory; Gregorio, Carol C; Kostyukova, Alla S

    2016-08-15

    Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends. © 2016 Ly, Moroz, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  19. Stochastic Blind Motion Deblurring

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  20. Parent-Adolescent Informant Discrepancies of Social Skill Importance and Social Skill Engagement for Higher-Functioning Adolescents with Autism Spectrum Disorder

    McMahon, Camilla M.; Solomon, Marjorie

    2015-01-01

    Parent- and adolescent-report of social skill importance and social skill engagement on the Social Skills Rating System (Gresham & Elliott, 1990) were assessed in higher-functioning adolescents with Autism Spectrum Disorder (ASD). Compared to parents, adolescents reported that social skills were less important. Additionally, adolescents reported that they engaged in social skills more frequently than parents reported them to be engaging in social skills. Parents, but not adolescents, reported a discrepancy between importance and engagement, such that the importance of social skills was rated higher than the frequency of adolescent engagement in social skills. These results suggest that social skills interventions for individuals with ASD may need to target awareness of social skill importance and accurate monitoring of social skill engagement. PMID:26077952

  1. The importance of the natural and social resources in the function of the integrational and ambiental approach within the school function innovation

    Anđelković Slađana

    2011-01-01

    Full Text Available In work, different possibilities are considered, which are offered by natural and social resources with the goal to change and modernize the teaching outside of the classroom in different environments. Modern teaching is based on the holistic, integrated approach in which the knowledge is viewed as a complete system in a constant process of transformation. Thus, the importance of the environment is asserted, the importance of the ambient in which the teaching process is being conducted. Authentic environment (natural and social resources in which the teaching is realized, outside of the classroom, creates possibilities for learning through active working methods, independent research, exploration and noticing the relationships and connections. Teaching in the authentic environment offers a series of advantages for both the students and teacher-partners in the process of constructing a knowledge system. Using the resources and modern complex integration approach within the existing educational practice can significantly influence the modernization and innovation of the educational process, and can make the school, as a basic educational institution, a more suitable and more attractive for the generations to come.

  2. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  3. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method.

    Lee, Danny; Greer, Peter B; Pollock, Sean; Kim, Taeho; Keall, Paul

    2016-05-01

    The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P lung tumor monitoring applications. This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based

  4. Attention and apparent motion.

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  5. The function of 7D-cadherins: a mathematical model predicts physiological importance for water transport through simple epithelia

    Walcher Sebastian

    2011-06-01

    Full Text Available Abstract Background 7D-cadherins like LI-cadherin are cell adhesion molecules and represent exceptional members of the cadherin superfamily. Although LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells together, and to be dysregulated in a variety of diseases, the physiological role is still enigmatic. Interestingly 7D-cadherins occur only in the lateral plasma membranes of cells from epithelia of water transporting tissues like the gut, the liver or the kidney. Furthermore LI-cadherin was shown to exhibit a highly cooperative Ca2+-dependency of the binding activity. Thus it is tempting to assume that LI-cadherin regulates the water transport through the epithelium in a passive fashion by changing its binding activity in dependence on the extracellular Ca2+. Results We developed a simple mathematical model describing the epithelial lining of a lumen with a content of variable osmolarity covering an interstitium of constant osmolarity. The width of the lateral intercellular cleft was found to influence the water transport significantly. In the case of hypertonic luminal content a narrow cleft is necessary to further increase concentration of the luminal content. If the cleft is too wide, the water flux will change direction and water is transported into the lumen. Electron microscopic images show that in fact areas of the gut can be found where the lateral intercellular cleft is narrow throughout the lateral cell border whereas in other areas the lateral intercellular cleft is widened. Conclusions Our simple model clearly predicts that changes of the width of the lateral intercellular cleft can regulate the direction and efficiency of water transport through a simple epithelium. In a narrow cleft the cells can increase the concentration of osmotic active substances easily by active transport whereas if the cleft is wide, friction is reduced but the cells can hardly build up high osmotic

  6. Compensation for incoherent ground motion

    Shigeru, Takeda; Hiroshi, Matsumoto; Masakazu, Yoshioka; Yasunori, Takeuchi; Kikuo, Kudo; Tsuneya, Tsubokawa; Mitsuaki, Nozaki; Kiyotomo, Kawagoe

    1999-01-01

    The power spectrum density and coherence function for ground motions are studied for the construction of the next generation electron-positron linear collider. It should provide a center of mass energy between 500 GeV-1 TeV with luminosity as high as 10 33 to 10 34 cm -2 sec -1 . Since the linear collider has a relatively slow repetition rate, large number of particles and small sizes of the beam should be generated and preserved in the machine to obtain the required high luminosity. One of the most critical parameters is the extremely small vertical beam size at the interaction point, thus a proper alignment system for the focusing and accelerating elements of the machine is necessary to achieve the luminosity. We describe recent observed incoherent ground motions and an alignment system to compensate the distortion by the ground motions. (authors)

  7. Visualization system of swirl motion

    Nakayama, K.; Umeda, K.; Ichikawa, T.; Nagano, T.; Sakata, H.

    2004-01-01

    The instrumentation of a system composed of an experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by 'swirling flow analysis', which estimates its velocity gradient tensor and the corresponding eigenvalue (swirling function). Since an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow. (authors)

  8. Ground Motion Models for Future Linear Colliders

    Seryi, Andrei

    2000-01-01

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

  9. Biological Motion Perception in Autism

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  10. Visual-vestibular interaction in motion perception

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  11. Patients who are candidates for subacromial decompression have more pronounced range of motion deficits, but do not differ in self-reported shoulder function, strength or pain compared to non-candidates

    Witten, Adam; Clausen, Mikkel B; Thorborg, Kristian

    2018-01-01

    -reported shoulder function, shoulder strength, ROM, and pain in patients with SIS considered candidates and non-candidates for subacromial decompression (SAD). METHOD: Self-reported shoulder function (Q-DASH and SPADI), maximum isometric muscle strength in shoulder abduction (Abd-strength) and external rotation (ER...... or non-candidates for SAD based on their consultation with an orthopedic specialist blinded to test results and self-reported shoulder function. All outcomes and age, gender, weight and duration of symptoms were compared using the unpaired t test or Mann-Whitney's U test as appropriate. RESULTS: One.......3 vs. 3.7, p = 0.02, effect size = 0.21). No other differences were found between the groups. CONCLUSION: A decrease in abduction and internal rotation range of motion, and increased pain during maximal abduction strength effort are associated with being considered a candidate for subacromial...

  12. Objects in Motion

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  13. Motion compensated digital tomosynthesis

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  14. Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: a nonrandomized phase 2 device trial.

    Palsbo, Susan E; Hood-Szivek, Pamela

    2012-01-01

    We explored the efficacy of robotic technology in improving handwriting in children with impaired motor skills. Eighteen participants had impairments arising from cerebral palsy (CP), autism spectrum disorder (ASD), attention deficit disorder (ADD), attention deficit hyperactivity disorder (ADHD), or other disorders. The intervention was robotic-guided three-dimensional repetitive motion in 15-20 daily sessions of 25-30 min each over 4-8 wk. Fine motor control improved for the children with learning disabilities and those ages 9 or older but not for those with CP or under age 9. All children with ASD or ADHD referred for slow writing speed were able to increase speed while maintaining legibility. Three-dimensional, robot-assisted, repetitive motion training improved handwriting fluidity in children with mild to moderate fine motor deficits associated with ASD or ADHD within 10 hr of training. This dosage may not be sufficient for children with CP. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  15. The Effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for Class III correction: part I--jaw-motion analysis.

    Teng, Terry Te-Yi; Ko, Ellen Wen-Ching; Huang, Chiung Shing; Chen, Yu-Ray

    2015-01-01

    The aim of this prospective study was to compare the mandibular range of motion in Class III patients with and without early physiotherapy after orthognathic surgery (OGS). This study consisted of 63 Class III patients who underwent 2-jaw OGS. The experimental group comprised 31 patients who received early systematic physical rehabilitation. The control group consisted of 32 patients who did not have physical rehabilitation. Twelve variables of 3-dimensional (3D) jaw-motion analysis (JMA) were recorded before surgery (T1) and 6 weeks (T2) and 6 months (T3) after surgery. A 2-sample t test was conducted to compare the JMA results between the two groups at different time points. At T2, the JMA data were measured to be 77.5%-145.7% of presurgical values in the experimental group, and 60.3%-90.6% in the control group. At T3, the measurements were 112.2%-179.2% of presurgical values in the experimental group, and 77.6%-157.2% in the control group. The patients in the experimental group exhibited more favorable recovery than did those in the control group, from T1 to T2 and T1 to T3. However, after termination of physiotherapy, no significant difference in the extent of recovery was observed between groups up to 6 months after OGS. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage

    Lee, ChaBum; Kim, Gyu Ha; Lee, Sun-Kyu

    2011-01-01

    This paper presents the method of a six-degree-of-freedom (DOF) posture measurement in a linear stage by employing a single unit of an optical encoder. The proposed optical encoder was constructed to simultaneously measure the posture along the traveling axis; angular errors, pitch, yaw and roll; and translational errors, ΔX, ΔY and ΔZ. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position-sensitive detectors, four photodiodes and auxiliary optics components. The circularly polarizing interferometric technique was integrated to measure the displacement of the stage along the traveling axis in a robust manner and the resolution was estimated to be less than 0.4 nm. Two types of stages were employed for the measurement implementation, the piezoelectric transducer-driven and the ballscrew-driven, and they were feedback-controlled for the traveling axis, respectively. With a single travel of the stage, it provided a six-DOF motion error with a high resolution, less than 0.03 arcsec, 20 nm and 0.4 nm for angular errors, ΔY and ΔZ, and ΔX, respectively, at the same time. As a result, it was seen that motion errors of the stage have relevance to the driving mechanism and the whole construction of the stage

  17. A cross-cultural convergent parallel mixed methods study of what makes a cancer-related symptom or functional health problem clinically important.

    Giesinger, Johannes M; Aaronson, Neil K; Arraras, Juan I; Efficace, Fabio; Groenvold, Mogens; Kieffer, Jacobien M; Loth, Fanny L; Petersen, Morten Aa; Ramage, John; Tomaszewski, Krzysztof A; Young, Teresa; Holzner, Bernhard

    2018-02-01

    In this study, we investigated what makes a symptom or functional impairment clinically important, that is, relevant for a patient to discuss with a health care professional (HCP). This is the first part of a European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group project focusing on the development of thresholds for clinical importance for the EORTC QLQ-C30 questionnaire and its corresponding computer-adaptive version. We conducted interviews with cancer patients and HCPs in 6 European countries. Participants were asked to name aspects of a symptom or problem that make it clinically important and to provide importance ratings for a predefined set of aspects (eg, need for help and limitations of daily functioning). We conducted interviews with 83 cancer patients (mean age, 60.3 y; 50.6% men) and 67 HCPs. Participants related clinical importance to limitations of everyday life (patients, 65.1%; HCPs, 77.6%), the emotional impact of a symptom/problem (patients, 53.0%; HCPs, 64.2%), and duration/frequency (patients, 51.8%; HCPs, 49.3%). In the patient sample, importance ratings were highest for worries by partner or family, limitations in everyday life, and need for help from the medical staff. Health care professionals rated limitations in everyday life and need for help from the medical staff to be most important. Limitations in everyday life, need for (medical) help, and emotional impact on the patient or family/partner were found to be relevant aspects of clinical importance. Based on these findings, we will define anchor items for the development of thresholds for clinical importance for the EORTC measures in a Europe-wide field study. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Rolling Shutter Motion Deblurring

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  19. Smoothing Motion Estimates for Radar Motion Compensation.

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  20. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  1. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Dragana Dobrijevic

    Full Text Available The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  2. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  3. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  4. Curves from Motion, Motion from Curves

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  5. Influence of age on the prognostic importance of left ventricular dysfunction and congestive heart failure on long-term survival after acute myocardial infarction. TRACE Study Group

    Køber, L; Torp-Pedersen, C; Ottesen, M

    1996-01-01

    for entry into the TRAndolapril Cardiac Evaluation (TRACE) study. Medical history, echocardiographic estimation of LV systolic function determined as wall motion index, infarct complications, and survival were documented for all patients. To study the importance of congestive heart failure and wall motion...... dysfunction was more pronounced in the elderly than in the young....

  6. RELATIONSHIP BETWEEN ISOMETRIC THIGH MUSCLE STRENGTH AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES (MCIDS) IN KNEE FUNCTION IN OSTEOARTHRITIS – DATA FROM THE OSTEOARTHRITIS INITIATIVE

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2014-01-01

    Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012

  7. Relationship between isometric thigh muscle strength and minimum clinically important differences in knee function in osteoarthritis: data from the osteoarthritis initiative.

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2015-04-01

    To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.

  8. Structural motion engineering

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  9. Randomized controlled trial of increasing physical activity on objectively measured and self-reported cognitive functioning among breast cancer survivors: The memory & motion study.

    Hartman, Sheri J; Nelson, Sandahl H; Myers, Emily; Natarajan, Loki; Sears, Dorothy D; Palmer, Barton W; Weiner, Lauren S; Parker, Barbara A; Patterson, Ruth E

    2018-01-01

    Increasing physical activity can improve cognition in healthy and cognitively impaired adults; however, the benefits for cancer survivors are unknown. The current study examined a 12-week physical activity intervention, compared with a control condition, on objective and self-reported cognition among breast cancer survivors. Sedentary breast cancer survivors were randomized to an exercise arm (n = 43) or a control arm (n = 44). At baseline and at 12 weeks, objective cognition was measured with the National Institutes of Health Cognitive Toolbox, and self-reported cognition using the Patient-Reported Outcomes Measurement Information System scales. Linear mixed-effects regression models tested intervention effects for changes in cognition scores. On average, participants (n = 87) were aged 57 years (standard deviation, 10.4 years) and were 2.5 years (standard deviation, 1.3 years) post surgery. Scores on the Oral Symbol Digit subscale (a measure of processing speed) evidenced differential improvement in the exercise arm versus the control arm (b = 2.01; P cognition were not statistically significant but were suggestive of potential group differences. Time since surgery moderated the correlation, and participants who were ≤2 years post surgery had a significantly greater improvement in Oral Symbol Digit score (exercise vs control (b = 4.00; P 2 years postsurgery (b = -1.19; P = .40). A significant dose response was observed with greater increased physical activity associated with objective and self-reported cognition in the exercise arm. The exercise intervention significantly improved processing speed, but only among those who had been diagnosed with breast cancer within the past 2 years. Slowed processing speed can have substantial implications for independent functioning, supporting the potential importance of early implementation of an exercise intervention among patients with breast cancer. Cancer 2018;124:192-202. © 2017

  10. S1-3: Perception of Biological Motion in Schizophrenia and Obsessive-Compulsive Disorder

    Jejoong Kim

    2012-10-01

    Full Text Available Major mental disorders including schizophrenia, autism, and obsessive-compulsive disorder (OCD are characterized by impaired social functioning regardless of wide range of clinical symptoms. Past studies also revealed that people with these mental illness exhibit perceptual problems with altered neural activation. For example, schizophrenia patients are deficient in processing rapid and dynamic visual stimuli. As well documented, people are very sensitive to motion signals generated by others (i.e., biological motion even when those motions are portrayed by point-light display. Therefore, ability to perceive biological motion is important for both visual perception and social functioning. Nevertheless, there have been no systematic attempts to investigate biological motion perception in people with mental illness associated with impaired social functioning until a decade ago. Recently, a series of studies newly revealed abnormal patterns of biological motion perception and associated neural activations in schizophrenia and OCD. These new achievements will be reviewed focusing on perceptual and neural difference between patients with schizophrenia/OCD and healthy individuals. Then implications and possible future research will be discussed in this talk.

  11. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases

    Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K.; Cosgrove, Daniel J.; Anderson, Charles T.; Roberts, Alison W.; Haigler, Candace H.

    2015-12-08

    Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure–function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.

  12. Storyboard dalam Pembuatan Motion Graphic

    Satrya Mahardhika

    2013-10-01

    Full Text Available Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.  

  13. Modeling repetitive motions using structured light.

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  14. 19 CFR 207.107 - Motions.

    2010-04-01

    ... INJURY TO DOMESTIC INDUSTRIES RESULTS FROM IMPORTS SOLD AT LESS THAN FAIR VALUE OR FROM SUBSIDIZED... and Committee Proceedings § 207.107 Motions. (a) Presentation and disposition. (1) After issuance of...

  15. Vertical pressure gradient and particle motions in wave boundary layers

    Jensen, Karsten Lindegård

    . The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  16. Bessel functions

    Nambudiripad, K B M

    2014-01-01

    After presenting the theory in engineers' language without the unfriendly abstraction of pure mathematics, several illustrative examples are discussed in great detail to see how the various functions of the Bessel family enter into the solution of technically important problems. Axisymmetric vibrations of a circular membrane, oscillations of a uniform chain, heat transfer in circular fins, buckling of columns of varying cross-section, vibrations of a circular plate and current density in a conductor of circular cross-section are considered. The problems are formulated purely from physical considerations (using, for example, Newton's law of motion, Fourier's law of heat conduction electromagnetic field equations, etc.) Infinite series expansions, recurrence relations, manipulation of expressions involving Bessel functions, orthogonality and expansion in Fourier-Bessel series are also covered in some detail. Some important topics such as asymptotic expansions, generating function and Sturm-Lioville theory are r...

  17. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

    Yücel, Meryem A; Selb, Juliette; Cooper, Robert J; Boas, David A

    2014-03-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson's correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson's correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data.

  18. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  19. The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress.

    Walton, Paul A; Brees, Chantal; Lismont, Celien; Apanasets, Oksana; Fransen, Marc

    2017-10-01

    Accumulating evidence indicates that peroxisome functioning, catalase localization, and cellular oxidative balance are intimately interconnected. Nevertheless, it remains largely unclear why modest increases in the cellular redox state especially interfere with the subcellular localization of catalase, the most abundant peroxisomal antioxidant enzyme. This study aimed at gaining more insight into this phenomenon. Therefore, we first established a simple and powerful approach to study peroxisomal protein import and protein-protein interactions in living cells in response to changes in redox state. By employing this approach, we confirm and extend previous observations that Cys-11 of human PEX5, the shuttling import receptor for peroxisomal matrix proteins containing a C-terminal peroxisomal targeting signal (PTS1), functions as a redox switch that modulates the protein's activity in response to intracellular oxidative stress. In addition, we show that oxidative stress affects the import of catalase, a non-canonical PTS1-containing protein, more than the import of a reporter protein containing a canonical PTS1. Furthermore, we demonstrate that changes in the local redox state do not affect PEX5-substrate binding and that human PEX5 does not oligomerize in cellulo, not even when the cells are exposed to oxidative stress. Finally, we present evidence that catalase retained in the cytosol can protect against H 2 O 2 -mediated redox changes in a manner that peroxisomally targeted catalase does not. Together, these findings lend credit to the idea that inefficient catalase import, when coupled with the role of PEX5 as a redox-regulated import receptor, constitutes a cellular defense mechanism to combat oxidative insults of extra-peroxisomal origin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Centralized Networks to Generate Human Body Motions.

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  1. Cervical motion testing: methodology and clinical implications.

    Prushansky, Tamara; Dvir, Zeevi

    2008-09-01

    Measurement of cervical motion (CM) is probably the most commonly applied functional outcome measure in assessing the status of patients with cervical pathology. In general terms, CM refers to motion of the head relative to the trunk as well as conjunct motions within the cervical spine. Multiple techniques and instruments have been used for assessing CM. These were associated with a wide variety of parameters relating to accuracy, reproducibility, and validity. Modern measurement systems enable recording, processing, and documentation of CM with a high degree of precision. Cervical motion measures provide substantial information regarding the severity of motion limitation and level of effort in cervically involved patients. They may also be used for following up performance during and after conservative or invasive interventions.

  2. Mapping regions of Epstein-Barr virus (EBV) glycoprotein B (gB) important for fusion function with gH/gL

    Plate, Aileen E.; Reimer, Jessica J.; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    Glycoproteins gB and gH/gL are required for entry of Epstein-Barr virus (EBV) into cells, but the role of each glycoprotein and how they function together to mediate fusion is unclear. Analysis of the functional homology of gB from the closely related primate gammaherpesvirus, rhesus lymphocryptovirus (Rh-LCV), showed that EBV gB could not complement Rh gB due to a species-specific dependence between gB and gL. To map domains of gB required for this interaction, we constructed a panel of EBV/Rh gB chimeric proteins. Analysis showed that insertion of Rh gB from residues 456 to 807 restored fusion function of EBV gB with Rh gH/gL, suggesting this region of gB is important for interaction with gH/gL. Split YFP bimolecular complementation (BiFC) provided evidence of an interaction between EBV gB and gH/gL. Together, our results suggest the importance of a gB-gH/gL interaction in EBV-mediated fusion with B cells requiring the region of EBV gB from 456 to 807.

  3. 19 CFR 210.57 - Amendment of the motion.

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Amendment of the motion. 210.57 Section 210.57 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Temporary Relief § 210.57 Amendment of the motion. A motion for...

  4. Motion and relativity

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  5. Brain Image Motion Correction

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  6. Combined arm stretch positioning and neuromuscular electrical stimulation during rehabilitation does not improve range of motion, shoulder pain or function in patients after stroke : a randomised trial

    de Jong, Lex D.; Dijkstra, Pieter U.; Gerritsen, Johan; Geurts, Alexander C. H.; Postema, Klaas

    2013-01-01

    Question Does static stretch positioning combined with simultaneous neuromuscular electrical stimulation (NMES) in the subacute phase after stroke have beneficial effects on basic arm body functions and activities? Design Multicentre randomised trial with concealed allocation, assessor blinding, and

  7. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  8. The influence of internal irradiation on the endocrine system and the importance of its functional state for the development of late sequelae

    Dedov, V.I.; Norets, T.A.

    1981-01-01

    The problem of choosing and proving criteria for the estimation of their biological effect at the level of organism results from the necessity to clarify the danger of incorporation of low doses of radioactive compounds. Therefore the importance of changes in the functional state of the endocrine system for the development of late sequelae following internal irradiation was investigated. Male and female rats were injected once with 1.22x10 4 Bq/g body weight 75 Se-selenomethionine. In the blood plasma the content of thyroxine, corticosterone, testosterone, and estradiol was determined. Moreover, the conditions of adaptation and reparation processes as well as of the reproductive function were checked. A long time afterwards the male rats showed a suppression of the functions of the endocrine system which led to a suppression of the adaptive and repairing processes and of the reproductive function, to a decrease in body weight and dynamic activity. In female animals such phenomena did never occur; that is probably connected to the weakly pronounced changes in the hormonal state. The results allow to propose the hormonal state as a criterion for evaluation of the biological effect of internal irradiation. (author)

  9. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  10. Effects of decades of physical driving on body movement and motion sickness during virtual driving.

    Thomas A Stoffregen

    Full Text Available We investigated relations between experience driving physical automobiles and motion sickness during the driving of virtual automobiles. Middle-aged individuals drove a virtual automobile in a driving video game. Drivers were individuals who had possessed a driver's license for approximately 30 years, and who drove regularly, while non-drivers were individuals who had never held a driver's license, or who had not driven for more than 15 years. During virtual driving, we monitored movement of the head and torso. During virtual driving, drivers became motion sick more rapidly than non-drivers, but the incidence and severity of motion sickness did not differ as a function of driving experience. Patterns of movement during virtual driving differed as a function of driving experience. Separately, movement differed between participants who later became motion sick and those who did not. Most importantly, physical driving experience influenced patterns of postural activity that preceded motion sickness during virtual driving. The results are consistent with the postural instability theory of motion sickness, and help to illuminate relations between the control of physical and virtual vehicles.

  11. Nanoparticle mediated micromotor motion

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  12. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells

    Frankel, Lisa; Christoffersen, Nanna R; Jacobsen, Anders

    2008-01-01

    growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21......MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell...... and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells....

  13. Projectile Motion Hoop Challenge

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  14. Temporal logic motion planning

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  15. Aristotle, Motion, and Rhetoric.

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  16. Computing motion using resistive networks

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  17. MOTION MODELLINGUSINGCONCEPTS OF FUZZY ARTIFICIAL POTENTIAL FIELDS

    O. Motlagh

    2010-12-01

    Full Text Available Artificial potential fields (APF are well established for reactive navigation of mobile robots. This paper describes a fast and robust fuzzy-APF on an ActivMedia AmigoBot. Obstacle-related information is fuzzified by using sensory fusion, which results in a shorter runtime. In addition, the membership functions of obstacle direction and range have been merged into one function, obtaining a smaller block of rules. The system is tested in virtual environments with non-concave obstacles. Then, the paper describes a new approach to motion modelling where the motion of intelligent travellers is modelled by consecutive path segments. In previous work, the authors described a reliable motion modelling technique using causal inference of fuzzy cognitive maps (FCM which has been efficiently modified for the purpose of this contribution. Results and analysis are given to demonstrate the efficiency and accuracy of the proposed motion modelling algorithm.

  18. Stochastic ground motion simulation

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  19. EFFECTS OF KINESIOTAPING ALONG WITH QUADRICEPS STRENGTHENING EXERCISES ON PAIN, JOINT RANGE OF MOTION AND FUNCTIONAL ACTIVITIES OF KNEE IN SUBJECTS WITH PATELLOFEMORAL OSTEOARTHRITIS

    M. Harshitha

    2014-08-01

    Full Text Available Background: Patello femoral Osteoarthritis is the most common degenerative disease in older age group, causing pain, physical disability, and decreased quality of life.As many treatment options available, kinesiotaping is an efficacious treatment for management of pain & disability in patellofemoral joint osteoarthritis. Previous studies have shown that kinesiotaping as well as quadriceps strengthening significantly yields functional benefits. But there is lack of evidence revealing combined effectiveness & effects of kinesiotaping along with quadriceps strengthening in subjects with patellofemoral joint osteoarthritis. Methods: 30 subjects with symptoms of patellofemoral osteoarthritis fulfilled the inclusion criteria were randomly assigned into 2 groups of 15 in each group. Taping along with quadriceps strengthening program is compared to the quadriceps strengthening program alone. Pain were measured by Visual Analogue Scale (VAS, knee ROM were measured by Goniometer, Functional status were measured by Western Ontario McMaster Universities index (WOMAC, score. Measurements were taken pre & post intervention. Results: The results indicated that kinesiotaping along with quadriceps strengthening exercises showed there was statistically significant improvement in pain (<0.05, knee ROM (<0.05 and functional activities (<0.05 after 6 weeks compared to quadriceps strengthening alone. Conclusion: Subjects with kinesiotaping along with quadriceps strengthening showed significant improvement in reducing pain, in improving ROM & functional activities at the end of 6th week treatment when compared to subjects with patellofemoral osteoarthritis underwent quadriceps strengthening exercises alone.

  20. Depressive and anxiety disorders on-the-job: the importance of job characteristics for good work functioning in persons with depressive and anxiety disorders.

    Plaisier, Inger; de Graaf, Ron; de Bruijn, Jeanne; Smit, Johannes; van Dyck, Richard; Beekman, Aartjan; Penninx, Brenda

    2012-12-30

    This study examines the importance of job characteristics on absence and on-the-job performance in a large group of employees with diagnosed depressive and anxiety disorders. In a sample of 1522 employees (1129 persons with and 393 persons without psychopathology) participating in Netherlands Study of Depression and Anxiety (NESDA, n=2981) we examined associations between job characteristics and work functioning (absenteeism and work performance) in multinominal logistic regression models. Job characteristics were working hours, psychosocial working conditions and occupational status. As expected, depressed and anxious patients were at significantly elevated risk for absenteeism and poor work performance. In analyses adjusted for psychopathology, absenteeism and poor performance were significantly lower among persons reporting high job support, high job control, less working hours, self-employed and high skilled jobs. Associations were comparable between persons with and without psychopathology. High job support, high job control and reduced working hours were partially related to work functioning in both workers with- and without-psychopathology. Since depressed and anxious employees are at a substantially increased risk for absenteeism and poor work performance, strategies that improve job support and feelings of control at work may be especially helpful to prevent poor work functioning in this at-risk group of employees. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.