WorldWideScience

Sample records for functionally graded circular

  1. Axisymmetrical analysis of functionally graded circular piezoelectric plate by graded element using MATLAB

    Science.gov (United States)

    Shao, B. L.; Xu, R. Q.

    2009-07-01

    Circular piezoelectric bimorph has been successfully used in numerous types of microdevices, such as actuators for flowcontrol applications, transducers for acoustic applications, and in locomotion of robotic systems, energy harvesting and active structural health monitoring applications. Recently, the concept of the functionally graded material (FGM) is introduced to improve properties and increase lifetime by selectively grading the elastic, piezoelectric, and/or dielectric properties along the thickness of a piezoceramic. However, even for the simple case of homogeneous circular piezoelectric geometry, analytical treatments are severely limited. This study established an axisymmetric and isoparametric graded element to model the functionally graded circular piezoelectric plates. All the material properties including elastic coefficients, piezoelectric coefficients, dielectric parameters and mass density are graded in the element and interpolated using the shape functions, which is also used to render the displacements and electric potential distribution in the element. Both static and dynamic cases can be considered in this element. MATLAB is used to implement the whole FEM code and gives some numerical examples to demonstrate the presented method.

  2. Variational principle and vibration properties of functionally graded circular plate with temperature changes

    Science.gov (United States)

    Fan, Tao; Zou, Guangping

    2012-04-01

    In this paper, the variational principle of functionally graded circular plate is presented by the variational integral method taking temperature change into account. The vibration governing equation is illustrated, which will be benefit for the numerical simulation with finite element method in further investigations. The numerical results show that the natural frequency increases as the graded coefficient increases in the chosen domain. It can be observed that the vibration characteristics are influenced by the temperature changes obviously. Moreover, the natural frequency is larger for thicker FGM circular plates, while it is lower for thinner ones. Furthermore, the first four vibration mode shapes with different thickness of FGM circular plate are illustrated.

  3. Bifurcation and chaos of thin circular functionally graded plate in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yuda, E-mail: huyuda03@163.com [School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004 (China); Zhang Zhiqiang, E-mail: zhangzqvib@126.com [School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004 (China)

    2011-09-15

    Highlights: > We study bifurcations and chaotic dynamics of a FGM circular plate. > We consider the effect of temperature-dependent material properties. > Increasing volume fraction index will increase chaotic regions. > Increasing temperature will reduce chaotic regions. > The FGM plate exists chaotic motions, multiple periodic and periodic motions. - Abstract: A ceramic/metal functionally graded circular plate under one-term and two-term transversal excitations in the thermal environment is investigated, respectively. The effects of geometric nonlinearity and temperature-dependent material properties are both taken into account. The material properties of the functionally graded plate are assumed to vary continuously through the thickness, according to a power law distribution of the volume fraction of the constituents. Using the principle of virtual work, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic forcing excitation and thermal load are derived. For the circular plate with clamped immovable edge, the Duffing nonlinear forced vibration equation is deduced using Galerkin method. The criteria for existence of chaos under one-term and two-term periodic perturbations are given with Melnikov method. Numerical simulations are carried out to plot the bifurcation curves for the homolinic orbits. Effects of the material volume fraction index and temperature on the criterions are discussed and the existences of chaos are validated by plotting phase portraits, Poincare maps. Also, the bifurcation diagrams and corresponding maximum Lyapunov exponents are plotted. It was found that periodic, multiple periodic solutions and chaotic motions exist for the FGM plate under certain conditions.

  4. Nonlinear free and forced vibration analysis of thin circular functionally graded plates

    Science.gov (United States)

    Allahverdizadeh, A.; Naei, M. H.; Nikkhah Bahrami, M.

    2008-03-01

    In this paper, a semi-analytical approach for nonlinear free and forced axisymmetric vibration of a thin circular functionally graded plate is developed. The plate thickness is constant. Functionally graded material (FGM) properties vary through the thickness of the plate. For harmonic vibrations, by using assumed-time-mode method and Kantorovich time averaging technique, the governing equations are solved. Steady-state free and forced vibration analysis is investigated in detail and corresponding results at uniform ambient temperature are illustrated. Some of these results in special cases are verified by comparing with those in the literature. The results show that the free vibration frequencies are dependent on vibration amplitudes, and that the volume fraction index has a significant influence on the nonlinear response characteristics of the plate.

  5. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    Science.gov (United States)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  6. Buckling and Vibration of Functionally Graded Non-uniform Circular Plates Resting on Winkler Foundation

    Directory of Open Access Journals (Sweden)

    Roshan Lal

    Full Text Available Abstract An investigation on the effect of uniform tensile in-plane force on the radially symmetric vibratory characteristics of functionally graded circular plates of linearly varying thickness along radial direction and resting on a Winkler foundation has been carried out on the basis of classical plate theory. The non-homogeneous mechanical properties of the plate are assumed to be graded through the thickness and described by a power function of the thickness coordinate. The governing differential equation for such a plate model has been obtained using Hamilton's principle. The differential transform method has been employed to obtain the frequency equations for simply supported and clamped boundary conditions. The effect of various parameters like volume fraction index, taper parameter, foundation parameter and the in-plane force parameter has been analysed on the first three natural frequencies of vibration. By allowing the frequency to approach zero, the critical buckling loads for both the plates have been computed. Three-dimensional mode shapes for specified plates have been plotted. Comparison with existing results has been made.

  7. An exact solution of mechanical buckling for functionally graded material bimorph circular plates

    Directory of Open Access Journals (Sweden)

    Jafar Eskandari Jam

    2013-03-01

    Full Text Available Presented herein is the exact solution of mechanical buckling response of FGM (Functionally Graded Material bimorph circular plates, performed under uniform radial compression, by means of the classic theory and the non-linear Von-Karman assumptions, for both simply supported and clamped boundary conditions. Material properties are assumed to be symmetric with respect to the middle surface and are graded in the thickness direction according to a simple power law, in a way that the middle surface is pure metal and the two sides are pure ceramic. Using the energy method the non-linear equilibrium equations are derived and the stability equations have been used, so as to determine the critical buckling pressure, considering the adjacent equilibrium criterion, and finally a closed-form solution has been achieved for it. The effect of different factors, including thickness to radius variation rate of the plate, volumetric percentage of material index, and Poisson's ratio on the critical buckling compression have been investigated for two simply supported and clamped boundary conditions, and the results

  8. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  9. Three-dimensional stress and free vibration analyses of functionally graded plates with circular holes by the use of the graded finite element method

    Science.gov (United States)

    Asemi, K.; Ashrafi, H.; Shariyat, M.

    2016-07-01

    Static and free vibration analyses of plates with circular holes are performed based on the three-dimensional theory of elasticity. The plates are made of a functionally graded material (FGM), and the volume fractions of the constituent materials vary continuously across the plate. The effective properties of the FGM plate are estimated by using the Mori-Tanaka homogenization method. A graded finite element method based on the Rayleigh-Ritz energy formulation is used to solve the problem. Effects of different volume fractions of the materials and hole sizes on the behavior of FGM plates under uniaxial tension are investigated. Natural frequencies of a fully clamped FGM plate with a circular cutout are derived. The results obtained are compared with available experimental data.

  10. Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate

    Science.gov (United States)

    Mahinzare, Mohammad; Ranjbarpur, Hosein; Ghadiri, Majid

    2018-02-01

    In this article, free vibration of a rotating circular nanoplate made of two directional functionally graded piezo materials (two directional FGPM) is modeled based on the first shear deformation theory (FSDT). Based on the power-law model, electro-elastic properties of two directional FGP rotating circular nanoplates are supposed to change continuously along the thickness and radius. Employing the modified couple stress theory, the small size effect of the equations of the plate is considered. The governing equations of the first shear deformation theory (FSDT) for the studied plate are obtained based on Hamilton's principle; these equations are solved using differential quadrature method (DQM). It is shown that the vibration behavior of the plate is significantly affected by angular velocity, external electric voltage, size dependency and power-law index (thickness and radial directions).

  11. Optimization of a functionally graded circular plate with inner rigid thin obstacles. II. Approximate problems

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Lovíšek, J.

    2011-01-01

    Roč. 91, č. 12 (2011), s. 957-966 ISSN 0044-2267 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : control of elliptic variational inequalities * functionally graded plates * optimal design of plates * finite element approximations Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000238/abstract

  12. Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Lovíšek, J.

    2011-01-01

    Roč. 91, č. 9 (2011), s. 711-723 ISSN 0044-2267 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : functionally graded plate * optimal design Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000119/abstract

  13. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  14. Green lumber grade yields from black cherry and red maple factory grade logs sawed at band and circular mills

    Science.gov (United States)

    Daniel A. Yaussy

    1989-01-01

    Multivariate regression models were developed to predict green board-foot yields (1 board ft. = 2.360 dm 3) for the standard factory lumber grades processed from black cherry (Prunus serotina Ehrh.) and red maple (Acer rubrum L.) factory grade logs sawed at band and circular sawmills. The models use log...

  15. Zernike vs. Bessel circular functions in visual optics.

    Science.gov (United States)

    Trevino, Juan P; Gómez-Correa, Jesus E; Iskander, D Robert; Chávez-Cerda, Sabino

    2013-07-01

    We propose the Bessel Circular Functions as alternatives of the Zernike Circle Polynomials to represent relevant circular ophthalmic surfaces. We assess the fitting capabilities of the orthogonal Bessel Circular Functions by comparing them to Zernike Circle Polynomials for approximating a variety of computationally generated surfaces which can represent ophthalmic surfaces. The Bessel Circular Functions showed better modelling capabilities for surfaces with abrupt variations such as the anterior eye surface at the limbus region, and influence functions. From our studies we find that the Bessel Circular Functions can be more suitable for studying particular features of post surgical corneal surfaces. We show that given their boundary conditions and free oscillating properties, the Bessel Circular Functions are an alternative for representing specific wavefronts and can be better than the Zernike Circle Polynomials for some important cases of corneal surfaces, influence functions and the complete anterior corneal surface. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  16. Functionally Graded Materials Database

    Science.gov (United States)

    Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki

    2008-02-01

    Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.

  17. Functionally Graded Material: An overview

    CSIR Research Space (South Africa)

    Mahamood, RM

    2012-07-01

    Full Text Available material is needed that will serve the purpose of the original bio-tissue. The ideal candidate for this application is functionally graded material. FGM has find wide range of application in dental [36] and orthopedic applications for teeth and bone... of Aluminium/Steel functionally graded material,? Materials Sciences and Applications, vol. 2, (2011), pp. 1708-1718. [15] F. Watari, A. Yokoyama, H. Matsuno, R. Miyao, M. Uo, T. Kawasaki, M. Omori, and T. Hirai, ?Fabrication of functionally graded implant...

  18. Circular RNAs: Biogenesis, Function and Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    John Greene

    2017-06-01

    Full Text Available Circular RNAs (circRNAs are currently classed as non-coding RNA (ncRNA that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3′ and 5′ ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i errors in the back-splice machinery in malignant tissues, (ii degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as

  19. [Circular tracheal resection for cicatrical stenosis and functioning tracheostomy].

    Science.gov (United States)

    Parshin, V D; Titov, V A; Parshin, V V; Parshin, A V; Berikkhanov, Z; Amangeldiev, D M

    To analyze the results of tracheal resection for cicatricial stenosis depending on the presence of tracheostomy. 1128 patients with tracheal cicatricial stenosis were treated for the period 1963-2015. The first group consisted of 297 patients for the period 1963-2000, the second group - 831 patients for the period 2001-2015. Most of them 684 (60.6%) were young and able-bodied (age from 21 to 50 years). In the first group 139 (46.8%) out of 297 patients had functioning tracheostomy. For the period 2001-2015 tracheostomy was made in 430 (51.7%) out of 831 patients with cicatricial stenosis. Time of cannulation varied from a few weeks to 21 years. Re-tracheostomy within various terms after decanulation was performed in 68 (15.8%) patients. Tracheal resection with anastomosis was performed in 59 and 330 in both groups respectively. At present time these operations are performed more often in view of their standard fashion in everyday practice. In the second group tracheal resection followed by anastomosis was observed in 110 (25.6%) out of 430 patients with tracheostomy that is 4.4 times more often than in previous years. In total 2 patients died after 330 circular tracheal resections within 2001-2015 including one patient with and one patient without tracheostomy. Mortality was 0.6%. Moreover, this value was slightly higher in patients operated with a functioning tracheostomy compared with those without it - 0.9 vs. 0.5% respectively. The causes of death were bleeding into tracheobronchial lumen and pulmonary embolism. The source of bleeding after tracheal resection was innominate artery. Overall incidence of postoperative complications was 2 times higher in tracheostomy patients compared with those without it - 22 (20%) vs. 26 (11.8%) cases respectively. Convalescence may be achieved in 89.8% patients after circular tracheal resection. Adverse long-term results are associated with postoperative complications. So their prevention and treatment will improve the

  20. Thermomechanical Behavior of Functionally Graded Materials (FGM)

    National Research Council Canada - National Science Library

    Hudnut, Steven

    2001-01-01

    This final report is to document a summary of Ph.D. Student, Mr. Steven Hudnut who was supported by this ASSERT Grant, working on design of Piezo Actuators with Functionally Graded Microstructure (FGM). Mr...

  1. Numerical Evaluations of Functionally Graded RC Slabs

    Directory of Open Access Journals (Sweden)

    M. Mastali

    2014-01-01

    Full Text Available Nowadays, using fibrous materials is used widely in strengthening applications such as cross-section enlargement and using functionally graded reinforced concrete. Functionally graded reinforced concrete is used as multireinforced concrete layers that can be reinforced by different fiber types. The objective of this research was to address the structural benefits of functionally graded concrete materials by performing analytical simulations. In order to achieve this purpose, in the first stage of this study, three functionally graded reinforced concretes by steel and polypropylene (PP were experimentally tested under flexural loading. Inverse analysis was applied to obtain the used material properties of reinforced concrete by FEMIX software. After obtaining the material properties, to assess the performance of proposed slabs, some other cases were proposed and numerically evaluated under flexural and shear loading. The results showed that increasing steel fiber in reinforced entire cross section led to achieve better shear and flexural performance while the best performance of reinforced functionally graded slabs was achieved for slab at 1% fiber content. In the second stage, nineteen reinforced functionally graded RC slabs with steel bars were simulated and assessed and some other cases were considered which were not experimentally tested.

  2. Seismic performance of circular reinforced concrete bridge columns constructed with grade 80 reinforcement.

    Science.gov (United States)

    2014-08-01

    This project assessed the use of ASTM A706 Grade 80 reinforcing bars in reinforced concrete columns. : Grade 80 is not currently allowed in reinforced concrete columns due to lack of information on the : material characteristics and column performanc...

  3. Functionally graded materials produced by laser cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De

    2000-01-01

    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  4. Compressive properties of sandwiches with functionally graded ...

    Indian Academy of Sciences (India)

    The compressive behaviour of a new class of sandwich composite made up of jute fiber reinforced epoxy skins and piece-wise linear fly ash reinforced functionally graded (FG) rubber core is investigated in flat-wise mode. FG samples are prepared using conventional casting technique. Presence of gradation is quantified ...

  5. Compressive properties of sandwiches with functionally graded ...

    Indian Academy of Sciences (India)

    Developing newer and utilitarian functionally graded systems using ashes is an interesting and challenging task. Though the concept of FG core in a sandwich and its implication on mechanical performance of sandwich struc- tures is available in early literature (Mouritz and Thomson. 1999; Evans et al 2001; Najafizadeh ...

  6. Compressive properties of sandwiches with functionally graded

    Indian Academy of Sciences (India)

    The compressive behaviour of a new class of sandwich composite made up of jute fiber reinforced epoxy skins and piece-wise linear fly ash reinforced functionally graded (FG) rubber core is investigated in flat-wise mode. FG samples are prepared using conventional casting technique. Presence of gradation is quantified ...

  7. Stress concentration in a finite functionally graded material plate

    Science.gov (United States)

    Yang, QuanQuan; Gao, CunFa; Chen, WenTao

    2012-07-01

    This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layers, the stress analysis of the finite FGM plate having radial arbitrary elastic properties is made based on the complex variable method combined with the least square boundary collocation technique. Numerical results of stress distribution around the hole are then presented for different loading conditions, different material properties and different plate sizes, respectively. It is shown that the stress concentration in the finite plate is generally enhanced compared with the case of an infinite plate, but it can be significantly reduced by choosing proper change ways of the radial elastic modulus.

  8. Vibration of Elastic Functionally Graded Thick Rings

    Directory of Open Access Journals (Sweden)

    Guang-Hui Xu

    2017-01-01

    Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.

  9. Buckling Response of Thick Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    BOUAZZA MOKHTAR

    2014-11-01

    Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.

  10. Optimum material gradient composition for the functionally graded ...

    African Journals Online (AJOL)

    user

    Functionally graded piezoelectric actuators can produce not only large displacements but also reduce the internal stress concentrations and consequently improve significantly the lifetime of piezoelectric actuators. Now, the functionally graded piezoelectric materials, as intelligent materials, have been used extensively in.

  11. The CALIFA and HIPASS Circular Velocity Function for All Morphological Galaxy Types

    NARCIS (Netherlands)

    Bekeraitė, S.; Walcher, C. J.; Wisotzki, L.; Croton, D. J.; Falcón-Barroso, J.; Lyubenova, M.; Obreschkow, D.; Sánchez, S. F.; Spekkens, K.; Torrey, P.; van de Ven, G.; Zwaan, M. A.; Ascasibar, Y.; Bland-Hawthorn, J.; González Delgado, R.; Husemann, B.; Marino, R. A.; Vogelsberger, M.; Ziegler, B.

    2016-01-01

    The velocity function (VF) is a fundamental observable statistic of the galaxy population that is similar to the luminosity function in importance, but much more difficult to measure. In this work we present the first directly measured circular VF that is representative between 60 \\lt {v}{circ} \\lt

  12. Modeling Bamboo as a Functionally Graded Material

    Science.gov (United States)

    Silva, Emílio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.

    2008-02-01

    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  13. Probing the functional mechanism of Escherichia coli GroEL using circular permutation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Mizobata

    Full Text Available BACKGROUND: The Escherichia coli chaperonin GroEL subunit consists of three domains linked via two hinge regions, and each domain is responsible for a specific role in the functional mechanism. Here, we have used circular permutation to study the structural and functional characteristics of the GroEL subunit. METHODOLOGY/PRINCIPAL FINDINGS: Three soluble, partially active mutants with polypeptide ends relocated into various positions of the apical domain of GroEL were isolated and studied. The basic functional hallmarks of GroEL (ATPase and chaperoning activities were retained in all three mutants. Certain functional characteristics, such as basal ATPase activity and ATPase inhibition by the cochaperonin GroES, differed in the mutants while at the same time, the ability to facilitate the refolding of rhodanese was roughly equal. Stopped-flow fluorescence experiments using a fluorescent variant of the circularly permuted GroEL CP376 revealed that a specific kinetic transition that reflects movements of the apical domain was missing in this mutant. This mutant also displayed several characteristics that suggested that the apical domains were behaving in an uncoordinated fashion. CONCLUSIONS/SIGNIFICANCE: The loss of apical domain coordination and a concomitant decrease in functional ability highlights the importance of certain conformational signals that are relayed through domain interlinks in GroEL. We propose that circular permutation is a very versatile tool to probe chaperonin structure and function.

  14. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Ocelik, V.; Pei, Y.T.; de Hosson, J.T.M.; Popoola, O; Dahotre, NB; Midea, SJ; Kopech, HM

    2003-01-01

    Two functionally graded coatings were prepared by different laser surface engineering techniques. Laser cladding of AlSi40 powder leads to the formation of functionally graded material (FGM) coating on AI-Si cast alloy substrate. Mapping of strain fields near the laser clad track using the digital

  15. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.

    2004-01-01

    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  16. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    Geometrically non linear analysis of functionally graded material plates using higher order theory. ... International Journal of Engineering, Science and Technology. Journal Home ... The analysis of functionally graded material (FGM) plates with material variation parameter (n), boundary conditions, aspect ratios and side to ...

  17. Functionally graded biomimetic energy absorption concept development for transportation systems.

    Science.gov (United States)

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  18. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  19. Folding circular permutants of IL-1β: route selection driven by functional frustration.

    Directory of Open Access Journals (Sweden)

    Dominique T Capraro

    Full Text Available Interleukin-1β (IL-1β is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT "functional loop-packing route", despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active

  20. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis.

    Science.gov (United States)

    Legnini, Ivano; Di Timoteo, Gaia; Rossi, Francesca; Morlando, Mariangela; Briganti, Francesca; Sthandier, Olga; Fatica, Alessandro; Santini, Tiziana; Andronache, Adrian; Wade, Mark; Laneve, Pietro; Rajewsky, Nikolaus; Bozzoni, Irene

    2017-04-06

    Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Fatigue Behavior of a Functionally-Graded Titanium Matrix Composite

    National Research Council Canada - National Science Library

    Cunningham, Scott R

    2005-01-01

    Functionally-graded Titanium Matrix Composites are an attempt to utilize the high-strength properties of a titanium matrix composite with a monolithic alloy having the more practical machining qualities...

  2. Development of functionally graded materials by ultrasonic consolidation

    CSIR Research Space (South Africa)

    Kumar, S

    2010-08-01

    Full Text Available Development of Functionally Graded Materials (FGM) using Ultrasonic Consolidation (UC) needs the joining of different metallic foils together. The present work deals with the joining of stainless steel, Al and Cufoils. Optimum experimental...

  3. ON THE INFLUENTIAL POINTS IN THE FUNCTIONAL CIRCULAR RELATIONSHIP MODELS WITH AN APPLICATION ON WIND DATA

    Directory of Open Access Journals (Sweden)

    ALi Hassan Abuzaid

    2013-12-01

    Full Text Available If the interest is to calibrate two instruments then the functional relationship model is more appropriate than regression models. Fitting a straight line when both variables are circular and subject to errors has not received much attention. In this paper, we consider the problem of detecting influential points in two functional relationship models for circular variables. The first is based on the simple circular regression the (SC, while the last is derived from the complex linear regression the (CL.   The covariance matrices are derived and then the COVRATIO statistics are formulated for both models. The cut-off points are obtained and the power of performance is assessed via simulation studies.   The performance of COVRATIO statistics depends on the concentration of error, sample size and level of contamination. In the case of linear relationship between two circular variables COVRATIO statistics of the (SC model performs better than the (CL.  On the other hand, a novel diagram, the so-called spoke plot, is utilized to detect possible influential points For illustration purposes, the proposed procedures are applied on real data of wind directions measured by two different instruments. COVRATIO statistics and the spoke plot were able to identify two observations as influential points. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"جدول عادي"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}

  4. Thermal shock analysis of functionally graded materials by micromechanical model

    International Nuclear Information System (INIS)

    Ueda, Sei

    2002-01-01

    The transient thermoelastic behavior of the functionally graded plate due to a thermal shock with temperature dependent properties is studied in this paper. The development of a micromechanical model for the functionally graded materials is presented and its application to thermoelastic analysis is discussed for the case of the W-Cu functionally graded material for the International Thermonuclear Experimental Reactor divertor plate. The divertor plate is made of a graded layer bonded between a homogeneous substrate and a homogeneous coating, and it is subjected to a cycle of heating and cooling on the coating surface of the material. The thermal and elastic properties of the material are dependent on the temperature and the position. Numerical calculations are carried out, and the results for the transient temperature and thermal stress distributions are displayed graphically. (author)

  5. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  6. Green’s Function Approach to Solution of Transient Temperature for Thermal Stresses of Functionally Graded Material

    Science.gov (United States)

    Kim, Kui-Seob; Noda, Naotake

    The transient temperature solution for a functionally graded material (FGM) is formulated by Green’s function based on the Galerkin method. An approximate solution that satisfies the homogeneous boundary condition is substituted into the governing equation to yield an eigenvalue problem. To solve the eigenvalue problem, the eigenfunctions are approximated by a series of polynomials satisfying the homogeneous boundary condition. The Galerkin method is used to determine the coefficients of eigenfunctions. The transient temperature solution for a general heat conduction equation with a source and nonhomogeneous boundary conditions is obtained by using Green’s function, which is expressed by eigenvalues and corresponding eigenfunctions. Transient thermal stresses in a FGM plate and a FGM hollow circular cylinder are discussed.

  7. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    International Nuclear Information System (INIS)

    Amigo, R C R; Vatanabe, S L; Silva, E C N

    2013-01-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  8. Administrative Circulars

    CERN Multimedia

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  9. A Method of Function Space for Vertical Impedance Function of a Circular Rigid Foundation on a Transversely Isotropic Ground

    Directory of Open Access Journals (Sweden)

    Morteza Eskandari-Ghadi

    2014-06-01

    Full Text Available This paper is concerned with investigation of vertical impedance function of a surface rigid circular foundation resting on a semi-infinite transversely isotropic alluvium. To this end, the equations of motion in cylindrical coordinate system, which because of axissymmetry are two coupled equations, are converted into one partial differential equation using a method of potential function. The governing partial differential equation for the potential function is solved via implementing Hankel integral transforms in radial direction. The vertical and radial components of displacement vector are determined with the use of transformed displacement-potential function relationships. The mixed boundary conditions at the surface are satisfied by specifying the traction between the rigid foundation and the underneath alluvium in a special function space introduced in this paper, where the vertical displacements are forced to satisfy the rigid boundary condition. Through exercising these restraints, the normal traction and then the vertical impedance function are obtained. The results are then compared with the existing results in the literature for the simpler case of isotropic half-space, which shows an excellent agreement. Eventually, the impedance functions are presented in terms of dimensionless frequency for different materials. The method presented here may be used to obtain the impedance function in any other direction as well as in buried footing in layered media.

  10. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    Sahil Garg

    Abstract. In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the ...

  11. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer ...

  12. Heat flow in functionally graded pipes with isothermal boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dryden, John [University of Western Ontario, Department of Mechanical and Materials Engineering, London, ON (Canada)

    2009-06-15

    The steady state two-dimensional temperature field within a functionally graded pipe having isothermal inner and outer surfaces is calculated. The analysis is based upon the theory of complex variables. An expression, which depends upon the spatial variation of the conductivity, is suggested for the equivalent homogeneous thermal conductivity. (orig.)

  13. Optimum material gradient composition for the functionally graded ...

    African Journals Online (AJOL)

    This study investigates the relation between the material gradient properties and the optimum sensing/actuation design of the functionally graded piezoelectric beams. Three-dimensional (3D) finite element analysis has been employed for the prediction of an optimum composition profile in these types of sensors and ...

  14. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    user

    when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...

  15. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  16. Stress analysis in a functionally graded disc under mechanical loads ...

    Indian Academy of Sciences (India)

    Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution. HASAN ÇALLIO ˘GLU. Department of Mechanical Engineering, Pamukkale University, 20070,. Denizli, Turkey e-mail: hcallioglu@pau.edu.tr. MS received 25 November 2009; revised 12 August 2010; accepted.

  17. Disentangling the Circularity in Sen's Capability Approach: An Analysis of the Co-Evolution of Functioning Achievement and Resources

    Science.gov (United States)

    Binder, Martin; Coad, Alex

    2011-01-01

    There is an ambiguity in Amartya Sen's capability approach as to what constitutes an individual's resources, conversion factors and valuable functionings. What we here call the "circularity problem" points to the fact that all three concepts seem to be mutually endogenous and interdependent. To econometrically account for this…

  18. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  19. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Liu Yong; Liu Fengxiao; Liaw, Peter K.; He Yuehui

    2008-01-01

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  20. Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates

    Science.gov (United States)

    Mohammadi, Meisam; Saidi, Ali Reza; Jomehzadeh, Emad

    2010-04-01

    In this article, an analytical method for buckling analysis of thin functionally graded (FG) rectangular plates is presented. It is assumed that the material properties of the plate vary through the thickness of the plate as a power function. Based on the classical plate theory (Kirchhoff theory), the governing equations are obtained for functionally graded rectangular plates using the principle of minimum total potential energy. The resulting equations are decoupled and solved for rectangular plate with different loading conditions. It is assumed that the plate is simply supported along two opposite edges and has arbitrary boundary conditions along the other edges. The critical buckling loads are presented for a rectangular plate with different boundary conditions, various powers of FGM and some aspect ratios.

  1. Trapping mechanism for long waves over circular islands with power function profiles

    Science.gov (United States)

    Zheng, Jinhai; Fu, Danjuan; Wang, Gang

    2017-08-01

    Long waves such as tsunamis can be trapped by islands due to wave refraction, and these trapped waves will cause huge damage even in the sheltered shoreline of the island. That all waves propagating into the topography and finally reaching the coastline are called perfect trapped modes, while any waves escaping from the topography are called leaky modes. Whether these long waves can be trapped is dependent on the depth profile of the island. This paper presents analytic solutions of the ray path for waves propagating into the circular island with power function profiles. Wave height distributions over the island are further investigated based on the principia that crowded rays correspond to large wave height and sparse rays correspond to small wave height. The trapped mechanism for water waves over the island is revealed based on their ray paths. Furthermore, the perfectly trapped criterion is derived, that is, when the slope gradient at the topography toe is greater than twice the ratio of the water depth to the radial distances, all wave rays propagating on the island will finally reach the coastline, and the waves are perfectly trapped.

  2. Functional Rehabilitation With a Foot Plate Modification for Circular External Fixation

    Science.gov (United States)

    2013-04-05

    4 G/A IIIB distal fibula fracture 5 Closed tibial pilon fracture 6 G/A IIIB tibial shaft fracture 7 G/A IIIB tibial plateau fracture , IIIB tibial...spanning circular external fixation is a treatment option for distal tibia fractures as well as for maintaining a neutral foot in the setting of a...removal of their circular external fixator. All fractures were united at the time of TSF removal. Results A graphical representation of patient

  3. Comparative thermal buckling analysis of functionally graded plate

    Directory of Open Access Journals (Sweden)

    Čukanović Dragan V.

    2017-01-01

    Full Text Available A thermal buckling analysis of functionally graded thick rectangular plates accord¬ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson’s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri¬cal results were obtained in МATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera¬ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.

  4. The Synthesis of Two- and Multilayer Functionally Graded Materials

    International Nuclear Information System (INIS)

    Varshalomidze, G.; Oniashvili, G.; Aslamazashvili, Z.; Zakharov, G.

    2008-01-01

    Two- and multilayer functionally graded materials (FGM) are produced via high-temperature self-propagated synthesis (SHS). Their 1 and 2 layers are produced using high-temperature thermo-mechanical treatment (HTTMT). One layer of the FGMs produced by SHS-compacting and tested with an original device is composed of one or two refractory compounds (borides, diborides, carbides), while the other plastic layer is composed of steels, metals or intermetallics. (author)

  5. Fabrication and characteristics of alumina-iron functionally graded materials

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Tan, G.E.B.

    2009-01-01

    In the present work, five-layered alumina–iron functionally graded materials (FGMs) were fabricated via a simple route of die pressing and pressureless sintering. The shrinkage differences among the layers in the FGM were minimized by particle size selection and processing control...... was achieved due to the toughening effect of iron and the crack deflection at the weak interfaces. This work provides a cost-effective manner to fabricate ceramic–metal gradient composites for armor applications....

  6. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.

    Science.gov (United States)

    Mittal, Ravinder K

    2016-09-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.

  7. Mechanical and Fatigue Properties of Functionally Graded Aluminium Silicon Alloys =

    Science.gov (United States)

    Maricel, Chirita Georgel

    Many structural components encounter service conditions and, hence, required materials performance, which vary with location within the component. It is well known that abrupt transitions in materials composition and properties within a component often result in sharp local concentrations of stress, whether the stress is internal or applied externally. It is also known that these stress concentrations are greatly reduced if the transition from one material to the other is made gradual. By definition, functionally graded materials are used to produce components featuring engineered gradual transitions in microstructure and/or composition, the presence of which is motivated by functional performance requirements that vary with location within a part. With functionally graded materials, these requirements are met in a manner that optimizes the overall performance of the component. The research on functionally graded materials (FGMs) is encouraged by the need for properties that are unavailable in any single material and the need for graded properties to offset adverse effects of discontinuities for layered materials. Centrifugal casting is a very common method for obtaining functionally graded materials, mainly composite materials or metallic materials which has high differences of density and low solubility on different phases or different materials of the same alloy. The present work is emphasizing the fact that the centrifugal process could be successfully used for obtaining functionally graded materials also for metallic materials (alloys) with moderate solubility and small differences of density of the different phases, as is the case of most aluminum alloys. The first approach of the problem was to isolate the effects of the centrifugal casting technique (the centrifugal pressure effect, the fluid dynamics and the inherent vibration effects) in order to identify the reason of mechanical properties improving. To have a reference for comparison, castings obtained

  8. Modeling of fingerlike functionally graded microstructure piezoelectric actuator

    Science.gov (United States)

    Almajid, Abdulhakim; Hudnut, Steven W.; Taya, Minoru

    2000-06-01

    The mechanical behavior of a cylindrical, finger-like shaped, piezoelectric actuator with Functionally Graded Microstructure (FGM) was modeled by our analytical model and FEM. Different layers or lamina of different piezoelectric volume fraction in a polymer matrix were stacked to create FGM. Although the bimorph plate exhibit reasonably high out-of-plane displacement, induced stress field remains very high limiting its long life use. FGM piezoelectric plates have been developed to increase the out-of-plane displacement while reducing the stresses where the electro-elastic properties are graded through the plate thickness. Finger-like shape piezo actuators are developed where the properties are graded in the radial direction. FGM piezoelectric type actuator showed promising results in that the deflections to any direction can be obtained by manipulating the magnitude and direction of the applied electric field. Analytical modeling in computing the deflection of the finger-like actuator and stress field induced in each lamina was developed and compared to FEM modeling. The theory of cylindrical FGM is based on lamination theory in which the coordinate system is changed from the rectangular to cylindrical one and from infinite to finite plate.

  9. Free vibration of symmetric and sigmoid functionally graded nanobeams

    Science.gov (United States)

    Hamed, M. A.; Eltaher, M. A.; Sadoun, A. M.; Almitani, K. H.

    2016-09-01

    The objective of this paper was the investigation of vibration characteristics of both nonlinear symmetric power and sigmoid functionally graded nonlocal nanobeams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by sigmoid law distribution and symmetric power function. Structures with symmetric distribution with mid-plane such as ceramic-metal-ceramic and metal-ceramic-metal are proposed. Nonlocal differential Eringen's elasticity is exploited to incorporate size dependency of nanobeam. The kinematic relations of Euler-Bernoulli beam are proposed, with the assumption of a small strain. A nonlocal equation of motion of nanobeam is derived by using principle of virtual work and then discretized by finite element method to obtain numerical solution. Numerical results show the effects of the function distribution, gradient index and nonlocal parameter on natural frequencies of macro- and nanobeam. This model is helpful in the mechanical design of nanoelectromechanical systems manufactured from FGM.

  10. Stochastic Investigation of Natural Frequency for Functionally Graded Plates

    Science.gov (United States)

    Karsh, P. K.; Mukhopadhyay, T.; Dey, S.

    2018-03-01

    This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.

  11. Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-09-01

    Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.

  12. Love wave propagation in functionally graded piezoelectric material layer.

    Science.gov (United States)

    Du, Jianke; Jin, Xiaoying; Wang, Ji; Xian, Kai

    2007-03-01

    An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.

  13. Bending analysis of different material distributions of functionally graded beam

    Science.gov (United States)

    Aldousari, S. M.

    2017-04-01

    Most analyses of functional graded materials (FGM) focusing on power law distribution, which presents stress concentration at the interface when material properties change rapidly. The objective of the current paper is to develop two symmetric and anti-symmetric functions and compare their effects on the static deflection and bending stresses with classical power-law distribution. The proposed distributions are a symmetric power-law and a sigmoid function which is anti-symmetric. To homogenized micromechanical properties of FGM, the effective material properties are derived on the basis of Voigt model. Kinematic relation of Euler-Bernoulli beam is assumed and virtual work is proposed to derive the equilibrium equations. A finite element model is proposed to form stiffness matrix and force vector and then solve the problem numerically. Proposed model has been validated. Numerical results presents the effect of power exponent, and elasticity ratios on a static deflection and stresses of FG beams. The most significant finding is that, the symmetric power function is more reliable and can considerably reduce the stress than the other two functions. However, the sigmoid function distribution represents the highest stress.

  14. On the magnetic circular dichroism of benzene. A density-functional study

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Kříž, Jan; Bouř, Petr

    2017-01-01

    Roč. 146, č. 14 (2017), č. článku 144301. ISSN 0021-9606 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : magnetic circular dichroism * benzene * DFT Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.965, year: 2016

  15. Size-dependent thermoelastic analysis of a functionally graded nanoshell

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2018-01-01

    In this paper, two-dimensional thermoelastic analysis of a functionally graded nanoshell is presented based on nonlocal elasticity theory. To formulate this problem, first-order shear deformation theory (FSDT) is used for axial and radial deformations simultaneously. Material properties are assumed to be mixture of ceramic and metal based on a power law distribution. Principle of virtual work is used for derivation of the governing equations. The analytical approach is presented based on eigenvalue and eigenvector method to derive four unknown functions including radial and axial displacements and rotations along the longitudinal direction. In addition, the influence of nonlocal and in-homogeneous index parameter is studied on the responses of the system. Two-dimensional results are presented along the radial and longitudinal directions.

  16. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  17. Thermal performance of functionally graded parabolic annular fins having constant weight

    Energy Technology Data Exchange (ETDEWEB)

    Gaba, Vivek Kumar; Tiwari, Anil Kumar; Bhowmick, Shubhankar [National Institute of Technology Raipur, Raipur (India)

    2014-10-15

    The proposed work reports the performance of parabolic annular fins of constant weight made of functionally graded materials. The work involves computation of temperature gradient, efficiency and effectiveness of such fins and compares the performances for different functionally graded parabolic fin profiles obtained by varying grading parameters and profile parameters respectively keeping the weight of the fins constant. The functional grading of thermal conductivity is based on a power function of radial co-ordinate which consists of parameters, namely grading parameters, varying which different grading combinations are studied. A general second order ordinary differential equation has been derived for all the profiles and material grading. The efficiency and effectiveness of the annular fins of different profile and grading combinations have been calculated and plotted and the results reveal the dependence of fin performance on profile and grading parameter.

  18. Material Design of Functionally Graded Plates with the Function of Electromagnetic Noise Suppression

    Science.gov (United States)

    Sugano, Yoshihiro; Takahashi, Satoshi

    The development of materials to suppress electromagnetic noise is in demand. In this paper, we present a method for the material design of functionally graded material (FGM) plates with the function of electromagnetic noise suppression. The FGM plates are considered to be multilayered plates in which the material properties are homogeneous inside each layer. Therefore, the approximate analytical solutions of electromagnetic fields in the FGM plates subject to electromagnetic noise are derived. The expressions for electromagnetic noise suppression are then obtained based on the above analytical solutions. Numerical calculations are carried out for epoxy resin/titanium oxide FGM plates with graded composition distribution expressed in the form of a power function. The effects of graded composition and plate thickness on the electromagnetic noise suppression are quantitatively evaluated, and the material design suitable for the suppression of electromagnetic noise is discussed.

  19. Applications and functions of food-grade phosphates.

    Science.gov (United States)

    Lampila, Lucina E

    2013-10-01

    Food-grade phosphates are used in the production of foods to function as buffers, sequestrants, acidulants, bases, flavors, cryoprotectants, gel accelerants, dispersants, nutrients, precipitants, and as free-flow (anticaking) or ion-exchange agents. The actions of phosphates affect the chemical leavening of cakes, cookies, pancakes, muffins, and doughnuts; the even melt of processed cheese; the structure of a frankfurter; the bind and hydration of delicatessen meats; the fluidity of evaporated milk; the distinctive flavor of cola beverages; the free flow of spice blends; the mineral content of isotonic beverages; and the light color of par-fried potato strips. In the United States, food-grade phosphates are generally recognized as safe, but use levels have been defined for some foods by the Code of Federal Regulations, specifically Titles 9 and 21 for foods regulated by the U.S. Department of Agriculture (USDA) and the U.S. Food and Drug Administration (FDA), respectively. Standards for food purity are defined nationally and internationally in sources such as the Food Chemicals Codex and the Joint Food and Agriculture Organization and World Health Organization (FAO/WHO) Expert Committee on Food Additives. © 2013 New York Academy of Sciences.

  20. Experiments on deformation behaviour of functionally graded NiTi structures

    Directory of Open Access Journals (Sweden)

    Bashir S. Shariat

    2017-08-01

    Full Text Available Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled “Functionally graded shape memory alloys: design, fabrication and experimental evaluation” (Shariat et al., 2017 [1]. Stress–strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress–strain diagrams.

  1. Experiments on deformation behaviour of functionally graded NiTi structures.

    Science.gov (United States)

    Shariat, Bashir S; Meng, Qinglin; Mahmud, Abdus S; Wu, Zhigang; Bakhtiari, Reza; Zhang, Junsong; Motazedian, Fakhrodin; Yang, Hong; Rio, Gerard; Nam, Tae-Hyun; Liu, Yinong

    2017-08-01

    Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled "Functionally graded shape memory alloys: design, fabrication and experimental evaluation" (Shariat et al., 2017) [1]. Stress-strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress-strain diagrams.

  2. Information Circulars

    International Nuclear Information System (INIS)

    1969-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  3. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Tran Van Lien

    Full Text Available Abstract The present paper addresses free vibration of multiple cracked Timoshenko beams made of Functionally Graded Material (FGM. Cracks are modeled by rotational spring of stiffness calculated from the crack depth and material properties vary according to the power law throughout the beam thickness. Governing equations for free vibration of the beam are formulated with taking into account actual position of the neutral plane. The obtained frequency equation and mode shapes are used for analysis of the beam mode shapes in dependence on the material and crack parameters. Numerical results validate usefulness of the proposed herein theory and show that mode shapes are good indication for detecting multiple cracks in Timoshenko FGM beams.

  4. Differential quadrature method of nonlinear bending of functionally graded beam

    Science.gov (United States)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  5. Nonlinear analysis of functionally graded laminates considering piezoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Behjat, Ba Shir [Mechanical Engineering Faculty Sahand Univ. of Technology, Sahand New Tawn (Iran, Islamic Republic of); Khoshravan Mohamad Reza [Tabriz Univ., Tabriz (Iran, Islamic Republic of)

    2012-08-15

    In this paper, static bending analysis of functionally graded plates with piezoelectric layers has been carried out considering geometrical nonlinearity in different sets of mechanical and electrical loadings. Only the geometrical nonlinearity has been taken into account. The governing equations are obtained using potential energy and Hamilton's principle. The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect by using higher order elements. The present finite element used displacement and electric potential as nodal degrees of freedom. Results are presented for two constituent FGM plate under different mechanical boundary conditions. Numerical results for FGM plate are given in dimensionless graphical forms. Effects of material composition and boundary conditions on nonlinear response of the plate are also studied.

  6. Free Vibration Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Tran Van Lien

    Full Text Available Abstract In this paper, authors present the study of free vibration of bending multiple cracked functionally graded material (FGM beam. Vibration equations of multiple cracked FGM beam were established by using the rotational spring model of cracks, dynamic stiffness method (DSM and actual position of neutral plane. The frequency equation obtained was in a simple form, that provides an effective approach to study not only free vibration of the beams but also inverse problems like identification of material and crack parameters in structure. The obtained numerical results show good agreement with other previous published results. Thence, numerical computation has been carried out to investigate the effect of each crack, the number of cracks, material and geometric parameters on the natural frequencies of multiple cracked Timoshenko FGM beams.

  7. Analyses of functionally graded plates with a magnetoelectroelastic layer

    Science.gov (United States)

    Sladek, J.; Sladek, V.; Krahulec, S.; Pan, E.

    2013-03-01

    A meshless local Petrov-Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner-Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed.

  8. Analyses of functionally graded plates with a magnetoelectroelastic layer

    International Nuclear Information System (INIS)

    Sladek, J; Sladek, V; Krahulec, S; Pan, E

    2013-01-01

    A meshless local Petrov–Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner–Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed. (paper)

  9. Functionally graded ceramic materials for high temperature applications for space planes

    Energy Technology Data Exchange (ETDEWEB)

    Laux, T.; Auweter-Kurtz, M. [Stuttgart Univ. (Germany). Inst. for Space Syst.; Killinger, A.; Gadow, R.; Wilhelmi, H.

    1999-10-01

    Whether it is possible to develop a fully reusable space vehicle essentially depends, according to the current point of view, on the success of developing appropriate thermal protection materials. Functionally graded materials are being developed for this purpose. This paper presents first results of the manufacturing of graded coatings and their investigation under high enthalpy flow conditions. The materials were manufactured by atmospheric plasma spraying (APS) at the Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB). The TPS is made up of principally three layers: a substrate, an intermediate layer and the appropriate thermal protection layer. The substrate is the high melting alloy Inconel 625. In addition to the improvement of the adhesive power between the top layer and the substrate the intermediate layer acts as an oxygen barrier. Cr{sub 3}C{sub 2}-NiCr, NiCrAlY and Mo-MoSi{sub 2} are investigated as intermediate layer materials. ZrO{sub 2} and TiO{sub 2} are used for the TPS surface. First investigations of the selection of surface and intermediate layers were carried out. The investigation of the erosion behaviour was performed within a plasma wind tunnel at the Institute for Space Systems (IRS). The circular samples are loaded by a high enthalpy flow produced by a magnetoplasmadynamic generator (MPG). The test conditions were determined by measurements of the heat flux and the Pitot pressure. The surface temperature of the test sample is measured by pyrometers. The effects of thermal and chemical loads on the sample are presented. (orig.) 15 refs.

  10. Information Circulars

    International Nuclear Information System (INIS)

    1965-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  11. Information circulars

    International Nuclear Information System (INIS)

    1997-02-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  12. Information circulars

    International Nuclear Information System (INIS)

    1992-08-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  13. Information circulars

    International Nuclear Information System (INIS)

    1999-06-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  14. Information circulars

    International Nuclear Information System (INIS)

    1994-08-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  15. Information Circulars

    International Nuclear Information System (INIS)

    1966-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  16. Information circulars

    International Nuclear Information System (INIS)

    2002-05-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex

  17. Development of W/Cu--functionally graded materials

    International Nuclear Information System (INIS)

    Pintsuk, G.; Bruenings, S.E.; Doering, J.-E.; Linke, J.; Smid, I.; Xue, L.

    2003-01-01

    Plasma facing components (PFCs) consist of a plasma facing and a heat sink material. These have to fulfil different functions that require different material properties, for example the coefficient of thermal expansion (CTE) of tungsten and copper. Joining of these materials (e.g. by brazing or HIPing) results in the formation of thermal-induced stresses at the interface. Functionally graded materials (FGMs), used as an interlayer, reduce these thermally induced stresses. Two different methods, laser sintering and plasma spraying, have been investigated as a means to produce W/Cu FGMs to be used in PFCs of next step confinement experiments. In addition to mixtures of tungsten and copper powders, 40 wt.% Cu-coated W powder was used to produce W/Cu composites with a content of either 25 or 60 vol.% Cu. The composite microstructure has been analyzed according to Cu content, particle distribution and layer structure. The difference in the behavior of powder mixtures and coated powder is outlined. A comparison of plasma sprayed to commercially produced Cu-infiltrated W samples is made and the results of thermomechanical and thermophysical testing are discussed with respect to different microstructures

  18. Electrical conductance sensitivity functions for square and circular cloverleaf van der Pauw geometries

    Science.gov (United States)

    Koon, Daniel W.; Heřmanová, Martina; Náhlík, Josef

    2015-11-01

    We have undertaken the first systematic computational and experimental study of the sensitivity of charge transport measurement to local physical defects for van der Pauw circular and square cloverleafs with rounded internal corners and unclovered geometries, using copper-foil specimens. Cloverleafs with rounded internal corners are in common use and reduce sampling of the material near their boundaries, an advantage over sharp corners. We have defined two parameters for these cloverleafs, one of which, the ‘admittance’, is the best predictor of the sensitivity at the center of these specimens, with this sensitivity depending only weakly on the central ‘core’ size when its diameter is less than about 60% of the specimen’s lateral size. Resistive measurement errors in all four geometries are linear in areas for errors up to about 50% in sheet resistance, and superlinear above. An ASTM-based ‘standard’ cloverleaf geometry, in which the central core diameter of the specimen is 1/5 the overall length and the slit widths are 1/10 the overall length, narrows the effective area sampled by the resistive measurement by a factor of about 16  ×  in the small-hole limit and over 40  ×  for larger holes, relative to unclovered goemetries, whether square or circular, with a smooth transition in these numbers for geometries intermediate between the standard cloverleaf and unclovered specimens. We believe that this work will allow materials scientists to better estimate the impact of factors such as the uniformity of film thickness and of material purity on their measurements, and allow sensor designers to better choose an optimal specimen geometry.

  19. Fabrication, Characterization and Modeling of Functionally Graded Materials

    Science.gov (United States)

    Lee, Po-Hua

    In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based

  20. Information Circulars

    International Nuclear Information System (INIS)

    1973-01-01

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  1. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery

    NARCIS (Netherlands)

    Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F.

    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left

  2. Functionally Graded Hydroxyapatite Coatings Doped with Antibacterial Components

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiao [ORNL; More, Karren Leslie [ORNL; Rouleau, Christopher M [ORNL; Rabiei, Afsaneh [ORNL

    2010-01-01

    A series of functionally graded hydroxyapatite (FGHA) coatings incorporated with various percentages of silver were deposited on titanium substrates using ion beam assisted deposition (IBAD). The analysis of the coating s cross-section using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), equipped with energy dispersive X-ray spectroscopy (EDS), has shown a decreased crystallinity as well as a distribution of nano scale (10 ~ 50nm) silver particles from the coating/substrate interface to top surface. Both X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed the presence of hydroxyapatite within the coatings. The amount of Ag (wt. %) on the outer surface of the FGHA, as determined from X-ray photoelectron spectroscopy (XPS), ranged from 1.09 ~ 6.59, which was about half of the average Ag wt. % incorporated in the entire coating. Average adhesion strengths evaluated by pull-off tests were in the range of 83 6 - 88 3 MPa, which is comparable to 85 MPa for FGHA without silver. Further optical observations of failed areas illustrated that the dominant failure mechanism was epoxy failure and FGHA coating delamination was not observed.

  3. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate

    Science.gov (United States)

    Hao, Y. X.; Chen, L. H.; Zhang, W.; Lei, J. G.

    2008-05-01

    An analysis on the nonlinear dynamics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in a thermal environment for the first time. Material properties are assumed to be temperature dependent. Based on Reddy's third-order plate theory, the nonlinear governing equations of motion for the FGM plates are derived using Hamilton's principle. Galerkin's method is utilized to discretize the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms under combined parametric and external excitations. The resonant case considered here is 1:1 internal resonance and principal parametric resonance. The asymptotic perturbation method is utilized to obtain four-dimensional nonlinear averaged equation. The numerical method is used to find the nonlinear dynamic responses of the FGM rectangular plate. It was found that periodic, quasi-periodic solutions and chaotic motions exist for the FGM rectangular plates under certain conditions. It is believed that the forcing excitations f1 and f2 can change the form of motions for the FGM rectangular plate.

  4. Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam

    Directory of Open Access Journals (Sweden)

    Toudehdehghan Abdolreza

    2018-01-01

    Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.

  5. Functionally graded hydroxyapatite coatings doped with antibacterial components.

    Science.gov (United States)

    Bai, Xiao; More, Karren; Rouleau, Christopher M; Rabiei, Afsaneh

    2010-06-01

    A series of functionally graded hydroxyapatite (FGHA) coatings incorporated with various percentages of silver were deposited on titanium substrates using ion beam-assisted deposition. The analysis of the coating's cross-section using transmission electron microscopy (TEM) and scanning transmission electron microscopy equipped with energy dispersive X-ray spectroscopy has shown a decreased crystallinity as well as a distribution of nanoscale (10-50nm) silver particles from the coating/substrate interface to top surface. Both X-ray diffraction and fast Fourier transforms on high-resolution TEM images revealed the presence of hydroxyapatite within the coatings. The amount of Ag (wt.%) on the outer surface of the FGHA, as determined from X-ray photoelectron spectroscopy, ranged from 1.09 to 6.59, which was about half of the average Ag wt.% incorporated in the entire coating. Average adhesion strengths evaluated by pull-off tests were in the range of 83+/-6 to 88+/-3MPa, which is comparable to 85MPa for FGHA without silver. Further optical observations of failed areas illustrated that the dominant failure mechanism was epoxy failure, and FGHA coating delamination was not observed. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Science.gov (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  7. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  8. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry.

    Science.gov (United States)

    Zhu, Timothy C; Lu, Amy; Ong, Yi-Hong

    2016-03-07

    Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μ a ) between 0.01 and 1 cm -1 and reduced scattering coefficients (μ s ') between 2 and 40 cm -1 ). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.

  9. Preserved splenic function after angioembolisation of high grade injury.

    Science.gov (United States)

    Skattum, Jorunn; Titze, Thomas Larsen; Dormagen, Johann Baptist; Aaberge, Ingeborg S; Bechensteen, Anne Grete; Gaarder, Per Ivar; Gaarder, Christine; Heier, Hans Erik; Næss, Pål Aksel

    2012-01-01

    After introducing splenic artery embolisation (SAE) in the institutional treatment protocol for splenic injury, we wanted to evaluate the effects of SAE on splenic function and assess the need for immunisation in SAE treated patients. 15 SAE patients and 14 splenectomised (SPL) patients were included and 29 healthy blood donors volunteered as controls. Clinical examination, medical history, general blood counts, immunoglobulin quantifications and flowcytometric analysis of lymphocyte phenotypes were performed. Peripheral blood smears from all patients and controls were examined for Howell-Jolly (H-J) bodies. Abdominal doppler, gray scale and contrast enhanced ultrasound (CEUS) were performed on all the SAE patients. Leukocyte and platelet counts were elevated in both SAE and SPL individuals compared to controls. The proportion of memory B-lymphocytes did not differ significantly from controls in either group. In the SAE group total IgA, IgM and IgG levels as well as pneumococcal serotype specific IgG and IgM antibody levels did not differ from the control group. In the SPL group total IgA and IgG Pneumovax(®) (PPV23) antibody levels were significantly increased, and 5 of 12 pneumococcal serotype specific IgGs and IgMs were significantly elevated. H-J bodies were only detected in the SPL group. CEUS confirmed normal sized and well perfused spleens in all SAE patients. In our study non-operative management (NOM) of high grade splenic injuries including SAE, was followed by an increase in total leukocyte and platelet counts. Normal levels of immunoglobulins and memory B cells, absence of H-J bodies and preserved splenic size and intraparenchymal blood flow suggest that SAE has only minor impact on splenic function and that immunisation probably is unnecessary. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...

  11. Osteoblast functions in functionally graded Ti-6Al-4 V mesh structures.

    Science.gov (United States)

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2016-03-01

    We describe here the combined efforts of engineering and biological sciences as a systemic approach to fundamentally elucidate osteoblast functions in functionally graded Ti-6Al-4 V mesh structures in relation to uniform/monolithic mesh arrays. First, the interconnecting porous architecture of functionally graded mesh arrays was conducive to cellular functions including attachment, proliferation, and mineralization. The underlying reason is that the graded fabricated structure with cells seeded from the large pore size side provided a channel for efficient transfer of nutrients to other end of the structure (small pore size), leading to the generation of mineralized extracellular matrix by differentiating pre-osteoblasts. Second, a comparative and parametric study indicated that gradient mesh structure had a pronounced effect on cell adhesion and mineralization, and strongly influenced the proliferation phase. High intensity and near-uniform distribution of proteins (actin and vinculin) on struts of the gradient mesh structure (cells seeded from large pore side) implied signal transduction during cell adhesion and was responsible for superior cellular activity, in comparison to the uniform mesh structure and non-porous titanium alloy. Cells adhered to the mesh struts by forming a sheet, bridging the pores through numerous cytoplasmic extensions, in the case of porous mesh structures. Intercellular interaction in porous structures provided a pathway for cells to communicate and mature to a differentiated phenotype. Furthermore, the capability of cells to migrate through the interconnecting porous architecture on mesh structures led to colonization of the entire structure. Cells were embedded layer-by-layer in the extracellular matrix as the matrix mineralized. The outcomes of the study are expected to address challenges associated with the treatment of segmental bone defects and bone-remodeling through favorable modulation of cellular response. Moreover, the study

  12. Information circulars

    International Nuclear Information System (INIS)

    1987-06-01

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  13. The contribution of executive functions to narrative writing in fourth grade children

    NARCIS (Netherlands)

    Drijbooms, E.; Groen, M.A.; Verhoeven, L.T.W.

    2015-01-01

    The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were

  14. The Contribution of Executive Functions to Narrative Writing in Fourth Grade Children

    Science.gov (United States)

    Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo

    2015-01-01

    The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were assessed using a narrative picture-elicitation…

  15. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  16. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis

    Science.gov (United States)

    Yan, Wang-Ji; Ren, Wei-Xin

    2018-01-01

    This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.

  17. Stress analysis in a functionally graded disc under mechanical loads ...

    Indian Academy of Sciences (India)

    Some relative results for the stress and displacement components along the radius are presented due to internal pressure, external pressure, centrifugal force and steady state temperature. From the results, it is found that the grading indexes play an important role in determining the thermomechanical responses of FG disc ...

  18. Information circulars

    International Nuclear Information System (INIS)

    1989-04-01

    The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex

  19. Application of ANFIS for analytical modeling of tensile strength of functionally graded steels

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-06-01

    Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.

  20. Analysis of Functionally Graded Material Plates Using Triangular Elements with Cell-Based Smoothed Discrete Shear Gap Method

    Directory of Open Access Journals (Sweden)

    S. Natarajan

    2014-01-01

    Full Text Available A cell-based smoothed finite element method with discrete shear gap technique is employed to study the static bending, free vibration, and mechanical and thermal buckling behaviour of functionally graded material (FGM plates. The plate kinematics is based on the first-order shear deformation theory and the shear locking is suppressed by the discrete shear gap method. The shear correction factors are evaluated by employing the energy equivalence principle. The material property is assumed to be temperature dependent and graded only in the thickness direction. The effective properties are computed by using the Mori-Tanaka homogenization method. The accuracy of the present formulation is validated against available solutions. A systematic parametric study is carried out to examine the influence of the gradient index, the plate aspect ratio, skewness of the plate, and the boundary conditions on the global response of the FGM plates. The effect of a centrally located circular cutout on the global response is also studied.

  1. Comparison of beam-position-transfer functions using circular beam-position monitors

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1997-01-01

    A cylindrical beam-position monitor (BPM) used in many accelerator facilities has four electrodes on which beam-image currents induce bunched-beam signals. These probe-electrode signals are geometrically configured to provide beam-position information about two orthogonal axes. An electronic processor performs a mathematical transfer function (TF) on these BPM-electrode signals to produce output signals whose time-varying amplitude is proportional to the beam's vertical and horizontal position. This paper will compare various beam-position TFs using both pencil beams and will further discuss how diffuse beams interact with some of these TFs

  2. Circular RNAs

    DEFF Research Database (Denmark)

    Han, Yi-Neng; Xia, Shengqiang; Zhang, Yuan-Yuan

    2017-01-01

    Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhi...... and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment....

  3. A Re-wired Green Fluorescent Protein: Folding and Function in a Non-sequential, Non-circular GFP Permutant

    OpenAIRE

    Reeder, Philippa J.; Huang, Yao-Ming; Dordick, Jonathan S.; Bystroff, Christopher

    2010-01-01

    The sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, secondary structural elements were reconnected by their solvent-exposed ends, permuting their sequential order, called “re-wiring.” This new protein design strategy changes the topology of the backbone without changing the core sidechain packing arrangement. While circular and non-circular permutations have been observed in...

  4. A new grading for easy and concise description of functional status after spinal cord lesions.

    Science.gov (United States)

    Bluvshtein, V; Front, L; Itzkovich, M; Benjamini, Y; Galili, T; Gelernter, I; Aidinoff, E; Hart, J; Tesio, L; Biering-Sorensen, F; Weeks, C; Laramee, M T; Craven, C; Hitzig, S L; Glaser, E; Zeilig, G; Aito, S; Scivoletto, G; Mecci, M; Chadwick, R J; El Masry, W S; Osman, A; Glass, C A; Silva, P; Soni, B M; Gardner, B P; Savic, G; Bergström, E M; Catz, A

    2012-01-01

    Disability scales do not enable the transmission of concise, meaningful and daily function description for clinical purposes. Cross-sectional statistical analysis of 328 patients' Spinal Cord Independence Measure (SCIM) III item scores (SIS). To develop a concise and clinically interpretable data-based characterization of daily task accomplishment for patients with spinal cord lesions (SCLs). Multi-center study at 13 spinal units in 6 countries. Patients were grouped into clusters characterized by smaller differences between the patients' SIS within the clusters than between their centers, using the k-medoides algorithm. The number of clusters (k) was chosen according to the percent of SIS variation they explained and the clinical distinction between them. Analysis showed that k=8 SIS clusters offer a good description of the patient population. The eight functional clusters were designated as A-H, each cluster (grade) representing a combination of task accomplishments. Higher grades were usually (but not always) associated with patients implementing more difficult tasks. Throughout rehabilitation, the patients' functional grade improved and the distribution of patients with similar functional grades within the total SCIM III score deciles remained stable. A new classification based on SIS clusters enables a concise description of overall functioning and task accomplishment distribution in patients with SCL. A software tool is used to identify the patients' functional grade. Findings support the stability and utility of the grades for characterizing the patients' functional status.

  5. Finite deformations of functionally graded shell under outer pressure with steady state temperature

    Science.gov (United States)

    Sharma, Sanjeev; Panchal, Rekha; Sahni, Manoj; Sharma, Richa

    2017-10-01

    In this paper, finite elastic and plastic stresses have been determined for functionally graded shell using the concepts of transition theory and generalized measure of strain i.e. nonlinear terms in the displacements are also considered while in classical theory only infinitesimal strain theory concept has been applied. In this problem of spherical shell, temperature has been applied at the internal surface while pressure is considered to be applied at the external surface. From the detailed analysis, it has been noticed that temperature and pressure have significant effects on functionally graded shell. In this paper, it is found that external pressure required for the fully plastic state from initial yielding is on the higher side for the shell made up of highly functionally graded material as compared to the shell made up of less functionally graded material.

  6. Functionally Graded Polyimide Nanocomposite Foams for Ablative and Inflatable/Flexible/Deplorable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed research is to develop functionally graded polyimide foams as light-weight, high performance thermal protection systems (TPS) for...

  7. Advanced Functionally Graded Plate-Type Structures Impacted By Blast Loading

    Science.gov (United States)

    2010-08-05

    at the outer surfaces of the plate and tending toward full metal at the mid-surface UNCLASSIFIED: Dist A. Approved for public release 3. Types of FGM ...Advanced Functionally Graded Plate -Type Structures Impacted By Blast Loading Terry Hause, Ph.D. Research Mechanical Engineer U.S. Army RDECOM-TARDEC...AND SUBTITLE Advanced Functionally Graded Plate -Type Structures Impacted By Blast Loading 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  8. The Dynamic Response of Multidirectional Functionally Graded Plates Impacted by Blast Loading

    Science.gov (United States)

    2013-11-11

    Mechanical Engineering Science, 255 Part C (2010) 526-536. [4] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew, Active control of FGM plates with...release The Dynamic Response of Multidirectional Functionally Graded Plates Impacted by Blast Loading Terry Hausea, Ph.D. aResearch...functionally graded thin plates under an in-air blast loading from a Friedlander type pressure loading is presented. The theory is presented in the context

  9. Modelling of functionally graded materials by numerical homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Weber, U. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    2001-03-01

    In this contribution, the mechanical behaviour of different ZrO{sub 2}/NiCr 80 20 compositions is analysed and compared with experimental findings. The microwave-sintered material is found to possess a slightly dominant ceramic matrix for intermediate volume fractions. Its thermal expansion coefficient deviates from the rule of mixture. The modulus and the stress strain behaviour can be simulated by a numerical homogenization procedure, and the influence of residual stresses is found to be negligible. A newly introduced parameter (matricity) describes the mutual circumvention of the phases and is found to strongly control the stress level of the composite, globally as well as locally. Finally, a graded component and a metal/ceramic bi-material are compared for thermal as well as mechanical loading. (orig.)

  10. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    Science.gov (United States)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  11. An investigation on thermal residual stresses in a cylindrical functionally graded WC-Co component

    Energy Technology Data Exchange (ETDEWEB)

    Tahvilian, L. [Metallurgical Engineering, University of Utah, 135 South 1460 East, Salt Lake City, UT 84112 (United States); Fang, Z. Zak, E-mail: zak.fang@utah.edu [Metallurgical Engineering, University of Utah, 135 South 1460 East, Salt Lake City, UT 84112 (United States)

    2012-11-15

    The thermal residual stress distribution in a functionally graded cemented tungsten carbide (FG WC-Co) hollow cylinder was examined with an emphasis on the effects of key variables, such as gradient profile and gradient thickness on the magnitude and distribution of the stress field. An analytical direct solution based on solving the governing equations of a cylinder composed of a uniform inner core and a functionally graded outer shell was developed, considering the cylindrical compound as two separate elements: a homogeneous cylinder and a functionally graded shell. Through the graded shell, material properties such as the modulus of elasticity and the coefficient of thermal expansion (CTE), except Poisson's ratio, were considered to vary as a power function of the radius, and proper mechanical boundary conditions were imposed at the interface of the two cylinders. Practical values for the two variables, gradient profile and gradient thickness, were evaluated in the mathematical solution for the FG WC-Co compound, and their effects on the stress distribution were studied. An examination of different gradient profiles showed that with excess Co content in the graded region, compressive radial stresses were created, while with decreasing Co content through the graded region tensile stresses were generated at the interface. The effect of gradient thickness was shown to have a greater effect on radial stress, compared to hoop stress, and increasing the gradient thickness significantly increased the radial stress magnitude.

  12. Dynamic response of fly ash reinforced functionally graded rubber ...

    African Journals Online (AJOL)

    The dynamic analysis of jute-epoxy sandwiches with fly ash reinforced functionally gradient (FG) flexible, compliant rubber core is presented. FG samples are prepared using conventional casting technique. Presence of gradation is quantified by weight method. An attempt is made to study the influence of fly ash weight ...

  13. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.

    2017-09-01

    Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.

  14. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    YongMan Choi; Meilin Liu

    2006-09-30

    This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a

  15. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  16. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering

    International Nuclear Information System (INIS)

    Chung, Haseung; Das, Suman

    2008-01-01

    Selective laser sintering (SLS), a layered manufacturing-based freeform fabrication approach was explored for constructing three-dimensional structures in functionally graded polymer nanocomposites. Here, we report on the processing and properties of functionally graded polymer nanocomposites of Nylon-11 filled with 0-10% by volume of 15 nm fumed silica nanoparticles. SLS processing parameters for the different compositions were developed by design of experiments (DOE). The densities and micro/nanostructures of the nanocomposites were examined by optical microscopy and transmission electron microscopy (TEM). The tensile and compressive properties for each composition were then tested. These properties exhibit a nonlinear variation as a function of filler volume fraction. Finally, two component designs exhibiting a one-dimensional polymer nanocomposite material gradient were fabricated. The results indicate that particulate-filled functionally graded polymer nanocomposites exhibiting a one-dimensional composition gradient can be successfully processed by SLS to produce three-dimensional components with spatially varying mechanical properties

  17. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2011-12-01

    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  18. Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators

    International Nuclear Information System (INIS)

    Gharib, Ahmad; Salehi, Manouchehr; Fazeli, Saeed

    2008-01-01

    An analytical solution is developed for analysis of functionally graded material (FGM) beams containing two layers of piezoelectric material, used as sensor and actuator. The properties of FGM layer are functionally graded in the thickness direction according to the volume fraction power law distribution. The equations of motion are derived by using Hamilton's principle, based on the first-order shear deformation theory. By using a displacement potential function, and assumption of harmonic vibration, the equations of motion have been solved analytically. Finally, the effects of FGM constituent volume fraction in the peak responses for various volume fraction indexes have been graphically illustrated

  19. Teaching Mathematical Functions Using Geometric Functions Approach and Its Effect on Ninth Grade Students' Motivation

    Science.gov (United States)

    Akçakin, Veysel

    2018-01-01

    The purpose of this study is to investigate the effects of using geometric functions approach on 9th grade students' motivation levels toward mathematics in functions unit. Participants of this study were 87 students who were ongoing in the first year of high school in Turkey. In this research, pretest and posttest control group quasiexperimental…

  20. Stress concentration analysis in functionally graded plates with elliptic holes under biaxial

    Directory of Open Access Journals (Sweden)

    Tawakol A. Enab

    2014-09-01

    Full Text Available Stress concentration factors (SCFs at the root of an elliptic hole in unidirectional functionally graded material (UDFGM plates under uniaxial and biaxial loads are predicted. ANSYS Parametric Design Language (APDL was used to build the finite element models for the plates and to run the analysis. A parametric study is performed for several geometric and material parameters such as the elliptic hole major axis to plate width ratio, the elliptical shape factor, the gradation direction of UDFGM. It is shown that, SCF in the finite plate can be significantly reduced by choosing the proper distribution of the functionally graded materials. The present study may provide designers an efficient way to estimate the hole effect on plate structures made of functionally graded materials.

  1. Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate

    Science.gov (United States)

    Yiqi, Mao; Yiming, Fu

    2010-05-01

    The nonlinear dynamic response and active vibration control of the piezoelectric functionally graded plate are analyzed in this paper. Based on higher-order shear plate theory and elastic piezoelectric theory, the nonlinear geometric and constitutive relations of the piezoelectric functionally graded plate are established, and then the nonlinear motion equations of the piezoelectric functionally graded plate are obtained through Hamilton's variational principle. The nonlinear active vibration control of the structure is carried out with adoption of the negative velocity feedback control algorithm. By applying finite difference method, the whole problem is solved by using iterative method synthetically. In numerical examples, the effects of mechanical load, electric load, the volume fraction and the geometric parameters on the dynamic response and vibration control of the piezoelectric FGM plate are investigated.

  2. Delamination Analysis of a Multilayered Two-Dimensional Functionally Graded Cantilever Beam

    Science.gov (United States)

    Rizov, V.

    2017-11-01

    Delamination fracture behaviour of a multilayered two-dimensional functionally graded cantilever beam is analyzed in terms of the strain energy release rate. The beam is made of an arbitrary number of layers. Perfect adhesion is assumed between layers. Each layer has individual thickness and material properties. Besides, the material is two-dimensional functionally graded in the cross-section of each layer. There is a delamination crack located arbitrary between layers. The beam is loaded by a bending moment applied at the free end of the lower crack arm. The upper crack arm is free of stresses. The solution to strain energy release rate derived is applied to investigate the influence of the crack location and the material gradient on the delamination fracture. The results obtained can be used to optimize the multilayered two-dimensional functionally graded beam structure with respect to the delamination fracture behaviour.

  3. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    Science.gov (United States)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  4. Interface Behavior in Functionally Graded Ceramics for the Magnetic Refrigeration: Numerical Modeling

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    material is needed. Tape casting is a common process in producing functional ceramics, and it has recently been established for producing side-by-side (SBS) functionally graded ceramics (FGCs). The main goal of the present work is to study the multiple material flows in SBS tape casting and analyze......The active magnetic regenerator refrigerator is currently the most common magnetic refrigeration device for near room temperature applications, and it is driven by the magnetocaloric effect in the regenerator material. In order to make this efficient, a graded configuration of the magnetocaloric...

  5. Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner

    International Nuclear Information System (INIS)

    Cui, L.; Forero Rueda, M.A.; Gilchrist, M.D.

    2009-01-01

    The energy absorbing liner of safety helmets was optimised using finite element modelling. In this present paper, a functionally graded foam (FGF) liner was modelled, while keeping the average liner density the same as in a corresponding reference single uniform density liner model. Use of a functionally graded foam liner would eliminate issues regarding delamination and crack propagation between interfaces of different density layers which could arise in liners with discrete density variations. As in our companion Part I paper [Forero Rueda MA, Cui L, Gilchrist MD. Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Mater Des [submitted for publication

  6. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  7. On guided wave propagation in fully clamped porous functionally graded nanoplates

    Science.gov (United States)

    Karami, Behrouz; Janghorban, Maziar; Li, Li

    2018-02-01

    The study on bulk waves in nanoplates has been done for several times in recent years, but guided waves have not been investigated yet. This paper is focused on the size-dependent guided wave propagation in mounted nanoplates made of porous functionally graded materials. To capture the size-dependent and shear effects, the first-order shear deformation theory and nonlocal elasticity theory are used to model the nanoplate. Porosity-dependent material properties of functionally graded nanoplate are defined via a modified power-law function. Governing equations were derived by using Hamilton's principle and are solved analytically to obtain wave frequencies and phase velocities. It is the first time that the presented model is used for studying guided wave propagation in fully clamped functionally graded nanoplates with porosities. In this research, wave frequencies as well as phase velocities of a fully clamped porous functionally graded nanoplate incorporating the effects of length-to-thickness ratio, aspect ratio, porosities, material gradation, nonlocal parameter, elastic foundation parameters and wave number are studied in detail.

  8. Transient Stress Intensity Factors of Functionally Graded Hollow Cylinders with Internal Circumferential Cracks

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    Full Text Available Abstract In this paper, transient thermomechanical stress intensity factors for functionally graded cylinders with complete internal circumferential cracks are obtained using the weight function method. The finite difference method is used to calculate the time dependent temperature distribution and thermal stresses along the cylinder thickness. Furthermore, finite element analysis is performed to determine the weight function coefficients and to investigate the accuracy of the predicted stress intensity factors from the weight functions. Variation of the stress intensity factors with time and effects of the material gradation on the results are investigated, as well. It is shown that the proposed technique can be used to accurately predict transient thermomechanical stress intensity factors for functionally graded cylinders with arbitrary material gradation.

  9. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Directory of Open Access Journals (Sweden)

    Chen Peijian

    2014-06-01

    Full Text Available Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  10. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.

    Science.gov (United States)

    Han, Changjun; Li, Yan; Wang, Qian; Wen, Shifeng; Wei, Qingsong; Yan, Chunze; Hao, Liang; Liu, Jie; Shi, Yusheng

    2018-04-01

    A significant requirement for a bone implant is to replicate the functional gradient across the bone to mimic the localization change in stiffness. In this work, continuous functionally graded porous scaffolds (FGPSs) based on the Schwartz diamond unit cell with a wide range of graded volume fraction were manufactured by selective laser melting (SLM). The micro-topology, strut dimension characterization and effect of graded volume fraction on the mechanical properties of SLM-processed FGPSs were systematically investigated. The micro-topology observations indicate that diamond FGPSs with a wide range of graded volume fraction from 7.97% to 19.99% were fabricated without any defects, showing a good geometric reproduction of the original designs. The dimensional characterization demonstrates the capability of SLM in manufacturing titanium diamond FGPSs with the strut size of 483-905µm. The elastic modulus and yield strength of the titanium diamond FGPSs can be tailored in the range of 0.28-0.59GPa and 3.79-17.75MPa respectively by adjusting the graded volume fraction, which are comparable to those of the cancellous bone. The mathematical relationship between the graded porosity and compression properties of a FGPS was revealed. Furthermore, two equations based on the Gibson and Ashby model have been established to predict the modulus and yield strength of SLM-processed diamond FGPSs. Compared to homogeneous diamond porous scaffolds, FGPSs provide a wide range of mutative pore size and porosity, which are potential to be tailored to optimize the pore space for bone tissue growth. The findings provide a basis of new methodologies to design and manufacture superior graded scaffolds for bone implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Mothers' Depressive Symptoms and Children's Cognitive and Social Agency: Predicting First-Grade Cognitive Functioning

    Science.gov (United States)

    Yan, Ni; Dix, Theodore

    2016-01-01

    Using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development (N = 1,364), the present study supports an agentic perspective; it demonstrates that mothers' depressive symptoms in infancy predict children's poor first-grade cognitive functioning because depressive symptoms…

  12. How executive functions predict development in syntactic complexity of narrative writing in the upper elementary grades

    NARCIS (Netherlands)

    Drijbooms, E.; Groen, M.A.; Verhoeven, L.T.W.

    2017-01-01

    The aim of this study was to examine the contribution of transcription skills, oral language skills, and executive functions to growth in narrative writing between fourth and sixth grade. While text length and story content of narratives did not increase with age, syntactic complexity of narratives

  13. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    gradients. It has previously been shown that a large functionally graded thermoelectric single crystal can be synthesized by the Czochralski method (1). Utilizing element gradients inherent to the Czochralski process we have synthesized a Ge1-xSix:B crystal with a continuously varying x, band gap...

  14. Eighth Grade In-Service Teachers' Knowledge of Proportional Reasoning and Functions: A Secondary Data Analysis

    Science.gov (United States)

    Masters, Jessica

    2012-01-01

    A secondary data analysis was conducted using a large dataset from a study related to online professional development for eighth grade teachers of mathematics. Using this data, the paper provides a snapshot of the current state of teachers' knowledge related to proportional reasoning and functions. The paper also considers how teachers' knowledge…

  15. Bio-inspired composites with functionally graded platelets exhibit enhanced stiffness.

    Science.gov (United States)

    Tapse, Sanjay; S, Anup

    2017-11-09

    Unidirectional composites inspired from biological materials such as nacre, are composed of stiff platelets arranged in a staggered manner within a soft matrix. Elaborate analyses have been conducted on the aforementioned composites and they are found to have excellent mechanical properties like stiffness, strength and fracture toughness. The superior properties exhibited by these composites have been proved to be the result of its unique structure. An emerging development in the field of composite structures is Functionally Graded Composites(FGC), whose properties vary spatially and possess enhanced thermo-mechanical properties. In this paper, the platelets are functionally graded with its Young's Modulus varying parabolically along the length. Two different models - namely, Tension Shear Chain Model and Minimisation of Complementary Energy Model have been employed to obtain the stiffness of the overall composite analytically. The effect of various parameters that define the composite model such as overlapping length between any two neighbouring platelets, different gradation parameters and platelet aspect ratio on the overall mechanical properties have been studied. Composites with functionally graded platelets are found to possess enhanced stiffness (upto 14% higher) for certain values of these parameters. The obtained solutions have been validated using Finite Element Analysis. Bio-inspired composites with functionally graded platelets can be engineered for structural applications, such as in automobile, aerospace and aircraft industry, where stiffness plays a crucial role. © 2017 IOP Publishing Ltd.

  16. A simple, fast and reproducible echocardiographic approach to grade left ventricular diastolic function

    NARCIS (Netherlands)

    B.M. van Dalen (Bas); M. Strachinaru (Mihai); J. van der Swaluw (Julio); M.L. Geleijnse (Marcel)

    2016-01-01

    textabstractThe American Society of Echocardiography and European Association of Echocardiography (ASE/EAE) have published an algorithm for the grading of diastolic function. However, the ability to use this algorithm effectively in daily clinical practice has not been investigated. We hypothesized

  17. Dynamic properties of symmetric and asymmetric Beams made of Functionally Graded materials in bending

    Science.gov (United States)

    Diveyev, B.; Butyter, I.; Pelekh, Ya.

    2018-03-01

    A theory of dynamic bending of beams made of functionally graded materials is presented. The refined theoretical model takes into account the shear and normal strains and stresses. The distribution of stresses in the beams in cylindrical bending at different vibration frequencies is considered. Their damping properties in the frequency range are estimated.

  18. An evaluation of the stress intensity factor in functionally graded materials

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2009-01-01

    Roč. 3, č. 2 (2009), s. 401-410 ISSN 1802-680X R&D Projects: GA ČR GD106/09/H035; GA ČR GC101/09/J027 Institutional research plan: CEZ:AV0Z20410507 Keywords : functionally graded material * power -law material change Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Analysis of Sigmoid Functionally Graded Material (S-FGM) Nanoscale Plates Using the Nonlocal Elasticity Theory

    OpenAIRE

    Jung, Woo-Young; Han, Sung-Cheon

    2013-01-01

    Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution) of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM) nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear defo...

  20. Analysis of elastic field in functionally graded material beams with square cross-section

    Science.gov (United States)

    Agrawal, Manish; Ahsan, Mohammad Al; Afsar Ali, Md.

    2017-12-01

    A square and simply supported functionally graded beam of medium thickness, subjected to a point load, has been investigated. Young's modulus of elasticity is assumed to vary following linear, exponential and power function along the thickness direction. Numerical Results show the variation of flexural stress and position of neutral axis with the change of the ratio of Young's modulus of elasticity of the top and bottom surfaces.

  1. Functionally Graded Ceramics Fabricated with Side-by-Side Tape Casting for Use in Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Bulatova, Regina; Bahl, Christian; Andersen, Kjeld Bøhm

    2015-01-01

    Functionally graded ceramic tapes have been fabricated by a side-by-side tape casting technique. This study shows the possibility and describes the main principles of adjacent coflow of slurries resulting in formation of thin plates of graded ceramic material. Results showed that the small...... variations of solvent and binder system concentrations have a substantial effect on slurry viscosity. Varying these parameters showed that side-by-side tape casting with a well-defined interface area is possible for slurries with viscosities above 3500 mPa s at a casting shear rate of 3.3 s -1...

  2. Emerging role of functional brain MRI in low-grade glioma surgery

    DEFF Research Database (Denmark)

    Friismose, Ancuta; Traise, Peter; Markovic, Ljubo

    Learning objectives 1. To describe the use of functional MRI (fMRI) in cranial surgery planning for patients with low-grade gliomas (LGG). 2. To show the increasing importance of fMRI in the clinical setting. Background LGG include brain tumors classified by the World Health Organization as grade I....... Language comprehension and visual tasks can be added to visualize Wernicke’s area or the visual cortex. Diffusion tensor imaging (DTI) is used to map nerve tract course relative to the tumour. Conclusion FMRI has proven its clinical utility in locating eloquent brain areas with relation to tumor site...

  3. Circular RNAs in cancer

    DEFF Research Database (Denmark)

    Kristensen, L S; Hansen, T B; Venø, M T

    2018-01-01

    Circular RNA (circRNA) is a novel member of the noncoding cancer genome with distinct properties and diverse cellular functions, which is being explored at a steadily increasing pace. The list of endogenous circRNAs involved in cancer continues to grow; however, the functional relevance of the vast...... for circRNA cancer research and current caveats, which must be addressed to facilitate the translation of basic circRNA research into clinical use.Oncogene advance online publication, 9 October 2017; doi:10.1038/onc.2017.361....

  4. Three-Dimensional Finite Element Modeling of Thermomechanical Problems in Functionally Graded Hydroxyapatite/Titanium Plate

    Directory of Open Access Journals (Sweden)

    S. N. S. Jamaludin

    2014-01-01

    Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.

  5. Performance Analysis of Functionally Graded Coatings in Contact with Cylindrical Rollers

    Directory of Open Access Journals (Sweden)

    Reza Jahedi

    2015-01-01

    Full Text Available This work presents finite element analysis (FEA and results for rolling contact of a cylindrical roller on an elastic substrate coated by functionally graded material (FGM. The rolling process and the graded coating material property and layers arrangement are modeled using finite element codes which lead to a new methodology. This novel methodology provides a trend in determining surface contact stresses, deformations, contact zones, and energy dissipation through the contact area. Effects of stiffness ratio, friction, and exponentially variation of material property on the contact stresses and deformations are studied. Some of the results are verified with analytical solutions. The study results may be beneficial in graded coated cylindrical components analysis against rolling contact failure and wear.

  6. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  7. A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels

    International Nuclear Information System (INIS)

    Sedighi, M R; Shakeri, M

    2009-01-01

    This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results

  8. Free-edge stress analysis of functionally graded material layered biocomposite laminates.

    Science.gov (United States)

    Huang, Bin; Kim, Heung Soo

    2014-10-01

    A stress function based theory is proposed to obtain free-edge stress distributions for three-dimensional, orthotropic, linearly elastic rectangular biocomposite laminates with surface-bonded functionally graded materials (FGM). The assumed stress fields automatically satisfy the pointwise equilibrium equation, as well as traction-free and free edge boundary conditions. The complementary virtual work principle, followed by the general eigenvalue solution procedure, is used to obtain 3-D free edge stress states. A typical stacking sequence of composite laminate is used as numerical investigation with surface bonded FGMs. It is shown that with proper exponential factor of FGMs, the interlaminar stresses at the FGM layer interface can be reduced significantly, in return to prevent debonding of FGM layers. This approach can be useful in the design of functionally graded material layered biocomposite structures.

  9. Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Shahba

    2011-01-01

    Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.

  10. Free Vibration Of Functionally Graded Carbon Nanotube Reinforced Composite Annular Sector Plate With General Boundary Supports

    Science.gov (United States)

    Pang, Fuzhen; Li, Haichao; Du, Yuan; Shan, Yanhe; Ji, Fang

    2018-03-01

    In this paper, an efficient and unified approach for free vibration analysis of the moderately thick functionally graded carbon nanotube reinforced composite annular sector plate with general boundary supports is presented by using the Ritz method and the first-order shear deformation theory. For the distribution of the carbon nanotubes in thickness direction, it may be uniform or functionally graded. Properties of the composite media are based on a refined rule of the mixture approach which contains the efficiency parameters. A modified Fourier series is chosen as the basic function of the admissible function to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. To establish the general boundary supports of the annular sector plate, the artificial spring boundary technique is implemented at all edges. The desired solutions are obtained through the Ritz-variational energy method. Some numerical examples are considered to check the accuracy, convergence and reliability of the present method. In addition, the parameter studies of the functionally graded carbon nanotube reinforced composite annular sector plate are carried out as well.

  11. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads

    Directory of Open Access Journals (Sweden)

    A. E. Alshorbagy

    2013-01-01

    Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.

  13. Fundamentals of liquid phase for modern cermets and functionally graded cemented carbonitrides (FGCC)

    International Nuclear Information System (INIS)

    Chen, L.; Lengauer, W.; Ettmayer, P.; Dreyer, K.; Daub, H.W.; Kassel, D.

    2001-01-01

    Metallurgical reactions and microstructure developments during sintering of modern cermets and functionally graded cemented carbonitrides (FGCC) were investigated by modern thermal and analytical methods such as mass spectrometer (MS), differential thermal analysis (DTA), differential scanning calorimeter (DSC), dilatometer (DIL), microscopy and analytical electronic microscopy with energy dispersive spectrometer (EDS). The complex phase reactions and phase equilibrium in the multi-component system Ti/Mo/W/Ta/Nb/C,N-Co/Ni were studied. The melting behaviors in the systems of TiC-WC/MoC-Ni/Co, TiC-TiN-WC-Co and TiCN-TaC-WC-Co have been established. By better understanding of the mechanisms that govern the sintering processing and metallurgical reactions, new cermets and different types of functionally graded cemented carbonitrides (FGCC) with desired microstructures and properties were developed and fabricated. (author)

  14. Optimal shape control of functionally graded smart plates using genetic algorithms

    Science.gov (United States)

    Liew, K. M.; He, X. Q.; Meguid, S. A.

    This paper deals with optimal shape control of functionally graded smart plate containing patches of piezoelectric sensors and actuators. The genetic algorithm (GA) is designed to search for optimal actuator voltage and displacement control gains for the shape control of the functionally graded material (FGM) plates. The work extends the earlier finite element formulations of the two leading authors, so that it can be readily treated using genetic algorithms. Numerical results have been obtained to study the effect of the shape control of the FGM plates under a temperature gradient by optimising (i) the voltage distribution for the open loop control, and (ii) the displacement control gain values for the closed loop feedback control. The effect of the constituent volume fractions of zirconia, through varying the volume fraction exponent n, on the optimal voltages and gain values has also been examined.

  15. How executive functions predict development in syntactic complexity of narrative writing in the upper elementary grades.

    Science.gov (United States)

    Drijbooms, Elise; Groen, Margriet A; Verhoeven, Ludo

    2017-01-01

    The aim of this study was to examine the contribution of transcription skills, oral language skills, and executive functions to growth in narrative writing between fourth and sixth grade. While text length and story content of narratives did not increase with age, syntactic complexity of narratives showed a clear developmental progression. Results from path analyses revealed that later syntactic complexity of narrative writing was, in addition to initial syntactic complexity, predicted by oral grammar, inhibition, and planning. These results are discussed in light of the changes that characterize writing development in the upper elementary grades. More specifically, this study emphasizes the relevance of syntactic complexity as a developmental marker as well as the importance of executive functions for later writing development.

  16. Current-driven domain wall ratchet in a nanomagnet with functionally graded Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Yershov, Kostiantyn V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Saxena, Avadh

    We develop a concept of functionally graded Dzyaloshinskii-Moriya interaction, which provides novel ways of efficient control of the magnetization dynamics. Using this approach we realize the ratchet motion of the domain wall in a magnetic nanowire driven by spin polarized current with potential applications in magnetic devices such as race-track memory and magnetic logical devices. By engineering the spatial profile of Dzyaloshinskii-Moriya parameters we provide a unidirectional motion of the domain wall along the wire. We base our study on phenomenological Landau-Lifshitz-Gilbert equations using a collective variable approach. In effective equations of motion the functionally graded Dzyaloshinskii-Moriya interaction appears as a driving force, which can either suppress the action of the pumping by the current or can reinforce it. All analytical predictions are well confirmed by numerical simulations.

  17. Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam

    Science.gov (United States)

    Rizov, V.

    2017-11-01

    Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.

  18. Method and apparatus for determination of mechanical properties of functionally-graded materials

    Science.gov (United States)

    Giannakopoulos, Antonios E.; Suresh, Subra

    1999-01-01

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  19. Analysis of longitudinal cracked two-dimensional functionally graded beams exhibiting material non-linearity

    Directory of Open Access Journals (Sweden)

    Victor Rizov

    2017-07-01

    Full Text Available An analytical study of longitudinal fracture in two-dimensional functionally graded cantilever beam configurations is carried-out with taking into account the non-linear behavior of material. A longitudinal crack is located arbitrary along the beam cross-section height. The material is functionally graded along the width as well as along the height of beam. The external loading consists of a bending moment applied at the free end of lower crack arm. Fracture is studied in terms of the strain energy release rate by considering the beam complementary strain energy. The solution derived is verified by analyzing the longitudinal crack with the help of the J-integral. The distribution of J-integral value along the crack front is studied. The effects of crack location, material gradients and non-linear behavior of material on the fracture are elucidated. The analysis reveals that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of two-dimensional functionally graded materials.

  20. Finite element analysis of functionally graded bone plate at femur bone fracture site

    Science.gov (United States)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  1. High maneuverability guidewire with functionally graded properties using new superelastic alloys.

    Science.gov (United States)

    Sutou, Y; Yamauchi, K; Suzuki, M; Furukawa, A; Omori, T; Takagi, T; Kainuma, R; Nishida, M; Ishida, K

    2006-01-01

    Nitinol shape memory alloys (SMAs) are attracting considerable attention as core materials for medical guidewires because of their excellent flexibility and shape retention. However, since Nitinol guidewires possess low rigidity, the pushability and torquability of the guidewires are insufficient. On the other hand, although guidewires made of stainless steel have high pushability, plastic deformation occurs easily. We have developed a new class of superelastic guidewires with functionally graded properties from the tip to the end by using new SMA core materials such as Cu-Al-Mn-based or Ni-free Ti-Mo-Sn SMAs. The tip portion of the guidewire shows excellent superelasticity (SE), while the body portion possesses high rigidity. These functionally graded characteristics can be realized by microstructural control. These guidewires with functionally graded properties show excellent pushability and torquability and are considerably easier to handle than conventional guidewires with Nitinol or stainless steel cores. Moreover, a metallic catheter using a Ni-free Ti-based SMA with high biocompatibility is introduced.

  2. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    Science.gov (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  3. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Determination and modeling of residual stress in functionally graded WC-Co

    Science.gov (United States)

    Tahvilian, Leila

    Gradual variations in composition and/or structure through the volume of functionally graded materials (FGMs) generally result in corresponding continuous spatial variations in mechanical/physical properties, and often in significant residual stresses that develop during processing. Due to inhomogeneous properties in these materials, residual stress measurement in FGMs can be a very challenging problem. In this study, residual stresses in functionally graded cemented tungsten carbide (FG-WC-Co) were investigated by numerical, analytical and experimental approaches by means of a layer removal technique. The numerical method consisted of finite element analysis (FEA) modeling for the FGM plate, in order to calculate residual stress distribution over the volume and to develop a method for predicting residual stress levels in closely related materials. The analytical procedure embodied a mathematical approach to determine residual stress distributions, and analytically determined values are compared with those obtained from FEA modeling and experimental results. The experimental approach consisted of fabricating and heat treating FG-WC-Co flat samples, then measuring strain changes by strain gauge after each sequential layer removal from the opposite side of the specimen from the graded region. Good agreement was found between analytical, numerical and experimental results. Furthermore, thermal residual stress distribution in FG-WC-Co hollow cylinder was examined with an emphasis on the effects of key variables, the gradient profile and the gradient thickness, on the magnitude and distribution of the stress field. An analytical direct solution based on solving the governing equations of a cylinder composed of a uniform inner core and a functionally graded outer shell was developed. The cylindrical compound was considered as two separate elements: homogeneous cylinder and functionally graded shell. Material properties, such as the elastic modulus and the coefficient of

  5. Cut-off frequencies of Lamb waves in various functionally graded thin films

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2011-09-01

    An analytical study is carried out on the cut-off frequencies of Lamb waves in freestanding thin films made of various functionally graded elastic, piezoelectric, or piezoelectric-piezomagnetic materials. Results show that the set of cut-off frequencies is a union of two series of approximate arithmetic progression, in which the differences are inversely proportional to the definite integral of a function of the material parameters along thickness. Given the simple and universal relationship between cut-off frequencies and material parameters, this study provides theoretical guidance not only for nondestructive evaluation in engineering applications but for designing high-performance sensors based on Lamb waves.

  6. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  7. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments

    Science.gov (United States)

    Huang, Xiao-Lin; Shen, Hui-Shen

    2006-01-01

    This paper deals with the nonlinear vibration and dynamic response of a functionally graded material (FGM) plate with surface-bonded piezoelectric layers in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction of the plate, and the electric field is assumed to be the transverse component Ez only. Material properties of the substrate FGM layer are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents, whereas the material properties of piezoelectric layers are assumed to be independent of the temperature and the electric field. The nonlinear formulations are based on the higher-order shear deformation plate theory and general von Kármán-type equation, which includes thermo-piezoelectric effects. The numerical illustrations concern nonlinear vibration characteristics of functional graded plates with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The effects of temperature change, control voltage and volume fraction distribution on the nonlinear vibration and dynamic response are examined in detail.

  8. Thermal Stress Analysis of W/Cu Functionally Graded Materials by Using Finite Element Method

    Science.gov (United States)

    Yang, Zhenxiao; Liu, Min; Deng, Chunming; Zhang, Xiaofeng; Deng, Changguang

    2013-03-01

    Copper alloys with tungsten coating shows an excellent plasma irradiation resistance, however, the difference of coefficient thermal expansion between W and Cu makes it really a difficult job to prepare over 1 mm W coating with high adhesive strength. Functionally graded material (FGM) seems to be an effective method to improve the adhesive strength of thick W coating. This paper focused on the finite element simulation on thermal stress for W/Cu FGM with different graded layers, composition and thicknesses. In addition, the variance of stresses for functionally graded coatings with the steady state heat flux were simulated by finite element analysis (ANSYS Workbench). The results showed that the W/Cu FGM was effectively beneficial for the stress relief of W coating. Meanwhile, the maximum von mises stress decreased approximately by 52.8 % compared to monolithic W plasma facing material. And the four-layer FGM with a compositional exponent of 2 was optimum for 1.5 mm W coating.

  9. Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates

    Science.gov (United States)

    Prakash, T.; Singha, M. K.; Ganapathi, M.

    2009-02-01

    Nonlinear behavior of functionally graded material (FGM) skew plates under in-plane load is investigated here using a shear deformable finite element method. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the first order shear deformation theory based on exact neutral surface position is employed here. The present model is compared with the conventional mid-surface based formulation, which uses extension-bending coupling matrix to include the noncoincidence of neutral surface with the geometric mid-surface for unsymmetric plates. The nonlinear governing equations are solved through Newton Raphson technique. The nonlinear behavior of FGM skew plates under compressive and tensile in-plane load are examined considering different system parameters such as constituent gradient index, boundary condition, thickness-to-span ratio and skew angle.

  10. Approximation of functionally graded plates with non-conforming finite elements

    Science.gov (United States)

    Chinosi, Claudia; Della Croce, Lucia

    2007-12-01

    In this paper rectangular plates made of functionally graded materials (FGMs) are studied. A two-constituent material distribution through the thickness is considered, varying with a simple power rule of mixture. The equations governing the FGM plates are determined using a variational formulation arising from the Reissner-Mindlin theory. To approximate the problem a simple locking-free Discontinuous Galerkin finite element of non-conforming type is used, choosing a piecewise linear non-conforming approximation for both rotations and transversal displacement. Several numerical simulations are carried out in order to show the capability of the proposed element to capture the properties of plates of various gradings, subjected to thermo-mechanical loads.

  11. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  12. COMPARISON OF THERMOELASTIC RESULTS IN TWO TYPES OF FUNCTIONALLY GRADED BRAKE DISCS

    Directory of Open Access Journals (Sweden)

    Z.N. Ismarrubie

    2012-06-01

    Full Text Available A thermoelastic simulation of functionally graded (FG brake discs is performed using finite element (FE ANSYS. The material properties of two types of FG brake discs are assumed to vary in both radial and thickness directions according to a power law distribution. The brake discs are in contact with one hollow pure pad disc. Dry contact friction is considered as the heat source. The proper thicknesses of pad discs are found to have full-contact status. The behaviour of the thermoelastic results for thickness and radial FG brake discs are compared. The results show that the behaviour of temperature and vertical displacement in these two types of FG brake discs are the same. However, the variations of radial displacement for different grading indices are not the same. The behaviour of other results are quite similar. Thus, it can be concluded that the variation direction of material properties in FG brake discs can affect the results.

  13. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum.

    Science.gov (United States)

    Baron, Cécile

    2011-02-01

    As a non-destructive, non-invasive and non-ionizing evaluation technique for heterogeneous media, the ultrasonic method is of major interest in industrial applications but especially in biomedical fields. Among the unidirectionally heterogeneous media, the continuously varying media are a particular but widespread case in natural materials. The first studies on laterally varying media were carried out by geophysicists on the Ocean, the atmosphere or the Earth, but the teeth, the bone, the shells and the insects wings are also functionally graded media. Some of them can be modeled as planar structures but a lot of them are curved media and need to be modeled as cylinders instead of plates. The present paper investigates the influence of the tubular geometry of a waveguide on the propagation of elastic waves. In this paper, the studied structure is an anisotropic hollow cylinder with elastic properties (stiffness coefficients c(ij) and mass density ρ) functionally varying in the radial direction. An original method is proposed to find the eigenmodes of this waveguide without using a multilayered model for the cylinder. This method is based on the sextic Stroh's formalism and an analytical solution, the matricant, explicitly expressed under the Peano series expansion form. This approach has already been validated for the study of an anisotropic laterally-graded plate (Baron et al., 2007; Baron and Naili, 2010) [6,5]. The dispersion curves obtained for the radially-graded cylinder are compared to the dispersion curves of a corresponding laterally-graded plate to evaluate the influence of the curvature. Preliminary results are presented for a tube of bone in vacuum modelling the in vitro conditions of bone strength evaluation. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Cut-off frequencies of circumferential horizontal shear waves in various functionally graded cylinder shells.

    Science.gov (United States)

    Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji

    2018-03-01

    In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Circular polarisation in AGN

    NARCIS (Netherlands)

    Macquart, JP

    2002-01-01

    We discuss the constraints that recent observations place on circular polarisation in AGN. In many sources the circular polarisation is variable on short timescales, indicating that it originates in compact regions of the sources. The best prospects for gleaning further information about circular

  16. Improving some cognitive functions, specifically executive functions in grade R learners

    Directory of Open Access Journals (Sweden)

    Stef Esterhuizen

    2014-07-01

    and output phases of the designed learning process, as well as the characteristics of their inhibitory control functions. A striking finding was the improvement noted in the children’s application of the following executive functions, namely working memory, cognitive flexibility and inhibitory control.

  17. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  18. Functionally strain-graded nanoscoops for high power Li-ion battery anodes.

    Science.gov (United States)

    Krishnan, Rahul; Lu, Toh-Ming; Koratkar, Nikhil

    2011-02-09

    Lithium-ion batteries show poor performance for high power applications involving ultrafast charging/discharging rates. Here we report a functionally strain-graded carbon-aluminum-silicon anode architecture that overcomes this drawback. It consists of an array of nanostructures each comprising an amorphous carbon nanorod with an intermediate layer of aluminum that is finally capped by a silicon nanoscoop on the very top. The gradation in strain arises from graded levels of volumetric expansion in these three materials on alloying with lithium. The introduction of aluminum as an intermediate layer enables the gradual transition of strain from carbon to silicon, thereby minimizing the mismatch at interfaces between differentially strained materials and enabling stable operation of the electrode under high-rate charge/discharge conditions. At an accelerated current density of ∼51.2 A/g (i.e., charge/discharge rate of ∼40C), the strain-graded carbon-aluminum-silicon nanoscoop anode provides average capacities of ∼412 mAh/g with a power output of ∼100 kW/kg(electrode) continuously over 100 charge/discharge cycles.

  19. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    Directory of Open Access Journals (Sweden)

    Antonio Boccaccio

    Full Text Available Functionally Graded Scaffolds (FGSs are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards

  20. Mother-child planning, child emotional functioning, and children's transition to first grade.

    Science.gov (United States)

    Perez, Susan M; Gauvain, Mary

    2009-01-01

    Mother-child planning was examined in relation to child emotional functioning and first-grade school performance. Ninety dyads were randomly assigned to the explicit-goal condition (emphasized accuracy and preparation for a child-only posttest) or the no-explicit-goal condition (dyads just asked to work together). In the no-explicit-goal condition only, children higher in negative emotionality and lower in regulation skills were less engaged in the task and planned less effectively. Both mother-child planning and adaptive child emotional functioning were positively associated with school performance. Results suggest that child emotional functioning mediated associations between planning and school performance. Implications of these findings for the development of planning and children's transition to school are discussed.

  1. Static Response of Functionally Graded Material Plate under Transverse Load for Varying Aspect Ratio

    Directory of Open Access Journals (Sweden)

    Manish Bhandari

    2014-01-01

    Full Text Available Functionally gradient materials (FGM are one of the most widely used materials in various applications because of their adaptability to different situations by changing the material constituents as per the requirement. Nowadays it is very easy to tailor the properties to serve specific purposes in functionally gradient material. Most structural components used in the field of engineering can be classified as beams, plates, or shells for analysis purposes. In the present study the power law, sigmoid law and exponential distribution, is considered for the volume fraction distributions of the functionally graded plates. The work includes parametric studies performed by varying volume fraction distributions and aspect ratio. The FGM plate is subjected to transverse UDL (uniformly distributed load and point load and the response is analysed.

  2. Circular mats under arbitrary loading

    International Nuclear Information System (INIS)

    Banerjee, A.; Jankov, Z.D.

    1975-01-01

    The analysis of mats as in nuclear power plants may become difficult when the large number of features are intended to be accounted for. Circular mats and arbitrary loadings are only a few of these that are considered. If the subgrade reaction can be represented as the function of subgrade displacement as given by Winkler's, Boussinesq's, or two elastic characteristic approaches, the general numerical method is then possible. Boussinesq's approach was treated in more detail when applied on circular mat with arbitrary loadings. Full polar grid formation that must be used when liftoff occurs is compared to harmonic formulation. The possibility of taking into account the superstructure restraint is indicated

  3. Characterization of functionally graded elastic materials using a thickness-shear mode quartz resonator

    Science.gov (United States)

    Chen, Yangyang; Wang, Ji; Du, Jianke; Yang, Jiashi

    2013-06-01

    We propose the use of a quartz crystal plate thickness-shear (TSh) mode resonator to measure material property variations in a functionally graded material (FGM). A theoretical analysis is performed on TSh vibrations of an AT-cut quartz plate carrying a layer of an FGM whose density and stiffness vary along its thickness. The effect of the material property gradient on the resonant frequencies of the two-layer plate as a compound resonator is examined. It is shown that this effect may be used to measure the material property gradient of the FGM.

  4. Semi-analytical Vibration Characteristics of Rotating Timoshenko Beams Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimia

    Full Text Available AbstractFree vibration analysis of rotating functionally graded (FG thick Timoshenko beams is presented. The material properties of FG beam vary along the thickness direction of the constituents according to power law model. Governing equations are derived through Hamilton's principle and they are solved applying differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The emphasis is placed on investigating the effect of several beam parameters such as constituent volume fractions, slenderness ratios, rotational speed and hub radius on natural frequencies and mode shapes of the rotating thick FG beam.

  5. A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution

    Directory of Open Access Journals (Sweden)

    Mohammad Arefi

    Full Text Available Tensor analysis and an orthogonal curvilinear coordinate system have been used to derive a complete set of equations for piezo-magneto-elastic analysis of a functionally graded (FG thick shell of revolution with variable thickness and curvature. The mentioned structure can be subjected to mechanical, electrical and magnetic fields. It was assumed that all material properties (mechanical, electrical and magnetic properties change functionally throughout the three axis of employed coordinate system. Kinetic and potential energies of the system have been evaluated in order to constitute the functional of the system. Final partial differential equations of the system can be derived by using minimization of the energy functional with respect to five employed functions of the system. For validation, the obtained differential equations have been reduced to two previously studied problems i.e. functionally graded piezoelectric materials and functionally graded piezomagnetic cylinders. Furthermore, numerical results are evaluated for a case study.

  6. Study of high temperature oxidation of duplex and functionally graded materials of thermal barrier coating (FGM TBC)

    International Nuclear Information System (INIS)

    Saeedi, B.; Sabour, A. R.; Khodami, A. M.

    2008-01-01

    Although the number and the severity of thermal barrier coatings applications on hot section components have dramatically increased in the past decade, premature spallation failure of thermal barrier coatings , due to mismatch of thermal expansion at the metal/ceramic interface of the two coating layers, during service is still an overriding concern. Therefore, functionally graded materials with a gradual compositional variation have been introduced. In this study, comparison of properties of two different types of thermal barrier coatings was made to improve the surface characteristics on high temperature components. These thermal barrier coatings consisted of a duplex thermal barrier coatings and a five layered functionally graded thermal barrier coatings . In both coatings, Yttria partially stabilized Zirconia topcoat was deposited by air plasma spraying and Ni Cr Al Y bond coat was deposited by high velocity oxy fuel spraying. In functionally graded materials coating, functionally graded layer was sprayed by air plasma process by varying the feeding ratio of YSZ/Ni Cr Al Y powders using two separate powder feeders. Then, isothermal oxidation was carried out at 950 d eg C in atmosphere to obtain the plot of mass change vs. time to study oxidation kinetic. Microstructural and compositional changes of coating, oxides formed during service were examined by optical microscope and scanning electron microscopy with EDS. functionally graded materials coating failed after 2100 h and duplex coating failed after 1700 h. Finally, it was found that functionally graded materials coating is more qualified than duplex thermal barrier coatings and stands for a longer time

  7. Studies on Mechanical Behaviour of Aluminium/Nickel Coated Silicon Carbide Reinforced Functionally Graded Composite

    Directory of Open Access Journals (Sweden)

    A. Mohandas

    2017-06-01

    Full Text Available The aim of the work is to fabricate functionally graded aluminium (Al-Si6Cu/ nickel coated SiC metal matrix composite using centrifugal casting route. SiC particles (53-80 µm were coated with nickel using electroless coating technique to enhance the wettability with aluminium matrix. Several attempts were made to coat nickel on SiC by varying the process temperature (65 °C, 75 °C, and 85 °C to obtain a uniform coating. Silicon particles coated with nickel were characterised using EDS enabled Field Emission Scanning Electron Microscope and it was found that the maximum nickel coating on SiC occurred at a process temperature of 75°C. This nickel coated SiC particles were used as the reinforcement for the manufacture of functionally graded metal matrix composite and a cast specimen of dimensions 150×90×15 mm was obtained. To ensure the graded properties in the fabricated composites, microstructure (at a distance of 1, 7 and 14 mm and hardness (at a distance of 1, 3, 7, 10 and 14 mm from outer periphery taken in the radial direction was analysed using Zeiss Axiovert metallurgical microscope and Vickers micro hardness tester respectively. The microstructure reveals presence of more SiC particles at the outer periphery compared to inner periphery and the hardness test shows that the hardness also decreased from outer periphery (90 HV to inner periphery (78 HV.Tensile strength of specimen from outer zone (1-7mm and inner zone (8-14 mm of casting was also tested and found out a value of 153.3 Mpa and 123.3 Mpa for the outer zone and inner zone respectively. An important observation made was that the outer periphery of casting was particle rich and the inner periphery was particle deficient because of centrifugal force and variation in density between aluminium matrix and reinforcement. Functionally graded Al/SiC metal matrix composite could be extensively used in automotive industry especially in the manufacture of liners and brake drums.

  8. Functional and quality of life outcomes following obstetric anal sphincter injury (OASI): does the grade of injury affect outcomes?

    Science.gov (United States)

    Ramage, Lisa; Yen, Clarence; Qiu, Shengyang; Simillis, Constantinos; Kontovounisios, Christos; Tekkis, Paris; Tan, Emile

    2017-11-01

    The aim of this study was to compare functional and quality of life data in patients with increasing grades of obstetric anal sphincter injury (OASI) presenting to a tertiary colorectal pelvic floor clinic within 24 months of delivery. Prospective data were collected from the patients for the period 2009-2016 and included data on functional outcomes and motor anorectal manometry parameters. The instruments used for the evaluation of functional outcomes were the Birmingham Bowel and Urinary Symptoms Questionnaire, the Wexner Incontinence Score, Short Form 36, and the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire. OASI grade of injury was based on the postdelivery endoanal ultrasound scan. Data from patients with a grade 3a, 3b, 3c or 4 OASI were compared using one-way ANOVA for parametric data and the Kruskal-Wallis test for nonparametric data overall and for separate time periods (3-6 months, 6-12 months, 12-24 months). Functional patient data were available in 177 patients: 29 with grade 3a, 55 with grade 3b, 77 with grade 3c and 16 with grade 4 OASI. There was no discernible trend in worsening function with increasing severity of OASI overall, nor for the specified time periods of 3-6 months 58 patients), 6-12 months (85 patients) or 12-24 months (18 patients). Our series demonstrated no significant differences in functional outcomes or quality of life in patients with different OASI grades. Longer-term follow-up is required to ascertain any later functional differences which may become apparent with time.

  9. Investigating the thermal environment effects on geometrically nonlinear vibration of smart functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Farzad; Rastgoo, Abbas; Bahrami, Mansoor Nikkhah [University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-03-15

    An analytical solution for a sandwich circular FGM plate coupled with piezoelectric layers under one-dimensional heat conduction is presented. All materials of the device may be of any functional gradients in the direction of thickness. The solution exactly satisfies all the equilibrium conditions and continuity conditions for the stress, displacement and electric displacement as well as electric potential on the interfaces between adjacency layers. A nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the FG plate that is subjected to in-plane forces and applied actuator voltage in thermal environment in the case of simply supported boundary conditions. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed piezoelectric coupled FGM plates are derived. The role of thermal environment as well as control effects on nonlinear static deflections and natural frequencies imposed by the piezoelectric actuators using high input voltages are investigated. Numerical examples are provided and simulation results are discussed. Numerical results for FGM plates with a mixture of metal and ceramic are presented in dimensionless forms. The good agreement between the results of this paper and those of the finite element (FE) analyses validated the presented approach. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage and thermal environment as well as gradient index of FG plate on the dynamics and control characteristics of the structure

  10. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    Science.gov (United States)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  11. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    B. Sidda Reddy

    2013-01-01

    Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.

  12. Theoretical study on functionally graded cylindrical magnetoelectric composites using d15 shear-mode response

    Science.gov (United States)

    Shi, Yang; Gao, Yuanwen

    2017-08-01

    In this study, a novel functionally graded cylindrical magnetoelectric (ME) composite based on d15 shear-mode response is analyzed theoretical by using the elastic mechanics model and equivalent circuit model. The composite is mounted around AC current-carrying power lines to scavenge AC magnetic field energy. For different sensing configurations, the generated magnetic fields are calculated, respectively. Then, based on the theoretical models, the dependences of the ME performances, i.e., the ME voltage and power, upon the type of the material gradation, the material constants, and geometrical parameters of the cylindrical ME composite are numerically evaluated. The results show that the ME coupling effect in the functionally graded cylindrical ME composite with special gradation is stronger than that in the homogeneous structure. The ME performance can be improved by geometrical parameters as well. The presented two models can be synthesized under the open-circuit condition, which provide a theoretical basis to understand and improve the ME property of the d15 shear-mode cylindrical ME composites operating at resonant frequency and off-resonance frequency.

  13. Enriched Element-Free Galerkin Method for Fracture Analysis of Functionally Graded Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Guang Wei Meng

    2015-01-01

    Full Text Available A new method using the enriched element-free Galerkin method (EEFGM to model functionally graded piezoelectric materials (FGPMs with cracks was presented. To improve the solution accuracy, extended terms were introduced into the approximation function of the conventional element-free Galerkin method (EFGM to describe the displacement and electric fields near the crack. Compared with the conventional EFGM, the new approach requires smaller domain to describe the crack-tip singular field. Additionally, the domain of the nodes was not affected by the crack. Therefore, the visibility method and the diffraction method were no longer needed. The mechanical response of FGPM was discussed, when its material parameters changed exponentially in a certain direction. The modified J-integrals for FGPM were deduced, whose results were compared with the results of the conventional EFGM and the analytical solution. Numerical example results illustrated that this method is feasible and precise.

  14. Three-dimensional vibration analysis of functionally graded material plates in thermal environment

    Science.gov (United States)

    Li, Q.; Iu, V. P.; Kou, K. P.

    2009-07-01

    Free vibration of functionally graded material rectangular plates with simply supported and clamped edges in the thermal environment is studied based on the three-dimensional linear theory of elasticity. Simply supported and clamped FGM plates with temperature-dependent material properties subjected to uniform temperature rise, linear temperature rise and nonlinear temperature rise are considered. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by Ritz method. The numerical results of the present approach are compared with the results of other researchers for the validation. Parametric study is performed for supported conditions, temperature fields, volume fraction indices of FGM plates.

  15. Stochastic thermoelastic problem of a functionally graded plate under random temperature load

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R. [Miyagi National College of Technology, Department of Mechanical Engineering, Natori (Japan); Sugano, Y. [Iwate University, Department of Mechanical Engineering, Morioka (Japan)

    2007-04-15

    This study attempts to derive the statistics of temperature and thermal stress in functionally graded material (FGM) plates exposed to random external temperatures. The thermomechanical properties of the FGM plates are assumed to vary arbitrarily only in the plate thickness direction. The external temperatures are expressed as random functions with respect to time. The transient temperature field in the FGM plate is determined by solving a nonhomogeneous heat conduction problem for a multilayered plate with linear nonhomogeneous thermal conductivity and different homogeneous heat capacity in each layer. The autocorrelations and power spectrum densities (PSDs) of temperature and thermal stress are derived analytically. These statistics for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304) are computed under the condition that the fluctuation in the external temperature can be considered as white noise or a stationary Markov process. (orig.)

  16. Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads

    Science.gov (United States)

    Chen, X. L.; Liew, K. M.

    2004-12-01

    In this paper, the buckling behavior of functionally graded material (FGM) rectangular plates subjected to pin loads, partial uniform loads and parabolic loads is studied using the mesh-free method based on the radial basis function. The proposed mesh-free method approximates displacements based on scattered nodes, thus it can avoid the disadvantages that arise in the finite element method (FEM) from the use of elements. Variational forms of the system equations for the calculation of non-uniform prebuckling stress distribution and buckling loads of the plate are established. Two-step solution procedures are implemented. First the non-uniform prebuckling stresses are obtained based on a two-dimensional (2D) elastic plane stress problem. Then buckling loads of plates with the predetermined non-uniform prebuckling stresses are calculated based on Mindlin's plate assumption. Selected numerical examples are presented to validate the proposed mesh-free method.

  17. Three-dimensional vibration analysis of functionally graded material sandwich plates

    Science.gov (United States)

    Li, Q.; Iu, V. P.; Kou, K. P.

    2008-03-01

    Free vibration of functionally graded material sandwich rectangular plates with simply supported and clamped edges is studied based on the three-dimensional linear theory of elasticity. Two common types of FGM sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by Ritz method. Rapid convergence is observed in this study. The natural frequencies of simply supported power-law FGM sandwich plates are compared with results from different two-dimensional plate theories. Parametric study is performed for varying volume fraction, layer thickness ratios, thickness-length ratios and aspect ratios of the sandwich plates.

  18. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  19. Influences of Dynamic Moving Forces on the Functionally Graded Porous-Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Kien

    2016-07-01

    Full Text Available The dynamic response of functionally graded (FG porous-nonuniform beams subjected to moving forces is investigated. The beam cross-section is assumed to vary longitudinally in the width direction by a linear or quadratic function. A modified rule of mixture, taking the effect of porosities into account, is adopted in evaluating the effective material properties. Based on Timoshenko beam theory, governing equations of motion are derived from Hamilton's principle, and they are solved by a finite element model. The dynamic response of a simply supported FG porous beam is computed with the aid of the Newmark method. The validation of the derived formulation is confirmed by comparing the obtained numerical results with the data available in the literature. A parametric study is conducted to highlight the effect of the material inhomogeneity, porosity volume fraction, section profile and loading parameters on the dynamic behavior of the beams.

  20. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  1. Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load

    Science.gov (United States)

    Gao, Kang; Gao, Wei; Wu, Di; Song, Chongmin

    2018-02-01

    This paper focuses on the dynamic stability behaviors of the functionally graded (FG) orthotropic circular cylindrical shell surrounded by the two-parameter (Winkler-Pasternak) elastic foundation subjected to a linearly increasing load with the consideration of damping effect. The material properties are assumed to vary gradually in the thickness direction based on an exponential distribution function of the volume fraction of constituent materials. Equations of motion are derived from Hamilton's principle and the nonlinear compatibility equation is considered by the means of modified Donnell shell theory including large deflection. Then the nonlinear dynamic buckling equation is solved by a hybrid analytical-numerical method (combined Galerkin method and fourth-order Runge-Kutta method). The nonlinear dynamic stability of the FG orthotropic cylindrical shell is assessed based on Budiansky-Roth criterion. Additionally, effects of different parameters such as various inhomogeneous parameters, loading speeds, damping ratios and aspect ratios and thickness ratios of the structure on dynamic buckling are discussed in details. Finally, the proposed method is validated with published literature.

  2. Magnetic circular dichroism and density functional theory studies of electronic structure and bonding in cobalt(ii)-N-heterocyclic carbene complexes.

    Science.gov (United States)

    Iannuzzi, Theresa E; Gao, Yafei; Baker, Tessa M; Deng, Liang; Neidig, Michael L

    2017-10-10

    The combination of simple cobalt salts and N-heterocyclic carbene (NHC) ligands has been highly effective in C-H functionalization, hydroarylation and cross-coupling catalysis, though displaying a strong dependence on the identity of the NHC ligand. In addition, reactions effective with NHC ligands are often ineffective with phosphine ligands, further motivating the evaluation of the fundamental electronic structure and bonding differences in well-defined distorted tetrahedral Co(ii) complexes. Magnetic circular dichroism (MCD) studies indicate that Co(ii)-bisphosphines have larger ligand fields than Co(ii)-NHC complexes. Theoretical density functional theory (DFT) calculations were performed on an expanded set of L 2 CoCl 2 complexes (L 2 = NHC, bisphosphine and diamine) to study the electronic structure and relative ligation properties of NHCs compared to bisphosphine and diamine ligands. Mayer bond order and charge decomposition analyses indicate that NHC ligands are slightly stronger donor ligands than bisphosphines but also result in a weakening of Co-Cl bonds in a trans-like influence. From MCD and DFT studies, changing the NHC N-substituent has a larger effect on the ligand field of Co(ii)-NHC complexes than saturating the backbone. Overall, these studies provide detailed insight into the electronic structure and bonding effects in Co(ii) complexes with ligand types commonly explored in catalysis.

  3. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  4. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  5. Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method

    International Nuclear Information System (INIS)

    Wang, Zhong-Min; Liu, Yan-Zhuang

    2016-01-01

    Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.

  6. Low-grade systemic inflammation: a partial mediator of the relationship between diabetes and lung function.

    Science.gov (United States)

    Giovannelli, Jonathan; Trouiller, Philippe; Hulo, Sébastien; Chérot-Kornobis, Natalie; Ciuchete, Alina; Edmé, Jean-Louis; Matran, Régis; Amouyel, Philippe; Meirhaeghe, Aline; Dauchet, Luc

    2018-01-01

    An association has been consistently found between diabetes mellitus and decreased lung function. We evaluated to what extent low-grade inflammation (as measured by the level of high-sensitivity C-reactive protein [hs-CRP]) could explain this relationship. A sample of 1878 middle-aged adults from the cross-sectional Enquête Littoral Souffle Air Biologie Environnement survey without self-reported pulmonary and atherosclerosis disease was included. A mediation analysis was performed to assess and quantify the hs-CRP level as a mediator of the relationship between diabetes and lung function. Diabetes was associated with higher hs-CRP level (+22.9%, 95% confidence interval = [5.1, 43.6]). The hs-CRP (>4 vs. ≤1 mg/L) was associated with lower percentage predicted values for the forced expiratory volume in the first second (FEV1) (-4% [-6.1, -1.9]) and forced vital capacity (FVC) (-4.4% [-6.5, -2.3]). Diabetes was associated with FEV1 (-3.5% [-5.8, -1.3]) and FVC (-3.6% [-5.9, -1.3]). The proportion of the effect that is mediated by hs-CRP was 12% [2.4, 37] and 13% [3.7, 39.4] for FEV1 and FVC, respectively. Our results suggest that low-grade systemic inflammation could only explain a small part of the relationship between diabetes and lung function. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, Ashraf M., E-mail: zenkour@hotmail.com [Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516 (Egypt); Abbas, Ibrahim A. [Department of Mathematics, Faculty of Science and Arts-Khulais, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Mathematics, Faculty of Science, Sohag University, Sohag (Egypt)

    2015-12-01

    The electro-magneto-thermo-elastic analysis problem of an infinite functionally graded (FG) hollow cylinder is studied in the context of Green–Naghdi's (G–N) generalized thermoelasticity theory (without energy dissipation). Material properties are assumed to be graded in the radial direction according to a novel power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The inner surface of the FG cylinder is pure metal whereas the outer surface is pure ceramic. The equations of motion and the heat-conduction equation are used to derive the governing second-order differential equations. A finite element scheme is presented for the numerical purpose. The system of differential equations is solved numerically and some plots for displacement, radial and electromagnetic stresses, and temperature are presented. The radial displacement, mechanical stresses and temperature as well as the electromagnetic stress are all investigated along the radial direction of the infinite cylinder. - Highlights: • The electro-magneto-thermo-elastic analysis problem of a FG cylinder is studied. • A finite element scheme is presented for the numerical purpose. • The results are investigated along the radial direction of the infinite cylinder. • It provides interesting information for all researchers working on this subject.

  8. Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation

    International Nuclear Information System (INIS)

    Zenkour, Ashraf M.; Abbas, Ibrahim A.

    2015-01-01

    The electro-magneto-thermo-elastic analysis problem of an infinite functionally graded (FG) hollow cylinder is studied in the context of Green–Naghdi's (G–N) generalized thermoelasticity theory (without energy dissipation). Material properties are assumed to be graded in the radial direction according to a novel power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The inner surface of the FG cylinder is pure metal whereas the outer surface is pure ceramic. The equations of motion and the heat-conduction equation are used to derive the governing second-order differential equations. A finite element scheme is presented for the numerical purpose. The system of differential equations is solved numerically and some plots for displacement, radial and electromagnetic stresses, and temperature are presented. The radial displacement, mechanical stresses and temperature as well as the electromagnetic stress are all investigated along the radial direction of the infinite cylinder. - Highlights: • The electro-magneto-thermo-elastic analysis problem of a FG cylinder is studied. • A finite element scheme is presented for the numerical purpose. • The results are investigated along the radial direction of the infinite cylinder. • It provides interesting information for all researchers working on this subject

  9. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    Science.gov (United States)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  10. Functionally graded poly(dimethylsiloxane)/silver nanocomposites with tailored broadband optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaou, P.; Mina, C.; Constantinou, M.; Koutsokeras, L.E.; Constantinides, G. [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, PO Box 50329, 3603 Limassol (Cyprus); Lidorikis, E.; Avgeropoulos, A. [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Kelires, P.C. [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, PO Box 50329, 3603 Limassol (Cyprus); Patsalas, P., E-mail: ppats@physics.auth.gr [Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2015-04-30

    In this work, we produce functionally graded nanocomposites consisting of silver (Ag) plasmonic nanoparticles (PNPs) supported in a poly(dimethylsiloxane) (PDMS) matrix. PDMS was selected due to its high optical transparency, nontoxicity and ease of use. The Ag PNPs were formed by annealing sputtered Ag ultra-thin films and were subsequently capped by a spin-coated PDMS layer. We investigate the factors that affect their plasmonic behavior, such as the PNP size, the annealing conditions and the surrounding environment. In order to achieve broadband absorption, we developed PDMS/Ag(PNPs) multilayers with graded PNP size. Thus, we demonstrate the significance of the stacking sequence of various plasmonic layers sandwiched between PDMS layers and its potential for tailoring the plasmonic response of multilayer structure. As a demonstration of this approach, we deposited a specially designed multilayer structure, whose optical extinction resembles the solar emission spectrum. - Highlights: • Elastomers are combined with plasmonic nanoparticles. • The plasmonic effects in stratified media are identified. • Broadband absorption similar to solar emission is achieved.

  11. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  12. The Effect Of Ceramic In Combination Of Two Sigmoid Functionally Graded Rotating Disks With Variable Thickness

    DEFF Research Database (Denmark)

    Bayat, M.; Sahari, B. B.; Saleem, M.

    2012-01-01

    In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented.......In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented....

  13. Laser Rapid Manufacturing of Stainless Steel 316L/Inconel718 Functionally Graded Materials: Microstructure Evolution and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Dongjiang Wu

    2010-01-01

    Full Text Available Two patterns of functionally graded materials (FGMs were successfully fabricated whose compositions gradually varied from 100% stainless steel 316L to 100% Inconel718 superalloy using laser engineered net shaping process. The microstructure characterization, composition analysis, and microhardness along the graded direction were investigated. The comparison revealed the distinctions in solidification behavior, microstructure evolution of two patterns. In the end, the abrasive wear resistance of the material was investigated.

  14. Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Nabeel T. Alshabatat

    2014-01-01

    Full Text Available This paper presents a design method to optimize the material distribution of functionally graded beams with respect to some vibration and acoustic properties. The change of the material distribution through the beam length alters the stiffness and the mass of the beam. This can be used to alter a specific beam natural frequency. It can also be used to reduce the sound power radiated from the vibrating beam. Two novel volume fraction laws are used to describe the material volume distributions through the length of the FGM beam. The proposed method couples the finite element method (for the modal and harmonic analysis, Lumped Parameter Model (for calculating the power of sound radiation, and an optimization technique based on Genetic Algorithm. As a demonstration of this technique, the optimization procedure is applied to maximize the fundamental frequency of FGM cantilever and clamped beams and to minimize the sound radiation from vibrating clamped FGM beam at a specific frequency.

  15. Analysis of macro and micro residual stresses in functionally graded materials by diffraction methods

    CERN Document Server

    Dantz, D; Reimers, W

    1999-01-01

    The residual stress state in microwave sintered metal-ceramic functionally graded materials (FGM) consisting of 8Y-ZrO/sub 2//Ni and 8Y-ZrO/sub 2//NiCr8020, respectively, was analysed by non- destructive diffraction methods. In $9 order to get knowledge of the complete residual stress state in the near surface region as well as in the interior of the material, complementary methods were applied. Whereas the surface was characterised by X-ray techniques using $9 conventional sources, the stresses within the bulk of the material were investigated by means of high energy synchrotron radiation. The stress state was found to obey the differences in the coefficients of thermal expansion $9 (micro-stresses) on the one hand and the inhomogeneous cooling conditions (macrostresses) on the other hand. (7 refs).

  16. Nonlinear Dynamic Response of Functionally Graded Rectangular Plates under Different Internal Resonances

    Directory of Open Access Journals (Sweden)

    Y. X. Hao

    2010-01-01

    Full Text Available The nonlinear dynamic response of functionally graded rectangular plates under combined transverse and in-plane excitations is investigated under the conditions of 1 : 1, 1 : 2 and 1 : 3 internal resonance. The material properties are assumed to be temperature-dependent and vary along the thickness direction. The thermal effect due to one-dimensional temperature gradient is included in the analysis. The governing equations of motion for FGM rectangular plates are derived by using Reddy's third-order plate theory and Hamilton's principle. Galerkin's approach is utilized to reduce the governing differential equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms, which are then solved numerically by using 4th-order Runge-Kutta algorithm. The effects of in-plane excitations on the internal resonance relationship and nonlinear dynamic response of FGM plates are studied.

  17. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials.

    Science.gov (United States)

    Wang, Ji; Yang, Jiashi; Li, Jiangyu

    2007-03-01

    Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.

  18. Transient temperature fields in functionally graded materials with different shapes under convective boundary conditions

    Science.gov (United States)

    Zhao, J.; Ai, X.; Li, Y. Z.

    2007-10-01

    This paper presents analyses of the transient temperature fields in an infinite plate, an infinite solid cylinder and a solid sphere made of functionally graded materials (FGMs) under convective boundary conditions. The composition and the thermo-physical properties of the infinite FGM plate, the infinite FGM solid cylinder and the FGM solid sphere are of planar symmetric, axially symmetric and spherically symmetric distributions, respectively. The analytical formulae of the one-dimensional transient temperature fields for the three FGM solids are obtained respectively by using the separation-of-variables method and the variable substitution method. Numerical results reveal that the transient temperature fields of the FGM components exhibit similar shape effect to that of homogeneous components. The present work provides valuable basis for the investigation of the thermal shock resistance of FGMs with various shapes.

  19. Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage

    Directory of Open Access Journals (Sweden)

    Jamal Zare

    2015-01-01

    Full Text Available The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the influences of material properties and actuation voltage on dynamic pull-in behavior are investigated. It is demonstrated that the auxiliary term in the homotopy perturbation method is extremely effective for higher order approximation and two terms in series expansions are sufficient to produce an acceptable solution. The strength of this analytical procedure is verified through comparison with numerical results.

  20. Volume Fraction Optimization of Functionally Graded Composite Plates for Stress Reduction and Thermo-Mechanical Buckling

    Science.gov (United States)

    Na, Kyung-Su; Kim, Ji-Hwan

    2008-02-01

    The volume fraction optimization of Functionally Graded Material (FGM) composite plate is investigated for stress reduction and thermo-mechanical buckling. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The 3-D finite element is adopted using an 18-node solid element to analyze the plate model more accurately for the variation of material properties and temperature field in the thickness direction. Tensile and compressive stress ratios of the structure under mechanical load are evaluated for stress analysis. Temperature at each node is obtained by solving the steady-state heat transfer problem in the thermo-mechanical buckling analysis, and Newton-Raphson method is used for nonlinear analysis. Tensile stress ratios, compressive stress ratios and critical temperatures are analyzed for various thickness ratios and volume fraction distributions in the numerical study. Finally, the optimal design of FGM composite plate is investigated by considering the stress and the critical temperature.

  1. Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation

    International Nuclear Information System (INIS)

    Mohanty, S.C.; Dash, R.R.; Rout, T.

    2011-01-01

    Highlights: → Winkler's elastic foundation enhances the stability of both FGO and FGSW beams with material properties distribution along the thickness as per power law and exponential law. → FGO beam with steel-rich bottom is more stable than a beam with aluminium-rich bottom for both the types of property distribution. → FGSW beam with the properties in FGM core varying as per power law becomes less stable with increase in core thickness. → Exponential variation of core properties enhances its stability with the increase in core thickness. - Abstract: This article presents an investigation of the dynamic stability of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam on Winkler's elastic foundation using finite element method. The material properties are assumed to follow both exponential and power law. It is found that the foundation enhances stability of the FGO beam for first three modes. The effect of distributions of material properties of the FGO beam on its parametric instability is investigated. It is found that the FGO beam with steel-rich bottom is more stable as compared to that with Al-rich bottom for all the three modes and for both the types of property distributions. The effect of property distribution on stability of FGSW beam with steel as bottom skin and alumina as top skin is also investigated. It is observed that the beam having properties in core according to exponential law is the most stable beam while the beam having properties in core as per power law with index 2.5 is the least stable beam. For an FGSW beam it is found that the increase in the thickness of FGM core makes the beam less stable when the properties in FGM vary as per power law whereas the stability of beam enhances with the increase of thickness of FGM core when the properties vary according to exponential law.

  2. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Improvement in cognitive function after surgery for low-grade glioma.

    Science.gov (United States)

    Barzilai, Ori; Ben Moshe, Shlomit; Sitt, Razi; Sela, Gal; Shofty, Ben; Ram, Zvi

    2018-03-23

    OBJECTIVE Cognition is a key component in health-related quality of life (HRQoL) and is currently incorporated as a major parameter of outcome assessment in patients treated for brain tumors. The effect of surgery on cognition and HRQoL remains debatable. The authors investigated the impact of resection of low-grade gliomas (LGGs) on cognition and the correlation with various histopathological markers. METHODS A retrospective analysis of patients with LGG who underwent craniotomy for tumor resection at a single institution between 2010 and 2014 was conducted. Of 192 who underwent resective surgery for LGG during this period, 49 had complete pre- and postoperative neurocognitive evaluations and were included in the analysis. These patients completed a full battery of neurocognitive tests (memory, language, attention and working memory, visuomotor organization, and executive functions) pre- and postoperatively. Tumor and surgical characteristics were analyzed, including volumetric measurements and histopathological markers (IDH, p53, GFAP). RESULTS Postoperatively, significant improvement was found in memory and executive functions. A subgroup analysis of patients with dominant-side tumors, most of whom underwent intraoperative awake mapping, revealed significant improvement in the same domains. Patients whose tumors were on the nondominant side displayed significant improvement only in memory functions. Positive staining for p53 testing was associated with improved language function and greater extent of resection in dominant-side tumors. GFAP positivity was associated with improved memory in patients whose tumors were on the nondominant side. No correlation was found between cognitive outcome and preoperative tumor volume, residual volume, extent of resection, or IDH1 status. CONCLUSIONS Resection of LGG significantly improves memory and executive function and thus is likely to improve functional outcome in addition to providing oncological benefit. GFAP and pP53

  4. Towards Circular Economy

    DEFF Research Database (Denmark)

    Guldmann, Eva

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  5. Towards Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva; Remmen, Arne

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  6. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  7. An Analysis of Grade 11 Learners' Levels of Understanding of Functions in Terms of APOS Theory

    Science.gov (United States)

    Chimhande, Tinoda; Naidoo, Ana; Stols, Gerrit

    2017-01-01

    This article reports on a study of six Grade 11 learners' levels of understanding of concepts related to the function definition and representation. Task-based clinical interviews were used to elicit the learners' interpretations and reasoning when working with these function-related concepts. Indicators for Action-Process-Object-Schema (APOS)…

  8. Functional Grammar and Teaching of Reading--A Pedagogy Based on Graded Teaching of College English in China

    Science.gov (United States)

    Xu, Tuo; Zhang, Beili

    2015-01-01

    This article discusses the importance of functional grammar and demonstrates its application to the teaching of reading among graded college students. Functional grammar holds that a discourse is composed of two levels: the interior level and the exterior level. Therefore, reading activities involve both linguistic elements and contexts.…

  9. Building a Circular Future

    DEFF Research Database (Denmark)

    Merrild, Heidi

    2016-01-01

    Natural resources are scarce and construction accounts for 40 percent of the material and energy consumption in Europe. This means that a switch to a circular future is necessary. ’Building a Circular Future’ maps out where we are, where we are going, and what is needed for this conversion to take...... of the circular strategies is not only in the future. Increased flexibility, optimized operation and maintenance, as well as a healthier building, is low-hanging fruit that can be harvested today. The project’s principles can be implemented in industrialized construction in a large scale today. That is proven...... by the three 1:1 prototypes of building elements, which are designed for maximum reuse and circular economy, that has been developed as a result of the project. Several built projects and commercially available products support this assertion. CIRCULAR PRINCIPLES The focus throughout the book is how to build...

  10. Circular differential microscopy

    International Nuclear Information System (INIS)

    Maestre, M.F.; Bustamante, C.; Keller, D.

    1985-01-01

    The authors describe the historical development of the theory of differential imaging and the invention of the circular differential imaging microscope. The technique is shown to be a logical extension of the research on the interaction of circularly polarized light with stuctures whose dimensions are arbitrary with respect to the wavelength of light. Shown is the circular dichroism spectra in arbitrary units of E. cirrhosa sperm heads, measured by techniques with different collection angles of scattered light. Also presented is a scanning electron micrograph of a freexe-dried sperm head from E. cirrhosa. It was shown that circular differential scattering is specially sensitive to the dimensions of the structure close to the wavelength of the incident light, and application of circular intensity differential scattering theory to images extend these results

  11. Longitudinal Investigation of Adaptive Functioning Following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Netson, Kelli L. [Department of Psychiatry and Behavioral Sciences, Kansas University School of Medicine—Wichita, Kansas (United States); Conklin, Heather M. [Department of Psychology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2013-04-01

    Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample

  12. Longitudinal Investigation of Adaptive Functioning Following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    International Nuclear Information System (INIS)

    Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2013-01-01

    Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample

  13. PREFACE: 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM 2012)

    Science.gov (United States)

    Zhou, Zhangjian; Li, Jingfeng; Zhang, Lianmeng; Ge, Changchun

    2013-03-01

    The 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM-2012) was held in Beijing, China, from 22-36 October 2012. This was part of a series of conferences organized every two years endorsed by International Advisory Committee for FGM's, which serves as a forum for scientists, educators, engineers and young students interested in the development of functionally graded materials (FGM). The series continues from the previous international symposium on FGM held in Sendai, Japan (1990), San Francisco, USA (1992), Lausanne, Switzerland (1994), Tsukuba, Japan (1996), Dresden, Germany (1998), Estes Park, USA (2000), Beijing, China (2002), Leuven, Belgium (2004), Hawaii, USA (2006), Sendai, Japan (2008) and Guimaraes, Portugal (2010). Functionally graded materials are non-uniform materials which are designed with embodied continuous spatial variations in composition and microstructure for the specific purpose of adjusting their thermal, structural, mechanical, biological or functional response to specific application conditions. Such multi-phase materials cover a range of space and time scales, and are best understood by means of a comprehensive multiscale, multiphysics approach. These kinds of materials are presently in the forefront of materials research, receiving worldwide attention. They have a broad range of applications including for example, biomedical, biomechanical, automotive, aerospace, mechanical, civil, nuclear, and naval engineering. New applications are continuously being discovered and developed. The objective of the FGM-2012 intends to provide opportunities for exchanging ideas and discussing state-of-the-art theories, techniques and applications in the fields of multiscale, multifunctional and FGM, through invited lectures, oral and poster presentations. FGM-2012 was organized and hosted by University of Science and Technology Beijing, China, together with Tsing-hua University and Wuhan University of

  14. Analysis of Sigmoid Functionally Graded Material (S-FGM Nanoscale Plates Using the Nonlocal Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2013-01-01

    Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.

  15. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements

    Science.gov (United States)

    Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah

    2014-02-01

    Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.

  16. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  17. Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates

    Directory of Open Access Journals (Sweden)

    R. Ansari

    Full Text Available In this paper, the free vibration behavior of post-buckled functionally graded (FG Mindlin rectangular microplates are described based on the modified couple stress theory (MCST. This theory enables the consideration of the size-effect through introducing material length scale parameters. The FG microplates made of a mixture of metal and ceramic are considered whose volume fraction of components is expressed by a power law function. By means of Hamilton's principle, the nonlinear governing equations and associated boundary conditions are derived for FG micro-plates in the postbuckling domain. The governing equations and boundary conditions are then discretized by using the generalized differential quadrature (GDQ method before solving numerically by the pseudo-arclength continuation technique. In the solution procedure, the postbuckling problem of microplates is investigated first. Afterwards, the free vibration of microplates around the buckled configuration is discussed. The effects of dimensionless length scale parameter, material gradient index and aspect ratio on the on the postbuckling path and frequency of FG microplates subject to arbitrary edge supports are thoroughly discussed.

  18. Preservation of Motor Function After Resection of Lower-Grade Glioma at the Precentral Gyrus and Prediction by Presurgical Functional Magnetic Resonance Imaging and Magnetoencephalography.

    Science.gov (United States)

    Izutsu, Nobuyuki; Kinoshita, Manabu; Yanagisawa, Takufumi; Nakanishi, Katsuhiko; Sakai, Mio; Kishima, Haruhiko

    2017-11-01

    Intra-axial brain tumors located at anatomically eloquent areas are challenging conditions. On one hand, it is often difficult to pursue maximum extent of resection of tumor in these locations. On the other hand, neuroplasticity occurs in some patients with low-grade glioma, and the primary neural functions are known to sometimes shift from conventional "eloquent cortices." In a patient with a lower-grade glioma located at the precentral gyrus, shift of primary motor function from the precentral gyrus to the postcentral gyrus was detected on magnetoencephalography and functional magnetic resonance imaging. Aggressive removal of the pathologic precentral gyrus was accomplished via awake craniotomy without causing obvious motor function deficit. This case highlights the importance of preoperative multimodal neurophysiologic imaging in patients with low-grade gliomas in eloquent areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  20. Membranes for periodontal regeneration: From commercially available to spatially designed and functionally graded materials

    Science.gov (United States)

    Bottino, Marco Cicero

    The aging of the global population will lead to a considerable increase in the number of surgical and restorative procedures related to oral rehabilitation or periodontal regeneration. Periodontitis is one of the most aggressive pathologies that concern the integrity of the periodontal system that can lead to the destruction of the periodontium. Guided tissue and guided bone regeneration (GTR/GBR) have been used for the repair and regeneration of periodontal tissues by utilizing an occlusive membrane. The goal of this dissertation is to advance the knowledge in the area of periodontal regeneration by investigating the properties of a commercially available freeze-dried collagen-based graft (AlloDermRTM) and by designing/fabricating a functionally graded membrane (FGM) via multilayer electrospinning. The effects of different rehydration times and of a simultaneous rehydration/crosslinking procedure on the biomechanical properties and matrix stability of the commercially available membrane were investigated. The results revealed that there are significant changes on the biomechanical properties of the graft as rehydration time increases. Moreover, it was demonstrated that the simultaneous rehydration/crosslinking protocol has a synergistic effect in terms of enhancing biomechanical properties. A FGM consisting of a core-layer (CL) and two functional surface-layers (SL) was fabricated via sequential electrospinning. Hydroxyapatite nanoparticles (n-HAp) were incorporated to enhance bone formation (SL facing bone defect), and metronidazole benzoate (MET) was added to prevent bacterial colonization (SL facing the epithelial tissue). Degradation studies performed on both the CL and the FGM confirmed that the design holds promise in terms of providing the required mechanical stability to avoid membrane collapse and, therefore, enhance bone regeneration. Finally, it was demonstrated that MET incorporation into the SL that would face epithelial tissue is effective in

  1. Administrative & Operational Circulars - Reminder

    CERN Document Server

    HR Department

    2011-01-01

    All Administrative and Operational Circulars are available on the intranet site of the Human Resources Department at the following address: http://cern.ch/hr-docs/admincirc/admincirc.asp Department Head Office  

  2. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used re...... such as the circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  3. Performance grading and motivational functioning and fear in physical education: A self-determination theory perspective

    NARCIS (Netherlands)

    Krijgsman, C.A.; Vansteenkiste, Maarten; van Tartwijk, J.W.F.; Maes, Jolien; Borghouts, Lars; Cardon, Greet; Mainhard, M.T.; Haerens, Leen

    2017-01-01

    Grounded in self-determination theory, the present study examines the explanatory role of students' perceived need satisfaction and need frustration in the relationship between performance grading (versus non-grading) and students' motivation and fear in a real-life educational physical education

  4. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state

    Science.gov (United States)

    Wang, Yan Qing

    2018-02-01

    To provide reference for aerospace structural design, electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates carrying porosities in the translation state are investigated. A modified power law formulation is employed to depict the material properties of the plates in the thickness direction. Three terms of inertial forces are taken into account due to the translation of plates. The geometrical nonlinearity is considered by adopting the von Kármán non-linear relations. Using the d'Alembert's principle, the nonlinear governing equation of the out-of-plane motion of the plates is derived. The equation is further discretized to a system of ordinary differential equations using the Galerkin method, which are subsequently solved via the harmonic balance method. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. Additionally, the stability of the steady state responses is examined by means of the perturbation technique. Linear and nonlinear vibration analyses are both carried out and results display some interesting dynamic phenomenon for translational porous FGPM plates. Parametric study shows that the vibration characteristics of the present inhomogeneous structure depend on several key physical parameters.

  5. Free vibration of functionally graded beams and frameworks using the dynamic stiffness method

    Science.gov (United States)

    Banerjee, J. R.; Ananthapuvirajah, A.

    2018-05-01

    The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.

  6. Thin films with chemically graded functionality based on fluorine polymers and stainless steel.

    Science.gov (United States)

    Piedade, A P; Nunes, J; Vieira, M T

    2008-07-01

    Thin films of stainless steel and poly(tetrafluoroethylene) were co-deposited, by radiofrequency magnetron sputtering, in an inert atmosphere in order to produce a functionally graded material as a coating on a traditional biomaterial, where non-ferromagnetic characteristics and improved wettability must be ensured. These thin films are intended to modify the surface of SS316L used in stents, where the bulk/thin film couple should be regarded as a single material. This requires excellent adhesion of the coating to the substrate. All coatings were deposited with an average thickness of 500 nm. The chemical and phase characterization of the surface revealed that, with the increase in F content, the thin film evolves from a ferritic phase (alpha) to an amorphous phase with dispersion of a new crystalline ceramic phase (FeF(2)). For intermediate F content values, an austenitic (111) phase (gamma) was present. Bearing in mind the envisaged application, the best results were attained for thin films with a fluorine content between 10 and 20 at.%.

  7. Wsbnd Cu functionally graded material: Low temperature fabrication and mechanical characterization

    Science.gov (United States)

    Yusefi, Ali; Parvin, Nader; Mohammadi, Hossein

    2018-04-01

    In this study, we fabricated and characterized a Wsbnd Cu functionally graded material (FGM) with 11 layers, including a pure copper layer. Samples were prepared by mixing a mechanically alloyed Nisbnd Mnsbnd Cu powder with W and Cu powders, stacking the powders, pressing the stacked layers, and finally sintering at 1000 °C. The utilization of a Nisbnd Mnsbnd Cu system may reduce the cost but without losing the good sintering behavior and physical and mechanical properties. The composition of the material was analyzed based on scanning electron microscopy images and by energy dispersive X-ray spectroscopy mapping, which indicated that in the presence of Ni and Mn, the Cu atoms could diffuse into the W particles. All of the layers had a very high relative density, thereby indicating their densification and excellent sintering behavior. We also found that the porosity values in the Cu phase remained unchanged at approximately 2.39% across the FGM. Mechanical measurements showed that the hardness (72%), modulus of elasticity (61%), and ultimate tensile strength (58%) increased with the W content across the Wsbnd Cu FGM, whereas the fracture toughness (KIC) varied in the opposite manner (minimum of 4.52 MPa/m0.5).

  8. Fabrication of Functionally Graded Ti and γ-TiAl by Laser Metal Deposition

    Science.gov (United States)

    Yan, Lei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joseph W.; Liou, Frank

    2017-12-01

    TiAl alloys have become a popular choice in the aerospace and automotive industries, owing to their high specific yield strength, specific modulus, and oxidation resistance over titanium alloys and Ni-based super alloys at elevated temperatures. Although laser metal deposition (LMD) techniques have been available for manufacturing metal alloys for a decade, limited research has been focused on joining intermetallic materials with dissimilar materials using LMD. Here, LMD was used to join titanium aluminide Ti-48Al-2Cr-2Nb and commercially pure titanium with an innovative transition path. The theorized transition was implemented by fabricating functionally graded material (FGM). Porosity- and crack-free deposits were successfully fabricated. Energy dispersive x-ray spectroscopy analysis revealed the final composition was very close to the design composition. X-ray diffraction showed the expected phases were formed. The Vickers hardness, ultimate tensile strength, and coefficient of thermal expansion were evaluated to characterize the FGM's mechanical and physical properties. The properties of the material were comparable to those of as-cast material as reported in the literature.

  9. A novel method for characterizing the impact response of functionally graded plates

    Science.gov (United States)

    Larson, Reid A.

    Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM plates were collected during impact events. These strain histories were used to validate a finite element simulation of the test. A parameter estimation technique was developed to estimate local material properties in the anisotropic, non-homogenous FGM plates to optimize the finite element simulations. The optimized simulations captured the physics of the impact events. The method allows research & design engineers to make informed decisions necessary to implement FGM plates in aerospace platforms.

  10. A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates

    Science.gov (United States)

    Dai, K. Y.; Liu, G. R.; Lim, K. M.; Han, X.; Du, S. Y.

    A meshfree model is presented for the static and dynamic analyses of functionally graded material (FGM) plates based on the radial point interpolation method (PIM). In the present method, the mid-plane of an FGM plate is represented by a set of distributed nodes while the material properties in its thickness direction are computed analytically to take into account their continuous variations from one surface to another. Several examples are successfully analyzed for static deflections, natural frequencies and dynamic responses of FGM plates with different volume fraction exponents and boundary conditions. The convergence rate and accuracy are studied and compared with the finite element method (FEM). The effects of the constituent fraction exponent on static deflection as well as natural frequency are also investigated in detail using different FGM models. Based on the current material gradient, it is found that as the volume fraction exponent increases, the mechanical characteristics of the FGM plate approach those of the pure metal plate blended in the FGM.

  11. Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation

    Science.gov (United States)

    Amini, M. H.; Soleimani, M.; Rastgoo, A.

    2009-08-01

    This paper describes a method for three-dimensional free vibration analysis of rectangular FGM plates resting on an elastic foundation using Chebyshev polynomials and Ritz's method. The thickness can vary from thin to very thick. The elastic foundation is considered as a Winkler model. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A simple and general programme has been used for this purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and a comparison have been carried out using isotropic and FGM square plates with four simply-supported and clamped edges as examples. The results show that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations are presented for two-constituent metal-ceramic functionally graded clamped square plates on an elastic foundation with respect to different thickness-side ratios, gradient indexes and foundation stiffnesses.

  12. Thermal stresses in functionally graded materials caused by a laser thermal shock

    Science.gov (United States)

    Elperin, T.; Rudin, G.

    Mathematical simulation of a thermal shock method for reliability testing of functionally graded material (FGM) is performed with the end to determine operating parameters of the testing device (power of a laser, laser beam radius, duration of heating) and to investigate the effect of the composition of FGM on a magnitude of thermal stresses in a coating. An analytical method for solution of the thermal elasticity problem is developed whereby the approach of a multilayer plate is used for determining temperature and thermal stresses distributions in a coating. We considered the limiting case of the obtained solution when the thickness of a layer is infinitesimally small and the number of layers tends to infinity. This procedure allowed us to obtain the thermal stresses distribution in a FGM coating. The results for the FGM coating composed of WC (tungsten carbide) ceramics and HS-steel are presented. It is showed that variation of the volume content of ceramics strongly affects thermal stresses in a coating and they decrease significantly in the case of the uniform spatial distribution of ceramics.

  13. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

    Directory of Open Access Journals (Sweden)

    Mostafa Mirzaei

    2016-04-01

    Full Text Available During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC. The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.

  14. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Recently, to further improve the performance of aluminum foam, functionally graded (FG aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II hydride (TiH2 powder were fabricated by a friction stir welding (FSW route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition layer and shifted to the low-porosity (without TiH2 addition layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures, can be fabricated.

  15. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent.

    Science.gov (United States)

    Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-21

    Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0-0 mass %, 0.4-0 mass %, and 0.2-0 mass % TiH₂ were selected as the amounts of TiH₂ relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH₂ addition) layer and shifted to the low-porosity (without TiH₂ addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH₂ ( i.e. , the combination of pore structures), can be fabricated.

  16. Comparison of Various Functionally Graded Femoral Prostheses by Finite Element Analysis

    Science.gov (United States)

    Seyed Shirazi, Seyed Farid; Bayat, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2014-01-01

    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent. PMID:25302331

  17. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects

    Science.gov (United States)

    Saffari, Shahab; Hashemian, Mohammad; Toghraie, Davood

    2017-09-01

    Based on nonlocal Timoshenko beam theory, dynamic stability of functionally graded (FG) nanobeam under axial and thermal loading was investigated. Surface stress effects were implemented according to Gurtin-Murdoch continuum theory. Using power law distribution for FGM and von Karman geometric nonlinearity, governing equations were derived based on Hamilton's principle. The developed nonlocal models have the capability of interpreting small scale effects. Pasternak elastic medium was employed to represent the interaction of the FG nanobeam and the surrounding elastic medium. A parametric study was conducted to focus influences of the static load factor, temperature change, gradient index, nonlocal parameter, slenderness ratio, surface effect and springs constants of the elastic medium on the dynamic instability region (DIR) of the FG beam with simply-supported boundary conditions. It was found that differences between DIRs predicted by local and nonlocal beam theories are significant for beams with lower aspect ratio. Moreover, it was observed that in contrast to high temperature environments, at low temperatures, increasing the temperature change moves the origin of the DIR to higher excitation frequency zone and leads to further stability. Considering surface stress effects shifts the DIR of FG beam to higher frequency zone, also increasing the gradient index enhances the frequency of DIR.

  18. Optimum gradient material for a functionally graded dental implant using metaheuristic algorithms.

    Science.gov (United States)

    Sadollah, Ali; Bahreininejad, Ardeshir

    2011-10-01

    Despite dental implantation being a great success, one of the key issues facing it is a mismatch of mechanical properties between engineered and native biomaterials, which makes osseointegration and bone remodeling problematical. Functionally graded material (FGM) has been proposed as a potential upgrade to some conventional implant materials such as titanium for selection in prosthetic dentistry. The idea of an FGM dental implant is that the property would vary in a certain pattern to match the biomechanical characteristics required at different regions in the hosting bone. However, matching the properties does not necessarily guarantee the best osseointegration and bone remodeling. Little existing research has been reported on developing an optimal design of an FGM dental implant for promoting long-term success. Based upon remodeling results, metaheuristic algorithms such as the genetic algorithms (GAs) and simulated annealing (SA) have been adopted to develop a multi-objective optimal design for FGM implantation design. The results are compared with those in literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Science.gov (United States)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge-Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  20. Effect of a functionally graded soft middle layer on Love waves propagating in layered piezoelectric systems.

    Science.gov (United States)

    Ben Salah, Issam; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-08-01

    Numerical examples for wave propagation in a three-layer structure have been investigated for both electrically open and shorted cases. The first order differential equations are solved by both methods ODE and Stiffness matrix. The solutions are used to study the effects of thickness and gradient coefficient of soft middle layer on the phase velocity and on the electromechanical coupling factor. We demonstrate that the electromechanical coupling factor is substantially increased when the equivalent thickness is in the order of the wavelength. The effects of gradient coefficients are plotted for the first mode when electrical and mechanical gradient variations are applied separately and altogether. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. The impact related to the gradient coefficient of the soft middle layer, on the mechanical displacement and the Poynting vector, is carried out. The numericals results are illustrated by a set of appropriate curves related to various profiles. The obtained results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices, but also for the measurement of material properties in a functionally graded piezoelectric layered system using Love waves. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Comparison of Various Functionally Graded Femoral Prostheses by Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Azim Ataollahi Oshkour

    2014-01-01

    Full Text Available This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.

  2. Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation

    International Nuclear Information System (INIS)

    Amini, M H; Soleimani, M; Rastgoo, A

    2009-01-01

    This paper describes a method for three-dimensional free vibration analysis of rectangular FGM plates resting on an elastic foundation using Chebyshev polynomials and Ritz's method. The thickness can vary from thin to very thick. The elastic foundation is considered as a Winkler model. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A simple and general programme has been used for this purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and a comparison have been carried out using isotropic and FGM square plates with four simply-supported and clamped edges as examples. The results show that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations are presented for two-constituent metal–ceramic functionally graded clamped square plates on an elastic foundation with respect to different thickness–side ratios, gradient indexes and foundation stiffnesses

  3. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  4. Achieving Functionally Graded Material Composition Through Bicontinuous Mesostructural Geometry in Material Extrusion Additive Manufacturing

    Science.gov (United States)

    Stoner, Brant; Bartolai, Joseph; Kaweesa, Dorcas V.; Meisel, Nicholas A.; Simpson, Timothy W.

    2018-03-01

    Functionally graded materials (FGMs) gradually change composition throughout their volume, allowing for areas of a part to be optimized for specific performance requirements. While additive manufacturing (AM) process types such as material jetting and directed energy deposition are capable of creating FGMs, design guidelines for varying the material composition in an FGM do not exist. This article presents a novel design solution for FGMs: creating the material gradient by varying the mesostructural size and thickness of bicontinuous, multi-material geometries. By using a bicontinuous structure, such as Schoen's gyroid surface or Schwarz's P and D surfaces, each component material exists as a continuous discrete structure, which allows FGMs to be fabricated by a wider range of AM processes. The gradient is created by varying the volume fraction occupied by the surface structure inside the part volume. This article explores the use of this technique to create FGMs with material extrusion AM. Properties of these bicontinuous structures are experimentally characterized and shown to outperform typical material extrusion FGMs.

  5. Awake surgery for hemispheric low-grade gliomas: oncological, functional and methodological differences between pediatric and adult populations.

    Science.gov (United States)

    Trevisi, Gianluca; Roujeau, Thomas; Duffau, Hugues

    2016-10-01

    Brain mapping through a direct cortical and subcortical electrical stimulation during an awake craniotomy has gained an increasing popularity as a powerful tool to prevent neurological deficit while increasing extent of resection of hemispheric diffuse low-grade gliomas in adults. However, few case reports or very limited series of awake surgery in children are currently available in the literature. In this paper, we review the oncological and functional differences between pediatric and adult populations, and the methodological specificities that may limit the use of awake mapping in pediatric low-grade glioma surgery. This could be explained by the fact that pediatric low-grade gliomas have a different epidemiology and biologic behavior in comparison to adults, with pilocytic astrocytomas (WHO grade I glioma) as the most frequent histotype, and with WHO grade II gliomas less prone to anaplastic transformation than their adult counterparts. In addition, aside from the issue of poor collaboration of younger children under 10 years of age, some anatomical and functional peculiarities of children developing brain (cortical and subcortical myelination, maturation of neural networks and of specialized cortical areas) can influence direct electrical stimulation methodology and sensitivity, limiting its use in children. Therefore, even though awake procedure with cortical and axonal stimulation mapping can be adapted in a specific subgroup of children with a diffuse glioma from the age of 10 years, only few pediatric patients are nonetheless candidates for awake brain surgery.

  6. Investigation of trapped thickness-twist waves induced by functionally graded piezoelectric material in an inhomogeneous plate

    International Nuclear Information System (INIS)

    Li, Peng; Jin, Feng; Cao, Xiao-Shan

    2013-01-01

    The effect of functional graded piezoelectric materials on the propagation of thickness-twist waves is investigated through equations of the linear theory of piezoelectricity. The elastic and piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a linear form but with different graded parameters along the wave propagation direction. We employ the power-series technique to solve the governing differential equations with variable coefficients attributed to the different graded parameters and prove the correction and convergence of this method. As a special case, the functional graded middle layer resulting from piezoelectric damage and material bonding is investigated. Piezoelectric damaged material can facilitate energy trapping, which is impossible in perfect materials. The increase in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance frequency but increase the number of modes. Higher modes of thickness-twist waves appear periodically along the damaged length. Moreover, the displacement of the center of the damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The conclusions are theoretically and practically significant for wave devices. (paper)

  7. Loss of Consciousness at Onset of Aneurysmal Subarachnoid Hemorrhage is Associated with Functional Outcomes in Good-Grade Patients

    NARCIS (Netherlands)

    Wang, Justin; Alotaibi, Naif M.; Akbar, Muhammad Ali; Ayling, Oliver G S; Ibrahim, George M.; Macdonald, R. Loch; Noble, Adam; Molyneux, Andrew; Quinn, Audrey; Schatlo, Bawarjan; Lo, Benjamin; Jaja, Blessing N R; Johnston, Clay; Hanggi, Daniel; Hasan, David; Wong, George K C; Lantigua, Hector; Fukuda, Hitoshi; Torner, James; Singh, Jeff; Spears, Julian; Schaller, Karl; Stienen, Martin N.; Vergouwen, Mervyn D I|info:eu-repo/dai/nl/320630544; Cusimano, Michael D.; Todd, Michael; Tseng, Ming; Le Roux, Peter; Macdonald, R. Loch; Yamagata, Sen; Mayer, Stephan; Schenk, Thomas; Schweizer, Tom A.

    2017-01-01

    Background Transient loss of consciousness (LOC) is one of the most common presentations of aneurysmal subarachnoid hemorrhage (SAH) and may be an indicator of early brain injury. In this study, we examined the association of LOC and functional outcomes in patients with good-grade SAH. Methods We

  8. Effects of acute hypoxia on renal and endocrine function at rest and during graded exercise in hydrated subjects

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Kanstrup, I L; Richalet, J P

    1992-01-01

    Renal effects of altitude hypoxia are unclear. Renal and hormonal function was investigated in eight males at rest and during graded exercise at sea level (SL) and 48 h after rapid ascent to 4,350 m (HA). HA did not change resting values of effective renal plasma flow (ERPF), glomerular filtratio...

  9. Fast algorithms for approximate circular string matching.

    Science.gov (United States)

    Barton, Carl; Iliopoulos, Costas S; Pissis, Solon P

    2014-03-22

    Circular string matching is a problem which naturally arises in many biological contexts. It consists in finding all occurrences of the rotations of a pattern of length m in a text of length n. There exist optimal average-case algorithms for exact circular string matching. Approximate circular string matching is a rather undeveloped area. In this article, we present a suboptimal average-case algorithm for exact circular string matching requiring time O(n). Based on our solution for the exact case, we present two fast average-case algorithms for approximate circular string matching with k-mismatches, under the Hamming distance model, requiring time O(n) for moderate values of k, that is k=O(m/logm). We show how the same results can be easily obtained under the edit distance model. The presented algorithms are also implemented as library functions. Experimental results demonstrate that the functions provided in this library accelerate the computations by more than three orders of magnitude compared to a naïve approach. We present two fast average-case algorithms for approximate circular string matching with k-mismatches; and show that they also perform very well in practice. The importance of our contribution is underlined by the fact that the provided functions may be seamlessly integrated into any biological pipeline. The source code of the library is freely available at http://www.inf.kcl.ac.uk/research/projects/asmf/.

  10. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms.

    Science.gov (United States)

    Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang

    2015-04-01

    As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures

    Science.gov (United States)

    Tornabene, Francesco; Viola, Erasmo; Inman, Daniel J.

    2009-12-01

    This paper focuses on the dynamic behavior of functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The first-order shear deformation theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. The homogeneous isotropic material is inferred as a special case of functionally graded materials (FGM). The governing equations of motion, expressed as functions of five kinematic parameters, are discretized by means of the generalized differential quadrature (GDQ) method. The discretization of the system leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. For the homogeneous isotropic special case, numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. Different typologies of non-uniform grid point distributions are considered. Finally, for the functionally graded material case numerical results illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behavior of shell structures.

  12. Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries

    Science.gov (United States)

    Ikeda, Noriaki; Xu, Xiaomeng

    2014-11-01

    Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.

  13. Graded changes in balancing behavior as a function of visual acuity.

    Science.gov (United States)

    Schmid, M; Casabianca, L; Bottaro, A; Schieppati, M

    2008-06-02

    In a dynamic postural task, visual information plays a fundamental role in the selection of the balancing strategy. While standing on a platform oscillating in the antero-posterior direction, subjects almost fix their head in space when vision is allowed and oscillate with the platform with eyes closed. We investigated two competing hypotheses regarding the relationship between visual acuity and balance control strategy. One hypothesis refers to the existence of a threshold value of visual acuity as a turning point between the eyes-open and eyes-closed strategy. The other assumes that the change from eyes-open to eyes-closed behavior is continuous and parallels the progressive worsening of visual acuity. Ten subjects balanced on the mobile platform wearing an examination frame and a facemask occluding peripheral vision. Seven different test lenses were used in different trials to modify visual acuity, from a visus value of 10/10 to severely blurred vision. Head stabilization in space progressively worsened with the decrease in visual acuity and turned toward the eyes-closed behavior when vision was blurred. The increase in head oscillation as a function of visual acuity was best fitted by a logarithmic function. In five of the subjects, additional trials were performed without facemask, to add peripheral vision to each visual acuity level, and with black lenses to allow peripheral vision alone. Addition of peripheral vision gave a significant contribution to head stabilization. With peripheral vision alone, head stabilization was intermediate between the eyes-closed and 10/10 visus value condition. We conclude that, in order to stabilize the head in space, visual information of the environment must be definite and worsening of central vision leads to a graded modification of the 'head fixed in space' behavior. Thus, the more conservative hypothesis of two different fundamental balancing strategies is not supported. Instead, the body exhibits a continuous mode of

  14. An analysis of surface acoustic wave propagation in a plate of functionally graded materials with a layered model

    Science.gov (United States)

    Gao, Liming; Ji, Wang; Zheng, Zhong; Jianke, Du

    2008-02-01

    In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the symmetry of modes and frequency behavior will be modified, thus producing different features for engineering applications such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing a layered structure with desired material properties that can produce these effects in terms of velocity and displacements, since Rayleigh waves in a solid with general material property grading schemes are difficult to analyze with known methods. Solutions from layered structures with exponential and polynomial property grading schemes are obtained from the layered model and comparisons with known analytical results are made to validate the method and examine possible applications of such structures in engineering.

  15. Crack propagation in functionally graded materials and structures; Risswachstum in funktional gradierten Materialien und Strukturen

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Britta

    2014-07-01

    Components with graded fracture-mechanical properties show a fundamentally different crack propagation behaviour than do homogeneous, isotropic structures. This becomes especially evident in investigations on the influence of fracture-mechanical material grading on the stage of steady fatigue crack propagation and on crack propagation speed da/dN. Theoretical findings based on the so-called TSSR concept, which was developed as part of this dissertation, indicate that it can have either positive or negative effects on crack propagation behaviour, depending on various material characteristics and grading constellations. The dissertation reports on experiments for validating theoretical statements on the influence of different structural conditions on crack propagation behaviour. These statements were largely found to be correct. The study thus contributes to the prediction of crack propagation in fracture-mechanically graded components and structures subject to static or cyclical stress.

  16. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the

  17. How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study.

    Science.gov (United States)

    Viterbori, Paola; Usai, M Carmen; Traverso, Laura; De Franchis, Valentina

    2015-12-01

    This longitudinal study analyzes whether selected components of executive function (EF) measured during the preschool period predict several indices of math achievement in primary school. Six EF measures were assessed in a sample of 5-year-old children (N = 175). The math achievement of the same children was then tested in Grades 1 and 3 using both a composite math score and three single indices of written calculation, arithmetical facts, and problem solving. Using previous results obtained from the same sample of children, a confirmatory factor analysis examining the latent EF structure in kindergarten indicated that a two-factor model provided the best fit for the data. In this model, inhibition and working memory (WM)-flexibility were separate dimensions. A full structural equation model was then used to test the hypothesis that math achievement (the composite math score and single math scores) in Grades 1 and 3 could be explained by the two EF components comprising the kindergarten model. The results indicate that the WM-flexibility component measured during the preschool period substantially predicts mathematical achievement, especially in Grade 3. The math composite scores were predicted by the WM-flexibility factor at both grade levels. In Grade 3, both problem solving and arithmetical facts were predicted by the WM-flexibility component. The results empirically support interventions that target EF as an important component of early childhood mathematics education. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. SYNTHESIS OF FUNCTIONALLY GRADED ALUMINIUM COMPOSITE AND INVESTIGATION ON ITS ABRASION WEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    N. RADHIKA

    2017-05-01

    Full Text Available Functionally graded aluminium (Al-Si5Cu3 metal matrix composite reinforced with 10 wt-percent of boron carbide particles having average size of 33 µm was synthesized through horizontal centrifugal casting method. The specimen of length 150 mm and outer diameter of 154 mm with the thickness of 20 mm was produced under the centrifuging speed of 1000 rpm. Composite specimens were prepared as per ASTM standards from the casting and subjected to microstructural evaluation, hardness testing and three body abrasion wear test. The microstructural observation was done on the surfaces at the distance of 1, 2.5, 10 and 15 mm from the outer periphery of the casting and the result shows that larger amount of particles observed at distance of 2.5 mm and very less particles observed at the distance of 15 mm. The hardness test was conducted on the different surfaces in the radial direction from the outer periphery and found decrease in hardness from 2.5 to 15 mm. The abrasion wear test was conducted using dry abrasion tester for various loads of 28, 40 and 52 N at different distances from the outer periphery of the casting and the results revealed that wear rate gradually increases when moving towards the inner periphery and also with the increasing load. Therefore higher wear resistance was observed at the outer periphery and the lower wear resistance was obtained at the inner periphery. This property makes them suitable for using in wear applications such as in cylinder liners.

  19. Stochastic Finite element analysis of the free vibration of functionally graded material plates

    Science.gov (United States)

    Shaker, Afeefa; Abdelrahman, Wael; Tawfik, Mohammad; Sadek, Edward

    2008-02-01

    The superior properties of functionally graded materials (FGM) are usually accompanied by randomness in their properties due to difficulties in tailoring the gradients during manufacturing processes. Using the stochastic finite element method (SFEM) proved to be a powerful tool in studying the sensitivity of the static response of FGM plates to uncertainties in their material properties. This tool is yet to be used in studying free vibration of FGM plates. The aim of this work is to use both a First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM), combined with a nine-noded isoparametric Lagrangian element based on the third order shear deformation theory to investigate sensitivity of the fundamental frequency of FGM plates to material uncertainties. These include the effect of uncertainties on both the metal and ceramic constituents. The basic random variables include ceramic and metal Young’s modulus and Poisson’s ratio, their densities and ceramic volume fraction. The developed code utilizes MATLAB capabilities to derive the derivatives of the stiffness and mass matrices symbolically with a considerable reduction in calculation time. Calculating the eigenvectors at the mean values of the variables proves to be a reasonable simplification which significantly increases solution speed. The stochastic finite element code is validated using available data in the literature, in addition to comparisons with results of the well-established Monte Carlo simulation technique with importance sampling. Results show that SORM is an excellent rapid tool in the stochastic analysis of free vibration of FGM plates, when compared to the slower Monte Carlo simulation techniques.

  20. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates

    Science.gov (United States)

    Chandra, N.; Raja, S.; Nagendra Gopal, K. V.

    2014-10-01

    This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0-500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.

  1. Combined Macroscopic and Microscopic Thermo-Elasto-Plastic Stresses of Functionally Graded Palte Considering Fabrication Process

    Science.gov (United States)

    Shabana, Yasser Mohamed; Noda, Naotake; Tohgo, Keiichiro

    Functionally Graded Material (FGM) is a heterogeneous composite material that consists of a gradient compositional variation of the constituent materials from one surface of the material to the other. These continuous changes result in gradient material properties. Since ceramic has good heat resistance and metal has high strength, FGM made by ceramic and metal can work at super high temperatures or under a high-temperature-difference field. It is a primary to reduce thermal stress by selection of different effective material properties for the intermediate composition of the EGM and to prevent destruction by thermal stress. FGM is manufactured at a high temperature and then residual thermal stresses are produced during cooling to room temperature. In this paper, the elastic-plastic thermal stresses induced in a ceramic-metal FGM plate (FGP) taking the fabrication process into consideration are discussed. The region near the heat resistant surface is produced by metal particle reinforced ceramic while the region near the cooling surface is vice versa. As the metal and the ceramic near the middle region of the FGM are perfectly mixed, it is impossible to consider the particle-reinforced material. In this study, the FGP is divided into three regions. First, the region near the cooling surface is metal rich and then the metal is considered as a matrix while the ceramic is considered as particles. Second, the region near the heat resistant surface is ceramic rich so that the ceramic is considered as a matrix while the metal is considered as particles. Third, in the middle part between the previous two regions the metal and ceramic are perfectly mixed. In the third region macroscopic analysis is considered because the difference between the volume fractions of the ceramic and the metal is small and it is difficult to consider one of them as a matrix or particles. The effects of the distribution parameter of the composition and the fabrication temperature on the thermal

  2. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Indiana Univ., Indianapolis, IN (United States)

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  3. Reliability assessment of different plate theories for elastic wave propagation analysis in functionally graded plates.

    Science.gov (United States)

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2014-01-01

    The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

    Directory of Open Access Journals (Sweden)

    Ateeb Ahmad Khan

    Full Text Available Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has been chosen. Modified rule of mixture (MROM is used to calculate the young's modulus and rule of mixture (ROM is used to calculate density and poisson's ratio of FGM beam at any point. The MATLAB code based on 1D FE zigzag theory for FGM elastic beams is developed. A 2D FE model for the same elastic FGM beam has been developed using ABAQUS software. An 8-node biquadratic plane stress quadrilateral type element is used for modeling in ABAQUS. Three different end conditions namely simply-supported, cantilever and clamped- clamped are considered. The deflection, normal stress and shear stress has been reported for various models used. Eigen Value problem using subspace iteration method is solved to obtain un-damped natural frequencies and the corresponding mode shapes. The results predicted by the 1D FE model have been compared with the 2D FE results and the results present in open literature. This proves the correctness of the model. Finally, mode shapes have also been plotted for various FGM systems.

  5. S1-ZGV Modes of a Linear and Nonlinear Profile for Functionally Graded Material Using Power Series Technique

    Directory of Open Access Journals (Sweden)

    M. Zagrouba

    2014-01-01

    Full Text Available The present work deals with functionally graded materials (FGM isotropic plates in the neighborhood of the first-order symmetric zero group velocity (S1-ZGV point. The mechanical properties of functionally graded material (FGM are assumed to vary continuously through the thickness of the plate and obey a power law of the volume fraction of the constituents. Governing equations for the problem are derived, and the power series technique (PST is employed to solve the recursive equations. The impact of the FGM basic materials properties on S1-ZGV frequency of FGM plate is investigated. Numerical results show that S1-ZGV frequency is comparatively more sensitive to the shear modulus. The gradient coefficient p does not affect the linear dependence of ZGV frequency fo as function of cut-off frequency fc; only the slope is slightly varied.

  6. The Development and Production of a Functionally Graded Composite for Pb-Bi Service

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Ronald G

    2011-08-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700ï°C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700ï°C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size

  7. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  8. Methodology for Selection of Optimum Light Stringers in Functionally Graded Panels Designed for Prescribed Fundamental Frequency or Buckling Load

    Science.gov (United States)

    Birman, Victor; Byrd, Larry W.

    2008-02-01

    The interest to functionally graded materials (FGM) and structures has been generated by their potential advantages, including enhanced thermal properties, reduced or eliminated delamination concerns, a potential for an improved stress distribution, etc. Various aspects of the processing, design, micromechanics and analysis of FGM have been outlined in a number of reviews, mentioned here are [1-3]. In particular, functionally graded panels may be advantageous compared to their conventional counterparts in numerous applications. However, a typical FGM panel is asymmetric about its middle plane resulting in lower buckling loads and fundamental frequencies as well as higher stresses and deformations than the counterpart with a symmetric distribution of the same constituents. The reduced stiffness of FGM panels can be compensated by reinforcing them with stringers. For example, metallic stringers at the metal-rich surface of a FGM ceramic-metal panel may provide an efficient solution enabling a designer to increase both buckling loads as well as natural frequencies. The list of studies on optimization of FGM is extensive as could be anticipated for such tailored structural elements. For example, recent papers by Batra and his collaborators present optimization of the natural frequencies of a FGM plate through material grading [4] and through the graded fiber orientation [5]. The present paper is concerned with an optimum design of the system of stringers for a specified FGM panel. The task is to design the lightest system of stringers enabling the panel to achieve prescribed buckling loads or fundamental frequency.

  9. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  10. Clinical significance of a proposed lymphoscintigrpahic functional grade system in patients with extremity lymphedema of stage i

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joan Young; Hwang, Ji Hye; Kim, Dong Ik; Cho, Young Seok; Lee, Su Jin; Choi, Yong; Choe, Yeam Seong; Lee, Kyung Han; Kim, Byung Tae [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    We proposed a new lymphoscintigrpahic functional grade (LGr) system in extremity lymphedema, and investigated the association between the LGr and a long-term response to physical therapy in patients with extremity lymphedema of stage I. The subjects were 20 patients with unilateral extremity lymphedema of stage I, who underwent pre-treatment extremity lymphoscintigraphy using Tc-99m antimony sulfur colloid, and were treated by complex decongestive physical therapy (CDPT). A proposed lymphoscintigrpahic functional grade system consisted of LGr 0 to LGr 4 according to the ilioinguinal nodal uptake, amount of dermal backflow, and uptake pattern of main and collateral lymphatics : LGr 0 = normal, LGr 1 = decreased lymphatic function without dermal backflow, LGr 2 = decreased lymphatic function with dermal backflow, LGr 3 = non - visualization of main lymphatics with dermal backflow, and LGr 4 = no significant lymphatic transport from injection site. LGr 2 was divided into 2A and 2B based on the amount of dermal backflow. A physician who is a lymphedema specialist determined the long-term outcome to CDPT with normalized response (NR), good response (GR) and poor response (PR) based on the change of edema volume reduction, skin status and occurrence of dermatolymphangioadenitis after the clinical follow-up for more than 1 year. Therapeutic responses were NR in 2 patients. GR in 9 patients and PR in 9 patients. Baseline LGrs were 1 in 7 patients, 2A in 4 patients, 2B in 5 patients, 3 in 2 patients, and 4 in 2 patients. There was a significant relationship between therapeutic response and LGr (p=0.003). In other words, 10 of 11 patients (91%) with LGr 1 or 2A showed NR. or GR. On the contrary, 8 of 9 patients (89%) with LGr 2B, 3 or 4 showed PR. Patients with unilateral extremity lymphedema of stage I had different lymphoscintigrpahic functional grades. This grade system may be useful to predict the response to physical therapy in such patients.

  11. Longitudinal Associations Between Objectively Measured Physical Activity and Development of Executive Functioning Across the Transition to First Grade.

    Science.gov (United States)

    Vandenbroucke, Loren; Seghers, Jan; Verschueren, Karine; Wijtzes, Anne I; Baeyens, Dieter

    2016-08-01

    The current study investigates how children's amount of daily physical activity relates to subcomponents of executive functions, the cognitive processes needed for goal-directed behavior. Previous studies rarely determined this association at the subcomponent level and did not explicitly examine the period when children make the transition to first grade, despite its importance for the development of executive functions. In a sample of 54 children, working memory, inhibition, and cognitive flexibility were thoroughly measured at the subcomponent level at the end of kindergarten and first grade. In the middle of first grade, children wore a pedometer for 7 consecutive days. Regression analyses showed that performance on a measure of the visuospatial sketchpad, the central executive, and fluency was predicted by children's amount of daily physical activity after controlling for initial task performance. The development of the visuospatial sketchpad (working memory), the central executive (working memory), and fluency (cognitive flexibility) might be improved by increasing the amount of time being physically active. However, as other subcomponents of executive functioning were not affected, the role of other aspects of physical activity, such as intensity and content, in the development of executive functions should be further investigated.

  12. The Effect of Material Property on the Critical Velocity of Randomly Excited Nonlinear Axially Travelling Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    M. Abedi

    Full Text Available Abstract In this paper, the critical axial speeds of three types of sigmoid, power law and exponential law functionally graded plates for both isotropic and orthotropic cases are obtained via a completely analytic method. The plates are subjected to lateral white noise excitation and show evidence of large deformations. Due to randomness, the conventional deterministic methods fail and a statistical approach must be selected. Here, the probability density function is evaluated analytically for prescribed plates and used to investigate the critical axial velocity of them. Specifically the effect of in-plane forces, mean value of lateral load and the material property on the critical axial speed are studied and discussed for both isotropic and orthotropic functionally graded plates. Since the governing equation is transformed to a non dimensional format, the results can be used for a wide range of plate dimensions. It is shown that the material heterogeneity palys an essential and significant role in increasing or decreasing the critical speed of both isotropic and orthotropic functionally graded plates.

  13. Nanoindentation of Functionally Graded Polymer Nanocomposites: Assessment of the Strengthening Parameters through Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Tommaso eNardi

    2015-08-01

    Full Text Available NNanoindentation tests were carried out on the surface of polymer nanocomposites exhibiting either graded or homogeneous distributions of Fe3O4@silica core-shell nanoparticles in a photocurable polymeric matrix. The results reveal a complex interplay between graded morphology, indentation depth and calculated modulus and hardness values, which was elucidated through numerical simulations. First, it was experimentally shown how for small (1 µm indentations, large increases in modulus (up to +40% and hardness (up to +93% were obtained for graded composites with respect to their homogeneous counterparts, whereas at a larger indentation depth (20 µm the modulus and hardness of the graded and homogeneous composites did not substantially differ from each other and from those of the pure polymer. Then, through a Material Point Method approach, experimental nanoindentation tests were successfully simulated, confirming the importance of the indentation depth and of the associated plastic zone as key factors for a more accurate design of graded polymer nanocomposites whose mechanical properties are able to fulfill the requirements encountered during operational life.

  14. Characterization and selection of suitable grades of lactose as functional fillers for capsule filling: part 1.

    Science.gov (United States)

    Moolchandani, Vikas; Augsburger, Larry L; Gupta, Abhay; Khan, Mansoor; Langridge, John; Hoag, Stephen W

    2015-01-01

    The purpose of this work is to characterize thermal, physical and mechanical properties of different grades of lactose and better understand the relationships between these properties and capsule filling performance. Eight grades of commercially available lactose were evaluated: Pharmatose 110 M, 125 M, 150 M, 200 M, 350 M (α-lactose monohydrate), AL (anhydrous lactose containing ∼80% β-AL), DCL11 (spray dried α-lactose monohydrate containing ∼15% amorphous lactose) and DCL15 (granulated α-lactose monohydrate containing ∼12% β-AL). In this study, different lactose grades were characterized by thermal, solid state, physical and mechanical properties and later evaluated using principal component analysis (PCA) to assess the inter-relationships among some of these properties. The lactose grades were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), moisture sorption/desorption isotherms, particle size distribution; the flow was characterized by Carr Index (CI), critical orifice diameter (COD) and angle of friction. Plug mechanical strength was estimated from its diametric crushing strength. The first and second principal components (PC) captured 47.6% and 27.4% of variation in the physical and mechanical property data, respectively. The PCA plot grouped together 110 M, AL, DCL11 and DCL15 on the one side of plot which possessed superior properties for capsule formulation and these grades were selected for future formulation development studies (part II of this work).

  15. Microstructure and kinetics of a functionally graded NiTi-TiC x composite produced by combustion synthesis

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Moore, John J.

    2007-01-01

    Production of a NiTi-TiC x functionally graded material (FGM) composite is possible through use of a combustion synthesis (CS) reaction employing the propagating mode (SHS). The NiTi-TiC x FGM combines the well-known and understood superelastic and shape memory capabilities of NiTi with the high hardness, wear and corrosion resistance of TiC x . The material layers were observed as functionally graded both in composition and porosity with distinct interfaces, while still maintaining good material interaction and bonding. XRD of the FGM composite revealed the presence of TiC x with equi-atomic NiTi and minor NiTi 2 and NiTi 3 phases. The TiC x particle size decreased with increasing NiTi content. Microindentation performed across the length of the FGM revealed a decrease in hardness as the NiTi content increased

  16. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  17. A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Jain, Mohit; Skandan, Ganesh; Khose, Gordon E.; Maro, Judith

    2008-01-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 C. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  18. Transglutaminase 2 expression is increased as a function of malignancy grade and negatively regulates cell growth in meningioma.

    Directory of Open Access Journals (Sweden)

    Yin-Cheng Huang

    Full Text Available Most meningiomas are benign, but some clinical-aggressive tumors exhibit brain invasion and cannot be resected without significant complications. To identify molecular markers for these clinically-aggressive meningiomas, we performed microarray analyses on 24 primary cultures from 21 meningiomas and 3 arachnoid membranes. Using this approach, increased transglutaminase 2 (TGM2 expression was observed, which was subsequently validated in an independent set of 82 meningiomas by immunohistochemistry. Importantly, the TGM2 expression level was associated with increasing WHO malignancy grade as well as meningioma recurrence. Inhibition of TGM2 function by siRNA or cystamine induced meningioma cell death, which was associated with reduced AKT phosphorylation and caspase-3 activation. Collectively, these findings suggest that TGM2 expression increases as a function of malignancy grade and tumor recurrence and that inhibition of TGM2 reduces meningioma cell growth.

  19. Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics.

    Science.gov (United States)

    Sutou, Yuji; Omori, Toshihiro; Furukawa, Akihisa; Takahashi, Yukinori; Kainuma, Ryosuke; Yamauchi, Kiyoshi; Yamashita, Shuzo; Ishida, Kiyohito

    2004-04-15

    A new type of medical guide wire with functionally graded hardness from the tip to the end was developed with the use of Cu-Al-Mn-based alloys. The superelasticity (SE) of the Cu-Al-Mn-based alloys in the tip is drastically improved by controlling the grain size, whereas the end of the wire is hardened using bainitic transformation by aging at around 200-400 degrees C. Therefore, the tip of the guide wire shows a superelasticity and its end has high stiffness. This guide wire with functionally graded characteristics shows excellent pushability and torquability, superior to that of the Ni-Ti guide wire. Copyright 2004 Wiley Periodicals, Inc.

  20. A Food-Grade Approach for Functional Analysis and Modification of Native Plasmids in Lactococcus lactis

    OpenAIRE

    Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2003-01-01

    While plasmids from lactic acid bacteria possess many traits that are of industrial value, their exploitation is often frustrated by an inability to conduct food-grade engineering of native plasmids or to readily screen for their transfer. Here we describe a system that uses a RepA+ temperature-sensitive helper plasmid and a RepA− cloning vector to overcome these problems while maintaining the food-grade status of the native plasmid. This strategy was used to precisely delete ltnA1 alone, or ...

  1. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  2. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    Science.gov (United States)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  3. A new model for the artificial aorta blood vessels using double-sided radial functionally graded biomaterials.

    Science.gov (United States)

    Salimi Bani, M; Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, Alireza

    2017-05-01

    Based on radial functionally graded biomaterials and inspired by the geometry of a real aorta blood vessel, a new model was proposed to fabricate the artificial blood vessels. A finite element analyzer is employed to reach the optimal and proper material properties while earlier, it was validated by two famous theories, i.e., the first shear deformation and the plane elasticity. First, the geometry of a real ascending aorta part was simulated and then solved under the axially varying blood pressure and other real and actual conditions. Since the construction of artificial blood vessels just similar to the natural one is impossible, it was tried to find the best substitutes for other materials. Due to the significant properties of functionally graded biomaterials in the reduction in sudden changes of stress and deformation, these types of materials were selected and studied. Two types of conventional single-sided and an efficient double-sided radial functionally graded vessel were proposed and simulated. The elastic behaviors of proposed vessels were obtained and compared to ones previously attained from the real vessel. The results show that all the desired behaviors cannot be achieved by using a conventional single-sided radial FG vessel. Instead and as a conjecture, a smart double-sided radial FG biomaterial is suggested. Fortunately, the proposed material can meet all the desired goals and satisfy all of the indices simultaneously.

  4. Analysis of Tribological Behaviour of Functionally Graded LM13 Aluminium/TiS2 Composite Using Design of Experiments

    Directory of Open Access Journals (Sweden)

    N. Radhika

    2016-09-01

    Full Text Available Functionally graded LM13 aluminium/10wt% TiS2 composite was fabricated by centrifugal casting method and hollow cylindrical part has the dimension of 150x150x20 mm was obtained. The microstructural evaluation and vicker’s micro-hardness test was carried out on the surfaces at the distance of 1, 6, 12 and 18 mm from the outer surface of functionally graded composites. The microstructural investigation reveals that the TiS2 reinforcement particles concentrated more on the outer periphery and less at the inner periphery of the composite. The hardness of the composite surface increases at the particle rich region of outer periphery and decreases towards inner region. The dry sliding wear experiments were conducted on the composite specimens as per plan of Taguchi’s L16 orthogonal array design. The parameters considered were load, sliding velocity, sliding distance and distance from outer periphery of the composite, varied for four levels. Signal- to- Noise ratio and Analysis of Variance were carried out and the significance test revealed that distance from outer periphery had major impact (43.11 % followed by sliding distance (31.19 %, load (16.59 %, and sliding velocity (7.33 %. Adequacy of model was predicted through regression equation and the error was found to be less than 8 %. The scanning electron microscope analysis carried out for the worn-out surfaces showed maximum wear resistance of the functionally graded composite at outer periphery.

  5. Modeling of the interface behavior in tape casting of functionally graded ceramics for magnetic refrigeration parts

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    of a graded configuration of the magnetocaloric materials. The Newtonian flow behavior with relatively high viscosity is assumed for each fluid and used in the simulation with a commercial CFD code (ANSYS FLUENT). The results show that the density difference does not affect the interface between the adjacent...

  6. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...... on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n - p* and n ’ p* transitions, respectively, in several chiral enones...

  7. Loss of Consciousness at Onset of Aneurysmal Subarachnoid Hemorrhage is Associated with Functional Outcomes in Good-Grade Patients.

    Science.gov (United States)

    Wang, Justin; Alotaibi, Naif M; Akbar, Muhammad Ali; Ayling, Oliver G S; Ibrahim, George M; Macdonald, R Loch

    2017-02-01

    Transient loss of consciousness (LOC) is one of the most common presentations of aneurysmal subarachnoid hemorrhage (SAH) and may be an indicator of early brain injury. In this study, we examined the association of LOC and functional outcomes in patients with good-grade SAH. We searched the Subarachnoid Hemorrhage International Trialists Repository for patients who presented with LOC at ictus of SAH. A propensity score analysis was performed on good-grade patients (defined as World Federation of Neurosurgical Societies grade 1-3) to balance selected covariates between those with and without LOC. The primary outcome was Glasgow Outcome Score (GOS) at 3 months (with poor outcome defined as a GOS of 1-3). Secondary outcomes were delayed cerebral ischemia (DCI), rebleed, length of hospital stay, and time to death. A propensity score-matching algorithm identified 336 patients (168 with and 168 without LOC at ictus). The proportion of patients with poor functional outcome at 3 months was significantly higher in the cohort with LOC at ictus compared with the matched cohort without LOC at ictus (30% vs. 19%; P = 0.02). There was a nonsignificant trend toward greater mortality in the patients with LOC at ictus (19% vs. 13%; P = 0.14). There were no significant differences in the secondary outcomes between the 2 cohorts. LOC at ictus of SAH is associated with a higher rate of unfavorable functional outcomes but not of mortality, DCI, or rebleed in patients with good-grade SAH. Future studies should further investigate the putative mechanisms through which LOC mediates early brain injury in SAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Kappa Coefficients for Circular Classifications

    NARCIS (Netherlands)

    Warrens, Matthijs J.; Pratiwi, Bunga C.

    2016-01-01

    Circular classifications are classification scales with categories that exhibit a certain periodicity. Since linear scales have endpoints, the standard weighted kappas used for linear scales are not appropriate for analyzing agreement between two circular classifications. A family of kappa

  9. Optics modules for circular accelerator design

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1986-05-01

    The first-order differential equations of motion for a single particle in a closed circular machine are solved, introducing the concepts of phase shift, beta functions, and the Courant-Snyder invariant. The transfer matrix between two points in the machine is derived as a function of the phase shift and the parameters contained in the Courant-Snyder invariant. Typical optical modules used in circular machine designs are introduced and related to their characteristic transfer matrix elements, the phase shift through them, and the Courant-Snyder-Twiss parameters. The systematics of some elementary phase ellipse matching problems between optical modules are discussed. Second-order optical modules are discussed, including how they are used to provide the momentum bandwidth needed for the design of a typical circular machine

  10. Eshelby-Mori-Tanaka approach for vibrational behavior of functionally graded carbon nanotube-reinforced plate resting on elastic foundation

    Energy Technology Data Exchange (ETDEWEB)

    Kamarian, S.; Pourasghar, A. [Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Yas, M. H. [Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-11-15

    In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of functionally graded (FG) nanocomposite plates reinforced by randomly-oriented straight single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation are considered. Material properties are graded in the thickness direction of the plate according to the volume fraction power law distribution. An embedded carbon nanotube (CNT) in a polymer matrix and its surrounding inter-phase which is perfectly bonded to surrounding resin is replaced with an equivalent fiber to predict the mechanical properties of the carbon nanotube/polymer composite. The Mori-Tanaka approach is employed to calculate the effective elastic moduli of the plate. The natural frequencies of the plate are obtained by means of the generalized differential quadrature (GDQ) method. Detailed parametric studies have been carried out to investigate the influences of the CNT volume fraction, Winkler foundation modulus, shear elastic foundation modulus and various geometrical parameters on the vibration behavior of the functionally graded carbon nanotube-reinforced (FG-CNTR) plates.

  11. Electrodeposition of Ni–W–Al{sub 2}O{sub 3} nanocomposite coating with functionally graded microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Allahyarzadeh, M.H.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Rouhaghdam, A.R. Sabour; Torabinejad, V.

    2016-05-05

    Electrodeposition of functionally graded (FG) Ni–W–Al{sub 2}O{sub 3} nanocomposite coatings is investigated in current research. These types of coatings were applied in a way that alumina content was increased from the substrate towards the surface of the coating; hence, Ni–W would possess improved wear and corrosion resistance properties. FG-coatings were developed by the variation of duty cycle and frequency. The microstructure and elemental analysis of the coating as a function of thickness was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis, respectively. The corrosion resistance of the FG-coatings was evaluated using potentiodynamic polarization and the wear behavior was also studied using pin-on-disk wear tests. In order to investigate hardness properties of the coating, microhardness measurements were carried out on cross-section of coatings. Results revealed that the alumina content and the microhardness increased towards the surface. Results also showed the corrosion and wear resistance of FG-coatings were significantly improved by addition of α-Al{sub 2}O{sub 3} nanoparticles. Profilometery and AFM results also revealed that surface roughness was influenced by pulse plating parameters. - Highlights: • Functionally graded structures have been synthesized using adjusting pulse parameters. • Al{sub 2}O{sub 3} and W contents increases gradually as a function of coating thickness. • Alumina increased the corrosion resistance by moderating i{sub corr} and E{sub corr}. • Wear behavior has been enhanced in functionally graded structure.

  12. Circular fringe projection profilometry.

    Science.gov (United States)

    Zhao, Hong; Zhang, Chunwei; Zhou, Changquan; Jiang, Kejian; Fang, Meiqi

    2016-11-01

    In this Letter, a novel three-dimensional (3D) measurement method, called the circular fringe projection profilometry (CFPP), is proposed. Similar to the conventional fringe projection profilometry, CFPP also requires fringe pattern projection and capture, phase demodulation, and phase unwrapping. However, it works with a totally different mechanism. CFPP recovers the height of a point by calculating its distance to the optical center of a projector along the optical axis. This distance is calculated with the aid of the divergence angle of a projected light ray and the distance between the measured point and the optical axis. The distance between the measured point and the optical axis is detected by a camera with telecentric lenses, while the divergence angle can be calculated from the phase of a captured circular fringe pattern. The validity of CFPP is confirmed by a set of experiments.

  13. Processing and Characterization of Functionally Graded Hydroxyapatite Coatings for Biomedical Implants

    Science.gov (United States)

    Bai, Xiao

    Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas

  14. ADMINISTRATIVE CIRCULAR N° 12

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved the amounts used for the reimbursements mentioned in Administrative Circular N° 12 as follows : The figures, effective from 1 September 2002, are : § 8a : 16 Swiss francs (unchanged) § 9a : 640 Swiss francs (previously 622.- Swiss francs) § 9b : 32 Swiss francs (unchanged) Human Resources Division Tel. 72862

  15. Administrative Circular N° 12

    CERN Document Server

    2003-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved the amounts used for the reimbursements mentioned in Administrative Circular N° 12 as follows : The figures, effective from 1 September 2003, are : § 8a : 16.50 Swiss francs (previously 16.- Swiss francs) § 9a : 663 Swiss francs (previously 640.- Swiss francs) § 9b : 33 Swiss francs (previously 32.- Swiss francs) Human Resources Division Tel. 72862/74474

  16. ADMINISTRATIVE CIRCULAR N° 12

    CERN Document Server

    HR Division

    2001-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved an adjustment of the amounts used for the reimbursements mentioned in Administrative Circular N° 12. The new figures, effective from 1 September 2001, are : § 8a : 16 Swiss francs (previously 15.50 Swiss francs) § 9a : 622 Swiss francs (previously 609.- Swiss francs) § 9b : 32 Swiss francs (previously 31.- Swiss francs)

  17. ADMINISTRATIVE CIRCULAR NR 12

    CERN Document Server

    Division HR; HR Division; Tel. 72862

    2000-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved an adjustment of the amounts used for the reimbursements mentioned in Administrative Circular N° 12. The new figures, effective from 1 September 2000, are : § 8a : 15.50 Swiss francs (previously 15.- Swiss francs) § 9a : 609 Swiss francs (previously 591.- Swiss francs) § 9b : 31 Swiss francs (previously 30.- Swiss francs)

  18. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar, E-mail: skparashar@rtu.ac.in [Department of Mechanical Engineering, Rajasthan Technical University, Kota (India)

    2016-04-13

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.

  19. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  20. The Circular Economy: In Practice-focused Undergraduate Engineering Education

    DEFF Research Database (Denmark)

    Knudby, Torben; Larsen, Samuel

    The growth of the planet’s population makes the traditional industrial model of “take, make and waste” unsustainable. The circular economy, in which resources are continuously reused, offers a solution. For manufacturers of durable goods the circular economy requires a well-functioning circular...... circular supply chains is un-explored and the purpose of the paper is to identify a suitable teaching method. Because courses in circular supply chain topics are currently non existent, the paper first develops a set of learning goals based on the skillset necessary to design, implement, and operate...... a circular supply chain. Second, the paper examines whether the teaching method of a similar cross-disciplinary course in innovation can be successfully applied. This teaching method is based on cross-disciplinary team projects that work with innovation in cooperation with a participating firm. The study...

  1. Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: Homogeneous and functionally graded materials

    International Nuclear Information System (INIS)

    Aziz, A.; Torabi, Mohsen; Zhang, Kaili

    2013-01-01

    Highlights: • Convective–radiative radial fins with base convective heating were analyzed. • Homogeneous material and functionally graded material fins were investigated. • Fin efficiency and the effects of dimensionless parameters in fins were analyzed. - Abstract: This paper studies a radial fin of uniform thickness with convective heating at the base and convective–radiative cooling at the tip. The fin is assumed to experience uniform internal heat generation. The exposed surfaces of the fin lose heat by simultaneous convection and radiation to the surroundings. Two types of fin materials are investigated: homogeneous material and functionally graded material (FGM). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM fin the thermal conductivity is modeled as a linear function of the dimensionless radial coordinate. The analysis is conducted using the differential transformation method (DTM). The accuracy of DTM is verified by comparing the results for the simplified versions of the present model with an exact analytical solution derived here. Once the accuracy of DTM is authenticated, the method is used to generate results for the general problem formulated here. These results illustrate the effects of various dimensionless parameters on the thermal performance of homogeneous material fins and FGM fins

  2. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    Science.gov (United States)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded

  3. Circular integrated optical microresonators: Analytical methods and computational aspects

    NARCIS (Netherlands)

    Hiremath, K.R.; Hammer, Manfred; Chremmos, I.; Schwelb, O.; Uzunoglu, N.

    2010-01-01

    This chapter discusses an ab-initio frequency-domain model of circular microresonators, built on the physical notions that commonly enter the description of the resonator functioning in terms of interaction between fields in the circular cavity with the modes supported by the straight bus

  4. Cognitive self-regulation and social functioning among French children: A longitudinal study from kindergarten to first grade.

    Science.gov (United States)

    Hubert, Blandine; Guimard, Philippe; Florin, Agnès

    2017-03-01

    This study adds to the body of research examining the links between two components of cognitive self-regulation (inhibitory control and verbal working memory) and social functioning (social integration, social problem solving, and prosocial skills) and focuses on children's sex as a moderator of the association between cognitive self-regulation and social functioning. The participants (N = 131) were French schoolchildren followed from kindergarten (Mage = 68.36 months, SD = 3.33 months) through Grade 1. Using hierarchical regression analyses, three major findings were revealed: (1) inhibitory control was a better predictor than verbal working memory of prosocial skills assessed by peers using the sociometric technique as well as by teachers using questionnaires, after controlling for sex, mother's education, and verbal and non-verbal IQ; (2) the prosocial skills assessed by teachers in kindergarten contributed more to explaining the prosocial skills and peer acceptance assessed in Grade 1 than cognitive self-regulation; and (3) sex did not moderate the relationship between cognitive self-regulation and social functioning. These results suggest that developing strong cognitive self-regulation, especially inhibitory control and prosocial skills, in young children schooled in France could be beneficial for their social development. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  5. Closed-form Solution for Freely Vibrating Functionally Graded Thick Doubly Curved Panel-A New Generic Approach

    Directory of Open Access Journals (Sweden)

    M. Fadaee

    Full Text Available Abstract Today, double curvature shell panels are the main parts of each design because their geometrical characteristics provide high strength to weight ratio, aerodynamic form and beauty for the structures such as boats, submarines, automobiles and buildings. Also, functionally graded materials which present multiple properties such as high mechanical and heat resistant, simultaneously, have attracted designers. So, as the first step of any dynamic analysis, this paper concentrates on presenting a high precision and reliable method for free vibration analysis of functionally graded doubly curved shell panels. To this end, panel is modeled based on third order shear deformation theory and both of the Donnell and Sanders strain-displacement relations. A new set of potential functions and auxiliary variables are proposed to present an exact Levy-type close-form solution for vibrating FG panel. The validity and accuracy of present method are confirmed by comparing results with literature and finite element method. Also, effect of various parameters on natural frequencies are studied which are helpful for designers.

  6. Dynamic Contrast-Enhanced Perfusion MRI of High Grade Brain Gliomas Obtained with Arterial or Venous Waveform Input Function.

    Science.gov (United States)

    Filice, Silvano; Crisi, Girolamo

    2016-01-01

    The aim of this study was to evaluate the differences in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) perfusion estimates of high-grade brain gliomas (HGG) due to the use of an input function (IF) obtained respectively from arterial (AIF) and venous (VIF) approaches by two different commercially available software applications. This prospective study includes 20 patients with pathologically confirmed diagnosis of high-grade gliomas. The data source was processed by using two DCE dedicated commercial packages, both based on the extended Toft model, but the first customized to obtain input function from arterial measurement and the second from sagittal sinus sampling. The quantitative parametric perfusion maps estimated from the two software packages were compared by means of a region of interest (ROI) analysis. The resulting input functions from venous and arterial data were also compared. No significant difference has been found between the perfusion parameters obtained with the two different software packages (P-value < .05). The comparison of the VIFs and AIFs obtained by the two packages showed no statistical differences. Direct comparison of DCE-MRI measurements with IF generated by means of arterial or venous waveform led to no statistical difference in quantitative metrics for evaluating HGG. However, additional research involving DCE-MRI acquisition protocols and post-processing would be beneficial to further substantiate the effectiveness of venous approach as the IF method compared with arterial-based IF measurement. Copyright © 2015 by the American Society of Neuroimaging.

  7. Elasto-plastic damage analysis of functionally graded material disks subjected to thermal shock and thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Myung; Toi, Yutaka [Tokyo Univ. (Japan). Inst. of Industrial Science

    2001-03-01

    The elasto-plastic damage behaviors of functionally graded materials (FGM) subjected to thermal loading are analyzed by the finite element method using continuum damage mechanics. The Lemaitre's damage model is employed to analyze the damage behavior of a FGM disk subjected to thermal shock and a FGM coating subjected to thermal cycle. The effect of FGM on the thermal damage is discussed through some numerical examples for industrial materials. Numerical results show the validity of the present method for the evaluation and the development of new FGM. (author)

  8. Exposure of W-TiC/Cu Functionally Graded Materials in the Edge Plasma of HT-7 Tokamak

    International Nuclear Information System (INIS)

    Liu Yang; Zhu Dahuan; Chen Junling; Yan Rong; Zhou Zhangjian

    2012-01-01

    Six-layered W-TiC/Cu functionally graded materials were fabricated by resistance sintering under ultra-high pressure and exposed in the edge plasma of HT-7 tokamak. Microstructure morphologies show that the TiC particles distribute homogeneously in the W matrix, strengthening the grain boundary, while gradient layers provide a good compositional transition from W-TiC to Cu. After about 360 shots in the HT-7 tokamak, clear surface modification can be observed after plasma exposure, and the addition of nano TiC particles is beneficial to the improvement of plasma loads resistance of W.

  9. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    International Nuclear Information System (INIS)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-01-01

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible

  10. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  11. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Science.gov (United States)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-03-01

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  12. Developing Essential Understanding of Functions for Teaching Mathematics in Grades 9-12

    Science.gov (United States)

    Lloyd, Gwendolyn; Beckmann, Sybilla; Zbiek, Rose Mary; Cooney, Thomas

    2010-01-01

    Are sequences functions? What can't the popular "vertical line test" be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? Helping high school students develop a robust understanding of functions requires…

  13. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  14. Defining the real-world reproducibility of visual grading of left ventricular function and visual estimation of left ventricular ejection fraction: impact of image quality, experience and accreditation.

    Science.gov (United States)

    Cole, Graham D; Dhutia, Niti M; Shun-Shin, Matthew J; Willson, Keith; Harrison, James; Raphael, Claire E; Zolgharni, Massoud; Mayet, Jamil; Francis, Darrel P

    2015-10-01

    Left ventricular function can be evaluated by qualitative grading and by eyeball estimation of ejection fraction (EF). We sought to define the reproducibility of these techniques, and how they are affected by image quality, experience and accreditation. Twenty apical four-chamber echocardiographic cine loops (Online Resource 1-20) of varying image quality and left ventricular function were anonymized and presented to 35 operators. Operators were asked to provide (1) a one-phrase grading of global systolic function (2) an "eyeball" EF estimate and (3) an image quality rating on a 0-100 visual analogue scale. Each observer viewed every loop twice unknowingly, a total of 1400 viewings. When grading LV function into five categories, an operator's chance of agreement with another operator was 50% and with themself on blinded re-presentation was 68%. Blinded eyeball LVEF re-estimates by the same operator had standard deviation (SD) of difference of 7.6 EF units, with the SD across operators averaging 8.3 EF units. Image quality, defined as the average of all operators' assessments, correlated with EF estimate variability (r = -0.616, p visual grading agreement (r = 0.58, p visual grading of LV function and LVEF estimation is dependent on image quality, but individuals cannot themselves identify when poor image quality is disrupting their LV function estimate. Clinicians should not assume that patients changing in grade or in visually estimated EF have had a genuine clinical change.

  15. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    Science.gov (United States)

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  16. On Development and Wear Behavior of Microwave-Processed Functionally Graded Ni-SiC Clads on SS-304 Substrate

    Science.gov (United States)

    Kaushal, Sarbjeet; Gupta, Dheeraj; Bhowmick, Hiralal

    2018-02-01

    In this study, the functionally graded Ni-SiC claddings with gradual change in SiC contents were deposited on SS-304 substrate using microwave hybrid heating technique. Experimental trials were carried out inside a multimode domestic microwave device at 2.45 GHz and 900 W. The optimal exposure time of 900 W microwave power was varied with compositional gradient, and it was from 300 to 360 s. The developed functionally graded clad (FGC) was characterized by SEM/EDS, XRD and Vicker's micro-hardness. Microstructural analysis results revealed that the FGC of approximately 2 mm thickness was developed and was free from any type of interfacial cracks and visible porosity. The maximum micro-hardness was at the top FGC layer, and its value was 1025 ± 30 HV. Three types of single-layer claddings were also developed to compare the tribological behavior of FGC. FGC exhibited 32 and 1.2 times more wear resistance than SS-304 substrate and Ni + 30% SiC layer, respectively. In the case of FGC, wear mainly occurs due to debonding of carbide particles from the matrix, while plastic deformation and strong abrasion are responsible for material loss in the case of the SS-304 substrate.

  17. Cognitive function after radiotherapy for supratentorial low-grade glioma: A North Central Cancer Treatment Group prospective study

    International Nuclear Information System (INIS)

    Laack, Nadia N.; Brown, Paul D.; Ivnik, Robert J.; Furth, Alfred F. M.S.; Ballman, Karla V.; Hammack, Julie E.; Arusell, Robert M.; Shaw, Edward G.; Buckner, Jan C.

    2005-01-01

    Purpose: To evaluate the effects of cranial radiotherapy (RT) on cognitive function in patients with supratentorial low-grade glioma. Methods and Materials: Twenty adult patients with supratentorial low-grade glioma were treated with 50.4 Gy (10 patients) or 64.8 Gy (10 patients) localized RT. The patients then were evaluated with an extensive battery of psychometric tests at baseline (before RT) and at approximately 18-month intervals for as long as 5 years after completing RT. To allow patients to serve as their own controls, cognitive performance was evaluated as change in scores over time. All patients underwent at least two evaluations. Results: Baseline test scores were below average compared with age-specific norms. At the second evaluation, the groups' mean test scores were higher than their initial performances on all psychometric measures, although the improvement was not statistically significant. No changes in cognitive performance were seen during the evaluation period when test scores were analyzed by age, treatment, tumor location, tumor type, or extent of resection. Conclusions: Cognitive function was stable after RT in these patients evaluated prospectively during 3 years of follow-up. Slight improvements in some cognitive areas are consistent with practice effects attributable to increased familiarity with test procedures and content

  18. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    Science.gov (United States)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  19. Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory

    Science.gov (United States)

    Ansari, R.; Ashrafi, M. A.; Pourashraf, T.; Sahmani, S.

    2015-04-01

    The buckling and vibration responses of nanoplates made of functionally graded materials (FGMs) subjected to thermal loading are studied in prebuckling domain with considering the effect of surface stress. To accomplish this purpose, Gurtin-Murdoch elasticity theory is incorporated into the classical plate theory to develop a non-classical plate model including the surface effects. The material properties of FGM nanoplate are considered to be graded in the thickness direction on the basis of the power law function. Hamilton's principle is utilized to derive size-dependent governing differential equations of motion and associated boundary conditions. Selected numerical results are presented to indicate the importance of surface stress effect. It is revealed that in the presence of surface stress effect, the influence of material property gradient index on the critical thermal buckling load is more prominent for FGM nanoplates with lower length-to-thickness ratios. Also, by increasing the natural frequency of FGM nanoplate, the role of surface stress effect in the value of critical thermal buckling load is more prominent.

  20. The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies.

    Science.gov (United States)

    Hazlehurst, K B; Wang, C J; Stanford, M

    2013-12-01

    The cementless fixation of porous coated femoral stems is a common technique employed for Total Hip Arthroplasty (THA). With the rate of revision surgery appearing to rise and younger more active patients requiring primary surgery it can be thought that alternative methods for increasing implant longevity need to be considered. The stress shielding of periprosthetic bone still remains a contributing factor to implant loosening, caused through a mismatch in stiffness between the implant and the bone. However, the ability to achieve stiffness matching characteristics is being realised through the use of Additive Layer Manufacturing (ALM) technologies and Functionally Graded Materials (FGM). This paper proposes an alternative design methodology for a monoblock Cobalt Chrome Molybdenum (CoCrMo) femoral stem. It hypothesises that a femoral stem suitable for cementless fixation can be manufactured using Laser Melting (LM) technology offering orthotropic functionally graded porous structures with similar mechanical properties to human bone. The structure and mechanical properties of the natural femur have been used as a basis for the design criteria which hypothesises that through a combination of numerical analysis and physical testing, an optimal design can be proposed to provide a lightweight, customised femoral stem that can reduce the risk of implant loosening through stress shielding whilst maintaining bone-implant interface stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials

    Science.gov (United States)

    Zhou, Feng-xi

    2016-02-01

    The method of the reverberation-ray matrix has been developed and successfully applied to analyse the wave propagation in a multibranched framed structure or in a layered medium. However, the method is confined to the case of mechanical loads applied at the medium until now. This paper aims to extend the formulation of the reverberation-ray matrix to cases of thermal propagation and diffusion. The thermal response in functionally graded materials (FGM) with the non-Fourier heat conduction model is analysed. In the present work, it is assumed that the material properties of an FG plate vary only in the thickness direction by following the power law function. The effect of non-Fourier and material inhomogeneity in the plate subjected to a periodic thermal disturbance is investigated. The present approach is validated by comparing it with the solutions obtained by other methods.

  2. Circular Migration and Human Development

    OpenAIRE

    Newland, Kathleen

    2009-01-01

    This paper explores the human development implications of circular migration — both where it occurs naturally and where governments work to create it. The paper discusses various conceptions and definitions of circular migration, and concludes that circular migration is not intrinsically positive or negative in relation to human development; its impact depends upon the circumstances in which it occurs, the constraints that surround it and—above all—the degree of choice that ind...

  3. Refractive error and visual functions in children with special needs compared with the first grade school students in oman.

    Science.gov (United States)

    Vora, Urmi; Khandekar, Rajiv; Natrajan, Sarvanan; Al-Hadrami, Khalfan

    2010-10-01

    We evaluated the refractive status and visual function of children with special needs (other handicap) in 2010 and compared them with healthy 1(st) grade school students in Oman. This was a cohort study. Optometrists recorded vision using a logarithm of minimum angle of resolution (LogMAR) chart. Preferential looking method was used for testing 31 children. Cycloplegic refraction was performed on all children. Contrast sensitivity was tested using 2.5%, 10%, and 100% contrast charts. Ocular movement, alignment, and anterior segment were also assessed. A pediatrician reviewed the health records of all the children at the time of their enrollment in this study to determine if the child had been diagnosed with a systemic condition or syndromes. The visual functions were assessed by study investigators. We estimated the rates and the risk of different visual function defects in children with special needs. The prevalence of refractive error in 70 children (4.7 ± 0.8 years) with special needs (group 1) and 175 normal healthy first grade students (group 2) were 58.5% and 2.9%, respectively. The risk of refractive error was significantly higher in children with special needs [relative risk, 48.1 (95% confidence interval, 17.54-131.8)]. Hyperopia (>1.00 D), myopia (≥ 1.00D) and astigmatism (≥ ±1.00 D) were found in 18.6%, 24.3%, and 27.1%, respectively, in group 1. Six children in this group had defective near vision. Sixteen (80%) children with Down syndrome had refractive error. Seven (50%) children with developmental disorder showed decreased contrast sensitivity. Prevalence of uncorrected refractive error was much higher in children with special needs. Prevalence of strabismus, nystagmus, and reduced contrast sensitivity was also higher in children with special needs. Early vision screening, visual function assessment, correction of refractive error, and frequent follow-up are recommended.

  4. Lethality in mice and rats exposed to 2450 MHz circularly polarized microwaves as a function of exposure duration and environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E.; Kinn, J.B.; Ali, J.; Carter, H.B.; Rehnberg, B.; Stead, A.G.

    1985-02-01

    Adult male CD-1 mice and CD rats were used to determine LD50/24 h lethality rates from exposure to 2450-MHz circularly polarized microwaves. Groups of 16 mice or six rats were exposed in each of 32 combinations of nominal power density, exposure duration, and environmental temperature and relative humidity. An analysis of variance probit model was used to determine the influence each variable had on the probability of death. Significant factors in lethality were nominal power density, exposure duration and environmental temperature, but not environmental relative humidity. The estimated power density (mW cm-2) required to kill 50% of the animals in 24 h is halved when the environmental temperature is increased from 20 to 30 degrees C. Similarly, only 20-25% of the power density is required when the exposure duration is increased from 1 to 4 h. The use of nominal power density as a predictor of the probability of death was more efficient than specific absorption rate estimated experimentally by twin-well calorimetry. The exposure of one mouse at a time, instead of 16, did not alter the predicted death rate.

  5. Circular defects detection in welded joints using circular hough transform

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Shukri Mohd; Abdul Aziz Mohamed; Shaharudin Sayuti; Muhamad Daud

    2007-01-01

    Conventional radiography is one of the common non-destructive testing which employs manual image interpretation. The interpretation is very subjective and depends much on the inspector experience and working conditions. It is therefore useful to have pattern recognition system in order to assist human interpreter in evaluating the quality of the radiograph sample, especially radiographic image of welded joint. This paper describes a system to detect circular discontinuities that is present in the joints. The system utilizes together 2 different algorithms, which is separability filter to identify the best object candidate and Circular Hough Transform to detect the present of circular shape. The result of the experiment shows a promising output in recognition of circular discontinuities in a radiographic image. This is based on 81.82-100% of radiography film with successful circular detection by using template movement of 10 pixels. (author)

  6. Accuracy of Magnetic Resonance Imaging for Grading of Subglottic Stenosis in Patients with Granulomatosis with Polyangiitis: Correlation with Pulmonary Function Tests and Laryngoscopy.

    Science.gov (United States)

    Henes, Frank O; Laudien, Martin; Linsenhoff, Laura; Bremer, Jan P; Oqueka, Tim; Adam, Gerhard; Schön, Gerhard; Bannas, Peter

    2017-08-03

    To compare magnetic resonance imaging (MRI)-based and laryngoscopy-based subglottic stenosis (SGS) grading with pulmonary function tests (PFT) in patients with granulomatosis with polyangiitis (GPA). In this retrospective study we included 118 examinations of 44 patients with GPA and suspected SGS. All patients underwent MRI, laryngoscopy, and PFT. Stenosis was graded on a 4-point scale by endoscopy and MRI using the Meyer-Cotton (MC)-Score (score1: ≤50%; 2: 51-70%; 3: 71-99%; 4: 100%) and as percentage by MRI. Results were compared with peak expiratory flow (PEF) and maximum inspiratory flow (MIF) from PFT, serving as objective functional reference. In MRI, 112/118 examinations (95%) were rated positive for SGS (n=82: grade1; n=26: grade2; n=4: grade3) whereas in laryngoscopy 105/118 examinations (89%) were rated positive for SGS (n=73: grade1; n=24: grade2; n=8: grade3). MRI and laryngoscopy agreed in 75 of 118 examinations (64%). MRI determined higher scores in 20 (17%) and lower scores in 23 (19%) examinations compared to laryngoscopy. MC-scores as determined by both MRI and laryngoscopy showed comparable correlations with PEF (r=-0.363, p=0.016 and r=-0.376, p=0.012, respectively) and MIF (r=-0.340, p=0.024 and r=-0.320, p=0.034, respectively). Highest correlation was found between MRI-based stenosis grading in percentage with PEF (r=-0.441, p=0.003) and MIF (r=-0.413, p=0.005). MRI and laryngoscopy provide comparable results for grading of SGS in GPA and correlate well with PFT. MRI is an attractive non-invasive and radiation free alternative for monitoring the severity of SGS in patients with GPA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Application of patch test in meshless analysis of continuously non-homogeneous piezoelectric circular plate

    Directory of Open Access Journals (Sweden)

    Staňák P.

    2013-06-01

    Full Text Available Proposed paper presents application of the patch test for meshless analysis of piezoelectric circular plate with functionally graded material properties. Functionally graded materials (FGM are the special class of composite materials with continuous variation of volume fraction of constituents in predominant direction. Patch test analysis is an important tool in numerical methods for addressing the convergence. Meshless local Petrov-Galerkin (MLPG method together with moving least-squares (MLS approximation scheme is applied in the analysis. No finite elements are required for approximation or integration of unknown quantities. Circular plate is considered as a 3-D axisymmetric piezoelectric solid. Considering the axial symmetry, the problem is reduced to a 2-dimensinal one. Displacement and electric potential fields are prescribed on the outer boundaries in order to reach the state of constant stress field inside the considered plate as required by the patch test and the governing equations. Values of prescribed mechanical and electrical fields must be determined in order to comply with applied FGM gradation rule. Convergence study is performed to assess the considered meshless approach and several conclusions are finally presented.

  8. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus

    2015-01-01

    , TNF-α, and CXCL8, confirmed a uniform upregulated inflammatory profile in children with reduced forced expiratory volume at 0.5 seconds (P = .02). Adjusting for body mass index at birth, maternal smoking, older children in the home, neonatal bacterial airway colonization, infections 14 days before...... of the Copenhagen Prospective Study on Asthma in Childhood2000 birth cohort who had completed neonatal lung function testing at age 4 weeks. Associations between neonatal lung function indices and inflammatory biomarkers were investigated by conventional statistics and unsupervised principal component analysis...

  9. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility.

    Science.gov (United States)

    Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad

    2016-11-17

    Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.

  10. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Science.gov (United States)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  11. Nonlinear dynamic response of a simply supported rectangular functionally graded material plate under the time-dependent thermal mechanical loads

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. X. [Beijing Information Science and Technology University, Beijing (China); Zhang, W. [Beijing University of Technology, Beijing (China); Yang, J. [RMIT University, Bundoora (Australia); Li, S. Y. [Ttianjin University of Technology and Education, Tianjin (China)

    2011-07-15

    An analysis on nonlinear dynamic characteristics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in the time dependent thermal environment. Here we look the FGM Plates as isotropic materials which is assumed to be temperature dependent and graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The geometrical nonlinearity using Von Karman's assumption is introduced. The formulation also includes in-plane and rotary inertia effects. In the framework of Reddy's third-order shear deformation plate theory, the governing equations of motion for the FGM plate are derived by the Hamilton's principle. Then the equations of motion with two degree- of-freedom under combined the time-dependent thermomechanical loads can be obtained by using Galerkin's method. Using numerical method, the control equations are analyzed to obtain the response curves. Under certain conditions the periodic and chaotic motions of the FGM plate are found. It is found that because of the existence of the temperature which relate to the time the motions of the FGM plate show the great difference. A period motion can be changed into the chaotic motions which are affected by the time dependent temperature.

  12. The association between sleep disordered breathing, academic grades, and cognitive and behavioral functioning among overweight subjects during middle to late childhood.

    Science.gov (United States)

    Beebe, Dean W; Ris, M Douglas; Kramer, Megan E; Long, Elizabeth; Amin, Raouf

    2010-11-01

    (1) to determine the associations of sleep disordered breathing (SDB) with behavioral functioning, cognitive test scores, and school grades during middle- to late-childhood, an under-researched developmental period in the SDB literature, and (2) to clarify whether associations between SDB and school grades are mediated by deficits in cognitive or behavioral functioning. cross-sectional correlative study. Office/hospital, plus reported functioning at home and at school. 163 overweight subjects aged 10-16.9 years were divided into 4 groups based upon their obstructive apnea+hypopnea index (AHI) during overnight polysomnography and parent report of snoring: Moderate-Severe OSA (AHI > 5, n = 42), Mild OSA (AHI = 1-5, n = 58), Snorers (AHI grades and sleep, parent- and teacher-report of daytime behaviors, and office-based neuropsychological testing. The 4 groups significantly differed in academic grades and parent- and teacher-reported behaviors, particularly inattention and learning problems. These findings remained significant after adjusting for subject sex, race, socioeconomic status, and school night sleep duration. Associations with SDB were confined to reports of behavioral difficulties in real-world situations, and did not extend to office-based neuropsychological tests. Findings from secondary analyses were consistent with, but could not definitively confirm, a causal model in which SDB affects school grades via its impact on behavioral functioning. SDB during middle- to late-childhood is related to important aspects of behavioral functioning, especially inattention and learning difficulties, that may result in significant functional impairment at school.

  13. Executive Function and Academic Achievement in Primary-Grade Students with Down Syndrome

    Science.gov (United States)

    Will, E.; Fidler, D. J.; Daunhauer, L.; Gerlach-McDonald, B.

    2017-01-01

    Background: Executive function (EF) plays a critical role in academic outcomes in typically developing children, but the contribution of EF to academic performance in Down syndrome (DS) is less well understood. This study evaluated differences in early academic foundations between primary school aged children with DS and non-verbal mental-age…

  14. Administrative Circular No. 13 (Rev. 4) - Guarantees for representatives of the personnel

    CERN Multimedia

    Department Head Office - HR Department

    2016-01-01

    Administrative Circular No. 13 (Rev. 4) entitled "Guarantees for representatives of the personnel", approved by the Director-General following discussion in the Standing Concertation Committee meeting on 22 March 2016, will be available on 1st September 2016 via the following link: https://cds.cern.ch/record/2208527.   This revised circular cancels and replaces Administrative Circular No. 13 (Rev. 3) also entitled "Guarantees for representatives of the personnel" of January 2014. This document contains a single change to reflect the terminology under the new career structure: the term "career path" is replaced by "grade". This circular will enter into force on 1st September 2016.

  15. A Novel Method for Characterizing the Impact Response of Functionally Graded Plates

    Science.gov (United States)

    2008-09-01

    refractory or adhesively bond thermal-resistant composites (i.e., tiles) to its exterior. Under harsh environments, the thermal barrier and/or...members as a function of height in the beam and depth in the plate. Finite element models were developed in ABAQUS to predict the accumulated plastic strain...configurations were studied in an axisymmetric model using the commercial finite element analysis code ABAQUS . The elastic properties of the FGM were

  16. A Novel Fabrication Method for Functionally Graded Materials under Centrifugal Force: The Centrifugal Mixed-Powder Method

    Directory of Open Access Journals (Sweden)

    Eri Miura-Fujiwara

    2009-12-01

    Full Text Available One of the fabrication methods for functionally graded materials (FGMs is a centrifugal solid-particle method, which is an application of the centrifugal casting technique. However, it is the difficult to fabricate FGMs containing nano-particles by the centrifugal solid-particle method. Recently, we proposed a novel fabrication method, which we have named the centrifugal mixed-powder method, by which we can obtain FGMs containing nano-particles. Using this processing method, Cu-based FGMs containing SiC particles and Al-based FGMs containing TiO2 nano-particles on their surfaces have been fabricated. In this article, the microstructure and mechanical property of Cu/SiC and Al/TiO2 FGMs, fabricated by the centrifugal mixed-powder method are reviewed.

  17. Vibration control of a functionally graded material plate patched with piezoelectric actuators and sensors under a constant electric charge

    Science.gov (United States)

    Kargarnovin, M. H.; Najafizadeh, M. M.; Viliani, N. S.

    2007-08-01

    In this paper active vibration control of functionally graded material (FGM) plates using piezoelectric sensor/actuator patches is studied. A simply supported FGM rectangular plate which is bonded with a piezoelectric rectangular patch (patches) on the top and/or bottom surface(s) as actuators/sensors is considered. When a constant electric charge is imposed, the governing differential equations of the motion are derived using classical laminated plate theory (CLPT). The solution for the motion equation is obtained using a Fourier series method and the effect of feedback gain and FGM volume fraction on the plate frequency and displacement (w) are studied. It is noticed that increasing the feedback gain leads to the reduction of frequency and displacement and therefore a better control of the plate's vibration. Moreover, by increasing the value of the FGM volume fraction the resonant frequency decreases.

  18. The modelling and design of smart structures using functionally graded materials and piezoelectrical sensor/actuator patches

    Science.gov (United States)

    Liew, K. M.; Sivashanker, S.; He, X. Q.; Y Ng, T.

    2003-08-01

    Finite element formulations are derived for static and dynamic analysis and the control of functionally graded material (FGM) plates under environments subjected to a temperature gradient, using linear piezoelectricity theory and first-order shear deformation theory. The multi-input-multi-output (MIMO) system with four collocated sensors and actuators is applied to provide active feedback control of the integrated FGM plate in a closed loop system. The distributed piezoelectrical sensors monitor the structural deformation due to the direct piezoelectrical effect and the distributed actuators control the deformation via the converse piezoelectrical effect. Numerical results for the static and dynamic control have been presented for the FGM plate, which consists of zirconia and aluminum. The purpose of the examples, which consist of a FGM plate with four collocated sensors and actuators used as MIMO system, is to determine the optimum configurations of the sensor/actuator pairs under various thermal and mechanical load fields.

  19. Effect of initial stress on Love waves in a piezoelectric structure carrying a functionally graded material layer.

    Science.gov (United States)

    Qian, Zheng-Hua; Jin, Feng; Lu, Tianjian; Kishimoto, Kikuo; Hirose, Sohichi

    2010-01-01

    The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.

  20. Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates considering State Space Method

    Directory of Open Access Journals (Sweden)

    Tieliang Yang

    2016-01-01

    Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.

  1. Radiographic and functional outcome of posterolateral lumbosacral fusion for low grade isthmic spondylolisthesis in children and adolescents.

    Science.gov (United States)

    Tsirikos, A I; Sud, A; McGurk, S M

    2016-01-01

    We reviewed 34 consecutive patients (18 female-16 male) with isthmic spondylolysis and grade I to II lumbosacral spondylolisthesis who underwent in situ posterolateral arthodesis between the L5 transverse processes and the sacral ala with the use of iliac crest autograft. Ten patients had an associated scoliosis which required surgical correction at a later stage only in two patients with idiopathic curves unrelated to the spondylolisthesis. No patient underwent spinal decompression or instrumentation placement. Mean surgical time was 1.5 hours (1 to 1.8) and intra-operative blood loss 200 ml (150 to 340). There was one wound infection treated with antibiotics but no other complication. Radiological assessment included standing posteroanterior and lateral, Ferguson and lateral flexion/extension views, as well as CT scans. A solid posterolateral fusion was confirmed in all patients at mean latest follow-up of 4.7 years (3.4 to 9.8) beyond skeletal maturity into early adult life. Fusion of the isthmic lesion was documented in nine patients bilaterally and eight patients unilaterally. The poor fusion rate across the spondylolysis has not affected the excellent functional results of the procedure, which in our series depended on achieving a stable lumbosacral junction. Quality of life assessment demonstrated significant improvement in all functional scores and high patient satisfaction with 28 patients returning to previous sports activities at an elite competitive level. Posterolateral arthrodesis in situ with autologous iliac crest bone without instrumentation has achieved a solid fusion between the L5 transverse processes and the sacral ala in patients with grade I to II isthmic lumbosacral spondylolisthesis and this has produced excellent clinical outcomes and high patient satisfaction. ©2016 The British Editorial Society of Bone & Joint Surgery.

  2. Multipole Analysis of Circular Cylindircal Magnetic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Selvaggi, Jerry P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2005-12-01

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six

  3. Multi-objective optimization of a functionally graded sandwich panel under mechanical loading in the presence of stress constraint

    Science.gov (United States)

    Ashjari, Mohammad; Khoshravan, Mohammad Reza

    2017-12-01

    A method was presented for multi-objective optimization of material distribution of simply supported functionally graded (FG) sandwich panel, and sensitivity analyses of optimal designs were also conducted based on design variables and objective functions. The material composition was assumed to vary only in the thickness direction. Piecewise cubic interpolation of volume fractions was used to calculate volume fractions of constituent material phases at a point; these fractions were defined at a limited number of evenly spaced control points. The effective material properties of the panel were obtained by applying the linear rule of mixtures. The behavior of FG sandwich panel was predicted by Reddy's assumptions of third-order shear deformation theory. Exact solutions for deflections and stresses of simply supported sandwich panel were presented using the Navier-type solution technique. The volume fractions at control points, material, and thickness of the faces which were selected as decision variables were optimized by a multi-objective evolutionary algorithm known as the fast and elitist multi-objective genetic algorithm (NSGA-II). The mass and deflection of the model were considered the objective functions to be minimized with stress constraints. This model was optimized to verify the capability and efficiency of the proposed model under mechanical loading. The framework proposed for designing FG sandwich panel under pure mechanical conditions was furnished by the results.

  4. In diabetic Charcot neuroarthropathy impaired microvascular function is related to long lasting metabolic control and low grade inflammatory process.

    Science.gov (United States)

    Araszkiewicz, Aleksandra; Soska, Jacek; Borucka, Katarzyna; Olszewska, Marta; Niedzwiecki, Pawel; Wierusz-Wysocka, Bogna; Zozulinska-Ziolkiewicz, Dorota

    2015-09-01

    The aim of this study was to assess microvascular function associated with the occurrence of Charcot neuroarthropathy (CN) in patients with diabetes. We evaluated 70 diabetic patients (54 men) with Charcot neuroarthropathy (CN-DM), median age 59 (IQR: 51-62), mean disease duration 16±8years. The control group were 70 subjects with diabetes and without Charcot neuroarthropathy (DM), 54 men, median age 60 (54-62), mean diabetes duration 15±7years. We assessed metabolic control of diabetes, serum C-reactive protein concentration (CRP) and cardiovascular autonomic neuropathy (CAN). We used AGE-Reader to measure skin autofluorescence (AF) associated with accumulation of advanced glycation end products that reflects long lasting metabolic control. Microvascular function was examined by laser Doppler flowmetry (PERIFLUX 5000) with thermal hyperemia (TH) and postocclusive reactive hyperemia (PORH). CN-DM patients as compared to DM subjects had lower HbA1c level [7.6 (6.6-8.4) vs 8.4 (7.3-9.7)%, plevel (Rs=0.42, plevel (Rs=-0.23, p=0.04). Deterioration of microvascular function and autonomic system dysfunction are present in Charcot neuroarthropathy. Impaired microvascular reactivity is associated with worse long lasting metabolic control of diabetes and low grade inflammatory process. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Intravenous Injection of Clinical Grade Human MSCs After Experimental Stroke: Functional Benefit and Microvascular Effect.

    Science.gov (United States)

    Moisan, Anack; Favre, Isabelle; Rome, Claire; De Fraipont, Florence; Grillon, Emmanuelle; Coquery, Nicolas; Mathieu, Herv; Mayan, Virginie; Naegele, Bernadette; Hommel, Marc; Richard, Marie-Jeanne; Barbier, Emmanuel Luc; Remy, Chantal; Detante, Olivier

    2016-12-13

    Stroke is the leading cause of disability in adults. Many current clinical trials use intravenous (IV) administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs). This autologous graft requires a delay for ex vivo expansion of cells. We followed microvascular effects and mechanisms of action involved after an IV injection of human BM-MSCs (hBM-MSCs) at a subacute phase of stroke. Rats underwent a transient middle cerebral artery occlusion (MCAo) or a surgery without occlusion (sham) at day 0 (D0). At D8, rats received an IV injection of 3 million hBM-MSCs or PBS-glutamine. In a longitudinal behavioral follow-up, we showed delayed somatosensory and cognitive benefits 4 to 7 weeks after hBM-MSC injection. In a separate longitudinal in vivo magnetic resonance imaging (MRI) study, we observed an enhanced vascular density in the ischemic area 2 and 3 weeks after hBM-MSC injection. Histology and quantitative polymerase chain reaction (qPCR) revealed an overexpression of angiogenic factors such as Ang1 and transforming growth factor-1 (TGF-1) at D16 in hBM-MSC-treated MCAo rats compared to PBS-treated MCAo rats. Altogether, delayed IV injection of hBM-MSCs provides functional benefits and increases cerebral angiogenesis in the stroke lesion via a release of endogenous angiogenic factors enhancing the stabilization of newborn vessels. Enhanced angiogenesis could therefore be a means of improving functional recovery after stroke.

  6. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  7. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  8. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  9. Survival, complications and functional outcomes of cemented megaprostheses for high-grade osteosarcoma around the knee.

    Science.gov (United States)

    Zhang, Chunlin; Hu, Jianping; Zhu, Kunpeng; Cai, Tao; Ma, Xiaolong

    2018-04-01

    We initiated a retrospective study on the long-term survival of cemented endoprostheses for bone tumours around the knee to answer the following questions: (1) What was the survival of these patients? (2) What was the overall survival of cemented prostheses around the knee? (3) What types of failures were observed in these reconstructions? (4) Did the survival and complications vary according to the site of the implant? (5) What was the functional result after cemented prosthesis replacement around the knee? From January 2006 to December 2013, 108 consecutive patients with an average age of 25 years, who had mature bone development as evidenced by imaging examinations, underwent 108 cemented endoprosthetic knee replacements for osteosarcoma resection. All patients received neoadjuvant chemotherapy using a multi-drug protocol consisting of high dose methotrexate (HDMTX), doxorubicin (ADM), cisplatin (DDP) and high dose ifosfamide (HDIFO). When extensor mechanism reconstruction was required, we ran nonabsorbable sutures through designated holes in the tibial component to fix detached hamstrings and the remaining ligaments in an imbricated fashion as well as reinforced the reconstruction with a medial gastrocnemius flap. Seventy-two (72/108, 66.7%) lesions were located in the distal femur and 36 (36/108, 33.3%) lesions at the proximal tibias. Nineteen patients were staged as IIA and 89 as IIB according to the Enneking staging system. The average follow-up was 53.3 months (range 12-125 months), with a minimum oncological follow-up of one year. Survival, prosthetic failure, complications and functional outcomes were recorded and reassessed at every visit after the primary operation. At the final follow-up, the oncologic results showed that 33 patients died from metastases, and local recurrence occurred in ten patients. The estimated overall five-year and eight-year survival rates were 71% (95% CI: 62.4-79.65%) and 67.2% (95% CI: 58-76.4%), respectively. In this

  10. Long-Term Cognitive Functioning and Psychological Well-Being in Surgically Treated Patients with Low-Grade Glioma.

    Science.gov (United States)

    Campanella, Fabio; Palese, Alvisa; Del Missier, Fabio; Moreale, Renzo; Ius, Tamara; Shallice, Tim; Fabbro, Franco; Skrap, Miran

    2017-07-01

    The aim of this work is to provide an in-depth investigation of the impact of low-grade gliomas (LGG) and their surgery on patients' cognitive and emotional functioning and well-being, carried out via a comprehensive and multiple-measure psychological and neuropsychological assessment. Fifty surgically treated patients with LGG were evaluated 40 months after surgery on their functioning over 6 different cognitive domains, 3 core affective/emotional aspects, and 3 different psychological well-being measures to obtain a clearer picture of the long-term impact of illness and surgery on their psychological and relational world. Close relatives were also involved to obtain an independent measure of the psychological dimensions investigated. Cognitive status was satisfactory, with only mild short-term memory difficulties. The affective and well-being profile was characterized by mild signs of depression, good satisfaction with life and psychological well-being, and good personality development, with patients perceiving themselves as stronger and better persons after illness. However, patients showed higher emotional reactivity, and psychological well-being measures were negatively affected by epileptic burden. Well-being was related to positive affective/emotional functioning and unrelated to cognitive functioning. Good agreement between patients and relatives was found. In the long-term, patients operated on for LGG showed good cognitive functioning, with no significant long-term cognitive sequelae for the extensive surgical approach. Psychologically, patients appear to experience a deep psychological change and maturation, closely resembling that of so-called posttraumatic growth, which, to our knowledge, is for the first time described and quantified in patients with LGG. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition.

    Science.gov (United States)

    Farnoush, Hamidreza; Aghazadeh Mohandesi, Jamshid; Çimenoğlu, Hüseyin

    2015-06-01

    In the present study, functionally graded coatings of HA/TiO2 nanoparticles and HA-TiO2 nanocomposite coatings with 0, 10 and 20 wt% of TiO2 were fabricated by electrophoretic deposition on Ti-6Al-4V substrate. The functionally graded structure of HA/TiO2 coatings was formed by gradual addition of HA suspension into the deposition cell containing TiO2 nanoparticles. Micro-scratch test results showed the highest critical distances of crack initiation and delamination, normal load before failure and critical contact pressures for functionally graded coating. It was observed that the improvement of adhesion strength and fracture toughness of functionally graded coatings would be due to the reduction of thermal expansion coefficient mismatch between Ti-6Al-4V substrate and HA. The results of potentiodynamic polarization measurements showed that the graded structure of the coating could efficiently increase the corrosion resistance of substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    International Nuclear Information System (INIS)

    Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test–retest interval. NCF impairment was defined as a z score ≤−1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose–volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an α/β ratio of 2 Gy were computed. Fisher’s exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose–response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD 2 to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD 2 to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD 2 to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in

  13. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    International Nuclear Information System (INIS)

    Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.; Tomé, Wolfgang A.

    2013-01-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test–retest interval. NCF impairment was defined as a z score ≤−1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose–volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an α/β ratio of 2 Gy were computed. Fisher’s exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose–response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD 2 to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD 2 to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD 2 to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in

  14. Digitalizing the Circular Economy

    Science.gov (United States)

    Reuter, Markus A.

    2016-12-01

    Metallurgy is a key enabler of a circular economy (CE), its digitalization is the metallurgical Internet of Things (m-IoT). In short: Metallurgy is at the heart of a CE, as metals all have strong intrinsic recycling potentials. Process metallurgy, as a key enabler for a CE, will help much to deliver its goals. The first-principles models of process engineering help quantify the resource efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first-principles environmental information to empower a tax paying consumer society, policy, legislators, and environmentalists. It provides the details of capital expenditure and operational expenditure estimates. Through this path, the opportunities and limits of a CE, recycling, and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE. The integration of metallurgical reactor technology and systems digitally, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops, i.e., the m-IoT. It is the linkage of the global carrier metallurgical processing system infrastructure that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through the following: (1) System optimization models for multimetal metallurgical processing. These map large-scale m-IoT systems linked to computer-aided design tools of the original equipment manufacturers and then establish a recycling index through the quantification of RE. (2) Reactor optimization and industrial system solutions to realize the "CE (within a) Corporation—CEC," realizing the CE of society. (3) Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modeling, simulation, and optimization of industrial extractive process

  15. Perceived Demands of Schooling, Stress and Mental Health: Changes from Grade 6 to Grade 9 as a Function of Gender and Cognitive Ability.

    Science.gov (United States)

    Giota, Joanna; Gustafsson, Jan-Eric

    2017-08-01

    The link between perceived demands of school, stress and mental health in relation to gender is complex. The study examined, with two waves of longitudinal data at age 13 and age 16, how changes in perceived academic demands relate to changes in perceived stress, taking into account gender and cognitive ability, and to investigate how these factors affect the level of psychosomatic and depressive symptoms at the age of 16. A nationally representative sample including about 9000 individuals from the Swedish longitudinal Evaluation Through Follow up database born in 1998 was included. A growth modelling approach was applied to examine relations over time. The results show girls to have a considerably higher self-reported level of mental health problems at the end of compulsory school than boys. This gender difference is entirely accounted for by perceived school demands and stress in grades 6 and 9. Students who were stronger in inductive than vocabulary ability reported lower levels of perceived academic demands and less stress in grade 6. There is a need to develop interventions for minimizing the consequences of stress among adolescents and modify those particular aspects of academic demands which cause stress and poor mental health, especially among girls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Temperature/Stress Distributions in a Stress-Relief-Type Plate of Functionally Graded Materials under Thermal Shock

    Science.gov (United States)

    Awaji, Hideo; Takenaka, Hiromitsu; Honda, Sawao; Nishikawa, Tadahiro

    This paper presents a numerical technique for analyzing one-dimensional transient temperature and stress distributions in a stress-relief-type plate of functionally graded ceramic-metal based materials (FGMs), in relation to both the temperature-dependent thermal properties and continuous and gradual variation of the thermo-mechanical properties of the FGM. The FGM plate is assumed to be initially in steady state of temperature gradient, suffering high temperature at the ceramic side and low temperature at the metallic side associated with its in-service performance. The FGM plate is then rapidly cooled at the ceramic side of the plate by a cold medium. The transient temperature and related thermal stresses in the FGM plate are analyzed numerically for a model alumina-nickel FGM system. The proposed analytical technique for determining the temperature distribution is quite simple and widely applicable for various boundary conditions of FGMs, compared with methods recently proposed by other researchers. The optimum composition of FGMs is also discussed to reduce the thermal stresses in the FGM plate, relating to the function of the volume fraction of the metal across the thickness.

  17. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  18. Semi-analytical solution for electro-magneto-thermoelastic creep response of functionally graded piezoelectric rotating disk

    International Nuclear Information System (INIS)

    Loghman, A.; Abdollahian, M.; Jafarzadeh Jazi, A.; Ghorbanpour Arani, A.

    2013-01-01

    Time-dependent electro-magneto-thermoelastic creep response of rotating disk made of functionally graded piezoelectric materials (FGPM) is studied. The disk is placed in a uniform magnetic and a distributed temperature field and is subjected to an induced electric potential and a centrifugal body force. The material thermal, mechanical, magnetic and electric properties are represented by power-law distributions in radial direction. The creep constitutive model is Norton's law in which the creep parameters are also power functions of radius. Using equations of equilibrium, strain-displacement and stress-strain relations in conjunction with the potential-displacement equation a non-homogeneous differential equation containing time-dependent creep strains for displacement is derived. A semi-analytical solution followed by a numerical procedure has been developed to obtain history of stresses, strains, electric potential and creep-strain rates by using Prandtl-Reuss relations. History of electric potential, Radial, circumferential and effective stresses and strains as well as the creep stress rates and effective creep strain rate histories are presented. It has been found that tensile radial stress distribution decreases during the life of the FGPM rotating disk which is associated with major electric potential redistributions which can be used as a sensor for condition monitoring of the FGPM rotating disk. (authors)

  19. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data.

    Science.gov (United States)

    Zheng, Ling-Ling; Li, Jun-Hao; Wu, Jie; Sun, Wen-Ju; Liu, Shun; Wang, Ze-Lin; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-04

    Small non-coding RNAs (e.g. miRNAs) and long non-coding RNAs (e.g. lincRNAs and circRNAs) are emerging as key regulators of various cellular processes. However, only a very small fraction of these enigmatic RNAs have been well functionally characterized. In this study, we describe deepBase v2.0 (http://biocenter.sysu.edu.cn/deepBase/), an updated platform, to decode evolution, expression patterns and functions of diverse ncRNAs across 19 species. deepBase v2.0 has been updated to provide the most comprehensive collection of ncRNA-derived small RNAs generated from 588 sRNA-Seq datasets. Moreover, we developed a pipeline named lncSeeker to identify 176 680 high-confidence lncRNAs from 14 species. Temporal and spatial expression patterns of various ncRNAs were profiled. We identified approximately 24 280 primate-specific, 5193 rodent-specific lncRNAs, and 55 highly conserved lncRNA orthologs between human and zebrafish. We annotated 14 867 human circRNAs, 1260 of which are orthologous to mouse circRNAs. By combining expression profiles and functional genomic annotations, we developed lncFunction web-server to predict the function of lncRNAs based on protein-lncRNA co-expression networks. This study is expected to provide considerable resources to facilitate future experimental studies and to uncover ncRNA functions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Markers of T cell infiltration and function associate with favorable outcome in vascularized high-grade serous ovarian carcinoma.

    Directory of Open Access Journals (Sweden)

    Katelin N Townsend

    Full Text Available When T cells infiltrate the tumor environment they encounter a myriad of metabolic stressors including hypoxia. Overcoming the limitations imposed by an inadequate tumor vasculature that contributes to these stressors may be a crucial step to immune cells mounting an effective anti-tumor response. We sought to determine whether the functional capacity of tumor infiltrating lymphocytes (TIL could be influenced by the tumor vasculature and correlated this with survival in patients with ovarian cancer.In 196 high-grade serous ovarian tumors, we confirmed that the tumor vascularity as measured by the marker CD31 was associated with improved patient disease-specific survival. We also found that tumors positive for markers of TIL (CD8, CD4 and forkhead box P3 (FoxP3 and T cell function (granzyme B and T-cell restricted intracellular antigen-1 (TIA-1 correlated significantly with elevated vascularity. In vitro, hypoxic CD8 T cells showed reduced cytolytic activity, secreted less effector cytokines and upregulated autophagy. Survival analysis revealed that patients had a significant improvement in disease-specific survival when FoxP3 expressing cells were present in CD31-high tumors compared to patients with FoxP3 expressing cells in CD31-low tumors [HR: 2.314 (95% CI 1.049-5.106; p = 0.0377]. Patients with high vascular endothelial growth factor (VEGF expressing tumors containing granzyme B positive cells had improved survival compared to patients with granzyme B positive cells in VEGF-low tumors [HR: 2.522 (95% CI 1.097-5.799; p = 0.0294].Overall, this data provides a rationale for developing strategies aimed at improving the adaptability and function of TIL to hypoxic tumor conditions.

  1. A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations

    Directory of Open Access Journals (Sweden)

    Lhoucine Boutahar

    2016-03-01

    Full Text Available Some Functionally Graded Materials contain pores due to the result of processing; this influences their elastic and mechanical properties. Therefore, it may be very useful to examine the vibration behavior of thin Functionally Graded Annular Plates Clamped at both edges including porosities. In the present study, the rule of mixture is modified to take into account the effect of porosity and to approximate the material properties assumed to be graded in the thickness direction of the examined annular plate. A semi-analytical model based on Hamilton’s principle and spectral analysis is adopted using a homogenization procedure to reduce the problem under consideration to that of an equivalent isotropic homogeneous annular plate. The problem is solved by a numerical iterative method. The effects of porosity, material property, and elastic foundations characteristics on the CCFGAP axisymmetric large deflection response are presented and discussed in detail.

  2. SEM and EBSD characterization of bi-layered functionally graded hard metal composites; REM- und EBSD-Charakterisierung von zweischichtigen, funktionell abgestuften Metallverbundwerkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Orlando; Sanhueza, Felipe [Univ. de Concepcion (Chile). Dept. de Ingenieria de Materiales; Suarez, Sebastian [Saarland Univ., Saarbruecken (Germany). Chair of Functional Materials; Garcia, Jose [AB Sandvik Coromant R and D, Stockholm (Sweden)

    2016-11-15

    WC-Co bi-layer functionally graded composites were produced by powder metallurgy techniques. The influence of WC particle size and the grain growth inhibitor on the formation of the functionally graded composite was investigated. SEM images show that all sintered samples present a graded microstructure after sintering, with two side regions of extra-coarse and coarse WC-Co and a clear, dense interface without defects or other phases. EBSD results showed a change of WC particle size depending on the processing and the addition of Mo{sub 2}C. Cobalt binder distribution corresponds to WC particle size. Hardness values correlate to WC particle size and binder content. It is shown that tailored hardness/toughness can be produced by adjusting the WC particle size and binder content on both sides of the bi-layer composite.

  3. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers and heterocomplexes, but our...... knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast with a conventional notion of a dimeric nature of MMP-9 homomultimers, we...

  4. Perturbation approach to design of circularly polarised microstrip antennas

    Science.gov (United States)

    Lo, Y. T.; Richards, W. F.

    1981-05-01

    One of the most interesting applications of microstrip antennas is its use for transmitting or receiving circularly polarized (CP) waves. A description is given of a simple but accurate method to determine the critical dimensions needed to produce circular polarization for nearly square and nearly circular microstrip antennas. Shen (1981) in connection with the determination of the proper dimensions of an elliptical patch CP microstrip antenna first expressed the modal field in terms of Mathieu functions. To avoid the complicated numerical computation of the Mathieu functions, he approximated these functions in terms of Bessel functions. It is pointed out that the computation of Mathieu functions, or their approximate expressions can be avoided altogether if a perturbation method is applied to find the resonant frequencies of the two orthogonal modes. The implementation of this approach is demonstrated.

  5. Effect of Heat Treatment on the Wear Behaviour of Functionally Graded LM13/B4C Composite

    Directory of Open Access Journals (Sweden)

    L.V. Priyanka Muddamsetty

    2016-03-01

    Full Text Available Aluminium alloy reinforced with boron carbide (10 wt.% was fabricated using stir casting method followed by centrifugal casting and the cylindrical specimen with dimension 150 x 150 x 15 mm was obtained. The composite specimens were heat treated at various aging temperatures and aging time for property improvement. Solution treatment was done at 525 ℃ for 5 hrs. Taguchi’s method was used for designing the plan of experiments and L27 orthogonal array was formulated for the analysis of data. The wear test was conducted on the outer periphery of centrifugally cast Functionally Graded composites using pin-on-disc tribometer. Optimization of parameters such as applied load (10 N, 20 N, 30 N, agingtemperature (150 ℃, 175 ℃, 200 ℃ and aging time (2 hrs, 6 hrs, 10 hrs was done using Signal-to-Noise ratio. “Smaller-the-better” criterion was used for analyzing the results. Results ended up with a conclusion that aging time (92.19 % had major influence on tribological behavior followed by aging temperature (5.36 % and applied load (1.95 %. Scanning Electron Microscope (SEM analysis was performed to understand the wear mechanism in heat treated specimens.

  6. Boundary Conditions in 2D Numerical and 3D Exact Models for Cylindrical Bending Analysis of Functionally Graded Structures

    Directory of Open Access Journals (Sweden)

    F. Tornabene

    2016-01-01

    Full Text Available The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential Quadrature (GDQ and the finite element (FE methods are compared with an exact 3D shell solution in the case of free vibrations of functionally graded material (FGM plates and shells. The first 18 vibration modes carried out through the 3D exact model are compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, some modes cannot be calculated via the 2D numerical models even when the boundary conditions are modified because the cylindrical bending requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in the present paper for different geometries (plates, cylinders, and cylindrical shells, types of FGM law, lamination sequences, and thickness ratios.

  7. Nonlinear thermal buckling and postbuckling analyses of imperfect variable thickness temperature-dependent bidirectional functionally graded cylindrical shells

    International Nuclear Information System (INIS)

    Shariyat, M.; Asgari, D.

    2013-01-01

    Influences of the thickness variability and bidirectional material heterogeneity on the thermal buckling of the cylindrical shells have not been investigated so far. In the present paper, nonlinear thermal buckling and postbuckling analyses of imperfect, variable thickness cylindrical shells made of bidirectional functionally graded materials undergoing uniform temperature rises are accomplished for the first time, employing a third-order shear-deformation theory, von Karman-type kinematic nonlinearity, and a nonlinear finite element method. Material properties may vary in both radial and axial directions and can be temperature-dependent. Buckling temperature is detected by a modified Budiansky's criterion. The results reveal that temperature-dependency of the material properties reduces the buckling temperature. Moreover, effects of the volume fraction index on decreasing the buckling temperature are more remarkable for higher radius to thickness ratios. Furthermore, effects of reduction of the thickness in the axial direction may be compensated by an appropriate distribution of the material properties. -- Highlights: • Nonlinear thermal postbuckling of imperfect FGM cylindrical shells is investigated. • Material properties of the shell may vary in both radial and axial directions. • Geometric imperfections and thickness variability are also taken into account. • Material properties are considered to be temperature-dependent. • The nonlinear governing equations are solved by an updating finite element scheme

  8. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  9. Fracture of functionally graded materials: application to hydrided zircaloy; Fissuration des materiaux a gradient de proprietes: application au zircaloy hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Perales, F

    2005-12-15

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  10. Fabrication of Al{sub 2}O{sub 3}-W Functionally Graded Materials by Slipcasting Method

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tomoyuki; Sukenaga, Sohei; Saito, Noritaka; Nakashima, Kunihiko [Department of Materials Science and Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka 819-0395 (Japan); Kagata, Hajime, E-mail: saito@zaiko.kyushu-u.ac.jp [Advanced Ceramic Section, TOTO Ltd., 2-1-1, Nakashima, Kokura, Kitakyushu, Fukuoka 802-8601 (Japan)

    2011-10-29

    We have successfully fabricated a functionally graded material (FGM) from tungsten and alumina powders by a slip-casting method. This FGM has applications as a sealing and conducting component for high-intensity discharge lamps (HiDLs) that have a translucent alumina envelope. Two types of W powder, with different oxidizing properties, were used as the raw powders for the Al{sub 2}O{sub 3}-W FGM. 'Oxidized W' was prepared by heat-treatment at 200 deg. C for 180 min in air. Alumina and each of the W powders were mixed in ultrapure water by ultrasonic stirring. The slurry was then cast into a cylindrical acrylic mold, which had a base of porous alumina, under controlled pressure. The green compacts were subsequently dried, and then sintered using a vacuum furnace at 1600 deg. C for a fixed time. The microstructures of the FGMs were observed by scanning electron microscopy (SEM) of the polished section. The Al{sub 2}O{sub 3}-W FGM with the 'oxidized W' powder resulted in a microscopic compositional gradient. However, the FGM with 'as-received W' showed no compositional gradient. This result was mainly attributed to the difference between the {zeta}-potentials of the W powders with the different oxidizing conditions; basically 'oxidized W' powder tends to disperse because of the larger {zeta}-potential of the oxide layer coated on the W powder core.

  11. Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach

    Energy Technology Data Exchange (ETDEWEB)

    Heshmati, M.; Yas, M. H. [Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-11-15

    This work deals with the effect of agglomeration and distribution of carbon nanotube on the free vibration characteristics of a functionally graded nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) by employing an equivalent fiber based on the Eshelby-Mori-Tanaka approach. Different SWCNTs distributions in the thickness directions are introduced to improve fundamental natural frequency of polymer composite beam. The micromechanics models used in the study include a two parameter model of agglomeration. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The system of equations of motion is derived by using the principle of virtual work under the assumptions of the Euler-Bernoulli beam theory. The finite element method is employed to obtain a numerical approximation of the motion equation. Numerical results are presented in both tabular and graphical forms to figure out the effects of nanotube agglomeration, CNTs distribution and boundary conditions on the dynamic characteristics of the beam. The above mentioned effects play very important role on the dynamic behavior of the beam.

  12. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    Science.gov (United States)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha; Seo, Ji-Heui; Tyrer, Jonathan; Spindler, Tassja J.; Lee, Janet; Chen, Yibu; Karst, Alison; Drapkin, Ronny; Aben, Katja K. H.; Anton-Culver, Hoda; Antonenkova, Natalia; Bowtell, David; Webb, Penelope M.; deFazio, Anna; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Anne; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; James, Paul; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kruger Kjaer, Susanne; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; Nevanlinna, Heli; McNeish, Ian; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Sellers, Thomas A.; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Monteiro, Alvaro; Pharoah, Paul D.; Gayther, Simon A.; Freedman, Matthew L.

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4 × 10−3, FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10−10 for risk variants (P<10−4) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC. PMID:26391404

  13. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.

    2016-09-01

    Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

  14. Clinical relevance of gain-of-function mutations of p53 in high-grade serous ovarian carcinoma.

    Science.gov (United States)

    Kang, Hyo Jeong; Chun, Sung-Min; Kim, Kyu-Rae; Sohn, Insuk; Sung, Chang Ohk

    2013-01-01

    Inactivation of TP53, which occurs predominantly by missense mutations in exons 4-9, is a major genetic alteration in a subset of human cancer. In spite of growing evidence that gain-of-function (GOF) mutations of p53 also have oncogenic activity, little is known about the clinical relevance of these mutations. The clinicopathological features of high-grade serous ovarian carcinoma (HGS-OvCa) patients with GOF p53 mutations were evaluated according to a comprehensive somatic mutation profile comprised of whole exome sequencing, mRNA expression, and protein expression profiles obtained from the Cancer Genome Atlas (TCGA). Patients with a mutant p53 protein (mutp53) with a GOF mutation showed higher p53 mRNA and protein expression levels than patients with p53 mutation with no evidence of GOF (NE-GOF). GOF mutations were more likely to occur within mutational hotspots, and at CpG sites, and resulted in mutp53 with higher functional severity (FS) scores. Clinically, patients with GOF mutations showed a higher frequency of platinum resistance (22/58, 37.9%) than patients with NE-GOF mutations (12/56, 21.4%) (p=0.054). Furthermore, patients with GOF mutations were more likely to develop distant metastasis (36/55, 65.5%) than local recurrence (19/55, 34.5%), whereas patients with NE-GOF mutations showed a higher frequency of locoregional recurrence (26/47, 55.3%) than distant metastasis (21/47, 44.7%) (p=0.035). There were no differences in overall or progression-free survival between patients with GOF or NE-GOF mutp53. This study demonstrates that patient with GOF mutp53 is characterized by a greater likelihood of platinum treatment resistance and distant metastatic properties in HGS-OvCa.

  15. Clinical relevance of gain-of-function mutations of p53 in high-grade serous ovarian carcinoma.

    Directory of Open Access Journals (Sweden)

    Hyo Jeong Kang

    Full Text Available PURPOSE: Inactivation of TP53, which occurs predominantly by missense mutations in exons 4-9, is a major genetic alteration in a subset of human cancer. In spite of growing evidence that gain-of-function (GOF mutations of p53 also have oncogenic activity, little is known about the clinical relevance of these mutations. METHODS: The clinicopathological features of high-grade serous ovarian carcinoma (HGS-OvCa patients with GOF p53 mutations were evaluated according to a comprehensive somatic mutation profile comprised of whole exome sequencing, mRNA expression, and protein expression profiles obtained from the Cancer Genome Atlas (TCGA. RESULTS: Patients with a mutant p53 protein (mutp53 with a GOF mutation showed higher p53 mRNA and protein expression levels than patients with p53 mutation with no evidence of GOF (NE-GOF. GOF mutations were more likely to occur within mutational hotspots, and at CpG sites, and resulted in mutp53 with higher functional severity (FS scores. Clinically, patients with GOF mutations showed a higher frequency of platinum resistance (22/58, 37.9% than patients with NE-GOF mutations (12/56, 21.4% (p=0.054. Furthermore, patients with GOF mutations were more likely to develop distant metastasis (36/55, 65.5% than local recurrence (19/55, 34.5%, whereas patients with NE-GOF mutations showed a higher frequency of locoregional recurrence (26/47, 55.3% than distant metastasis (21/47, 44.7% (p=0.035. There were no differences in overall or progression-free survival between patients with GOF or NE-GOF mutp53. CONCLUSION: This study demonstrates that patient with GOF mutp53 is characterized by a greater likelihood of platinum treatment resistance and distant metastatic properties in HGS-OvCa.

  16. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    Science.gov (United States)

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Ecodesign for a Circular Economy

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie

    The Earth is a closed system and with the exception of energy, the resources available to us are finite, but our consumption and productions systems are typically linear systems where resources are extracted, used and wasted. The circular economy is proposed as an alternative and is defined...... as a consumption and production system based on closed loops that minimise resources, energy flows and environmental degradation. In this PhD thesis, I have examined how ecodesign can close the material loops in the circular economy for electrical and electronic equipment. The study examines how to improve...... be necessary to develop both product and company specific guidelines. The analysis revealed that activities or product attributes of importance to a circular economy are not solely driven by ecodesign....

  18. Logistic regression for circular data

    Science.gov (United States)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  19. Circular coloring and Mycielski construction

    OpenAIRE

    Alishahi, Meysam; Hajiabolhassan, Hossein

    2010-01-01

    In this paper, we investigate circular chromatic number of Mycielski construction of graphs. It was shown in \\cite{MR2279672} that $t^{{\\rm th}}$ Mycielskian of the Kneser graph $KG(m,n)$ has the same circular chromatic number and chromatic number provided that $m+t$ is an even integer. We prove that if $m$ is large enough, then $\\chi(M^t(KG(m,n)))=\\chi_c(M^t(KG(m,n)))$ where $M^t$ is $t^{{\\rm th}}$ Mycielskian. Also, we consider the generalized Kneser graph $KG(m,n,s)$ and show that there ex...

  20. Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Antonella; Iadanza, Antonella; Falini, Andrea [San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Neuroradiology Unit and CERMAC, Milano (Italy); Donativi, Marina [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); Ruda, Roberta; Bertero, Luca; Soffietti, Riccardo [University of Torino, Department of Neuro-oncology, Turin (Italy); De Nunzio, Giorgio [University of Salento, Department of Mathematics and Physics ' ' Ennio De Giorgi' ' and A.D.A.M. (Advanced Data Analysis in Medicine), Lecce (Italy); INFN (National Institute of Nuclear Physics), Lecce (Italy); Riva, Marco; Bello, Lorenzo [Universita degli Studi di Milano, Milan, and Humanitas Research Hospital, Department of Medical Biotechnology and Translational Medicine, Rozzano, MI (Italy); Rucco, Matteo [University of Camerino, School of Science and Technology, Computer Science Division, Camerino, MC (Italy)

    2016-05-15

    To explore the role of diffusion tensor imaging (DTI)-based histogram analysis and functional diffusion maps (fDMs) in evaluating structural changes of low-grade gliomas (LGGs) receiving temozolomide (TMZ) chemotherapy. Twenty-one LGG patients underwent 3T-MR examinations before and after three and six cycles of dose-dense TMZ, including 3D-fluid-attenuated inversion recovery (FLAIR) sequences and DTI (b = 1000 s/mm{sup 2}, 32 directions). Mean diffusivity (MD), fractional anisotropy (FA), and tensor-decomposition DTI maps (p and q) were obtained. Histogram and fDM analyses were performed on co-registered baseline and post-chemotherapy maps. DTI changes were compared with modifications of tumour area and volume [according to Response Assessment in Neuro-Oncology (RANO) criteria], and seizure response. After three cycles of TMZ, 20/21 patients were stable according to RANO criteria, but DTI changes were observed in all patients (Wilcoxon test, P ≤ 0.03). After six cycles, DTI changes were more pronounced (P ≤ 0.005). Seventy-five percent of patients had early seizure response with significant improvement of DTI values, maintaining stability on FLAIR. Early changes of the 25th percentiles of p and MD predicted final volume change (R{sup 2} = 0.614 and 0.561, P < 0.0005, respectively). TMZ-related changes were located mainly at tumour borders on p and MD fDMs. DTI-based histogram and fDM analyses are useful techniques to evaluate the early effects of TMZ chemotherapy in LGG patients. (orig.)

  1. Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments

    Science.gov (United States)

    Asadi, Hamed

    2017-09-01

    Spacecraft and satellite are susceptible to aerothermoelastic flutter instability, which may jeopardize the mission of the spacecraft and satellite. This kind of instability may result from the coupling of the thermal radiation from the sun and the elastic deformations of aeronautical components. As a first endeavor, the aerothermoelastic flutter and buckling instabilities of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shell under simultaneous actions of aerodynamic loading and elevated temperature conditions are investigated. The formulations are derived according to the first-order shear deformation theory, Donnell shell theory in conjunction with von Karman geometrical nonlinearity. Thermomechanical properties are assumed to be temperature-dependent and modified rule of mixture is used to determine the equivalent material properties of the FG-CNTRC cylindrical shell. The quasi-steady Krumhaar's modified piston theory by taking into account the effect of panel curvature, is used to determine the aerodynamic pressure. The nonlinear dynamic equations are discretized in the circumferential and longitudinal directions using the trigonometric expression and the harmonic differential quadrature method, respectively. Effects of various influential factors, including CNT volume fraction and distribution, boundary conditions, geometrical parameters, thermal environments, freestream static pressure and Mach number on the aerothermoelastic instabilities of the FG-CNTRC cylindrical shell are studied in details. It is found that temperature rise has a significant effect on the aerothermoelastic flutter characteristics of the FG-CNTRC cylindrical shell. It is revealed that cylindrical shells with intermediate CNT volume fraction have intermediate critical dynamic pressure, while do not have, necessarily, intermediate critical buckling temperature. It is concluded that the critical circumferential mode number (mCr) corresponding to the

  2. Direct laser metal deposition of WC/Co/Cr powder by means of the functionally graded materials strategy

    Science.gov (United States)

    Angelastro, A.; Campanelli, S. L.

    2017-12-01

    One of the many applications of direct laser metal deposition (DLMD) is the realization of multilayer thick coatings having particular mechanical characteristics, such as high hardness. The objective of this work was to obtain a thick, very hard and wear resistant coating, containing a high percentage of tungsten carbide (WC), on an AISI 304 stainless steel substrate. In order to achieve this result, a tungsten carbide-cobalt-chrome (WC/Co/Cr) powder was processed by the DLMD method. WC/Co/Cr is a composite widely used as a wear-resistant material for cutting tools, molds, coatings and other severe applications. Because of its high hardness, poor ductility and low thermal expansion coefficient, depositing this material directly on the stainless steel substrate is very difficult. In order to overcome this problem, the strategy of functionally graded materials (FGM) was used. Colmonoy 227-F nickel alloy was chosen for this purpose in order to generate a mixture with the WC/Co/Cr powder. Four different materials were deposited, layer by layer, by mixing Colmonoy 227-F with an increasing amount of WC/Co/Cr powders, until obtaining a thick surface coating with a maximum amount of WC of 77.4 wt%. For each powder mixture, a mathematical model was applied to calculate optimal values of translation speed and overlap percentages. A metallographic examination was performed in order to detect macro- and micro-structures of the different materials. Finally, Vickers micro-hardness was measured at various locations along the transverse section to appreciate the gradual increase of the FGM hardness, starting from the substrate and culminating at the top surface of the last deposited material.

  3. Best Practice Examples of Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva

    Best practice examples of circular business models are presented in this report. The purpose is to inform and inspire interested readers, in particular companies that aspire to examine the potentials of the circular economy. Circular business models in two different sectors are examined, namely...... the textile and clothing sector as well as the durable goods sector. In order to appreciate the notion of circular business models, the basics of the circular economy are outlined along with three frameworks for categorizing the various types of circular business models. The frameworks take point of departure......, and to look for circular business opportunities in this flow of goods and value, is key in a circular economy. Establishing new or closer collaboration with stakeholders within or beyond the traditional supply chain is another important skill in creating circular business models. Many of the examined...

  4. The Development and Production of a Functionally Graded Composite for Pb-Bi Service.Final report

    International Nuclear Information System (INIS)

    Ballinger, Ronald G.

    2011-01-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700 C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700 C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700 C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size core

  5. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-12-01

    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  6. The Hijdra scale has significant prognostic value for the functional outcome of Fisher grade 3 patients with subarachnoid hemorrhage.

    Science.gov (United States)

    Bretz, Julia S; Von Dincklage, Falk; Woitzik, Johannes; Winkler, Maren K L; Major, Sebastian; Dreier, Jens P; Bohner, Georg; Scheel, Michael

    2017-09-01

    Despite its high prevalence among patients with aneurysmal subarachnoid hemorrhage (aSAH) and high risk of delayed cerebral ischemia (DCI), the Fisher grade 3 category remains a poorly studied subgroup. The aim of this cohort study has been to investigate the prognostic value of the Hijdra sum scoring system for the functional outcome in patients with Fisher grade 3 aSAH, in order to improve the risk stratification within this Fisher category. Initial CT scans of 72 prospectively enrolled patients with Fisher grade 3 aSAH were analyzed, and cisternal, ventricular, and total amount of blood were graded according to the Hijdra scale. Additionally, space-occupying subarachnoid blood clots were assessed. Outcome was evaluated after 6 months. Within the subgroup of Fisher grade 3, aSAH patients with an unfavorable outcome showed a significantly larger cisternal Hijdra sum score (HSS: 21.1 ± 5.2) than patients with a favorable outcome (HSS: 17.6 ± 5.9; p = 0.009). However, both the amount of ventricular blood (p = 0.165) and space-occupying blood clots (p = 0.206) appeared to have no prognostic relevance. After adjusting for the patient's age, gender, tobacco use, clinical status at admission, and presence of intracerebral hemorrhage, the cisternal and total HSS remained the only independent parameters included in multivariate logistic regression models to predict functional outcome (p present study indicates that it has an additional predictive value for the functional outcome within the Fisher 3 category. We suggest that the Hijdra scale is a practically useful prognostic instrument for the risk evaluation after aSAH and should be applied more often in the clinical setting.

  7. 140 CIRCULAR INTERACTION BETWEEN LINGUISTIC ...

    African Journals Online (AJOL)

    economy. Although a country or administrative district should have one or more official languages for obvious reasons, Nelde (1991) proposes that the ... circular interaction between linguistic departments and language departments. Finding an answer to' Plato's abovementioned problem entails that as many languages as ...

  8. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  9. Inverting the Circular Radon Transform

    National Research Council Canada - National Science Library

    Redding, Nicholas

    2001-01-01

    ...) can be viewed as the inversion of the circular Radon transform. The advantage of viewing image formation in this way is that it could be used in situations where more standard methods could fail such as high squint and ultra-wideband SAR...

  10. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  11. Tangent hyperbolic circular frequency diverse array radars

    Directory of Open Access Journals (Sweden)

    Sarah Saeed

    2016-03-01

    Full Text Available Frequency diverse array (FDA with uniform frequency offset (UFO has been in spot light of research for past few years. Not much attention has been devoted to non-UFOs in FDA. This study investigates tangent hyperbolic (TH function for frequency offset selection scheme in circular FDAs (CFDAs. Investigation reveals a three-dimensional single-maximum beampattern, which promises to enhance system detection capability and signal-to-interference plus noise ratio. Furthermore, by utilising the versatility of TH function, a highly configurable type array system is achieved, where beampatterns of three different configurations of FDA can be generated, just by adjusting a single function parameter. This study further examines the utility of the proposed TH-CFDA in some practical radar scenarios.

  12. PCDDB: the Protein Circular Dichroism Data Bank, a repository for circular dichroism spectral and metadata.

    Science.gov (United States)

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew John; Klose, D P; Janes, Robert W; Wallace, B A

    2011-01-01

    The Protein Circular Dichroism Data Bank (PCDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data and their associated experimental metadata. All entries undergo validation and curation procedures to ensure completeness, consistency and quality of the data included. A web-based interface enables users to browse and query sample types, sample conditions, experimental parameters and provides spectra in both graphical display format and as downloadable text files. The entries are linked, when appropriate, to primary sequence (UniProt) and structural (PDB) databases, as well as to secondary databases such as the Enzyme Commission functional classification database and the CATH fold classification database, as well as to literature citations. The PCDDB is available at: http://pcddb.cryst.bbk.ac.uk.

  13. Exciton circular dichroism in channelrhodopsin.

    Science.gov (United States)

    Pescitelli, Gennaro; Kato, Hideaki E; Oishi, Satomi; Ito, Jumpei; Maturana, Andrés Daniel; Nureki, Osamu; Woody, Robert W

    2014-10-16

    Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant

  14. Spin polarization in quantum dots by radiation field with circular polarization

    CERN Document Server

    Bulgakov, E N

    2001-01-01

    For circular quantum dot (QD) with account of the Razhba spin-orbit interaction (SOI) an exact energy spectrum is obtained. For the small SOI constant the Eigen functions of the QD are found. It is shown that application of radiation field with circular polarization lifts the Kramers degeneracy of the Eigen states of the QD. Effective spin polarization of transmitted electrons through the QD by radiation field with circular polarization is demonstrated

  15. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Lawrenson, K.; Li, Q.; Kar, S.; Seo, J.H.; Tyrer, J.; Spindler, T.J.; Lee, J. van der; Chen, Y; Karst, A.; Drapkin, R.; Aben, K.K.H.; Anton-Culver, H.; Antonenkova, N.; Baker, H.; Bandera, E.V.; Bean, Y.; Beckmann, M.W.; Berchuck, A.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bruinsma, F.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Chenevix-Trench, G.; Chen, A; Chen, Z.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Dennis, J.; Dicks, E.; Doherty, J.A.; Dork, T.; Bois, A. du; Durst, M.; Eccles, D.; Easton, D.T.; Edwards, R.P.; Eilber, U.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goode, E.L.; Goodman, M.T.; Grownwald, J.; Harrington, P.; Harter, P.; Hasmad, H.N.; Hein, A.; Heitz, F.; Hildebrandt, M.A.; Hillemanns, P.; Hogdall, E.; Hogdall, C.; Hosono, S.; Iversen, E.S.; Jakubowska, A.; James, P.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kjaer, S. Kruger; Kelemen, L.E.; Kellar, M.; Kelley, J.L.; Kiemeney, L.A.; Krakstad, C.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; Nevanlinna, H.; McNeish, I.; Menon, U.; Modugno, F.; et al.,

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions

  16. Multi-Grade Kindergarten Classrooms and Children's Academic Achievement, Executive Function, and Socio-Emotional Development

    Science.gov (United States)

    Ansari, Arya

    2017-01-01

    Using data from the Early Childhood Longitudinal Study Kindergarten Class of 2010-2011 (ECLS-K: 2011; n = 11,000), this study examined the developmental outcomes of 5-year-old children in multi-grade classrooms (combined pre-kindergarten and kindergarten classrooms serving 3-, 4-, and 5-year-olds) compared with 5-year-olds attending…

  17. Vibration of circular plate with multiple eccentric circular perforations by the Rayleigh-Ritz method

    Energy Technology Data Exchange (ETDEWEB)

    Saeedi, Khodabakhsh; Bhat, Rama B.; Stiharu, Ion [Concordia University, Montreal (Canada); Leo, Alfin [2Parker Filtration Canada, Laval (Canada)

    2012-05-15

    The free vibration of a circular plate with multiple perforations is analyzed by using the Rayleigh-Ritz method. Admissible functions are assumed to be separable functions of radial and tangential coordinates. Trigonometric functions are assumed in the circumferential direction. The radial shape functions are the boundary characteristic orthogonal polynomials generated following the Gram-Schmidt recurrence scheme. The assumed functions are used to estimate the kinetic and the potential energies of the plate depending on the number and the position of the perforations. The eigenvalues, representing the dimensionless natural frequencies, are compared with the results obtained using Bessel functions, where the exact solution is available. Moreover, the eigenvectors, which are the unknown coefficients of the Rayleigh-Ritz method, are used to present the mode shapes of the plate. To validate the analytical results of the plates with multiple perforations, experimental investigations are also performed. Two unique case studies that are not addressed in the existing literature are considered. The results of the Rayleigh-Ritz method are found to be in good agreement with those from the experiments. Although the method presented can be employed in the vibration analysis of plates with different boundary conditions and shapes of the perforations, circular perforations that are free on the edges are studied in this paper. The results are presented in terms of dimensionless frequencies and mode shapes.

  18. Circular Business: Collaborate and Circulate : a bookreview

    NARCIS (Netherlands)

    Timmermans, Ratna W.; Witjes, S.|info:eu-repo/dai/nl/381088200

    2016-01-01

    With their book, “Circular Business: Collaborate and Circulate”, Circular Collaboration, Amersfoort, ISBN: 978-90-824902-0-6, €35, Kraaijenhagen et al. (2016) give companies practical guidance on their contribution to the development of a more circular economy by presenting a practical 10-step

  19. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  20. Colours in a Circular Economy

    OpenAIRE

    Niinimäki, Kirsi; Smirnova, Eugenia; Ilen, Elina; Sixta, Herbert; Hummel, Michael

    2017-01-01

    | openaire: EC/H2020/646226/EU//Trash-2-Cash This paper reports on preliminary results on the recycling of coloured cellulose-based textiles using a novel dry-jet wet spinning denoted as the Ioncell-F process. The practical possibility of colour circulation is useful knowledge for colour designers in the industry. The findings can help define further parameters for circular economy products

  1. Circular on planned parenthood, 1987.

    Science.gov (United States)

    1987-01-01

    In 1987 fourteen units of the Government of Henan issued a Circular stating that: "Planned parenthood must be publicized deep into the grass roots and among the people, and importance must be attached to results." The Circular stresses: "In the propaganda drive, it is necessary to successfully grasp three key links: 1. It is necessary to disseminate intensively the important directive on population problems that is contained in the report of the 13th CPC National Congress and the seriousness of the population situation of our country and province so that the cadres and the masses can understand the relationship between population control and the achievement of the strategic target of the three big steps, understand the reason for carrying out planned parenthood, understand that the one-child policy is still advocated, and conscientiously carry out planned parenthood. 2. It is essential to succeed in propagating knowledge of contraception, sterilization, childbirth, and child care and in conducting ideological education for those who undergo operations and for their family members. 3. It is imperative to visit those who have undergone operations and to help them solve practically their difficulties in making a living." The Circular concludes by demanding that under the unified leadership of party committees and governments at all levels, the propaganda drive be carried out by relying on the efforts of all of society. In conjunction with their own work, departments, including the propaganda, education, public health, and cultural departments, must carry out propaganda and education for planned parenthood. full text

  2. Multi-circular flux motor

    Energy Technology Data Exchange (ETDEWEB)

    El-Kharashi, Eyhab Aly, E-mail: EyhabElkharahi@hotmail.com [Faculty of Engineering, Electrical Power and Machines Department, Ain Shams University, 1 El-Sarayat Street, Abdou Basha Square, Abbassia 11517, Cairo (Egypt)

    2011-11-15

    Highlights: {yields} The paper uses the multi-circular rotor in the switched reluctance motor to increase its output torque and its efficiency. {yields} Finite element is used to model the new SRM accurately. {yields} The Matlab/Simulink is used to dynamically model the new SRM. {yields} The paper compares the torque capability of the multi-circular rotor SRM. {yields} The new SRM produces approximately double the torque of its equivalent conventional SRM. - Abstract: The paper introduces a new type of electrical machines which has significantly high output torque. The toothed-rotor in the conventional electrical machine is replaced by a multi-circular rotor to increase the saliency and to shorten the flux loops consequently the output torque increases. The paper presents the design steps of this new type of electrical machine and also examines its performance. In addition, the paper compares the percentage increase in output torque from the proposed new electric machine to its equivalent conventional motor. Then the paper proceeds to discuss the relation between the switching on angle and the maximum speed, the torque ripples, and the efficiency.

  3. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    Science.gov (United States)

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  4. Perturbation analysis of octupoles in circular accelerators

    International Nuclear Information System (INIS)

    Moohyun Yoon

    1998-01-01

    The octupole effects in a circular accelerator are analyzed using a first-order canonical perturbation theory. It is shown that, to the first order, the nonlinear amplitude-dependent tune shifts due to an octupole are composed of two types: terms of second order and terms of fourth order in betatron-oscillation amplitudes. The fourth-order part of tune shifts is expressed in terms of distortion functions. Distortion functions are also expanded in harmonics to express the higher-order tune shifts in harmonically expanded form. Finally, the results are applied to an accelerator and compared with the results of numerical tracking of particles. Laskar's algorithm for numerical analysis of the fundamental frequency is used to determine tunes from the tracking data, in which the error becomes inversely proportional to the cube of the number of data points. (author)

  5. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    International Nuclear Information System (INIS)

    Pérez, A. M.; Boria, V. E.; Gimeno, B.; Anza, S.; Vicente, C.; Gil, J.

    2014-01-01

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE 11 circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored

  6. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, A. M.; Boria, V. E. [Departamento de Comunicaciones-iTEAM, Universidad Politécnica de Valencia Camino de Vera s/n, 46022 Valencia (Spain); Gimeno, B. [Departamento de Física Aplicada y Electromagnetismo-ICMUV, Universitat de València c/Dr. Moliner, 50, 46100 Valencia (Spain); Anza, S.; Vicente, C.; Gil, J. [Aurora Software and Testing S.L., Edificio de Desarrollo Empresarial 9B, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored.

  7. Introducing the Circular Flow Diagram to Business Students

    Science.gov (United States)

    Daraban, Bogdan

    2010-01-01

    The circular flow of income diagram is a simplified representation of the functioning of a free-market economic system. It illustrates how businesses interact with the other economic participants within the key macroeconomic markets that coordinate the flow of income through the national economy. Therefore, it can provide students of business with…

  8. Polymer photovoltaic cells sensitive to the circular polarization of light

    Energy Technology Data Exchange (ETDEWEB)

    Gilot, Jan; Abbel, Robert; Lakhwani, Girish; Meijer, E.W.; Schenning, Albertus P.H.J.; Meskers, Stefan C.J. [Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology (Netherlands)

    2010-05-25

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties of all layers inside the device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Magnetic circular dichroism of chlorofullerenes: Experimental and computational study

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Straka, Michal; Šebestík, Jaroslav; Bouř, Petr

    2016-01-01

    Roč. 647, Mar (2016), s. 117-121 ISSN 0009-2614 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : chlorofullerenes * magnetic circular dichroism * density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.815, year: 2016

  10. Modeling and Simulation of Nonlinear Micro-electromechanical Circular Plate

    Directory of Open Access Journals (Sweden)

    Chin-Chia Liu

    2013-09-01

    Full Text Available In the present study, the hybrid differential transformation and finite difference method is applied to analyze the dynamic behavior of the nonlinear micro-electromechanical circular plate actuated by combined DC / AC loading schemes. The analysis takes account of the axial residual stress and hydrostatic pressure acting on micro circular plate upper surface. The dynamic response of the plate as a function of the magnitude of the AC driving voltage is explored. Moreover, the effect of the initial gap height on the pull-in voltage of the plate is systematically explored.

  11. Elastostatic bending of a bimaterial plate with a circular interface

    Science.gov (United States)

    Ogbonna, Nkem

    2015-08-01

    The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.

  12. Analytical estimation of the dynamic apertures of circular accelerators

    International Nuclear Information System (INIS)

    Gao, J.

    2000-02-01

    By considering delta function sextupole, octupole, and deca-pole perturbations and using difference action-angle variable equations, we find some useful analytical formulae for the estimation of the dynamic apertures of circular accelerators due to single sextupole, single octupole, single deca-pole (single 2 m pole in general). Their combined effects are derived based on the Chirikov criterion of the onset of stochastic motions. Comparisons with numerical simulations are made, and the agreement is quite satisfactory. These formulae have been applied to determine the beam-beam limited dynamic aperture in a circular collider. (author)

  13. Vibrational and Electronic Circular Dichroism Monitoring of Copper(II) Coordination with a Chiral Ligand

    Czech Academy of Sciences Publication Activity Database

    Wu, T.; Zhang, X. P.; Li, C. H.; Bouř, Petr; Li, Y. Z.; You, X. Z.

    2012-01-01

    Roč. 24, č. 6 (2012), s. 451-458 ISSN 0899-0042 R&D Projects: GA ČR GAP208/11/0105 Institutional research plan: CEZ:AV0Z40550506 Keywords : circular dichroism * vibrational circular dichroism * coordination compounds * density functional theory computations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.718, year: 2012

  14. Practical target location and accuracy indicator in digital close range photogrammetry using consumer grade cameras

    Science.gov (United States)

    Moriya, Gentaro; Chikatsu, Hirofumi

    2011-07-01

    Recently, pixel numbers and functions of consumer grade digital camera are amazingly increasing by modern semiconductor and digital technology, and there are many low-priced consumer grade digital cameras which have more than 10 mega pixels on the market in Japan. In these circumstances, digital photogrammetry using consumer grade cameras is enormously expected in various application fields. There is a large body of literature on calibration of consumer grade digital cameras and circular target location. Target location with subpixel accuracy had been investigated as a star tracker issue, and many target location algorithms have been carried out. It is widely accepted that the least squares models with ellipse fitting is the most accurate algorithm. However, there are still problems for efficient digital close range photogrammetry. These problems are reconfirmation of the target location algorithms with subpixel accuracy for consumer grade digital cameras, relationship between number of edge points along target boundary and accuracy, and an indicator for estimating the accuracy of normal digital close range photogrammetry using consumer grade cameras. With this motive, an empirical testing of several algorithms for target location with subpixel accuracy and an indicator for estimating the accuracy are investigated in this paper using real data which were acquired indoors using 7 consumer grade digital cameras which have 7.2 mega pixels to 14.7 mega pixels.

  15. FUCHS—towards full circular RNA characterization using RNAseq

    Directory of Open Access Journals (Sweden)

    Franziska Metge

    2017-02-01

    Full Text Available Circular RNAs (circRNAs belong to a recently re-discovered species of RNA that emerge during RNA maturation through a process called back-splicing. A downstream 5′ splice site is linked to an upstream 3′ splice site to form a circular transcript instead of a canonical linear transcript. Recent advances in next-generation sequencing (NGS have brought circRNAs back into the focus of many scientists. Since then, several studies reported that circRNAs are differentially expressed across tissue types and developmental stages, implying that they are actively regulated and not merely a by-product of splicing. Though functional studies have shown that some circRNAs could act as miRNA-sponges, the function of most circRNAs remains unknown. To expand our understanding of possible roles of circular RNAs, we propose a new pipeline that could fully characterizes candidate circRNA structure from RNAseq data—FUCHS: FUll CHaracterization of circular RNA using RNA-Sequencing. Currently, most computational prediction pipelines use back-spliced reads to identify circular RNAs. FUCHS extends this concept by considering all RNA-seq information from long reads (typically >150 bp to learn more about the exon coverage, the number of double break point fragments, the different circular isoforms arising from one host-gene, and the alternatively spliced exons within the same circRNA boundaries. This new knowledge will enable the user to carry out differential motif enrichment and miRNA seed analysis to determine potential regulators during circRNA biogenesis. FUCHS is an easy-to-use Python based pipeline that contributes a new aspect to the circRNA research.

  16. Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation

    Science.gov (United States)

    Liang, Xu; Wang, Zhenyu; Wang, Lizhong; Liu, Guohua

    2014-06-01

    The three-dimensional transient analysis of functionally graded annular plates with arbitrary boundary conditions is carried out in this paper. The material properties of the FGM plate are assumed to vary smoothly in an exponential law along the thickness direction. The plate is assumed to rest on a two parameter viscoelastic foundation. A semi-analytical method, which integrates the state space method (SSM), Laplace transform and its inversion, as well as the one-dimensional differential quadrature method (DQM), is proposed to obtain the transient response of the plate. The state space method is used to obtain the analytical solution in the thickness direction. The differential quadrature method is employed to approximate the solution in the radial direction. The Laplace transform and the numerical inversion are used to obtain the solution in time domain. Numerical results show a good agreement between the response histories obtained by the present method and finite element method. The effects of the boundary conditions at the edges, the material graded index, the Winkler and shearing layer elastic coefficients, and the damping coefficient are studied. Numerical examples show that the peak response decreases as the material graded index, the Winkler and shearing layer elastic coefficients, and the damping coefficient increase. The results obtained in this paper can serve as benchmark data in further research.

  17. Does the Value of Dynamic Assessment in Predicting End-of-First-Grade Mathematics Performance Differ as a Function of English Language Proficiency?

    Science.gov (United States)

    Seethaler, Pamela M; Fuchs, Lynn S; Fuchs, Douglas; Compton, Donald L

    2016-12-01

    The purpose of this study was to assess the added value of dynamic assessment (DA) beyond more conventional static measures for predicting individual differences in year-end 1 st -grade calculation (CA) and word-problem (WP) performance, as a function of limited English proficiency (LEP) status. At the start of 1 st grade, students (129 LEP; 163 non-LEP) were assessed on a brief static mathematics test, an extended static mathematics test, static tests of domain-general abilities associated with CAs and WPs (vocabulary; reasoning), and DA. Near end of 1 st grade, they were assessed on CA and WP. Regression analyses indicated that the value of the predictor depends on the predicted outcome and LEP status. In predicting CAs, the extended mathematics test and DA uniquely explained variance for LEP children, with stronger predictive value for the extended mathematics test; for non-LEP children, the extended mathematics test was the only significant predictor. However, in predicting WPs, only DA and vocabulary were uniquely predictive for LEP children, with stronger value for DA; for non-LEP children, the extended mathematics test and DA were comparably uniquely predictive. Neither the brief static mathematics test nor reasoning was significant in predicting either outcome. The potential value of a gated screening process, using an extended mathematics assessment to predict CAs and using DA to predict WPs, is discussed.

  18. Effect of the addition of chemotherapy to radiotherapy on cognitive function in patients with low-grade glioma: secondary analysis of RTOG 98-02.

    Science.gov (United States)

    Prabhu, Roshan S; Won, Minhee; Shaw, Edward G; Hu, Chen; Brachman, David G; Buckner, Jan C; Stelzer, Keith J; Barger, Geoffrey R; Brown, Paul D; Gilbert, Mark R; Mehta, Minesh P

    2014-02-20

    The addition of PCV (procarbazine, lomustine, and vincristine) chemotherapy to radiotherapy (RT) for patients with WHO grade 2 glioma improves progression-free survival (PFS). The effect of therapy intensification on cognitive function (CF) remains a concern in this population with substantial long-term survival. A total of 251 patients with WHO grade 2 glioma age ≥ 40 years with any extent of resection or age point. Both study arms experienced a significant gain in average MMSE score longitudinally over time, with no difference between arms. The MMSE is a relatively insensitive tool, and subtle changes in CF may have been missed. However, the addition of PCV to RT did not result in significantly higher rates of MMSE score decline than RT alone through 5 years of follow-up. Patients in both randomly assigned arms experienced a statistically significant average MMSE score increase over time, with no difference between arms. The addition of PCV chemotherapy to RT improves PFS without excessive CF detriment over RT alone for patients with low-grade glioma.

  19. A Comuputerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy

    Full Text Available A numerical computer model, based on the dual reciprocity boundary element method (DRBEM for studying the generalized magneto-thermo-visco-elastic stress waves in a rotating functionally graded anisotropic thin film/substrate structure under pulsed laser irradiation is established. An implicit-implicit staggered algorithm was proposed and implemented for use with the DRBEM to get the solution for the temperature, displacement components and thermal stress components through the structure thickness. A comparison of the results for different theories is presented in the presence and absence of rotation. Some numerical results that demonstrate the validity of the proposed method are also presented.

  20. Mechanical analyses of pipeline repair and reinforcement with use of composite functionally graded materials; Analise mecanica de reforco de dutos submarinos com materiais compositos com gradacao funcional

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcos S.M. [Sondotecnica Engenharia de Solos S.A., Rio de Janeiro, RJ (Brazil); Roehl, Deane de Mesquita [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work presents a methodology for design of stiffener sleeve constituted by functionally graded composite materials in offshore pipelines located in extreme-deep waters, where high mechanical resistance allied to an efficient system of thermal isolation is necessary, in view of the excellent thermomechanical behavior of composites. For the case of FGMs, due to continuous variation in its featuring, is necessary to employ an adapted model, based on a model typically adopted for conventional composites (Rule of Mixture), as the model idealized by Tamura, Tomato e Ozawa, the TTO model. In this report, the influence of geometric and materials parameters in mechanical behavior of pipelines under propagating collapse is analyzed. (author)

  1. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  2. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  3. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  4. Micromechanical modelling of functionally graded W-Cu materials for divertor plate components in a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, M.M. [Helsinki Univ. of Technol. (Finland); Ueda, S.

    1999-10-01

    Thermonuclear fusion process implementation has many materials problems and one of them is related to removal of impurities from plasma. In the International thermonuclear experimental reactor (ITER), a divertor concept has been incorporated for this purpose. In this work, the development of a micromechanical model for FGM is presented and its application to thermal-elasto-plastic analysis is discussed for the case of W-Cu FGM for ITER divertor plates. The model allows the prediction of basic properties of 3-D FGM, computations of thermal stresses, and, in some limits, it may be used for pre-design evaluation of dynamic strain/stress distribution and inelastic behaviour. The model is found to be very useful at the first stages of graded materials design and computation of properties in the nodal points for more detailed numerical analysis. (orig.) 10 refs.

  5. Vector polynomials for direct analysis of circular wavefront slope data.

    Science.gov (United States)

    Mahajan, Virendra N; Acosta, Eva

    2017-10-01

    In the aberration analysis of a circular wavefront, Zernike circle polynomials are used to obtain its wave aberration coefficients. To obtain these coefficients from the wavefront slope data, we need vector functions that are orthogonal to the gradients of the Zernike polynomials, and are irrotational so as to propagate minimum uncorrelated random noise from the data to the coefficients. In this paper, we derive such vector functions, which happen to be polynomials.

  6. Soil and land management in a circular economy.

    Science.gov (United States)

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tumor Grade

    Science.gov (United States)

    ... Peer Review and Funding Outcomes Step 4: Award Negotiation & Issuance Manage Your Award Grants Management Contacts Monitoring ... may require immediate or more aggressive treatment. The importance of tumor grade in planning treatment and determining ...

  8. Aging and low-grade inflammation reduce renal function in middle-aged and older adults in Japan and the USA.

    Science.gov (United States)

    Costello-White, Reagan; Ryff, Carol D; Coe, Christopher L

    2015-08-01

    The objective of this study was to investigate the effects of low-grade inflammation on age-related changes in glomerular filtration rate (GFR) in middle-aged and older white Americans, African-Americans, and Japanese adults. Serum creatinine, C-reactive protein (CRP), and interleukin-6 (IL-6) levels were determined for 1570 adult participants in two surveys of aging in the USA and Japan (N = 1188 and 382, respectively). Kidney function declined with age in both countries and was associated with IL-6 and CRP. IL-6 and CRP also influenced the extent of the arithmetic bias when calculating the GFR using the chronic kidney disease epidemiology (CKD-EPI) formula with just serum creatinine. Younger African-Americans initially had the highest GFR but showed a steep age-related decrement that was associated with elevated inflammation. Japanese adults had the lowest average GFR but evinced a large effect of increased inflammatory activity when over 70 years of age. Importantly, our results also indicate that low-grade inflammation is important to consider when evaluating kidney function solely from serum creatinine.

  9. Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect

  10. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has

  11. On the thermal buckling of simply supported rectangular plates made of a sigmoid functionally graded Al/Al2O3 based material

    Science.gov (United States)

    Atmane, H. A.; Bedia, E. A. A.; Bouazza, M.; Tounsi, A.; Fekrar, A.

    2016-03-01

    We study the thermal buckling of a simply supported sigmoid functionally graded (SFGM) rectangular plate using first-order shear deformation theory. The S-FGM system consists of ceramic (Al2O3) and metal (Al) phases varying across the plate thickness according to a law described by two power-law functions. The effective properties of the composite are determined by the rule of mixtures, whose implementation is simpler than that of methods of micromechanics. The thermal heating is characterized by a uniform, linear, or sinusoidal temperature distribution across the plate thickness. The effects of the plate aspect ratio, the relative thickness, the gradient index, and the transverse shear on the buckling temperature difference are studied.

  12. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (material, or especially, multi-functional components.

  13. Circular economy and nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    Circular economy means no production of waste through re-using and recycling. As other industries, nuclear industry has committed itself to a policy of sustainability and resource preservation. EDF has developed a 5 point strategy: 1) the closure of the fuel cycle through recycling, 2) operating nuclear power plants beyond 40 years, 3) reducing the volume of waste, 4) diminishing the consumption of energy through the implementation of new processes (for instance the enrichment through centrifugation uses 50 times less power than gaseous diffusion enrichment) and 5) making evolve the prevailing doctrine concerning the management of very low level radioactive waste: making possible the re-use of slightly contaminated steel scrap or concrete instead of storing them in dedicated disposal centers. (A.C.)

  14. Collision Technologies for Circular Colliders

    Science.gov (United States)

    Levichev, Eugene

    2015-02-01

    For several decades already, particle colliders have been essential tools for particle physics. From the very beginning, such accelerators have been among the most complicated scientific instruments ever built, including a number of innovative technological developments. Examples are ultrahigh vacuum systems, magnets with a very high magnetic field, and equipment for sub-ns synchronization and sub-mm precision alignment of equipment inside multi-km underground tunnels. Some key technologies are related to the focusing of the beam down to a scale of sub-μm at the collision point to obtain high luminosity. This review provides an overview of collision concepts and technologies for circular particle colliders, starting from the first ideas. In particular, it discusses such novel schemes and related technologies as crab waist collision and round beam collision.

  15. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    Science.gov (United States)

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value  1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Some properties of circular proteins

    International Nuclear Information System (INIS)

    Prosselkov, P.; John, P.; Dixon, N.E.; Liepinsh, E.; Williams, N.K.; University of Sydney, NSW; Matthews, J.M.; Otting, G.; Karolinska Institutet, Stockholm,

    2002-01-01

    Full text: Protein backbone cyclization can be achieved by use of a circularly-permuted split mini-intein. We have used the small N-terminal domain of the E coli DnaB helicase (DnaB-N, residues 24-136) as a model protein for cyclization because its structure has been determined both by NMR spectroscopy and X-ray crystallography, and its ends are close together. Joining of the ends of DnaB-N' via a 9-amino acid linker occurs efficiently in vivo, and the circular (cz-) protein is stabilized in comparison to the linear (Hn-) protein against thermal denaturation (ΔΔG ∼2 kcal/mol). DnaB-N exists as a dimer in the crystalline state and in solution at high concentrations. To produce linear and cyclized versions that could not dimerize, Phe102 (at the dimer interface) was changed to Glu. NMR spectra showed that the F102E mutants remained monomeric at high concentrations but otherwise had essentially the same structures as the wild-type domains. Individual rate constants for proton exchange at the amide groups in lin- and cz-DnaB-N were determined at 10 C. Although they varied as expected depending on exposure to solvent, the ratios of rates between corresponding amides in the two proteins were constant. In the same buffer, lin- and cz-DnaB-N both unfolded reversibly, with transition temperatures of 37.9 and 48.5 deg C, respectively. Correlation of the (constant) ratio of amide exchange rates with measured thermodynamic parameters suggests that amide exchange in DnaB-N occurs predominantly in a globally unfolded state. Similar studies with other proteins are underway

  17. Culture as a Caveat Towards Circular Economy

    DEFF Research Database (Denmark)

    Guerrieri, Valeria

    2015-01-01

    Circular economy represents an economic and political challenge, as well as a cultural one, requiring a massive transformation on all levels of society. But why is cultural change so important to understanding today’s economy and how can the circular model be considered a truly cross...

  18. A Random Walk on a Circular Path

    Science.gov (United States)

    Ching, W.-K.; Lee, M. S.

    2005-01-01

    This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.

  19. Nanofocusing in circular sector-like nanoantennas

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Pors, Anders Lambertus; Han, Zhanghua

    2014-01-01

    a concentric circular line of phase contrast, demonstrating resonant excitation of a standing wave of counter-propagating surface plasmons, travelling between a tip and opposite circular edge of the antenna. Transmission spectra obtained in the range 900 - 2100 nm are in good agreement with numerical...

  20. 76 FR 60590 - Environmental Justice; Proposed Circular

    Science.gov (United States)

    2011-09-29

    ... recipients of FTA funds on how to fully engage environmental justice populations in the public transportation... Federal Transit Administration Environmental Justice; Proposed Circular AGENCY: Federal Transit... guidance in the form of a Circular on incorporating environmental justice principles into plans, projects...

  1. Early assessment of infarct size and prediction of functional recovery by quantitative myocardial blush grade in patients with acute coronary syndromes treated according to current guidelines.

    Science.gov (United States)

    Riedle, Nina; Dickhaus, Hartmut; Erbacher, Markus; Steen, Henning; Andrassy, Martin; Lossnitzer, Dirk; Hardt, Stefan; Rottbauer, Wolfgang; Zugck, Christian; Giannitsis, Evangelos; Katus, Hugo A; Korosoglou, Grigorios

    2010-10-01

    To determine whether quantification of myocardial blush grade (MBG) during cardiac catheterization can aid the determination of follow-up left ventricular (LV)-function in patients with ST-elevation and non-ST-elevation myocardial infarction (STEMI and NSTEMI). We prospectively examined patients with first STEMI (n = 46) and NSTEMI (n = 49). ECG-gated angiographic series were used to quantify MBG by analyzing the time course of contrast agent intensity rise. Hereby, the parameter G(max)/T(max) was calculated, derived from the plateau of grey-level intensity (G(max)), divided by the time-to-peak intensity (T(max)). Cardiac magnetic resonance imaging (CMR) deemed as the standard reference for the estimation of infarct size, transmurality and of the LV-function at 6 months of follow-up. Cut-off values of G(max)/T(max)=5.7/sec and 3.8/sec, respectively, yielded similar accuracy as infarct transmurality for the prediction of follow-up ejection fraction >55% (AUC = 0.86 for STEMI and AUC = 0.90 for NSTEMI, by G(max)/T(max) and AUC = 0.85 for STEMI and AUC = 0.89 for NSTEMI, by infarct transmurality, respectively, P = NS). Both clearly surpassed the predictive value of visual MBG (AUC = 0.69 for STEMI and AUC = 0.68 for NSTEMI, P < 0.05). G(max)/T(max) is an easy to acquire but highly valuable surrogate parameter for infarct size, which yields equally high accuracy with infarct transmurality and favorably compares with visually assessed blush grades for the prediction of follow-up LV-function in patients with acute ischemic syndromes. © 2010 Wiley-Liss, Inc.

  2. Analytical formula for a circular flattened Gaussian beam propagating through a misaligned paraxial ABCD optical system

    International Nuclear Information System (INIS)

    Hu Li; Cai Yangjian

    2006-01-01

    Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a misaligned paraxial ABCD optical system in the cylindrical coordinate system, analytical formula for a circular flattened Gaussian beam propagating through such optical system is derived. Furthermore, an approximate analytical formula is derived for a circular flattened Gaussian beam propagating through an apertured misaligned ABCD optical system by expanding the hard aperture function as a finite sum of complex Gaussian functions. Numerical examples are given

  3. Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams

    Science.gov (United States)

    Barretta, Raffaele; Fabbrocino, Francesco; Luciano, Raimondo; Sciarra, Francesco Marotti de

    2018-03-01

    Strain-driven and stress-driven integral elasticity models are formulated for the analysis of the structural behaviour of fuctionally graded nano-beams. An innovative stress-driven two-phases constitutive mixture defined by a convex combination of local and nonlocal phases is presented. The analysis reveals that the Eringen strain-driven fully nonlocal model cannot be used in Structural Mechanics since it is ill-posed and the local-nonlocal mixtures based on the Eringen integral model partially resolve the ill-posedeness of the model. In fact, a singular behaviour of continuous nano-structures appears if the local fraction tends to vanish so that the ill-posedness of the Eringen integral model is not eliminated. On the contrary, local-nonlocal mixtures based on the stress-driven theory are mathematically and mechanically appropriate for nanosystems. Exact solutions of inflected functionally graded nanobeams of technical interest are established by adopting the new local-nonlocal mixture stress-driven integral relation. Effectiveness of the new nonlocal approach is tested by comparing the contributed results with the ones corresponding to the mixture Eringen theory.

  4. Bending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory

    Directory of Open Access Journals (Sweden)

    M. Mohammadimehr

    2013-12-01

    Full Text Available In this article, the bending and free vibration analysis of functionally graded (FG nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechanical properties of FG boron nitride nanotube-reinforced composites are assumed to be graded in the thickness direction and estimated through the micro-mechanical approach. The governing equations of motion are obtained using Hamilton’s principle based on Timoshenko beam theory. The Navier's type solution is implemented to solve the equations that satisfy the simply supported boundary conditions. Furthermore, the influences of the slenderness ratio, length of nanocomposite beam, material length scale parameter, nonlocal parameter, power law index, axial wave number, and Winkler and Pasternak coefficients on the natural frequency of nanocomposite beam are investigated. Also, the effect of material length scale parameter on the dimensionless deflection of FG nanocomposite beam is studied.

  5. Assessment of functional treatment versus plaster of Paris in the treatment of grade 1 and 2 lateral ankle sprains.

    Science.gov (United States)

    Naeem, Muhammad; Rahimnajjad, Muhammad Kazim; Rahimnajjad, Nasir Ali; Idrees, Zaki; Shah, Ghazanfar Ali; Abbas, Ghulam

    2015-03-01

    Despite the common occurrence of ankle sprains, no treatment is considered to be the gold standard for the management of such sprains. We assessed functional treatment versus plaster of Paris (POP) for the treatment of lateral ankle sprains, with pain and function employed as the outcome measures. 126 Patients were eligible for inclusion. They were assigned to either the functional treatment Tubigrip (TG) group or the POP group after applying block randomization. Characteristics such as age, dominant ankle, and gender were assessed at baseline. Pain and functional assessments were done using the visual analog scale (VAS) and the Karlsson score (KS) at baseline (at the start of the study) and during the 2nd and 6th weeks, respectively. Data on other subjective parameters, such as the number of painkillers used, the number of days taken off work, and the number of sleepless nights, were requested from the patients at the end of the study. SPSS version 16 was used for analysis, and p knee POP cast. Level I.

  6. A Study of a Collaborative Instructional Project Informed by Systemic Functional Linguistic Theory: Report Writing in Elementary Grades

    Science.gov (United States)

    Brisk, Maria Estela; Hodgson-Drysdale, Tracy; O'Connor, Cheryl

    2011-01-01

    This study examined the teaching of report writing in PreK-5 through the lens of systemic functional linguistics theory. Teachers were part of a university-public school collaboration that included professional development on teaching genres, text organization, and language features. Grounded in this knowledge, teachers explicitly taught report…

  7. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  8. [Dose-dependent effects of dexamethasone on functional activity of T-lymphocytes different grade of differentiation].

    Science.gov (United States)

    Gutsol, A A; Sokhonevich, N A; Iurova, K A; Haziakhmatova, O G; Shupletsova, V V; Litvinova, L S

    2015-01-01

    Glucocorticoids are anti-inflammatory and immunosuppressive agents which have pleiotropic effects on growth, differentiation and functional activity of T-lymphocytes. Under experimental conditions in vitro carried out a comprehensive assessment of the dexamethasone influence on the functional activity of T-cells with different differentiation degrees. It was established that the influence of dexamethasone on the functional activity of CD45RA+ and CD45RO+ T-lymphocytes, in general, has depressing character. It was revealed that in the population of naive (CD45RA+) T-cells dexamethasone exerts a more pronounced inhibitory effect on early (IL-2-dependent, associated with the CD25 expression and IL-2 production) activation stages, whereas in the culture primed memory cells (CD45RO+)--for later (IL-2-independent, associated with the expression of proliferation molecule CD71). Multidirectional effects of dexamethasone on the expression level of telomerase catalytic unit (hTERT) mRNA are associated with the degree of T cells differentiation. It isproposed, that the role of glucocorticoid hormones in immunogenesis is primarily aimed at suppression of excessive T cells growth and on the maintainance of the clonal balance in lymphoid tissue.

  9. Optimization of a Functionally Graded Material Stem in the Femoral Component of a Cemented Hip Arthroplasty: Influence of Dimensionality of FGM

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2017-01-01

    Full Text Available The longevity of hip prostheses is contingent on the stability of the implant within the cavity of the femur bone. The cemented fixation was mostly adopted owing to offering the immediate stability from cement-stem and cement-bone bonding interfaces after implant surgery. Yet cement damage and stress shielding of the bone were proven to adversely affect the lifelong stability of the implant, especially among younger subjects who tend to have an active lifestyle. The geometry and material distribution of the implant can be optimized more efficiently with a three-dimensional realistic design of a functionally graded material (FGM. We report an efficient numerical technique for achieving this objective, for maximum performance stress shielding and the rate of early accumulation of cement damage were concurrently minimized. Results indicated less stress shielding and similar cement damage rates with a 2D-FGM implant compared to 1D-FGM and Titanium alloy implants.

  10. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    Science.gov (United States)

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. FUTURE CIRCULAR COLLIDER LOGISTICS STUDY

    CERN Document Server

    Beißert, Ulrike; Kuhlmann, Gerd; Nettsträter, Andreas; Prasse, Christian; Wohlfahrt, Andreas

    2018-01-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research CERN in Geneva is the largest and most powerful collider in the world. CERN and its research and experimental infrastructure is not only a focus for the science community but is also very much in the public eye. With the Future Circular Collider (FCC) Study, CERN has begun to examine the feasibility of a new underground accelerator ring with a length of approximately 100 kilometres. Logistics is of great importance for the construction, assembly and operation of the FCC. During the planning, construction and assembly of the LHC, logistics proved to be one of the key factors. As the FCC is even larger than the LHC, logistics will also become more and more significant. This report therefore shows new concepts, methods and analytics for logistics, supply chain and transport concepts as part of the FCC study. This report deals with three different logistics aspects for the planning and construction phase of FCC: 1. A discussion of d...

  12. Mechanical Property Analysis of Circular Polymer Membrane under Uniform Pressure

    OpenAIRE

    Jianbing, Sang; Xiang, Li; Sufang, Xing; Wenjia, Wang

    2017-01-01

    Mechanical property analysis of circular hyperelastic polymer membrane under uniform pressure has been researched in this work. The polymer membrane material is assumed to be homogeneous and isotropic and incompressibility of materials has been considered. Based on the modified stain energy function from Gao and nonmomental theory of axial symmetry thin shell, finite deformation analysis of polymer membrane under uniform pressure has been proposed in current configuration and governing equati...

  13. A tool for symmetry studies in circular machines

    International Nuclear Information System (INIS)

    Bozoki, E.

    1988-05-01

    The use of the C [mrad/Amp] conversion factors of the orbit corrector magnets in the sudy of the symmetry properties of a circular accelerator or storage ring, and in the determination of the ratios of the β-functions at corrector locations is discussed. Measurements obtained for the VUV and x-ray rings of the NSLS at Brookhaven National Laboratory are presented. 4 refs., 7 figs., 3 tabs

  14. Prediction and stratification of upper limb function and self-care in acute cervical spinal cord injury with the graded redefined assessment of strength, sensibility, and prehension (GRASSP).

    Science.gov (United States)

    Velstra, Inge-Marie; Bolliger, Marc; Tanadini, Lorenzo Giuseppe; Baumberger, Michael; Abel, Rainer; Rietman, Johan S; Curt, Armin

    2014-09-01

    There is inherent heterogeneity within individuals suffering from cervical spinal cord injury (SCI), and early prediction of upper limb function and self-care is challenging. As a result, considerable uncertainty exists regarding the prediction of functional outcome following cervical SCI within 1 year of injury. To evaluate the value of Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP) in predicting upper limb function and self-care outcomes in individuals with cervical SCI. A prospective longitudinal multicenter study was performed. Data from the GRASSP, the Spinal Cord Independence Measure (SCIM III), and the American Spinal Injury Association (ASIA) Impairment Scale were recorded at 1, 6, and 12 months after cervical SCI. For prediction of functional outcome at 6 and 12 months, a logistic regression model, receiver operating characteristics (ROC), and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used with 8 different predictor variables. Logistic regression analysis, ROC analysis, and URP-CTREE all revealed that the strength subtest within GRASSP is the strongest predictor for upper limb function and self-care outcomes. URP-CTREE provides useful information on the distribution of different outcomes in acute cervical SCI and can be used to predict cohorts with homogeneous outcomes. The GRASSP at 1 month can accurately predict upper limb function and self-care outcomes even in a heterogeneous group of individuals across a wide spectrum of neurological recovery. The application of URP-CTREE can reveal the distribution of outcome categories and, based on this, inform trial protocols with respect to outcomes analysis and patient stratification. © The Author(s) 2014.

  15. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    Science.gov (United States)

    Patty, C. H. Lucas; Visser, Luuk J. J.; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J. M.; Röling, Wilfred F. M.; Snik, Frans

    2017-03-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1 % . In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1 *10-4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.

  16. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  17. Effects of WC Particle Size and Co Content on the Graded Structure in Functionally Gradient WC-Co Composites

    Directory of Open Access Journals (Sweden)

    Yuan Yigao

    2016-01-01

    Full Text Available Functionally gradient WC-Co composites having a Co depleted surface zone and not comprising the h phase can be manufactured via carburizing process. During carburizing, besides carburizing process parameters, the microstructural parameters of WC-Co materials, such as WC grain size and Co content, also have significant influences on the formation of Co gradient structure. In this study, the effects of WC particle size and Co content on the gradient structure within gradient hardmetals have been studied, based on a series of carburizing experiments of WC-Co materials with different WC particle sizes and cobalt contents. The results show that both the thickness and the amplitude of the gradients within gradient WC-Co materials increase with increasing initial WC particle size and Co content of WC-Co alloys. The reason for this finding is discussed.

  18. Forced Response of Polar Orthotropic Tapered Circular Plates Resting on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    A. H. Ansari

    2016-01-01

    Full Text Available Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.

  19. Circular RNAs and systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian-Ju; Huang, Qing; Pan, Hai-Feng; Ye, Dong-Qing, E-mail: ydqahmu@gmail.com

    2016-08-15

    Circular RNAs (circRNAs) are a large class of noncoding RNAs that form covalently closed RNA circles. The discovery of circRNAs discloses a new layer of gene regulation occurred post-transcriptionally. Identification of endogenous circRNAs benefits from the advance in high-throughput RNA sequencing and remains challenging. Many studies probing into the mechanisms of circRNAs formation occurred cotranscriptionally or posttranscriptionally emerge and conclude that canonical splicing mechanism, sequence properties, and certain regulatory factors are at play in the process. Although our knowledge on functions of circRNAs is rather limited, a few circRNAs are shown to sponge miRNA and regulate gene transcription. The clearest case is one circRNA CDR1as that serves as sponge of miR-7. Researches on circRNAs in human diseases such as cancers highlight the function and physical relevance of circRNAs. Given the implication of miRNAs in the initiation and progression of systemic lupus erythematosus (SLE) and the roles of circRNAs in sponging miRNA and gene regulation, it is appealing to speculate that circRNAs may associate with SLE and may be potential therapeutic targets for treatment of SLE. Future studies should attach more importance to the relationship between circRNAs and SLE. This review will concern identification, biogenesis, and function of circRNAs, introduce reports exploring the association of circRNAs with human diseases, and conjecture the potential roles of circRNAs in SLE. - Highlights: • Studies have discovered thousands of circRNAs and interpreted their biogenesis. • Cytoplasmic circRNAs sponge miRNA and nuclear circRNAs modulate gene transcription. • Aberrant expression of circRNAs has been observed in various cancers. • CircRNAs may partake in the pathogenesis of systemic lupus erythematosus.

  20. Circular RNAs and systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Li, Lian-Ju; Huang, Qing; Pan, Hai-Feng; Ye, Dong-Qing

    2016-01-01

    Circular RNAs (circRNAs) are a large class of noncoding RNAs that form covalently closed RNA circles. The discovery of circRNAs discloses a new layer of gene regulation occurred post-transcriptionally. Identification of endogenous circRNAs benefits from the advance in high-throughput RNA sequencing and remains challenging. Many studies probing into the mechanisms of circRNAs formation occurred cotranscriptionally or posttranscriptionally emerge and conclude that canonical splicing mechanism, sequence properties, and certain regulatory factors are at play in the process. Although our knowledge on functions of circRNAs is rather limited, a few circRNAs are shown to sponge miRNA and regulate gene transcription. The clearest case is one circRNA CDR1as that serves as sponge of miR-7. Researches on circRNAs in human diseases such as cancers highlight the function and physical relevance of circRNAs. Given the implication of miRNAs in the initiation and progression of systemic lupus erythematosus (SLE) and the roles of circRNAs in sponging miRNA and gene regulation, it is appealing to speculate that circRNAs may associate with SLE and may be potential therapeutic targets for treatment of SLE. Future studies should attach more importance to the relationship between circRNAs and SLE. This review will concern identification, biogenesis, and function of circRNAs, introduce reports exploring the association of circRNAs with human diseases, and conjecture the potential roles of circRNAs in SLE. - Highlights: • Studies have discovered thousands of circRNAs and interpreted their biogenesis. • Cytoplasmic circRNAs sponge miRNA and nuclear circRNAs modulate gene transcription. • Aberrant expression of circRNAs has been observed in various cancers. • CircRNAs may partake in the pathogenesis of systemic lupus erythematosus.