WorldWideScience

Sample records for functionalized sba-15 mesoporous

  1. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  2. Solvent optimization for niacinamide adsorption on organo-functionalized SBA-15 mesoporous silica

    Science.gov (United States)

    Moritz, Michał

    2013-10-01

    This work describes the application of organo-modified SBA-15 siliceous materials as the carrier for niacinamide. The surface functionalization of SBA-15 by a grafting strategy with triethoxyphenylsilane, triethoxy(4-methoxyphenyl)silane, triethoxymethylsilane and (3-mercaptopropyl)trimethoxysilane as modifying agents has been successfully achieved. The adsorption process was performed in acetonitrile, methanol, 2-propanol, 1-pentanol and ethyl acetate. The obtained results indicated a promote niacinamide adsorption on sulfopropyl-modified (119 mg/g) and non-modified (78 mg/g) SBA-15 from ethyl acetate. The pure and derivatized SBA-15 products have been characterized by elemental analysis, thermogravimetry, nitrogen adsorption and diffuse reflectance UV spectroscopy. After niacinamide adsorption the textural parameters of mesoporous carriers such as BET surface area, pore volume and microporosity were reduced. The mesoporous matrices loaded with niacinamide exhibited prolonged-release kinetics of this vitamin, especially from sulfopropyl-modified SBA-15 carrier.

  3. Surface functionalization of mesoporous silica SBA-15 by liquid-phase grafting of zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [ORNL; Hagaman, Edward {Ed} W [ORNL; Ma, Zhen [ORNL; Zhang, Jianan [ORNL; Yu, Jihong [ORNL; Yan, Wenfu [ORNL

    2010-01-01

    The introduction of mesoporous silicas in the 1990s has offered new opportunities for the engineering of ordered catalytic nanoreactors, but the acid properties of mesoporous silicas are rather poor. Herein, mesoporous silica (SBA-15) surfaces were functionalized by zirconium phosphate via two methods recently developed in our group. Zr(OPr){sub 4} and POCl{sub 3} were used as appropriate precursors in both methods. The main difference between these methods lies in whether Zr(OPr){sub 4} is grafted onto SBA-15 first and POCl{sub 3} second (method 1) or the grafting process takes place in one pot, with SBA-15, Zr(OPr){sub 4}, and POCl{sub 3} altogether (method 2). More zirconium phosphate could be grafted by repeating the above procedures. The materials were characterized by ICP-OES, XRD, N{sub 2} adsorption-desorption, TEM, {sup 31}P and {sup 29}Si MAS NMR, and NH{sub 3}-TPD, and their applications in catalytic isopropanol dehydration, cumene cracking, and metal-ion adsorption were demonstrated. Aluminum phosphate-modified SBA-15 samples could be obtained via these two methods as well. This work enriches the family of metal phosphate-functionalized mesoporous silicas as new solid acid catalysts.

  4. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Al. Armii Krajowej 36, 42-201 Czestochowa (Poland); Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa (Poland); Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl [Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa (Poland)

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule with experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.

  5. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kang, Seo-Young [International Environmental Research Center (IERC), Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lee, Sang-Hyup [Water Environment Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2011-10-15

    Highlights: {yields} SBA-15 grafted with aminopropyl, hydroxymethyl, and trimethylsilyl groups as sorbents. {yields} Sorbents for removal of a mixture of 12 pharmaceuticals from water. {yields} Hydroxymethyl-SBA-15 shows similar adsorption efficiency like SBA-15. {yields} Aminopropyl-SBA-15 makes increase for clofibric acid, diclofenac, decrease for atenolol, estrone, trimethoprim. {yields} Trimethylsilyl-SBA-15 makes increase for 9 compounds; 7 compounds from 70.6% to 98.9%. - Abstract: Mesoporous silica SBA-15 and its postfunctionalized counterparts with hydroxymethyl (HM-SBA-15), aminopropyl (AP-SBA-15), and trimethylsilyl (TMS-SBA-15) were prepared and characterized by powder X-ray diffraction, N{sub 2} adsorption-desorption measurement, Fourier-transform infrared spectroscopy, and elemental analysis. The removal of a mixture of 12 selected pharmaceuticals was investigated by batch adsorption experiments onto SBA-15 and the grafted materials. SBA-15 showed to have moderate adsorption affinity with amino-containing (atenolol, trimethoprim) and hydrophobic pharmaceuticals, but it displayed minimal adsorption affinity toward hydrophilic compounds. HM-SBA-15 was analogous with SBA-15 in terms of the adsorption efficiency toward all pharmaceuticals. AP-SBA-15 exhibited an increase in the adsorption of two acidic compounds (clofibric acid, diclofenac) but a decrease in the adsorption of estrone and the two amino-containing compounds. Among the grafted materials, TMS-SBA-15 had the highest adsorption affinity toward most pharmaceuticals. Moreover, the adsorption of nine pharmaceuticals to TMS-SBA-15 was significantly higher than that to SBA-15; seven of which showed the removal percentages from 70.6% to 98.9% onto TMS-SBA-15. The number of pharmaceuticals showing high adsorption efficiency onto TMS-SBA-15 did not alter significantly as the pH changed in the range of 5.5-7.6. The results suggest that TMS-SBA-15 is a promising material for the removal of pharmaceuticals

  6. Adsorption of lysozyme on hyaluronic acid functionalized SBA-15 mesoporous silica: a possible bioadhesive depot system.

    Science.gov (United States)

    Medda, Luca; Casula, Maria F; Monduzzi, Maura; Salis, Andrea

    2014-11-04

    Silica-based ordered mesoporous materials are very attractive matrices to prepare smart depot systems for several kinds of therapeutic agents. This work focuses on the well-known SBA-15 mesoporous silica and lysozyme, an antimicrobial protein. In order to improve the bioadhesion properties of SBA-15 particles, the effect of hyaluronic acid (HA) functionalization on lysozyme adsorption was investigated. SBA-15 samples having high (H-SBA) and low (L-SBA) levels of functionalization were analyzed during the three steps of the preparations: (1) introduction of the -NH2 groups to obtain the SBA-NH2 samples; (2) functionalization with HA to obtain the SBA-HA matrices; (3) adsorption of lysozyme. All silica matrices were characterized through N2-adsorption/desorption isotherms, small-angle X-ray scattering, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The whole of the experimental data suggests that a high level of functionalization of the silica surface allows for a negligible lysozyme adsorption mainly due to unfavorable electrostatic interactions (H-SBA-NH2) or steric hindrance (H-SBA-HA). A low degree of functionalization of the silica surface brings about a very good performance toward lysozyme adsorption, being 71% (L-SBA-NH2) and 63% (L-SBA-HA) respectively, compared to that observed for original SBA-15. Finally, two different kinetic models--a "pseudo-second order" and a "intraparticle diffusion"--were compared to fit lysozyme adsorption data, the latter being more reliable than the former.

  7. Luminescent Organic–Inorganic Hybrids of Functionalized Mesoporous Silica SBA-15 by Thio-Salicylidene Schiff Base

    Directory of Open Access Journals (Sweden)

    Li Ying

    2010-01-01

    Full Text Available Abstract Novel organic–inorganic mesoporous luminescent hybrid material N, N′-bis(salicylidene-thiocarbohydrazide (BSTC-SBA-15 has been obtained by co-condensation of tetraethyl orthosilicate and the organosilane in the presence of Pluronic P123 surfactant as a template. N,N′-bis(salicylidene-thiocarbohydrazide (BSTC grafted to the coupling agent 3-(triethoxysilyl-propyl isocyanate (TESPIC was used as the precursor for the preparation of mesoporous materials. In addition, for comparison, SBA-15 doped with organic ligand BSTC was also synthesized, denoted as BSTC/SBA-15. This organic–inorganic hybrid material was well-characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (HRTEM, and photoluminescence spectra, which reveals that they all have high surface area, uniformity in the mesostructure. The resulting materials (BSTC-SBA-15 and BSTC/SBA-15 exhibit regular uniform microstructures, and no phase separation happened for the organic and the inorganic compounds was covalently linked through Si–O bonds via a self-assemble process. Furthermore, the two materials have different luminescence range: BSTC/SBA-15 presents the strong dominant green luminescence, while BSTC-functionalized material BSTC-SBA-15 shows the dominant blue emission.

  8. 氨基功能化SBA-15介孔分子筛的制备与表征%Preparation and Characterization of Amino-functionalized Mesoporous Silica SBA-15

    Institute of Scientific and Technical Information of China (English)

    田博士; 刘少华; 刘艳艳; 詹秀环; 姚新建; 王子云

    2011-01-01

    Amino-functionalized NH2-SBA-15 mesoporous materials ( shorter form NH2-SBA-15 ) were prepared by a post-synthesis method using 3-aminopropyltriethoxysilane as the coupling agent. The structure and performances of NH2-SBA-15 were characterized by FT-IR, element analysis, XRD,SEM and N2 adsorption/desorption. The results showed that amine was successfully grafted on the surface of SBA-15 and the NH2-SBA-15 possessed a well ordered hexagonal mesoporous structure.Compared with pure SBA-15, the surface area, the pore size and the pore volume of the H2-SBA-15 were decreased. The content of amine in the NH2-SBA-15 was about 3.47 mmol·g-1.%以3-氨丙基三乙氧基硅烷为偶联剂,采用后合成法对介孔分子筛(SBA-15)的表面进行改性,制得氨基功能化的介孔NH-SBA-15材料(简称NH-SBA-15),其结构和性能经FT-IR,元素分析,XRD,SEM及低温N吸附-脱附表征.结果表明,氨基成功地嫁接到SBA-15表面,含量高达3.47 mmol·g.与SBA-15相比,NH-SBA-15的比表面积、孔径和孔容减少,且仍具有有序六方介孔结构.

  9. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    Science.gov (United States)

    Laskowski, Lukasz; Laskowska, Magdalena

    2014-12-01

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N2 isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule with experimental results, distribution of the active units inside silica matrix has been determined.

  10. Functionalized Mesoporous SBA-15 with CeF3: Eu3+ Nanoparticle by Three Different Methods: Synthesis, Characterization, and Photoluminescence

    Directory of Open Access Journals (Sweden)

    Li Ying

    2010-01-01

    Full Text Available Abstract Luminescence functionalization of the ordered mesoporous SBA-15 silica is realized by depositing a CeF3: Eu3+ phosphor layer on its surface (denoted as CeF3: Eu3+/SBA-15/IS, CeF3: Eu3+/SBA-15/SI and CeF3: Eu3+/SBA-15/SS using three different methods, which are reaction in situ (I-S, solution impregnation (S-I and solid phase grinding synthesis (S-S, respectively. The structure, morphology, porosity, and optical properties of the materials are well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption, and photoluminescence spectra. These materials all have high surface area, uniformity in the mesostructure and crystallinity. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the CeF3: Eu3+ nanophosphors. Furthermore, the efficient energy transfer in mesoporous material mainly occurs between the Ce3+ and the central Eu3+ ion. They show the characteristic emission of Ce3+ 5d → 4f (200–320 nm and Eu3+ 5D0 → 7F J (J = 1–4, with 5D0 → 7F1 orange emission at 588 nm as the strongest one transitions, respectively. In addition, for comparison, the mesoporous material CeF3: Eu3+/SBA-15/SS exhibits the characteristic emission of Eu3+ ion under UV irradiation with higher luminescence intensity than the other materials.

  11. Biguanide-functionalized mesoporous SBA-15 silica as an efficient solid catalyst for interesterification of vegetable oils.

    Science.gov (United States)

    Xie, Wenlei; Hu, Libing

    2016-04-15

    The biguanide-functionalized SBA-15 materials were fabricated by grafting of organic biguanide onto the SBA-15 silica through covalent attachments, and then this organic-inorganic hybrid material was employed as solid catalysts for the interesterification of triacylglycerols for the modification of vegetable oils. The prepared catalyst was characterized by FTIR, XRD, SEM, TEM, nitrogen adsorption-desorption and elemental analysis. The biguanide base was successfully tethered onto the SBA-15 silica with no damage to the ordered mesoporous structure of the silica after the organo-functionalization. The solid catalyst had stronger base strength and could catalyze the interesterification of triacylglycerols. The fatty acid compositions and triacylglycerol profiles of the interesterified products were noticeably varied following the interesterification. The reaction parameters, namely substrate ratio, reaction temperature, catalyst loading and reaction time, were investigated for the interesterification of soybean oil with methyl decanoate. The catalyst could be reused for at least four cycles without significant loss of activity.

  12. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  13. Cyclic ligand functionalized mesoporous silica (SBA-15) for selective adsorption of Co2+ ion from artificial seawater.

    Science.gov (United States)

    Moorthy, Madhappan Santha; Park, Sung Soo; Selvaraj, M; Ha, Chang-Sik

    2014-11-01

    Hard donor atoms (N and O) containing macrocyclic ligand was synthesized and further functionalized with mesoporous SBA-15 materials by chemical modification method. The modification was achieved by the immobilization of 3-chloropropyltriethoxysilane (CIPTES) onto mesoporous silica surface followed by post grafting route. The resulting material (Py-Cy-SBA-15) has been characterized by low angle X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, Fourier-transform infrared (FT-IR) spectroscopy, 29Si and 13C CP MAS NMR spectroscopic analyses, Thermogravimetric analysis (TGA) and elemental analysis. The long range orders of the materials were identified by transmission electron microscopy (TEM). The functionalized material was employed to the heavy metal ions adsorption from aqueous solution containing Cu2+, Co2+, Zn2+, Cd2+ and Cr2+. The prepared hybrid material showed high selectivity and adsorption capacity for Co2+ ion at pH 8.0.

  14. Adsorption of octadecyltrichlorosilane on mesoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Mirji, S.A. [Physical Chemistry Division, National Chemical Laboratory, Pune 411008 (India)]. E-mail: mirji@dalton.ncl.res.in; Halligudi, S.B. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Sawant, Dhanashri P. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Jacob, Nalini E. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Patil, K.R. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Gaikwad, A.B. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Pradhan, S.D. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India)

    2006-04-15

    Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m{sup 2}/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH{sub 3}) and methylene (-CH{sub 2}) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 deg. C and that the OTS monolayers decompose between 230 and 400 deg. C.

  15. Synthesis of composites SBA-15 mesoporous particles carrying oxytocin and evaluation of their properties, functions, and in vitro biological activities.

    Science.gov (United States)

    Qian, Ming; Liu, Min; Duan, Mengna; Wu, Zhe; Zhou, Yanmin

    2015-01-01

    Using the organic template method, we have synthesized mesoporous SBA-15 particles and characterized them by scanning electron microscopy and transmission electron microscopy. The bone metabolism regulating hormone oxytocin (OT) was selected as a model for preparation of drug/SBA-15 complexes. The process of drug loading was studied using X-ray diffraction and nitrogen absorption methods. Optimal drug loading parameters were experimentally investigated. The kinetics of drug release from the carrier was evaluated. Finally, the extractions of SBA-15 particles were tested for cytotoxicity, in vitro hemolysis, and the direct attachment toxicity. Our findings suggest that SBA-15 materials have good biocompatibility. Moreover, we demonstrated that OT/SBA-15 complex can stimulate alkaline phosphatase activity in osteoblast cells. The study provides fundamental information for further in vivo drug-carrier testing.

  16. 12-Tungstophosphates Immobilized on Chemically Modified Mesoporous Silica SBA-15

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; YOU Wan-sheng; ZHU Zai-ming; SUN Zhen-gang; ZHANG Lan-cui; GU Yuan-peng

    2005-01-01

    A functionalized material, PW/SBA-15m, was prepared successfully in diluted H2SO4 aqueous solutions by immobilizing 12-tungstophosphates on chemically modified mesoporous silica SBA-15 and characterized by elemental analysis, FTIR, 31P MAS NMR, XRD and TEM. The results indicate that the framework of SBA-15 and the Keggin structure of PW12O3-40 were retained, and that 23%-33%(mass fraction) of PW12O3-40 was immobilized; the PW12O3-40 anions were finely dispersed on the pore wall of SBA-15. Having been leached in ethanol at 60 ℃ for 7 h, the loss of PW12O3-40 anions was not found.

  17. A one-step co-condensation method for the synthesis of well-defined functionalized mesoporous SBA-15 using trimethallylsilanes as organosilane sources.

    Science.gov (United States)

    Han, Ye Ri; Park, Jung-Woo; Kim, Hanil; Ji, Hyejeong; Lim, Soo Hyun; Jun, Chul-Ho

    2015-12-14

    A new method for the preparation of well-defined functionalized mesoporous SBA-15 has been developed by a one-step co-condensation method using trimethallylsilanes as organosilane sources. This new method enables the incorporation of various bulky organic functional groups with long alkyl chain tethers into the mesoporous silica network.

  18. Functionalized ionic liquid modified mesoporous silica SBA-15: a novel, designable and efficient carrier for porcine pancreas lipase.

    Science.gov (United States)

    Zou, Bin; Hu, Yi; Yu, Dinghua; Jiang, Ling; Liu, Weiming; Song, Ping

    2011-11-01

    A series of functionalized ionic liquid modified mesoporous silicas SBA-15 (FIL-SBA) were synthesized by modulating the loading and cation/anion ratio of the functionalized ionic liquid (FIL). The prepared materials FIL-SBA were used as a novel carrier system to immobilize porcine pancreas lipase (PPL). Enzymatic activity and reusability of the immobilized enzyme were investigated using the triacetin hydrolysis reaction. The combined advantages of the nano-sized pore diameter, large surface area and high pore volume of SBA-15, and the tunable properties of the FIL for enzymes immobilized in FIL-SBA gave a maximum improvement of 570% in relative activity, with 63% retention of initial activity after five cycles of use. Carriers and immobilized enzymes were characterized using nitrogen adsorption, small-angle X-ray diffraction (SXRD), Fourier transform infrared (FT-IR), elemental analysis, nuclear magnetic resonance (NMR), scanning and transmission electron microscopy (SEM and TEM). It was shown that the introduction of FIL influenced the catalytic behavior of PPL significantly by changing the structure and surface properties of the carriers.

  19. Photoactive perylenediimide-bridged silsesquioxane functionalized periodic mesoporous organosilica thin films (PMO-SBA15): synthesis, self-assembly, and photoluminescent and enhanced mechanical properties.

    Science.gov (United States)

    Wahab, M Abdul; Hussain, H; He, Chaobin

    2009-04-21

    Well-organized periodic mesoporous organosilica thin films (designated as PMO-SBA15), having covalently bonded perylene-bridged silesquioxane (PTCDBS) inside their pore channels, are successfully synthesized via sol-gel self-assembly of 1,2-bis(triethoxysilyl)ethane and perylene-bridged silsesquioxane, using micelles of pluronic surfactant (P123) as a template for the first time. The surfactant is successfully removed from the pore channels of PMO-SBA15 by an acidic solvent extraction procedure. The final PMO-SBA15 thin films are characterized by high resolution X-ray diffraction (HRXRD), transmission electron microcopy (TEM), solid-state 29Si and 13C NMR CP/MAS NMR spectroscopy, nitrogen adsorption-desorption measurements, photoluminescence (PL) spectroscopy, and nanoindentation. HRXRD data reveal the formation of well-organized hexagonal channels in the pure PMO-SBA15 films. The intensity of the diffracted X-ray, however, systematically attenuates after incorporation of the perylene functionality inside the hexagonal channels. This is attributed to the low X-ray scattering contrast between the mesostructured organosilica walls and organic moieties (perylene) inside the channels, suggesting the successful incorporation of the photoactive perylene molecules inside the nanochannels. This was further confirmed by photoluminescence spectroscopy and nitrogen adsorption-desorption measurements. Additionally, the mechanical hardness of the functionalized PMO-SBA15 thin films, measured by nanoindentation, is significantly enhanced as compared with that of the pure PMO film. Thermogravimetric analysis (TGA) and elemental analysis suggested the functionalized PMO-SBA15 materials with PTCDBS.

  20. Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials.

    Science.gov (United States)

    Dolatyari, Leila; Yaftian, Mohammad Reza; Rostamnia, Sadegh

    2016-03-15

    Functionalized SBA-15 mesoporous silica particles, bearing N-propylsalicylaldimine and ethylenediaminepropylesalicylaldimine Schiff base ligands, abbreviated as SBA/SA and SBA/EnSA respectively, were prepared and characterized by FT-IR, elemental analysis, TGA, XRD, TEM and SEM techniques. The potentials of these adsorbents were examined by using them in solid phase extraction of U(VI) ions from water samples. It is shown that 20 mg of SBA/SA or SBA/EnSA can remove rapidly (∼15 min) and quantitatively uranium(VI) ions from 10 to 200 mL of water solutions (pH 4) containing 0.2 mg of the ions, at 25 °C. The adsorbed ions were stripped by 1 mL of dilute nitric acid solution (0.1 mol L(-1)). It means that the studied adsorbents are able to be used for removal and concentration of uranyl ions. This allowed achieving to a concentration factor of 200 for uranyl ions. The variation in the ionic strength in the range 0-1 mol L(-1) did not affect the extraction efficiencies of the adsorbents. The adsorbents showed selective separation of uranyl ions from Cd(2+), Co(2+), Ni(2+), Mn(2+), Cr(3+), Ba(2+), Fe(3+) and Eu(3+) ions. Thermodynamic investigations revealed that the adsorption of uranyl ions by the adsorbents was spontaneous and endothermic. The Langmuir model described suitably the adsorption isotherms. This model determined the maximum adsorption capacity of the adsorbents SBA/SA and SBA/EnSA as 54 and 105.3 mg uranyl/g adsorbent, respectively. The kinetics of the processes was interpreted by using Pseudo-second-order model.

  1. Calorimetric Study of Mesoporous SBA-15 Modified for Controlled Valproic Acid Delivery

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available SBA-15 ordered mesoporous silica functionalized with (3-aminopropyltriethoxysilane (APTES was used as the carrier for anticonvulsant drug 2-propylpentanoic acid (valproic acid. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via postsynthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic valproic acid. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, N2 adsorption, FTIR, and UV spectroscopy. The adsorption of valproic acid on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. A thermodynamic study with isothermal titration calorimetry (ITC was made to characterize the modification and encapsulation of SBA-15 with APTES and valproic acid, respectively. The maximum content of deposited drug in modified SBA-15 was close to 30 wt.%. Tests performed in acidic solution (pH 2.0 showed the best pharmaceutical availability.

  2. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review

    Directory of Open Access Journals (Sweden)

    Eric M. Rivera-Muñoz

    2013-09-01

    Full Text Available SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as catalyst supports, absorbents, drug delivery materials, etc. Since it has a lack of functionality, heteroatoms and organic functional groups have been incorporated by direct or post-synthesis methods in order to modify their functionality. The aim of this article is to review the state-of-the-art related to the use of SBA-15-based mesoporous systems as supports for hydrodesulfurization (HDS catalysts.

  3. Fine CuO anisotropic nanoparticles supported on mesoporous SBA-15 for selective hydrogenation of nitroaromatics.

    Science.gov (United States)

    Sareen, Shweta; Mutreja, Vishal; Singh, Satnam; Pal, Bonamali

    2016-01-01

    SBA-15 modified with APTMS (3-aminopropyl trimethoxysilane) having pore diameter (∼8 nm) has been synthesized and impregnated with 1-10 wt.% Cu using Cu(NO3)2 as a metal source followed by calcination at 350 °C. As-prepared CuO/ap-SBA-15 powder showed changes in the color from white for bare SBA-15 to light green due to formation of anisotropic CuO nanoparticles that exhibited a characteristic plasmon absorption band at 359 and 747 nm. TEM studies showed a change in the morphology of CuO NPs as a function of increased Cu loading. Moreover, well dispersed CuO nanospheres (∼5-6 nm) and nanorods (aspect ratio ∼11-20 nm) having monoclinic crystal phase were observed within the mesoporous channels of SBA-15. Elemental mapping studies confirmed uniform distribution of CuO nanoparticles on the surface of SBA-15. An increase in surface area was also observed from 694 m(2) g(-1) for SBA-15 to 762 m(2) g(-1) for 10 wt.% Cu loading probably due to the deposition of excess of CuO nanoparticles on the outer siliceous surface. The catalytic activity also increased with Cu loading and 10 wt.% CuO/ap-SBA-15 catalyst displayed the highest catalytic activity for the reduction of m-chloronitrobenzene and m-nitrotoluene with 83% and 100% selectivity for m-chloroaniline and m-aminotoluene respectively.

  4. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage

    Science.gov (United States)

    Yang, Jae Hwan; Cho, Yong-Jun; Shin, Jin Myeong; Yim, Man-Sung

    2015-10-01

    Efficient capture and stable storage of the long-lived iodine-129 (129I), released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi2S3 within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities (up to 540 mg-I/g-sorbent), which benefitted from high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI3 compound. Iodine physisorption was effectively suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement. Furthermore, a chemically durable iodine-bearing material was made with a facile post-sorption process, during which the iodine-incorporated phase was changed from BiI3 to chemically durable Bi5O7I. Thus, our results showed that both efficient capture and stabilization of 129I would be possible with the bismuth-embedded SBA-15, in contrast to other sorbents mainly focused on iodine capture.

  5. Fluorescence properties of riboflavin-functionalized mesoporous silica SBA-15 and riboflavin solutions in presence of different metal and organic cations

    Science.gov (United States)

    Lewandowski, Dawid; Schroeder, Grzegorz; Sawczak, Mirosław; Ossowski, Tadeusz

    2015-10-01

    Riboflavin was covalently linked to mesoporous SBA-15 silica surface via grafting technique. Then fluorescence properties of the system obtained were analyzed in the presence of several metal and organic cations. Both quenching and strengthening of fluorescence as well as significant changes in the maximum fluorescence wavelength were observed. The results were compared with absorption and fluorescence data obtained for riboflavin water solutions.

  6. Binary and Ternary Heterometallic (La3+, Gd3+, Y3+–Eu3+ Functionalized SBA-15 Mesoporous Hybrids: Chemically Bonded Assembly and Photoluminescence

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2010-01-01

    Full Text Available Abstract A novel kind of organic–inorganic monomer SUASi has been achieved by modifying 5-sulfosalicylic acid (SUA with 3-aminopropyltrimethoxysilane (APS, subsequently binary and ternary Eu3+ mesoporous hybrid materials with 5-sulfosalicylic acid (SUA-functionalized SBA-15 and 1,10-phenanthroline (phen are synthesized by co-condensation of SUASi and TEOS in the presence of Eu3+ complex and Pluronic P123 as a template. Finally, luminescent hybrid mesoporous materials consisting of active rare earth ions (Eu3+—inert rare earth ions (Y3+, La3+, Gd3+ complex covalently bonded to the mesoporous materials network have been obtained via this sol–gel approach. The physical characterization and photoluminescence of all these resulting materials are studied in detail. Especially the luminescent behavior has been studied with the different ratios of Eu3+–(Y3+, La3+, Gd3+, which suggests that the existence of inert rare earth ions can enhance the luminescence intensity of Eu3+. This may be due to the intramolecular energy transfer between Y3+, La3+, Gd3+, and Eu3+ through the covalently bonded mesoporous framework.

  7. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan, E-mail: bxtung@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-09-15

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  8. SBA-15 mesoporous silica as a super insulating material

    Science.gov (United States)

    Belmoujahid, Y.; Bonne, M.; Scudeller, Y.; Schleich, D.; Grohens, Y.; Lebeau, B.

    2015-07-01

    The thermal insulation behavior of ordered mesoporous silica SBA-15 aggregates heat treated at 300 ∘C was studied. An important decrease in the effective thermal conductivity according to the increase of the apparent density was observed. A thermal conductivity value less than 25 mW.m-1.K-1 was reached during the compaction phenomenon. Results of thermal conductivity were correlated to the electron microscopy observations and physicochemical data (X-ray diffraction, adsorption/desorption of nitrogen volumetric measurements). These thermal properties make these materials very promising for thermal insulation applications, especially with values inferior to the thermal conductivity of air.

  9. In Situ Loading of Drugs into Mesoporous Silica SBA-15.

    Science.gov (United States)

    Wan, Mi Mi; Li, Yan Yan; Yang, Tian; Zhang, Tao; Sun, Xiao Dan; Zhu, Jian Hua

    2016-04-25

    In a new strategy for loading drugs into mesoporous silica, a hydrophilic (heparin) or hydrophobic drug (ibuprofen) is encapsulated directly in a one-pot synthesis by evaporation-induced self-assembly. In situ drug loading significantly cuts down the preparation time and dramatically increases the loaded amount and released fraction of the drug, and appropriate drug additives favor a mesoporous structure of the vessels. Drug loading was verified by FTIR spectroscopy and release tests, which revealed much longer release with a larger amount of heparin or ibuprofen compared to postloaded SBA-15. Besides, the in vitro anticoagulation properties of the released heparin and the biocompatibility of the vessels were carefully assessed, including activated partial thromboplastin time, thrombin time, hemolysis, platelet adhesion experiments, and the morphologies of red blood cells. A concept of new drug-release agents with soft core and hard shell is proposed and offers guidance for the design of novel drug-delivery systems.

  10. Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis

    DEFF Research Database (Denmark)

    Reichhardt, Nina Viola; Guillet-Nicolas, Rémy; Thommes, Matthias;

    2012-01-01

    The thermoresponsive polymer poly-N-isopropylacrylamide (PNIPAAM) was grafted in mesoporous SBA-15 silica. The grafting process consists of three steps: (i) increasing the amount of surface silanol groups of SBA-15 by hydroxylation, (ii) attachment of an anchor (1-(trichlorosilyl)-2-(m...... located in the intrawall pores present in SBA-15. Consequently, the polymer is preferentially located in the intrawall pores or in the vicinity thereof. The final mesopore volume is 0.47 cm 3 g -1 as compared to 0.96 cm 3 g -1 for the pure SBA-15. The surprisingly large loss of mesopore volume...

  11. Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis

    DEFF Research Database (Denmark)

    Reichhardt, Nina Viola; Guillet-Nicolas, Rémy; Thommes, Matthias

    2012-01-01

    located in the intrawall pores present in SBA-15. Consequently, the polymer is preferentially located in the intrawall pores or in the vicinity thereof. The final mesopore volume is 0.47 cm 3 g -1 as compared to 0.96 cm 3 g -1 for the pure SBA-15. The surprisingly large loss of mesopore volume...

  12. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, M.V. [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); Videla, M. [Rhein Chemie Argentina, Luis Maria Drago 1555 - (B1852LGS) Burzaco, Buenos Aires (Argentina); Calvo, A.; Requejo, F.G. [INIFTA-CONICET, Universidad Nacional de La Plata, CC 16 Sucursal 4 (1900), La Plata (Argentina); Soler-Illia, G.J.A.A., E-mail: gsoler@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (C1428EHA), Buenos Aires (Argentina)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We produce mesoporous amino-silica as Cu(II) adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}). Black-Right-Pointing-Pointer Elemental analysis and XPS demonstrate that amino groups concentrate at the material surface. Black-Right-Pointing-Pointer The integrity of the adsorbent through the adsorption, desorption and recycling processes is assessed. Black-Right-Pointing-Pointer These materials can be regenerated by exposure to acidic media. Black-Right-Pointing-Pointer A careful thermal processing of the material is central to better durability during reprocessing. - Abstract: Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption-desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the

  13. Control and assessment of plugging of mesopores in SBA-15 materials

    NARCIS (Netherlands)

    Shakeri, M; Klein Gebbink, R.J.M.; de Jongh, P.E.; de Jong, K.P.

    2013-01-01

    Plugged SBA-15 materials consist of mesoporous channels constricted along the central axis by windows. Tailoring and measurement of physical properties, particularly the window sizes, of plugged SBA-15 materials are crucial for potential host–guest applications. In this paper we report a synthesis p

  14. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: abadiei@khayam.ut.ac.ir [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)

    2015-03-15

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  15. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Science.gov (United States)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-03-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  16. SBA-15 mesoporous material modified with APTES as the carrier for 2-(3-benzoylphenyl)propionic acid

    Science.gov (United States)

    Moritz, Michał; Łaniecki, Marek

    2012-07-01

    SBA-15 ordered mesoporous silica functionalized with (3-aminopropyl)triethoxysilane (APTES) was used as the carrier for anti-inflammatory drug: 2-(3-benzoylphenyl)propionic acid - ketoprofen. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via post-synthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic ketoprofen. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, TG, N2 adsorption, FTIR, DRUV spectroscopies and an in vitro drug release test. The adsorption of ketoprofen on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. The maximum content of deposited drug in modified SBA-15 was close to 20 wt.%. After drug adsorption the reduction of BET surface area, pore volume and pore diameter of non-modified SBA-15 and aminopropyl-modified SBA-15 after drug adsorption were observed while the hexagonal array of siliceous matrix was well preserved. The release profiles of the aminopropyl-modified drug-containing SBA-15 exhibited prolonged release of ketoprofen in applied media. Tests performed in acidic solution (pH 1.2) showed the best pharmaceutical availability.

  17. SBA-15介孔材料的改性及应用%Modification and Application of Mesoporous Molecular Sieves SBA-15

    Institute of Scientific and Technical Information of China (English)

    宗蒙; 黄英; 赵阳

    2012-01-01

    On the basis of introducing the modification mechanism and synthesis process optimization, the recent progress of modification and application in catalysis field of mesoporous silica SBA-15 was reviewed in terms of four aspects: organic groups modified SBA-15 catalysts, acid modified SBA-15 catalysts, metal modified SBA-15 catalysts and metal compounds modified SBA-15 catalysts. The research and application of this materials in adsorption, determination and separation, drug delivery, preparation of new materials were also summarized. At the same time, it previewed the research direction of the SBA-15 mesoporous materials in the future.%在介绍介孔分子筛SBA- 15改性原理及合成工艺优化研究状况的基础上,从有机基团改性、负载固体酸、金属掺杂及金属化合物掺杂等4个方面详细综述了SBA-15介孔材料在催化领域的应用现状,同时论述了其在吸附、测定与分离、药物输送、制备新材料领域的研究与应用,并展望了SBA-15介孔材料未来的研究方向.

  18. Preparation, Characterization, and Application of Magnetic Fe-SBA-15 Mesoporous Silica Molecular Sieves

    OpenAIRE

    Huang, Huayu; Ji, Yongsheng; Qiao, Zhenfeng; Zhao, Chuande; He, Jianguo; Zhang, Haixia

    2010-01-01

    Magnetic Fe-SBA-15 mesoporous silica molecular sieves were prepared, characterized, and used for magnetic separation. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to the metal form with hydrogen, and the magnetic Fe-SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process from the oxide to metal forms. The structure of magnetic materials was confirmed by Mössbauer spectra. Powder X-ray ...

  19. Tritium removal from tritiated water by organic functionalized SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, A.; Kato, Y.; Akai, R.; Torikai, Y.; Matsuyama, M. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan)

    2015-03-15

    The recovery of tritium from tritiated water is important for reducing tritium emissions to the environment and for recycling tritium. Meso-porous silicas (SBA-15) were modified by -COOH, -SO{sub 3}H and -NH{sub 2} groups and their tritium adsorption ability from tritiated water under solid-liquid sorption was investigated. The adsorption abilities and separation factor of organic functionalized SBAs were comparable to those of bare SBA. The desorption of water from bare SBA and -COOH functionalized SBA were studied by Fourier transform infra-red spectroscopy using D{sub 2}O as a probe molecule. An interaction was observed for D{sub 2}O with -COOH group where the hydrogen bonds became weaker than D{sub 2}O with bare SBA. (authors)

  20. Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution.

    Science.gov (United States)

    Lei, Di; Zheng, Qianwen; Wang, Yili; Wang, Hongjie

    2015-02-01

    A novel material, aminopropyl-functionalized manganese-loaded SBA-15 (NH2-Mn-SBA-15), was synthesized by bonding 3-aminopropyl trimethoxysilane (APTMS) onto manganese-loaded SBA-15 (Mn-SBA-15) and used as a Cu2+ adsorbent in aqueous solution. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectra (XRD), N2 adsorption/desorption isotherms, high resolution field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the NH2-Mn-SBA-15. The ordered mesoporous structure of SBA-15 was remained after modification. The manganese oxides were mainly loaded on the internal surface of the pore channels while the aminopropyl groups were mainly anchored on the external surface of SBA-15. The adsorption of Cu2+ on NH2-Mn-SBA-15 was fitted well by the Langmuir equation and the maximum adsorption capacity of NH2-Mn-SBA-15 for Cu2+ was over two times higher than that of Mn-SBA-15 under the same conditions. The Elovich equation gave a good fit for the adsorption process of Cu2+ by NH2-Mn-SBA-15 and Mn-SBA-15. Both the loaded manganese oxides and the anchored aminopropyl groups were found to contribute to the uptake of Cu2+. The NH2-Mn-SBA-15 showed high selectivity for copper ions. Consecutive adsorption-desorption experiments showed that the NH2-Mn-SBA-15 could be regenerated by acid treatment without altering its properties.

  1. A fluorescent probe for zinc detection based on organically functionalized SBA-15

    Science.gov (United States)

    Dong, Zhengping; Dong, Zihao; Wang, Pan; Tian, Xin; Geng, Huamei; Li, Rong; Ma, Jiantai

    2010-11-01

    In this study, highly ordered mesoporous silica material (SBA-15) functionalized with N-(quinoline-8-yl)-2-(3-triethoxysilyl-propylamino)-acetamide (QTPA) as zinc probe has been reported. The anchoring to the surface of the SBA-15 was carried out by the reaction between the precursor and the hydroxyl groups available on the inner surface of the support. The primary ordered mesoporous structure of SBA-15 was well preserved after the grafting procedure. Fluorescence characterization showed that the obtained organic-inorganic hybrid composite displayed highly selective and sensitive to Zn 2+ ion over other cations such as Cd 2+, Pb 2+, Ni 2+ and Co 2+. And the hybrid material has ideal chemical and spectroscopic properties for further biological and environmental applications.

  2. Sodium silicate as source of silica for synthesis of mesoporous SBA-15

    Science.gov (United States)

    Rahmat, Norhasyimi; Hamzah, Fazlena; Sahiron, Norsuraya; Mazlan, Marissa; Mukmin Zahari, Muhammad

    2016-06-01

    Ordered mesoporous silica SBA-15 was prepared using hydrothermal synthesis using sodium silicate (Na2SiO3) as the silica source and amphiphilic block copolymer Pluronic P123 as the structure directing agent. The influence of the mass Na2SiO3, ripening duration, aging time and calcination temperature on the structural and mesoporous properties of silica was studied. X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and the nitrogen adsorption desorption using Brunauer Emmett Teller (BET) are some instruments used to characterize the results of investigation. From XRD analysis, SBA-15 synthesized from sodium silicate yield 2D-hexagonal symmetry (p6mm). From FTIR analysis, functional group Si-O-Si symmetric stretching modes and asymmetric Si- O-Si stretching modes were present. The sample with the highest mass of Na2SiO3 and the shortest aging time exhibited the largest surface area and large pore size. The results also showed the morphological structure could be tuned during ripening stage.

  3. Iron Doped SBA-15 Mesoporous Silica Studied by Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Łukasz Laskowski

    2016-01-01

    Full Text Available Mesoporous silica SBA-15 containing propyl-iron-phosphonate groups were considered to confirm their molecular structure. To detect the iron-containing group configuration the Mössbauer spectroscopy was used. Both mesoporous silica SBA-15 containing propyl-iron-phosphonate groups and pure doping agent (iron acetylacetate were investigated using Mössbauer spectroscopy. The parameters such as isomer shift, quadrupole splitting, and asymmetry in 57Fe Mössbauer spectra were analyzed. The differences in Mössbauer spectra were explained assuming different local surroundings of Fe nuclei. On this base we were able to conclude about activation of phosphonate units by iron ions and determinate the oxidation state of the metal ion. To examine bonding between iron atoms and phosphonic units the resonance Raman spectroscopy was applied. The density functional theory (DFT approach was used to make adequate calculations. The distribution of active units inside silica matrix was estimated by comparison of calculated vibrational spectra with the experimental ones. Analysis of both Mössbauer and resonance Raman spectra seems to confirm the correctness of the synthesis procedure. Also EDX elemental analysis confirms our conclusions.

  4. Surface morphology and physicochemical properties of ordered mesoporous silica SBA-15 synthesized at low temperature

    Science.gov (United States)

    Koh, M. H.; Haji Azaman, S. A.; Hameed, B. H.; Din, A. T. Mohd

    2017-06-01

    The effects of process parameters on the surface morphology and physicochemical characteristics of ordered mesoporous silica SBA-15 synthesized at low temperature have been investigated in this study. SBA-15 particles were synthesized through sol-gel method using non-ionic surfactant Pluronic P123 and TEOS as a silica source with aqueous hydrochloric acid (HCl) as a catalyst under the following conditions: HCl concentration (1.0-2.5 M), ageing temperature (40-70ºC) and ageing time (12-48 hours). A series of physicochemical characterizations and material analyses were performed on SBA-15 particles including Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), BET surface area analysis, Fourier transform infrared (FTIR) analysis and X-ray Diffraction (XRD) analysis. From the experimental observation, the conditions of HCl concentration, ageing temperature and ageing time were able to influence the surface morphology of SBA-15 particles. The presence of the ordered structures in SBA-15 particles was observed through the formation of 1-D cylindrical channels and 2-D hexagonal pores, inspected by using TEM. The detected XRD peak at (100) reflection signified the presence of ordered meso structures within the SBA-15 particles. Therefore, synthesis of SBA-15 particles through sol-gel method at low temperature is feasible and more sustainable if compared to the energy intensive hydrothermal method.

  5. Sulfanilic acid functionalized mesoporous SBA-15: A water-tolerant solid acid catalyst for the synthesis of uracil fused spirooxindoles as antioxidant agents

    Indian Academy of Sciences (India)

    Robabeh Baharfar; Razieh Azimi

    2015-08-01

    Incorporating sulfanilic acid as a hydrophobic Brønsted acid inside the nanospaces of SBA-15 led to a water-tolerant solid acid catalyst, SBA-15-PhSO 3 H, which showed excellent catalytic performance in synthesis of uracil-fused spirooxindoles in aqueous ethanol. The synthesized compounds were evaluated for their antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay.

  6. Development of TREN dendrimers over mesoporous SBA-15 for CO 2 adsorption

    Science.gov (United States)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-09-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 °C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 °C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  7. Modeling micelle-templated mesoporous material SBA-15: atomistic model and gas adsorption studies.

    Science.gov (United States)

    Bhattacharya, Supriyo; Coasne, Benoit; Hung, Francisco R; Gubbins, Keith E

    2009-05-19

    We report the development of a realistic molecular model for mesoporous silica SBA-15, which includes both the large cylindrical mesopores and the smaller micropores in the pore walls. The methodology for modeling the SBA-15 structure involves molecular and mesoscale simulations combined with geometrical interpolation techniques. First, a mesoscale model is prepared by mimicking the synthesis process using lattice Monte Carlo simulations. The main physical features of this mesoscale pore model are then carved out of an atomistic silica block; both the mesopores and the micropores are incorporated from the mimetic simulations. The calculated pore size distribution, surface area, and simulated TEM images of the model structure are in good agreement with those obtained from experimental samples of SBA-15. We then investigate the adsorption of argon in this structure using Grand Canonical Monte Carlo (GCMC) simulations. The adsorption results for our SBA-15 model are compared with those for a similar model that does not include the micropores; we also compare with results obtained in a regular cylindrical pore. The simulated adsorption isotherm for the SBA-15 model shows semiquantitative agreement with the experimental isotherm for a SBA-15 sample having a similar pore size. We observe that the presence of the micropores leads to increased adsorption at low pressure compared to the case of a model without micropores in the pore walls. At higher pressures, for all models, the filling proceeds via the monolayer-multilayer adsorption on the mesopore surface followed by capillary condensation, which is mainly controlled by the mesopore diameter and is not influenced by the presence of the micropores.

  8. Functionalized iron oxide/SBA-15 sorbent: investigation of adsorption performance towards glyphosate herbicide.

    Science.gov (United States)

    Rivoira, Luca; Appendini, Marta; Fiorilli, Sonia; Onida, Barbara; Del Bubba, Massimo; Bruzzoniti, Maria Concetta

    2016-11-01

    Glyphosate is a worldwide-used herbicide occurring in many monitoring campaigns. Efficient technologies are currently unavailable for glyphosate removal from waters. In this work, a SBA-15 mesoporous silica-based material (Fe-NH2-SBA-15) was synthesized and studied for the adsorption of glyphosate from waters. In order to promote specific interactions between the sorbent and glyphosate via phosphoric group, iron oxide nanoparticles were encapsulated and a surface functionalization with (3-aminopropyl)triethoxysilane was accomplished. The adsorption of glyphosate on Fe-NH2-SBA-15 was investigated as a function of (i) pH, (ii) ionic strength (I), and (iii) adsorbate to adsorbent ratio (C), using a two-level, three-factor experimental design. The experimental design allowed for understanding the effect of the abovementioned variables and for proposing experimental conditions for quantitative removal (pH = 2.1, I = 1⋅10(-2) M and C = 0.35) under both batch and dynamic conditions. Interaction mechanism between glyphosate and Fe-NH2-SBA-15 sorbent was elucidated by studying the adsorption behavior of sorbents derived from the intermediate stages of synthesis and by desorption tests. Fe-NH2-SBA-15 sorbent can be quantitatively regenerated by 12.5 mM NaOH, and can be reused at least for five adsorption/desorption cycles. Quantitative removal of glyphosate from inlet and effluent wastewaters from a wastewater treatment plant is shown.

  9. 介孔SBA-15负载磷钨酸催化四氢呋喃聚合的研究%Study on THF Polymerization Catalyzed by Phosphotungstic Heteropolyacid on Mesoporous Silica SBA-15 Support

    Institute of Scientific and Technical Information of China (English)

    邓杭军; 邓佳; 陈纪忠

    2014-01-01

    SBA-15为载体负载磷钨酸(HPW),用于催化四氢呋喃(THF)开环聚合,采用在线反应红外分析仪(ReactIR)测定THF转化率,实验考察了HPW负载质量百分比、3-氨丙基三乙氧基硅烷(APTES)/SBA-15质量比和载体SBA-15孔径等因素对催化剂的催化性能和THF转化率的影响。结果表明:采用直接浸渍法负载HPW,HPW最优负载质量百分比为40%;将SBA-15进行氨基改性后负载HPW,最优APTES/SBA-15质量比为mAPTES/mSBA-15=0.0712,且通过氨基改性可有效改善催化剂的重复利用性能;当载体 SBA-15的比表面积较大时(853 m2⋅g-1)或孔径较大(比表面积较小498~585 m2⋅g-1)时,所制备的催化剂具有较高的催化效率、聚合产物平均分子量较大,催化剂的催化效率和聚合产物分子量随着孔径增大而增大。%A catalyst synthesized by loading phosphotungstic heteropolyacid on mesoporous silica material SBA-15 support was used in ring-opening polymerization of tetrahydrofuran (THF). The polymerization of THF was monitored in real-time by ReactIR. The effects of mass fraction of HPW, the mass ratio of 3-aminopropyl-triethoxysilane (APTES) to SBA-15, and the pore diameter of SBA-15 on catalytic performance and the conversion of THF were investigated. It was found that the supported catalyst HPW/SBA-15 prepared by impregnation with 40% mass fraction of HPW exhibits the highest activity. The amino-functionalized SBA-15 can effectively improve the catalytic performance of catalyst HPW/NH2-SBA-15 for repeated use in THF polymerization. And the catalyst HPW/NH2-SBA-15 has the highest activity when the mass ratio of mAPTES/mSBA-15=0.0712. It shows good catalytic performance. Its PTHF product has higher molecular weight when SBA-15 has larger specific surface area or larger pore sizes (specific surface area=498~585 m2⋅g-1). Also, the catalytic performance of catalysts and the molecular weight of PTHF product increase with the pore size of

  10. SBA-15 Mesoporous Silica Modified with Gallic Acid and Evaluation of Its Cytotoxic Activity.

    Science.gov (United States)

    Lewandowski, Dawid; Ruszkowski, Piotr; Pińska, Anita; Schroeder, Grzegorz; Kurczewska, Joanna

    2015-01-01

    Gallic acid has been covalently conjugated to SBA-15 mesoporous silica surface through different linkers. Cytotoxic activity of the hybrid organic-inorganic systems against HeLa and KB cell lines has been analyzed. Up to 67% of HeLa or KB tumor cells growth inhibition has been achieved at low silica concentration used (10 μg mL(-1)).

  11. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Appell, Michael, E-mail: michael.appell@ars.usda.gov [Bacterial Foodborne Pathogens and Mycology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States); Jackson, Michael A.; Dombrink-Kurtzman, Mary Ann [Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States)

    2011-03-15

    Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m{sup 2} g{sup -1}. Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 deg, C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice.

  12. Structure evolution of mesoporous silica SBA-15 and MCM-41 under swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Y.; Toquer, G.; Dourdain, S.; Rey, C. [ICSM-UMR 5257, CEA/CNRS/UM2/ENSCM Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze (France); Grygiel, C. [CIMAP GANIL, Bd. Henri Becquerel, BP 5133, F-14070 Caen CEDEX 5 (France); Simeone, D. [CEA, DEN, LRC CARMEN, CEA Saclay, F-91191 Gif/Yvette (France); Deschanels, X., E-mail: xavier.deschanels@cea.fr [ICSM-UMR 5257, CEA/CNRS/UM2/ENSCM Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze (France)

    2015-12-15

    Two types of mesoporous silica pellets, SBA-15 and MCM-41, were prepared and irradiated by {sup 20}Ne 278 MeV (max. fluence = 2.5 × 10{sup 14} ion/cm{sup 2}) and {sup 36}Ar 493 MeV beams (max. fluence = 1 × 10{sup 13} ion/cm{sup 2}). Irradiated and non-irradiated samples were characterized by nitrogen adsorption/desorption analysis, small angle X-ray scattering, and infrared spectrometry. The different behaviours of the two materials under different conditions are observed and discussed. We point out that SBA-15 is more robust than MCM-41 under irradiation.

  13. Structure evolution of mesoporous silica SBA-15 and MCM-41 under swift heavy ion irradiation

    Science.gov (United States)

    Lou, Y.; Toquer, G.; Dourdain, S.; Rey, C.; Grygiel, C.; Simeone, D.; Deschanels, X.

    2015-12-01

    Two types of mesoporous silica pellets, SBA-15 and MCM-41, were prepared and irradiated by 20Ne 278 MeV (max. fluence = 2.5 × 1014 ion/cm2) and 36Ar 493 MeV beams (max. fluence = 1 × 1013 ion/cm2). Irradiated and non-irradiated samples were characterized by nitrogen adsorption/desorption analysis, small angle X-ray scattering, and infrared spectrometry. The different behaviours of the two materials under different conditions are observed and discussed. We point out that SBA-15 is more robust than MCM-41 under irradiation.

  14. 氨基功能化SBA-15的制备及对三价铬吸附性能的研究%Preparation of Amino-functionalized SBA-15 and Its Adsorption Property to Cr^3+

    Institute of Scientific and Technical Information of China (English)

    田志茗; 李乐园; 隋朝

    2012-01-01

    Amino-functionalized mesoporous material SBA-15 (NH2-SBA 15) was prepared by a post-grafting method using 3-aminopropyltrimethoxy-silane (APTMS). The NH2-SBA-15 was characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N2 adsorption/desorption isotherms. It was proved that ATPMS was grafted on SBA-15, and NHe-SBA-15 remained to keep the hexagonal, mesoporous structure. Adsorption property of NH2-SBA-15 to Cr^3+ ion was studied. It was found that in an aqueous medium of pH 4. 5 containing 140 mg·L^-1 Cr^3+ ion, the NH2-SBA-15 behaved to adsorb strongly and equilibrium of adsorption was achieved after 6h at the temperature of 60 ℃, and the adsorptive capacity of Cr^3+ ion at equilibrium was 15.59 mg ·L^-1.%以3-氨丙基三乙氧基硅烷(APTMS)为功能化试剂,用后嫁接法对介孔分子筛SBA-15进行化学改性,制备氨基功能化NH2-SBA-15。采用X射线衍射、红外光谱、透射电子显微镜、扫描电子显微镜、N2吸附-脱附等手段对NH2-SBA-15进行了表征。结果表明:ATPES成功地嫁接到介孔材料SBA-15上,NH2-SBA-15仍保持了SBA-15六方介孔结构。将此材料作为Cr抖的有效吸附剂进一步研究NH2-SBA-15的吸附性能,结果表明:介质PH值为4.5、温度为60℃、Cr^3+溶液质量浓度为140mg·L^-1、吸附时间为6h时,吸附剂的吸附量达15.59mg·L^-1。

  15. Highly Efficient Near-IR Photoluminescence of Er3+ Immobilized in Mesoporous SBA-15

    Directory of Open Access Journals (Sweden)

    Wu P

    2010-01-01

    Full Text Available Abstract SiO2 mesoporous molecular sieve SBA-15 with the incorporation of erbium ions is studied as a novel type of nanoscopic composite photoluminescent material in this paper. To enhance the photoluminescence efficiency, two schemes have been used for the incorporation of Er3+ where (1 Er3+ is ligated with bis-(perfluoromethylsulfonyl-aminate (PMS forming Er(PMSx-SBA-15 and (2 Yb3+ is codoped with Er3+ forming Yb-Er-SBA-15. As high as 11.17 × 10−21cm2 of fluorescent cross section at 1534 nm and 88 nm of “effective bandwidth” have been gained. It is a 29.3% boost in fluorescent cross section compared to what has been obtained in conventional silica. The upconversion coefficient in Yb-Er-SBA-15 is relatively small compared to that in other ordinary glass hosts. The increased fluorescent cross section and lowered upconversion coefficient could benefit for the high-gain optical amplifier. Finally, the Judd–Ofelt theory has also been used for the analyses of the optical spectra of Er(PMSx-SBA-15.

  16. Enhanced dissolution and stability of artemisinin by nano-confinement in ordered mesoporous SBA-15 particles.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Tan, Reginald B H

    2015-01-01

    Dissolution of poorly water-soluble drug, Artemisinin (ART), was enhanced by encapsulating the drug particles inside pore channels of ordered mesoporous silica, SBA-15, via co-spray drying. The drug release profiles of ART were investigated by using flow-through cell (USP IV) and in vitro dissolution tester (USP II). The co-spray-dried ART/SBA-15 samples demonstrated significantly improved dissolution rates and supersaturation compared to the untreated ART. The low cytotoxicity effect of ART and SBA-15 on Caco-2 cells after 24 h incubation demonstrated the biocompatibility of ART/SBA-15. Finally, the storage stability of the samples was investigated for 6 months under five different storage conditions. Overall, the solid dispersions exhibited excellent physical stability; however, their chemical stability was affected by humidity regardless of storage temperatures. The formulation of solid dispersions of ART/SBA-15 is potentially safe and an effective approach to enhance the solubility of poorly water-soluble ART.

  17. Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme.

    Science.gov (United States)

    Lynch, Michele M; Liu, Jichuan; Nigra, Michael; Coppens, Marc-Olivier

    2016-09-20

    While enzymes are valuable tools in many fields of biotechnology, they are fragile and must be protected against denaturing conditions such as unfavorable solution pH. Within living organisms, chaperonins help enzymes fold into their native shape and protect them from damage. Inspired by this natural solution, mesoporous silica SBA-15 with different pore diameters is synthesized as a support material for immobilizing and protecting enzymes. In separate experiments, the model enzymes myoglobin and lysozyme are physically adsorbed to SBA-15 and exposed to a range of buffered pH conditions. The immobilized enzymes' biocatalytic activities are quantified and compared to the activities of nonimmobilized enzymes in the same solution conditions. It has been observed that myoglobin immobilized on SBA-15 is protected from acidic denaturation from pH 3.6 to 5.1, exhibiting relative activity of up to 350%. Immobilized lysozyme is protected from unfavorable conditions from pH 6.6 to 7.6, with relative activity of up to 200%. These results indicate that the protective effects conferred to enzymes immobilized by physical adsorption to SBA-15 are driven by the enzymes' electrostatic attraction to the material's surface. The pore diameter of SBA-15 affects the quality of protection given to immobilized enzymes, but the contribution of this effect at different pH values remains unclear.

  18. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release

    Science.gov (United States)

    Szegedi, A.; Popova, M.; Goshev, I.; Mihály, J.

    2011-05-01

    MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N 2 physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choice of mesoporous material with the appropriate structural characteristics and surface functionality.

  19. Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15

    Directory of Open Access Journals (Sweden)

    Nariman F. Salakhutdinov

    2013-05-01

    Full Text Available Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce–Si–MCM-41, 16 wt % Ce–H–MCM-41 and 20 wt % Ce–Si–SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were performed using scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and FTIR pyridine adsorption. Selective preparation of trans-carveol was carried out in the liquid phase in a batch reactor. The activity and the selectivity of catalyst were observed to be influenced by their acidity, basicity and morphology of the mesoporous materials. The formation of trans-carveol is moreover strongly influenced by the basicity of the used solvent and in order to achieve high yields of this desired alcohol it is necessary to use polar basic solvent.

  20. High Density Gold Nanoparticles Within Three-Dimensionally Mesoporous SBA-15: Adsorption Behavior and Optical Properties.

    Science.gov (United States)

    Wang, Xiaojuan; Yan, Xiaoqing; Li, Renhong; Xiao, Liping; Ma, Guicen; Dai, Yihu; Fan, Jie

    2015-09-01

    Unprecedentedly high-density (up to 79 wt%) immobilization of monodispersed gold nanoparticles (AuNPs) within mesoporous silica SBA-15 is achieved by variation of their pore size and pore-pore connectivity to enable a full access of AuNPs to the large and high-affinity internal surface of mesoporous silica (MPS) SBA-15. In addition, according to the adsorption kinetics, dipole-induced dipole interaction is suggested to be the primary driving force for adsorption of AuNPs on silica. Interestingly, the high internal surface of MPS shows much higher affinity to AuNPs than the external surface. The optical properties of these densely immobilized AuNPs are also investigated, demonstrating that a plasma coupling exists between closely spaced AuNPs.

  1. SBA-15 Mesoporous Silica Modified with Gallic Acid and Evaluation of Its Cytotoxic Activity.

    Directory of Open Access Journals (Sweden)

    Dawid Lewandowski

    Full Text Available Gallic acid has been covalently conjugated to SBA-15 mesoporous silica surface through different linkers. Cytotoxic activity of the hybrid organic-inorganic systems against HeLa and KB cell lines has been analyzed. Up to 67% of HeLa or KB tumor cells growth inhibition has been achieved at low silica concentration used (10 μg mL(-1.

  2. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    Directory of Open Access Journals (Sweden)

    Martin Hartmann

    2010-02-01

    Full Text Available Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3 aminopropyltrimethoxysilane (ATS, 3-glycidoxypropyltrimethoxysilane (GTS and with 3 aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO and glucose oxidase (GOx and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions.

  3. Surfactant-free nickel-silver core@shell nanoparticles in mesoporous SBA-15 for chemoselective hydrogenation of dimethyl oxalate.

    Science.gov (United States)

    Li, Molly Meng-Jung; Ye, Linmin; Zheng, Jianwei; Fang, Huihuang; Kroner, Anna; Yuan, Youzhu; Tsang, Shik Chi Edman

    2016-02-11

    Surfactant-free bimetallic Ni@Ag nanoparticles in mesoporous silica, SBA-15 prepared by simple wet co-impregnation catalyse hydrogenation of dimethyl oxalate to methyl glycolate or ethylene glycol in high yield.

  4. A novel Fe3+ ions chemosensor by covalent coupling fluorene onto the mono, di- and tri-ammonium functionalized nanoporous silica type SBA-15

    Science.gov (United States)

    Yadavi, Marzieh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2013-08-01

    Fluorene functionalized mesoporous silica (FM-SBA-15, FD-SBA-15 and FT-SBA-15) were prepared the post synthesis grafting method of SBA-15. The grafting of fluorene in nanochannels of SBA-15 was performed in two steps: (i) attachment of the 3-aminopropyltriethoxysilane, [1-(2-aminoethyl)-3-aminopropyl]trimethoxysilane and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane on SBA-15, then (ii) covalent linkage of fluorene. The obtained material was characterized by SAXS, N2 adsorption-desorption, FT-IR spectroscopy, Raman spectroscopy and thermogravimetric analysis that indicate the successful immobilization of fluorene on the surface of mesoporous silica. The sensing ability of FM-SBA-15, FD-SBA-15 and FT-SBA-15 was studied by addition of the cations Fe3+, Mg2+, Cr3+, Co2+, Ni2+ Cu2+, Hg2+ and Zn2+ to water suspensions of the assayed solid. Of all the cations tested addition of Fe3+ ion to a suspension of these materials resulted in the largest decrease in the fluorescence intensity but addition of Mg2+, Cr3+, Co2+, Ni2+, Cu2+, Hg2+ and Zn2+ did not quench the fluorescence of FM-SBA-15, FD-SBA-15 and FT-SBA-15. A good linearity between the fluorescence intensity of the prepared materials and the concentration of Fe3+ ion is constructed, which enables these materials as a fluorescence chemo sensor for detecting the Fe3+ ion with a suitable detection limit.

  5. Microwave Absorption Behavior of Mesoporous Transition Metal Oxide Templated from SBA-15 and KIT-6

    Science.gov (United States)

    Wu, Hongjing; Wang, Liuding; Wang, Yiming

    2014-12-01

    In this paper, we have synthesized meso-oxides (i.e., Co3O4 and NiO) by using mesoporous silica as hard template. The microstructures and chemical compositions of the corresponding meso-oxides were characterized by the Transmission electron microscope-selected area electron diffusion (TEM-SAED), X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), respectively. And, their electromagnetic and microwave absorption properties were investigated in the frequency range of 2-18 GHz. The results indicate that meso-oxide templated from KIT-6 (i.e., meso-K-Co/Ni) exhibit a dual absorption characteristic compared with those using SBA-15 as hard template. This phenomenon suggests that meso-oxides templated from SBA-15 and KIT-6 can exhibit different microwave absorption behaviors due to their respective microstructures.

  6. Development of efficient amine-modified mesoporous silica SBA-15 for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyun; Qin, Hongyan; Zheng, Xiuxin; Wu, Wei, E-mail: wuweiupc@upc.edu.cn

    2013-10-15

    Graphical abstract: - Highlights: • A secondary amine AN-TEPA is used to modify the SBA-15. • CO{sub 2} adsorption capacity (180.1 mg g{sup −1}-adsorbent for 70% amine loading) is high. • The sorbent exhibits a high stability after 12 cycling runs. • The modified SBA-15 achieves complete desorption at low temperature (100 °C). - Abstract: A novel CO{sub 2} sorbent was prepared by impregnating mesoporous silica, SBA-15, with acrylonitrile (AN)-modified tetraethylenepentamine (TEPA) in order to increase CO{sub 2} adsorption capacity and improve cycling stability. The mesoporous silica with pre- and post-surface modification was investigated by X-ray diffraction characterization (XRD), N{sub 2} adsorption–desorption test (N{sub 2}-BET), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The adsorption/desorption performance of S-TN (TN: AN modified TEPA) and S-TEPA was studied by dynamic adsorption. Test results showed that the solid base-impregnated SBA-15 demonstrated high CO{sub 2} adsorption capacity (180.1 mg g{sup −1}-adsorbent for 70% amine loading level). Compared to S-TEPA (24.1% decrease of initial capacity), S-TN with 50% amine loading exhibited improved cycling stability, 99.9% activity reserved (from initial 153.0 mg g{sup −1} to 151.3 mg g{sup −1}) after 12 cycles of adsorption/desorption at 100 °C. A mechanism of molecular structure of the loaded amine was attributed to the improved performance.

  7. Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Directory of Open Access Journals (Sweden)

    Wang Xiaoyu

    2010-01-01

    Full Text Available Abstract An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15 was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyltriethoxysilane (APTES groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science.

  8. Growth and physico-chemical properties of interconnected carbon nanotubes in FeSBA-15 mesoporous molecular sieves

    Directory of Open Access Journals (Sweden)

    Ulka Suryavanshi

    2016-03-01

    Full Text Available Carbon nanotubes (CNTs with well-defined hollow interiors, and different morphologies have been grown inside the nanochannels of iron substituted SBA-15 (Santa Barbara Amorphous with different iron contents and well-ordered large mesopores by chemical vapour deposition method. This novel method requires only 3 min for the formation of high quality multiwalled CNTs inside the SBA-15. The physico-chemical characteristics of the prepared CNT/Fe-SBA-15 nanocomposite have been analysed with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy and thermogravimetric analysis (TGA. XRD, Raman spectroscopy and TGA results confirm that the formed CNTs in SBA-15 nanochannels are highly pure and graphitic in nature, which can be altered by tuning the Fe content in the support matrix. SEM images show the interconnected network of SBA-15/CNT where CNT bridges the neighbouring SBA-15 nanoparticles. Interestingly, spring like CNTs and multi-terminal junctions such as Y and H junctions were also observed. The morphology of the CNTs inside the nanochannels of the SBA-15 support can also be controlled by the simple adjustment of the iron content in the SBA-15 framework. It has also been found that the content of Fe in the silica framework of SBA-15 plays a significant role in the formation of the CNTs and the amount of deposited CNTs in the nanochannels of SBA-15 increased with increasing the concentration of iron in framework. Among the materials studied, the FeSBA-15 with the nSi/nFe ratio of 2 showed the highest catalytic activity towards the formation of high quality CNTs.

  9. Eu3+/Sm3+ hybrids based with 8-hydroxybenz[de]anthracen-7-one organically modified mesoporous silica SBA-15/16

    Science.gov (United States)

    Gu, Yan-Jing; Yan, Bing

    2015-12-01

    A series of organic-inorganic hybrid materials were prepared by linking lanthanide (Eu3+, Sm3+) complexes to mesoporous SBA-15/SBA-16 through 8-hydroxybenz[de]anthracen-7-one modified silane (HBA-Si) as linker. The physical characterizations of these hybrids revealed that they all have high surface area, uniformity in mesostructure. The luminescence properties of these covalently bonded materials (denoted as Ln(HBA-SBA-15)3phen and Ln(HBA-SBA-16)3phen) were compared with ternary complexes (Ln(HBA)3phen) (Ln = Eu, Sm). Eu(HBA-SBA-15(16))3phen hybrids display better thermal stability, whose luminescent lifetimes and quantum efficiencies were matchable with those of Eu(HBA)3phen complex in spite of its much lower effective condensation of Eu3+ species. In addition, the luminescent performance of functionalized SBA-15 hybrids was more favorable than that of functionalized SBA-16 hybrids, revealing that SBA-15 was a better host material for lanthanide complex than mesoporous silica SBA-16.

  10. Silver Nanoparticles Confined in SBA-15 Mesoporous Silica and the Application as a Sensor for Detecting Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Dong-Hai Lin

    2008-01-01

    Full Text Available Silver nanoparticles within the pore channels of selectively grafted mesoporous silica SBA-15 were synthesized. Silanols on the external surface of as-SBA-15 were first capped by –Si(CH33 groups. After removal of the template of capped SBA-15 by calcination, silanols on the internal surface of SBA-15 were modified by 3-aminopropyltrimethoxysilane (APTMS, and then formaldehyde was grafted by amino groups of APTMS, and further Ag(NH32NO3SBA-15. High-resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FTIR, nitrogen adsorption/desorption isotherms, and UV-vis spectra confirm that the silver nanoparticles have been confined inside the channels of SBA-15. In addition, the Ag-mSBA-15 modified electrode (Ag-mSBA-15/GC exhibited an excellent electrocatalytic activity toward the reduction of hydrogen peroxide (H2O2. The proposed H2O2 sensor exhibits a linear range of 48.5 μM–0.97 M with a detection limit of 12 μM (S/N=3 and analytical time of 10 seconds per sample.

  11. Immobilization of Zidovudine Derivatives on the SBA-15 Mesoporous Silica and Evaluation of Their Cytotoxic Activity.

    Science.gov (United States)

    Lewandowski, Dawid; Lewandowska, Marta; Ruszkowski, Piotr; Pińska, Anita; Schroeder, Grzegorz

    2015-01-01

    Novel zidovudine derivatives, able to be covalently conjugated to silica surface, have been obtained and grafted to SBA-15 mesoporous silica. Cytotoxic activity of the hybrid organic-inorganic (zidovudine derivatives-silica) systems against HeLa and KB cell lines has been analyzed. Addition of folic acid had a positive influence on the cytotoxicity. Up to 69% of HeLa and 65% of KB tumor cells growth inhibition has been achieved at low silica concentration used (10 μg/mL).

  12. Mesoporous zeolite SBA-15 supported nickel diimine catalysts for ethylene polymerization

    Institute of Scientific and Technical Information of China (English)

    GUO Chao; ZHANG Dao; JIN Guoxin

    2004-01-01

    The novel mesoporous zeolite SBA-15 is successfully used as the support to immobilize late-transition metal nickel diimine catalyst, both in physical and chemical methods, EA, ICP, FT-IR and XRD are applied to characterizing these supported catalysts. The results of ethylene polymerization reveal that these supported catalysts have high catalytic activity as their homogenous counterpart does, moreover, polyethylene with a fibrous morphology is produced due to the channel effect of support, and both the molecular weight and molecular weight distributions of polymers are increased greatly.

  13. Functionalized SBA-15 supported nickel (II)-oxime-imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    Science.gov (United States)

    Paul, Luna; Banerjee, Biplab; Bhaumik, Asim; Ali, Mahammad

    2016-05-01

    A new oxime-imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH2-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO4)2 to yield the functionalized nickel catalyst SBA-15-NH2-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH2-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant.

  14. Al-SBA-15 mesoporous zeolite for adsorption and removal of nitrogen compounds%Al-SBA-15介孔分子筛及其吸附脱氮研究

    Institute of Scientific and Technical Information of China (English)

    徐晓宇; 沈健

    2014-01-01

    采用嫁接法制备了Al-SBA-15介孔分子筛,并对硅铝比、焙烧温度等影响产物的制备因素进行了考察。通过XRD,BET,FT-IR,NH3-TPD等分析手段对所得样品进行了分析。将所得产物Al-SBA-15SBA-15在相同条件下进行了吸附脱除碱性氮化物对比实验。结果表明:Al-SBA-15保留了SBA-15高度有序的二维六方介孔结构。 Al-SBA-15具有比SBA-15更好的吸附脱氮能力,在焙烧温度550℃、硅铝比(原子比)为50的条件下,Al-SBA-15(50)介孔分子筛最高脱氮率为68.02%,此时饱和吸附量为30.6 mg/g。%Al-SBA-15 mesoporous zeolite was synthesized by grafting , and the factors that affect the product were investigated, such as ratio of silica to alumina , calcination temperature, etc.The Al-SBA-15 mesoporous zeolite was characterized by XRD , BET, FT-IR, NH3-TPD.The comparative experiments on adsorptive removal of basic nitrogen compound were performed with the obtained product Al-SBA-15 and SBA-15 under the same conditions . The results show that Al-SBA-15 retains the SBA-15 highly-ordered two-dimensional hexagonal mesostructure .Al-SBA-15 has the better nitrogen adsorption capacity than SBA-15 .When calcination temperature is 550 ℃and the atomic ratio of silica to alumina is 50,the denitrification rate of Al-SBA-15 can reach the highest 68.02%,with the adsorption capacity of 30 .6 mg/g.

  15. Layer by layer growth of silver chloride nanoparticle within the pore channels of SBA-15/SO3H mesoporous silica (AgClNP/SBA-15/SO3K): Synthesis, characterization and antibacterial properties

    Science.gov (United States)

    Rostamnia, Sadegh; Doustkhah, Esmail; Estakhri, Saba; Karimi, Ziba

    2016-02-01

    The growth of silver chloride nanoparticles within the pore channels of functionalized SBA-15 mesoporous was achieved by sequential dipping steps in alternating bath of potassium chloride and silver nitrate under ultrasound irradiation at pH=9. The effects of sequential dipping steps in growth of the AgCl nanoparticles have been studied. The growth and formation of AgCl nanoparticles inside the sulfonated SBA-15 were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antibacterial activity of the synthesized materials was investigated against Escherichia coli (E.coli) using the conventional diffusion-disc method. The materials showed high antibacterial activity.

  16. Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior

    Science.gov (United States)

    Araújo, M. M.; Silva, L. K. R.; Sczancoski, J. C.; Orlandi, M. O.; Longo, E.; Santos, A. G. D.; Sá, J. L. S.; Santos, R. S.; Luz, G. E.; Cavalcante, L. S.

    2016-12-01

    In this paper, a new synthesis method was proposed to obtain anatase titanium oxide (TiO2) nanocrystals anchored into SBA-15 molecular sieve, as a matrix assigned by the in-situ anchoring (ISA) method. Pure SBA-15 and modified with TiO2 nanocrystals at different Si/Ti molar ratios (R = 75, 50, and 25) were structurally characterized by X-ray diffraction (XRD), Micro-Raman and Fourier Transform infrared (FTIR) spectroscopies. Specific surface area, pore volume and average pore diameter were estimated using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. Morphological aspects of these samples were observed by means of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Optical properties were investigated by ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. XRD patterns, Micro-Raman and FT-IR spectra indicate the TiO2 nanocrystals crystallized in a tetragonal structure anchored into the SBA-15 mesopores. BET and BJH methods prove a large amount of TiO2 nanocrystals were anchored inside of SBA-15 mesopores due to increase in surface area and average pore size of SBA-15 matrix. FE-SEM and TEM images showed the pure SBA-15 has an elongated hexagon-shaped microstructure, and an average size of 7.34 nm for 2D hexagonal mesopores. Moreover, ISA method was able to avoid blocking of mesopores, in addition promotes a significant increasing the impregnation rate of anatase TiO2 nanocrystals in SBA-15 matrix. A growth mechanism was proposed in order to explain the stages involved in the formation of TiO2-SBA mesoporous. UV-vis spectra revealed a dependence of the optical band gap energy (Egap) with the decreasing of Si/Ti molar ratios.

  17. Synthesis of Poly(methacrylic acid)-functionalized SBA-15 and its Adsorption of Phenol in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Vien; Kim, Heejun; Kim, Hayeong; Kim, Youngmee; Kim, Sung Jin [Ewha Womans Univ., Seoul (Korea, Republic of)

    2013-12-15

    Poly(methacrylic acid)-functionalized SBA-15 silicas (denoted as P-x-PMA/SBA-15 where x is molar ratio of TSPM/(TEOS+TSPM) in percentage in the initial mixture) were synthesized by co-condensation of tetraethoxysilane and varying contents of 3-(trimethoxysilyl)propyl methacrylate in acidic medium with the block copolymer Pluronic 123 as a structure directing agent and then polymerization by methacrylic acid in the presence of ammonium persulfate as an initiator. The functionalized materials were characterized by PXRD, TEM, SEM, IR, and N{sub 2} adsorption-desorption at 77 K. The investigation of phenol adsorption in aqueous solution on the materials showed that the poly(methacrylic acid)-functionalized mesoporous silicas possess strong adsorption ability for phenol with interaction of various kinds of hydrogen bonds. The adsorption data were fitted to Langmuir isotherms and the maximum adsorption capacity of the three functionalized materials P-5-PMA/SBA-15, P-10-PMA/SBA-15, and P-15-PMA/SBA-15 to be 129.37 mg/g, 187.97 mg/g, and 78.43 mg/g, respectively, were obtained. The effect of the pH on phenol adsorption was studied.

  18. Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15.

    Science.gov (United States)

    Huang, Jin; Ye, Meng; Qu, Yuqi; Chu, Lianfeng; Chen, Rui; He, Qizhuang; Xu, Dongfang

    2012-11-01

    An organic-inorganic hybrid mesoporous silica material was synthesized by two-step post-grafting method of SBA-15 with 3-aminopropyltrimethoxy-silane (APTES) and thionyl dichloride (SOCl(2)) activated ethylenediaminetetraacetic acid (EDTA) in sequence and measured by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), elemental analysis (EA), transmission electron microscopy (TEM), nitrogen (N(2)) adsorption-desorption analysis and back titration. The material was found having the beneficial properties of mesoporous silica SBA-15 and EDTA. Adsorption potential of the material for Pb (II) removal from aqueous solution was investigated by varying experimental conditions such as pH, contact time and initial metal concentration. The removal efficiency of Pb(2+) was high under studied experimental conditions. The adsorption equilibrium could be reached within 20 min and the kinetic data were fitted well by pseudo-second-order and intraparticle diffusion model. The adsorbent exhibited a favorable performance and its maximum adsorption capacity calculated by the Langmuir model was 273.2 mg g(-1). Recycling experiments showed the adsorbent could be regenerated by acid treatment without altering its properties. The chemical states of the elements involved in the adsorption were analyzed by X-ray photoelectron spectroscopy (XPS). The results demonstrated that the adsorption mechanism of the material involved Na Pb ion-exchange and carboxyl group dominated surface complexation.

  19. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  20. Synthesis and structural characterization of ZnO and CuO nanoparticles supported mesoporous silica SBA-15

    Science.gov (United States)

    El-Nahhal, Issa M.; Salem, Jamil K.; Selmane, Mohamed; Kodeh, Fawzi S.; Ebtihan, Heba A.

    2017-01-01

    Zinc oxide (ZnO) and copper oxide (CuO) nanoparticles were loaded into mesoporous silica SBA-15 by post-synthesis and direct methods. The structural properties were characterized using wide and small angle X-ray diffraction (WXRD & SXRD), X-ray photoelectron spectroscopy (XPS) and N2-adsorption desorption (BET). The WXRD showed that, the loaded zinc and copper oxides were present in crystalline forms (impregnation). The mesoporosity properties of SBA-15 silica were well maintained even after the introduction of metal oxide nanoparticles. BET analysis indicate that the impregnated and condensed ZnO and CuO supported SBA-15 nanocomposites have a lower surface area than that of its parent SBA-15.

  1. Fe{sub 3}O{sub 4}@mesoporous SBA-15: A magnetically recoverable catalyst for photodegradation of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Aliyan, Hamid, E-mail: aliyan@iaush.ac.ir; Fazaeli, Razieh; Jalilian, Rahil

    2013-07-01

    Surface of mesostructured silica (SBA-15) was modified by immobilizing Fe{sub 3}O{sub 4}. This modified-nanosized mesoporous silica Fe{sub 3}O{sub 4}@SBA-15 was characterized by FTIR, XRD, BET and SEM. A comparison of the photoefficiency of Fe{sub 3}O{sub 4}@SBA-15 toward photodegradation of malachite green (MG) was investigated in a photocatalytic reactor using UV lamp as a light source. The effect of various experimental parameters on the degradation performance of the process was evaluated by examining catalyst dosage, initial dye concentration and pH of the dye solution in the presence of Fe{sub 3}O{sub 4}@SBA-15 as photocatalyst. It was found that the photocatalyst exhibited significantly high catalytic stability, and the activity loss is negligible after five MG degradation cycles.

  2. Preparation of mesoporous silica films SBA-15 over different substrates; Preparacao de filmes de silica mesoporosa SBA-15 sobre diferentes substratos

    Energy Technology Data Exchange (ETDEWEB)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A., E-mail: vitorcampos@ufmg.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Nanotecnologia

    2010-07-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  3. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study

    Science.gov (United States)

    Dai, Peng; Yan, Tao-tao; Yu, Xin-xin; Bai, Zhi-man; Wu, Ming-zai

    2016-04-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  4. Selective catalytic oxidation of cyclohexane over Cu/SBA-15 mesoporous catalyst%环己烷在Cu/SBA-15介孔催化剂上的选择性催化氧化

    Institute of Scientific and Technical Information of China (English)

    吕平; 孙尚屹; 包瑞新

    2013-01-01

    采用后嫁接法制备出了负载量为12%的Cu/SBA-15催化剂,借助N2吸附脱附、X射线衍射、透射扫描电子显微镜等分析检测方法表征了Cu/SBA-15催化剂的理化性质.在无任何有机溶剂及其他助剂的条件下,以空气为氧化剂使环己烷发生选择性氧化反应,评价了Cu/SBA-15催化剂的催化性能.结果表明,与SBA-15相比,Cu/SBA-15的比表面积、孔容等物理性能有所下降,能够很好地保持着SBA-15的介孔结构及长程有序性;SBA-15对环己烷的选择性氧化反应没有催化活性,Cu/SBA-15对环己烷的选择性氧化反应具有较强催化活性;使用Cu/SBA-15催化剂,环己烷转化率为41.72%,环己醇产率为14.12%,环己酮产率为27.6%.%Cu/SBA-15 (mass fraction of Cu 12%) supported catalyst was prepared by post-synthesis process and characterized by N2 adsorptiondesorption,X-ray diffraction and high resolution transmission electron microscopy.The behavior of the catalyst was evaluated through the selective catalytic oxidation of cyclohexane with air as oxidant in the absence of organic solvent and auxiliary agent.The results showed that Cu/SBA-15 maintained similar mesoporous structure and long-range order to SBA-15 and had lower specific surface area and pore volume compared to SBA-15.Cu/SBA-15 had higher catalytic activity and selectivity in the oxidation reaction of cyclohexane,but SBA-15 had no activity for the same reaction.In the presence of Cu/SBA-15,the conversion of cyclohexane was 41.72%,the yield of cyclohexanol was 14.12% and cyclohexanone 27.6%.

  5. Immobilization of Porcine pancreas lipase on fiber-like SBA-15 mesoporous material

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanjing [School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353 (China); Zhou Guowei [School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353 (China)], E-mail: guoweizhou@hotmail.com; Qiao Wenting; Wang Yanyan [School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353 (China)

    2009-05-25

    An immobilized enzyme had been prepared by incorporation of Porcine pancreas lipase (PPL, 4.6 nm x 2.6 nm x 1.1 nm) in the channels of fiber-like SBA-15 by virtue of the hydrogen bonding interactions between the abundant weakly acidic hydroxyl groups of the support and the lipase. The physical adsorptions of PPL on the fiber-like SBA-15 mesoporous material in buffer solution with different pH values (pH 5-10) and times (0-36 h) had been studied. A high lipase loading (926 mg enzyme per gram silica) can be obtained, but it disagreed with the high catalytic activity. The adsorbed maximum activities were observed at pH 6.0 and 3 h. The optimal pH of the hydrolysis of triacetin for the immobilized and free PPL was at 7.0. The immobilized PPL showed much more excellent adaptability of the hydrolysis of triacetin compared to free PPL during pH 6.0-9.0. Meanwhile, the thermal stability of the catalyst and its reusability were tested by performing subsequent reaction cycles of hydrolysis of triacetin. The activity of the immobilized PPL fell off rapidly to be 40% of its original activity after five successive batch reactions, because the weakly adsorbed PPL was leached out from the channels.

  6. K2O/SBA-15的制备及其催化性能研究%Preparation and catalytic performance of mesoporous sieve catalyst K2O/SBA-15

    Institute of Scientific and Technical Information of China (English)

    崔晓燕; 沈健

    2011-01-01

    When potassium which was loaded to mesoporous sieve SBA-15 was calcined, K2O/SBA-15 as the solid base catalyst was synthesized. The synthesis of N-butyl acrylate was the probe reaction. The active value of K2O/SBA-15 catalyst has been carried on the transesterification in the inter mittent reactor.The results showed K2O/SBA-15 catalyst had the best catalytic active when the loaded amount of K2O added to 2%%以介孔分子筛SBA-15为载体,负载KNO3后焙烧制得K2O/SBA-15固体碱催化剂,以合成丙烯酸正丁酯的酯交换反应为探针反应,在间歇式反应釜中对K2O/SBA-15催化剂进行催化活性评价.结果表明,当K2O负载量为2%,K2O/SBA-15催化剂对此酯交换反应的催化活性最高.

  7. Determination of Thallium(I by Hybrid Mesoporous Silica (SBA-15 Modified Electrode

    Directory of Open Access Journals (Sweden)

    Geeta Rani

    2016-01-01

    Full Text Available Chemically modified mesoporous silica material (SBA-15 was used for the construction of Tl(I selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM shows the high selectivity of electrode towards Tl(I over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.

  8. Two-dimensional crystals of mesoporous silica SBA-15 nanosheets with perpendicular and open channels

    Directory of Open Access Journals (Sweden)

    Yi-Qi Yeh

    2014-11-01

    Full Text Available A preparation of mesoporous silica SBA-15 thin sheets with perpendicular nanochannels (SBA(⊥ and open ends is reported here. At a synthesis condition of pH = 2 where the silica condensation is extremely slow, micron-sized single-crystal-like hexagonally faceted nanosheets (SBA(⊥-pH2 with aspect ratio of 10–50 were formed. The nanosheets can attach to each other in sideway to extend the thin sheet. At pH = 5, multi-domain SBA(⊥-pH5 nanosheets are formed, and stacking attachment of sheets is preferred. Vivid Moiré patterns are observed in large areas of stacked silica sheets, indicating excellent structure order.

  9. Influence of variously functionalized SBA-15 fillers on conductivity and electrochemical properties of PBI composite membranes for high temperature polymer fuel cells

    Science.gov (United States)

    Angioni, S.; Villa, D. C.; Cattaneo, A. S.; Mustarelli, P.; Quartarone, E.

    2015-10-01

    The use of inorganic fillers is an interesting strategy to improve the electrochemical performances of PBI membranes for application as electrolytes in HT-PEMFCs. Here, we prepared several mesoporous silica (SBA-15) based hybrids, functionalised with different moieties, namely acidic (SO3H-), basic (NH2-), and amphoteric (SO3H-NH2) units. The electrochemical properties of the resulting electrolytes were investigated in terms of proton transport and functional tests by varying the silica functionalization degree in the range 10-70 mol%, as well as the particles loading in the polymer (0-30 wt%). The actual effectiveness of the SBA-15 functionalization process in improving the electrolyte properties was compared with both the unfilled membrane and the one filled with pristine SBA-15. The best conductivity (∼90 mS cm-1 at 120 °C, 30%RH) was obtained with PBI composites loaded with 30 wt% of non-functionalized SBA-15. The use of fillers functionalized with acidic, basic of amphoteric groups did not lead to improvements with respect to pure SBA-15. This could be related to the set up of significant interactions between the functionalised fillers and H3PO4, which negatively influence the proton mobility. Encouraging MEA results (power peak >320 mW cm-2) were obtained in case of membranes based on pure SBA-15. These performances make the SBA-15/PBI composites particularly interesting for application in HT-PEMFCs.

  10. Quasi-Solid-State Dye-Sensitized Solar Cells based on Mesoporous Silica SBA-15 Framework Materials

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; CHENG Yun-Fei; LI Fu-You; ZHOU Zhi-Guo; YI Tao; HUANG Chun-Hui; JIA Neng-Qin

    2005-01-01

    @@ We develop a novel and efficient quasi-solid-state electrolyte based on the mesoporous silica SBA-15 as a framework material for a dye sensitized nanocrystalline TiO2 solar cell. A solar energy-to-electricity conversion efficiency of 4.34% is achieved under AM 1.5 illumination (100mW/cm2).

  11. Organic modification of mesoporous SBA-15 and its effect on mechanical properties of PMMA hybrid materials%介孔SBA-15有机化修饰对PMMA杂化材料力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    吴广力; 焦剑; 汪雷; 张胜平; 蒋志培

    2012-01-01

    采用硅烷偶联剂对SBA-15进行了有机化修饰(即:SBA-15-G),利用在位分散聚合法制备了SBA-15/PMMA和SBA- 15-G/PMMA杂化材料,研究了SBA-15SBA-15 G在PMMA基体中的介观有序性和分散性以及对杂化材料的力学性能的影响规律.结果表明,有机化修饰使SBA- 15孔容、孔径和比表面积减小,表面亲油性提高;SBA-15SBA-15-G在基体中仍保持长程有序结构;有机化修饰改善了SBA-15在基体中的分散性和与基体的界面结合,显著增强了杂化材料的力学性能.当SBA-15-G为4%时,杂化材料的拉伸强度和模量分别提高了45%和40.4%,当SBA-15-G为2%时冲击强度达到最大,比基体提高了36.6%.%Silane coupling agent was added onto the mesoporous interior surface of SBA-15 via post-synthesis grafting and SBA-15-G was obtained.The SBA-15/PMMA and SBA-I5-G/PMMA hybrid materials were prepared via in situ polymerization.The influences of silane coupling agent modification and content of SBA-15 on the mesoscopic orderliness,disperse properties and mechanical properties were investigated.The results revealed that SBA-15-G exhibited smaller pore volume,pore size and surface area,better lipophilicity,SBA-15 and SBA-15-G still maintained their long-range order in the matrix and the organic modification improved the dispersibility and the interface bonding to the matrix,so the mechanical propenies of the hybrid materials were enhanced.The nano-porous channels of SBA-15 and SBA-15-G were not destroyed in hybrid materials.Compared with the matrix.the tensile strength and elasticity modulus of the hybrid materials were increased by 45% and 40.4%,respectively,when the mass fraction of SBA-15-G was 4%;the impact strength was the highest (increasing by 36.6%) when SBA-15-G was 2%.

  12. Synthesis and characterization of MnWO4 nanoparticles encapsulated in mesoporous silica SBA-15 by fast microwave-assisted method

    Science.gov (United States)

    Hoang, Luc Huy; Hanh, Pham Van; Phu, Nguyen Dang; Chen, Xiang-Bai; Chou, Wu Ching

    2015-02-01

    The MnWO4 nanoparticles encapsulated in mesoporous silica (MnWO4/SBA-15) was successfully synthesized by a fast microwave-assisted method. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption-desorption isotherm, and Fourier transform infrared spectroscopy (FTIR). Our results showed that the MnWO4/SBA-15 nanocomposites have the ordered hexagonal meso-structure of SBA-15, indicating MnWO4 nanoparticles were successfully distributed into the channels of SBA-15. The size of MnWO4 nanoparticles in SBA-15 is significantly smaller than the size of MnWO4 nanoparticles prepared without SBA-15, indicating that the MnWO4/SBA15 nanocomposites would be very promising for improving photocatalytic activity of MnWO4 nanoparticles.

  13. Functionalized SBA-15 supported nickel (II)–oxime–imine catalysts for liquid phase oxidation of olefins under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Luna [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India); Banerjee, Biplab [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ali, Mahammad, E-mail: m_ali2062@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-05-15

    A new oxime–imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH{sub 2}-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO{sub 4}){sub 2} to yield the functionalized nickel catalyst SBA-15-NH{sub 2}-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH{sub 2}-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant. - Graphical abstract: A new well characterized oxime–imine functionalized highly ordered mesoporous SBA-15-NH{sub 2}-DAMO-Ni complex catalyzes the one-pot oxidation of olefins under solvent free mild conditions.

  14. Loading amorphous Asarone in mesoporous silica SBA-15 through supercritical carbon dioxide technology to enhance dissolution and bioavailability.

    Science.gov (United States)

    Zhang, Zhengzan; Quan, Guilan; Wu, Qiaoli; Zhou, Chan; Li, Feng; Bai, Xuequn; Li, Ge; Pan, Xin; Wu, Chuanbin

    2015-05-01

    The aim of this study was to load amorphous hydrophobic drug into ordered mesoporous silica (SBA-15) by supercritical carbon dioxide technology in order to improve the dissolution and bioavailability of the drug. Asarone was selected as a model drug due to its lipophilic character and poor bioavailability. In vitro dissolution and in vivo bioavailability of the obtained Asarone-SBA-15 were significantly improved as compared to the micronized crystalline drug. This study offers an effective, safe, and environmentally benign means of solving the problems relating to the solubility and bioavailability of hydrophobic molecules.

  15. Research Progress of Immobilization of Lipase on Molecular Sieve Mesoporous Silica SBA-15%介孔材料SBA-15固定化脂肪酶的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄卓楠

    2013-01-01

    Due to the merit of average pore diameter and ordered pore arrangement,more and more attention has been paid to the molecular sieve mesoporous silica SBA-15.The recent research progress of lipase immobilization on SBA-15 mesoporous materials are reviewed in this paper.The factors that influence the immobilization of lipase on mesoporous materials are investigated in detail.At last,the applications and the prospects of the immobilization of lipase on SBA-15 are also presented.%介孔材料由于其孔道分布有序且孔径均匀等优点而在固定化酶催化领域引起人们的广泛关注.本文综述了新型介孔材料SBA-15对脂肪酶固定化的研究进展.总结了SBA-15的孔径大小、形貌及等电点等因素对脂肪酶固定化的影响.归纳了SBA-15上三种不同固定化方法的优缺点,并介绍了SBA-15固定化脂肪酶在手性拆分、酯水解、酯合成及转醇化反应等领域的应用.最后提出SBA-15固定化脂肪酶在发展过程中存在的问题以及今后的发展趋势.

  16. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization.

    Science.gov (United States)

    Abd-Elrahman, Ahmed A; El Nabarawi, Mohamed A; Hassan, Doaa H; Taha, Amal A

    2016-11-01

    SBA-15 is used to enhance the bioavailability of poorly soluble ketoprofen (KP) through stabilization of its amorphous state. Additionally, the current work provides a complete in vitro and in vivo study on preformulated KP-SBA-15 sample and formulated KP-SBA-15 in hard gelatin capsule. Loading of KP was done by a novel method called immersion-rotavapor method. KP was quantified by extraction and thermal gravimetric analysis (TGA). Characterization of the loaded SBA-15 sample was done by high resolution transmission electron microscopy (HRTEM), small angle X-ray diffraction (SAXRD), nitrogen adsorption/desorption isotherms, differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and dissolution profiles. The loaded sample was formulated in hard gelatin capsule. The anti-inflammatory and analgesic studies were carried out on 24 adult male albino rats. TGA and extraction results showed 54.4 wt% of drug incorporated. Characterization of KP-SBA-15 sample confirmed the successful encapsulation of KP into the carrier pores in a molecular amorphous state. Additionally, loading of KP did not affect the mesoporous internal structure. During the first 5 min, the dissolution study showed very high release rates; nearly 50% of KP was released. These results were reflected on the in vivo study resulting in 82% inhibition in edema after 1 h and maximum analgesia after 30 min from the administration of the formulated sample. SBA-15 mesoporous silica nanoparticle proved to be a very promising drug delivery carrier that can be used as a facile way to enhance the bioavailability of poorly soluble drugs.

  17. Applications of Ordered Mesoporous Molecular Sieve SBA-15/MCM-41 in Electrochemical Catalysis%有序介孔分子筛SBA-15/MCM-41在电催化方面的应用

    Institute of Scientific and Technical Information of China (English)

    李洋; 邸婧; 郑华均

    2014-01-01

    The classification and development of mesoporous material were introduced in this paper. The applications of mesoporous molecular sieve SBA-15/MCM-41 in electrochemical catalysis were summa-rized in view of the present problems of electricity catalysis.%介绍了有序介孔材料的分类与发展,针对目前电催化领域存在的问题,综述了介孔分子筛SBA-15/MCM-41材料在电催化方面的应用。

  18. Amine-modified SBA-15 and MCF mesoporous molecular sieves as promising sorbents for natural antioxidant. Modeling of caffeic acid adsorption.

    Science.gov (United States)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2016-04-01

    This work presents a detailed study of caffeic acid adsorption on mesoporous SBA-15 and MCF silicas functionalized with (3-aminopropyl)triethoxysilane (APTES) and 3-[2-(aminoethylamino)propyl]trimethoxysilane (AEAPTMS). Synthesized mesoporous adsorbents were characterized using different analytical techniques such as N2 sorption, XRD, TEM, SEM and FT-IR. The adsorption studies of caffeic acid were conducted in various organic solvents. Moreover, the effect of water content in 2-propanol-water mixture on adsorption efficiency was investigated. The experimental data were best fitted to the Langmuir equation, followed by the Temkin, Dubinin-Radushkevich and Freundlich models. The maximum adsorption capacity values calculated from the Langmuir model demonstrated that SBA-15 and MCF silicas modified with AEAPTMS revealed better adsorption properties toward caffeic acid (192.3 and 161.3mg/g, respectively) as compared to the materials modified with APTES (125.0 and 113.6 mg/g, respectively). The obtained results indicate that both SBA-15 and MCF silicas functionalized with AEAPTMS and APTES are promising materials for the entrapment of caffeic acid.

  19. Synthesis of mesoporous NH2-SBA-15 by a simple and efficient strategy

    Science.gov (United States)

    You, Long; Yuan, Fang; Ma, Feng

    2015-12-01

    Amine modified SBA-15 (NH2-SBA-15) was synthesized by a simple and efficient strategy, that is, activation at first and followed by amination. The samples were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM), thermo gravimetric (TG) analysis, and nitrogen adsorption. Results show that the as-prepared NH2-SBA-15 possessed a large surface area, stable skeleton structure, and high amino contents. Moreover, the CO2 temperature programmed desorption (CO2-TPD) experiments of the as-prepared NH2-SBA-15 were studied, and the results show that the introduction of amino groups results in the increase of the basic sites of SBA-15, which is beneficial to the adsorption of CO2.

  20. Physical properties of ordered mesoporous SBA-15 silica as immunological adjuvant

    Science.gov (United States)

    Mariano-Neto, F.; Matos, J. R.; Cides da Silva, L. C.; Carvalho, L. V.; Scaramuzzi, K.; Sant'Anna, O. A.; Oliveira, C. P.; Fantini, M. C. A.

    2014-10-01

    This work reports a detailed analysis of the ordered mesoporous SBA-15 silica synthesis procedure that provides a matrix with mean pore diameter around 10 nm. The encapsulation of bovine serum albumin (BSA) by four different methods allowed the determination of the best imbibition condition, which is keeping the mixture under rest and solvent evaporation. Simulation of the in situ SAXS scattered intensity of the BSA release in potassium buffer solution, gastrointestinal fluids revealed a slow evolution of BSA content, independent of the media. Proton induced x-ray emission results obtained in calcined mouse organs revealed that silica is only present in the spleen after 35 days and is completely eliminated from all mouse organs after 10 weeks. Biological studies showed that Santa Barbara Amorphous-15 is an effective adjuvant when compared to the traditional Al(OH)3, and is non-toxic to mice, rats, dogs and even cells, such as macrophages and dendritic cells. Recent studies showed that the immunological response is improved by enhancing the inflammatory response and the recruitment of immune competent cells to the site of injection as by the oral route and, most importantly, by increasing the number of phagocytes of a particulate antigen by antigen presenting cells. This research is under the scope of the International Patent WO 07030901, IN248654,ZA2008/02277, KR 1089400, MX297263, JP5091863, CN101287491B.

  1. Dispersion of Active Au Nanoparticles on Mesoporous SBA-15 Materials%活性纳米金颗料在介孔分子筛SBA-15上的分散

    Institute of Scientific and Technical Information of China (English)

    周丽绘; 胡军; 谢颂海; 刘洪来

    2007-01-01

    Chemical modification (CM) and deposition-precipitation (DP) methods were used for the dispersion of active Au nanoparticles on mesoporous silica materials in this work. XRD, TEM, N2 adsorption isotherms and UV-Vis absorption spectra were used to characterize in detail Au-SBA-15 materials prepared by the two methods.The analysis results showed that high loading (1.7%, by mass) and uniform Au nanoparticles (approximately 3 nm)were dispersed in the channels of mesoporous SBA-15 by the CM method. While for the DP method, most of Au nanoparticles with the size of 10-15 nm were aggregated outside of the channels of SBA-15 and the actual loading of Au was only 0.38% (by mass).

  2. The applicability of ordered mesoporous SBA-15 and its hydrophobic glutaraldehyde-bridge derivative to improve ibuprofen-loading in releasing system.

    Science.gov (United States)

    Rehman, Fozia; Volpe, Pedro L O; Airoldi, Claudio

    2014-07-01

    The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.

  3. Improvement of the Enzyme Performance of Trypsin via Adsorption in Mesoporous Silica SBA-15: Hydrolysis of BAPNA

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2013-01-01

    Full Text Available The enzymatic performance of trypsin in hydrolysis of N-α-benzoyl-DL-arginine-4-nitroanilide (BAPNA was improved by adsorption on Santa Barbara Amorphous (SBA-15 mesoporous silica. The optimal immobilization conditions were screened and the properties of immobilized enzyme have also been studied. Under the optimal conditions, the immobilized trypsin displays maximum specific activity (49.8 μmol/min/g. The results also indicate that the immobilized trypsin exhibits better storage stability.

  4. 表面改性SBA-15材料固载猪胰脂肪酶%Adsorption and catalytic activity of porcine pancreatic iipase on surface modification SBA-15 mesoporous material

    Institute of Scientific and Technical Information of China (English)

    王伟; 朱凯; 杨波; 胡集成; 韩萍芳

    2012-01-01

    Media for enzyme immobilization were prepared by modifying mesoporous silica SBA-15 with γ-chloropropyl triethoxysilane ( CPTES) group. The prepared support was characterized with FT-IR and BET method and exhibited by high specific surface area and uniform pore size. Furthermore, unmodified SBA-15 and the modified SBA-C1 materials were used for porcine pancreas lipase immobilization. The results were compared with that of enzyme activity, activity retention and stability. The modified SBA-15 material with CPTES showed good performances for porcine pancreas lipase immobilization. Compared with unmodified SBA-15, the adsorption capacity of SBA-C1 to porcine pancreas lipase was improved more than 60%.%采用试剂γ-氯丙基三乙氧基硅烷(CPTES)对介孔硅材料SBA - 15进行表面改性,并通过红外图谱(FT-IR)和N2吸附脱附等温图(BET)对其进行表征.结果表明:改性前原材料的比表面积为460.9 m2/g,改性后材料比表面积提高到512.0 m2/g.利用改性前和改性后的SBA - 15对猪胰脂肪酶进行固载实验,并对实验结果进行比较,发现改性后的SBA - 15在脂肪酶活性、pH环境适应性、热耐受性和可操作性都优于改性前的SBA -15,在最优条件下的酶活力提高超过60%.

  5. Extrusion of Fe2O3/SBA-15 mesoporous material for application as heterogeneous Fenton-like catalyst

    Directory of Open Access Journals (Sweden)

    María Isabel Pariente

    2015-03-01

    Full Text Available The aim of this work has been the extrusion of powder Fe2O3/SBA-15 catalyst in order to be successfully used in continuous catalytic fixed bed reactors as Fenton-like catalyst. The extrusion method was optimised using an amorphous silica material of similar properties than the Fe2O3/SBA-15 catalyst. The main studied variable was the composition of the extrusion paste using bentonite and methylcellulose as inorganic and organic binders, respectively. The organic content displayed a significant influence on the mechanical strength and specific surface area of the final extrudates. In contrast, the inorganic binder content hardly affected the final properties (in the studied range. The extruded Fe2O3/SBA-15 material showed a remarkable mechanical strength as well as the typical mesoporous structure of Fe2O3/SBA-15 with a relevant specific surface area (264 m2/g. The extruded catalyst achieved a high catalytic performance in the catalytic wet peroxide oxidation of phenol with a 60 % of total organic carbon reduction in both batch and continuous processes.

  6. Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves%萘在介孔分子筛MCM-41与SBA-15上的吸附特性研究

    Institute of Scientific and Technical Information of China (English)

    杨权; 刘应书; 李子宜; 杨雄; 王占营; 姜理俊

    2015-01-01

    In this paper, the adsorption behaviours of naphthalene on two popular mesoporous molecular sieves, SBA-15 and MCM-41 were studied. The adsorption isotherms were obtained, and fitted with isotherm models of Langmuir, Freundlich and D-R. The breakthrough curves of naphthalene at different initial concentrations were measured, and well predicted by the constant-pattern wave model. Results show that the Langmuir model can well describe the adsorption isotherms of naphthalene at low concentration with R2 higher than 99%. The adsorption ability of SBA-15 with a microporous structure is stronger than that of MCM-41 which contains only mesoporous structures. The predictions on breakthrough curves by the constant-pattern model exhibited higher correlation coefficient for SBA-15 than for MCM-41. The overall mass transfer coefficient Ka of naphthalene on SBA-15 is higher than that on MCM-41 , indicating that there is a lower mass transfer resistance and the mass transfer equilibrium can be achieved faster over SBA-15 .%对低浓度气相萘在两种常见介孔分子筛MCM-41和SBA-15上的吸附特性进行研究. 得到了萘在两种吸附剂上的吸附等温线和不同初始浓度下的穿透曲线,并分别与吸附等温线模型( Langmuir、Freundlich、D-R)和恒定浓度波动力学模型进行了拟合. 结果表明, Langmuir模型能很好描述低浓度气相萘的吸附等温线( R2均在99%以上);具有微孔结构的SBA-15对萘的吸附能力要优于仅具备介孔结构的MCM-41. 动力学模型在初始浓度较低时能较好地预测萘在吸附剂上的穿透曲线,且在SBA-15上的相关系数高于MCM-41;萘在2. 76 mol/L时具有较大介孔的SBA-15的总传质系数Ka 更高,表明萘在SBA-15上的总传质阻力更低,更能较快达到传质平衡.

  7. Gold Supported on Aminosilane-Functionalized SBA-15 for Chemoselective Hydrogenation of Crotonaldehyde%金在氨基硅烷修饰SBA-15上的巴豆醛选择加氢性能

    Institute of Scientific and Technical Information of China (English)

    田莉; 周功兵; 李振华; 裴燕; 乔明华; 范康年

    2011-01-01

    采用三种氨基硅烷试剂(APTS:3-氨丙基三甲氧基硅烷,TPED:N-(2-氨乙基)-3-氨丙基三甲氧基硅烷,TPDT:3-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷)对介孔SBA-15分子筛进行后嫁接表面功能化(分别记为APTS-SBA-15,TPED-SBA-15和TPDT-SBA-15),然后利用氨基与氯金酸之间的静电作用及化学还原法,将金纳米粒子引入分子筛的介孔孔道.采用N2物理吸附、X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对催化剂的结构和电子性质进行了系统表征;以巴豆醛液相加氢制巴豆醇反应比较了氨基硅烷的种类对催化性能的影响.结果表明,氨基硅烷的给电子能力是决定金催化剂上C=O键加氢选择性的主要因素,氨基硅烷的给电子能力越强,金活性位上的电子密度越高,则巴豆醇的选择性和收率就越高.%Three kinds ofaminosilane (APTS: 3-aminopropyltrimethoxysilane, TPED: N-[3-(trimethoxysilyl)-propylethylene]diamine, TPDT: trimethoxysilyl propyl diethylenetriamine) functionalized mesoporous SBA-15 molecular sieves (denoted APTS-SBA-15, TPED-SBA-15 and TPDT-SBA-15) were synthesized by post-grafting. Using the static interaction between the amino group and chloroauric acid followed by chemical reduction, the gold nanoparticles were immobilized into the channels of SBA-15. The Au/aminosilane-SBA-15 catalysts were systematically characterized by N2 physisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The liquid phase hydrogenation of crotonaldehyde to crotyl alcohol (CROL) was used to investigate the effect of aminosilanes on the catalytic performance of the Au/amine-SBA-15 catalysts. The results revealed that the electron-donating ability of the aminosilane determines the selectivity towards the hydrogenation of the C= O bond on the gold catalyst. A stronger aminosilane electron-donating ability results in higher

  8. Aminobenzenesulfonamide functionalized SBA-15 nanoporous molecular sieve: A new and promising adsorbent for preconcentration of lead and copper ions

    Institute of Scientific and Technical Information of China (English)

    Leila Hajiaghababaei; Babak Ghasemi; Alireza Badiei; Hassan Goldooz; Mohammad Reza Ganjali; Ghodsi Mohammadi Ziarani

    2012-01-01

    A rapid method for the extraction and monitoring of nanogram level of Pb2+ and Cu2+ ions using uniform silanized mesopor (SBA-15) functionalized with aminobenzenesulfonamide groups and flame atomic absorption spectrometry (FAAS) is presented.Aminobenzenesulfonamide functionalized SBA-15 was synthesized according to procedure in the literature and the presence of organic groups in the silica framework was demonstrated by FT-IR spectra.The functionalized product showed the BET surface area 110 m2/g and pore diameter 5.1 nm,based on adsorption-desorption of N2 at 77 K.The effect of several variables such as (amount of adsorbent,stirring time,pH and presence of other ions in the medium) has been studied.Lead and copper were completely extracted at pH greater than 3 after stirring for 10 min.The maximum capacity of the adsorbent was found to be 191.3 ± 1.4 and 155.0 ± 1.0 μg of lead and copper ions/mg functionalized SBA-15,respectively.The preconcentration factor of the method was found to be 200.The detection limit of the technique was 3.4 and 0.4 ng/mL for Pb2+ and Cu2+,respectively.The applications of this methodology for real samples were examined by various water type,black tea and pepper samples.

  9. “Low Cost” Pore Expanded SBA-15 Functionalized with Amine Groups Applied to CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Enrique Vilarrasa-García

    2015-05-01

    Full Text Available The CO2 adsorption capacity of different functionalized mesoporous silicas of the SBA-15 type was investigated and the influence of textural properties and the effect of the silicon source on the CO2 uptake studied. Several adsorbents based on SBA-15 were synthesized using sodium silicate as silicon source, replacing the commonly used tetraethyl orthosilicate (TEOS. Thus, we synthesized three couples of supports, two at room temperature (RT, RT-F, two hydrothermal (HT, HT-F and two hydrothermal with addition of swelling agent (1,3,5-triisopropylbenzene (TiPB, TiPB-F. Within each couple, one of the materials was synthesized with ammonium fluoride (NH4F. The supports were functionalized via grafting 3-aminopropyltriethoxysilane (APTES and via impregnation with polyethylenimine ethylenediamine branched (PEI. The adsorption behavior of the pure materials was described well by the Langmuir model, whereas for the amine-silicas, a Dualsite Langmuir model was applied, which allowed us to qualify and quantify two different adsorption sites. Among the materials synthesized, only the SBA-15 synthesized at room temperatures (RT improved its properties as an adsorbent with the addition of fluoride when the silicas were functionalized with APTES. The most promising result was the TiPB-F/50PEI silica which at 75 °C and 1 bar CO2 captured 2.21 mmol/g.

  10. 利用SBA-15介孔内纳米碳合成含介孔的ZSM-5分子筛%Synthesis of ZSM-5 Molecular Sieves Containing Mesopore Using Nanocarbon in SBA-15 Mesopores

    Institute of Scientific and Technical Information of China (English)

    李工; 邓中林; 周书喜; 佟惠娟; 刘天华

    2009-01-01

    The mesopores of SBA-15 molecular sieve were filled by sucrose and the fillings were carbonized. SBA-15 molecular sieves containing nanocarbon carbon were impregnated by the slution of aluminum source and TPABr under the condition of alkalinity and weak acidity repectively, the framework of SBA-15 molecular sieve was changed into the crystal construction of ZSM-5 molecular sieve and lastly the ZSM-5 molecular sieves containing me-sopore were gained after removing the carbon. The samples were characterized by XRD, N_2 adsorption-desorption, ~(27)Al MAS NMR, NH_3-TPD, TEM and SEM methods. We researched the effect of synthesis condition on structure of samples, such as crystallizing time and so on. Results showed that ZSM-5 molecular sieve synthesised under the condition of alkalinity contained a small amount mesopores with pore diameter about 3. 2nm ~4. 2nm and its acid strength was slightly lower than that of ZSM-5 molecular, the sample synthesized unde the condition of weak acidity contained more pores with pore diameter about 1.4~1. 6nm and its acid strength was obvious lower than that of ZSM-5 molecular.%SBA-15介孔分子筛内填充蔗糖并炭化后, 分别在碱性和弱酸性条件下, 用含铝源及TPABr的溶液浸渍,将SBA-15分子筛孔壁的无定形结构转化成ZSM-5分子筛的晶体结构, 除碳后得到含介孔的ZSM-5分子筛. 用X射线衍射、 N_2吸附-脱附、 ~(27)Al MAS NMR、 NH_3-TPD、 TEM、 SEM等对样品进行了表征, 考察了晶化时间等参数对样品的影响. 结果表明, 碱性条件下合成的ZSM-5分子筛晶体中含有少量孔径约3.2~4.2 nm的介孔孔道, 其酸强度接近与常规ZSM-5分子筛的酸强度;弱酸性条件下合成的ZSM-5分子筛晶体中含有大量孔径约1.4~1.6 nm的孔道, 其酸强度明显低于常规ZSM-5分子筛的酸强度.

  11. 介孔分子筛K2O/SBA-15催化酯化反应的研究%Esterification Catalyzed by Mesoporous Sieve K2 O/SBA-15

    Institute of Scientific and Technical Information of China (English)

    崔晓燕; 沈健; 刘琤; 沈思维

    2011-01-01

    以介孔分子筛SBA-15为载体,负载KNO3后经过煅烧,制得K2O/SBA-15固体碱催化剂.通过XRD和BET对样品进行了测试分析,并对K2O/SBA-15催化合成油酸甲酯的酯化反应进行了研究.试验结果表明:当K2O负载量为2%,n(醇)∶n(酸)2∶1,反应温度180℃,反应时间4 h,催化剂用量为原料质量的5.0%时,酯化率最大达到83.61%,并且K2O/SBA-15催化剂重复使用多次仍具有较好的催化效果.%Solid base catalyst K2O/SBA-15 was prepared by loading potassium nitrate on mesoporous sieve SBA-15 and then was calcined. The samples were characterized by XRD and BET and used as catalyst in the synthesis of methyl oleate. The experimental results showed that when the loaded amount of K2O was 2% , molar ratio of methanol/oleic acid was 2:1 ,reaction temperature was 180 ℃ ,reaction time was 4 h and the ratio of catalyst to raw material was 5% ( weight ratio), the esterification rate was 83.61%. The results also showed that K2O/SBA-15had a good catalytic effect after resued.

  12. Application of mesoporous SBA-15 silica functionalized with 4-amino-2-mercaptopyrimidine for the adsorption of Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) from water.

    Science.gov (United States)

    Jorgetto, Alexandre de Oliveira; Pereira, Silvana Pontes; Silva, Rafael Innocenti Vieira da; Saeki, Margarida Juri; Martines, Marco Antonio Utrera; Pedrosa, Valber de Albuquerque; Castro, Gustavo Rocha de

    2015-01-01

    This work reports the sol-gel synthesis of a SBA-15 silica, and its functionalization with 4-amino-2-mercaptopyrimidine to perform adsorption of metal species from aqueous media. The functionalization of the material was confirmed by FTIR and superficial area measurements. The final material was tested through batch experiments to uncover its adsorptive properties towards the adsorption of Cu(II), Cd(II), Zn(II), Pb(II) and Ni(II). Contact time and pH conditions were investigated, and the material presented slow adsorption kinetics, which was best described by the pseudo-second order model. In addition, at pH 5 - 6, the adsorption of the metal ions was favored. Under optimized conditions, the material had its maximum adsorption capacities determined for all metal species studied, and the obtained values were 13.0 µmol g(-1) for Zn(II), 12.3 µmol g(-1) for Cu(II), 3.45 µmol g(-1) for Ni(II), 2.45 µmol g(-1) for Pb(II) and 0.60 µmol g(-1) for Cd(II). The capacity differences between each metal ion were discussed in terms of their ionic radii and Person's soft/hard acids/bases concept.

  13. Prepararion of Highly Active Esterification Catalyst SBA-15 Mesoporous Silica Functionalized with Sulfonic Acid Group%表面含磺酸基的介孔分子筛催化剂SBA-15-SO3H的制备及其催化性能

    Institute of Scientific and Technical Information of China (English)

    袁兴东; 沈健; 李国辉; 周敬来; 金知晚; 朴尚颜

    2002-01-01

    采用直接和后合成两种方法制备出含磺酸基的介孔分子筛SBA-15-SO3H, 用XRD和红外光谱分析制备过程中催化剂结构和组成的变化. 结果表明, 两种方法制备出的含磺酸基的催化剂都保持了SBA-15分子筛的完整晶体结构, 并含有质子酸中心-SO3H; 固体核磁共振表征结果证明, 两种方法都使MPTMS存在于分子筛的表面; 用N2吸附-脱附测定了它们的比表面积、孔径和孔容; TGA分析认为, MPTMS在分子筛表面的热稳定性大于300 ℃, 酸碱滴定结果说明, 直接法获得的催化剂的酸中心多于后合成法. 酯化反应结果表明, 直接法合成的催化剂比后合成法具有更高的稳定性, 且简便、快捷、高效.

  14. Preparation of low calorie structured lipids catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene(TBD)-functionalized mesoporous SBA-15 silica in a heterogeneous manner.

    Science.gov (United States)

    Xie, Wenlei; Qi, Cong

    2014-04-16

    1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD, a strong bicyclic guanidine base) functionalized SBA-15 material has been found to be an efficient solid catalyst for the interesterification between tributyrin and methyl stearate in a solvent-free system for the production of low-calorie structured lipid (LCSL). The solid base catalyst was characterized by using small-angle X-ray scattering, Fourier transform infrared spectra, thermo gravimetric analysis, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption, and elemental analysis techniques. The obtained LCSL was analyzed by reverse-phase high-performance liquid chromatography for triacylglycerol composition. The influence of various reaction parameters, such as the substrate ratio, reaction temperature, and reaction time, on the interesterification reaction was investigated systematically. More than 90% LCSL was obtained at 80 °C within 1 h when the methyl stearate/tributyrin molar ratio of 2:1 was employed. The obtained solid catalyst could be recovered easily and reused for several recycles with a negligible loss of activity. By using the solid base catalyst, an eco-friendly more benign process for the interesterification reaction in a heterogeneous manner was developed.

  15. Synthesis of Length Controllable Ordered Mesoporous Rodslike SBA-15 by Co-surfactant Method%长度可控杆状SBA-15的合成

    Institute of Scientific and Technical Information of China (English)

    王敏; 李冬; 蔡文京; 姜男哲

    2014-01-01

    SBA-15 rods with different lengths( from hexagonal paticials to short rods, and to longer rods) were synthesized via triblock copolymer P123 as a structure-directing agent and chitosan as a co-surfactant. The results show that chitosan is indispensable for tuning the length of SBA-15 rods. Addition of chitosan could improve the periodicity of the SBA-15 and the specific surface area and total proe volume are increased to 1157 cm2/g and 1.53 cm3/g, respectively.%以三嵌段共聚物P123为结构导向剂,天然高聚物壳聚糖为添加剂,合成出分散性较好的杆状结构SBA-15.通过调节体系中壳聚糖的含量,可以实现对产物形貌的控制,即从颗粒到短杆状,最后到长杆状.壳聚糖的加入不仅使SBA-15的介孔结构更加长程有序,同时也提高了其比表面积和孔容,其最高值分别达到1157 m2/g和1.53 cm3/g.

  16. Immobilization of bile salt hydrolase enzyme on mesoporous SBA-15 for co-precipitation of cholesterol.

    Science.gov (United States)

    Bhange, Pallavi; Sridevi, N; Bhange, Deu S; Prabhune, Asmita; Ramaswamy, Veda

    2014-02-01

    We describe herein a simple and effective strategy for immobilization of bile salt hydrolase enzyme by grafting glutaraldehyde groups inside channels of APTES functionalized SBA-15. The increase in glutaraldehyde concentration prevents leakage of enzyme but showed a steep decrease in enzyme activity in the immobilized matrix. So the degree of cross-linking should be the minimum possible to ensure sufficient stability without loss of activity. Cross-linking carried out with 0.1% glutaraldehyde concentration showed the highest activity, so this was used in all further experiments. Physico-chemical characterizations of the immobilized enzyme were carried out by XRD, N2 adsorption, TEM, FTIR and (29)Si CP-MAS NMR techniques. Immobilized BSH exhibits enhanced stability over a wide pH (3-11) and temperature range (40-80 °C) and retains an activity even after recycling experiments and six months of storage. From our in vivo research experiment toward co-precipitation of cholesterol, we have shown that immobilized BSH enzyme may be the promising catalyst for the reduction of serum cholesterol levels in our preliminary investigation. Enhancement in pH stability at the extreme side of pH may favor the use of immobilized BSH enzyme for drug delivery purpose to with stand extreme pH conditions in the gastrointestinal conditions.

  17. Characterization and catalytic activity of NiO/mesoporous aluminosilicate AlSBA-15 in conversion of some hydrocarbons

    Directory of Open Access Journals (Sweden)

    Heba M. Gobara

    2012-06-01

    Full Text Available Mesoporous aluminosilicate AlSBA-15 was synthesized and adopted as a support for NiO with 3, 6 and 9 wt.% loadings. Characterization of various samples was performed through XRD, FTIR, DSC-TGA, TPR, SEM and TEM techniques. Textural and morphological characteristics were examined using N2 adsorption–desorption isotherms. Catalytic activities were measured in cumene cracking for parent AlSBA-15 and in n-hexane and toluene cracking and cyclohexane dehydrogenation for supported NiO samples. Uniformity of the ordered 2D-hexagonal structure of AlSBA-15 was evident even after loading with NiO. NiO and NiOOH phases could be detected particularly in the sample containing 9 wt.% NiO. TPR profile of solid loaded with 3 wt.% NiO sample showed negative peaks at 400 and 600 °C, related to hydrogen spillover on reduced sample. Selectivity towards n-hexane and toluene cracking increased with both temperature and metal oxide loading, achieving 100% at 350 °C. In cyclohexane dehydrogenation, the sample loaded with 3 wt.% NiO was the most active and selective one towards benzene formation.

  18. Ascorbyl Tetraisopalmitate Inclusion into Υ-Cyclodextrin and Mesoporous SBA-15: Preparation, Characterization and In Vitro Release Study

    Directory of Open Access Journals (Sweden)

    Maria Bastianini

    2017-07-01

    Full Text Available Ascorbic acid or vitamin C is a strong antioxidant widely used in cosmetic and food fields. This vitamin is very unstable and rapidly undergoes degradation. In order to solve this problem and to obtain a stable ascorbic acid, Nikkol Group has developed ascorbyltetraisopalmitate (VC-IP. This raw material is an oil phase, already well-known and employed in the cosmetic market. The objective of this study is to obtain VC-IP in micro-powder form, in order to produce a new raw material that is easily dispersible in oil and water phases and useful for make-up and color cosmetic applications. Various types of drug carriers were studied and considered in order to support VC-IP and obtain the conversion in powder. Υ-cyclodextrin and mesoporous silica SBA-15 were chosen as the best candidates. A white powder of supported VC-IP was obtained with each carrier (VC-IP@cyclodextrin, VC-IP@SBA-15. The systems underwent physicochemical characterization and in vitro release tests were carried out. Based on the conducted study, it can be concluded that by supporting VC-IP on Υ-cyclodextrin and SBA-15, it is feasible to obtain a new raw material in powder form. The two carriers possess different release profiles, adding the possibility to finely tune the release of the active component in smart formulations.

  19. Propylsulfonic and arenesulfonic functionalized SBA-15 silica as an efficient and reusable catalyst for the acidolysis of soybean oil with medium-chain fatty acids.

    Science.gov (United States)

    Xie, Wenlei; Zhang, Chi

    2016-11-15

    The objective of this work was to develop a feasible ecofriendly process to produce medium-chain fatty acid (MCFA)-enriched structured lipids (SLs) in heterogeneous manners. For this purpose, the propyl-SO3H or arene-SO3H-modified SBA-15 materials were prepared through a surface functionalization of SBA-15 silica with propyl-SO3H and arene-SO3H groups. The organosulfonic acid-functionalized SBA-15 materials were characterized by Brönsted acidity determination, elemental analysis, XRD, C(13) MAS NMR, FT-IR, SEM, TG, TEM, and N2 adsorption-desorption techniques. Results showed that the propyl-SO3H and arene-SO3H groups were successfully tethered on the SBA-15 support, and the ordered mesoporous structure of SBA-15 silica was well retained after the organofunctionalization. This organic-inorganic hybrid material displayed high surface acidities and high activities in the acidolysis of soybean oil with caprylic or capric acid to produce SLs containing MCFAs. The influences of processing parameters on the reaction were investigated. The two studied catalysts showed an excellent recyclability for the reaction.

  20. Synthesis, Modification, and Characterization of Spherical SBA-15 Ordered Mesoporous Silica and Evaluation in High Performance Liquid Chromatography

    Science.gov (United States)

    Giaquinto, Alexander Paul

    SBA-15 mesoporous silica is characterized by hexagonally ordered non-intersecting parallel pores. In stark contrast, silica gel, commonly utilized in high performance liquid chromatography as a stationary phase, consists of many interconnected channels created by the spaces between primary particles. There has been much research regarding the importance of the geometry and characteristics of porous silica in chromatography, however, since the advent of ordered materials in the early 1990's, most of the investigations into use of ordered material have failed to extensively study the effects of the highly ordered porous structure on retention mechanisms. In this study, we attempt to evaluate the effect of the characteristic parallel non-intersecting pores of SBA-15 on the thermodynamics and kinetics aspects of retention. To achieve our goal, it was necessary to transform the native rope-like morphology of SBA-15 into the more commonly used and efficient sphere. The effects of temperature and synthesis time were evaluated. Following modification, characterization by low temperature nitrogen adsorption, thermogravimetric analysis and optical microscopy were utilized to evaluate pore structure, bonded layer characteristics and morphology. Suitable spherical SBA-15 packed into stainless steel columns were fully characterized for void volume and interparticle volume. Based on the results produced by kinetic studies, the evidence of column obstruction showed a reduced value for the diffusion of benzene as compared to commercial silicas, while surface specific retention studies resulted in the evaluation of reduced accessible surfaces. The obstruction of the pore volume, thus limiting the surface area, is most likely attributed to a combined effect of long narrow pores, which in the spherical particles, tend to bend or twist, and to which an uneven modified layer creates instances of pore blockage of the mobile phase.

  1. 介孔分子筛K2O/SBA-15催化酯交换反应研究%Study on transesterification catalyzed by mesoporous molecular sieve K2O/SBA-15

    Institute of Scientific and Technical Information of China (English)

    崔晓燕; 沈健

    2011-01-01

    The solid base catalyst K20/SBA- 15 were prepared with mesoporous molecular sieve SBA - 15 as carrier,and by supporting potassium nitrate and then calcining. The transesterification was studied for the synthesis of n - butyl acrylate from methyl acrylate and n - butanol catalyzed by K2O/SBA - 15. The results showed that when K2O loading was 2% (mass fraction) ,reaction time was 6 h,reaction temperature was 180 ℃, n ( n - butanol ) /n ( methyl acrylate) was 4 and the mass ratio of catalyst to raw material was 0.1, the best conversion of methyl acrylate could reach 64.22%.%以介孔分子筛SBA-15为载体,负载KNO3后经过焙烧,制得K2O/SBA-15固体碱催化剂.对K2O/SBA-15催化丙烯酸甲酯与正丁醇合成丙烯酸正丁酯的酯交换反应进行了研究.结果表明,当K2O负载量为2%,反应时间为6 h,反应温度为180℃,n(正丁醇)/n(丙烯酸甲酯)为4,m(催化剂)/m(原料)为0.1时,丙烯酸甲酯的转化率最大,为64.22%.

  2. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3.

    Science.gov (United States)

    Kadoono, Tomosuke; Ogura, Masaru

    2014-03-28

    A novel type of material encapsulating phase-change materials (PCMs) is reported concerning their implication for use as thermal energy storage devices. The composites of siliceous SBA-15 or carbonaceous CMK-3 mesoporous assemblies and organic PCMs could be used to make leak-free devices that retain their capabilities over many thermal cycles for heat storage/release. A confinement effect was observed that alters the thermal properties of the encapsulated PCM, especially in CMK-3 without any similar effects in other carbon materials.

  3. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen.

    Science.gov (United States)

    Mellaerts, Randy; Jammaer, Jasper A G; Van Speybroeck, Michiel; Chen, Hong; Van Humbeeck, Jan; Augustijns, Patrick; Van den Mooter, Guy; Martens, Johan A

    2008-08-19

    The ordered mesoporous silica material SBA-15 was loaded with the model drugs itraconazole and ibuprofen using three different procedures: (i) adsorption from solution, (ii) incipient wetness impregnation, and (iii) heating of a mixture of drug and SBA-15 powder. The location of the drug molecules in the SBA-15 particles and molecular interactions were investigated using nitrogen adsorption, TGA, DSC, DRS UV-vis, and XPS. The in vitro release of hydrophobic model drugs was evaluated in an aqueous environment simulating gastric fluid. The effectiveness of the loading method was found to be strongly compound dependent. Incipient wetness impregnation using a concentrated itraconazole solution in dichloromethane followed by solvent evaporation was most efficient for dispersing itraconazole in SBA-15. The itraconazole molecules were located on the mesopore walls and inside micropores of the mesopore walls. When SBA-15 was loaded by slurrying it in a diluted itraconazole solution from which the solvent was evaporated, the itraconazole molecules ended up in the mesopores that they plugged locally. At a loading of 30 wt %, itraconazole exhibited intermolecular interactions inside the mesopores revealed by UV spectroscopy and endothermic events traced with DSC. The physical mixing of itraconazole and SBA-15 powder followed by heating above the itraconazole melting temperature resulted in formulations in which glassy itraconazole particles were deposited externally on the SBA-15 particles. Loading with ibuprofen was successful with each of the three loading procedures. Ibuprofen preferably is positioned inside the micropores. In vitro release experiments showed fast release kinetics provided the drug molecules were evenly deposited over the mesoporous surface.

  4. Hydrothermal Stability of Mesoporous SBA-15 Modified with Alumina and Titania

    Directory of Open Access Journals (Sweden)

    Andrzej Mikołajczak

    2011-01-01

    Full Text Available Hydrothermal stability of alumina or titania modified SBA-15 was studied. Al2O3 and TiO2 were introduced into the SBA-15 structures either by post-synthetic deposition or isomorphous substitution. Appropriate isopropoxides were applied as the reagents for modifications.  In all cases surface area and pore volume on non-modified SBA-15 decreased significantly after hydrothermal treatment. Surface  decreased by more than 60% after 2 hs at 975 K. Stabilization effect was found only after introduction of titanium and aluminum ions via sol-gel technique. Here, the decrease of surface area was only 20% of the initial one. Independently from the stabilization effect of  the SBA-15 structure the creation of surface acidity was also possible. In contrast, the stabilization effect after isomorphous substitution was negligible. All samples were studied with XRD, TEM, nitrogen sorption at 77 K, TPD of ammonia. Hydrothermal stability was tested under water vapour at temperatures up to 975 K.

  5. Mechanisms of chromium and arsenite adsorption by amino-functionalized SBA-15.

    Science.gov (United States)

    Wu, Yunhai; Zhou, Jianxin; Jin, Yanping; Cao, Julin; Yilihan, Palizhati; Wen, Yajun; Wu, Yunying

    2014-02-01

    The adsorption of Cr(VI) and As(III) by amino-functionalized SBA-15 (NH2-SBA-15) from single and binary systems were investigated in this work. The effects of pH and temperature on the adsorption of NH2-SBA-15 were studied. Adsorption kinetics, isotherm model, and thermodynamics were studied to analyze the experimental data. pH 2 was the optimum condition for the adsorption of Cr(VI) and pH 4 for As(III) adsorption. Increasing temperature had a positive effect on the removal of both Cr(VI) and As(III). The Freundlich isotherm model can depict the adsorption process best. The pseudo-second-order kinetic model fitted well with the kinetic data of Cr(VI) and As(III) in the single-component system. In the binary system, the adsorption of As(III) by NH2-SBA-15 was slightly enhanced with the presence of Cr(VI); however, As(III) had no obvious effect on the removal of Cr(VI). Regeneration experiments indicated that 0.1 mol/L NaHCO3 was an efficient desorbent for the recovery of Cr(VI) and As(III) from NH2-SBA-15; the desorption rates for Cr(VI) and As(III) were 91.6 and 33.59 %, respectively. After five recycling cycles, the removal rates were 88 and 7 % for Cr(VI) and As(III) adsorption by NH2-SBA-15, respectively.

  6. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization.

    Science.gov (United States)

    Fei, Xiaoyao; Chen, Shaoyun; Liu, Dai; Huang, Chunjie; Zhang, Yongchun

    2016-09-01

    Two functionalized SBA-15 [amine-functionalized SBA-15 (AFS) and epoxy-functionalized SBA-15 (GFS)] with different types of functional groups were synthesized by a hydrothermal process and post functionalized with 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTMS), respectively. They were used for the immobilization of carbonic anhydrase (CA). The physicochemical properties of the functionalized SBA-15 were characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption, (13)C, (29)Si solid-state nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). Before and after CA was immobilized on AFS and GFS, the effects of temperature and pH value on the enzyme activity, storage stability, and reusability were investigated using para-nitrophenyl acetate (p-NPA) assay. CA/GFS showed a better performance with respect to storage stability and reusability than CA/AFS. Moreover, the amount of CaCO3 precipitated over CA/AFS was less than that precipitated over CA/GFS, which was almost equal to that precipitated over the free CA. The results indicate that the epoxy group is a more suitable functional group for covalent bonding with CA than the amino group, and GFS is a promising support for CA immobilization.

  7. 嫁接法制备Ni/SBA-15催化剂的催化氯苯加氢脱氯%Catalytic Hydrodechlorination of Chiorobenzene over Ni/SBA-15 Prepared by Grafting Method

    Institute of Scientific and Technical Information of China (English)

    唐亮; 邵芸; 万海勤; 许昭怡; 郑寿荣

    2011-01-01

    Mesoporous silica supported Ni catalysts were prepared using the grafting method via adsorption of Ni2+ on aminopropyl functionalized SBA-15 (denoted as Ni/SBA-15N). For comparison, supported Ni catalysts on unmodified SBA-15 were also prepared using the conventional impregnation method (denoted as Ni/SBA-15). At similar Ni loading, the Ni dispersion of Ni/SBA-15N was higher than that of Ni/SBA-15. XRD and TPR results show that nickel silicate is formed on the surface of aminopropyl functionalized SBA-15, while NiO is observed on the surface of SBA-15. For the gas phase catalytic hydrodechlorination of chlorobenzene, the Ni loading has minor effect on the catalytic activity of Ni/SBA-15, whereas increasing the Ni loading will result in the enhanced catalytic activity of Ni/SBA-15N.%SBA-15表面经嫁接方式引入氨基官能团,与Ni络合制备了SBA-15负载的Ni催化剂(Ni/SBA-15N).同时,采用传统的浸渍法制备了具有相似Ni负载量的催化剂(Ni/SBA-15).在负载量相近条件下,Ni/SBA-15N的Ni颗粒分散性均高于Ni/SBA-15.XRD和TPR结果表明,催化剂焙烧后,在氨化SBA-15表面,Ni以硅酸镍形式存在,而在SBA-15表面,Ni以NiO形式存在.Ni/SBA-15对氯苯催化加氢脱氯活性不随Ni负载量的变化而变化;而在Ni/SBA-15N中,Ni负载量增加,催化剂活性增加.

  8. Research on Synthesis of Al-SBA-15 Mesoporous Molecular Sieves in Phosphoric Acid Medium%磷酸介质体系中合成Al-SBA-15介孔分子筛的研究

    Institute of Scientific and Technical Information of China (English)

    赵红建; 马富

    2012-01-01

    以正硅酸乙酯为硅源,非离子表面活性剂P123为模板剂,异丙醇铝为铝源,在磷酸介质中合成出了Al-SBA-15介孔分子筛.采用XRD、TEM、SEM、N2 -BET、TG-DTA等表征手段,考察了所得材料的物化性能.分析了初始溶液中硅铝比对介观结构的影响.所得材料在XRD谱图中(100)、(110)和(200)处出现较强衍射峰,氮气吸-脱附曲线为典型的Ⅳ型且有H1滞后环,结合TEM分析表明产物具有二维六方排列的介孔结构(空间群为p6mm),SEM结果表明相对纯硅SBA-15,Al-SBA-15介孔分子筛长程有序性没有受到限制.%Using tetraethyl orthosilicate as silica source,non-ionic surfactant P123 as template and aluminum isopropoxide as aluminum source,Al-SBA-15 mesoporous molecular sieves were obtained in the presence of phosphoric acid.By means of XRD,TEM,SEM,N2-BET,TG-DTA techniques,the properties of the samples were characterized.The effect of the molar ratio of Si/Al in the starting reactant solution on the mesoporous structure was investigated.The materials exhibited strong reflection peaks at (100),(110) and (200) reflection lines.N2 adsorption-desorption isotherms were typical Ⅳ type with a H1 hysteresis loop.XRD and TEM results showed that the samples possessed 2D hexagonal symmetry (p6mm) mesostructure.SEM images revealed that Al-SBA-15 hold the long range ordering mesoporous structure compared with pure silica SBA-15.

  9. 氧化钾/SBA-15催化合成碳酸二正丁酯%SYNTHESIS OF DIBUTYL CARBONATE BY TRANSESTERIFICATION OVER MESOPOROUS MOLECULAR SIEVE K2O/SBA-15

    Institute of Scientific and Technical Information of China (English)

    崔晓燕; 沈健

    2011-01-01

    以介孔分子筛SBA-15为载体,浸渍KNO3后经过焙烧,制得K2O/SBA-15固体碱催化剂.通过XRD,N2等温吸附脱附和IR等测试手段对试样进行了分析.研究了K2O/SBA-15催化碳酸二甲酯(DMC)与正丁醇(n-BuOH)酯交换合成碳酸二正丁酯(DBC)的反应.结果表明:当K2O负载量为2%,反应时间2 h,反应温度180℃,n(正丁醇)∶n(DMC)为3.0,m(催化剂)∶m(原料)为0.08时,DMC转化率最大为89.6%,DBC 收率为58%,DBC选择性为64.7%.并且K2O/SBA-15催化剂重复使用多次仍具有较好的催化效果.%K2O/SBA-15 as the solid base catalyst was synthesized bu loading potassium on mesoporous sieve SBA-15.The sample has been characterized by XRD, N2 adsorption desorption and IR.The study on the synthesis of dibutyl carbonate from dimethyl carbonate and butanol has been done.The experimental results showed that when the loaded mount of K2 O was 2 %, reaction time was 2 h, reaction temperature was 180 ℃ ,n(n-butanol): n(dimethyl carbonate) was 3 and the ratio of catalyst to raw material was 8%, the highest conversion of dimethyl carbonate was 89.6%, the yield of DBC was 58%, the selectivity to DBC was 64.7%.The results also showed that the K2O/SBA-15 could be reused with good catalytic effect.

  10. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    Science.gov (United States)

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  11. Catalytic ozonation of ciprofloxacin over cerium supported on SBA-15 mesoporous molecular sieves%铈负载SBA-15分子筛催化臭氧氧化水中环丙沙星

    Institute of Scientific and Technical Information of China (English)

    马骕骦; 潘兆琪; 陈伟锐; 李旭凯; 李来胜

    2016-01-01

    Cerium-loaded SBA-15 (Ce/SBA-15) was synthesized successfully by a hydrothermal method and was used as a catalyst for the ozonation of ciprofloxacin (CIP) in aqueous solution.The catalyst was characterized by low angle X-ray diffraction (XRD) and transmission electron microscopy (TEM).Characterizations results suggested that the prepared samples retained a highly regulated mesopores of hexagonal structure.The catalytic ozonation reaction results showed that Ce/SBA-15 had good catalytic activity,through which TOC removal rate of CIP reached 63.3%,22.9% higher than ozonation reaction alone.And the catalytic activity of the samples increased with metal loading amount from 0.5% to 2%.However,it showed a decreased trend as the metal loading amount further increased.What's more,TOC removal increased with temperature.The initial pH of the solution also had a significant effect on the reaction,and the removal rate of TOC reached the highest at pH 5.01.Salicylic acid was employed as · OH scavenger to qualify · OH by using UV-Vis Spectroscopy.When 1 mmol ·L-1 phosphate was added into the reaction solution,TOC removal was inhibited by 25.8%.The result indicted that hydroxyl radical (·OH) was be generated on the surface of Ce/SBA-15.%通过水热法合成纯硅介孔分子筛SBA-15,并采用等体积浸渍法制备Ce负载SBA-15分子筛催化剂(Ce/SBA-15),将其应用于催化臭氧氧化环丙沙星(CIP).小角X射线衍射(XRD)、透射电镜(TEM)表征结果表明,Ce/SBA-15保持了纯硅SBA-15有序的介孔结构.Ce/SBA-15催化臭氧氧化环丙沙星(CIP)结果显示,催化剂有良好的活性,对环丙沙星的矿化率为63.3%,比单独臭氧氧化高出22.9%;随着铈负载量增加,催化剂活性呈现先增大后减小趋势,负载量为2%时催化效果最佳;TOC去除率随着反应温度增加而提高;溶液初始pH对反应有显著的影响,pH=5.01时TOC去除率最大.以水杨酸作为羟基自由基(·OH)捕获剂,

  12. Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles

    KAUST Repository

    Kerdi, Fatmé

    2011-04-01

    The preparation and characterization of highly dispersed gold nanoparticles in ordered mesoporous carbons CMK-3 are reported. These carbons were obtained using gold-containing functionalized SBA-15 silicas as hard templates. Two series of Au/SiO2 templates were prepared, depending on the nature of the functionalization molecule. While ammonium-functionalized silicas gave gold particles with a size determined by the pores of the silica support, the use of mercaptopropyltrimethoxysilane as grafting molecule afforded the possibility to control the particle size inside the mesopores. Both series gave highly ordered mesoporous carbons with gold particles incorporated in the carbon nanorods. However, the gold particle size in mesoporous carbons was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis, solid-state nuclear magnetic resonance and transmission electron microscopy. They were also used as catalysts in the aerobic oxidation of cyclohexene and trans-stilbene in the liquid phase. © 2010 Elsevier Inc. All rights reserved.

  13. Mesoporous BaTiO₃@SBA-15 derived via solid state reaction and its excellent adsorption efficiency for the removal of hexavalent chromium from water.

    Science.gov (United States)

    Kumari, Vandana; Sasidharan, Manickam; Bhaumik, Asim

    2015-01-28

    We report the synthesis of a barium-titanate/mesoporous silica nanocomposite material BaTiO3@SBA-15 via aerosol assisted solid state reaction using SBA-15 as a hard template. Hexavalent chromium is one of the most harmful contaminants of industrial waste-water. We have used BaTiO3@SBA-15 nanocomposite as an adsorbent for the removal of chromium(vi)-contaminated water and it showed an adsorption capacity of 98.2 wt% within only 40 min contact time in a batch reactor. This mesoporous composite has retained this excellent adsorption efficiency of hexavalent chromium for several repetitive cycles, suggesting its future potential for the remediation of water contaminated with Cr(vi).

  14. SBA-15 mesoporous silica activated by metal ions - Verification of molecular structure on the basis of Raman spectroscopy supported by numerical simulations

    Science.gov (United States)

    Laskowska, Magdalena; Laskowski, Lukasz; Jelonkiewicz, Jerzy

    2015-11-01

    In the paper we investigate the molecular structure of SBA-15 mesoporous silica containing propyl metal phosphonate groups, to examine the efficiency of synthesis route. Proposed method can be generalized and applied to synthesis efficiency examination in the case of relatively complex silica-based nanomaterials. Considered verification route is based on Raman scattering supported by numerical simulation. We demonstrated considered procedure on the example of SBA-15 mesoporous silica containing propyl phosphonate units activated by nickel, copper and iron ions. We showed that unambiguously verification of activation process related to phosphonic acid units incorporated inside SBA-15 silica into metal phosphonate groups is possible. On the base of comparative analysis of experimental and theoretical Raman spectra we were able to eliminate the case of incomplete or unsuccessful activation.

  15. Preparation and Adsorption Properties of Functional SBA-15 Doped by Ti and Al%Ti,Al掺杂SBA-15功能材料制备及吸附性能研究

    Institute of Scientific and Technical Information of China (English)

    关越鹏; 张铭辉; 梁敏; 符进; 喻鹏

    2013-01-01

    Al-Ti-SBA-15 and Ti-Al-SBA-15 were prepared by impregration-fusion method, using Ti-SBA-15 and Al-SBA-15 molecular sieve as main body, Al and Ti as the object, respectively. These materials were characterized by FT-IR, powder XRD, N2 adsorption-desorption instrument, and it was confirmed that these materials have characteristics of the mesoporous material with hexagonal cylindrical structure. 20 mL waste water ( Pb2+concentration:100×10-6)was used to study the adsorption capacity of new materials for heavy metal in waste water. The results showed that these materials of Al-Ti-SBA-15 and Ti-Al-SBA-15 in 0.050 0 g showed good absorption rate from 99.253%to 99.82%, which were better than 78.28%of SBA-15. Specially, Al-Ti-SBA-15 (4∶1) in 0.050 4 g and Ti-Al-SBA-15 (1∶2) in 0.050 3 g, showed the best ion adsorption capacity of 99.78%and 99.82%, respectively.%分别以Ti-SBA-15和Al-SBA-15分子筛作主体,对应地以Al和Ti作客体,采用浸没-熔融法制备Al-Ti-SBA-15和Ti-Al-SBA-15二类6种新型纳米复合材料,以FT-IR、粉末XRD、低温N2吸附-脱附仪分别对材料进行表征,材料具有六方圆柱形介孔结构。以20 mL、Pb2+浓度100×10-6的废水为探针,考察材料对重金属离子的吸附能力。实验结果表明0.0500 g左右的Al-Ti-SBA-15和Ti-Al-SBA-15二类材料呈现了99.53∼99.82%的金属离子吸附率,远高于载体 SBA-15的吸附率78.28%,改性材料吸附性能明显提高;0.0504 g Al-Ti-SBA-15(4∶1)和0.0503 g Ti-Al-SBA-15(1∶2)分别呈现了最高离子吸附率99.78%和99.82。

  16. M/SBA-15(M=Cu、Fe、Cr)介孔分子筛的制备、表征及其催化NO+CO反应研究%Synthesis, characterization, and catalytic performance of mesoporous M/SBA-15 (M =Cu, Cr, Fe) for NO + CO reaction

    Institute of Scientific and Technical Information of China (English)

    薛君; 申力涛

    2013-01-01

    以介孔分子筛SBA-15为载体,采用浸渍法制备M/SBA-15(M=Cu、Fe、Cr)介孔分子筛催化剂.采用XRD、BET、FT-IR、H2-TPR和XPS等对样品进行分析表征,在固定床微型反应器中评价M/SBA-15(M=Cu、Fe、Cr)分子筛催化剂催化NO+ CO的反应性能.结果表明,负载金属的SBA-15分子筛仍保持高度有序的二维六方介孔结构,比表面积和孔径略有减少,负载的活性金属组分在SBA-15分子筛表面具有较高的分散度.Cu/SBA-15、Cr/SBA-15和Fe/SBA-15催化剂对NO+ CO反应体系均有一定活性,但由于活性金属自身的特性及其在载体表面负载量的差异,3种催化剂上呈现的NO还原活性不同,顺序为:Cr/SBA-15> Cu/SBA-15>Fe/SBA-15.%Mesoporous molecular sieves M/SBA-15 (M =Cu,Cr,Fe) were prepared by the incipient wetness impregnation method.The catalysts were characterized by XRD,BET,XPS,and H2-TPR techniques.The catalytic activity of the catalysts for NO + CO reaction was evaluated in a fixed bed reactor.The results showed that the hexagonal p6mm mesostructure of parent siliceous SBA-15 was maintained very well in M/SBA-15 (M =Cu,Cr,Fe),and its BET surface area and averge pore diameter decreased a little.The active metal components loaded on the surface of SBA-15 molecular sieves had higher dispersion degree.The catalytic activity of the catalysts depended on the loading of M (Cu,Cr,Fe).Cr/SBA-15 catalyst had better performance than Cu/SBA-15 and Fe/SBA-15 catalysts at relatively higher temperatures due to the higher content of active chromium,while the better deNOx performance of Cu/SBA-15 at low-temperature was ascribed to its excellent redox properties.

  17. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica [Erratum

    Directory of Open Access Journals (Sweden)

    Wang Z

    2013-02-01

    Full Text Available Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica Wang Z, Chen B, Quan G, et al. International Journal of Nanomedicine. 2012;7:5807–5818.This paper was published without the Supplementary materials.Read the original article

  18. Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM·BF₄-coated SBA-15 as labels and functionalized graphene as enhancer.

    Science.gov (United States)

    Cai, Yanyan; Li, He; Du, Bin; Yang, Minghui; Li, Yan; Wu, Dan; Zhao, Yanfang; Dai, Yuxue; Wei, Qin

    2011-03-01

    BRCAl is an anti-oncogene in women, who are genetically predisposed to breast and ovary cancer. The detection of BRCA1 can offer an opportunity to characterize the function of genetic features in breast and ovarian cancer and to screen breast or ovarian cancer patients. In this study, we designed a new label and fabricated a novel sandwich-type electrochemical immunoassay for the ultrasensitive detection of BRCAl. Horseradish peroxidase (HRP) was entrapped in the pores of amino-group functionalized SBA-15 and the secondary antibody (Ab₂) combined with SBA-15 by covalent bond. Ionic liquid (IL) was added into the mixed solution of SBA-15/HRP/Ab₂ and application of IL increased the electrochemical activity of HRP and promoted electron transport. The synergistic effect between IL, SBA-15, Ab₂ and HRP could retain the bioactivity of HRP and Ab₂. The sensitivity of the sandwich-type immunosensor using SBA-15/HRP/Ab₂/BMIM·BF₄ as labels for BRCA1 detection was much higher than that using either SBA-15/HRP/Ab₂ or SBA-15/Ab₂ as labels. Under optimal conditions, the electrochemical immunoassay exhibited a wide working range from 0.01 to 15 ng/mL with a detection limit of 4.86 pg/mL BRCA1. The precision, reproducibility, and stability of the immunoassay were acceptable.

  19. Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water.

    Science.gov (United States)

    Lashgari, Negar; Badiei, Alireza; Mohammadi Ziarani, Ghodsi; Faridbod, Farnoush

    2017-03-07

    A highly ordered mesoporous silica material functionalized with isatin (SBA-Pr-IS) was designed and synthesized. Characterization techniques including XRD, TGA, BET, SEM, and FT-IR were employed to characterize the pore structure, textural properties, microscopic morphology, and molecular composition of grafted organic moieties of SBA-Pr-IS. The successful attachment of the organic moiety (0.34 mmol g(-1)) without the SBA-15 structure collapsing after the modification steps was confirmed. Fluorescence characterization of SBA-Pr-IS was examined upon addition of a wide variety of cations in aqueous medium and it showed high sensitivity toward Hg(2+) ions. During testing in an ion competition experiment, it was observed that the fluorescence changes of the probe were remarkably specific for Hg(2+) ions. Furthermore, a good linearity between the fluorescence intensity of this material and the concentration of Hg(2+) ions was constructed with a suitable detection limit of 3.7 × 10(-6) M. Finally, the applicability of the proposed method was successfully evaluated for the determination of Hg(2+) ions in real samples. Therefore, SBA-Pr-IS can be used as an efficient fluorescence probe for Hg(2+) ions. Graphical Abstract A novel organic-inorganic hybrid material was designed and synthesized by functionalization of SBA-15 mesoporous silica material with isatin. The evaluation of the sensing ability of SBA-Pr-IS using fluorescence spectroscopy revealed that the SBA-Pr-IS was a selective fluorescent probe for Hg(2+) ion in water in the presence of a wide range of metal cations.

  20. Ionic Liquid Based Electrolyte with Mesoporous Silica SBA-15 as Framework for Quasi-solid-state Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YANG, Hong; CHENG, Yun-Fei; ZHOU, Zhi-Guo; CHEN, Zhi-Gang; LI, Fu-You; YI, Tao; HUANG, Chun-Hui

    2006-01-01

    Quasi-solid-state electrolytes were fabricated with mesoporous silica SBA-15 as a framework material. Ionic conductivity measurements revealed that SBA-15 can enhance the conductivity of the quasi-solid-state electrolyte.The diffusion coefficients of polyiodide ions such as I-3 and I-5 which were confirmed by Raman spectroscopic measurement, were about twice larger than that of I-. The optimized photoenergy conversion efficiency of dye-sensitized solar cells (DSSC) with the quasi-solid-state electrolyte was 4.3% under AM 1.5 irradiation at 75 mW·cm-2 light intensity.

  1. TiO₂ incorporated in magnetic mesoporous SBA-15 by a facile inner-pore hydrolysis process toward enhanced adsorption-photocatalysis performances for As(III).

    Science.gov (United States)

    Yu, Lian; Yang, Xiaofang; Wang, Dongsheng

    2015-06-15

    A facile inner-pore hydrolysis combining solvent evaporation method was used to decorate mesoporous silica, in which γ-Fe2O3 nanoparticles was preloaded onto mesoporous SBA-15 followed by decoration of TiO2 nanoparticles. This decoration process exploited the homogeneous dispersivity of γ-Fe2O3 and TiO2 nanoparticles in/on SBA-15 and inhibit aggregation of γ-Fe2O3 and TiO2 nanoparticles, which in turn leaded to a synergistic photocatalytic oxidation and adsorption of As(III). It was found that the prepared nanocomposites had mesoporous structure, large specific surface area, high pore volume and superparamagetism according to SEM/TEM, N2 adsorption-desorption isotherms, XRD and VSM analysis. Experimental results show that SBA-15/γ-Fe2O3-TiO2 can oxidize As(III) to As(V) efficiently in the photocatalysis reaction. At the same time, As(V) is effectively removed through adsorption by the composites. In addition, with the treatment of alkali solution, As(V) can be easily desorbed from SBA-15/γ-Fe2O3-TiO2. After reusage for 5 times, the composites still retain comparable catalysis and adsorption performance compared with that of first use, revealing the excellent stability of the composites.

  2. Effect of withdrawal speed on film thickness and hexagonal pore-array dimensions of SBA-15 mesoporous silica thin film.

    Science.gov (United States)

    Hwang, Junho; Shoji, Naoko; Endo, Akira; Daiguji, Hirofumi

    2014-12-30

    Two-dimensional hexagonal mesoporous silica thin films of SBA-15 were synthesized on Si substrates via dip-coating using an evaporation-induced self-assembly process. The effect of the withdrawal speed on the thicknesses, one-dimensional pore alignments, and two-dimensional hexagonal pore arrays of the films was elucidated. Detailed analyses of FE-SEM and TEM images and XRD and XRR patterns of the synthesized thin films clarified that the pore sizes, interplanar spacings, and film thicknesses depend on the withdrawal speed. Furthermore, the same films were synthesized on Si substrates with microtrenches. The local flow of coating solutions around microtrenches affects the pore direction as well as the film thickness. In order to form well-ordered mesoporous silica thin films with large surface areas, it is important to control the synthetic conditions such as the local flow of the coating solutions as well as the physicochemical properties of the silica precursor solutions or template molecules.

  3. Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties.

    Science.gov (United States)

    Hirai, Takayuki; Nanba, Masanori; Komasawa, Isao

    2003-12-15

    CdS nanoparticles, as prepared in reverse micellar systems, were incorporated into alkanedithiol-modified Zn-doped SBA-15 mesoporous silica (dtz.sbnd;ZnSBA-15; pore diameter, ca. 4 nm), which were themselves prepared via hydrolysis of tetraethylorthosilicate (TEOS) in the presence of Zn(NO(3))(2) and triblock copolymer, as a nonsurfactant template and pore-forming agent, followed by contact with dithiol molecules. A particle-sieving effect for the dtz.sbnd;ZnSBA-15 was observed, in that the incorporation of the nanoparticles was remarkably decreased with increasing the nanoparticle size. The resulting CdSz.sbnd;ZnSBA-15 composite was then used as photocatalysts for the generation of H(2) from 2-propanol aqueous solution. Under UV irradiation (lambda>300 nm), a high photocatalytic activity was observed for this composite material. This is effected by electron transfer from the photoexcited ZnS (dithiol-bonded Zn on SBA-15) to CdS nanoparticles. The photocatalytic activity is increased with a decrease in the number of methylene groups in the dithiol molecules, according to the rank order 1,10-decanedithiol < 1,6-hexanedithiol < 1,2-ethanedithiol.

  4. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72-) in water

    Science.gov (United States)

    Lashgari, Negar; Badiei, Alireza; Mohammadi Ziarani, Ghodsi

    2017-04-01

    A novel silica-based chemosensor (SBA-Is-INH) was prepared through the functionalization of mesoporous silica SBA-15 material with a fluorescent chromophore, (Z)-N'-(2-oxoindolin-3-ylidene)isonicotinohydrazide. The synthesized materials were characterized by different techniques such as low angle XRD, N2 adsorption-desorption, TGA, TEM and FT-IR spectroscopy. The data showed that the organic moiety (0.41 mmol g-1) was successfully grafted to the SBA-15 and the primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Photoluminescence spectroscopy has been used to investigate the sensing behavior of this material. SBA-Is-INH showed high selectivity for Fe3+ and Cr2O72- in water over a wide range of tested ions. Upon introducing trace amounts of Fe3+ and Cr2O72- ions into aqueous solution, remarkable quenching in the fluorescence was observed. Furthermore, a good linearity was observed between the fluorescence intensity of SBA-Is-INH and the concentration of Fe3+ and Cr2O72- with satisfactory detection limits of 6.04×10-7 M and 5.09×10-7 M, respectively. Finally, the proposed method was successfully utilized for the determination of Fe3+ and Cr2O72- in river water, well water and tap water samples.

  5. Clickable SBA-15 to screen functional groups for adsorption of antibiotics.

    Science.gov (United States)

    Gao, Jinsuo; Zhang, Xueying; Xu, Shutao; Liu, Jian; Tan, Feng; Li, Xinyong; Qu, Zhenping; Zhang, Yaobin; Quan, Xie

    2014-03-01

    Pharmaceutical antibiotics, as emerging contaminants, are usually composed of several functional groups that endow them with the ability to interact with adsorbents through different interactions. This makes the preparation of adsorbents tedious and time-consuming to screen appropriate functionalized materials. Herein, we describe the synthesis of clickable SBA-15 and demonstrate its feasibility as a screening material for the adsorption of antibiotics based on similar adsorption trends on materials with similar functional groups obtained by a click reaction and cocondensation/grafting methods.

  6. Molecularly imprinted polymers based on SBA-15 for selective solid-phase extraction of baicalein from plasma samples.

    Science.gov (United States)

    He, Hongliang; Gu, Xiaoli; Shi, Liying; Hong, Junli; Zhang, Hongjuan; Gao, Yankun; Du, Shuhu; Chen, Lina

    2015-01-01

    Highly selective molecularly imprinted mesoporous silica polymer (SBA-15@MIP) for baicalein (BAI) extraction was synthesized using a surface molecular imprinting technique on the SBA-15 supporter. Computational simulation was used to predict the optimal functional monomer for the rational design of SBA-15@MIP. Meanwhile, high adsorption capacity was obtained when a suitable yield of molecularly imprinted polymers (MIPs) layer was grafted onto the surface of SBA-15. Characterization and performance tests of the obtained polymer revealed that SBA-15@MIP possessed a highly ordered mesoporous structure, reached saturated adsorption within 60 min, and exhibited higher sorption capacity to the target molecule BAI compared with non-imprinted mesoporous silica polymer (SBA-15@NIP) and SBA-15. Finally, SBA-15@MIP was successfully applied to solid-phase extraction (SPE) coupled with high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of trace BAI in plasma samples. Mean recoveries of BAI through the molecularly imprinted solid-phase extraction (MISPE) sorbent, non-imprinted solid-phase extraction (NISPE) sorbent, and SBA-15 solid-phase extraction (SBA-15-SPE) sorbent were 94.4, 22.7, and 10.7 %, respectively, and the relative standard deviations were 2.9, 2.6, and 3.6 %, respectively. These results reveal that SBA-15@MIP as a SPE sorbent has good applicability to selectively separate and enrich trace BAI from complex samples.

  7. The cooperative adsorption properties of cetyl/amino-SBA-15 for 4-nonylphenol.

    Science.gov (United States)

    Quan, Feng; Hu, Yun; Liu, Xingchen; Wei, Chaohai

    2015-07-15

    In this study, mesoporous SBA-15 bifunctionalized with cetyl and amino groups (cetyl/amino-SBA-15) was successfully prepared by a post-synthesis grafting method. Detailed characterization by XRD, FT-IR, N2 adsorption-desorption and elemental analysis confirmed that cetyl/amino-SBA-15 still retained a long-range ordered hexagonal mesostructure. Cetyl and aminopropyl groups were simultaneously functionalized on the surface of SBA-15. The adsorption capacity of cetyl/amino-SBA-15 was much higher than the arithmetic sum of those of cetyl-SBA-15 and amino-SBA-15 due to the cooperative effect of hydrogen bonding/electrostatic interaction between 4-nonylphenol (4-NP) and aminopropyl groups and hydrophobic interactions between 4-NP and cetyl groups. The effects of the dosage and mole ratio of cetyl and amino groups on the adsorption properties of cetyl/amino-SBA-15 for 4-NP were also investigated. Cetyl/amino-SBA-15 exhibited excellent adsorption capacity over a wide range of pH values and cetyl/amino-SBA-15(3.2/0.8) displayed the highest adsorption capacity up to 120 mg g(-1). Furthermore, cetyl/amino-SBA-15 exhibited high adsorption selectivity for 4-NP against phenol as well as high reusability, showing great potential for applications in wastewater treatment.

  8. Synthesis of Mesoporous V2O5-CeO2/SBA-15 Catalysts and Their Performance in Catalytic Combustion of Chlorobenzene%v2O5-CeO/SBA-15催化剂的制备及氯苯催化燃烧的性能研究

    Institute of Scientific and Technical Information of China (English)

    李辉; 屈钦; 刘善堂

    2011-01-01

    以介孔分子筛SBA-15为载体,采用等体积浸渍法分别制备了不同V负载量(4%- 15%(质量分数))的V2O5/SBA-15及经过铈掺杂后的V2O5-CeO2/SBA-15催化剂,考察了催化剂对氯苯的催化燃烧性能,用XRD,UV-vis,SEM和TEM对催化剂进行了表征.活性评价结果表明,当V质量分数在10%时的V2O5/SBA-15催化剂对氯苯催化燃烧性能最好,在掺杂10%的稀土Ce后,催化燃烧氯苯的活性得到明显提高.表征结果表明,V2O5和CeO2均分散在SBA-15的孔道骨架上,没有破坏SBA-15的中孔结构.%The catalytic oxidation of chlorobenzene was investigated on V2O5/SBA-15 and V2O5-CeO2/ SBA-15 catalysts. These catalysts were characterized by XRD, SEM, TEM and UV-vis spectroscopy. The pure ordered hexagonal mesoporous silica SBA-15 was used as a support for preparing dispersed vanadium and cerium containing catalysts. The V2O5/SBA-15 samples with different V loading (4%~15%) and cerium doped V2O5/SBA-15 catalyst were prepared byincipient wetness impregnation. The catalytic combustion of chlorobenzene was investigated on V2O5/SBA-15 and V2O5-CeO2/SBA-15 catalysts. The V2O5/ SBA-15 catalysts containing 10% V showed the highest activity for the catalytic combustion of chlorobenzene. When 10% Ce was added into V( 10% )/SBA-15 catalyst, the conversion of chlorobenzene was obviously increased. The characterization showed that V2O5 and CeO2 could enter SBA-15 framework.

  9. SnxTi1-xO2 solid-solution-nanoparticle embedded mesoporous silica (SBA-15) hybrid as an engineered photocatalyst with enhanced activity.

    Science.gov (United States)

    Srinivasan, N R; Bandyopadhyaya, Rajdip

    2016-01-01

    Synthesis of hybrids of a porous host-material (with well-dispersed embedded nanoparticles inside the pore), wherein each nanoparticle has precisely controlled properties (size and composition) poses a generic challenge. To this end, a new strategy is proposed to form SnxTi1-xO2 solid-solution-nanoparticles inside the pores of sphere-like mesoporous silica (SBA-15), with different percentages of Sn in the nanoparticle (varying from 5 to 50 at%), for enhanced photocatalysis. X-ray diffraction confirms the formation of solid-solution nanoparticles in the porous silica hybrid, while the location of nanoparticles and elemental composition are identified using electron microscopy. The hybrid with 5 at% of Sn (Sn0.05Ti0.95O2-sphere-like SBA-15) shows the maximum photocatalytic activity for degradation of rhodamine-B dye (first order rate constant for degradation, k = 1.86 h(-1)), compared to both pure TiO2-sphere-like SBA-15 (k = 1.38 h(-1)) or pure SnO2-sphere-like SBA-15 (k = 0.14 h(-1)) or other hybrids in this series. XPS and PL spectra suggest the formation of more oxygen vacancies during the replacement of Ti(4+) with Sn(4+). Electrochemical studies reveal that there is a reduction of charge transfer resistance from 910 kΩ cm(-2) for TiO2-sphere-like SBA-15, to 332 kΩ cm(-2) for Sn0.05Ti0.95O2-sphere-like SBA-15. These results imply that the enhancement in photocatalytic performance is as a result of delay in recombination of charge carriers. Therefore, the approach followed in the present work to form solid-solution nanoparticles inside a porous host without causing pore blockage, would be a promising route towards increasing reaction rates in catalytic applications of hybrid materials.

  10. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release.

    Science.gov (United States)

    Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L O

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system.

  11. Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: batch and modeling studies.

    Science.gov (United States)

    Diagboya, Paul N; Olu-Owolabi, Bamidele I; Adebowale, Kayode O

    2014-12-15

    Mesoporous silica SBA-15 meets most criteria for selection of water treatment adsorbents such as high specific surface area, large pore-size, chemical inertness, repertory of surface functional groups, good thermal stability, selectivity, regenerability, and low cost of manufacture. However, its use for water treatment is still largely unexplored. SBA-15 and its functionalized derivatives of aminopropyltriethoxysilane (SA) and tripolyphosphate (ST) were synthesized, characterized, and used to investigate pentachlorophenol (PCP) removal from aqueous solutions. Functionalization improved SBA-15 capacity for PCP removal from solution in accordance with the trend SBA-15 SBA-15, but the functionalized SBA-15 materials showed higher hysteresis. The results imply that functionalized SBA-15 sorbents are promising materials for microscale scavenging of PCP in solution.

  12. SBA-15基纳米功能材料研究新进展%Recent Advances on Functional Nanomaterials Based on SBA-15

    Institute of Scientific and Technical Information of China (English)

    王俊宏

    2013-01-01

    综述了介孔分子筛SBA-15功能化的两种主要合成方法——直接合成法和后合成法,介绍了在SBA-15上负载的金属及其化合物以及氨基、磺酸基和其它有机官能团,总结了功能化SBA-15材料在催化、环保、能源、化学传感等多方面的应用情况,并展望了功能化SBA-15介孔材料的发展前景.

  13. Enhanced photocatalytic performance of mesoporous TiO{sub 2} coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Lin, Xiao; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Chen, Feitai

    2016-03-15

    Highlights: • Highly uniform mesoporous TiO{sub 2} nanopartices were coated SBA-15. • MT showed smaller crystallite size, higher hydroxyl content and surface area. • MT/SBA-15 show enhanced photocatalytic activity and high reused activity. • The optimum MT loading rate and calcination temperature were obtained to be 15% and 400 °C, respectively. • Photocatalytic behaviors are discussed in terms of the Langmuir–Hinshelwood model. - Abstract: Mesoporous TiO2 coated SBA-15 (MT@S) nanocomposites were fabricated through supercritical CO{sub 2} deposition aided by liquid-crystal template. The as-prepared samples were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and so on. The results reveal that MT uniformly deposited onto silica with titania incorporated in SBA-15 channels, showed smaller crystallite size, higher hydroxyl content and surface area than nonporous TiO{sub 2} coated SBA-15 (NT@S) obtained by a similar route without template. With TiO{sub 2} loading ratio of 15 wt% and calcination temperature of 400 °C, 15%MT@S-400 showed the enhanced degradation efficiency for azo dyes (methylene blue, methyl orange, and rhodamine B) and phenol in comparsion with 15%NT@S-400, due to those improved textural and physicochemical properties. Meanwhile, the reused MT@S also showed high photoactivity. Additionally, the effects of MT content and calcination temperature have been examined as operational parameters. Photocatalytic reactions followed pseudo-first-order kinetics and are discussed in terms of the Langmuir–Hinshelwood model.

  14. Preparation of Pd-Diimine@SBA-15 and Its Catalytic Performance for the Suzuki Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Jiahuan Yu

    2016-11-01

    Full Text Available A highly efficient and stable Pd-diimine@SBA-15 catalyst was successfully prepared by immobilizing Pd onto diimine-functionalized mesoporous silica SBA-15. With the help of diimine functional groups grafted onto the SBA-15, Pd could be anchored on a support with high dispersion. Pd-diimine@SBA-15 catalyst exhibited excellent catalytic performance for the Suzuki coupling reaction of electronically diverse aryl halides and phenylboronic acid under mild conditions with an ultralow amount of Pd (0.05 mol % Pd. When the catalyst amount was increased, it could catalyze the coupling reaction of chlorinated aromatics with phenylboronic acid. Compared with the catalytic performances of Pd/SBA-15 and Pd-diimine@SiO2 catalysts, the Pd-diimine@SBA-15 catalyst exhibited higher hydrothermal stability and could be repeatedly used four times without a significant decrease of its catalytic activity.

  15. Effect of silica/titania ratio on enhanced photooxidation of industrial hazardous materials by microwave treated mesoporous SBA-15/TiO2 nanocomposites

    Science.gov (United States)

    Mehta, Akansha; Mishra, Amit; Sharma, Manisha; Singh, Satnam; Basu, Soumen

    2016-07-01

    In this study microwave assisted technique has been adopted for the synthesis of different weight ratios of TiO2 dispersed on Santa barbara amorphous-15 (SBA-15) support. Morphological study revealed TiO2 particles (4-10 nm) uniformly distributed on SBA-15 while increases in SBA-15 content results in higher specific surface area (524-237 m2/g). The diffraction intensity of 101 plane of anatase polymorph was seen increasing with increase in TiO2 ratio. All the photocatalysts were having a mesoporous nature and follow the Langmuir IV isotherm, SBA-15 posses the highest pore volume (0.93 cm3 g-1) which consistently decreased with TiO2 content and was lowest (0.50 cm3 g-1) in case of 5 wt% of TiO2 followed by P25 (0.45 cm3 g-1) while pore diameter increased after TiO2 incorporation due to pore strain. The photocatalytic activity of the nanocomposites were analysed for the photodegradation of alizarin dye and pentachlorophenol under UV light irradiation. The reaction kinetics suggested the highest efficiency (98 % for alizarin and 94 % for PCP) of 5 wt% TiO2 compared to other photocatalysts, these nanocomposites were reused for several cycles, which is most important for heterogeneous photocatalytic degradation reaction.

  16. Radioactive Iodine (I-129) Gas Adsorption by Using Bismuth-Embedded SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Cho, Yong-Jun; Park, Jang Jin; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    The efficient capture of the long-lived I-129, released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi{sub 2}S{sub 3} within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities with 540 mg-I/g-sorbent maximally, which benefitted from the high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI{sub 3} compound. Iodine physisorption could effectively be suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement.

  17. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jun-Kai [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); Hou, Li-An; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-04-09

    Highlights: • Dopamine-functionalized SBA-15 (DMS) was developed via a biomimetic coating. • The modification approach was simple, facile and cost-effective. • The DMS was firstly used to remove U(VI) from aqueous solution. • Large adsorption capacity and rapid separation were obtained. - Abstract: A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid–liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K{sup +} and Na{sup +} concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution.

  18. Capillary Condensation, Freezing, and Melting in Silica Nanopores: A Sorption Isotherm and Scanning Calorimetry Study on Nitrogen in Mesoporous SBA-15

    CERN Document Server

    Moerz, Sebastian T; Huber, Patrick; 10.1103/PhysRevB.85.075403

    2012-01-01

    Condensation, melting and freezing of nitrogen in a powder of mesoporous silica grains (SBA-15) has been studied by combined volumetric sorption isotherm and scanning calorimetry measurements. Within the mean field model of Saam and Cole for vapor condensation in cylindrical pores a liquid nitrogen sorption isotherm is well described by a bimodal pore radius distribution. It encompasses a narrow peak centered at 3.3 nm, typical of tubular mesopores, and a significantly broader peak characteristic of micropores, located at 1 nm. The material condensed in the micropores as well as the first two adsorbed monolayers in the mesopores do not exhibit any caloric anomaly. The solidification and melting transformation affects only the pore condensate beyond approx. the second monolayer of the mesopores. Here, interfacial melting leads to a single peak in the specific heat measurements. Homogeneous and heterogeneous freezing along with a delayering transition for partial fillings of the mesopores result in a caloric fr...

  19. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution.

    Science.gov (United States)

    Gao, Jun-Kai; Hou, Li-An; Zhang, Guang-Hui; Gu, Ping

    2015-04-09

    A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid-liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K(+) and Na(+) concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution.

  20. Capillary condensation, freezing, and melting in silica nanopores: A sorption isotherm and scanning calorimetry study on nitrogen in mesoporous SBA-15

    Science.gov (United States)

    Moerz, Sebastian T.; Knorr, Klaus; Huber, Patrick

    2012-02-01

    Condensation, melting, and freezing of nitrogen in a powder of mesoporous silica grains (SBA-15) has been studied by combined volumetric sorption isotherm and scanning calorimetry measurements. Within the mean-field model of Saam and Cole for vapor condensation in cylindrical pores, a liquid nitrogen sorption isotherm is well described by a bimodal pore radius distribution. It encompasses a narrow peak centered at 3.3 nm, typical of tubular mesopores, and a significantly broader peak characteristic of micropores, located at 1 nm. The material condensed in the micropores as well as the first two adsorbed monolayers in the mesopores do not exhibit any caloric anomaly. The solidification and melting transformation affects only the pore condensate beyond approximately the second monolayer of the mesopores. Here, interfacial melting leads to a single peak in the specific-heat measurements. Homogeneous and heterogeneous freezing along with a delayering transition for partial fillings of the mesopores result in a caloric freezing anomaly similarly complex and dependent on the thermal history to that observed for argon in SBA-15. The axial propagation of the crystallization in pore space is more effective in the case of nitrogen than previously observed for argon, which we attribute to differences in the crystalline textures of the pore solids.

  1. One-step direct synthesis of mesoporous aluminosilicates Al-SBA-15 with cage-like macropores by using micrometer-sized aluminum balls

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ordered mesoporous aluminosilicate Al-SBA-15 materials with cage-like macropores have been synthesized by using micrometer-sized aluminum balls as an Al source,tetraethyl orthosilicate(TEOS) as a silica source,and triblock copolymer Pluronic P123 as a template.The resulting materials were fully characterized by XRD,N2 adsorption,SEM,TEM,ICP-AES,and 27Al MAS-NMR.The products(Al-SBA-15) have ordered two-dimensional(2-D) hexagonal mesostructures(space group p6mm).The calcined Al-SBA-15 materials exhibit disordered macropores with diameters of about 70―80 nm and ordered mesopores with a diameter of ~5 nm,a BET surface area of about 500 m2/g,Si/Al ratio of 40―80,and a ratio of tetrahedral Al to octahedral Al sites of about 2:1.This combination of properties gives these materials potential applications in areas such as adsorption,catalysis and separation.

  2. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica

    Directory of Open Access Journals (Sweden)

    Li G

    2012-11-01

    Full Text Available Zhouhua Wang,1,2 Bao Chen,1 Guilan Quan,1 Feng Li,1 Qiaoli Wu,1 Linghui Dian,1 Yixuan Dong,1 Ge Li,2 Chuanbin Wu1,21School of Pharmaceutical Sciences, 2Research and Development Center of Pharmaceutical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of ChinaBackground and methods: The aim of this study was to develop an immediate-release pellet formulation with improved drug dissolution and adsorption. Carbamazepine, a poorly water-soluble drug, was adsorbed into mesoporous silica (SBA-15-CBZ via a wetness impregnation method and then processed by extrusion/spheronization into pellets. Physicochemical characterization of the preparation was carried out by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, small-angle and wide-angle x-ray diffraction, and differential scanning calorimetry. Flowability and wettability of the drug-loaded silica powder were evaluated by bulk and tapped density and by the angle of repose and contact angle, respectively. The drug-loaded silica powder was formulated into pellets to improve flowability.Results: With maximum drug loading in SBA-15 matrices determined to be 20% wt, in vitro release studies demonstrated that the carbamazepine dissolution rate was notably improved from both the SBA-15 powder and the corresponding pellets as compared with the bulk drug. Correspondingly, the oral bioavailability of SBA-15-CBZ pellets was increased considerably by 1.57-fold in dogs (P < 0.05 compared with fast-release commercial carbamazepine tablets.Conclusion: Immediate-release carbamazepine pellets prepared from drug-loaded silica provide a feasible approach for development of a rapidly acting oral formulation for this poorly water-soluble drug and with better absorption.Keywords: ordered mesoporous silica, poorly water-soluble drug, carbamazepine, extrusion, spheronization, pellets, bioavailability

  3. 介孔SBA-15的制备及药物缓释性能研究%The Preparation of Mesoporous SBA-15 and Research on the Release Property

    Institute of Scientific and Technical Information of China (English)

    曹亮; 田喜强; 董艳萍; 李萍萍; 贺金鹏; 李志鹏

    2016-01-01

    采用P123/F127为模板剂,以正硅酸乙酯(TEOS)为硅源,合成介孔SBA-15,并通过真空浸渍法完成甲硝唑与SBA-15的组装,利用X射线衍射介孔SBA-15进行表征;研究组装于SBA-15上的甲硝唑在模拟胃液中的释放情况.实验结果表明:甲硝唑已组装于SBA-15孔道内,组装的甲硝唑在模拟胃液中缓释12h释放达70%,说明介孔SBA-15对甲硝唑有明显的缓释作用.

  4. Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: Effect of modification procedure

    Science.gov (United States)

    Tsoncheva, Tanya; Genova, Izabela; Paneva, Daniela; Dimitrov, Momtchil; Tsyntsarski, Boyko; Velinov, Nicolay; Ivanova, Radostina; Issa, Gloria; Kovacheva, Daniela; Budinova, Temenujka; Mitov, Ivan; Petrov, Narzislav

    2015-10-01

    Ordered mesoporous silica of SBA-15 type and activated carbon, prepared from waste biomass (peach stones), are used as host matrix of nanosized iron and cobalt particles. The effect of preparation procedure on the state of loaded nanoparticles is in the focus of investigation. The obtained materials are characterized by Boehm method, low temperature physisorption of nitrogen, XRD, UV-Vis, FTIR, Mossbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic behaviour of the samples is tested in methanol decomposition. The dispersion, oxidative state and catalytic behaviour of loaded cobalt and iron nanoparticles are successfully tuned both by the nature of porous support and the metal precursor used during the samples preparation. Facile effect of active phase deposition from aqueous solution of nitrate precursors is assumed for activated carbon support. For the silica based materials the catalytic activity could be significantly improved when cobalt acetylacetonate is used during the modification. The complex effect of pore topology and surface functionality of different supports on the active phase formation is discussed.

  5. Preparation and application progress of Al-SBA-15 mesoporous molecular sieves%Al-SBA-15介孔分子筛的制备及应用进展

    Institute of Scientific and Technical Information of China (English)

    徐晓宇; 沈健

    2014-01-01

    介孔分子筛SBA-15通过化学改性,可将一些官能团引入到其骨架中改善催化性能,其中以铝改性效果最好,铝改性后的SBA-15介孔分子筛的水热稳定性及酸性明显提高.介绍了Al-SBA-15介孔分子筛的合成及应用现状,展望了介孔分子筛Al-SBA-15未来的发展方向.

  6. 基于荧光抗体修饰介孔SBA-15的信号放大型免疫探针的制备%Preparation of Signal-amplifying Fluorescent Immune Probe Based on Antibody-modified Mesoporous SBA-15

    Institute of Scientific and Technical Information of China (English)

    赵月; 林洁华

    2011-01-01

    研制了一种基于异硫氰酸荧光素(FITC)标记荧光抗体修饰介孔SiO2的超灵敏标记探针,并成功用于检测人血清中甲胎蛋白(AFP)的含量.通过EDC/NHS交联剂将FITC标记抗体固定在氨基功能化的介孔SBA-15上,制备得到抗体修饰介孔SBA-15的信号放大型荧光免疫探针(FITC-Ab/SBA-15).将AFP单克隆抗体固定在纳米金/介孔SBA-15修饰的玻璃片上,然后植入流动注射体系,构建免疫检测流通池.基于夹心式免疫反应模式,结合流动注射分析技术,待测抗原与FITC-Ab/SBA-15顺序注射到免疫流通池.免疫反应结束后,FITC-Ab/SBA-15被引入到流通池的玻璃载体表面,进行荧光检测.介孔SBA-15纳米粒子由于具有较大的比表面积和交错的多维孔道,可以大大提高生物分子的的负载量,使得在每个微球上能够负载更多的FITC标记二抗,使荧光信号得到放大,拓宽了检测的线性范围.%A novel ultra-sensitive immunoassay probe was proposed based on fluorescein isothiocyanate (FITC) labeled antibody modified mesoporous materials. The prepared signal amplification label has been successfully used to detect the level of orfetoprotein (AFP) in human serum samples. The sensitive fluorescent antibody modified mesoporous SBA-15 (FITC-Ab·/SBA-15) was prepared by covalent-linking FITC-labeled antibody onto the mesoporous SBA-15 surface by the EDC/NHS. AFP monoclonal antibodies were embedded into the glass sheet modified with Au-NP /mesoporous SBA-15. Based on a sandwich immunoassay format combined with flow injection analysis, two mixtures of the sample antigens and corresponding FITC-Ab·/SBA-15 were introduced into the flow cell for on-line incubation. After the sandwich immunoassay, FITC-Ab* / SBA-15 was retained in the flow cell, and the fluorescent signal was recorded. More FITC-labeled antibody can be loaded based on the high surface area and large pore volume of meso-porous SBA-15 nanoparticles. Thus, the prepared

  7. Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15.

    Science.gov (United States)

    Kittaka, Shigeharu; Ishimaru, Shinji; Kuranishi, Miki; Matsuda, Tomoko; Yamaguchi, Toshio

    2006-07-21

    The effect of confinement on the solid-liquid phase transitions of water was studied by using DSC and FT-IR measurements. Enthalpy changes upon melting of frozen water in MCM-41 and SBA-15 were determined as a function of pore size and found to decrease with decreasing pore size. The melting point also decreased almost monotonically with a decrease in pore size. Analysis of the Gibbs-Thomson relation on the basis of the thermodynamic data showed that there were two stages of interfacial free energy change after the constant region, i.e., below a pore size of 6.0 nm: a gradual decrease down to 3.4 nm and another decrease after a small jump upward. This fact demonstrates that the simple Gibbs-Thomson relation, i.e., a linear relation between the melting point change and the inverse pore size, is limited to the range not far from the melting point of bulk water. FT-IR measurements suggest that the decrease in enthalpy change and interfacial free energy change with decreasing pore size reflect the similarity of the structures of both liquid and solid phases of water in smaller pores at lower temperatures.

  8. Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix combined with SBA-15 mesoporous silica.

    Science.gov (United States)

    Quan, Guilan; Wu, Qiaoli; Zhang, Xiaoxu; Zhan, Zhengwen; Zhou, Chan; Chen, Bao; Zhang, Zhengzan; Li, Ge; Pan, Xin; Wu, Chuanbin

    2016-05-01

    Mesoporous silica Santa Barbara amorphous-15 (SBA-15), derived from supermolecular assemblies of surfactant Pluronic(®) P123 with well-ordered 2-D hexagonal pores, was investigated as a reservoir to construct a novel solid self-emulsifying matrix for enhancing the oral bioavailability of fenofibrate (FNB). The emulsification rate and droplet size of a liquid self-emulsifying delivery system (SEDDS) were analyzed for optimization. SBA-15 was then added to the ethanol solution containing liquid SEDDS, and the obtained suspension changed into solid SEDDS matrix via solvent evaporation. The characterizations by SEM and XRD revealed that the solid matrix consisted of particles with smooth surface and FNB was completely transformed into molecular or amorphous state in the formulation. When introduced to aqueous media under gentle agitation, the solid matrix exhibited excellent self-emulsification properties and formed a uniform microemulsion with mean diameter of 117.35 ± 2.33 nm. The solid SEDDS matrix showed faster in vitro release rate than the raw powder and commercial capsule. The absorption of FNB delivered by solid SEDDS matrix was significantly improved in beagle dogs, and its Cmax and AUC values were about 8- and 4-fold greater than those of commercial products, respectively. In conclusion, SBA-15 emerged as a promising reservoir for SEDDS to enhance the bioavailability of poorly water-soluble drugs, which may provide a new strategy for advanced therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [School of Chemistry and Chemical Engineering, Jiangsu University, XueFu Road 201, Zhenjiang 212013 (China); Liu Zhanchao [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013 (China); Gao Jie; Dai Jiangdong; Han Juan; Wang Yun; Xie Jimin [School of Chemistry and Chemical Engineering, Jiangsu University, XueFu Road 201, Zhenjiang 212013 (China); Yan Yongsheng, E-mail: lyan@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, XueFu Road 201, Zhenjiang 212013 (China)

    2011-02-15

    Research highlights: {yields} The novel surface ion-imprinted polymer based on SBA-15 possessed high ordered mesoporous structure and the graft occurred on the surface of the inner channel. {yields} Kinetics parameters indicated the second-order mechanism and pore diffusion were dominant. {yields} Thermodynamic parameters indicated the adsorption process was spontaneous, exothermic and good affinity nature. {yields} Fast kinetics, high selectivity and satisfied adsorption capacity were obtained. - Abstract: In this study, a new Pb(II) ion-imprinted polymer (Pb(II)-IIP), which can be used for selective adsorption of Pb(II) from aqueous solutions, was successfully prepared based on the supported material of ordered mesoporous silica SBA-15 with the help of surface molecular imprinting technology. The prepared polymer was characterized by Fourier transmission infrared spectrometry, X-ray diffraction, transmission electron microscope and nitrogen adsorption-desorption isotherm. The results showed that the synthesized polymer possessed high ordered mesoporous structure. The adsorption behavior of the adsorbents for Pb(II) was investigated using batch experiments. The Pb(II)-IIP showed fast kinetics, high selectivity and satisfied adsorption capacity for adsorption of Pb(II). Under the optimum experimental condition, Pb(II) adsorption process over Pb(II)-IIP follows pseudo-second-order reaction kinetics and follows the Langmuir adsorption isotherm. In addition, the thermodynamic parameters calculated from the adsorption data suggested that the adsorption of Pb(II) onto Pb(II)-IIP was a spontaneous and exothermic nature of the process.

  10. Synthesis of sub-nanosized Pt particles on mesoporous SBA-15 material and its application to the CO oxidation reaction

    Science.gov (United States)

    Wu, Hung-Chi; Chen, Tse-Ching; Lai, Nien-Chu; Yang, Chia-Min; Wu, Jia-Huang; Chen, Yan-Chu; Lee, Jyh-Fu; Chen, Ching-Shiun

    2015-10-01

    In this work, we show that the size and shape of Pt nanoparticles in SBA-15 can be controlled through vacuum and air calcination. The vacuum-calcination/H2-reduction process is used to thermally treat a 0.2 wt% Pt4+/SBA-15 sample to obtain small 2D clusters and single atoms that can significantly increase Pt dispersion in SBA-15. Compared with thermal treatments involving air-calcination/H2-reduction, which result in ~4.6 nm rod-like Pt particles, vacuum-calcination/H2-reduction can dramatically reduce the size of the Pt species to approximately 0.5-0.8 nm. The Pt particles undergoing air-calcination/H2-reduction have poor conversion efficiency because the fraction of terrace sites, the major sites for CO oxidation, on the rod-like Pt particles is small. In contrast, a large amount of low-coordinated Pt sites associated with 2D Pt species and single Pt atoms in SBA-15 is effectively generated through the vacuum-calcination/H2-reduction process, which may facilitate CO adsorption and induce strong reactivity toward CO oxidation. We investigated the effect of vacuum-calcination/H2-reduction on the formation of tiny 2D clusters and single atoms by characterizing the particles, elucidating the mechanism of formation, determining the active sites for CO oxidation and measuring the heat of CO adsorption.

  11. A well-defined mesoporous amine silica surface via a selective treatment of SBA-15 with ammonia

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2012-01-01

    2D double-quantum 1H- 1H NMR unambiguously shows that the "isolated" Si-OH surface silanols of dehydroxylated SBA-15 are converted upon treatment with ammonia into single silylamine surface site Si-NH 2. The "gem" di-silanols (Si(OH) 2) remain intact. Treatment using HMDS produces (Si(OSiMe 3) 2) but leaves Si-NH 2 untouched. The resulting surface is hydrophobic and stable. © The Royal Society of Chemistry 2012.

  12. Catalytic application of an organosuperbasedenderon grafted on mesoporous SBA-15 and related palladium complex in the aerobic oxidation of alcohols

    Directory of Open Access Journals (Sweden)

    Hojat Veisi

    2014-02-01

    Full Text Available An efficient synthetic method for successful application of amine denderon on SBA-15 and related Pd (II complex has been developed by employing aerobic oxidation of alcohols as model reactions. The yields of the products were in the range from 75% to 92%. The catalyst can be readily recovered and reused at least 5 consecutive cycles without significant leaching and loss its catalytic activity.

  13. Nb Modified SBA-15 Mesoporous Molecular Sieve Catalytic Synthesis of Isoproyl Oleate%铌改性SBA-15介孔分子筛催化合成油酸异丙酯

    Institute of Scientific and Technical Information of China (English)

    魏田升; 沈健

    2009-01-01

    采用浸渍法合成Nb-SBA-15介孔分子筛.经XRD、BET等测试手段表明Nb-SBA-15介孔分子筛具有SBA的高度有序的二维六方介孔结构.对Nb-SBA-15催化合成油酸异丙酯进行研究,结果表明,Nb-SBA-15中Nb的质量分数为15%,醇酸物质的量比2.5∶1,反应温度170 ℃,反应时间4 h,酯化率达到64.24%.

  14. The synthesis and properties of Ce-Ni-SBA-15 mesoporous molecular sieves%Pt/Ce-Ni-SBA-15介孔分子筛的合成及性能研究

    Institute of Scientific and Technical Information of China (English)

    肖益鸿; 沈小女; 郑瑛; 魏可镁

    2007-01-01

    利用微波合成法将Ce和Ni引入到SBA-15分子筛骨架中.通过X射线粉末衍射(XRD) 、傅立叶变换红外(FT-IR) 、紫外可见漫反射(DRS)、透射电镜(TEM)和N2的等温吸附-脱附法等手段进行表征.结果表明,Ce和Ni物种进入SBA-15分子筛的骨架.将它作为催化剂载体,负载上Pt,以CO氧化为模型反应,考查催化剂的活性.结果表明,Pt/Ce-Ni-SBA-15催化剂的最低完全转化温度为227℃,与Pt/SBA-15相比,最低完全转化温度降低了39℃.说明了骨架掺杂后的Ce-Ni-SBA-15SBA-15相比更有望成为更优良的催化剂载体.

  15. 介孔分子筛SiW12/SBA-15的制备及性能研究%SYNTHESIS AND PROPERTIES OF MESOPOROUS MOLECULAR SIEVE SiW12/SBA-15

    Institute of Scientific and Technical Information of China (English)

    武宝萍; 许前会; 袁兴东; 赵跃强

    2009-01-01

    采用后合成法制备了SiW12/SBA-15催化剂,并用X射线衍射、N2吸附-脱咐法、热失重法分析催化剂的物理性能.结果表明, SiW12/SBA-15仍保持了介孔分子筛SBA-15的晶体结构,比表面积和孔径分别为589 m2/g和6.1 nm,且SiW12/SBA-15催化剂在400~450 ℃温度区失去结晶水,在650~700 ℃范围内SiW12的Keggin结构破坏.选用月桂酸和乙醇的酯化反应考察SiW12/SBA-15的催化活性和再生性能.SiW12/SBA-15具有良好的催化活性和再生性能,得到最佳的酯化反应条件为:反应温度90 ℃、催化剂质量分数1%、酸醇摩尔比1:2.5、反应时间5 h.

  16. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15.

    Science.gov (United States)

    Bautista, Luis Fernando; Morales, Gabriel; Sanz, Raquel

    2015-10-01

    A covalent immobilization method based on glutaraldehyde and amino-functionalized SBA-15 supports has been successfully applied to covalently and stably immobilize laccase from Trametes versicolor. The resultant biocatalysts displayed high incorporation yields of enzyme and led to excellent biodegradation rates of selected HPAs models, i.e. naphthalene, phenanthrene and anthracene, in water. The nature of the hydrocarbon chain accompanying the amino group has been shown as determinant for the immobilization as well as for the activity and reusability of the materials. Thus, alkyl moieties displayed higher enzyme loadings than phenyl moieties, being more adequate the larger n-butyl tethering residue likely due to its higher mobility. Using the aminobutyl-based laccase-SBA-15, 82%, 73%, and 55% conversion of naphthalene, phenanthrene and anthracene, respectively, were achieved after 48 h, very close to the values obtained with free laccase under the same reaction conditions. On the other hand, aminopropyl-based laccase-SBA-15 biocatalysts displayed the best reusability properties, retaining higher activity after four repeated uses than the corresponding aminobutyl-based materials.

  17. Preparation of Mesoporous Silica SBA-15/Hyperbranched Polyurethane Hybrids and Its Structure and Properties%介孔SBA-15/超支化聚氨酯杂化体的制备及结构性能研究

    Institute of Scientific and Technical Information of China (English)

    安晴晴; 胡斯骁; 王燕萍; 王依民

    2008-01-01

    对介孔SBA-15表面氨基化,以氨基连接超支化聚氨酯(HPU),得到SBA-15/HPU杂化体.对该杂化体进行XRD,FTIR,SEM,TEM,BET,TGA等测试,以研究其形貌及结构特征.测试证明超支化聚氨酯已成功与SBA-15进行杂化,有机相质量分数为30%.;且超支化聚氨酯的接枝并未破坏SBA-15的原有结构,杂化体的六方孔道仍高度有序,但其孔容量、孔径、比表面积有一定程度的减少.大量末端基的引入有效增加了SBA-15的化学反应活性,为材料的进一步反应和利用打下基础.

  18. Epoxidation of α-Pinene on Tin-Modified Mesoporous Molecular Sieve SBA-15%SBA-15负载金属锡催化α-蒎烯环氧化反应

    Institute of Scientific and Technical Information of China (English)

    刘慧青; 吴春华; 陈保森; 高明福

    2016-01-01

    采用水热合成法,以P123为模板剂制备介孔材料SBA-15,然后通过SnC14·5H2O浸渍负载及硫酸浸渍,进一步合成介孔催化剂SO:-/Sn/SBA-15.通过IR、TG、SEM和TEM进行袁征,并将负载型介孔分子筛SO24-/Sn/SBA-15用于催化α-蒎烯的环氧化反应.讨论n(SBA-15):n(SnC14·5H2O),催化剂加入量,n(环氧化试剂过氧乙酸):n(原料)对环氧化产物得率的影响.结果表明:n(SBA-15):n(SnC14·5H2O)为5:1,催化剂加入量为2.5%,n(CH3COOOH):n(α-蒎烯)=1.2:1.0时,α-蒎烯的转化率为95.4%,产物2,3-环氧蒎烷的得率为88.82%.

  19. Synthesis and Characterization of Mesoporous Molecular Sieve SBA-15 with Double-Pore Structure%双重孔结构介孔分子筛SBA-15的合成与表征

    Institute of Scientific and Technical Information of China (English)

    刁香

    2010-01-01

    介绍了采用溶胶-凝胶法制备介孔分子筛SBA-15的方法;用氮吸附BET法测定介孔分子筛SBA-15比表面积、孔容及孔径分布,用高分辨透射电子显微镜JEM2010观察介孔分子筛SBA-15颗粒形貌及孔道结构.结果表明,合成的介孔分子筛SBA-15具有较大的比表面积和孔容,并具有双重孔结构,小孔孔径为3.8 nm,大孔孔径为10.0~13.0 nm;介孔分子筛SBA-15颗粒具有规则外形,孔道结构有序.

  20. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  1. Formation of Periodically Arranged Nanobubbles in Mesopores: Capillary Bridge Formation and Cavitation during Sorption and Solidification in an Hierarchical Porous SBA-15 Matrix.

    Science.gov (United States)

    Hofmann, Tommy; Wallacher, Dirk; Perlich, Jan; Koyiloth Vayalil, Sarathlal; Huber, Patrick

    2016-03-29

    We report synchrotron-based small-angle X-ray scattering experiments on a template-grown porous silica matrix (Santa Barbara Amorphous-15) upon in situ sorption of fluorinated pentane C5F12 along with volumetric gas sorption isotherm measurements. Within the mean-field model of Saam and Cole for vapor condensation in cylindrical pores, a nitrogen and C5F12 sorption isotherm is well described by a bimodal pore radius distribution dominated by meso- and micropores with 3.4 and 1.6 nm mean radius, respectively. In the scattering experiments, two different periodicities become evident. One of them (d1 = 11.5 nm) reflects the next nearest neighbor distance in a 2D-hexagonal lattice of tubular mesopores. A second periodicity (d2 = 11.4 nm) found during in situ sorption and freezing experiments is traced back to a superstructure along the cylindrical mesopores. It is compatible with periodic pore corrugations found in electron tomograms of empty SBA-15 by Gommes et al. ( Chem. Mater. 2009, 21, 1311 - 1317). A Rayleigh-Plateau instability occurring at the cylindrical blockcopolymer micelles characteristic of the SBA-15 templating process quantitatively accounts for the superstructure and thus the spatial periodicity of the pore wall corrugation. The consequences of this peculiar morphological feature on the spatial arrangement of C5F12, in particular the formation of periodically arranged nanobubbles (or voids) upon adsorption, desorption, and freezing of liquids, are discussed in terms of capillary bridge formation and cavitation in tubular but periodically corrugated pores.

  2. A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and in Vivo.

    Science.gov (United States)

    Choi, Youngjin; Lee, Jung Eun; Lee, Jung Heon; Jeong, Ji Hoon; Kim, Jaeyun

    2015-06-16

    Mesoporous silica has received considerable attention as a drug delivery vehicle because of its large surface area and large pore volume for loading drugs and large biomolecules. Recently, mesoporous silica microparticles have shown potential as a three-dimensional vaccine platform for modulating dendritic cells via spontaneous assembly of microparticles in a specific region after subcutaneous injection. For further in vivo applications, the biodegradation behavior of mesoporous silica microparticles must be studied and known. Until now, most biodegradation studies have focused on mesoporous silica nanoparticles (MSNs); here, we report the biodegradation of hexagonally ordered mesoporous silica, SBA-15, with micrometer-sized lengths (∼32 μm with a high aspect ratio). The degradation of SBA-15 microparticles was investigated in simulated body fluid (SBF) and in mice by analyzing the structural change over time. SBA-15 microparticles were found to degrade in SBF and in vivo. The erosion of SBA-15 under biological conditions led to a loss of the hysteresis loop in the nitrogen adsorption/desorption isotherm and fingerprint peaks in small-angle X-ray scattering, specifically indicating a degradation of ordered mesoporous structure. Via comparison to previous results of degradation of MSNs in SBF, SBA-15 microparticles degraded faster than MCM-41 nanoparticles presumably because SBA-15 microparticles have a pore size (∼8 nm) and a pore volume larger than those of MCM-41 mesoporous silica. The surface functional groups, the residual amounts of organic templates, and the hydrothermal treatment during the synthesis could affect the rate of degradation of SBA-15. In in vivo testing, previous studies focused on the evaluation of toxicity of mesoporous silica particles in various organs. In contrast, we studied the change in the physical properties of SBA-15 microparticles depending on the duration after subcutaneous injection. The pristine SBA-15 microparticles injected

  3. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    Science.gov (United States)

    Laskowski, Lukasz; Laskowska, Magdalena; Jelonkiewicz, Jerzy; Dulski, Mateusz; Wojtyniak, Marcin; Fitta, Magdalena; Balanda, Maria

    2016-09-01

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined.

  4. (NH4)2SiF6预处理改善SBA-15介孔材料的水热稳定性%Improving the Hydrothermal Stability of Mesoporous Silica SBA-15by Pre-treatment with (NH4)2SiF6

    Institute of Scientific and Technical Information of China (English)

    宋明娟; 邹成龙; 牛国兴; 赵东元

    2012-01-01

    (NH4)2SiF6预处理可对SBA-15介孔材料的表面缺陷进行补硅修正以及表面疏水化,从而明显改善SBA-15材料的水热稳定性.结果表明,用摩尔分数为5%的(NH4)2SiF6水溶液,按引入1%的SiO2计量对SBA-15进行处理后,其水热稳定性明显改善,在100℃沸水中处理14d,或在800℃下用100%水蒸气处理12h后,均保持较好的介观有序度、形貌及六方孔道结构,比表面积分别高达310和213 m2/g,但(NH4)2SiF6处理量过高,SBA-15水热稳定性反而下降.%The hydrothermal stability of the mesoporous silica material SBA-15 was improved by a pre-treatment of 5 mol% ammonium hexafluorosilicate solution with 1 mol% SiO2 ratio of (NH4)2SiF6 and SBA-15. The modified SBA-15 kept its ordered meso-structure well even when kept under boiling water for 14 d or 100 % H2O stream at 800 ℃ for 12 h, and still had BET surface areas as high as 310 and 213 m2/g, respectively, after these treatments. The possible reasons for the stabilization were that the surface defects of SBA-15 were partially repaired by silicon insertion and some silicon hydroxyls were replaced by F- ions. Larger amounts of ammonium hexafluorosilicate did not give more stabilization.

  5. Silylation of Alcohols and Phenols with Hexamethyldisilazane over Highly Reusable Propyl Sulfonic Acid Functionalized Nanostructured SBA-15

    Institute of Scientific and Technical Information of China (English)

    Daryoush ZAREYEE; Rezvaneh ASGHARI; Mohammad A. KHALILZADEH

    2011-01-01

    Various alcohols and phenols were trimethylsilylated in excellent yields using hexamethyldisilazane in the presence of catalytic amounts of environmentally friendly,hydrophobic,highly thermal stable,and completely heterogeneous sulfonic acid functionalized mesostructured SBA-15 in dichloromethane at ambient temperature.Primary,bulky secondary,tertiary,and phenolic hydroxyl functional groups were transformed to the corresponding trimethylsilyl ethers in excellent yields.The simple experimental procedure was accompanied by easy recovery and the catalyst was reusable (at least 18 reaction cycles); these are attractive features of this protocol.

  6. Application of porphyrin modified SBA-15 in adsorption of lead ions from aqueous media

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Asgari

    2015-09-01

    Full Text Available Mesoporous silica SBA-15 was synthesized using P123 as surfactant and functionalized with (3-chloropropyl triethoxysilane. For the first time, the composite of THPP-SBA-15 was prepared using incorporation of tetrakis(4-hydroxyphenylporphyrin in functionalized SBA-15. The materials were characterized by BET, SEM, XRD, FT-IR, DRS, and UV–Vis spectroscopy techniques. The synthesized composite was employed as adsorbent of heavy metal ion (Pb2+ from water at room temperature. Results indicated that the presence of porphyrin in silica significantly increased heavy metal ion adsorption. The maximum adsorption capacity (qmax of THPP-SBA-15 for Pb2+ was found to be 134 mg/g.

  7. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  8. Improvement of dissolution rate of piroxicam by assembling into SBA-15 mesoporous silica%有序介孔材料SBA-15提高难溶性药物吡咯昔康溶出度的研究

    Institute of Scientific and Technical Information of China (English)

    付廷明; 乐康; 陆瑾; 王天瑶; 郭立玮

    2010-01-01

    目的 采用与介孔材料复合的方式提高难溶性药物吡咯昔康的溶出度.方法 通过X射线衍射、氮气吸附-脱附曲线、热分析及溶出度实验,观察吡咯昔康负载到SBA-15的表面情况.结果 吡咯昔康溶解后自组装在介孔材料SBA-15的表面,紫外吸收与热重分析表明负载量为17%;X射线衍射、氮气吸附-脱附曲线、热分析及溶出度实验表明:吡咯昔康以极小非晶的形式负载在SBA-15的表面,负载后吡咯昔康的溶出度提高了144%.结论 本研究为提高难溶性药物的溶出度提供了一条新途径.

  9. Highly Dispersed Gold Nanoparticles Supported on SBA-15 for Vapor Phase Aerobic Oxidation of Benzyl Alcohol.

    Science.gov (United States)

    Kumar, Ashish; Sreedhar, Bojja; Chary, Komandur V R

    2015-02-01

    Gold nanoparticles supported on SBA-15 are prepared by homogenous deposition-precipitation method (HDP) using urea as the precipitating agent. The structural features of the synthesized catalysts were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption (BET), pore size distribution (PSD), CO chemisorption and X-ray photoelectron spectroscopy (XPS). The catalytic activity and stability of the Au/SBA-15 catalysts are investigated during the vapor phase aerobic oxidation of benzyl alcohol. The BJH pore size distribution results of SBA-15 support and Au/SBA-15 catalysts reveals that the formation of mesoporous structure in all the samples. TEM results suggest that Au nanoparticles are highly dispersed over SBA-15 and long range order of hexagonal mesopores of SBA-15 is well retained even after the deposition of Au metallic nanoparticles. XPS study reveals the formation of Au (0) after chemical reduction by NaBH4. The particle size measured from CO-chemisorption and TEM analysis are well correlated with the TOF values of the reaction. Au/SBA-1 5 catalysts are found to show higher activity compare to Au/TiO2 and Au/MgO catalysts during the vapor phase oxidation of benzyl alcohol. The catalytic functionality are well substantiated with particle size measured from TEM. The crystallite size of Au in both fresh and spent catalysts were measured from X-ray diffraction.

  10. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  11. Synthesis, Characterization and Catalytic Performance of Copper( Ⅱ )-8-quinolinol Functionalized SBA-15%8-羟基喹啉铜(Ⅱ)功能化SBA-15的制备、表征及催化性质

    Institute of Scientific and Technical Information of China (English)

    王虹苏; 黄家辉; 徐臣; 徐玲; 宋科; 徐海燕; 王竹倩; 阚秋斌

    2007-01-01

    利用3-氨丙基功能化的介孔SBA-15(APS-SBA-15)作为载体, 通过C-N共价键将8-羟基喹啉铜(Ⅱ)固定到APS-SBA-15孔道中, 制备了8-羟基喹啉铜(Ⅱ)功能化的SBA-15催化剂[Cu(Ⅱ)-Q-APS-SBA-15], 并将其用于以质量分数30%的过氧化氢为氧化剂的苯酚羟化反应中. 结果表明, Cu(Ⅱ)-Q-APS-SBA-15呈现出较高的苯酚转化率和苯二酚选择性.

  12. Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol.

    Science.gov (United States)

    Bagheri Hashkavayi, Ayemeh; Raoof, Jahan Bakhsh; Azimi, Razieh; Ojani, Reza

    2016-04-01

    A highly sensitive and low-cost electrochemical aptasensor was developed for the determination of chloramphenicol (CAP). The system was based on a CAP-binding aptamer, a molecular recognition element, and 1,4-diazabicyclo[2.2.2]octane (DABCO)-supported mesoporous silica SBA-15 on the surface of a screen-printed graphite electrode for formation of dendritic gold nanostructures and improving the performance and conductivity of the biosensor. Hemin has been applied as an electrochemical indicator which interacted with the guanine bases of the aptamer. In the absence of CAP, hemin binds to the aptamer and produces a weak differential pulse voltammetric (DPV) signal. The presence of CAP led to stabilization of the folded aptamer, which generated an amplified DPV signal. The peak current of hemin increased linearly with the concentration of CAP. Under optimal conditions, two linear ranges were obtained from 0.03 to 0.15 μM and 0.15 to 7.0 μM, respectively, and the detection limit was 4.0 nM. The prepared biosensor has good selectivity against other non-target drugs. Thus, the sensor could provide a promising platform for the fabrication of aptasensors. The feasibility of using this aptasensor was demonstrated by determination of CAP in a human blood serum sample.

  13. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.

    Science.gov (United States)

    Karimi, Babak; Farhangi, Elham; Vali, Hojatollah; Vahdati, Saleh

    2014-09-01

    The nitroxyl radical 3-oxo-9-azabicyclo [3.3.1]nonane-N-oxyl (3-oxo-ABNO) has been prepared using a simple protocol. This organocatalyst is found to be an efficient catalyst for the aerobic oxidation of a wide variety of alcohols under metal-free conditions. In addition, the preparation and characterization of a supported version of 3-oxo-ABNO on ordered mesoporous silica SBA-15 (SABNO) is described for the first time. The catalyst has been characterized using several techniques including simultaneous thermal analysis (STA), transmission electron microscopy (TEM), and nitrogen sorption analysis. This catalyst exhibits catalytic performance comparable to its homogeneous analogue and much superior catalytic activity in comparison with (2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO) for the aerobic oxidation of almost the same range of alcohols under identical reaction conditions. It is also found that SABNO can be conveniently recovered and reused at least 12 times without significant effect on its catalytic efficiency.

  14. Facile synthesis of gold nanoparticles on propylamine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria

    Science.gov (United States)

    Bhuyan, Diganta; Gogoi, Animesh; Saikia, Mrinal; Saikia, Ratul; Saikia, Lakshi

    2015-07-01

    The facile synthesis of an SBA-15-pr-+NH3.Au0 nano-hybrid material by spontaneous autoreduction of aqueous chloroaurate anions on propylamine functionalized SBA-15 was successfully demonstrated. The as-synthesized SBA-15-pr-+NH3.Au0 nano-hybrid material was well characterized using low and wide angle x-ray diffraction (XRD), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy and atomic absorption spectroscopy (AAS). The activity of the nano-hybrid material as a potent bactericidal agent was successfully tested against Gram positive/negative bacteria viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The colony killing percentage of Gram positive bacteria was found to be higher than Gram negative bacteria due to the stronger electrostatic interaction between the positively-charged amine functionality of SBA-15 and the negatively charged functionality of the bacterial cell wall.

  15. Propene epoxidation over Au/Ti-SBA-15 catalysts

    NARCIS (Netherlands)

    Sacaliuc, E.; Beale, A.M.; Weckhuysen, B.M.; Nijhuis, T.A.

    2007-01-01

    Highly dispersed gold nanoparticles were synthesized within the channels of a mesoporous Ti-SBA-15 support, followed by thorough catalyst characterization and testing in the selective epoxidation of propene to propene oxide. For this purpose, two series of Ti-SBA-15 materials differing in their Ti

  16. Propene epoxidation over Au/Ti-SBA-15 catalysts

    NARCIS (Netherlands)

    Sacaliuc, E.; Beale, A.M.; Weckhuysen, B.M.; Nijhuis, T.A.

    2007-01-01

    Highly dispersed gold nanoparticles were synthesized within the channels of a mesoporous Ti-SBA-15 support, followed by thorough catalyst characterization and testing in the selective epoxidation of propene to propene oxide. For this purpose, two series of Ti-SBA-15 materials differing in their Ti c

  17. Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yunqiang; Wang Chunfeng [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China); Zhou Guowei, E-mail: guoweizhou@hotmail.com [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China); Wu Yue; Chen Jing [Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry, Shandong Polytechnic University, Jinan 250353, Shandong (China)

    2012-06-15

    Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N{sub 2} adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.

  18. A Dual-Functional [SBA-15/Fe3O4/P(N-iPAAm] Hybrid System as a Potential Nanoplatform for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Andreza de Sousa

    2014-01-01

    Full Text Available The synthesis strategy of a multifunctional system of [SBA-15/Fe3O4/P(N-iPAAm] hybrids of interest for bioapplications was explored. Magnetite nanoparticles coated by mesoporous silica were prepared by an alternative chemical route using neutral surfactant and without the application of any functionalization method. Monomer adsorption followed by in situ polymerization initiated by a radical was the adopted procedure to incorporate the hydrogel into the pore channels of silica nanocomposite. Characterization of the materials was carried out by using X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, N2 adsorption, transmission electron microscopy (TEM, and Temperature programmed reduction studies (TPR. Their application as drug delivery system using atenolol as a model drug to assess the influence of the application of low frequency alternating magnetic fields on drug release was evaluated. The structural characteristics of the magnetic hybrid nanocomposite, including the effect of the swelling behavior on heating by the application of an alternating magnetic field, are presented and discussed.

  19. 表面包覆TiO2材料的制备及光催化降解染料废水%Preparation of Nano Titania Supported on Mesoporous SBA-15 and Photocatalytic Activity of Dye Wastewater

    Institute of Scientific and Technical Information of China (English)

    关卫省; 赵欢; 霍鹏伟; 杨莉; 李宇亮; 李姣

    2013-01-01

    With mesoporous silica SBA-15 as a carrier of catalyst, sol-gel method was used to clad SBA-15 with hydrolytic tetrabutyl titanate. The composites of different titania contents had 2D hexagon mesoporous structure, and the composites with various titania contents were prepared and characterized by X-ray diffraction (XRD), scanning electron microscope techniques (SEM), Fourier transform infrared spectroscopy and diffusive reflective UV-Vis spectroscopy. SEM results showed that nano titania has been equably supported on mesoporous SBA-15. UV-Vis spectrum indicated that the sample has good absorption ability. XRD results showed that titania phase is a mixed crystal of anatase and rutile. The addition of mesoporous SBA -15 can prevent the crystal grain from growing. The photocatalytic activities of TiO2 /SBA -15 were evaluated by photocatalytic degradation of methylene blue, and photocatalysis effect of compound materials by various calcining temperature, carrier amount and substrate solution concentration factors was studied. Photocatalytic activity of the recycling composite materials was discussed. Experimental results showed that the photocatalytic activity of compound materials was higher than P-25 pure titania nanoparticles. The composites can be reused and its mesoporous structure was not easy to collapse.%以介孔硅基分子筛SBA-15为载体,采用溶胶-凝胶法在SBA-15分子筛表面包覆TiO2.制备了不同TiO2含量的链状二维六方形介孔复合材料.采用电子显微镜扫描仪、X射线衍射仪、傅立叶红外光谱、紫外-固体漫反射等技术对复合材料进行表征.SEM结果表明样品具有良好的包覆效果,UV-Vis光谱结果表明样品具有较好的光吸收能力.XRD结果表明复合材料表面包覆的TiO2为锐钛矿和金红石的混合晶型,随载体用量的增加TiO2的粒径逐渐减小.以光催化降解亚甲基蓝为目标,研究复合材料在煅烧温度、载体用量、底物溶液初始浓度等影

  20. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15

    Science.gov (United States)

    The goal of this study is to investigate the ability of functionalized silicas to detoxify aqueous solutions including apple juice contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propanethiol groups, a func...

  1. The utilization of the mesoporous Ti-SBA-15 catalyst in the epoxidation of allyl alcohol to glycidol and diglycidyl ether in the water medium

    Directory of Open Access Journals (Sweden)

    Wróblewska Agnieszka

    2015-12-01

    Full Text Available This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol% at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol% at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.

  2. Preparation, characterization and catalytic activity of mesoporous Ag{sub 2}HPW{sub 12}O{sub 40}/SBA-15 and Ag{sub 2}HPW{sub 12}O{sub 40}/TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Holclajtner-Antunović, Ivanka; Bajuk-Bogdanović, Danica [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Popa, Alexandru; Sasca, Viorel [Institute of Chemistry Timişoara, Bl. Mihail Viteazul 24, 300223 Timişoara (Romania); Nedić Vasiljević, Bojana; Rakić, Aleksandra [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Uskoković-Marković, Snežana, E-mail: snezaum@pharmacy.bg.ac.rs [Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade (Serbia)

    2015-06-15

    The current study reports the synthesis and characterization of tungstophosphoric acid and its acid silver salt supported on mesoporous molecular sieve SBA-15 and TiO{sub 2}. Because silver salts are partially insoluble, the SBA-15 and TiO{sub 2} supported silver acid salts were prepared by two step sequential impregnations. The synthesized catalysts were characterized by various physicochemical methods such as Fourier transform infrared and Raman spectroscopy, differential thermal analysis, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and nitrogen physisorption at −196 °C. It is observed that both active phases keep their Keggin-type structure after being supported on the supports while their specific surface area is considerably increased by deposition on mesoporous substrates. The results also indicated that the synthesized catalysts retained the morphology specific for each of the supports, while their thermal stability is increased in comparison with their active phases. The catalytic activity of the prepared catalysts was probed for the vapor phase dehydration of ethanol at 300 °C. Results revealed that all the catalysts show considerably improved catalytic activity in comparison to the bulk active phases. - Highlights: • SBA-15 and TiO{sub 2} supported Ag{sub 2}HPW{sub 12}O{sub 40} and H{sub 3}PW{sub 12}O{sub 40} were prepared. • Active phases are uniformly dispersed without changing morphology of the substrates. • Composites are more thermally stable than active phases. • Composites exhibit high catalytic activity for gas phase ethanol dehydration.

  3. Preparation, characterization, and luminescence of (SBA-15) immobilized pepsin

    Science.gov (United States)

    Zhai, Qing-Zhou; Sun, Si-Jia

    2014-12-01

    SBA-15 mesoporous silica was synthesized by hydrothermal method and its surface was methylated by treatment with methyltrimethoxysilane. Pepsin was immobilized on the obtained materials giving host-guest composite materials (SBA-15)-pepsin and (methylated SBA-15)-pepsin. The optimum conditions for preparation of these materials were established. Methylated SBA-15 (M-SBA-15) has improved immobilization efficiency of enzyme compared to initial SBA-15 silica. It was shown that with the gradual increase of NaCl solution ionic strength the immobilized amount of enzyme was reduced. Powder X-ray diffraction and Fourier transform infrared spectroscopy showed that the host frameworks in the prepared host-guest composite materials are intact and the ordered structure was retained. Scanning electron microscopic studies revealed fibrous morphologic characteristics of the SBA-15 and the immobilized pepsin composite materials. The average particle diameter of (SBA-15)-pepsin composite was 338 ± 10 and 343 ± 10 nm for (M-SBA-15)-pepsin. The low temperature N2 adsorption-desorption study at 77 K showed that the pore sizes and specific surface areas of the host-guest composite materials were smaller than those before the introduction of the enzyme, suggesting that the immobilized enzyme occupied a definite position in the host material pore channels. The UV-vis solid diffuse reflectance and luminescence studies showed that the enzyme was successfully immobilized on to the host material and that after the immobilization of enzyme on SBA-15 the conformation of pepsin macromolecule has not been changed.

  4. Surface Modification of the Mesoporous Silica and Its Properties of Absorption and Release for Jasmine Essence%介孔材料SBA-15的改性及其对茉莉香精的吸附和缓释性能

    Institute of Scientific and Technical Information of China (English)

    李莎; 冯新星; 刘今强

    2011-01-01

    Mesoporous SBA-15 is surface modified with the silicon coupling reagent KH-570. Structural morphology and adsorption properties for jasmine essence of modified SBA-15 are characterized and investigated by method of particle size analysis, TEM, FTIR, TG and UV spectrophotometer. The results indicate that the dispersibility and lipophilicity of modified SBA-15 are greatly improved, modified SBA-15 has a high loadage for jasmine essence in alcohol, which increases from previous 64. 95% to 85. 42%, and has the excellent release properties.%以硅烷偶联剂KH-570对介孔材料SBA-15进行表面改性,通过粒径分析、TEM、FTIR、TG以及紫外-可见分光光度法等方法,表征和研究了SBA-15改性后的结构形态及其对茉莉香精的吸附性能.结果表明:经过硅烷偶联剂改性后的SBA-15,分散性和亲油性都有了较大的提高,其在乙醇中对茉莉香精的装载量由改性前的64.95%提高到改性后的85.42%,且缓释性能良好.

  5. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-11-01

    Full Text Available A simple and clean one-pot method for the preparation of 7-amino-2,4-dioxo-5-aryl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carbonitrile derivatives using 6-amino uracil, various aromatic aldehydes and malononitrile in the presence of sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H is described. Some of synthesized pyrido[2,3-d]pyrimidines showed antimicrobial activities against some fungi and gram positive and negative bacteria.

  6. Effect of sulfuric acid on textural properties and catalytic performance of ruthenium-containing ordered mesoporous carbon prepared via a direct RuCl3/SBA-15 hard templated method.

    Science.gov (United States)

    Lan, Guojun; Tang, Haodong; Liu, Huazhang; Ni, Jun; Li, Ying

    2014-09-01

    Ruthenium-containing ordered mesoporous carbon (Ru-OMC) catalysts with highly dispersed Ru nanoparticles semi-embedded in carbon framework were prepared via a direct RuCl3/SBA-15 hard templated method. The effect of sulfuric acid on the texture structure and catalytic performance of Ru-OMC were studied. The status of Ru nanoparticles and mesoporous structure of Ru-OMC catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), nitrogen sorption, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and CO chemisorption techniques. The addition of appropriate amount of sulfuric acid is necessary to improve the ordered mesoporous structure of Ru-OMC catalysts. The framework of carbon structure shrinks with the increase in sulfur acid contents, which is proved by a slight decrease in surface area and increase in pore diameters for Ru-OMC with different sulfur contents. The turnover frequency (TOF) for Ru-OMC reaches the highest up to 3.98 s(-1) in benzene hydrogenation with optimized sulfur acid content of 0.08 mmol/g sucrose.

  7. Porosity and surface properites of SBA-15 with grafted PNIPAAM

    DEFF Research Database (Denmark)

    Reichhardt, N. V.; Nylander, T.; Klösgen, B.;

    2011-01-01

    Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface...

  8. 三丁基锡/SBA-15功能配合物的合成、表征及对Friedel-Crafts反应的选择性催化%Synthesis, Characterization and Catalytic Performance Toward the Friedel-Crafts Acylation of Tributyltin Functionalized SBA-15

    Institute of Scientific and Technical Information of China (English)

    荆涛; 覃志乐; 宋伟明; 赵云鹏; 邓启刚

    2013-01-01

    将三丁基氯化锡与SBA-15介孔分子筛在N2气气氛中进行回流反应,得到有机锡无机配合物(C4H9)3Sn-O-SBA-15[Bu3SnS].利用X射线衍射(XRD)、透射电子显微镜(TEM)、氮气吸附脱附、固体核磁(NMR)和吡啶吸附脱附红外光谱分析(Py-IR)等方法对产物的组成、结构和性质进行了表征.结果表明,产物Bu3 SnS具有高度有序的六方介孔结构,与SBA-15相比,Bu3 SnS比表面积、孔容和孔径变小,酸性增强.Bu3 SnS对苯甲醚Friedel-Crafts酰基化反应具有优异的催化性能,当反应温度为130℃,n(苯甲醚)∶n(苯甲酰氯)=1.0∶2.0,w(cat) =6%(相对于苯甲醚用量),反应时间为5h,苯甲醚的转化率达到76.0%,对甲氧基二苯酮(p-MBP)选择性达到97.8%.%The organotin inorganic complexes (C4H9) 3Sn-O-SBA-15 [Bu3SnS] were successfully synthesized by grafting tributyhin on SBA-15 mesoporous molecular sieves in a nitrogen atmosphere.The composition,structure and properties of the samples were characterized by X-ray diffraction (XRD),transmittance electron microscopy(TEM),Hammett indicator method,N2 adsorption-desorption,solid nuclear magnetic resonance (NMR),in-situ pyridine infrared spectroscopy(Py-IR) and so on.The results show that the hexagonal P6mm mesostructure of parent siliceous SBA-15 is maintained in Bu3SnS.The surface areas,proe size and volume of Bu3 SnS are all deceased with the increase of acidity,compared to those of SBA-15.Friedel-Crafts acylation of anisole and benzoyl chloride can be efficiently catalyzed in the presence of Bu3 SnS.The reaction conversion of anisole and the selectivity ofp-benzoylanisole are 76.0% and 97.8%,respectively,when the molar ratio of anisole to benzoyl chloride is 0.5∶ 1.0,the amount of catalyst is 6%,the reaction temperature is 130 ℃ and the reaction time is 5 h.

  9. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究%Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15

    Institute of Scientific and Technical Information of China (English)

    黄丛亮; 冯妍卉; 张欣欣; 李威; 杨穆; 李静; 王戈

    2012-01-01

    Conductive polymers polyaniline(PANI) and polypyrrole(PPy) loaded mesoporous silica(SBA-15) composites are prepared and characterized.The one-dimensional reference bar method and the relevant devices to measure the thermal conductivity are introduced and established.The equivalent pore diameter is proposed to characterize the mesostructures of conductive polymers polyaniline(PANI) and polypyrrole(PPy) in PANI/SBA-15 and PPy/SBA-15 composites.The effects of the equivalent and the measurement pore diameters on thermal conductivities of PANI/SBA-15 and PPy/SBA-15 composites are analyzed.The result shows that thermal conductivities of PANI/SBA-15 and PPy/SBA-15 are higher than that of the substrate SBA-15;the thermal conductivity of PANI/SBA-15 is higher than that of PPy/SBA-15;loading of PANI and PPy in pores of PANI/SBA-15 and PPy/SBA-15 composites is more effective than loading outside of pores for improving the thermal conductivities of PANI/SBA-15 and PPy/SBA-15 composites.%本文首先制备并表征了介孔二氧化硅SBA-15、填充导电聚合物的复合材料PANI/SBA-15和复合材料PPy/SBA-15,并建立双流计实验台开展了材料压片情况下的热导率研究.在测量得到复合材料热导率的基础上,引入当量孔径,结合测量孔径对PANI/SBA-15和PPy/SBA-15复合材料热导率随填充量的变化进行了定性分析.分析表明:PANI/SBA-15和PPy/SBA-15复合材料的热导率比基材SBA-15的热导率大得多;在相同的测量孔径和当量孔径情况下,PANI/SBA-15复合材料的热导率比PPy/SBA-15复合材料的热导率大;导电聚合物填充到复合材料孔道内和孔道外都有助于热导率的提高,填充到孔道内比填充到孔道外对热导率提高的贡献更大.

  10. Comparative Study of Molecular Basket Sorbents Consisting of Polyallylamine and Polyethylenimine Functionalized SBA-15 for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Wang, Xiaoxing; Wang, Dongxiang; Song, Chunshan

    2017-09-20

    Polyallylamine (PAA)-based molecular basket sorbents (MBS) have been studied for CO2 capture in comparison with polyethylenimine (PEI)-based MBS. The characterizations showed that PAA (Mn=15,000) is more rigid and has more steric hindrance inside SBA-15 pores than PEI due mainly to its different polymer structure. The effects of temperature and PAA loadings on the CO2 capacity of PAA/SBA-15 were examined by TGA using 100% CO2 gas stream and compared to PEI/SBA-15. The capacity increased with temperature and the optimum capacity of 88 mg-CO2/g-sorb was obtained at 140 C for PAA(50)/SBA-15; while the optimum temperature was 75 and 90 C for PEI-I(50)/SBA-15 (PEI-I, Mn=423) and PEI-II(50)/SBA-15 (PEI-II, Mn=25,000), respectively. The capacity initially increased with the increase of PAA loading and then dropped at high amine contents, due to the increased diffusion barrier. The highest CO2 capacity of 109 mg-CO2/g-sorb was obtained at PAA loading of 65 wt%, while PAA(50)/SBA-15 gave the best amine efficiency of 0.23 mol-CO2/mol-N. The effect of moisture was examined in the fixed-bed flow system with simulated flue gas containing 15% CO2 and 4.5% O2 in N2, which showed that the presence of moisture significantly enhanced CO2 sorption over PAA(50)/SBA-15 and greatly improved its cyclic stability and regenerability. Compared to PEI/SBA-15, PAA/SBA-15 possesses a better thermal stability and higher resistance to oxidative degradation, however its CO2 sorption rate was much slower. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SBA-15介孔分子筛担载的钒基氧化物催化剂对乙烷选择氧化性能%Selective Oxidation of Ethane over SBA-15 Mesoporous Zeolite Supported Vanadium-Based Oxide Catalysts

    Institute of Scientific and Technical Information of China (English)

    刘坚; 赵震; 张哲; 徐春明; 段爱军; 姜桂元

    2009-01-01

    用等体积浸渍法制备了SBA-15担载的钒基(V/SBA-15)和钾修饰的钒基氧化物(K-V/SBA-15)催化剂,使用氮气吸附、小角X射线衍射(XRD)、紫外.可见漫反射光谱(UV-Vis DRS)和紫外激光拉曼光谱对这些催化剂的结构进行表征,并评价了这些催化剂对乙烷选择氧化的活性与选择性.实验结果表明介孔结构SBA-15对乙烷选择氧化的活性优于常规的SiO_2;对于SBA-15担载的V/SBA-15和K-V/SBA-15催化剂,极低钒担载量(nv:mso≤0.1:100)时隔离的四配位钒氧化物是乙烷选择氧化生成醛类化合物的活性物种,高钒担载量(nv:nsi≥2.5:100)时聚合的和微晶态的钒氧化物是乙烷氧化脱氢或深度氧化的活性物种.%A series of SBA-15 supported vanadium oxide (V/SBA-15) and K-modified vanadium oxide (K-V/SBA-15) catalysts with different active components were prepared by incipient-wetness impregnation. The structures of the catalysts were characterized using N_2 adsorption, low angle X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and UV-Raman spectroscopy techniques. Their catalytic performances for the selective oxidation of ethane were also investigated. The results showed that SBA-15 was a better support for the catalyst system than SiO_2 for the selective oxidation of ethane to aldehydes. The SBA-15-supported low loading catalyst was a highly dispersed catalyst system and the SBA-15 supported K-V samples with low loading (n_V:n_(Si)≤5.0:100) had ordered hexagonal mesostructures. For the V/SBA-15 and K-V/SBA-15 catalysts, isolated vanadyl species with tetrahedral coordination are determined to be the active sites for aldehyde formation at very low vanadium loading (nv:nSi≤0.1:100). The polymeric vanadyl species with octahedral coordination and the microcrystalline vanadium oxide constitute the active sites for the oxidative dehydrogenation or deep oxidation of ethane when the loading of vanadium is higher than 2.5:100.

  12. Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology.

    Science.gov (United States)

    Hashemikia, Samaneh; Hemmatinejad, Nahid; Ahmadi, Ebrahim; Montazer, Majid

    2015-04-01

    Several researchers are focused on preparation of mesoporous silica as drug carriers with high loading efficiency to control or sustain the drug release. Carriers with highly loaded drug are utilized to minimize the time of drug intake. In this study, amino modified SBA-15 was synthesized through grafting with amino propyl triethoxy silane and then loaded with tetracycline hydrochloride. The drug loading was optimized by using the response surface method considering various factors including drug to silica ratio, operation time, and temperature. The drug to silica ratio indicated as the most influential factor on the drug loading yield. Further, a quadratic polynomial equation was developed to predict the loading percentage. The experimental results indicated reasonable agreement with the predicted values. The modified and drug loaded mesoporous particles were characterized by FT-IR, SEM, TEM, X-ray diffraction (XRD), elemental analysis and N2 adsorption-desorption. The release profiles of tetracycline-loaded particles were studied in different pH. Also, Higuchi equation was used to analyze the release profile of the drug and to evaluate the kinetic of drug release. The drug release rate followed the conventional Higuchi model that could be controlled by amino-functionalized SBA-15. Further, the drug delivery system based on amino modified SBA-15 exhibits novel features with an appropriate usage as an anti-bacterial drug delivery system with effective management of drug adsorption and release.

  13. Microstructure and Magnetic Properties of Highly Ordered SBA-15 Nanocomposites Modified with Fe2O3 and Co3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    P. F. Wang

    2012-01-01

    Full Text Available Owing to the unique order mesopores, mesoporous SBA-15 could be used as the carrier of the magnetic nanoparticles. The magnetic nanoparticles in the frame and the mesopores lead to the exchange-coupling interaction or other interactions, which could improve the magnetic properties of SBA-15 nanocomposites. Mesoporous Fe/SBA-15 had been prepared via in situ anchoring Fe2O3 into the frame and the micropores of SBA-15 using the sol-gel and hydrothermal processes. Co3O4 nanoparticles had been impregnated into the mesopores of Fe/SBA-15 to form mesoporous Fe/SBA-15-Co3O4 nanocomposites. XRD, HRTEM, VSM, and N2 physisorption isotherms were used to characterize the mesostructure and magnetic properties of the SBA-15 nanocomposites, and all results indicated that the Fe2O3 nanoparticles presented into the frame and micropores, while the Co3O4 nanoparticles existed inside the mesopores of Fe/SBA-15. Furthermore, the magnetic properties of SBA-15 could be conveniently adjusted by the Fe2O3 and Co3O4 magnetic nanoparticles. Fe/SBA-15 exhibited ferromagnetic properties, while the impregnation of Co3O4 nanoparticles greatly improved the coercivity with a value of 1424.6 Oe, which was much higher than that of Fe/SBA-15.

  14. Liquid phase oligomerization of 1-hexene over different mesoporous aluminosilicates (Al-MTS, Al-MCM-41 and Al-SBA-15) and micrometer/nanometer HZSM-5 zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Van Grieken, R.; Escola, J.M.; Moreno, J.; Rodriguez, R. [Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, c/Tulipan s/n, 28933 Mostoles (Spain)

    2006-05-24

    The liquid phase oligomerization of 1-hexene at 200{sup o}C and 5MPa using n-octane as solvent towards hydrocarbon mixtures useful as fuels (gasoline and diesel) was tested over several acid catalysts: micrometer ({mu}-) and nanocrystalline (n-) HZSM-5 zeolites, mesoporous hydrothermal Al-MCM-41, and sol-gel Al-MTS and Al-SBA-15 catalysts. The conversion was always above 75% except for {mu}-HZSM-5 (just 8.4%) due to its low external surface area (5m{sup 2}g{sup -1}) and the fast deactivation in the reaction conditions used in this work. The total selectivity towards oligomers was around 95% and the highest share of C{sub 9}-C{sub 12} dimers (47%), C{sub 13}-C{sub 18} trimers (33%) and heavy C{sub 19}-C{sub 30} compounds (33%) were yielded over Al-SBA-15, n-HZSM-5 and sol-gel Al-MTS, respectively. The remarkable oligomerization performance of n-HZSM-5 was ascribed to its high external surface area (102m{sup 2}g{sup -1}) and for the mesoporous catalysts, to their large BET surface area. In particular, Al-MTS showed the best behaviour due to its higher BET surface area and slightly weaker acidity. All the catalysts exhibited steady-state performance with time on stream (TOS) without drastic changes in activity up to 180min. Simulated distillation analyses proved that the lighter fuel (gasoline+diesel) was obtained over Al-MTS (final distillation temperature=463{sup o}C; C{sub 26}-C{sub 32}=8.4%) while the heaviest was obtained over n-HZSM-5 zeolite (final distillation temperature=524{sup o}C; C{sub 28}-C{sub 40}=11.7%), probably related to its stronger acidity and microporous nature. The similar nature of hydrocarbons compounds retained over the catalysts after reaction proved by FTIR spectroscopy together with the thermogravimetric analyses results, showed the stronger adsorption of the reaction products promoted by the microporous nature of zeolites. (author)

  15. Preparation and characterization of mesoporous silica SBA-15-supported molecularly caffeine-imprinted polymers by surface molecularly imprinting technique%SBA-15表面咖啡因分子印迹聚合物的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    吴云; 戈延茹; 潘如; 付文艳; 闫永胜; 戚雪勇

    2012-01-01

    目的:探讨咖啡因表面分子印迹聚合物的吸附性能,分析该印迹聚合物用于提取茶叶中咖啡因的可行性.方法:以咖啡因(caffeine)为模板分子,功能化的介孔分子筛SBA-15为载体材料,合成咖啡因表面分子印迹聚合物.采用扫描电镜对其表面进行表征,利用吸附平衡实验研究聚合物对咖啡因的吸附性能;用该印迹聚合物提取茶叶中的咖啡因.结果:在最佳吸附pH为7.0的条件下,印迹聚合物吸附速度快,吸附容量大,对咖啡因的吸附平衡和动力学数据分别符合Freundlich等温线模型和Pseudo-second-order动力学模型.提取实验表明印迹聚合物能有效地从茶叶粗提物中分离咖啡因.结论:分子印迹技术为茶叶中有效成分的提取分离提供了新思路.%Objective; The adsorption behavior of the caffeine molecularly imprinted polymer for caffeine was investigated. Moreover, the imprinted polymer was applied for selective extraction of caffeine from tea . Methods; A novel molecularly imprinted polymer was prepared with caffeine as template and modified or -dered mesoporous silica SBA 45 as carrier based on surface molecularly imprinting technique . The prepared polymer was characterized by the scanning electron microscopy . The adsorption behavior of the adsorbent for caffeine was investigated using batch experiments. In addition, these imprinted polymers were applied for selective extraction of caffeine from tea. Results; The optimum acidity was around pH 7.0 and the imprinted polymer exhibited fast kinetics and high adsorption capacity for caffeine . Caffeine adsorption process onto MIPs followed the Freundlich adsorption isotherm and the Pseudo -second-order kinetic model. Furthermore , these imprinted polymers could extract caffeine from tea effectively . Conclusion; MIT looks forward to be used as the materials for extraction of caffeine from tea.

  16. Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties

    Directory of Open Access Journals (Sweden)

    Anindita Chakraborty

    2014-12-01

    Full Text Available Nanocrystals of Mg-MOF-74 have been immobilized into the mesopores of SBA-15 rods to fabricate Mg-MOF-74@SBA-15 hybrid materials. To furnish such composites, a relatively simple synthetic strategy has been adopted by direct dispersion of the metal-organic framework (MOF precursors in SBA-15 matrix to prepare the hybrid materials in situ. The hybrid materials have been characterized using powder X-ray diffraction and several spectroscopic and microscopic techniques, which suggest growth of the MOF nanocrystals inside the SBA-15 mesopores and the composites exhibit characteristics of both the components. N2 adsorption isotherms at 77 K reveal that the composites contain additional mesopores, compared to only micropores of pristine MOF nanocrystals. In addition to such combination of both micro and mesoporosity, the composites also demonstrate significant CO2 adsorption at room temperature.

  17. Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties

    Science.gov (United States)

    Chakraborty, Anindita; Maji, Tapas Kumar

    2014-12-01

    Nanocrystals of Mg-MOF-74 have been immobilized into the mesopores of SBA-15 rods to fabricate Mg-MOF-74@SBA-15 hybrid materials. To furnish such composites, a relatively simple synthetic strategy has been adopted by direct dispersion of the metal-organic framework (MOF) precursors in SBA-15 matrix to prepare the hybrid materials in situ. The hybrid materials have been characterized using powder X-ray diffraction and several spectroscopic and microscopic techniques, which suggest growth of the MOF nanocrystals inside the SBA-15 mesopores and the composites exhibit characteristics of both the components. N2 adsorption isotherms at 77 K reveal that the composites contain additional mesopores, compared to only micropores of pristine MOF nanocrystals. In addition to such combination of both micro and mesoporosity, the composites also demonstrate significant CO2 adsorption at room temperature.

  18. Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Anindita; Maji, Tapas Kumar, E-mail: tmaji@jncasr.ac.in [Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India)

    2014-12-01

    Nanocrystals of Mg-MOF-74 have been immobilized into the mesopores of SBA-15 rods to fabricate Mg-MOF-74@SBA-15 hybrid materials. To furnish such composites, a relatively simple synthetic strategy has been adopted by direct dispersion of the metal-organic framework (MOF) precursors in SBA-15 matrix to prepare the hybrid materials in situ. The hybrid materials have been characterized using powder X-ray diffraction and several spectroscopic and microscopic techniques, which suggest growth of the MOF nanocrystals inside the SBA-15 mesopores and the composites exhibit characteristics of both the components. N{sub 2} adsorption isotherms at 77 K reveal that the composites contain additional mesopores, compared to only micropores of pristine MOF nanocrystals. In addition to such combination of both micro and mesoporosity, the composites also demonstrate significant CO{sub 2} adsorption at room temperature.

  19. Study on Adsorption Prosperities of CO2 from Power Plant Flue Gas on Modified SBA -15%改性SBA-15对电厂尾气C02的吸附性能研究

    Institute of Scientific and Technical Information of China (English)

    刘从从; 赵瑞红; 王亚坤; 徐明明; 张晓帅

    2012-01-01

    Mesoporous molecular sieves SBA - 15 was synthesized by conventional hydrothermal process using tetraethylorthosilicate(TEOS)as silicon source and triblock copolymer P123 as template. CO2 sorbent were prepared by introducing(3 -Aminopropy) triethoxysilane (APTES) into SBA - 15 using a post - synthetic impregnation method. The synthesized sorbent was characterized by N2 adsorption - desorption, X - ray diffraction (XRD) and transmission electron microscopy ( TEM ). The adsorption properties of SBA - 15 and modified SBA - 15 were investigated under different and same temperatures. The results indicated that SBA - 15 and modified SBA - 15 both have a good adsorption performance, at the same temperature, the modified SBA - 15 shows better adsorption performance than the synthesis SBA - 15.%文章以三嵌段共聚物P123为模板剂、正硅酸乙酯为硅源,水热合成了介孔分子筛SBA-15,以3-丙胺基三乙氧基硅烷(APTES)为氨基化剂,采用浸溃法将其嫁接到SBA-15孔内,形成氨基化的SBA-15用于吸附电厂尾气c02。通过氮等温吸附-脱附、XRD、TEM等测试技术对其进行了表征,考察了改性前后SBA-15的吸附性能。结果表明:改性前后的SBA-15对电厂尾气中CO:均具有良好的吸附性能,改性的SBA-15比合成的SBA-15吸附性能要好。

  20. SBA-15吸附脱除油品中的碱性氮化物%Adsorption of Basic Nitrogen Compounds From Oil by SBA-15 Zeolite

    Institute of Scientific and Technical Information of China (English)

    朱金柱; 沈健

    2012-01-01

    The adsorption tests of quinoline in dodecane solution by SBA-15 mesoporous zeolite were conducted in batch scale reactor. The influences of adsorption temperature, adsorption time and the ratio of adsorbent to oil on the denitrogenation rate were investigated. Furthermore, the reusability of SBA-15 adsorbent regenerated by roasting process was tested. The results showed that SBA-15 mesoporous zeolite had better adsorptive ability to the basic nitrogen compounds, and the optimum adsorption conditions were the adsorption temperature of 293 K, the adsorption to oil ratio of 0. 03 and adsorption time of 30 min, under which the denitrogenation rate was 69. 4%. After multiple regeneration of SBA-15 adsorbent, the denitrogenation rate was still more than 66%.%以SBA-15介孔分子筛为吸附剂,喹啉的十二烷溶液作为模拟油,在间歇式反应釜中,用静态吸附法对SBA-15的吸附脱氮性能进行了评价,并考察了吸附温度、吸附时间、剂/油质量比对模拟油脱氮率的影响,也考察了SBA-15经焙烧再生后的重复使用性能.结果表明,SBA-15介孔分子筛具有较强的吸附脱氮能力,吸附脱氮的最佳工艺条件为温度293 K、吸附时间30 min、剂/油质量比0.03.在此条件下模拟油的脱氮率达到69.4%.SBA-15经多次再生,其对模拟油吸附的脱氮率仍在66%以上.

  1. Preparation of ZSM-5-SBA-15 Composite Molecular Sieves%ZSM-5-SBA-15复合分子筛的制备

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 沈健

    2015-01-01

    采用后合成法合成了 ZSM-5–SBA-15微介孔复合分子筛,考察了 m(ZSM-5)/m(SBA-15)、晶化时间、盐酸量、焙烧温度对烷基化催化性能的影响。在 m(ZSM-5)/m(SBA-15)=0.2,晶化时间为18 h,盐酸量为20 mL,焙烧温度为550℃条件下,合成的复合分子筛催化剂的甲醇转化率为94.93%,对二甲苯选择性为45.46%。惰性 SBA-15介孔分子筛抑制了 ZSM-5外表面酸性,提高了对二甲苯的选择性。%The micro-mesoporous composite molecular sieves of ZSM-5–SBA-15 were synthesized via a post synthesis. The influences of mass ratio of ZSM-5/SBA-15, crystallization time, acid content and calcination temperature on the preparation of the composite molecular sieves were investigated. The ZSM-5–SBA-15 prepared at the mass ratio of ZSM-5/SBA-15 of 0.2, crystallization time of 18 h, acid content of 20 mL and calcination temperature of 550 ℃ has a conversion rate of methanol of 94.93%and a selectivity of para-xylene of 45.46%. The acidity on the surface of ZSM-5 is reduced by mesoporous molecular sieve of nonvalent SBA-15, thus improving the selectivity of para-xylene.

  2. Synthesis and Characterization of Epoxy-functionalized SBA-15 and Application for the Immobilization of Penicillin G Acylase%环氧基功能化SBA-15介孔分子筛的制备、表征及其固定化青霉素酰化酶

    Institute of Scientific and Technical Information of China (English)

    薛屏; 徐立冬

    2006-01-01

    利用表面嫁接法和乙烯基环氧化法制备了环氧基团功能化介孔分子筛G-SBA-15和O-SBA-15,并对其结构和表面性质进行了表征. 结果表明,G-SBA-15 和O-SBA-15均具有良好的长程有序结构,二者环氧基团的含量分别为0.78 mmol/g和0.37 mmol/g,在O-SBA-15表面还存在一定数量的乙烯基基团. G-SBA-15和O-SBA-15 用于固定青霉素酰化酶(penicillin G acylase,PGA),固定化酶PGA/G-SBA-15和PGA/O-SBA-15在37℃时水解青霉素G钾制备6-氨基青霉烷酸(6-APA)的表观活性分别为1075 IU/g和1761 IU/g. PGA/G-SBA-15 经 4 次使用后表观活性趋于稳定,经10次使用后保持其初始活性的83.7%. PGA/O-SBA-15在重复使用中,表观活性出现持续衰减,10次使用后保持其初始活性的51.6%,PGA/G-SBA-15的操作稳定性明显好于PGA/O-SBA-15.

  3. Incorporation of lanthanum into SBA-15 and its catalytic activity in trichloroethylene combustion

    Institute of Scientific and Technical Information of China (English)

    LI Dao; CHEN Guoping; WANG Xingyi

    2008-01-01

    s: The direct synthesis of La-SBA- 15 mesoporous material by two-step synthesis method was reported. The effect of pH value dur-ing the process on the incorporation of La into the framework of SBA-15 was investigated, and XRD, UV-vis, FT-IR, and ICP were used to characterize the obtained La-SBA-15. The experimental results showed that a large amount of La could enter SBA-15 framework under suitable pH value while a highly ordered mesostructure of samples containing La was retained. In addition, the obtained La-SBA-15 exhib-ited good catalytic performance in the combustion of trichioroethylene.

  4. Design of amino terminated hyperbranched polymer modified SBA-15 as adsorbent for dyes

    Science.gov (United States)

    Tao, Jin; Xiong, Jiaqing; Jiao, Chenlu; Chen, Yuyue; Lin, Hong

    2015-06-01

    The aim of the present work is to investigate the potential of amino terminated hyperbranched polymer (HBP) modified mesoporous silica SBA-15 (HBP-SBA) as adsorbent for the removal of cationic and anionic dyes from aqueous media. The HBP-SBA adsorbent can be facilely synthesized through two steps: carboxyl functionalization of SBA-15 (obtaining CA-SBA) via one-pot co-condensation, and further graft of HBP onto CA-SBA. As an intermediate, CA-SBA contains abundant carboxyl groups with an uniform distribution, which not only form efficiently the chemical bond with amino group by grafting HBP, but also contribute to adsorption by providing active adsorption sites. The results demonstrate HBP-SBA adsorbent that contains nanonetwork with substantial adsorption sites is successfully fabricated, showing high adsorption capacity and quick adsorption rate for dyes. Compared with SBA-15 and CA-SBA, HBP-SBA gets better adsorption property, and the maximum adsorption capacities are 399.5 mg/g for cationic dye and 609.7 mg/g for anionic dye, respectively.

  5. Kinetic modelling of cytochrome c adsorption on SBA-15.

    Science.gov (United States)

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  6. Size and spacial distribution of micropores in SBA-15 using CM-SANS

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Rachel A [ORNL; Walsh, Brenna R [ORNL; Fry, Jason A [ORNL; Ghampson, Tyrone [University of Maine; Centikol, Ozgul [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL; Kaiser, Helmut [ORNL; Pynn, Roger [ORNL; Frederick, Brian G [ORNL

    2011-01-01

    Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.

  7. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  8. Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica.

    Science.gov (United States)

    Bibi, Aisha; Ju, Huangxian

    2016-12-01

    This work presents an efficient and selective enrichment method for glycoprotein/glycopeptides with sulfonic acid-functionalized mesoporous silica (SBA-15-SO3H), which is synthesized via simple oxidation of -SH groups with H2O2. The functionalized SBA-15 shows large surface area and accessible pores, and can selectively adsorb glycopeptides via hydrogen bond and hydrophilic interaction. Upon the selective enrichment prior to the mass spectrometric (MS) analysis, the signals of glycopeptides are significantly enhanced, which leads to the identifiable signals of 21 glycopeptides from the digest of HRP, 16 glycopeptides from the digest of human IgG, and 16 glycopeptides from the digest of chicken avidin. The SBA-15-SO3H gives significant selectivity for glycopeptides even at a low molar ratio of glycopeptides to nonglycopeptides with an enrichment time of 15min. Therefore, this work provides a powerful material for selective enrichment and identification of low abundant glycopeptides in glycoproteomic analysis.

  9. Preparation of MoO3-V2O5 Nanowires with Controllable Mo/V Ratios inside SBA-15 Channels Using a Chemical Approach with Heteropoly Acid

    Institute of Scientific and Technical Information of China (English)

    岳斌; 谭德军; 闫世润; 周琰; 朱卡克; 潘建烽; 庄继华; 贺鹤勇

    2005-01-01

    A new approach was developed to fabricate nanowires of mixed oxides MoO3-V2O5 inside the channels of mesoporous silica SBA-15. The method involves functionalization of the channel surface of SBA-15 with aminosilane groups, immobilization of Keggin-type molybdovanadophosphoric acids through an acid-base interaction, and heat treatment. The immobilization of the heteropolyacid containing mixed addenda makes the molar ratio of the loaded components controllable. The formation of the MoO3-V2O5 nanowires inside the channels was monitored by variable temperature in situ XRD. The materials obtained by heat treatment at 400℃ for 5 h were characterized by TEM, N2-sorption measurements, laser Raman spectra and UV-Vis diffuse reflectance spectra. Further heat treatment of the MoO3-V2O5 nanowires inside the SBA-15 channels at higher temperature (700℃) destroys the framework integrity of SBA-15 by complete sublimation of MoO3 through the SBA-15 channel walls.

  10. Synthesis of α-MoC 1-x Nanoparticles with a Surface-Modified SBA-15 Hard Template: Determination of Structure-Function Relationships in Acetic Acid Deoxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Baddour, Frederick G. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Nash, Connor P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Schaidle, Joshua A. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Ruddy, Daniel A. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA

    2016-06-07

    Surface modification of mesoporous SBA-15 silica generated a hydrophobic environment for a molybdenum diamine (Mo-diamine) precursor solution, enabling direct growth of isolated 1.9+/-0.4 nm α-MoC1-x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α-MoC1-x and β-Mo2C, the NPs exhibit a greater acid-site:H-site ratio and a fraction of stronger acid sites. The greater acid-site:H-site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. The hard-templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports.

  11. Flame-retardant properties of SBA-15/PDCPD composites%SBA-15/PDCPD复合材料的阻燃性能

    Institute of Scientific and Technical Information of China (English)

    陆昶; 刘继纯; 刘宪俊; 张玉清

    2011-01-01

    The mesoporous molecular sieve SBA-15/polydicyclopentadiene(PDCPD) composites were prepared by in-situ polymerization (method 1) and in-situ polymerization with SBA-15 supported catalyst tungsten hexachloride (method 2) methods. The flame-retardant properties of SBA - 15/PDCPD composites were studied. The results show that the polymerization of dicyclopentadiene(DCPD) monomer is difficult to occur in the pores of SBA-15 by method 1 and SBA-15 particles congregate, resulting in the minor improvement of the flame-retardant performances of composite. Method 2 is beneficial to the formation of PDCPD molecular chains in the pores of SBA-15. The thermal insulation property of SBA - 15 hole walls can delay the pyrolysis process of PDCPD molecular chains located in the hole, resulting in the effective improvement of the heat-resistance of the composite and the decrease of horizontal burning rate. The limiting oxygen index of composite improves from 20. 1 to 21. 7 when the mass ratio of SBA-15 to PDCPD is 3: 100, indicating that SBA-15 can improve the flame-retardant of PDCPD.%分别采用介孔分子筛SBA-15原位聚合及SBA-15负载催化剂六氯化钨原位聚合的方法制备了SBA-15/聚双环戊二烯(PDCPD)复合材料,研究了SBA-15/PDCPD复合材料的阻燃性能.研究结果表明:采用原位聚合方法制备的复合材料,SBA-15孔道中的双环戊二烯(DCPD)单体难以发生聚合反应生成PDCPD分子链,SBA-15易团聚,导致复合材料的阻燃性能没有明显改善;采用SBA-15负载催化剂原位聚合的方法制备的复合材料,在SBA-15孔道中大量生成PDCPD分子链.SBA-15的孔壁起到隔热作用,延缓介孔内聚合物分子链的热分解,使复合材料的热稳定性明显提高,水平燃烧速率下降,SBA-15与PDCPD的质量比为3:100时,复合材料的极限氧指数由PDCPD的20.1增至21.7,表明SBA-15可提高PDCPD的阻燃性能.

  12. Fast solid-phase extraction of N-linked glycopeptides by amine-functionalized mesoporous silica nanoparticles.

    Science.gov (United States)

    Miao, Weili; Zhang, Cheng; Cai, Yan; Zhang, Ying; Lu, Haojie

    2016-04-21

    Selective enrichment is a crucial step before the mass spectrometric analysis of glycoproteins. A new approach using 3-aminopropyltriethoxysilane (APTES)-functionalized mesoporous silica materials (SBA-15) was reported to enrich the glycoproteins. Selective extraction of glycopeptides was achieved through coupling the oxidized glycan chains on the glycopeptides with the amine groups on SBA-15 through a reductive amination reaction, then the captured glycopeptides were detached from the SBA-15 for the following MS analysis using the enzyme PNGase F. Because the mesoporous material has a confinement effect, the efficiency of enrichment and enzymatic deglycosylation was improved dramatically. The coupling time was shortened from 4 hours to 1 hour, and the deglycosylation time was greatly shortened from 6 hours to 3 hours. This approach was successfully applied to profile the N-glycoproteome of human colorectal cancer serum. 84 N-linked glycosylation sites from 56 N-linked glycoproteins were identified from as little as 5 μL serum.

  13. SYNTHESIS, CHARACTERIZATION AND CATALYTIC PERFORMANCE OF Cu-CONTAINING SBA-15 CATALYSTS FOR DeNPAC REACTION%含Cu SBA-15催化剂的合成、表征及DeNPAC反应性能评价

    Institute of Scientific and Technical Information of China (English)

    曾厚旭; YU L E; KAWI S

    2008-01-01

    CuO/SBA-15, CuAI/SBA-15 and CuOAI/SBA-15 were synthesized by wet-impregnation and ion-exchange methods. The acidic properties of SBA-15 were improved by incorporating AI with post-synthesis method. The Cu was introduced to SBA-15 and AI/SBA-15 supports by wet-impregnation and ion-exchange method, respectively. CuAI/SBA-15 showed the best catalytic performance by giving the highest conversion of pyridine with the lowest yield of NOx in the reaction of decomposing nitrogen-containing polycyclic aromatic compounds (DeNPAC). The enhanced reaction activity of CuAl/SBA-15 for DeNPAC could be attributed to the hi-functionality of acid and metallic ion of CuAl/SBA-15.%采用浸渍法和离子交换法合成了CuO/SBA-15、CuAl/SBA-15和CuOAl/SBA-15 3种催化剂.SBA-15的酸功能通过负载A1而得以改进.通过浸渍法和离子交换法将Cu引入SBA-15和A1/SBA-15中.3种催化剂相比,CuAl/sBA-15在DeNPAC反应中具有最高的吡啶转化率的同时,具有最低的NOx产率.CuAI/SBA-15具有较好的含氮多环芳烃化合物脱除反应性能的原因,可能是其酸功能和金属离子功能共同作用的结果.

  14. Development of a Prolonged-Release Drug Delivery System with Magnolol Loaded in Amino-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Alina Stefanache

    2017-03-01

    Full Text Available Magnolol (MG is a small-molecule neolignan polyphenolic compound isolated from the genus Magnolia. The anti-inflammatory, anti-oxidative, anti-diabetic, anti-tumorgenic, anti-neurodegenerative, anti-depressant and anti-microbial properties of MG are well documented in recent literature. These fascinating multiple biological activities of MG encourage research about the development of new delivery and administration approaches able to maximize its potential benefits. This study describes the amino-functionalization of the SBA-15 (Santa Barbara Amorphous mesoporous matrix by post-synthesis grafting using APTES (3-aminopropyltriethoxysilane and the characterization of amino-functionalized mesoporous silica SBA-15 loaded with MG in order to achieve modified drug delivery systems. The amino-functionalization of silica SBA-15 was carried out by grafting by refluxing in dry toluene. The powders obtained were characterized texturally by Brunauer-Emmett-Teller (BET surface area analysis measurements and morphologically by scanning electron microscopy. MG loading degree in the nanoporous matrix was determined by the HPLC method at λ = 290 nm. Results showed that by grafting the amino groups in the silica SBA-15, we obtained amino-functionalized silica SBA-15 with an ordered structure, with specific surfaces and pore sizes that differ from the original matrix, which was reflected in the amount of MG immobilized and release kinetics profile.

  15. 微孔-介孔复合分子筛HY-SBA-15的表征及应用%Characterization and catalytic application of HY-SBA-15 composite molecular sieves

    Institute of Scientific and Technical Information of China (English)

    武宝萍; 沈健; 张秋荣

    2012-01-01

    用后合成法制备了微孔-介孔复合分子筛HY-SBA-15(y)(y表示HY与SBA-15的质量比).并用XRD、FT-IR、N2吸脱附及NH3-TPD等技术对HY-SBA-15进行表征.结果表明,HY-SBA-15既具有微孔结构又具有介孔结构,当y=0.10时,微孔与介孔混合晶相显著,且HY-SBA-15 (0.10)复合分子筛具有B酸和L酸,酸性强于HY.用浸渍法将Ni-W活性组分担载在HY-SBA-15 (0.10)载体上,制备加氢脱芳烃催化剂Ni-W/HY-SBA-15 (0.10),选用茂名石化FCC柴油为原料,考察了催化剂的加氢脱芳烃性能.实验结果表明,Ni-W/HY-SBA-15 (0.10)催化剂具有良好的芳烃加氢饱和性能和开环活性.%A series of HY-SBA-15(y) composite molecular sieves (y denotes the weight ratio of HY to SBA-15) were prepared by post-synthesis method and characterized by XRD, FT-IR, N2 sorption, and NH3-TPD. Ni-W/HY-SBA-15(0.10) catalyst was then prepared by impregnating HY-SBA-15 (0.10) with Ni-W solution and used in hydrodearomatization of Maoming FCC diesel oil. The results indicated that HY-SBA-15 has both HY microporous and SBA-15 mesoporous structure and the microporous and mesoporous structures of HY-SBA-15 match remarkably well when the value of y is 0.10. Both Bronsted acid sites and Lewis acid sites are present on the surface of the composite molecular sieve HY-SBA-15(0.10) and its acidity is stronger than that of HY zeolite. When loading Ni and W on it, the Ni-W/HY-SBA-15 (0.10) catalyst exhibits high activity in the hydrodearomatization and opening of aromatic rings.

  16. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    Science.gov (United States)

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  17. Ethanol steam reforming on Ni/Al-SBA-15 catalysts: Effect of the aluminium content

    Energy Technology Data Exchange (ETDEWEB)

    Lindo, M.; Vizcaino, A.J.; Calles, J.A.; Carrero, A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, c/ Tulipan s/n, 28933, Mostoles (Spain)

    2010-06-15

    A series of Ni catalysts supported on Al-SBA-15 mesoporous materials (Si/Al = 20, 60, 140, 240, {infinity}) was prepared and tested in ethanol steam reforming. The catalysts were characterized by XRD, H{sub 2}-TPR, NH{sub 3}-TPD, TEM, ICP-AES, {sup 27}Al-MAS-NMR and N{sub 2}-sorption measurements. It was found that the incorporation of Al atoms into SBA-15 structure is responsible for the formation of catalyst acid sites, an increase of the size of nickel species and stronger metal-support interaction between Ni and Al-SBA-15 carrier. Regarding ethanol steam reforming, catalysts with higher Al content keep ethanol conversion along time. However, Ni/Al-SBA-15 catalysts produce larger amounts of ethylene and coke, with slightly lower hydrogen selectivity than Ni/SBA-15. This is the consequence of ethanol dehydration in Ni/Al-SBA-15 acid sites, while ethanol dehydrogenation mechanism predominates in Ni/SBA-15 catalyst. (author)

  18. Mapping nanocavities in plugged SBA-15 with confined silver nanostructures

    NARCIS (Netherlands)

    De Lima Oliveira, Rafael; Shakeri, Mozaffar; Meeldijk, Johannes D.; de Jong, Krijn P.; de Jongh, Petra E.

    2015-01-01

    Silver nanostructures inside the pores of SBA-15 and plugged SBA-15 were synthesized and imaged, providing for the first time quantitative information about the nanocavity dimensions and plug distributions in plugged SBA-15.

  19. Photocatalytic Oxidation of Gaseous Isopropanol Using Visible-Light Active Silver Vanadates/SBA-15 Composite

    Directory of Open Access Journals (Sweden)

    Ting-Chung Pan

    2012-01-01

    Full Text Available An environmentally friendly visible-light-driven photocatalyst, silver vanadates/SBA-15, was prepared through an incipient wetness impregnation procedure with silver vanadates (SVO synthesized under a hydrothermal condition without a high-temperature calcination. The addition of mesoporous SBA-15 improves the formation of nanocrystalline silver vanadates. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS confirms the presence of Brønsted and Lewis acids on the SVO/SBA-15 composites. The results of photoluminescence spectra indicated that the electron-hole recombination rate have been effectively inhibited when SVO was loaded with mesoporous SBA-15. All the composites loaded with various amount of SVO inherit the higher adsorption capacity and larger mineralization yield than those of P-25 (commercial TiO2 and pure SVO. The sample loaded with 51% of SVO (51SVO/SBA-15 with mixed phases of Ag4V2O7 and α-Ag3VO4 exhibits the best photocatalytic activity. A favorable crystalline phase combined with high intensities of Brønsted and Lewis acids is considered the main cause of the enhanced adsorption capacity and outstanding photoactivity of the SVO/SBA-15 composites.

  20. Photocatalytic activity of Ce-modified SBA-15 for the degradation of isoproturon

    Indian Academy of Sciences (India)

    Anil Kumar Reddy Police; Srinivas Basavaraju; Durgakumari Valluri; Subrahmanyam Machiraju

    2015-02-01

    Cerium (Ce)-modified SBA-15 and Al-grafted SBA-15 are prepared and compared their photocatalytic activity for isoproturon degradation. The Al-SBA-15 is prepared by postsynthetic grafting method and cerium-modified samples are prepared by the impregnation technique. All the samples are characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption analysis. The samples show well-ordered mesoporous structure and it is confirmed by XRD. The UV–vis DRS of Cemodified sample shows a red shift compared to SBA-15 and the cerium species are stabilized in +3 oxidation state at lower cerium contents. The presence of Ce3+ species is also substantiated by XPS analysis. The higher amount of Ce3+ species are accompanied by oxygen vacancies which are formed due to the contact of ceria with the support. The N2 adsorption/desorption analysis of the samples show type-IV isotherms characteristic of mesoporous materials. Photocatalytic activity evaluation studies are made on all the samples for the degradation of isoproturon. Among them, 0.3 (wt%) Ce-modified Al-SBA-15 catalyst has shown a maximum activity in comparison with Ce-modified SBA-15. The better activity is attributed to the synergistic effect of mesoporosity and the presence of Ce3+ species along with oxygen vacancies.

  1. Hydroxyapatite/MCM-41 and SBA-15 Nano-Composites: Preparation, Characterization and Applications

    Directory of Open Access Journals (Sweden)

    Andrea R. Beltramone

    2009-09-01

    Full Text Available Composites of hydroxyapatite (HaP and highly ordered large pore mesoporous silica molecular sieves such as, Al-SBA-15 and Al-MCM-41 (denoted as SBA-15 and MCM-41. respectively were developed, characterized by XRD, BET, FTIR, HRTEM and NMR-MAS, and applied to fluoride retention from contaminated water. The proposed procedure by a new route to prepare the HaP/SBA-15 and HaP/MCM-41, composites generates materials with aluminum only in tetrahedral coordination, according to the 27Al NMR-MAS results. Free OH- groups of HaP nanocrystals, within the hosts, allowed high capacity fluoride retention. The activity of fluoride retention using HaP/MCM-41 or HaP/SBA-15 was 1-2 orders of magnitude greater, respectively, than with pure HaP.

  2. Efficient solvent-free synthesis of pyridopyrazine and quinoxaline derivatives using copper-DiAmSar complex anchored on SBA-15 as a reusable catalyst

    Institute of Scientific and Technical Information of China (English)

    Marzieh Mohammadi; Ghasem Rezanejade Bardajee; Nader Noroozi Pesyan

    2015-01-01

    A catalytic system comprising mesoporous silica functionalized with Cu(II)-DiAmSar was synthe-sized. This was demonstrated as an efficient heterogeneous catalyst for the synthesis of biologically useful pyridopyrazine and quinoxaline heterocycles under solvent-free conditions. X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, Fourtier transformation infrared spectroscopy, and thermogravimetric analysis were used to characterize the catalyst and investi-gate the texture of SBA-15 during the grafting process.

  3. Modified SBA-15 as the carrier for metoprolol and papaverine: Adsorption and release study

    Science.gov (United States)

    Moritz, MichaŁ; łaniecki, Marek

    2011-07-01

    A series of modified SBA-15 materials were applied in drug delivery systems. The internal surface of siliceous hexagonal structure of SBA-15 was modified with different amount of (3-mercaptopropyl)trimethoxysilane (MPTMS) and oxidized in the presence of hydrogen peroxide. The sulfonated material was loaded with metoprolol tartrate or papaverine hydrochloride. Both drugs indicated strong chemical interaction with modified mesoporous surface. The characteristic of the obtained materials was performed with XRD and DRUV-vis spectrometry, themogravimetry and nitrogen adsorption (BET) measurements. The obtained results show that modification of the mesoporous materials leads towards significant decrease of the drug delivery rate.

  4. Preparation of PMMA/SBA-15 Composites Via In-Situ Emulsion Polymerization%原位乳液聚合法制备PMMA/SBA-15复合材料

    Institute of Scientific and Technical Information of China (English)

    宋程; 张发爱; 余彩莉

    2011-01-01

    Poly (methyl methacrylate) (PMMA)/SBA-15 (0,1% ,2. 5% ,5% ) composite materials are prepared with different loadings of mesoporous molecular sieve SBA-15 via in-situ emulsion polymerization, and the properties of as-prepared composite emulsions are investigated by infrared spectroscopy (IR) and X-ray diffraction (XRD).The results show that the PMMA/SBA-15 composites are prepared successfully. The composite emulsions demonstrate high monomer conversion and coagulum, low viscosity, relatively large particle size, and wide range of distribution. The PMMA/SBA-15 composite film exhibites greater storage modulus and higher Young's modulus when compared with pure PMMA (especially, the composite with 2. 5% SBA -15 displayed the greatest storage and Young's modulus). The glass transition temperature of the composites increases with the increase of mesoporous silica loading. TGA confirms that the thermal stabilities of PMMA/SBA-15 composites are not influenced apparently.%采用原位乳液聚合法制备了聚甲基丙烯酸甲酯(PMMA) /SBA-15介孔复合材料,研究了不同用量介孔硅SBA-15(0、1%、2.5%、5%)对PMMA/SBA-15介孔复合材料性能的影响.红外光谱(IR)和X射线衍射(XRD)分析表明成功制备了PMMA/SBA-15复合材料.以乳液聚合法制备的PMMA/SBA-15复合材料具有较高的单体转化率和固体含量,随着SBA-15用量的增加,聚合过程中凝聚率增大、粘度减小,复合乳液具有较大的粒径及更宽的粒径分布.动态力学分析(DMA)测试表明:PMMA/SBA-15复合材料储能模量和杨氏模量明显增大,且在SBA-15用量为2.5%时复合材料模量最高.差示扫描量热( DSC)测试表明:随着SBA-15用量增加,复合材料玻璃化温度提高.热重分析(TGA)结果证实复合材料热稳定性没有明显变化.

  5. Nanoporous composites prepared by a combination of SBA-15 with Mg-Al mixed oxides. Water vapor sorption properties.

    Science.gov (United States)

    Pérez-Verdejo, Amaury; Sampieri, Alvaro; Pfeiffer, Heriberto; Ruiz-Reyes, Mayra; Santamaría, Juana-Deisy; Fetter, Geolar

    2014-01-01

    This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg-Al hydrotalcite. Two different Mg-Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg-Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  6. Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

    Directory of Open Access Journals (Sweden)

    Amaury Pérez-Verdejo

    2014-08-01

    Full Text Available This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method. The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method, Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  7. Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16.

    Science.gov (United States)

    Giraldo, Liliana; Bastidas-Barranco, Marlon; Moreno-Piraján, Juan Carlos

    2014-12-10

    In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD), FTIR, TEM and N2 adsorption-desorption. Rhodium (Rh, 1 wt %) was loaded on the mesoporous SBA-15 and SBA-16 by an impregnation method. The Rh surface coverage, dispersion and crystallite size were determined by room temperature H2 chemisorption on reduced samples. The catalytic activity of Rh supported on mesoporous SBA-15 and SBA-16 was evaluated for the first time in the hydrogenation of phenol in vapour phase in a temperature range between 130 and 270 °C at atmospheric pressure. The reaction over Rh/SBA-15 at 180 °C produced cyclohexanone as the major product (about 60%) along with lower amounts of cyclohexanol (about 35%) and cyclohexane (about 15%). The influences of temperature, H2/phenol ratio, contact time and the nature of the solvent on the catalytic performance were systematically investigated. The Rh/SBA-16 system offered lower phenol conversion compared to Rh/SBA-15, but both have a very high selectivity for cyclohexanone (above 60%).

  8. Vapour Phase Hydrogenation of Phenol over Rhodium on SBA-15 and SBA-16

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-12-01

    Full Text Available In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD, FTIR, TEM and N2 adsorption–desorption. Rhodium (Rh, 1 wt % was loaded on the mesoporous SBA-15 and SBA-16 by an impregnation method. The Rh surface coverage, dispersion and crystallite size were determined by room temperature H2 chemisorption on reduced samples. The catalytic activity of Rh supported on mesoporous SBA-15 and SBA-16 was evaluated for the first time in the hydrogenation of phenol in vapour phase in a temperature range between 130 and 270 °C at atmospheric pressure. The reaction over Rh/SBA-15 at 180 °C produced cyclohexanone as the major product (about 60% along with lower amounts of cyclohexanol (about 35% and cyclohexane (about 15%. The influences of temperature, H2/phenol ratio, contact time and the nature of the solvent on the catalytic performance were systematically investigated. The Rh/SBA-16 system offered lower phenol conversion compared to Rh/SBA-15, but both have a very high selectivity for cyclohexanone (above 60%.

  9. Preparation and Adsoparation Denitrication of Nb-SBA-15 Zeolite%Nb-SBA-15 的制备及吸附脱氮性能

    Institute of Scientific and Technical Information of China (English)

    朱金柱; 沈健; 韩英

    2012-01-01

    Nb-SBA-15 zeolite was synthesized with SBA-15 mesoporous zeolite as a carrier via the wetness impregnation. The sam- pie was characterized by X-ray diffraction, BET analysis, Fourier transform infrared, thermogravimetric-differential analysis and Py infrared spectra, respectively. The property of adsorptive denitrification of Nb-SBA-15 was evaluated with dodecane quinoline as a simulated oil via the static adsorption experiment in a batch-wise reactor. The results show that Nb-SBA-15 zeolite has a highly or- dered two-diemensional hexagonal mesoporous structure and some acidities. The denitrification rate of Nb-SBA-15 could reach 65.19% at the calcination temperature of 300 ℃ and the mass fraction of niobic acid loading of 10%.%以 SBA-15 介孔分子筛为载体,采用浸渍法制备了 Nb-SBA-15 介孔分子筛,采用 X 射线衍射、BET、Fourier 变换红外光谱、热重–差热分析和吡啶吸附红外光谱分析等测试手段对其进行分析,用喹啉的十二烷溶液为模型化合物,采用静态吸附法在间歇式反应器中对其吸附脱氮性能进行评价。结果表明:Nb-SBA-15 分子筛具有高度有序的二维六方介孔结构,并且具有一定的酸性,焙烧温度为 300 ℃,铌酸负载量(质量比)为 10%时,Nb-SBA-15 具有最高的吸附脱氮率,为 65.19%。

  10. Hydrothermal Synthesis of SBA-15 Using Sodium Silicate Derived from Coal Gangue

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available Well-ordered SBA-15 was prepared with a hydrothermal route by sodium silicate derived from coal gangue. The as-prepared sample was analyzed by SAXRD, BET, TEM, and SEM, respectively. The results indicate that at a low hydrothermal temperature of 100∘C the well-ordered mesoporous SBA-15 could be synthesized. The surface area, pore volume, and pore size of the sample are 552 m2/g, 0.54 cm3/g, and 7.0 nm, respectively. It is suggested that coal gangue could be used in obtaining an Si source to prepare mesoporous materials, such as SBA-15.

  11. Structure and Hydrogen Adsorption Properties of SBA-15 Doped with Pd Nanoparticles.

    Science.gov (United States)

    Lee, Sang-Hwa; Park, Taehee; Yi, Whikun; Kim, Jaeyong

    2015-11-01

    Hydrogen adsorption properties of Pd-doped Santa Barbara amorphous No. 15 (Pd-SBA-15) were investigated and the results were compared with pure SBA-15 ones in terms of change of its structure and Pd concentration. Pd-SBA-15 samples were prepared by a hydrothermal reaction, using mixture of PEO20PPO70PEO20 (P123) and tetraethyl orthosilicate (TEOS). For the doping of Pd on SBA-15, PdC2 solution was added into the mixture of P123 and TEOS, and the solution was annealed at 80 degrees C for 2 hours under 800 Torr of hydrogen atmosphere. According to the X-ray diffraction and transmission electron microscope data, Pd-doped SBA-15 samples form a hexagonal array of mesoporous structure with 20-30 nm size of Pd particles. Values of specific surface area decreased from 630 to 414 m2/g as increasing the Pd doping level due to the increasing of the volume density. In fact, the volume density increased from 0.103 to 0.276 g/cc as increasing the mass ratio of PdCl2 to TEOS from 0 to 0.5. For the Pd-doped SBA-15, the amount of adsorbed hydrogen significantly increased from 0.49 to 0.99 wt% as increasing the Pd doping level from 0 to 0.5 demonstrating that Pd doping is an effect method for SBA-1 5 as a potential use of hydrogen storage application.

  12. Characterization and photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites synthesized by two-solvent method

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Peng; Zhang, Lili; Zhang, Gongtuo; Li, Guang; Sun, Zhaoqi [Key laboratory of Information Materials and Device, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Liu, Xiansong [Engineering Technology Research Center of Magnetic Materials, Hefei 230039 (China); Wu, Mingzai, E-mail: mingzaiwu@gmail.com [Key laboratory of Information Materials and Device, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Engineering Technology Research Center of Magnetic Materials, Hefei 230039 (China)

    2014-08-15

    Schematic between charge genenration and transfer for methylene orange degradation simulated by light. - Highlights: • Two-solvent method is used to prepare ZnO–CuO particles embedded in porous SBA-15. • The absorption edge of (ZnO–CuO)/SBA-15 composite is in the visible light regime. • The absorption intensity of the composite in visible light regime is enhanced. • The (ZnO–CuO)/SBA-15 composite has higher photocatalytic ability than Degussa P-25. - Abstract: Two-solvent method was employed to prepare ZnO–CuO nanoparticles embedded in mesoporous silica SBA-15 ((ZnO–CuO)/SBA-15). The as-obtained (ZnO–CuO)/SBA-15 nanocomposites were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, N{sub 2} adsorption porosimetry, and diffusive reflective UV–vis spectroscopy. The photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites toward methylene orange was investigated under simulated solar light irradiation, and the measurement results indicated that (ZnO–CuO)/SBA-15 nanocomposites exhibit higher photodegradation activity toward methylene orange than commercial TiO{sub 2} P-25. The photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites were found to be dependent on both the adsorption ability of the nanocomposites and the loading dosage of ZnO–CuO nanoparticles in SBA-15. The optimal loading dosage of ZnO–CuO nanoparticles was determined. Too high or too low loading will lower the photodegradation ability of (ZnO–CuO)/SBA-15 nanocomposites.

  13. Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light.

    Science.gov (United States)

    Sorolla, Maurice G; Dalida, Maria Lourdes; Khemthong, Pongtanawat; Grisdanurak, Nurak

    2012-01-01

    Photocatalytic degradation of paraquat using mesoporous-assembled Cu-TiO2/SBA15 under UV and visible light was investigated. The catalyst was synthesized by impregnation of Cu-TiO2 colloids onto SBA-15. The colloids of Cu-TiO2 were prepared via sol-gel method while the mesoporous support was prepared using hydrothermal technique. The catalyst was characterized using X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, UV diffuse reflectance spectroscopy, Zeta potential and X-ray adsorption spectroscopy. Results from characterizations showed that Cu doped TiO2 had a small crystalline size and was well-dispersed on SBA-15. The inclusion of SBA-15 significantly enhanced the photocatalytic activity of the catalyst. Among the three types of undoped catalyst in this study (P25, TiO2, TiO2/SBA-15), TiO2/SBA-15 yielded the highest degradation of paraquat for all pH under UV illumination. Meanwhile 2 wt.% Cu-TiO2/SBA-15 yielded the highest activity under visible light.

  14. Physicochemical properties of surfaces of SBA-15 silicas, according to adsorption-static, gas-chromatographic, and IR spectroscopic data

    Science.gov (United States)

    Roshchina, T. M.; Shoniya, N. K.; Tegina, O. Ya.; Tkachenko, O. P.; Kustov, L. M.

    2016-01-01

    Interaction between vapors of organic compounds and water with surfaces of mesoporous silica SBA-15 and silica SBA-15 modified with n-C6F13(CH2)2Si(CH3)2Cl via adsorption under static conditions is studied by means of gas chromatography and IR diffuse reflectance spectroscopy. It is shown that modification notably reduces the energy of disperse and specific interactions, along with the acidity of adsorption centers. Even low concentrations of the grafted groups (0.76 nm-2) allows us to obtain highly hydrophobic coatings on SBA-15 surfaces.

  15. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Science.gov (United States)

    Pudukudy, Manoj; Yaakob, Zahira; Akmal, Zubair Shamsul

    2015-03-01

    Thermocatalytic decomposition of methane is an alternative route for the production of COx-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow multi-walled nanotubes with open tips, indicating a base growth mechanism, which confirm the selectivity of SBA-15 supported bimetallic catalysts for the formation of open tip carbon nanotubes. The Raman spectroscopic and thermogravimetric analysis of the deposited carbon nanotubes over the bimetallic catalysts indicated their higher graphitization degree and oxidation stability.

  16. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol

    Science.gov (United States)

    Wang, Tuo; Yuan, Xiang; Li, Shuirong; Zeng, Liang; Gong, Jinlong

    2015-04-01

    Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (~5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts

  17. Effect of Ni Loading and CexZr1-xO2 Promoter on Ni-Based SBA-15 Catalysts for Steam Reforming of Methane

    Institute of Scientific and Technical Information of China (English)

    Huijun Wan; Xiujin Li; Shengfu Ji; Bingyao Huang; Kai Wang; Chengyue Li

    2007-01-01

    A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, TEM and BET techniques. The catalytic activities of the catalysts for steam reforming of methane were evaluated in a continuous flow microreactor. The results indicated that both the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts had good catalytic activities at atmospheric pressure. The 10wt%Ni/SBA-15 catalyst exhibited excellent stability at 800 ℃ for time on stream of 740 h. After the reaction, carbon deposits were not formed on the surface of the catalyst. There existed a regular hexagonal mesoporous structure in the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts. The nickel species and the CexZr1-xO2 component were all confined in the SBA-15 mesopores.The CexZr1-xO2 could promote dispersion of the nickel species in the Ni/CexZr1-xO2/SBA-15 catalysts.

  18. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point

    Science.gov (United States)

    Thommes, Matthias; Köhn, Ralf; Fröba, Michael

    2002-08-01

    The pore condensation and hysteresis behavior of nitrogen and argon was studied on well-defined, ordered porous materials like MCM-48, MCM-41 silica (mode pore diameters, 2-5 nm) and SBA-15 (6.7 nm) at 87 and 77 K. A comparison with the results of similar sorption experiments carried out using more disordered adsorbents like controlled-pore glasses (CPG) (mode pore diameters, 11 and 16 nm) is made. The results show clearly that the shape of sorption isotherms (in particular the shape and the width of sorption hysteresis loops) depend both on temperature and pore diameter, i.e. the thermodynamic states of pore fluid and bulk fluid, but—in particular at temperatures below the bulk triple point—also strongly on the texture (and degree of disorder) of the porous material. Analyses of nitrogen (at 77 K) and argon (at 87 K) adsorption-desorption isotherms in MCM-48 silica lead to the conclusion that in this well-defined, interconnected pore network the desorption branch of the hysteresis loop represents the equilibrium transition. In addition, pore condensation of argon can still be observed at 77 K, i.e. ca. 6.5 K below the bulk triple point in MCM-48/41 and SBA-15 silica materials with pore diametersmesopore-size analysis of silica materials using argon sorption at 77 K.

  19. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  20. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Tuo; Yuan, Xiang; Li, Shuirong; Zeng, Liang; Gong, Jinlong

    2015-05-07

    Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (∼5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.

  1. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.

    Science.gov (United States)

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.

  2. Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Co-SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Lim, S; Du, G; Zoican Loebicki, C; Derrouiche, N; Derrouiche, S; Haller, G

    2009-01-01

    Highly dispersed cobalt on SBA-15 was successfully prepared by a post synthesis grafting of cobalt. Of the cobalt precursors tested, Co(II) acetylacetonate was found to be the best source for high dispersion of cobalt. The Co-SBA-15 catalysts were characterized with different techniques: N2 physisorption, XRD, TPR, TEM, and X-ray adsorption analysis. The mesoporous structure of SBA-15 was retained after cobalt grafting with up to 10 wt % Co loading. There were no large cobalt oxide particles formed, which indicates all the cobalt ions are highly dispersed on the surface and the direct bonding to the silica surfaces results in a high reduction temperature (1123 K) relative to Co oxides. X-ray absorption analysis demonstrates a local structure of Co ions with all Co ions isolated and bonded with oxygen. XANES analysis requires that the local environment for Co ions be that of either a distorted tetrahedral or an octahedral structure and the fitting of EXAFS data further shows a Co-O bond coordination number of 3.58 {+-} 0.48, confirming that the Co is in a distorted tetrahedral environment. The catalytic activity of Co-SBA-15 catalyst was studied for the synthesis of carbon single walled nanotubes (SWNT). The high reduction stability of Co-SBA-15 is presumed to make a favorable catalyst for this high temperature reaction. Raman spectroscopy and TEM photographs show that good quality carbon SWNT was synthesized by Co-SBA-15. Moreover, Co-SBA-15 has a higher yield of carbon SWNT compared with Co-MCM-41 (C16 alkyl template) under the same reaction conditions.

  3. Hierarchical porous bioactive glasses/PLGA-magnetic SBA-15 for dual-drug release.

    Science.gov (United States)

    Ma, Jie; Lin, Huiming; Li, Xiaofeng; Bian, Chunhui; Xiang, Di; Han, Xiao; Wu, Xiaodan; Qu, Fengyu

    2014-06-01

    The hierarchical porous bioglass combined with magnetic SBA-15 was synthesized. The bioactive glass materials possess a hierarchical porous structure with the macroporous (50μm) and the mesoporous (3.86nm) structures derived from the plant template (cattail stem) and triblock polyethylene oxide-propylene oxide block copolymer (P123), respectively. Magnetic SBA-15 was synthesized by adopting the post assembly method using Fe(NO3)3 as iron source and ethylene glycol as reduction. After coating PLGA, PLGA-IBU-magnetic SBA-15 also possessed super-paramagnetism and the corresponding saturation magnetizations (Ms) could reach 2.6emug(-1). Metformin HCl (MH) and ibuprofen (IBU) were used as model drugs, and the drug release kinetics was studied. MH and IBU could release 60% and 85% from the sample respectively. The system shows excellent dual-drug controlled delivery performance and good bioactivity in vitro that leads to good potential application on bone regeneration.

  4. Syntheses of SBA-15 and Investigation on Properties of E-127 Epoxy Resin System%介孔SBA-15/环氧树脂复合材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    陈书文; 王雁冰; 黄志雄; 张超

    2011-01-01

    Using ultrasonic dispersion method, the synthesized mesoporous silica SBA-15 can fully dispersed in the epoxy resin, and then we can get SBA-15/epoxy composite materials.Condition of the filler dispersion in the resin was investigated by XRD analysis;meanwhile, characteristics of epoxy resin were researched by dielectrics constant and thermal gravimetric analysis.The research shows that SBA-15 filler can improve the thermal stability of epoxy resin and reduce its dielectric constant.%合成了孔径SBA-15介孔二氧化硅材料,利用超声波分散法制得了SBA-15/环氧树脂复合材料,TEM和氮气吸附脱附测试显示制备的SBA-15孔径为5 nm.通过SEM测试观察了介电复合材料中填料的分散情况;同时采用热失重分析、介电常数测定等方法对该介电复合材料的性能进行了研究.结果表明:SBA-15粒子的填充,可以提高环氧树脂的热稳定性,降低其介电常数.

  5. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pudukudy, Manoj, E-mail: manojpudukudy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Yaakob, Zahira, E-mail: zahirayaakob65@gmail.com [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Akmal, Zubair Shamsul [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Synthesis and characterization of Ni, Co and Fe based bimetallic catalysts supported over SBA-15. • Thermocatalytic decomposition of methane over the SBA-15 supported bimetallic catalysts. • Enhanced catalytic efficiency of the bimetallic catalysts for the production of CO{sub x} free hydrogen and nanocarbon. • Production of value added open tip hollow multi-walled carbon nanotubes. • Crystalline characterization of carbon nanotubes by XRD, Raman and thermogravimetric analysis. - Abstract: Thermocatalytic decomposition of methane is an alternative route for the production of CO{sub x}-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow

  6. Inclusion of cefalexin in SBA-15 mesoporus material and release property

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Qing-Zhou, E-mail: zhaiqingzhou@163.com

    2012-12-01

    SBA-15 (Santa Barbara Amorphous-15) is a high ordered mesoporous material. It has the advantages of a non-toxic property, good hydrothermal stability and thermal stability, etc. Inside inner surface a lot of silanols exist. Pore diameter size is uniform and pore size distribution is narrow. This structural feature makes SBA-15 have a higher loading drug amount and be able to effectively extend the drug release cycle. In this paper, polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol was used as template and tetraethyl orthosilicate was used as silica source to prepare SBA-15 by hydrothermal synthesis method. Cefalexin was included in SBA-15 and the included cefalexin drug content was 158.72 mg/g. The composite materials were characterized by using chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared (IR) spectroscopy, and low temperature nitrogen adsorption-desorption. The results showed that cefalexin had been successfully included in host SBA-15 pore channels. Rational analyses of the release processes of cefalexin drug from the pores of SBA-15 to the simulated body fluid, simulated gastric juice and simulated intestinal fluid were made and sustained-release effects of the drug in complex system were studied. The results showed that in simulated body fluid within 1-5 h cefalexin was fast released and the cumulative release reached 50.00% at 5 h. In 15-20 h, the sustained release speed of cefalexin drug in the composite material decreased and the sustained-release cumulative amount reached 99.87% at 20 h. The release of cefalexin was basically complete. In simulated gastric fluid, composite material sustained-release ended at 4 h, the cumulative sustained release ratio reaching 26.10%. In simulated gastric fluid, the sustained-release was complete at 7 h, the cumulative sustained release ratio reaching 32.46%. The composite material of SBA-15 and cefalexin could

  7. Grafted chromium 13-membered dioxo-macrocyclic complex into aminopropyl-based nanoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of); Joharian, Monika; Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of); Muzart, Jacques [Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Fallah, Mahtab [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of)

    2013-07-15

    In a new approach, chromium (III) tetraaza dioxo ligand was grafted onto functionalized SBA-15 after four step reactions by using coordinating ability of anchored amino functionalized SBA-15. After the termination of each step, the obtained product was characterized by FT-IR, low-angle X-ray diffraction (LA-XRD), N{sub 2} adsorption–desorption isotherms (Brunauer–Emmett–Teller (BET)–Barret–Joyner–Halenda (BJH)) and thermogravimetric analysis (TGA), and used as catalyst for the efficient and regioselective alcoholysis of styrene oxide to 2-alkoxy-1-phenylethanol product at ambient temperature. - Graphical abstract: Chromium (III) tetraaza dioxo ligand was grafted onto functionalized SBA-15 using coordinating ability of anchored amino functionalized SBA-15. Preparation of the catalyst is depicted in Scheme 1. - Highlights: • Dioxo tetraazachromium macrocyclic complex grafted into the SBA-15-NH{sub 2} channels. • The bond is created by coordinating ability of anchored amino functionalized SBA-15. • The prepared nanocatalyst has superior activity in the alcoholysis of styrene oxide. • The catalyst is reusable at ambient temperature for the mentioned reaction.

  8. Dynamical properties of nimodipine molecules confined in SBA-15 matrix

    Science.gov (United States)

    Kiwilsza, A.; Pajzderska, A.; Mielcarek, J.; Jenczyk, J.; Wąsicki, J.

    2016-08-01

    The paper reports results of 13C and 1H ssNMR for nimodipine confined in mesopores of SBA-15 for the samples (i) containing nimodipine molecules inside and on the external surface of silica, (ii) containing nimodipine only inside pores forming an incomplete monolayer on the surface (iii) for bulk nimodipine. The measurements permitted comparison of the dynamics of nimodipine bulk and confined in pores. The confined nimodipine is in an amorphous state and has additional degrees of rotational freedom with respect to the bulk one. The height of the energy barrier related to the rotation of methyl groups in confined nimodipine is lower than in bulk nimodipine. The higher mobility of nimodipine molecules confined in silica pores can explain the higher release rate of nimodipine from silica matrix than dissolution rate of bulk drug.

  9. Synthesis and characterization of Trichloroisocyanouric acid functionalized mesoporous silica nanocomposite (SBA/TCCA) for the Acylation of Indole

    Indian Academy of Sciences (India)

    G ROBIN WILSON; AMIT DUBEY

    2016-08-01

    Trichloroisocyanouric acid (TCCA)-functionalized mesoporous silica nanocomposites (SBA/TCCA) were synthesized and characterized for the acylation of indole. The uniform incorporation of TCCA inside the SBA-15 matrix was confirmed by standard characterization techniques (PXRD, Adsorption studies, FT-IR, etc.). The catalytic activity studies of SBA/TCCA nanocomposites for acylation of indole showed high selectivity (60–90%) of the 3-acetyl indole compared to homogeneous TCCA (50%). The advantage of solid support for higher selectivity is also explained.

  10. Size control of SBA-15 by tuning the stirring speed for the formation of CMK-3 with distinct adsorption performance

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Zhencai Wang; Tianhao Zheng; Xiongping Zhou; Wei Chen; Dekun Ma; Yun Yang

    2016-01-01

    Controlling the size of SBA-15 can be beneficial for exploiting CMK-3,which has excellent structural parameters,for better performance in adsorption and/or catalytic processes.In this study,the width of freestanding SBA-15 rods was readily and successfully regulated by simply altering the stirring power during the synthesis.A higher stirring rate produced SBA-15 rods with larger width.Then,the size of the CMK-3 rods was adjusted by duplication of the differentsized SBA-15.The results show that the larger sized CMK-3 has higher specific surface area and pore volume,which led to a higher adsorption capacity and a faster adsorption rate.It is believed that the synthetic method reported here is powerful for developing better mesoporous carbon for application in water purification and catalysis.

  11. Effect of organic-inorganic hybrid P123-em-SBA15 on lithium transport properties of composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    XI Jingyu; HUANG Xiaobin; TANG Xiaozhen

    2004-01-01

    A novel PEO-based composite polymer electrolyte by using organic-inorganic hybrid EO20PO70EO20-em- mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em- SBA15 can enhance the lithium-ion transference number of the composite polymer electrolyte, which is induced by the special topology structure of P123 in P123-em-SBA15 hybrid. In addition, room temperature ionic conductivity of the composite polymer electrolyte can also be increased by about two orders of magnitude. The excellent lithium transport properties suggest that PEO-LiClO4-P123-em-SBA15 composite polymer electrolyte can be used as electrolyte materials for all solid-state rechargeable lithium polymer batteries.

  12. Syntheses of micrometer-long Pt and Ag nanowires through SBA-15 templating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Jae; Lee, Eun-Sun; Kwon, Young-Uk, E-mail: ywkwon@skku.edu [Sungkyunkwan University, Department of Chemistry, BK-21 School of Chemical Materials Sciences (Korea, Republic of)

    2012-12-15

    We synthesized Pt and Ag nanowires using a mesoporous silica, SBA-15, as templates. The obtained nanowires are a few micrometers ({approx}4 {mu}m) long and 7 nm in diameter. The nanowires are free from bundling and, thus, can be separated as single nanowires. The successful synthesis of such nanowires requires a few considerations. In general, SBA-15 has microchannels on the walls through which the mesopores are interconnected when synthesized at 100 Degree-Sign C or higher. We, therefore, synthesized SBA-15 at a low temperature (80 Degree-Sign C) to eliminate the microchannels. Impregnation of the metal precursors and reduction of them into metals forms metal particles outside the pores in addition to the desired metal nanowires inside the pores. Surface alkylation of SBA-15 prohibits the nucleation of metal on the external surface and exclusively forms the nanowires. Finally, the introduction of surface passivating agent, an alkylthiol, during the removal of the template keeps the nanowires from interacting with one another. The Pt and Ag nanowires so-synthesized were characterized by electron microscopy.

  13. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15.

    Science.gov (United States)

    Zhang, Fuqiang; Yan, Yan; Yang, Haifeng; Meng, Yan; Yu, Chengzhong; Tu, Bo; Zhao, Dongyuan

    2005-05-12

    Mesostructured silica SBA-15 materials with different structural parameters, such as pore size, pore volume, and wall thickness, etc., were prepared by varying the postsynthesis hydrothermal treatment temperature and adding inorganic salts. The hydrothermal stabilities of these materials in steam (100% water vapor) were systematically investigated using a variety of techniques including powder X-ray diffraction, transmission electron microscopy, nitrogen sorption, and (29)Si solid-state NMR. The effect of the pore size, microporosity or mesoporosity, and wall thickness on the stability was discussed. The results show that all of the SBA-15 materials have a good hydrothermal stability under steam of 600 degrees C for at least 24 h. N(2) sorption measurements show that the Brumauer-Emmett-Teller surface area of SBA-15 materials is decreased by about 62% after treatment under steam at 600 degrees C for 24 h. The materials with thicker walls and more micropores show relatively better hydrothermal stability in steam of 600 degrees C. Interestingly, we found that the microporosity of the mesostructured silica SBA-15 is a very important factor for the hydrothermal stability. To the materials with more micropores, the recombination of Si-O-Si bonds during the high-temperature steam treatment may not cause direct destruction to the wall structure. As a result, SBA-15 materials with more micropores show better stability in pure steam of 600 degrees C. Nevertheless, these materials are easily destroyed in steam of 800 degrees C for 6 h. Two methods to effectively improve the hydrothermal stability are introduced here: one is a high-temperature treatment, and another is a carbon-propping thermal treatment. Thermal treatment at 900 degrees C can enhance the polymerization degree of Si-O-Si bonds and effectively improve the hydrothermal stability of these SBA-15 materials in 800 degrees C steam for 12 h. But, this approach will cause very serious shrinkage of the mesopores

  14. Preparation of Al-MnO2/SBA-15 Catalyst and Its Catalytic Performance for Formaldehyde Combustion%Al-MnO2/SBA-15催化剂的制备 及其催化燃烧甲醛的性能

    Institute of Scientific and Technical Information of China (English)

    杨肖; 贾志刚; 季生福; 张欢; 李旭涛

    2011-01-01

    以介孔分子筛SBA - 15为载体,分别浸渍Mn、Al等催化活性组分,制备了MnO2/SBA-15催化剂和Al-MnO2/SBA-15催化剂.采用X射线衍射、N2吸附-脱附对催化剂的结构进行了表征,在微型固定床反应器上对催化剂的低浓度甲醛催化燃烧性能进行了评价.实验结果表明:MnO2/SBA-15系列催化剂均具有SBA - 15分子筛的介孔结构,活性组分为MnO2,Mn质量分数为20%的催化剂活性最佳,甲醛可在195℃下完全燃烧去除;Al - MnO2/SBA - 15催化剂仍具有SBA - 15分子筛的介孔结构,活性组分为MnO2,没有观测到Al的物相;Mn质量分数为20%、Al质量分数为5%的催化剂活性最好,甲醛在120℃下可完全燃烧去除.%MnO2/SBA-15 catalyst and Al-MnO2/SBA-15 catalyst were prepared by impregnating mesopore zeolite SBA-15 with Mn and Al respectively. The structures of the catalysts were characterized by XRD and N2 adsorption-desorption. The catalytic performances of the catalysts for formaldehyde combustion were evaluated in a fixed-bed microreactor. The experimental results indicate that; MnO2/SBA-15 catalyst has the mesoporous structure of SBA-15, its active component is MnO2; MnO2/SBA-15 catalyst with 20% of Mn mass fraction has the best catalytic activity, formaldehyde can be completely combusted at 195 ℃; Al-MnO2/SBA-15 catalyst has still the mesoporous structure of SBA-15, its active component is MnO2, Al phase is not observed; Al-MnO2/SBA-15 catalyst with 20% of Mn mass fraction and 5% of Al mass fraction has the best catalytic activity, formaldehyde can be completely combusted at 120 ℃.

  15. Electrocatalytic reduction of bromate based on Pd nanoparticles uniformly anchored on polyaniline/SBA-15.

    Science.gov (United States)

    Sun, Chencheng; Deng, Ning; An, Hao; Cui, Hao; Zhai, Jianping

    2015-12-01

    A nano-composite electrocatalyst of Pd nanoparticles (Pd-NPs) anchored on polyaniline (PANI) supported by mesoporous SBA-15 (Pd-NPs/PANI/SBA-15), was synthesized using an in situ chemical method. Transmission electron microscopy showed that the Pd-NPs were homogeneously dispersed. Fourier-transform infrared and X-ray photoelectron spectroscopies confirmed that the Pd-NPs in the metallic state (Pd(0)) were predominantly immobilized on nitrogen sites in the PANI chains. The electrochemical performance of Pd-NPs/PANI/SBA-15 for electrocatalytic reduction of bromate (BrO3(-)) in an acidic medium was investigated by cyclic voltammetry (CV) and amperometric measurement. The reduction peak in the CV curves in the region 0.12 to -0.22V (vs. SCE) corresponded to response of BrO3(-) electroreduction, and the reduction peak current was well fitted linearly to the BrO3(-) concentration. It is proposed that the bromate ions diffuse to the Pd-NPs active sites and then the electrocatalytic reduction occurred with the H(+) doped in PANI. Furthermore, by amperometric measurement, Pd-NPs/PANI/SBA-15 showed relatively high sensitivity with respect to BrO3(-) concentration in the range of 8μmolL(-1) to 40mmolL(-1). Continuous CV for 200 cycles proved that Pd-NPs/PANI/SBA-15 had excellent electrocatalytic stability. These results show that Pd-NPs/PANI/SBA-15 is effective for electrocatalytic reduction of BrO3(-) and has great potential for the fabrication of BrO3(-) electrochemical sensor.

  16. Fabrication of copper (Ⅰ) nitride nanorods within SBA-15 by metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Copper (Ⅰ) nitride nanorods grown in channels of mesoporous silica SBA-15 by chemical vapor deposition method has been synthesized. The morphology and microstructure of the resulting product were characterized by XRD patters, TEM images, EDS analysis and Raman spectra. The XRD and TEM revealed that the Cu3N phase was confined in channels of SBA-15 forming continuous nanowires with 6 nm around and hundreds of nanometers in length. Raman spectra of the final product and pure Cu3N showed peaks shift due to the quantum confinement effect of the nanowires. This preparation methodology only requires a mild working condition and is capable of template synthesis of other binary nitride nanostructures with controlled morphology inside the channels of mesoporous materials.

  17. Fabrication of copper (Ⅰ) nitride nanorods within SBA-15 by metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; Frank Leung-Yuk Lam; YAN ZiFeng; HU XiJun

    2009-01-01

    Copper (Ⅰ) nitride nanorods grown in channels of mesoporous silica SBA-15 by chemical vapor depo- sition method has been synthesized. The morphology and microstructure of the resulting product were characterized by XRD patters, TEM images, EDS analysis and Raman spectra. The XRD and TEM re-vealed that the Cu3N phase was confined in channels of SBA-15 forming continuous nanowires with 6 nm around and hundreds of nanometers in length. Raman spectra of the final product and pure Cu3N showed peaks shift due to the quantum confinement effect of the nanowires. This preparation meth-odology only requires a mild working condition and is capable of template synthesis of other binary nitride nanostructures with controlled morphology inside the channels of mesoporous materials.

  18. 微波法合成(SBA-15) -Et2O3纳米复合材料研究%Study of (SBA-15)-Eu2O3 Nanocomposite Materials Synthesized by Microwave Method

    Institute of Scientific and Technical Information of China (English)

    姜东梅; 于辉; 黄凤晓

    2011-01-01

    本文采用了水热合成法制备出介孔分子筛SBA-15,并创新性地利用微波液相介质法、微波固相法把纳米Eu2O3成功的组装到介孔分子筛SBA-15孔道内.所制备的(SBA-15) -Eu2O3主-客体纳米复合材料表现出与Eu2O3不同的发光现象,它发出单色光,使光谱纯化.%In this thesis, mesoporous molecular sieve SBA-15 was synthesized by hydrothermal method. Eu2O3 were introduced into the porous of the SBA-15 molecular sieves by the solid-phase microwave method and liquid-phase medium. Comparing with the Eu2O3, the prepared (SBA-15) -Eu2O3 host-guest nano-composite materials showed the different phenomenon of luminescence. It showed the monochromatic lamination, and made the spectrum purification.

  19. SBA15-g-HBPE的制备、表征及其对PEO基聚合物电解质膜的改性作用研究%Hyperbranched Polyethylene-grafted SBA15 Silica:Preparation, Structural Characterizations and Its Modification Effect on PEO-based Polymer Electrolyte Membrane

    Institute of Scientific and Technical Information of China (English)

    胡栋栋; 徐立新; 程飞; 陈枫; 钟明强

    2014-01-01

    首先通过偶联剂3-丙烯酰基氧基丙基三氯硅烷对SBA15表面进行预处理,随后通过所得SBA15表面的丙烯酰基与α-二亚胺钯催化剂1进行成环反应,将催化剂1共价负载于SBA15孔道表面;进一步在乙烯压力1 atm和35°℃下催化乙烯在SBA15孔道表面接枝聚合,获得表面超支化聚乙烯(HBPE)接枝的SBA15SBA15-g-HBPE);分别通过热重分析(TGA)、红外光谱(FT-IR)、小角X射线衍射(SAXRD)和透射电子显微镜(TEM)技术对改性前后SBA15的结构进行了表征,结果表明:通过所述工艺可实现HBPE在SBA15孔道表面共价接枝,接枝后SBA15仍保留完整孔道结构。在此基础上考察了所得SBA15-g-HBPE对聚氧乙烯(PEO)基聚合物电解质膜的改性作用,与改性前SBA15相比, SBA15-g-HBPE填充体系具有更优的离子导电性能,当填充15 phr的SBA15-g-HBPE8h,所得PEO基聚合物电解质膜的室温离子导电率较未填充体系提高近43倍。%Surface modification of pristine SBA15 silica was first performed with a coupling agent, 3-acryloxypropyltrichlorosilane, to give the SBA15 silica covalently tethered with acryloyl groups (Acryl-SBA15). Then reaction between the Acryl-SBA15 silica with the Pd-α-diimine catalyst (1) was carried out to give a Pd-α-diimine catalyst covalently immobilized on the SBA15 silica (Pd-SBA15). Ethylene polymerizations were further carried out with the resulting Pd-SBA15 at an ethylene pressure of 1 atm and 35 oC and a series of HBPE-grafted SBA15 silicas were obtained. Characterizations on various silicas were performed by means of thermogravimetry analysis (TGA), fourier-transformed infrare spectra (FT-IR), small-angle X-ray diffraction (SAXRD) and high-resolution transmission electron microscopy (HRTEM). It is well confirmed that HBPE can be uniformly grafted within the mesopores of SBA 15 silica. The modification effect of the resulting SBA15-g-HBPE on PEO

  20. A Review: Mesoporous Santa Barbara Amorphous-15, Types, Synthesis and Its Applications towards Biorefinery Production

    Directory of Open Access Journals (Sweden)

    Norhasyimi Rahmat

    2010-01-01

    Full Text Available Problem statement: Santa Barbara Amorphous (SBA-15 is significant mesoporous silica with exclusive and important properties of highly ordered mesopores, hydrothermally stable and thick wall, profusely large surface area and huge pore volume which render it as promising catalyst for wide applications. However, the purely siliceous SBA-15 which lacks of acidity characteristic hinders its ideal capabilities as catalyst. Moreover, functionalization and modification of SBA-15 could enhance and optimize its catalytic activity. Conclusion/Recommendations: Thus, in this review, the various types and different synthesis of modifying SBA-15 are discussed in detail towards its application in biorefinery production. The catalytic activities in various operating conditions and reactions are also reviewed for future reference and scope of studies.

  1. TiO₂ supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light.

    Science.gov (United States)

    Phanikrishna Sharma, M V; Durga Kumari, V; Subrahmanyam, M

    2008-11-01

    Photocatalytic degradation and mineralization of pesticides are studied over TiO(2) supported mesoporous SBA-15 composite system using solar light. TiO(2) is immobilized over SBA-15 by solid sate dispersion method. The catalysts are characterized by XRD, surface area, UV-Vis diffused reflectance spectra, SEM and TEM. The detailed photocatalytic degradation studies are carried out over TiO(2), SBA-15 and different TiO(2) wt% supported SBA-15. The activity evaluation parameters such as catalyst amount, pH, and pollutant initial concentration are studied taking isoproturon as a model compound and established conditions for pesticide degradation. The optimum degradation is achieved over 10 wt% TiO(2)/SBA-15 within 30 min and the reaction is following pseudo-first order kinetics. The isoproturon mineralization is monitored with TOC reduction and it takes around 9h for disappearance. The commercial pesticide solutions containing imidacloprid and phosphamidon are also successfully degraded over these composites with the established conditions. The data indicates that 10 wt% TiO(2)/SBA-15 composite is an effective and highly active system for the pesticide degradations.

  2. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors

    Science.gov (United States)

    Bouazizi, N.; Ouargli, R.; Nousir, S.; Slama, R. Ben; Azzouz, A.

    2015-02-01

    SBA-15-Fe was synthesized via the incorporation of Fe0 nanoparticles (Fe(0)-Nps) in the mesoporous channels. Electron microscopy and X-ray diffraction showed that dispersion of fine iron NPs occurs mainly inside the channels of SBA-15, producing a slight structure compaction. This was accompanied by a significant improvement of both the affinity towards hydrogen and electrical conductivity, as supported by hydrogen adsorption tests and impedance measurements. CO2 thermal programmed desorption measurements revealed an attenuation of the acid character of the solid surface. This was explained in terms of strong iron interaction with the lattice oxygen atoms that reduces the SiO-H bond polarity. The close vicinity of fine Fe(0)-Nps combined with the large pore size of SBA-15 appear to contribute to a synergistic improvement of the electrical conductivity. The results reported herein open new prospects for SBA-15 as potential adsorbents for hydrogen storage and carriers for hydrogen sensors. The use of iron in lieu of noble metals for designing such materials is a novelty, because such applications of iron-loaded silica have not been envisaged so far due to the high reactivity of iron towards air and water. The development of such technologies, if any, should address this issue.

  3. Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light

    Institute of Scientific and Technical Information of China (English)

    Maurice G. Sorolla II; Maria Lourdes Dalida; Pongtanawat Khemthong; Nurak Grisdanurak

    2012-01-01

    Photocatalytic degradation of paraquat using mesoporous-assembled Cu-TiO2/SBA15 under UV and visible light was investigated.The catalyst was synthesized by impregnation of Cu-TiO2 colloids onto SBA-15.The colloids of Cu-TiO2 were prepared via solgel method while the mesoporous support was prepared using hydrothermal technique.The catalyst was characterized using X-ray diffraction,nitrogen adsorption-desorption,transmission electron microscopy,UV diffuse reflectance spectroscopy,Zeta potential and X-ray adsorption spectroscopy.Results from characterizations showed that Cu doped TiO2 had a small crystalline size and was welldispersed on SBA-15.The inclusion of SBA- 15 significantly enhanced the photocatalytic activity of the catalyst.Among the three types of undoped catalyst in this study (P25,TiO2,TiO2/SBA- 1 5),TiO2/SBA-1 5 yielded the highest degradation of paraquat for all pH under UV illumination.Meanwhile 2 wt.% Cu-TiO2/SBA- 15 yielded the highest activity under visible light.

  4. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    Science.gov (United States)

    Yao, Qilu; Lu, Zhang-Hui; Yang, Kangkang; Chen, Xiangshu; Zhu, Meihua

    2015-10-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniformly dispersed in the mesopores of SBA-15. The as-synthesized Ru@SBA-15 nanocomposites (NCs) display exceptional catalytic activity for hydrogen generation by the hydrolysis of ammonia borane (NH3BH3, AB) and hydrazine borane (N2H4BH3, HB) at room temperature with the turnover frequency (TOF) value of 316 and 706 mol H2 (mol Ru min)-1, respectively, relatively high values reported so far for the same reaction. The activation energies (Ea) for the hydrolysis of AB and HB catalyzed by Ru@SBA-15 NCs are measured to be 34.8 ± 2 and 41.3 ± 2 kJ mol-1, respectively. Moreover, Ru@SBA-15 NCs also show satisfied durable stability for the hydrolytic dehydrogenation of AB and HB, respectively.

  5. Effect of Modification of SBA-15 by Carbon Films on Textural and Catalytic Properties of Supported Cobalt Catalysts%SBA-15的孔壁碳膜修饰对钴基催化剂结构与催化性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱海燕; 周朝华; 马兰; 程振兴; 沈俭一

    2011-01-01

    Carbon coated mesoporous SBA-15, named SBA-15C, was obtained from as-synthesized SBA-15 after graphitization in inert gas. With SBA-15 and SBA-15C as supports and cobalt nitrate aqueous solution as precursor, the supported cobalt-based catalyst samples were prepared by a wet impregnation method. The catalyst samples were characterized by X-ray diffraction, N2 physisorption, temperature-programmed reduction, and NH3 microcalorimetric adsorption. The results suggested that upon doping the inner walls of SBA-15 with carbon, the hexagonal ordered mesoporous framework was retained while the surface area decreased a little and the thickness of pore wall increased. The supported cobalt-based catalyst retained the mesoporous characteristics with decreased surface area and pore volume. The average particle size of CO3O4 on SBA-15C was smaller than that on SBA-15, which suggested that the existence of carbon improved the dispersion of CO3O4 particles. However, the modification of SBA-15 with carbon films did not seem to increase the reducibility of CO3O4. Both Co/SBA-15 and Co/SBA-15C exhibited high selectivity for Cs+ hydrocarbons (-80%), but Co/SBA-15C showed higher stability in the F-T synthesis reactions.%在惰性气体中焙烧SBA-15制得孔壁被碳修饰的SBA- 15C样品,以它和SBA-15为载体,采用等量浸渍法制备了负载型Co基催化剂,并运用X射线衍射、N2物理吸附、程序升温还原、NH3吸附量热等手段对样品进行了表征.结果表明,SBA- 15C仍保持原有的六方有序的中孔结构,但其孔壁经碳修饰后发生增厚,比表面积略有下降.Co的负载使得SBA-15SBA-15C样品的孔径基本不变,但比表面积和孔体积下降,仍保持其中孔分子筛的特征.CO3O4在SBA- 15C上的晶粒较小,但还原度较低,表明碳的存在有利于Co物种的分散.比较了Co/SBA- 15和Co/SBA-15C上的费托合成反应性能,发现两者对C5+的选择性均较高(达80%左右),但Co/SBA- 15C催化剂稳定性优于Co/SBA

  6. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition.

    Science.gov (United States)

    Chiang, Hung-Lung; Wu, Trong-Neng; Ho, Yung-Shou; Zeng, Li-Xuan

    2014-07-15

    Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650-850°C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850°C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650-850°C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp(2) structure)cm(-1). Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9-2.6/2.7-1.5, 1.4-2.8/2.6-4.3, 4.2-2.4/3.2-1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850°C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850°C, and the aromatics contributed more than 87% fraction of VOC concentrations.

  7. Two-solvent method synthesis of SnO{sub 2} nanoparticles embedded in SBA-15: Gas-sensing and photocatalytic properties study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Peng; Zhang, Lili; Li, Guang; Sun, Zhaoqi [Key Laboratory of Information Materials and Device, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Liu, Xiansong [Engineering Technology Research Center of Magnetic Materials, Hefei 230039 (China); Wu, Mingzai, E-mail: mingzaiwu@gmail.com [Key Laboratory of Information Materials and Device, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Engineering Technology Research Center of Magnetic Materials, Hefei 230039 (China)

    2014-02-01

    Graphical abstract: Different loadings of SnO{sub 2} nanoparticles embedded in mesoporous silica (sample S1, S2 and S3) show higher response to H{sub 2} at lower operating temperature than pure SnO{sub 2} nanoparticles. - Highlights: • Two-solvent method is firstly used to synthesize SnO{sub 2} nanoparticles embedded in mesoporous silica (SBA-15). • The SnO{sub 2}/SBA-15 nanocomposites show higher response to H{sub 2} at lower operating temperature than pure SnO{sub 2} nanoparticles. • The SnO{sub 2}/SBA-15 nanocomposites have higher photodegradation ability toward methylene blue than pure SnO{sub 2} nanoparticles. - Abstract: Different loadings of SnO{sub 2} nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy and N{sub 2} adsorption porosimetry were employed to characterize the nanocomposites. Compared with pure SnO{sub 2} nanoparticles, the SnO{sub 2}/SBA-15 nanocomposites show higher response to H{sub 2} at lower operating temperature. The photocatalytic activity of as-prepared SnO{sub 2}/SBA-15 for degradation of methylene blue was investigated under UV light irradiation and the results show that the SnO{sub 2}/SBA-15 nanocomposites have higher photodegradation ability toward methylene blue than pure SnO{sub 2} nanoparticles.

  8. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water

    Science.gov (United States)

    Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara

    2017-07-01

    Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.

  9. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO 2 capture with excellent stability and regenerability

    KAUST Repository

    Patil, Umesh

    2012-01-01

    We report the use of silicon oxynitrides as novel adsorbents for CO 2 capture. Three series of functionalized materials based on KCC-1, SBA-15 and MCM-41 with Si-NH 2 groups were prepared using a simple one-step process via thermal ammonolysis using ammonia gas, and they demonstrated excellent CO 2 capture capabilities. These materials overcome several limitations of conventional amine-grafted mesoporous silica. They offer good CO 2 capture capacity, faster adsorption-desorption kinetics, efficient regeneration and reuse, more crucially excellent thermal and mechanical stability even in oxidative environments, and a clean and green synthesis route, which allows the overall CO 2 capture process to be practical and sustainable. This journal is © The Royal Society of Chemistry 2012.

  10. Adsorption Properties of Amino Acids on Ca/SBA-15 Prepared by Calcium Modification under Microwave Radiation%氨基酸在微波辅助钙改性SBA-15上的吸附性能

    Institute of Scientific and Technical Information of China (English)

    张三山; 张德喜; 肖建国; 刘亚纯; 伏再辉

    2012-01-01

    The calcium modified SBA-15 materials, denoted as Ca / SBA-15 ( MW ) , were prepared by solid-phase method under microwave radiation. The structure of the materials was characterized by small angle XRD, N2 adsorption-desorption, and TEM. Adsorption performance of four typical amino acids on Ca/SBA-15( MW) was studied. Effects of the. calcium loading and pH of amino acid solution on the adsorption performance were investigated. The results show that the calcium modified materials prepared by this method still retain similar structural characteristics of SBA-15, and calcium species are uniformly dispersed in the mesoporous material pore channel. Ca/ SBA-15 (MW) displays better adsorption ability to the adsorption of acidic glutamic acid at pH = 2.0 - 10 as compared to pure silicon SBA-15. Moreover, their adsorption capacity is proportional to calcium content of the samples. For the adsorption of basic amino acid lysine( Lys) , Ca/SBA-15 ( MW) shows the weaker adsorption ability at pH < 10 compared with SBA-15, whereas its adsoiption ability is stronger than that of SBA-15 when the pH value of adsorption solution was adjusted to 10. For the adsorption of some neutral amino acids such as phenylalanine and alanine on SBA-15, their adsorption amount was low at pH =2. 0 ~6. 0 and pH =6. 0 ~ 10. When pH value was ca. 6.0, the maximum adsorption amount of phenylalanine and alanine over SBA-15 was up to 0. 34 and 0. 17 mmol/g, respectively. Ca/SBA-15 ( MW) exhibits a weak adsorption capacity to alanine, and hardly adsorbed phenylalanine. This is likely due to the surface hydrophilicity of the calcium-containing samples, which can lead to a poor adsorption interaction with hydrophobic alanine and especially phenylalanine.%采用微波辐射固相法制备了钙改性SBA-15材料Ca/SBA-15 (MW),借助小角XRD、N2吸附-脱附实验及TEM表征了Ca/SBA-15 (MW)的结构,研究了4种典型的氨基酸在Ca/SBA- 15 (MW)上的吸附性能,并考察了钙负载量和pH值对其

  11. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    Science.gov (United States)

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  12. STUDY ON THE PERFORMANCE OF Co-SBA-15 CATALYST FOR CATALYTIC OXIDATION OF STYRENE TO BENZALDEHYDE%Co-SBA-15催化苯乙烯氧化制苯甲醛反应性能的研究

    Institute of Scientific and Technical Information of China (English)

    白向向; 沈健

    2011-01-01

    以Co(NO3)2·6H2O为钴源制备Co-SBA-15介孔分子筛,并用XRD、BET方法对Co-SBA-15结构进行表征.结果表明,负载钴的SBA-15具有介孔分子筛的结构特征.以质量分数为30%的H2O2为氧化剂,丙酮为溶剂,对Co-SBA-15催化氧化苯乙烯反应进行研究.在苯乙烯用量5 mL、n(H2O2)∶n(苯乙烯)=2、催化剂焙烧温度500℃、Co(15 %)-SBA-15用量100mg、丙酮用量10mL、反应温度100℃、反应时间4h的条件下,苯乙烯转化率为99.12%,苯甲醛选择性为77.62%,苯甲醛收率为76.94%.%Cobalt-containing mesoporous molecular sieves Co-SBA-15 were prepared using Co(NO3) · 6H2O as cobalt source and the obtained molecular sieves were characterized by XRD and BET. Test results showed that Co-SBA-15 possessed the characteristic structural features of mesoporous molecular sieve. The performance of Co-SBA-15 for catalytic oxidation of styrene was investigated using 30% H2O2 as oxidant and acetone as solvent. Under the conditions of using 5 mL of styrene, 10 mL of acetone, 100 mg Co(15%)-SBA-15 catalyst calcined at 500 ℃ ,H2O2/styrene molar ratio of 2,a reaction temperature of 100 ℃ and a reaction time of 4 h,the conversion of styrene reached 99. 12% ,the selectivity and yield of benzaldehyde was 77. 62% and 76. 94% ,respectively.

  13. Oleochemical-tethered SBA-15-type silicates with tunable nanoscopic order, carboxylic surface, and hydrophobic framework: cellular toxicity, hemolysis, and antibacterial activity.

    Science.gov (United States)

    Pędziwiatr-Werbicka, Elżbieta; Miłowska, Katarzyna; Podlas, Marta; Marcinkowska, Monika; Ferenc, Małgorzata; Brahmi, Younes; Katir, Nadia; Majoral, Jean-Pierre; Felczak, Aleksandra; Boruszewska, Aleksandra; Lisowska, Katarzyna; Bryszewska, Maria; El Kadib, Abdelkrim

    2014-07-28

    Novel silicates were prepared by using silylated natural fatty acids (derived from triglyceride renewable oils) as co-condensing reagents in presence of tetraethyl orthosilicate (TEOS) and the triblock copolymer, pluronic P123, as a structure directing agent. A series of carboxylic acid functionalized SBA-15-type mesoporous silicates were obtained with tunable nanoscopic order and reactive functional groups that allow the conjugation of amino probes by peptide coupling. Photophysical studies of the covalently linked aminopyrene substantiated that the internal framework of these materials have pronounced hydrophobicity. Moreover, phase separation that can emanate from the bulkiness of the starting fatty silanes has been ruled out owing to the absence of excimers after aminopyrene grafting. The hemotoxicity, cytotoxicity, and antimicrobial activity of these novel silicates were then evaluated. Without discrimination, the functionalized silicates show a significant decrease of red blood cell hemolysis as compared to bare SBA-15-silica material. Within the modified silicate series, germanium-free mesoporous silicates induce only a slight decrease in cell viability and, more interestingly, they exhibit negligible hemolytic effect. Moreover, increasing their concentration in the medium reduces the concentration of released hemoglobin as a result of Hb adsorption. Promising antimicrobial properties were also observed for these silicates with a slight dependency on whether phenylgermanium fragments were present within the silicate framework.

  14. Selective oxidation of cyclohexane on a novel catalyst Mg-Cu/SBA-15 by molecular oxygen.

    Science.gov (United States)

    Duan, Xiaogang; Liu, Weimin; Yue, Lumin; Fu, Wei; Ha, Minh Ngoc; Li, Jun; Lu, Guanzhong

    2015-10-21

    The novel catalysts xMg-2.3Cu/SBA-15 with copper and magnesium oxide co-supported on mesoporous silica were synthesized by an impregnation method. The newly synthesized catalysts were characterized using a series of techniques such as BET, XRD, H2-TPR, UV-vis, XPS, EDS and TEM. The catalytic performance was evaluated by using selective oxidation of cyclohexane with molecular oxygen as the oxidant in a solvent free system. The incorporation of magnesium improved the dispersion of copper oxide and prevented the deep oxidation of cyclohexanol and cyclohexanone. The selectivity of K/A oil was up to 99.3% with 12% conversion of cyclohexane over the 1.2Mg-2.3Cu/SBA-15 catalyst. To our knowledge, this is the best result for the heterogeneous oxidation of cyclohexane by O2.

  15. Hydrodeoxygenation of Guaiacol Over Pt/Al-SBA-15 Catalysts.

    Science.gov (United States)

    Yu, Mi Jin; Park, Sung Hoon; Jeon, Jong-Ki; Ryu, Changkook; Sohn, Jung Min; Kim, Sang Chai; Park, Young-Kwon

    2015-01-01

    Upgrading of bio-oil through catalytic hydrodeoxygenation (HDO) reaction was investigated for guaiacol as a model compound. A batch reactor was used for the reaction condition of 40 bar and 250 degrees C. The target product was cyclohexane. Pt/Al-SBA-15 with the Si/Al ratios of 20, 40, and 80 and Pt/HZSM-5 were used as the catalyst. The SBA-15 catalysts were characterized by N2 adsorption-desorption, X-ray diffraction analysis, and temperature programmed desorption of ammonia. The order of cyclohexane yield was Pt/Al-SBA-15 (Si/Al = 20) > Pt/Al-SBA-15(40) > Pt/Al-SBA-15 (80), indicating that the quantity of acid sites plays an important role in the HDO reaction. On the other hand, Pt/HZSM-5 led to a very low cyclohexane yield, in spite of its abundant strong acid sites, due to its small pore size.

  16. Use of SBA-15 for furosemide oral delivery enhancement.

    Science.gov (United States)

    Ambrogi, Valeria; Perioli, Luana; Pagano, Cinzia; Marmottini, Fabio; Ricci, Maurizio; Sagnella, Anna; Rossi, Carlo

    2012-05-12

    The objective of this research was to realize a new oral solid dosage form in order to improve the release of furosemide (FURO) in its preferential absorption region. In fact FURO is a drug labeled in class IV of the Biopharmaceutical Classification System (BCS) characterized by low and variable bioavailability due to both low solubility and low permeability and because of its weakly acid nature is preferentially absorbed in the stomach whereas its solubility is hampered. FURO was included in the mesoporous silica material SBA-15 obtaining an inorganic-organic compound fully characterized by: thermogravimetric analysis (TGA), X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption-desorption analysis and then submitted to in vitro dissolution. The results showed a remarkable dissolution rate improvement in comparison to the crystalline drug and to the marketed product Lasix®. The inclusion product was also submitted to physical stability studies that revealed the matrix ability to prevent re-organization in crystal nucleus of the drug molecules.

  17. Synthesis of photoactive AgCl/SBA-15 by conversion of silver nanoparticles into stable AgCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zienkiewicz-Strzalka, M., E-mail: gosiazienkiewicz@wp.pl [Department of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, sq. Maria Curie-Sklodowska 3, 20-031 Lublin (Poland); Pikus, S. [Department of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, sq. Maria Curie-Sklodowska 3, 20-031 Lublin (Poland)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A new material AgCl/SBA-15 was synthesized and characterized. Black-Right-Pointing-Pointer New simple and effective approach of preparation was proposed. Black-Right-Pointing-Pointer AgCl/SBA-15 material was tested as an active agent during photodegradation of phenol and its photoactivity was confirmed. Black-Right-Pointing-Pointer The photoactive properties depend on AgCl nanoparticles present in the composite. - Abstract: In this work the results of synthesis the ordered mesoporous silica (SBA-15) in the presence of stable silver nanoparticles were presented. It has been proven that the proposed method leads to the synthesis of SBA-15 nanocomposite containing silver chloride nanoparticles, formed by the transformation of silver nanoparticles in the acidic conditions. Proposed one-pot procedure is simple and the one requirement is to prepare a stable solution of silver nanoparticles. In this work, silver nanoparticles were obtained during chemical reduction of [Ag(NH{sub 3}){sub 2}]{sup +} ions by formaldehyde. Silver nanoparticles solution can be used as a silver chloride source due to the application of the same polymer as a stabilizer of nanocrystals and structure directing agent of SBA-15. The final AgCl/SBA-15 materials show excellent structural ordering characteristic for this type of materials confirmed by diffraction measurements in range of small angles 2{theta}, transmission electron microscopy (TEM) and nitrogen adsorption/desorption measurements. AgCl nanoparticles were identified by diffraction measurements as chlorargyrite phase. The presence of silver nanoparticles in initial solution and their absence after synthesis were confirmed by UV-vis measurements. The photoactivity of obtained AgCl/SBA-15 composite was tested in reaction of organic impurities photodegradation.

  18. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Risk Management, China Medical University, Taichung 40402, Taiwan (China); Wu, Trong-Neng [Department of Public Health, China Medical University, Taichung 40402, Taiwan (China); Ho, Yung-Shou [Department of Applied Chemistry and Materials Science, Fooyin University, Kaohsiung 831, Taiwan (China); Zeng, Li-Xuan [Department of Risk Management, China Medical University, Taichung 40402, Taiwan (China)

    2014-07-15

    Highlights: • Acetylene was decomposed on SBA-15 and Ni-SBA-15 at 650–850 °C. • Carbon spheres and filaments were formed after acetylene decomposition. • PAHs were determined in tar and residues. • Exhaust constituents include CO{sub 2}, H{sub 2}, NO{sub x} and hydrocarbon species. - Abstract: Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650–850 °C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850 °C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650–850 °C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp{sup 2} structure) cm{sup −1}. Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H{sub 2}, and C{sub 2}H{sub 2} were 3.9–2.6/2.7–1.5, 1.4–2.8/2.6–4.3, 4.2–2.4/3.2–1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850 °C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104 ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850 °C, and the aromatics contributed more than 87% fraction of VOC concentrations.

  19. Synthesis of photoactive AgCl/SBA-15 by conversion of silver nanoparticles into stable AgCl nanoparticles

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Pikus, S.

    2013-01-01

    In this work the results of synthesis the ordered mesoporous silica (SBA-15) in the presence of stable silver nanoparticles were presented. It has been proven that the proposed method leads to the synthesis of SBA-15 nanocomposite containing silver chloride nanoparticles, formed by the transformation of silver nanoparticles in the acidic conditions. Proposed one-pot procedure is simple and the one requirement is to prepare a stable solution of silver nanoparticles. In this work, silver nanoparticles were obtained during chemical reduction of [Ag(NH3)2]+ ions by formaldehyde. Silver nanoparticles solution can be used as a silver chloride source due to the application of the same polymer as a stabilizer of nanocrystals and structure directing agent of SBA-15. The final AgCl/SBA-15 materials show excellent structural ordering characteristic for this type of materials confirmed by diffraction measurements in range of small angles 2θ, transmission electron microscopy (TEM) and nitrogen adsorption/desorption measurements. AgCl nanoparticles were identified by diffraction measurements as chlorargyrite phase. The presence of silver nanoparticles in initial solution and their absence after synthesis were confirmed by UV-vis measurements. The photoactivity of obtained AgCl/SBA-15 composite was tested in reaction of organic impurities photodegradation.

  20. Characterization and performance of Pt/SBA-15 for low-temperature SCR of NO by C3H6.

    Science.gov (United States)

    Liu, Xinyong; Jiang, Zhi; Chen, Mingxia; Shi, Jianwei; Shangguan, Wenfeng; Teraoka, Yasutake

    2013-05-01

    Pt supported on mesoporous silica SBA-15 was investigated as a catalyst for low temperature selective catalytic reduction (SCR) of NO by C3H6 in the presence of excess oxygen. The prepared catalysts were characterized by means of XRD, BET surface area, TEM, NO-TPD, NO/C3H6-TPO, NH3-TPD, XPS and 27Al MAS NMR. The effects of Pt loading amount, O2/C3H6 concentration, and incorporation of Al into SBA-15 have been studied. It was found that the removal efficiency increased significantly after Pt loading, but an optimal loading amount was observed. In particular, under an atmosphere of 150 ppm NO, 150 ppm C3H6, and 18 vol.% O2, 0.5% Pt/SBA-15 showed remarkably high catalytic performance giving 80.1% NOx reduction and 87.04% C3H6 conversion simultaneously at 140 degrees C. The enhanced SCR activity of Pt/SBA-15 is associated with its outstanding oxidation activities of NO to NO2 and C3H6 to CO2 in low temperature range. The research results also suggested that higher concentration of O2 and higher concentration of C3H6 favored NO removal. The incorporation of Al into SBA-15 improved catalytic performance, which could be ascribed to the enhancement of catalyst surface acidity caused by tetrahedrally coordinated AlO4. Moreover, the catalysts could be easily reused and possessed good stability.

  1. Functionalized periodic mesoporous organosilicas for enhanced and selective peptide enrichment.

    Science.gov (United States)

    Wan, Jingjing; Qian, Kun; Zhang, Jun; Liu, Fang; Wang, Yunhua; Yang, Pengyuan; Liu, Baohong; Yu, Chengzhong

    2010-05-18

    The analysis of peptides by the mass spectrometry (MS) technique is important in modern life science. The enrichment of peptides can increase the detection efficiency and is sometimes indispensable for collecting the information on proteins with low-abundance. Herein, we first report that functionalized periodic mesoporous organosilica (PMO) materials have a superior peptide enrichment property. It is demonstrated that the PMO materials with an organo-bridged (-CH(2)-) hybrid wall composition display a highly enhanced peptide enrichment ability compared to the pure silica material (SBA-15) with similar mesostructured parameters and morphology. More importantly, by surface modification of PMO with amino groups (denoted NH(2)-PMO), PMO and NH(2)-PMO with opposite charged surfaces (-25.2 and +39.0 mV, respectively) show selective affinities for positively and negatively charged peptides, respectively. By directly adding PMO, NH(2)-PMO as well as pure silica materials to the peptides solution with a low concentration (1-2 fmol/microL), 36 and 28 peptides can be detected from the BSA digestion in the presence of PMO and NH(2)-PMO, respectively, while only 6 and 4 are monitored in the case of SBA-15 enrichment and from solution without enrichment, respectively. Moreover, 69.4% (25 of 36) of enriched peptides by PMO have pI > or = 6 and 80% (21 of 28) of enriched peptides by NH(2)-PMO possess pI PMO and PMO enrichment together, 51 peptides can be identified with a MOWSE score of 333. It is also noted that similar conclusions can also be obtained from the peptides solution originated from other proteins. This might be an important contribution to the understanding of the interaction between peptides and porous hosts, and the proposed method is promising for the development of both material science and biotechnology.

  2. Characterization and Catalytic Activity of CeO2-Ni/Mo/SBA-15 Catalysts for Carbon Dioxide Reforming of Methane%CeO2/Ni/Mo/SBA-15甲烷二氧化碳重整催化剂的表征和催化性能

    Institute of Scientific and Technical Information of China (English)

    黄健; 马人熊; 高志华; 沈朝峰; 黄伟

    2012-01-01

    A Ni/Mo/SBA-15 catalyst was modified with CeO2 and compared with the unmodified catalyst.The catalysts were characterized by N2 adsorption,CO2 temperature-programmed desorption,H2 temperature-programmed reduction,Fourier transform infrared spectrometer,X-ray diffraction,scanning electron microscopy,and X-ray photoelectron spectroscopy.Both the Ni/Mo/SBA-15 and CeO2/Ni/Mo/SBA-15 catalysts gave good catalytic activities at atmospheric pressure.The CeO2 impregnated Ni/Mo/SBA-15 catalyst exhibited excellent stability at 800 ℃ for 100 h on stream,and after the resction,carbon deposits were not formed on the catalyst.The Ni/Mo/SBA-15 and CeO2/Ni/Mo/SBA-1 5 catalysts had a regular hexagonal mesoporous structure.The nickel species and the Ce-Mo oxide components were all in the SBA-15 mesopores.This prevented carbon deposition and sintering of the nickel species in the CeO2/Ni/Mo/SBA-15 catalyst.%考察了CeO2修饰及未修饰的Ni/Mo/SBA- 15催化剂在CH4-CO2重整上的催化性能并采用N2吸脱附、CO2程序升温脱附、H2程序升温还原、傅里叶红外光谱、X射线衍射、扫描电子显微镜和X射线光电子能谱对催化剂进行了表征.结果表明,在常压,800C条件下,经过100 h在线评价后,Ni/Mo/SBA- 15和CeOz/Ni/Mo/SBA- 15催化剂仍具有高的反应活性和规整的六方介孔结构,其中CeO2修饰的CeO2/Ni/Mo/SBA-15催化剂表面没有积炭形成,表明CeO2的加入促进了Ni物种在SBA-15介孔分子筛表面的分散,从而阻止了Ce/Ni/Mo/SBA- 15催化剂上Ni的烧结和积炭.

  3. Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems

    Directory of Open Access Journals (Sweden)

    S. A. Jadhav

    2017-02-01

    Full Text Available A series of poly(N-isopropylacrylamide-co-acrylamide thermoresponsive random copolymers with different molecular weights and composition were synthesized and characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR, differential scanning calorimetry (DSC, size exclusion chromatography (SEC and proton nuclear magnetic resonance (NMR spectroscopy. The lower critical solution temperatures (LCST of the copolymers were tuned by changing the mole ratios of monomers. Copolymer with highest molecular weight and LCST (41.2 °C was grafted on SBA-15 type mesoporous silica particles by a two-step polymer grafting procedure. Bare SBA-15 and the thermoresponsive copolymergrafted (hybrid SBA-15 particles were fully characterized by scanning electron microscope (SEM, ATR-FTIR, thermogravimetric analysis (TGA and Brunauer-Emmett-Teller (BET analyses. The hybrid particles were tested for their efficiency as temperature-sensitive systems for dermal delivery of the antioxidant rutin (quercetin-3-O-rutinoside. Improved control over rutin release by hybrid particles was obtained which makes them attractive hybrid materials for drug delivery.

  4. Synthesis of Pt-Sn core-shell nanoparticles deposited on SBA-15 modified

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Contreras, L.; Alonso-Lemus, I. [Centro de Investigacion en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnologia (Mexico); Botte, G. G. [Ohio University, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering (United States); Verde-Gomez, Y., E-mail: ysmaelverde@yahoo.com [Instituto Tecnologico de Cancun (Mexico)

    2013-07-15

    A novel one-step synthesis method to prepare Pt-Sn bimetallic nanoparticles supported on mesoporous silica with high surface area (SBA-15, 700 m{sup 2}/g) and narrow pore size distribution (around 9.5 nm) was developed. Tin incorporation plays an important dual role, to create active sites into the silica walls that serve as particles anchors center, and to grow Pt-Sn core-shell nanoparticles. High-resolution transmission and scanning electron microscopy, and X-ray diffraction pattern confirm the formation of the Pt-Sn core-shell type nanoparticles ( Almost-Equal-To 1-10 nm). The metal loading was 2.2 and 2.3 wt% for Pt and Sn, respectively. Electron microscopy results show that the metal nanoparticles were deposited not only on the matrix, but also inside of it. Structural, textural, and morphological features of the SBA-15 were slightly affected after the nanoparticles deposition, maintaining its high surface area. The results obtained suggest that Pt-Sn on SBA-15 could be attractive material for several catalytic applications, due to the narrow particle size distribution achieved (from 1 to 10 nm) the high dispersion on the support, as well as the Pt-Sn alloy developed.Graphical Abstract.

  5. Synthesis and Characterization of Poly(N-isopropylacrylamide)/SBA-15 Silica Nanocomposites.

    Science.gov (United States)

    de Sousa, Andreza; de Sousa, Edésia Martins Barros; de Sousa, Ricardo Geraldo

    2015-12-01

    The combination of the mesoporous silica material SBA-1 5 with the temperature-responsive hydrogels, such as poly(N-isopropylacrylamide) P(N-iPAAm) can lead to the formation of a material with the potential for application as a new drug delivery system, given that self-regulated delivery allows for drug release when needed. The present work studies the synthesis and characterization of hybrid systems consisting of the poly(N-isopropylacrylamide) hydrogel and SBA-15 by varying the amount of hydrogel within the silica network. A systematic study on the structural properties of hybrid samples, their thermal stability and the degradation of the polymer chains in silica was carried out through characterization techniques, including SAXS, thermogravimetry and physical adsorption of N2. The results were critically examined and compared with pure SBA-15. The present study's results demonstrated that the thermosensibility of P(N-iPAAm) was retained in the hybrid system, which presented a low critical solution temperature, similar to that of pure P(N-iPAAm). Moreover, the hydrogel did not fully occupy the available intrachannel space, making the [SBA-15/P(N-iPAAm)] hybrids a very promising candidate for hosting and further delivery, under appropriate conditions, of a variety of molecules of pharmaceutical interest.

  6. Asymmetric transfer hydrogenation of prochiral ketone catalyzed over Fe-CS/SBA-15 catalyst

    Institute of Scientific and Technical Information of China (English)

    XUE Ping; WU Tao

    2007-01-01

    A heterogeneous chiral catalyst Fe(Ⅲ)-CS (chitosan)complex/mesoporous molecular sieve SBA-15 (Santa Barbara Amorphous) was prepared.The asymmetric transfer hydrogenations of prochiral acetophenone and 4-methyl-2-pentanone to corresponding chiral alcohols were carried out on Fe-CS/SBA-15 at atmosphere pressure using 2-propanol as hydrogen donor.Effects of Fe content in catalyst,reaction temperature,reaction time and promoter KOH concentration on the conversion of substrates and enantioselectivity were investigated.Fe-CS/SBA-15 with 2.2%mass fraction Fe exhibits considerable enantioselectivity and catalytic activity for the asymmetric transfer hydrogenations of aromatic ketone and aliphatic ketone.Under optimal reaction conditions:KOH concentration 0.03 mol/L,reaction temperature 70℃ and reaction time 4 h,enantiomer excess(ee)of (R)-1-phenylethanol and conversion of acetophenone can reach 87.4%and 27.7%,respectively.Under the above KOH concentration and reaction temperature and reaction time of 8 h,the ee of(R)-4-methyl-2-pentanol and conversion 4-methyl-2-pentanone amounted to 50.2%and 25.5%,respectively.

  7. Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene

    Science.gov (United States)

    Chen, Aibing; Yu, Yifeng; Wang, Rujie; Yu, Yunhong; Zang, Wenwei; Tang, Pei; Ma, Ding

    2015-08-01

    A nanocasting method to fabricate nitrogen-doped dual mesoporous carbon is proposed by the carbonization of nitrile functional ionic liquid (FIL) grafted SBA-15 for the first time. These carbon materials have high nitrogen content (12.8%), large specific surface areas (763 m2 g-1) and uniform rod morphologies, which are derived from FILs grafted on the surface of SBA-15. Furthermore, by adjusting the impregnation amount of ionic liquids on SBA-15, pore structures of these carbon materials can be adjusted from single to dual mesopores. The developed dual mesoporous carbon materials exhibit good catalytic performance in the selective oxidation of ethylbenzene, ascribed to the promoting effects of nitrogen-doping, high surface area and dual mesostructure. It may be concluded that the dual mesostructure has an advantage over a single mesostructure to obtain a fast mass transport rate, resulting in higher acetophenone yield.A nanocasting method to fabricate nitrogen-doped dual mesoporous carbon is proposed by the carbonization of nitrile functional ionic liquid (FIL) grafted SBA-15 for the first time. These carbon materials have high nitrogen content (12.8%), large specific surface areas (763 m2 g-1) and uniform rod morphologies, which are derived from FILs grafted on the surface of SBA-15. Furthermore, by adjusting the impregnation amount of ionic liquids on SBA-15, pore structures of these carbon materials can be adjusted from single to dual mesopores. The developed dual mesoporous carbon materials exhibit good catalytic performance in the selective oxidation of ethylbenzene, ascribed to the promoting effects of nitrogen-doping, high surface area and dual mesostructure. It may be concluded that the dual mesostructure has an advantage over a single mesostructure to obtain a fast mass transport rate, resulting in higher acetophenone yield. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03802b

  8. MIL-53(Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery.

    Science.gov (United States)

    Gordon, Jeff; Kazemian, Hossein; Rohani, Sohrab

    2015-02-01

    Conventional drug administration suffers from several drawbacks, including a lack of specificity for diseased tissue, the necessity of large and frequent doses, and adverse side effects. Great effort is currently being devoted to developing nanoparticle-based therapeutics capable of prolonging drug administration and providing better control. Here we demonstrate the use of flexible microporous MIL-53(Fe) and mesoporous MIL-101 and SBA-15 as matrices for the adsorption and in vitro drug delivery of acetaminophen, progesterone, and stavudine. A drug loading of 20 wt.% was achieved for each of the nanomaterials using an incipient wetness impregnation procedure. BET, DSC, and XRPD analyses indicated that the entire loaded amount of each of the model drugs had successfully been incorporated within the mesoporous channels of both MIL-101 and SBA-15. DSC analysis evidenced that a portion of each of the model drugs had deposited onto the outer surface of MIL-53(Fe) particles; however, the portion of each drug that had incorporated within the microporous channels was slowly delivered in a diffusion-controlled process, which occurred over a period of up to six days for acetaminophen. These results demonstrate the unique ability of MIL-53(Fe) to adapt its porosity and optimize drug-matrix interactions. Owing to its larger pore diameters and weaker host-guest interactions, MIL-101 release times were shorter, yet still prolonged, as evidenced by the complete release of stavudine after five days. Complete release of each of the drugs from SBA-15 occurred very quickly as a result of rapid drug dissolution and diffusion out of the mesopores.

  9. Co(Ⅲ)-Modified SBA-15: Preparation, Characterization and Catalytic Performance for Epoxidation of Cyclohexene%Co(Ⅲ)官能化SBA-15的制备、表征及其催化环己烯环氧化

    Institute of Scientific and Technical Information of China (English)

    高鹏飞; 张铁明; 周媛; 赵永祥

    2011-01-01

    通过环戊二烯基修饰的SBA-15(SBA-15-Cp)与马来酸酐的Diels-Alder反应及水解合成了邻二羧酸官能化的SBA-15,并将原位生成的Co(Ⅲ)络合物负载于其上制得Co(Ⅲ)官能化SBA-15样品SBA-15-Co(Ⅲ).傅里叶变换红外光谱、元素分析和X射线光电子能谱法结果证实羧酸官能团和Co(Ⅲ)成功地引入到介孔材料中.X射线粉末衍射、N2物理吸附-脱附和高分辨透射电镜等表征结果表明,在制备过程中,材料仍较好地保持SBA-15的孔结构.以异丁醛为牺牲剂,乙腈为溶剂,氧气流速5 ml/min,在40℃反应6 h时,SBA-15-Co(Ⅲ)在环己烯环氧化反应中表现出较高的活性和稳定性,环氧环己烷产率和选择性分别达58%和63.7%,且经过6次循环后,仍分别可达51.6%和56.5%.%A Co(Ⅲ)-modified mesoporous material (SBA-15-Co(Ⅲ)) was prepared by supporting an in situ formed Co(Ⅲ) complex on o-dicarboxylic acid modified SBA-I5 (SBA-15-(COOH)2) that was synthesized by first the Diels-Alder reaction between maleic anhydride and cyclopentadienyl-modified SBA-15 (SBA-15-Cp) and then the hydrolysis of resulting anhydride. Fourier transform infrared spectroscopy, elemental analysis (ICP-AES), and X-ray photoelectron spectroscopy confirmed the successful incorporation of carboxyl and Co(Ⅲ) in the mesopores. The results of X-ray powder diffraction, N2-sorption, and high resolution transmission electron microscopy showed that SBA-I5-Co(Ⅲ) well maintained the mesostructure of SBA-15. In the presence of isobutyraldehyde, SBA-I5-Co(Ⅲ) showed moderate activity and stability in the epoxidation of cyclohexene when the flow rate of O2 was 5 ml/min. the solvent was acetonitrile. the reaction temperature was 40 ℃, and time was 6 h. The yield and selectivity of cyclohexene oxide could reach 58% and 63.7%, respectively. The yield and selectivity of cyclohexene oxide could still maintained 5 1.6% and 56.5% after six catalytic cycles.

  10. Deposition of Layer-by-layer Inorganic-organic Nano-hybrid Ultrathin Films onto SBA-15

    Institute of Scientific and Technical Information of China (English)

    Han Ming DING; Li Ping WANG; Yong Kui SHAN; Ming Yuan HE

    2003-01-01

    Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequently dye molecules (or polymer) were successfully fabricated onto the inner wall of SBA-15. Their structures were preliminarily characterized by FTIR and solid-state UV-Vis spectroscopy, thermal analysis, and BET surface area measurements, respectively.

  11. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks.

    Science.gov (United States)

    Gañán, Judith; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel

    2016-01-08

    A new procedure for the determination of 12 naturally occurring hormones and some related synthetic chemicals in milk, commonly used as growth promoters in cattle, is reported. The method is based on liquid-liquid extraction followed by solid-phase extraction (SPE) using a new one-pot synthesized ordered mesoporous silica (of the SBA-15 type) functionalized with octadecyl groups (denoted as SBA-15-C18-CO) as reversed-phase sorbent. The analytes were eluted with methanol and then submitted to HPLC with diode array detection. Under optimal conditions, the method quantification limit for the analytes ranged from 0.023 to 1.36μg/mL. The sorbent affored the extraction of estrone, 17β-estradiol, estriol, progesterone, hexestrol, diethylstilbestrol, 4-androstene-3,17-dione, ethinylestradiol, 17α-methyltestosterone, nandrolone, prednisolone and testosterone with mean recoveries ranging from 72% to 105% (except for diethylstilbestrol) with RSDextraction methods, therefore SBA-15-C18-CO mesoporous silica possess a high potential as a reversed-phase sorbent for SPE of the 12 mentioned endocrine disrupting compounds in milk samples.

  12. Immobilization of enzyme (DAAO) on hybrid nanoporous MCF, SBA-15, and MCM-41 materials

    Science.gov (United States)

    Phi, Tien Q.; Le, Hy G.; Vu, Tuan A.; Phan, Thao T. H.; Pham, Huyen T.; Dao, Canh Duc; Dang, Phuong T.

    2011-12-01

    Hybrid nanoporous MCF, SBA-15 and MCM-41 materials were synthesized via hydrothermal treatment and functionalized with 3-aminopropyltriethoxysilane (APTES) via post-synthesis grafting and sequently activated by glutardialdehyde and then were used to immobilize D-amino acid oxidase (DAAO). The amino-functionalized materials were characterized by various techniques: XRD, IR and N2 adsorption-desorption (BET). From characterization results, it indicated that these materials still maintained their structure after functionalization. The data IR and TGA-DTA analysis demonstrated the incorpotation of amine functional groups on the surface of APTES-functionalized samples. The DAAO immobilized on functionalized materials exhibited higher catalytic activity and stability for conversion of cephalosporin C (CPC) compare to those of non-functionalized one. Further more, the catalytic activity as well as stability of enzyme decreased in order MCF > SBA-15 > MCM-41 with the decrease of their pore size.

  13. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    Energy Technology Data Exchange (ETDEWEB)

    Fu Tingming, E-mail: futingming@gmail.com [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Guo Liwei; Le Kang; Wang Tianyao; Lu Jin [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China)

    2010-09-15

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO{sub 20}PO{sub 70}EO{sub 20}) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N{sub 2} adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  14. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    Science.gov (United States)

    Tingming, Fu; Liwei, Guo; Kang, Le; Tianyao, Wang; Jin, Lu

    2010-09-01

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20PO 70EO 20) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  15. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  16. SBA-15的改性及催化文冠果油制备生物柴油%Preparation of bildiesel from sorbifolia oil catalyzed by modified SBA-15

    Institute of Scientific and Technical Information of China (English)

    柳杨; 衣怀峰; 陈宇; 吴玉龙; 陈曾; 杨明德; 童军茂

    2011-01-01

    The supported solid base catalysts KNO3-AlSBA-15 and KNO3-Al-SBA-15, was prepated with mesoporous molecular sieve SBA-15 as carrier, and was loaded with Al and with alkali metal salts KNO3 by direct synthesis and post synthesis respectively. The catalysts were characterized by means of XRD, BET, SEM and CO2-TPD. The result showed that addition of Al had a good protection on the pore structure of catalyst. The alkalinity of catalyst was enhanced significantly after loading KNO3.The transesterification reaction process of sorbifolia oil with the catalyst for biodiesel preparation indicated that KNO3-Al-SBA-15 showed better catalytic activity than traditional catalysts. The biodiesel yield could reach 92%, and this catalyst also showed steady catalytic activity after being reused for many times.%以介孔分子筛SBA-15为载体,采用直接合成法和后合成法镀饰Al后再负载碱金属盐KNO3,制得负载型固体碱催化剂KNO3-AISBA-15和KNO3-Al-SBA-15.用XRD、BET、SEM以及CO2-TPD对催化剂进行表征.结果表明:在SBA-15上镀饰Al可以保护分子筛的介孔结构;进一步负载KNO3,能够增强催化剂的碱性.将其应用于催化文冠果油酯交换制备生物柴油,结果显示催化剂KNO3-Al-SBA-15的催化活性最好,优于传统均相催化剂,所得生物柴油产率可达92%,重复使用多次仍具有较好的催化效果.

  17. Preparation and Characterization of Amine Grafted SBA-15 Catalysts and Their Application in Aldol Condensation Reaction%SBA-15接枝有机胺官能团催化剂的制备、表征及在醇醛缩合反应中的应用

    Institute of Scientific and Technical Information of China (English)

    任洪清; 谢建军; 刘华财; 阴秀丽; 吴创之

    2014-01-01

    采用后接枝法对介孔分子筛载体SBA-15接枝伯胺基(PA)、仲胺基(SA)、叔胺基(TA)和哌嗪基(PP)4种有机胺官能团制得4种催化剂,用XRD、BET、TG、SEM和元素分析仪对所制备的固体碱催化剂进行表征,以糠醛、丙酮为生物油模型化合物研究了4种催化剂的醇醛缩合反应性能,考察了接枝环境、接枝剂官能团、溶剂及温度对糠醛转化率及糠叉丙酮( FA)与二糠叉丙酮( F2 A)选择性的影响。结果表明,XRD及SEM图谱显示后接枝法胺基化改性SBA-15保留了载体高度有序的孔道结构,BET分析结果表明接枝后SBA-15比表面积从829 m2/g下降至292 m2/g(哌嗪基SBA-15),经TG与元素分析计算得到N的接枝量为0.6~1.0 mmol/g;采用N2保护条件进行接枝反应可提高催化剂的催化性能,使用质子型溶剂、升高反应温度均有利于提高糠醛转化率和目标产物选择性,4种碱性官能团中伯胺基具有最高的催化活性和产物选择性。 N2保护环境下以H2 O为溶剂,糠醛和丙酮在 PA/SBA-15催化下80℃经8 h反应后,糠醛转化率为82.6%,FA和F2 A选择性分别为41.4%、8.7%。%Solid basic catalysts were synthesized by post-grafting four different organic amines, i. e. primary amine ( PA ) , secondary amine(SA), tertiary amine(TA) and piperazidine(PP) to mesoporous SBA-15. The samples were characterized by X-ray diffraction, nitrogen adsorption, thermogravimetric analysis, scanning electron microscopy and elemental analysis. The activity of prepared catalysts was tested in aldol condensation reaction of bio-oil model compounds (furfural and acetone). The influence of graft reaction conditions, different functional groups of amine, solvents and temperature on conversion of furfural and selectivity of FA and F2 A were investigated. The results indicated that the prepared samples retain excellent ordered mesoporous structure with the amino loading at 0. 6 - 1. 0 mmol/g. The catalytic activity

  18. Characterization and performance of Pt/SBA-15 for low-temperature SCR of NO by C3H6

    Institute of Scientific and Technical Information of China (English)

    Xinyong Liu; Zhi Jiang; Mingxia Chen; Jianwei Shi; Wenfeng Shangguan; Yasutake Teraoka

    2013-01-01

    Pt supported on mesoporous silica SBA-15 was investigated as a catalyst for low temperature selective catalytic reduction (SCR) of NO by C3H6 in the presence of excess oxygen.The prepared catalysts were characterized by means of XRD,BET surface area,TEM,NO-TPD,NO/C3H6-TPO,NH3-TPD,XPS and 27Al MAS NMR.The effects of Pt loading amount,O2/C3H6 concentration,and incorporation of Al into SBA-15 have been studied.It was found that the removal efficiency increased significantly after Pt loading,but an optimal loading amount was observed.In particular,under an atmosphere of 150 ppm NO,150 ppm C3H6,and 18 vol.% O2,0.5% Pt/SBA-15 showed remarkably high catalytic performance giving 80.1% NOx reduction and 87.04% C3H6 conversion simultaneously at 140℃.The enhanced SCR activity of Pt/SBA-15 is associated with its outstanding oxidation activities of NO to NO2 and C3H6 to CO2 in low temperature range.The research results also suggested that higher concentration of O2 and higher concentration of C3H6 favored NO removal.The incorporation of A1 into SBA-15 improved catalytic performance,which could be ascribed to the enhancement of catalyst surface acidity caused by tetrahedrally coordinated AlO4.Moreover,the catalysts could be easily reused and possessed good stability.

  19. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites

    Science.gov (United States)

    Ramoraswi, Nteseng O.; Ndungu, Patrick G.

    2015-10-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m2/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  20. 改性SBA-15用于乙烯/乙烷吸附分离的研究%Modified SBA-15 for ethylene/ethane adsorption separation

    Institute of Scientific and Technical Information of China (English)

    唐晓泯; 罗仕忠; 费德君; 董文文; 党亚固

    2015-01-01

    采用水热法合成介孔材料SBA-15和Al-SBA-15,分别以2种材料为载体,以3 mmol(AgNO3)/(g载体)等体积浸渍负载,得样品Ag-SBA-15和Ag-Al-SBA-15.通过N2吸附、TEM等表征方法发现,Al的掺杂并未改变SBA-15规整的孔道结构,AgNO3在2种载体上均出现部分团聚现象,由于Al-SBA-15的亲水性更好,AgNO3在载体Al-SBA-15上分散更为均匀.BET分析表明,Al-SBA-15SBA-15具有更大的比表面积,可达752.0 m2/g.等温吸附测试结果显示:SBA-15和Al-SBA-15对乙烯吸附选择性均较差,对乙烯/乙烷的分离比分别为1.25、1.10.2种载体负载AgNO3后,乙烯吸附量在低压下大幅增大,分离系数显著增加,样品Ag-Al-SBA-15在298 K、0.07 MPa时分离系数高达14.9,Ag-Al-SBA-15的分离效果优于Ag-SBA-15.

  1. New Class of Antimicrobial Agents: SBA-15 Silica Containing Anchored Copper Ions

    Directory of Open Access Journals (Sweden)

    Lukasz Laskowski

    2017-01-01

    Full Text Available The paper is about a new class of antimicrobial functional nanomaterials. Proposed compounds are based on SBA-15 porous silica matrices and contain anchored copper ions. Thanks to the immobilization of functional groups the compounds are safer for environment than commonly used disinfectant agents. We prepared and examined silica based materials containing two concentrations of copper-containing groups: 10 and 5%. For the reference we prepared samples containing free-standing CuO molecules in the structure and checked their antimicrobial properties. Antibacterial effect of considered SBA-15-Cu material was tested on Escherichia coli bacteria. Antimicrobial tests were applied for the pure form of the material and as modifying agents for plastics. The obtained results showed that the sample with lower concentration of active copper-containing groups has stronger antimicrobial properties than the one with higher concentration of copper. Interestingly, silica containing free-standing CuO molecules has no antimicrobial properties. Considering the obtained results, we can conclude that the most probable antimicrobial mechanism in this case is an oxidation stress. When a plastic modifier is applied the material is enriched with bacterial inhibitory properties. It seems that SBA-15 silica containing low concentration of anchored copper ions is promising in terms of its antibacterial property and biomaterial potential for commercial use.

  2. Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by Ag@AgBr/SBA-15

    Science.gov (United States)

    Hu, Longxing; Yuan, Hang; Zou, Lianpei; Chen, Feiyan; Hu, Xing

    2015-11-01

    A novel composite, Ag@AgBr/SBA-15, was successfully synthesized by dispersion of AgBr on mesoporous silica SBA-15, characterized by several techniques, such as XRD, N2 adsorption-desorption, SEM & EDS, UV-vis spectrum and XPS, and utilized for visible light photocatalytic degradation of dye Rhodamine B (RhB) in aqueous solutions. The results showed that for the various AgBr loadings in the composites, RhB photocatalytic degradation efficiency arrived at the maximum of 77% at 50% loading, or with 50Ag@AgBr/SBA-15. Under the combined mode, the RhB removal reached 88% at 0.3 g/L of 50Ag@AgBr/SBA-15 dosage, 20 mg L-1 of initial RhB concentration, 4.28 of unadjusted initial pH and 20 °C. The RhB photocatalytic degradation followed well with the second-order kinetics, and the increase of the 50Ag@AgBr/SBA-15 dosage, the decrease of the initial RhB concentration and the optimal initial solution pH would be favorable to RhB photocatalytic degradation. The quenching tests demonstrated that the RhB photocatalytic degradation was mainly attributed to the generation of active species such as O2-,bigdot OH and h+. Moreover, the adsorption characteristics of 50Ag@AgBr/SBA-15 were investigated, with its pHpzc of 6.21 acquired and the conclusion that the RhB adsorption isotherm well followed Langmuir model drawn. Additionally, photocatalyst 50Ag@AgBr/SBA-15 can be effectively regenerated with the H2O2 solutions under visible light irradiation, and reused for up to five runs for the degradation of RhB in the presence of visible light, with RhB removal more than 75% and Ag+ leaching undetected for each run.

  3. Preconcentration of Zn(II) in water samples using a new hybrid SBA-15-based material

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Quintanilla, Damian; Sanchez, Alfredo; Hierro, Isabel del; Fajardo, Mariano [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Sierra, Isabel, E-mail: isabel.sierra@urjc.es [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2009-07-30

    A SBA-15 mesoporous silica has been chemically modified with 5-mercapto-1-methyltetrazole. The newly synthesized material (MTTZ-SBA-15) has been characterized, by powder X-ray diffraction, N{sub 2} adsorption, FT-IR, {sup 13}C NMR spectroscopy and elemental analysis, and used to preconcentrate Zn(II) in water samples. The effect of some variables on the adsorption capacity has been studied using the column techniques. The adsorption capacity of the prepared material followed the order: Zn >> Cu > Cd >> Mn, and under optimized conditions the maximum adsorption value for Zn(II) was 0.96 {+-} 0.01 mmol/g with the adsorption efficiency of 0.76. In column experiments, adsorption was quantitative for 1000 mL of 7.65 x 10{sup -4} mM of Zn(II) solution and adsorbed ions were eluted out by 5 mL of 1 M HCl (preconcentration factor of 200). Spiked tap water and mineral water were used for the preconcentration and determination of Zn(II) by flame atomic absorption spectrometry (FAAS), and a 102 {+-} 2 and 98 {+-} 3% recoveries were obtained. The LOD and LOQ values of the proposed method were found to be 8.0 x 10{sup -6} and 1.23 x 10{sup -5} mM, respectively. The relative standard deviation for four preconcentration experiments was found to be {<=}4% in all cases.

  4. A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: Aluminum complexes and photoluminescence studies

    Science.gov (United States)

    Badiei, Alireza; Goldooz, Hassan; Ziarani, Ghodsi Mohammadi

    2011-03-01

    8-Hydroxyquinoline (8-HQ) was attached to mesoporous silica by sulfonamide bond formation between 8-hydroxyquinoline-5-sulfonyl chloride (8-HQ-SO 2Cl) and aminopropyl functionalized SBA-15 (designated as SBA-SPS-Q) and then aluminum complexes of 8-HQ was covalently bonded to SBA-SPS-Q using coordinating ability of grafted 8-HQ.The prepared materials were characterized by powder X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FT-IR), thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis and fluorescence spectra. The environmental effects on the emission spectra of grafted 8-HQ and its complexes were studied and discussed in details.

  5. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids.

    Science.gov (United States)

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro

    2015-07-15

    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  6. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water.

    Science.gov (United States)

    Cai, Chun; Zhang, Hui; Zhong, Xin; Hou, Liwei

    2014-12-01

    Mesoporous silica SBA-15 supported iron and cobalt catalysts (Fe-Co/SBA-15) were prepared and used in the electrochemical (EC) enhanced heterogeneous activation of peroxydisulfate (PDS, S2O8(2-)) process for the removal of Orange II. The effects of some important reaction parameters such as initial pH, current density, PDS concentration and dosage of Fe-Co/SBA-15 catalysts were investigated. The results showed that the decolorization efficiency was not significantly affected by the initial pH value, and it did increase with the higher PDS concentration, current density and Fe-Co/SBA-15 dosage. Both the sulfate radical (SO4(·-)) and the hydroxyl radical (OH) are considered as the primary reactive oxidants for the Orange II decolorization. The Fe-Co/SBA-15 catalyst maintained its high activity during repeated batch experiments. The intermediate products were identified by GC-MS analysis and a plausible degradation pathway is proposed accordingly. The removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 52.1% and 31.9%, respectively after 60 min of reaction time but reached 82.9% and 51.5%, respectively when the reaction time was extended to 24 h. Toxicity tests with activated sludge indicated that the toxicity of the solution increased during the first 30 min and then decreased as the oxidation proceeded.

  7. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water.

    Science.gov (United States)

    Cai, Chun; Zhang, Hui; Zhong, Xing; Hou, Liwei

    2015-01-01

    Mesoporous silica SBA-15 supported iron and cobalt (Fe-Co/SBA-15) was prepared and used as catalyst in the ultrasound (US) enhanced heterogeneous activation of peroxymonosulfate (PMS, HSO5(-)) process. The effects of some important reaction parameters on the removal of Orange II by US/Fe-Co/SBA-15/PMS process were investigated. The results indicated that the removal rate of Orange II was not significantly affected by the initial pH, and it increased with the higher PMS concentration, reaction temperature, Fe-Co/SBA-15 dosage and ultrasonic power. Furthermore, sulfate radicals (SO4(-)) were assumed to be the dominating reactive species for the Orange II decolorization. Moreover, the Fe-Co/SBA-15 catalyst showed high activity during the repeated experiments. The intermediate products were identified by GC-MS, thereby a plausible degradation pathway is proposed. In addition, the chemical oxygen demand (COD) removal efficiencies at 2 and 24h were 56.8% and 80.1%, respectively and the corresponding total organic carbon (TOC) removal efficiencies were 33.8 and 53.3%. Finally, toxicity tests with activated sludge showed that the toxicity of the solution increased during the first stage and then decreased significantly with the progress of the oxidation.

  8. Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(II) adsorption from aqueous media.

    Science.gov (United States)

    Mureseanu, Mihaela; Reiss, Aurora; Cioatera, Nicoleta; Trandafir, Ion; Hulea, Vasile

    2010-10-15

    New organic-inorganic hybrid materials were prepared by covalently anchoring 1-furoyl thiourea on mesoporous silica (SBA-15). By means of various characterization techniques (X-ray diffraction, nitrogen adsorption-desorption, thermogravimetric analysis, and FTIR spectroscopy) it has been established that the organic groups were successfully anchored on the SBA-15 surfaces and the ordering of the inorganic support was preserved during the chemical modifications. The hybrid sorbents exhibited good ability to remove Hg(II) from aqueous solution. Thus, at pH 6, the adsorption capacity of mercury ions reached 0.61 mmol g(-1).

  9. Facile Postsynthesis of N-Doped TiO2-SBA-15 and Its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Thu Phuong Tran Thi

    2013-01-01

    Full Text Available N-doped TiO2-SBA-15 (denoted as N-TiO2-SBA-15 material has been successfully synthesized by a two-step procedure. Firstly, TiO2-SBA-15 was prepared by impregnating tetraisopropyl orthotitanate on SBA-15 and followed by calcination at 550°C. In the second step, TiO2-SBA-15 was modified by doping nitrogen with the assistance of urea. The resulting material, N-TiO2-SBA-15, was characterized by XRD, TEM, SEM, N2 adsorption/desorption at 77 K, DR UV-Vis, and XPS. The results showed that N-TiO2-SBA-15 material maintains its ordered hexagonal mesostructure and exhibits the absorption of visible region. The photocatalytic activity of N-TiO2-SBA-15 sample was evaluated by the photodegradation of methylene blue under visible light.

  10. A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline.

    Science.gov (United States)

    Hashemikia, Samaneh; Hemmatinejad, Nahid; Ahmadi, Ebrahim; Montazer, Majid

    2016-02-01

    Here, mesoporous silica particles containing tetracycline were loaded on cotton fabric for possible application on the infected human skin. Amino functionalized mesoporous silica, SBA-15-NH2, was chosen as a safe drug carrier loaded with tetracycline via post impregnation method. Diverse content of the drug loaded silica particles were then attached on the cotton fabric surface using polysiloxane reactive softener as a soft and safe fixing agent. UV-Vis spectroscopy was used to study the drug delivery properties of the mesoporous silica on the treated cotton fabrics. The treated fabric with long drug release properties was selected as the optimized sample. Further analysis was carried out on this sample including anti-bacterial, water contact angle, bending length, mineral content and washing durability. Also, SEM images, EDX patterns, X-Ray spectra and thermal behavior of the optimum sample were studied. The optimized treated sample indicated the gradual release profile of tetracycline in PBS buffer media within 48h along with excellent anti-bacterial efficiency as a good feature for biological application.

  11. SBA-15 Modified Carbon Paste Electrode for Rapid cTnI Detection with Enhanced Sensitivity

    Institute of Scientific and Technical Information of China (English)

    Nong Yue HE; Hui Shi GUO; Di YANG; Chun Rong GU; Ji Nan ZHANG

    2006-01-01

    A novel electrochemical immunoassay for cardiac troponin I (cTnI) combining the concepts of the dual monoclonal antibody "sandwich" principle, the silver enhancement on the nano-gold particle, and the SBA-15 mesoporous modified carbon paste electrode (SBA-MCPE) is described. Four main steps were carried out to obtain the analytical signal, i.e., electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection.A linear relationship between the anodic stripping peak current and concentration of cTnI from 0.5 to 5.0 ng/mL and a limit of detection of 0.2 ng/mL of cTnI were obtained.

  12. Phenol and methylene blue photodegradation over Ti/SBA-15 materials under uv light

    Directory of Open Access Journals (Sweden)

    Olejnik Tomasz

    2016-09-01

    Full Text Available Ordered SBA-15 mesoporous silica supports have been synthesized and used for incorporation of titanium with different Ti/Si weight ratio via incipient wetness impregnation. Titanium tetraisopropoxide (TTIP was used as a source of Ti. Obtained catalysts were characterized to investigate the chemical framework and morphology by nitrogen sorption measurements, powder X-ray diffraction (XRD, X-ray fluorescence elemental analysis (XRF, transmission electron microscopy (TEM, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS and Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS. The photocatalytic degradation of phenol and methylene blue water solutions were selected as a probe reactions to the photoactivity test of prepared samples and to verify the potential application of these materials for water purification. Experimental results indicate that the photocatalytic activity of Ti/Si mixed materials depends on the adsorption ability of composites and the photocatalytic activity of the titanium oxide.

  13. An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(III) from aqueous solution.

    Science.gov (United States)

    Meng, Minjia; Meng, Xiangguo; Liu, Yan; Liu, Zhanchao; Han, Juan; Wang, Yun; Luo, Min; Chen, Rui; Ni, Liang; Yan, Yongsheng

    2014-08-15

    A novel Ce(III) ion-imprinted polymer (Ce(III)-IIP) has been prepared by surface imprinting technique with reversible addition-fragmentation chain transfer (RAFT) polymerization based on support matrix of SBA-15. The prepared adsorbent is characterized by FT-IR, XRD, SEM, TEM, nitrogen adsorption-desorption, GPC, and TGA. The results suggest that the surface imprinted polymer synthesized by RAFT is a thin layer. For adsorption experiments, Ce(III)-IIP is investigated to remove Ce(III) by column study at different flow rates, initial metal ion concentrations, and adsorption temperature. The dynamic kinetics analyses reveal that the overall adsorption process is successfully fitted with the pseudo-first-order kinetic model and the equilibrium time was 60 min. Meanwhile, the experimental data is in good agreement with Thomas model. Ce(III)-IIP has the excellent selectivity and regenerate property. Meanwhile, the proposed method has been successfully applied in the removal of Ce(III) in natural water samples with satisfactory results. All the results suggest that Ce(III)-IIP could be used as an excellent adsorbent for efficient removal of Ce(III) from aqueous solution.

  14. Studies of Stability of Post-Alumination Synthesized Al-SBA-15%后铝化的Al-SBA-15稳定性研究

    Institute of Scientific and Technical Information of China (English)

    聂聪; 孔令东; 李全芝

    2002-01-01

    通过预处理后铝化的方法,合成了Al-SBA-15. 焙烧后的Al-SBA-15的27Al MAS NMR谱证明铝已化合到SBA-15的骨架中,并有少量非骨架铝存在. 用XRD、低温N2吸附等方法考察了Al-SBA-15在1 000 ℃焙烧2 h,800 ℃ 100%水蒸气处理8 h和在pH为2或11的酸碱溶液中的稳定性. 经处理后的Al-SBA-15具有比Si-SBA-15更好的热、水热稳定性以及酸碱溶液稳定性.

  15. Solvent-free Synthesis of Flavanone over New Hybrid Mesoporous Base Catalysts

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; NIU Xiao-di; ZHAO Min; XIAO Xue-bin; WANG Hong-su; WANG Zhong-dong

    2011-01-01

    Benzyl and anthracenemethyl groups were respectively bonded to the N atoms of 3-aminopropyl functionalized mesoporous SBA-15(APS-SBA-15) to obtain two new base catalysts over which the condensation reaction of benzaldehyde and 2′-hydroxyacetophenone was studied.Good catalytic activities and high selectivities for flavanones were obtained in solvent-free reactions,which is attributed to the effect of benzyl and anthracenemetyl groups on the base sites of catalysts and the steric hindrance of futher reaction of flavanone with benzaldehyde.

  16. PPRODUCTION OF AROMATIC ALDEHYDE BY MICROWAVE CATALYTIC OXIDATION OF A LIGNIN MODEL COMPOUND WITH La-CONTAINING SBA-15/H2O2 SYSTEMS

    Directory of Open Access Journals (Sweden)

    Xiaoli Gu

    2010-07-01

    Full Text Available A convenient and efficient application of heterogeneous La-containing SBA-15 systems for the microwave assisted oxidation of a lignin model phenolic monomer, 4-hydroxy-1-phenylpropane, is reported. Low-cost and environmentally friendly H2O2 was used as the oxygen atom donor. The catalyst was prepared by immobilizing lanthanum species on the periodic mesoporous channels of siliceous SBA-15. Powder X-ray diffraction data and ICP-AES revealed that the host retains its hexagonal mesoporous structure after immobilization and most of the lanthanum species are better dispersed in the calcined materials. The surface area and pore size of La/SBA-15 was considerably decreased, indicating the intrapore confinement of the Lanthanum species. The activity of the La/SBA-15 was investigated in the oxidation of 4-hydroxy-1-phenylpropane in the presence of hydrogen peroxide as oxidant. 70.5% conversion of 4-hydroxy-1-phenylpropane was obtained after 30 min of reaction under 200W microwave irradiation, compared to a poor 28.1% degradation after 24h under conventional heating. The possibility of recycling the catalyst was studied.

  17. Preparation, Characterization and Catalytic Performance of La-SO42-/SBA-15 in Esterification of Acetic Acid with n-Butanol

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhi-ming; DENG Qi-gang; SUN Hui; ZHAO De-feng

    2008-01-01

    La-SO42-/SBA-15 was synthesized with various amounts of lanthanum via incipient-wetness impregnation.Characterization was done by X-ray diffraction(XRD), transmission electron micrographs(TEM), nitrogen adsorption,FTIR spectroscopic analysis, thermogravimetric analysis, and the total amount of acidity of catalyst was estimated by TPD of NH3. The results indicate that lanthanum has been incorporated into SBA-15 molecular sieve. The prepared materials(La-SO42-/SBA-15) keep the highly ordered mesoporous two-dimensional hexagonal structure and do not change the mesoporous channel structure of the support SBA-15. The catalyst showed best catalytic activity in the synthesis of n-butyl acetate. The optimum conditions of the esterification by orthogonal experiments were studied: the molar ratio of n-butanol to acetic acid 1:1.2, the amount of catalyst 7.5%, reaction time 80 min. The yield of n-butyl acetate could reach 93.2% under the optimum conditions. The catalyst was recyclable, cost effective and environmental friendly.

  18. Stepwise Synthesis of Mesoporous Carbon Nitride Functionalized by Melamine Based Dendrimer Amines for Adsorption of CO2 and CH4

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-12-01

    Full Text Available In this study, a novel solid dendrimer amine (hyperbranched polymers was prepared using mesoporous carbon nitride functionalized by melamine based dendrimer amines. This adsorbent was denoted MDA-MCN-1. The process was stepwise synthesis and hard-templating method using mesoporous silica SBA-15 as a template. Cyanuric chloride and N,N-diisopropylethylamine (DIPEA, Merck were used for functionalization of the MCN-1. Fourier transform infrared spectroscopy (FT-IR, Nitrogen adsorption-desorption analysis, Small Angle X-ray Scattering (SAXS, X-ray diffraction (XRD and thermogravimetric analysis (TGA were used for characterization of the adsorbent. This material was used for carbon dioxide gas (CO2 and methane gas (CH4 adsorption at high pressure (up to 20 bar and room temperature. The volumetric method was used for the tests of the gas adsorption. The CO2 adsorption capacity of modified mesoporous carbon nitrides was about 4 mmol CO2 per g adsorbent. The methane adsorption capacity of this material was less than that CO2. Modified Mesoporous Carbon Nitride adsorbed about 3.52 mmol CH4 /g adsorbent. The increment of melamine based dendrimer generation on mesoporous surface increased adsorption capacity of both carbon dioxide and methane gases. According to the results obtained, the solid dendrimer amines, (MDA-MCN-1, performs excellently for CO2 and CH4 capture from flow gases and CO2 and CH4 storage.

  19. Desidratação de etanol sobre material nanoestruturado do tipo LaSBA-15 Ethanol dehydration over LaSBA-15 nanostrutured material

    Directory of Open Access Journals (Sweden)

    Geraldo E. Luz Jr

    2010-01-01

    Full Text Available La-incorporated SBA-15 mesopourous molecular sieves (LaSBA-15 were directly synthesized with aim to convert ethanol to ethylene. The samples were characterized by XRD, XRF, nitrogen sorption and acidity, by thermodesorption of n-buthylamine. The results have indicated that all the samples have showed high ordered mesostructure with a large average pore size, and that the lanthanum incorporation has caused an increase in the acidity of the SBA-15. The LaSBA-15 samples have improved, with low deactivation rate, the conversion of the ethanol to water, ether, acetaldehyde and ethylene. In addition, they have increased the ethylene selectivity.

  20. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature.

    Science.gov (United States)

    Wang, Hailin; Tian, Hua; Hao, Zhengping

    2012-01-01

    Mesoporous SBA-15 with different Fe2O3 loading were synthesized by an in-situ coating progress for removals of dichlorodiphenyltrichloroethane (DDT) and its derivatives, i.e., 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis-(4-chloro -phenyl) ethane (DDE). The results from XRD (X-ray diffractometer), TEM (transmission electron microscopy) indicated that the iron could be well dispersed on SBA-15 within 6 wt.% Fe2O3 loading. Nitrogen adsorption-desorption tests indicated that the synthesized materials were characterized by ordered meso-structure, high surface area and large pore volume. DDTs were removed from aqueous media in 12-hr treatment and high removal efficiency of DDTs was achieved at over 94%. DDTs could be completely degraded at 350 degrees C under the existence of SBA-15 with 4 wt.% Fe2O3 loading. The final degradation products of DDT were dichlorobenzophenone (DCB) and bis-(4-chloro-phenyl) methane (DDM), suggesting a complete dechlorination from trichloromethyl.

  1. Preparation of Ru Nanocatalysts Supported on SBA-15 and Their Excellent Catalytic Activity Towards Decolorization of Various Dyes.

    Science.gov (United States)

    Ghosh, Barun; Hazra, Subhenjit; Naik, Bhanudas; Ghosh, Narendra Nath

    2015-09-01

    In this paper, we report a simple aqueous solution based chemical method for preparation Ru nanocatalysts supported on mesoporous silica SBA-15 (Ru@SBA-15) catalysts. Synthesized catalysts were characterized by powder X-ray diffraction (XRD), Optical emission spectroscopy (ICP-OES), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscope (HRTEM) and N2 adsorption-desorption surface area and pore size analyzer, and particle size analyzer. Catalytic activity of the synthesized catalysts towards decolorization of various dyes, such as 4-nitrophenol, Methyl Orange, Congo Red, Rhodamine B, Methylene Blue and mixture of dyes was investigated in presence of excess NaBH4. Catalysis reactions were monitored by employing UV-vis spectroscopy. Catalysis reactions followed pseudo-first order rate equation. The catalyst with 2.5 wt% Ru nanoparticle exhibited excellent catalytic activity and convenient recycling. The high catalytic activity and simple preparation methodology make 2.5Ru@SBA-15 an attractive catalyst for decolorization of organic dyes.

  2. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature

    Institute of Scientific and Technical Information of China (English)

    Hailin Wang; Hua Tian; Zhengping Hao

    2012-01-01

    Mesoporous SBA-15 with different Fe2O3 loading were synthesized by an in-situ coating progress for removals of dichlorodiphenyltrichloroethane(DDT)and its derivatives,i.e.,1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane(DDD)and 1,l-dichloro-2,2-bis-(4-chloro -phenyl)ethane(DDE).The results from XRD(X-ray diffractometer),TEM(transmission electron microscopy)indicated that the iron could be well dispersed on SBA-15 within 6 wt.% Fe2O3 loading.Nitrogen adsorption-desorption tests indicated that the synthesized materials were characterized by ordered meso-structure,high surface area and large pore volume.DDTs were removed from aqueous media in 12-hr treatment and high removal efficiency of DDTs was achieved at over 94%.DDTs could be completely degraded at 350℃ under the existence of SBA-15 with 4 wt.% Fe2O3 loading.The final degradation products of DDT were dichlorobenzophenone (DCB)and bis-(4-chloro-phenyl)methane(DDM),suggesting a complete dechlorination from trichloromethyl.

  3. Preparation of highly active AlSBA-15-supported platinum catalyst for thiophene hydrodesulfurization

    OpenAIRE

    KANDA, Yasuharu; AIZAWA, Tomohiro; Kobayashi, Takao; UEMICHI, Yoshio; NAMBA, Seitaro; SUGIOKA, Masatoshi

    2007-01-01

    The catalytic activities of various noble metals (Pt, Pd, Rh, and Ru) supported on siliceous SBA-15 and Al-containing SBA-15 (AlSBA-15) for hydrodesulfurization (HDS) of thiophene at 350 C were investigated. AlSBA-15 was prepared by a grafting method using aluminum isopropoxide (Al(OC3H7)3) hexane solution. The HDS activity of Pt/AlSBA-15 catalyst was the highest among those of various supported noble metal catalysts, and this activity was higher than that of commercial CoMo/Al2O3 HDS catalys...

  4. Copper Containing SBA-15 Prepared through pH Modification Method and Its Catalytic Activity for N_2 O Decomposition%铜掺杂SBA-15的pH调节法直接合成及其在N_2O分解反应中的催化性能

    Institute of Scientific and Technical Information of China (English)

    Mohd Haizal Mohd Husin; Mohd Ridzuan Nordin; 李金林; 刘光荣; Chin Sim Yee

    2012-01-01

    Copper-substituted SBA-15(Cu/SBA-15mesoporous materials were directly synthesized under acidic conditions by a "pH modification method" using hexamethylenetetramine(HMTA) as an internal pH-modifier.The synthesized material has been characterized by XRD,SEM-EDX,TEM and FT-IR.The results showed that the resultant materials exhibit highly ordered hexagonal mesoporous structures.In addition,the HMTA also strongly affected the incorporation of copper in the silica framework.During hydrothermal process the HMTA dissociates to release NH3 and increases the internal pH value and helps to introduce more copper into SBA-15 framework.Catalytic screenings reveal that Cu/SBA-15 materials can be used as potential catalyst for the decomposition of N2O.The Cu/SBA-15(110) have good catalytic activity causing 50% of N2O to decomposed at 600°C.%酸性条件下,用环六亚甲基四胺作为pH调节剂,采用pH调节法直接合成了铜同构替代掺杂的SBA-15中孔分子筛(Cu/SBA-15).采用X-射线衍射(XRD)、扫描电子显微镜-能量色散X射线光谱(SEM-EDX)、透射电子显微镜(TEM)以及傅立叶变换红外光谱(FT-IR)等技术对目标材料进行了表征.结果表明:该材料具有六方中孔有序结构,且环六亚甲基四胺显著影响了铜和SBA-15硅骨架的结合,在水热合成过程中,环六亚甲基四胺分解释放出氨气,增加了体系的pH值,有助于更多的铜进入到分子筛的骨架中.该材料可用于N2O分解反应的催化剂,其中Cu/SBA-15(110)在600℃下具有优异的催化活性,可分解50%N2O.

  5. Location of laccase in ordered mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  6. Location of laccase in ordered mesoporous materials

    Directory of Open Access Journals (Sweden)

    Álvaro Mayoral

    2014-11-01

    Full Text Available The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (Cs corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  7. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  8. Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture.

    Science.gov (United States)

    Nguyen, Tien Hoa; Kim, Sungjune; Yoon, Minyoung; Bae, Tae-Hyun

    2016-03-08

    To prepare materials with high CO2 adsorption, a series of hierarchical LTA zeolites possessing various mesopore spaces that are decorated with alkylamines was designed and synthesized. The highest CO2 uptake capacity was achieved when (3-aminopropyl)trimethoxysilane (APTMS) was grafted onto the hierarchical LTA zeolite having the largest mesopores. Owing to the contributions of both alkylamine groups grafted onto the mesopore surfaces and active sites in the LTA zeolites, the amount of CO2 that can be taken up on these materials is much higher than for conventional aminosilicas such SBA-15 and MCM-41. Furthermore, the adsorbent shows good CO2 uptake capacity and recyclability in dynamic flow conditions.

  9. Hybrid luminescence materials assembled by [Ln(DPA)3]3- and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes

    Science.gov (United States)

    Li, Qing-Feng; Yue, Dan; Lu, Wei; Zhang, Xinlei; Li, Chunyang; Wang, Zhenling

    2015-02-01

    A kind of mesoporous hybrid luminescence material was assembled through the ion exchange method between [Ln(DPA)3]3- and ionic liquid functionalized SBA-15. [Ln(DPA)3]3- was successfully anchored onto positive-charge modified SBA-15 by the strong electrostatic interaction. In [Ln(DPA)3]3-, Ln3+ ions are in 9-fold coordination through six oxygen atoms of carboxyl groups and three nitrogen atoms of pyridine units, leaving no coordination site for water molecules. Therefore the hybrids possess prominent luminescent properties, SBA-15-IMI-Tb(DPA)3 and SBA-15-IMI-Eu(DPA)3 exhibit high quantum yield values of 63% and 79%, and long lifetimes values of 2.38 ms and 2.34 ms, respectively. Especially, SBA-15-IMI-Eu(DPA)3 presents a high color purity, and the red/orange intensity ratio is as high as 7.6. The excellent luminescence properties and ordered mesoporous structures give rise to many potential applications in optical and electronic areas.

  10. 介孔分子筛SBA-15表面印迹聚合物的制备及应用研究%Study on Preparation and Application of Surface Molecularly Imprinted Polymer Based on Mesopocous Molecular Sieve SBA-15

    Institute of Scientific and Technical Information of China (English)

    何宏亮; 顾小丽; 史丽英; 高艳坤; 陈立娜

    2015-01-01

    OBJECTIVE:To prepare mesopocous molecular sieve SBA-15 surface molecularly imprinted polymer (SBA-15@MIP),and analyze the application of SBA-15@MIP in the determination of active micro-component. METHODS:Using baica-lein as the template molecule,acrylamide(AM)as the function monomer,tetrahydrofuran/ethanol(3∶2,V/V)as the polymeriza-tion solvent,ethylene glycol dimethacrylate(EGDMA)as the cross-linker,and 2,2-azobisisobutyronitrile(AIBN)as the initiator, SBA-15@MIP was synthesized on the surface of mesopocous molecular sieve SBA-15. The surface morphology and structure of the obtained polymer were characterized by TEM and FT-IR. Finally,the imprinted polymer was used as an adsorbent for solid-phase extraction (SPE) to detect baicalein in plasma samples by HPLC. RESULTS:It revealed that the well-ordered one-dimensional pore structure of SBA-15 was still preserved in the successful synthesized SBA-15@MIP,and baicalein molecule was imprinted suc-cessfully. The limit of detection(LOD)and limit of quantification(LOQ)for baicalein in plasma were 3.5 ng/ml and 11.6 ng/ml, respectively;the average recovery was 94.4%(RSD=2.9%). CONCLUSIONS:SBA-15@MIP is prepared successfully,and can be applied for the determination of active micro-component.%目的:制备介孔分子筛SBA-15表面印迹聚合物(SBA-15@MIP),并探讨其在微量活性成分测定中的应用。方法:以黄芩素为模板分子、丙烯酰胺为功能单体、四氢呋喃/乙醇(3∶2,V/V)为溶剂、乙二醇二甲基丙烯酸酯为交联剂、偶氮二异丁腈为引发剂,在SBA-15表面进行分子印迹,合成SBA-15@MIP;通过透射电子显微镜和傅里叶红外光谱仪对其进行形态和结构表征;另将SBA-15@MIP作为固相萃取填料,结合高效液相色谱法检测血浆中的黄芩素。结果:合成的SBA-15@MIP仍保留了SBA-15的有序一维孔道结构,成功印迹黄芩素分子;血浆中黄芩素的检测限和定量下限分别为3.5、11.6 ng

  11. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  12. Facile Postsynthesis of N-Doped TiO2-SBA-15 and Its Photocatalytic Activity

    OpenAIRE

    Thu Phuong Tran Thi; Duc Trieu Nguyen; Tuan Quang Duong; Huy Hoang Luc; Vien Vo

    2013-01-01

    N-doped TiO2-SBA-15 (denoted as N-TiO2-SBA-15) material has been successfully synthesized by a two-step procedure. Firstly, TiO2-SBA-15 was prepared by impregnating tetraisopropyl orthotitanate on SBA-15 and followed by calcination at 550°C. In the second step, TiO2-SBA-15 was modified by doping nitrogen with the assistance of urea. The resulting material, N-TiO2-SBA-15, was characterized by XRD, TEM, SEM, N2 adsorption/desorption at 77 K, DR UV-Vis, and XPS. The results showed that N-TiO2-SB...

  13. 不同硅源合成介孔分子筛SBA-15的研究%Synthesis of SBA-15 using different silica sources

    Institute of Scientific and Technical Information of China (English)

    赵昕; 沈健

    2007-01-01

    采用两种不同硅源--硅酸钠(Na2SiO3·9H2O)和正硅酸四乙酯(TEOS)合成介孔分子筛SBA-15.通过X射线粉末衍射(XRD)对样品进行表征,发现两种硅源合成的SBA-15都具有高度有序的二维六方立柱形结构.它们的比表面积相近,用TEOS作为硅源的SBA-15的孔容比用硅酸钠作为硅源的SBA-15的略大;用硅酸钠作为硅源的SBA-15有更高的微孔率和更厚的孔壁.以硅酸钠为硅源的SBA-15显示出分子自组装过程时间从24 h减少到3 h,并且对SBA-15模板性质没有有害影响.

  14. Synthesis and photoluminescence of Eu(DBM)3phen/APTES-SBA-15 with morphology of pearl-like chains

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chun-xia; LIU Qi; CHEN Wen; TIAN Gao; XU Ling-fang

    2006-01-01

    Novel ordered mesoporous Eu(DBM)3phen/APTES-SBA-15 (EAS) composites with reasonable photoluminescence property and interesting morphology of bundles of pearl-like chains were synthesized. The characteristics of the mesostructure and the optical properties of the prepared samples were investigated by means of XRD,FTIR,SEM,TEM,N2 adsorption-desorption and PL spectroscopy. The results indicate that the as-made EAS composites have long-distance ordered mesoporous structure. Compared with the Eu(DBM)3phen complex,it is found that the EAS composites perform a considerable photoluminescence with good color purity. It is proposed that the anchored amine from the APTES and quantum size effect of the Eu(DBM)3phen complex have great effect on the photoluminescence of the EAS composites.

  15. Infrared spectroscopic investigation of CO adsorption on SBA-15- and KIT-6-supported nickel phosphide hydrotreating catalysts.

    Science.gov (United States)

    Korányi, Tamás I; Pfeifer, Eva; Mihály, Judith; Föttinger, Karin

    2008-06-12

    The infrared (IR) spectra of CO adsorbed on 10, 20, and 30 wt % nickel phosphide-containing reduced SBA-15 and KIT-6 mesoporous silica-supported catalysts have been studied at 300-473 K. On the catalysts containing a stoichiometric amount of phosphorus with 20 wt % loading, the most intense IR absorption band was observed at 2097-2099 cm(-1), which was assigned to CO terminally bonded to coordinatively unsaturated Ni(delta+) (0 hydrotreating catalytic activity. The modified Ni-P charge distribution, the mode of CO adsorption on surface nickel phosphide sites, as well as the acidity can be directly connected to the catalytic activity of these mesoporous silica-supported catalysts.

  16. Characteristics of Carbon Material Formation on SBA-15 and Ni-SBA-15 Templates by Acetylene Decomposition and Their Bioactivity Effects

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2016-05-01

    Full Text Available Carbon spheres and tubes were formed from acetylene decomposition on SBA-15 and Ni-SBA-15 at 650–850 °C. At 650 °C, the decomposed carbons covered the surface of the support, and no carbon spheres and filament materials were formed. Carbon sphere formation occurred at 750 °C–850 °C; with diameters ranging from 0.8 μm–1.1 μm. For Ni-SBA-15, the diameters of the spheres and filaments were 0.8 μm and 62 nm, respectively, at 650 °C. At 750 °C, the diameter of the ball carbon materials ranged from 0.7 μm–0.8 μm, the diameter of the carbon tubes formed was 120–130 nm, and their pore diameter was 8.0 nm–11 nm. At 850 °C, the diameters of ball carbon materials and carbon tubes were similar to those of the materials at the formation temperature, 750 °C. Si, O and C were the main constituents of SBA-15; Ni-SBA-15 and carbon material formation supports. High-ring PAHs (such as BaP (five rings; IND (six rings; DBA (five rings and B[ghi]P (six rings exist in carbon materials. SBA-15 revealed insignificant cytotoxicity, but Ni-SBA-15 inhibited the proliferation of human lung cancer cells (A549. Less inhibition on cell viability and reactive oxidative species (ROS generation on A549 were determined for carbon material formation on the Ni-SBA-15 compared to the Ni-SBA-15.

  17. Preparation and Luminescent Property of (SBA-15)-ZnO%(SBA-15)-ZnO的制备和发光性质

    Institute of Scientific and Technical Information of China (English)

    于辉; 姜冬梅; 穆建清; 翟庆洲

    2011-01-01

    采用液相介质微波法和固相微波法制备了(SBA-15)-ZnO主一客体纳米复合材料样品。采用X射线衍射、红外光谱和透射电子显微镜对所制备(SBA-15)-ZnO样品的性质进行了表征。结果显示:在制备的(SBA-15)-ZnO主一客体纳米复合材料样品中,SBA-15分子筛的骨架保存完好,结构仍然具有很高的有序性。用激发光谱、发射光谱和光致发光光谱研究了所制各样品的发光性质。结果显示:所制备的(SBA-15)-ZnO样品显示出优良的发光特性。%(SBA-15)-ZnO host-guest nanocomposite samples were prepared by a liquid-microwave sintering method and a solid-microwave sintering method, respectively. The prepared samples were characterized by X-ray diffraction, infrared spectroscopy and transmission electron microscopy, respectively. The results show that the framework of the molecular sieve SBA-15 is kept intact and the structure is still in a highly order in the prepared host-guest (SBA-15)-ZnO materials. The luminescence of (SBA-15)-ZnO material was investigated by means of the emission spectra, excitation spectra and the photoluminescence spectra. The prepared samples show a superior luminescent character.

  18. In situ catalytic pyrolysis of miscanthus over modified SBA-15 catalysts using Py-GC/MS.

    Science.gov (United States)

    Lee, Eun Hwa; Jeon, Mi-Jin; Jeon, Jong-Ki; Suh, Dong Jin; Park, Sung Hoon; Seo, Bora; Joo, Sang Hoon; Park, Young-Kwon

    2014-03-01

    Various SBA-15-based catalysts, Si-SBA-15, Pt/Si-SBA-15, Al-SBA-15, and Pt/Al-SBA-15, were applied to the catalytic pyrolysis of miscanthus. Pt nanoparticles with three different sizes, 1.7 nm, 2.9 nm, and 7.1 nm, were used to synthesize Pt/Si-SBA-15 and Pt/Al-SBA-15. Pyrolysis-gas chromatography/mass spectrometry was used for the pyrolysis experiments. The catalysts were characterized by X-ray diffraction patterns, transmittance electron microscopy, N2 adsorption-desorption, and Brunaure-Emmett-Teller surface area. The product species distribution of pyrolysis of miscanthus was significantly affected by the acid property of the catalyst and the presence of Pt. In particular, Pt/Al-SBA-15, which has both acid sites and Pt, changed the product species distribution to the largest extent; the main products were phenolics and furans. The effect of Pt particle size on the species distribution of pyrolysis product was negligible.

  19. Facile synthesis of MOF-5 confined in SBA-15 hybrid material with enhanced hydrostability.

    Science.gov (United States)

    Wu, Chia-Ming; Rathi, Monika; Ahrenkiel, S Phil; Koodali, Ranjit T; Wang, Zhenqiang

    2013-02-11

    A MOF-5 [Zn(4)O(BDC)(3); BDC = 1,4-benzenedicarboxylate]@SBA-15 hybrid material has been prepared by using SBA-15 as a matrix. This hybrid material exhibits improved hydrostability under ambient conditions and unique gas adsorption behavior compared with pristine MOF-5.

  20. Modifying the Hierarchical Porosity of SBA-15 via Mild-Detemplation Followed by Secondary Treatments

    NARCIS (Netherlands)

    Zhang, Zheng; Melian-Cabrera, Ignacio

    2014-01-01

    Fenton-chemistry-based detemplation combined with secondary treatments offers options to tune the hierarchical porosity of SBA-15. This approach has been studied on a series of SBA-15 mesophases and has been compared to the conventional calcination. The as-synthesized and detemplated materials were

  1. Synthesis of ordered mesoporous U{sub 3}O{sub 8} by a nanocasting route

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran; Wang, Lin; Gu, Zhan-Jun; Yuan, Li-Yong; Xiao, Cheng-Liang; Zhao, Yu-Liang; Shi, Wei-Qun [Institute of High Energy Physics, Beijing (China). Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Chai, Zhi-Fang [Institute of High Energy Physics, Beijing (China). Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences

    2014-11-01

    Ordered mesoporous U{sub 3}O{sub 8} has been synthesized by a nanocasting route using mesoporous silica (KIT-6 and SBA-15) as templates and characterized by using XRD, SEM and nitrogen adsorption/desorption techniques.

  2. Enhanced metal loading in SBA-15-type catalysts facilitated by salt addition. Synthesis, characterization and catalytic epoxide alcoholysis activity of molybdenum incorporated porous silica

    Energy Technology Data Exchange (ETDEWEB)

    Budhi, Sridhar [Iowa State Univ., Ames, IA (United States); Colorado School of Mines, Golden, CO (United States); Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States); Pylypenko, Svitlana [Colorado School of Mines, Golden, CO (United States); Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States); Smith, Emily A. [Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States); Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States); Colorado School of Mines, Golden, CO (United States)

    2014-02-07

    We report a novel method to increase the metal loading in SBA-15 silica matrix via direct synthesis. It was demonstrated through the synthesis and characterization of a series of molybdenum containing SBA-15 mesoporous silica catalysts prepared with and without diammonium hydrogen phosphate (DHP) as an additive. Catalysts prepared with DHP show a 2–3 times increase in incorporation of molybdenum in the silica matrix and pore size enlargement. The synthesized catalysts were characterized using nitrogen sorption, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–optical emission spectroscopy (ICP–OES). The catalytic activity of catalysts prepared with DHP for alcoholysis of epoxides was superior than the catalyst prepared without DHP. Alcoholysis of epoxides was demonstrated for a range of alcohols and epoxides under ambient conditions in as little as 30 min with high selectivity.

  3. Inorganic–organic hybrids presenting high basic center content: SBA-15 incorporation, toxic metals sorption and energetic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando J.V.E. [Departamento de Química, Universidade Federal da Paraíba, 58059-900 João Pessoa, PB (Brazil); Melo, Maurício A. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, São Paulo (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, São Paulo (Brazil)

    2013-03-15

    Highlights: ► Mesoporous SBA-15 silicas were organofunctionalized with new silylant agents. ► Thiocarbamate was used to enhance the silylating agent chains and basic centers. ► The synthesized pendant chains contain nitrogen and sulfur basic centers. ► The new hybrids sorb toxic cations from aqueous solutions with high efficiency. ► The thermodynamic data demonstrated favorable cation/basic center interactions. - Abstract: Mesoporous SBA-15 samples were organofunctionalized with mono, di- and tri-aminosilanes that previously reacted with thiocarbamide to enhance the organic chains and attach nitrogen and sulfur basic centers to the surface of the solids. These new organosilanes were synthesized through a non-solvent approach to reduce both cost and hazardous wastes. The high affinities for both hard and soft Lewis acids due to the combination of nitrogen and sulfur atoms attached to the same pendant chain enabled favorable sorption capacities for Cu{sup 2+}, Cd{sup 2+} and Pb{sup 2+} cations, with maximum capacities of 1.90, 3.48 and 5.30 mmol g{sup −1}, respectively, for the most efficient mesoporous silica. Microcalorimetric investigations allowed the calculation of the thermodynamic data at the solid/liquid interface. All Gibbs energy are negative as expected for spontaneous cation/basic center interactions and the positive entropic values from 49 ± 3 to 108 ± 5 J K{sup −1} mol{sup −1}, also reinforced this favorable interactive process in heterogeneous system. The designed organosilanes covalently bonded to the inorganic siliceous skeleton can be suggested as new materials for toxic metal removal from a wastewater with high efficiency.

  4. Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Mardani, Mahdieh

    2015-04-01

    Manganese oxide supported on mesoporous silica SBA-15 catalyst (Mn-SBA-15) was tested with Mn contents in the range of 0.8–23 wt%. Samples were prepared by the controlled grafting process of atomic layer deposition (ALD). Other sample was prepared for comparisons by the wet impregnation method. These samples were characterized by the techniques of ICP, XRD, SEM, Raman, FT-IR spectroscopy, diffuse reflectance UV–Vis, TGA-DSC, and N{sub 2} absorption–desorption surface area measurement. Results indicated that anchored manganese oxide particles have been successfully synthesized over the surface of SBA-15. These samples contained Red-Ox ion pairs of Mn{sup 2+} and Mn{sup 3+} highly dispersed on the mesoporous silica surface. The impregnated sample exhibited lower surface area and contained Red-Ox ion pairs of Mn{sup 3+} and Mn{sup 4+} more aggregated particles on the SBA-15 surface. Results determined Mn-SBA-15 as an efficient and selective catalyst for oxidation of benzyl alcohol with tert-butylhydroperoxide in liquid phase. In accordance with expectations, there was a negligible amount of leaching of immobilized manganese oxide from the support during the reaction, because of strong surface interaction between manganese oxide and hydroxyls groups. The influences of reaction temperature, reaction time, solvent, TBHP/benzyl alcohol molar ratio, amount of catalyst and reusability were investigated. Under optimized conditions (0.2 g catalyst, TBHP/benzyl alcohol molar ratio 1, solvent acetonitrile; T = 90 °C; reaction time 8 h), results achieved 70% conversion of benzyl alcohol and 100% selectivity to benzaldehyde. - Highlights: • Manganese oxide immobilized on SBA-15 were prepared by atomic layer deposition (ALD). • Oxidation of benzyl alcohol to benzaldehyde over this catalyst were investigated. • Effects of loading of manganese oxide, T, oxidant/alcohol ratio were investigated. • The leaching of manganese oxide from support during the reaction was

  5. Coumarin modified SBA-15 material used for selective recognition and adsorption of Fe3+%香豆素修饰SBA-15材料及其对Fe3+的识别和吸附性能

    Institute of Scientific and Technical Information of China (English)

    山少斌; 马文辉; 吕磊; 周雪然; 徐群

    2015-01-01

    An inorganic–organic hybrid fluorescence material SBA-K was prepared by covalent immobilization of a coumarin derives within the channels of SBA-15. The characterization results of FT-IR,TEM demonstrate that coumarin is successfully grafted onto the inner surface of SBA-15 and its ordered mesoporous structure is not broken. SBA-K exhibited Fe3+-only turn-off fluorescence recognition among metal ions(K+, Na+,Ca2+, Mg2+,Cd2+, Ag+, Cu2+, Pb2+, Hg2+, Cr3+, Co2+, Ni2+ , Fe3+, Zn2+)in HEPES (0.02 M,CH3OH/water = 99.5/0.5,v/v,pH 7.2)Suspension. The addition of Fe3+ led to a fluorescence quenchingof 98% and an obvious Suspension change from almost colorless to Pale brown. Furthermore, SBA-K exhibited high adsorption capacity of 92.7% for Fe3+.%通过将香豆素探针以共价键负载到介孔硅材料SBA-15上,合成了一种无机-有机杂化荧光材料SBA-K, FT-IR、TEM表征结果证明香豆素探针成功负载于SBA-15上,负载后介孔材料的有序孔道没有被破坏。在HEPES悬浮液(0.02 M,CH3OH/water =99.5/0.5,v/v,pH 7.2)中,SBA-K在常见金属离子(K+, Na+,Ca2+, Mg2+,Cd2+, Ag+, Fe3+, Pb2+, Hg2+, Cr3+, Co2+, Ni2+, Fe3+, Zn2+)中能够专一性地荧光猝灭识别Fe3+。Fe3+可使体系荧光猝灭98%,引起体系颜色由无色立即变为棕黄色。此外,SBA-K对Fe3+表现较强的吸附能力,吸附率可达92.7%。

  6. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    Science.gov (United States)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  7. Porosity and Surface Properites of SBA-15 with Grafted PNIPAAM: A Water Sorption Calorimetry Study

    Science.gov (United States)

    2011-01-01

    Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface properties. The modification process was carried out by (i) increasing the number of surface silanol groups, (ii) grafting 1-(trichlorosilyl)-2-(m-/p-(chloromethylphenyl) ethane, acting as an anchor for (iii) the polymerization of N-isopropylacrylamide. Water sorption isotherms and the enthalpy of hydration are presented. Pore size distributions were calculated on the basis of the water sorption isotherms by applying the BJH model. Complementary measurements with nitrogen sorption and small-angle X-ray diffraction are presented. The increase in the number of surface silanol groups occurs mainly in the intrawall pores, the anchor is mainly located in the intrawall pores, and the intrawall pore volume is absent after the surface grafting of PNIPAAM. Hence, PNIPAAM seals off the intrawall pores. Water sorption isotherms directly detect the presence of intrawall porosity. Pore size distributions can be calculated from the isotherms. Furthermore, the technique provides information regarding the hydration capability (i.e., wettability of different chemical surfaces) and thermodynamic information. PMID:21928772

  8. Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol over Ni-HZSM-5/SBA-15 Catalyst

    Directory of Open Access Journals (Sweden)

    Yujing Weng

    2015-12-01

    Full Text Available Aromatics and cyclic-hydrocarbons are the significant components of jet fuel with high energy-density. However, conventional technologies for bio-fuel production cannot produce these products without further aromatization and isomerization. In this work, renewable liquid fuel with high content of aromatics and cyclic-hydrocarbons was obtained through aqueous catalytic conversion of biomass sorbitol over Ni-HZSM-5/SBA-15 catalyst. Texture characteristics of the catalyst were determined by physisorption of N2, which indicated its bimodal pore structures were microporous (HZSM-5, pore width: 0.56 nm and mesoporous (SBA-15, pore width: 8 nm. The surface acidity included weak and strong acid sites, predominantly Lewis type, and was further confirmed by the NH3-TPD and Py-IR analysis. The catalytic performances were tested in a fixed-bed reactor under the conditions of 593 K, WHSV of 0.75 h−1, GHSV of 2500 h−1 and 4.0 MPa of hydrogen pressure, whereby oil yield of 40.4 wt. % with aromatics and cyclic-hydrocarbons content of 80.0% was obtained.

  9. Catalytic Pyrolysis of Biomass with Fe/La/SBA-15 Catalyst using TGA–FTIR Analysis

    Directory of Open Access Journals (Sweden)

    Yuli Zhang

    2014-07-01

    Full Text Available Biomass pyrolysis or gasification can convert low-energy density biomass into a high-energy density gaseous fuel. In this paper, pyrolysis of pine sawdust with and without the addition of a catalyst was investigated using a thermogravimetric analyzer coupled with Fourier transform infrared spectroscopy (TGA-FTIR. The effects of modified SBA-15 catalysts on the formation characteristics of CO, CO2, and CH4 were studied. The two prepared catalysts, La/SBA-15 and Fe/La/SBA-15, retained the hexagonal order of the SBA-15 material and showed high thermal stability in the temperature range of the TGA-FTIR experiments. The results showed that the pyrolysis behavior of biomass is remarkably improved in the presence of La/SBA-15 and Fe/La/SBA-15 catalysts. The modified SBA-15 materials favored thermal cracking of macromolecular substances, resulting in an apparent decrease in the tar and coke fraction, an increase in the yield of light gases, and much higher gas production. Meanwhile, a significant increase in CH4 led to a much higher energy density gaseous product.

  10. Catalytic Fast Pyrolysis of Wild Reed Over Nanoporous SBA-15 Catalysts.

    Science.gov (United States)

    Park, Y K; Yoo, Myung Lang; Park, Sung Hoon

    2016-05-01

    Wild reed was pyrolyzed over two nanoporous SBA-15 catalysts with different acid characteristics: Si-SBA-15 and Al-SBA-15. Al was grafted on Si-SBA-15 to increase the acidity and enhance the catalytic activity. Fast pyrolysis was carried out using a pyrolysis-gas chromatography/mass spectrometry system at 550 degrees C for real-time analysis of the products. Significant improvement of the product bio-oil quality was attained by catalytic reforming over nanoporous Al-SBA-15. The fraction of total oxygenates was reduced because of the decrease in. the fraction of ketones, aldehydes, and carboxylates, which deteriorate the fuel quality of bio-oil. On the other hand, the fractions of furans and aromatics, which are the chemicals with high value-added, were increased by the catalytic reforming. The catalytic activity of Al-SBA-15 was considerably higher than that of Si-SBA-15 because the incorporation of Al increased the catalyst acidity.

  11. Mesoporous silica as carrier of antioxidant for food packaging materials

    Science.gov (United States)

    Buonocore, Giovanna Giuliana; Gargiulo, Nicola; Verdolotti, Letizia; Liguori, Barbara; Lavorgna, Marino; Caputo, Domenico

    2014-05-01

    Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packaging.

  12. The synthesis of novel thiol/amino bifunctionalized SBA-15 and application on the Cr(VI) absorption

    Science.gov (United States)

    Yang, Y.; Wang, D.; Yang, J. X.

    2017-08-01

    Novel amino/thiol organic groups modified SBA-15 materials were successfully prepared by a simple co-condensation approach. The synthesize mesoporous materials were characterized by FT-IR, SAXRD, N2 adsorption and elemental analysis (EA). The absorption behavior of Cr (VI) in the samples has been investigated. The experiments revealed that the adsorption amount of Cr (VI) was decided by thiol groups, but the adsorption equilibrium time was mainly effected by amino groups. The 15% NH2+20%SH sample had the best adsorption performance. Its maximum adsorption capacity can be up to 49.29 mg/g at the optimum conditions. The research of adsorption mechanism including adsorption kinetics and adsorption thermodynamics was also presented.

  13. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Subbaramaiah, V. [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Mall, Indra Deo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India)

    2013-03-15

    Highlights: ► Cerium supported SBA-15 (Ce/SBA-15) synthesized by two-step synthesis. ► Characterization of Ce/SBA-15 by FTIR, XRD and BET surface area. ► Catalytic peroxidation of pyridine by Ce/SBA-15. ► Optimization of parameters like catalyst dose, H{sub 2}O{sub 2} dose, initial concentration and temperature. ► Catalyst reusability and leaching study performed. -- Abstract: Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N{sub 2} adsorption–desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter ≈ 70–100 A and pore volume ≈ 0.025 cm{sup 3}/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5–6 g/l), stoichiometric ratio of H{sub 2}O{sub 2}/pyridine (1–6), initial pyridine concentration (50–800 mg/l) and temperature (313–358 K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  14. Preparation and catalytic performance of Fe-SBA-15 and FeOx/SBA-15 for toluene combustion%Fe-SBA-15和FeOx/SBA-15的制备及其对甲苯氧化的催化性能

    Institute of Scientific and Technical Information of China (English)

    张玉娟; 邓积光; 张磊; 戴洪兴

    2014-01-01

    采用直接水热法和等体积浸渍法,分别制备了Fe表面密度为0.09~1.11 Fe-atom/nm2的高比表面积和有序介孔Fe嵌入的SBA-15催化剂xFe-SBA-15,和SBA-15负载的FeOx催化剂yFeOx/SBA-15.表征了xFe-SBA-15和yFeOJSBA-15催化剂的物化性质,并评价了其对甲苯完全氧化反应的催化活性.结果表明,所得催化剂具有棒状或链条状的表面形貌.在Fe表面密度≤0.76 Fe-atom/nm2的xFe-SB A-15上和Fe表面密度≤0.64 Fe-atom/nm2的yFeOx/SBA-15上,Fe物种呈高分散态.在类似Fe表面密度和空速的条件下,xFe-SBA-15比yFeOx/SBA-15显示更好的催化活性.Fe表面密度为0.59 Fe-atom/nm2的xFe-SBA-15催化剂由于具有高比表面积、高分散态的Fe物种和优良的低温还原性能而表现出最好的催化性能.

  15. MgO-SBA-15 Supported Pd-Pb Catalysts for Oxidative Esterification of Methacrolein with Methanol to Methyl Methacrylate☆

    Institute of Scientific and Technical Information of China (English)

    Li Jiang; Yanyan Diao; Junxing Han; Ruiyi Yan; Xiangping Zhang; Suojiang Zhang

    2014-01-01

    Novel MgO–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein (MAL) with methanol to methyl methacrylate (MMA). The MgO–SBA-15 supports were synthesized with different magnesia loadings from different magnesium precursors and hydrochloric acid molar concentrations. The MgO–SBA-15 sup-ports and Pd–Pb/MgO–SBA-15 catalysts were characterized by several analysis methods. The results revealed that the addition of MgO improved the ordered structure of SBA-15 supports and provided surface alkalinity of SBA-15 supports. The average size of the Pd3Pb particles on magnesia-modified Pd–Pb/MgO–SBA-15 catalysts was smal er than that on the pure silica-based Pd–Pb/SBA-15 catalysts. The experiments on catalyst performance showed that the magnesia-modified Pd–Pb/MgO–SBA-15 catalysts had higher activity than pure silica-based Pd–Pb/SBA-15 catalysts, showing the strong dependence of catalytic activity on the average size of active particles. The difference of activity between Pd–Pb/SBA-15 catalysts and Pd–Pb/MgO–SBA-15 catalysts was due to the discrepant structural properties and surface alkalinity provided by MgO, which led to the different Pd3Pb particle sizes and then resulted in the different number of active sites. Besides magnesia loadings, other factors, such as hydrochloric acid molar concentration and magnesium precursors, had considerable influences on the catalytic activity.

  16. Incorporation of nanoscale zero-valent iron particles inside the channels of SBA-15 silica rods by a “two solvents” reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lian yungang 222005 (China); Yu, Hongxia; Zheng, Da [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Xuesong [School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lian yungang 222005 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-08-15

    A new reduction method named a “two solvents” reduction technique was developed for incorporation of nanoscale zero-valent iron particles (NZVIs) inside the channels of SBA-15 silica rods under mild conditions. The resulting NZVIs/SBA-15 composites were compared with the ones prepared by the conventional liquid phase reduction method in structure, morphology and reactivity. All the samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption isotherms, transmission electron microscopy (TEM) and all-direct-reading plasma atomic emission spectrometry (ICP-AES). Results showed that abundant ultrasmall zero-valent iron particles were synthesized and well dispersed in the mesopores of SBA-15 silica rods by the new reduction technique, whereas larger iron particles were supported and aggregated on the surface of the silica rods by conventional reduction method. Batch experiment demonstrated that NZVIs incorporated inside the silica channels had higher reactivity for the removal of Cr(VI) in aqueous solution than those supported on the surface.

  17. Efficiency of Polyoxometalate-Based Mesoporous Hybrids as Covalently Anchored Catalysts.

    Science.gov (United States)

    Bentaleb, Faiza; Makrygenni, Ourania; Brouri, Dalil; Coelho Diogo, Cristina; Mehdi, Ahmad; Proust, Anna; Launay, Franck; Villanneau, Richard

    2015-08-03

    Polyoxometalate (POM) hybrids have been covalently immobilized through the formation of amide bonds on several types of mesoporous silica. This work allows the comparison of three POM-based mesoporous systems, obtained with three different silica supports in which either the organic functions of the support (amine vs carboxylic acid) and/or the structure of the support itself (SBA-15 vs mesocellular foams (MCF)) were varied. The resulting POM-based mesoporous systems have been studied in particular by high resolution transmission electronic microscopy (HR-TEM) in order to characterize the nanostructuration of the POMs inside the pores/cells of the different materials. We thus have shown that the best distribution and loading in POMs have been reached with SBA-15 functionalized with aminopropyl groups. In this case, the formation of amide bonds in the materials has led to the nonaggregation of the POMs inside the channels of the SBA-15. The catalytic activity of the anchored systems has been evaluated through the epoxidation of cyclooctene and cyclohexene with H2O2 in acetonitrile. The reactivity of the different grafted POMs hybrids has been compared to that in solution (homogeneous conditions). Parallels can be drawn between the distribution of the POMs and the activity of the supported systems. Furthermore, recycling tests together with catalyst filtration experiments during the reaction allowed us to preclude the hypothesis of a significant leaching of the supported catalyst.

  18. Mesoporous silica nanoparticles inhibit cellular respiration.

    Science.gov (United States)

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  19. Imprinting the surface of mesoporous aluminosilicates using organic structure-directing agents

    Science.gov (United States)

    Sawant, Kaveri R.

    Combining the positive structural features of mesoporous materials and microporous zeolite aluminosilicates can lead to the synthesis and application of new materials useful for catalytic processes involving large organic reactant molecules. We used organic structure-directing agents (SDAs), typically used for the synthesis of zeolites, to imprint the surface of existing mesoporous materials to create novel materials with enhanced structural properties towards this aim: materials with large well-ordered pores allowing access to large reactants with strong accessible acid sites on the surface of the pores leading to stable and active catalysts. We developed new protocols for incorporating tetrapropyl ammonium and N,N,N-trimethyl-1-adamantylammonium, SDAs used for the synthesis of the zeolites ZSM-5 (MFI) and MCM-22 (MWW) respectively, into the walls of the siliceous mesoporous material SBA-15 by using a combination of an organic solvent (glycerol) and water, to form novel porous materials. We studied the evolution of the modified pore structure of the materials by a battery of characterization techniques. Results indicate that the new materials have well-ordered pores with significantly larger mesopore diameters and structurally modified thinner, denser pore walls. We carried out similar treatments and characterization on the aluminum containing form of SBA-15, Al-SBA-15, with high and low amounts of aluminum. Pair distribution function analysis was used to analyze the structural differences in the materials and catalytic test reactions such as cumene and n-hexane cracking to detect the presence of strong acid sites like the ones in ZSM-5. Results similar to the treatments on the all-silica materials, although promising, led to novel meso-micro aluminosilicate materials with limited increase in or no catalytic activity with reference to the test reactions employed. This led to the conclusion that the aluminum in the materials was merely a spectator and did not

  20. Basic Functionalization of Hexagonal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    3-Aminopropyltricthoxysilanc (AM), 3-cthyldiaminopropyltrimcthoxysilane (ED) and 3-piperazinylpropyltriethoxysilanc (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The inerease in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.

  1. Direct Synthesis, Characterization and Catalytic Performance of Iron-Containing SBA-15 for Phenol Degradation

    Institute of Scientific and Technical Information of China (English)

    XIE Huan-ling; XU Wen-guo

    2008-01-01

    An iron-containing SBA-15(Fe-SBA-15) has been synthesized via one-pot hydrothermal method under weak acidic conditions. A series of characterizations show nanocomposite materials of iron particles supported over mesostructured materials. The catalytic activity of these iron-containing SBA-15 materials has been tested for the heterogeneous Fenton degradation of phenolic aqueous solutions. The catalytic performance has been monitored in terms of phenol conversion, whereas the catalytic stability was evaluated by catalyst recycle. The influence of concentration of hydrogen peroxide, catalyst loading, catalyst prepared with different Fe/Si molar ratios in the gel and pH values of the solution on phenol conversion has been studied. Achieving a good catalytic performance accompanied with a noteworthy stability, Fe-SBA-15 materials prepared by this method are shown as the successful catalyst for degradation of phenolic aqueous solutions by Fenton process.

  2. Pore structure and surface area of silica SBA-15: influence of washing and scale-up

    Directory of Open Access Journals (Sweden)

    Jörg P. Thielemann

    2011-02-01

    Full Text Available The removal of the surfactant (EO20PO70EO20 by washing before final calcination is a critical step in the synthesis of silica SBA-15. In contrast to washing with pure water or ethanol, washing with water and ethanol may, depending on the quantity of solvent used, alter the homogeneity and order of the pores, but also lead to an increase of the surface area of SBA-15. A reduction of solvent volume and a controlled washing protocol allow the synthesis of high surface area SBA-15 materials with a narrow monomodal pore size distribution. For larger batch sizes the influence of the quantity of solvent on the quality of the SBA-15 is reduced.

  3. Mechanism of catalytic ozonation in Fe ₂O₃/Al ₂O₃@SBA-15 aqueous suspension for destruction of ibuprofen.

    Science.gov (United States)

    Bing, Jishuai; Hu, Chun; Nie, Yulun; Yang, Min; Qu, Jiuhui

    2015-02-03

    Fe2O3 and/or Al2O3 were supported on mesoporous SBA-15 by wet impregnation and calcinations with AlCl3 and FeCl3 as the metal precursor and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectra (FTIR) of adsorbed pyridine. Fe2O3/Al2O3@SBA-15 was found to be highly effective for the mineralization of ibuprofen aqueous solution with ozone. The characterization studies showed that Al-O-Si was formed by the substitution of Al(3+) for the hydrogen of surface Si-OH groups, not only resulting in high dispersion of Al2O3 and Fe2O3 on SBA-15, but also inducing the greatest amount of surface Lewis acid sites. By studies of in situ attenuated total reflection FTIR (ATR-FTIR), in situ Raman, and electron spin resonance (ESR) spectra, the chemisorbed ozone was decomposed into surface atomic oxygen species at the Lewis acid sites of Al(3+) while it was converted into surface adsorbed (•)OHads and O2(•-) radicals at the Lewis acid sites of Fe(3+). The combination of both Lewis acid sites of iron and aluminum onto Fe2O3/Al2O3@SBA-15 enhanced the formation of (•)OHads and O2(•-) radicals, leading to highest reactivity. Mechanisms of catalytic ozonation were proposed for the tested catalysts on the basis of all the experimental information.

  4. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good

  5. Fast, selective adsorption of Cu{sup 2+} from aqueous mixed metal ions solution using 1,4,7-triazacyclononane modified SBA-15 silica adsorbent (SBA-TACN)

    Energy Technology Data Exchange (ETDEWEB)

    Tapaswi, Pradip Kumar; Moorthy, Madhappan Santha; Park, Sung Soo; Ha, Chang-Sik, E-mail: csha@pnu.edu

    2014-03-15

    A new SBA-15 supported 1,4,7-triazacyclononane modified mesoporous silica adsorbent (SBA-TACN) has been synthesized using post grafting route and has thoroughly been characterized by small angle X-ray scattering (SAXS), N{sub 2} adsorption–desorption measurements, Fourier-transform infrared (FT-IR), solid-state {sup 29}Si MAS and {sup 13}C CP MAS NMR spectroscopy, transmission electron (TEM) and scanning electron microscopy (SEM), elemental analysis (EA) and thermogravimetric analysis (TGA). The synthesized material shows excellent copper (II) ion adsorption selectivity at pH 5 in mixed metal ion solution containing Cu{sup 2+}, Cr{sup 3+}, Ni{sup 2+}, Co{sup 2+} and Li{sup +}. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. Possible adsorption mechanism of metal ions on SBA-TACN has been discussed. The adsorbent can be readily regenerated by HNO{sub 3}–NH{sub 3} treatment. -- Graphical abstract: A new SBA-15 supported 1,4,7-triazacyclononane (TACN) modified mesoporous silica (SBA-TACN) adsorbent has been developed which shows excellent selectivity in Cu{sup 2+} adsorption from aqueous mixed metal ion solutions at pH 5. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. The adsobent is stable enough to be used atleast for three cycles. Highlights: • Synthesis of a new TACN modified mesoporous silica SBA-15 type adsorbent. • The density of 1,4,7-triazacyclononane on SBA-15 is 1.22 mmol/g. • First report on the selective Cu{sup 2+} adsorption by TACN modified mesoporous silica. • Cu{sup 2+} adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. • Potential candidate for selective removal of Cu{sup 2+} from contaminated water samples.

  6. Development of novel mesoporous silicates for bioseparations and biocatalysis

    Science.gov (United States)

    Katiyar, Amit

    The recent growth of the biopharmaceutical industry is due to the discovery of monoclonal antibodies and recombinant DNA technologies. Large-scale production of therapeutic proteins and monoclonal antibodies requires efficient technologies to separate products from complex synthesis mixtures. Chromatography is widely used for this purpose at both the analytical and process scales. Research in the last three decades has provided an improved understanding of the thermodynamic and mass transfer effects underlying the chromatographic behavior of biomolecules, leading to improvements in chromatographic equipment, separation media, and operating procedures. This dissertation reports on the development of ordered mesoporous silica-based adsorbents for chromatographic protein separations. The synthesis of mesoporous materials with different structural properties is reported here. Protein adsorption and enzymatic catalysis studies were conducted to evaluate the chromatographic performance of these materials. Initial studies focused on small pore materials (MCM-41), which had high protein adsorption capacities. These high protein loadings were attributed to high external surface area (˜600 m 2/g), meaning that MCM-41 materials are of limited use for size-selective chromatographic protein separation. Synthesis strategies were developed to produce large pore fibrous and spherical SBA-15 particles. The effects of synthesis conditions on particle properties are presented. Large pore Spherical ordered SBA-15 materials were used to demonstrate for the first time the size-selective separation of proteins. BSA and lysozyme were tagged with fluorescent molecules, allowing direct visualization of the size selective separation of these proteins. Flow microcalorimetry (FMC) results were used to interpret the size-selective behavior of these materials. The potential of siliceous SBA-15 materials to serve as hosts for enzymes in biocatalytic transformations was also explored. Materials

  7. Organically functionalized mesoporous silica as a support for synthesis and catalysis

    Science.gov (United States)

    McEleney, Kevin Andrew

    Mesoporous silicates are excellent materials for supported catalysis due to their ease of functionalization, tunable pore size and high surface areas. Mesoporous silicates have been utilized in a variety of applications such as drug delivery scaffolds and catalyst supports. Functionalization of the surface can be achieved by either grafting of alkoxy silanes or co-condensation of the organosilane with the inorganic silica source. My research in this area can be divided into two components. In the first, we address the significant issue of metal contamination after reactions that are catalyzed by transition metals. In the second, we examine the design of new catalysts based on organic/inorganic composites. Ruthenium catalyzed processes such as olefin metathesis or asymmetric hydrogenation, are often underutilized due to the difficulty of removing the ruthenium by-products. Attempts to remove ruthenium involve treating the solution with a scavenging reagent followed by silica chromatography. Often these scavenging agents are expensive phosphines or toxic agents like lead tetra-acetate. SBA-15 functionalized with aminopropyl triethoxysilane displays a high affinity for ruthenium. Furthermore, it can be utilized to remove ruthenium by-products from olefin metathesis or hydrogenation reactions without the need for silica chromatography. We have also prepared sulfur-functionalized mesoporous silicates that have a high affinity for palladium. The materials after loading prove to be active catalysts for a variety of palladium catalyzed processes such as Suzuki-Miyaura and Sonogashira couplings. The catalysts are recyclable with moderate loss of activity and structure, depending on the method of incorporation of the thiol. We have characterized the as-synthesized and used catalysts by nitrogen sorption, TEM, X-ray photoelectron spectroscopy (XPS) and a variety of homogeneity tests were performed on the catalysts. Periodic mesoporous organosilicates (PMOs) are a well known

  8. SBA-15负载的Cu(II)席夫碱配合物催化的苯乙烯氧化反应制备苯甲醛%Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst

    Institute of Scientific and Technical Information of China (English)

    朱学成; 沈如伟; 张利雄

    2014-01-01

    The amino-modified mesoporous material SBA-15 (NH2-SBA-15) was prepared via co-condensation of tetraethylorthosilicate with 3-aminopropyltriethoxysilane in the presence of an amphiphilic triblock copolymer as a pore-directing agent under acidic conditions. The SBA-15-supported Cu Schiff-base complex (Cu-SBA-15) was then synthesized by condensation of salicylaldehyde with NH2-SBA-15, followed by the addition of a solution of Cu(NO3)2. The supported complex was sys-tematically characterized by elemental analysis, inductive coupled high frequency plasma atomic emission spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, ultravi-olet-visible spectroscopy, field scanning electron microscopy, transmission electron microscopy, N2 absorption-desorption, and thermo gravimetric analysis, and was used as the catalyst for the selec-tive oxidation of styrene to benzaldehyde. The influence of the reaction parameters was assessed. The maximum conversion of styrene was 84.4%and the selectivity for benzaldehyde was 83.9%, when the reaction was conducted with a 2:1 molar ratio of H2O2:styrene in the presence of 3.8 wt%catalyst at 100 °C for 8 h. The TOF was 261.1 h-1, and the catalyst could be used three times without significant loss of activity. The uniformly sized pore channels, high specific surface area, and well-distributed active centers of the catalyst may contribute to the high activity.%子筛SBA-15(NH2-SBA-15),再利用其中氨基与水杨醛的缩合反应制备SBA-15固载的席夫碱,该席夫碱与Cu(NO3)2溶液反应最终制成固定于SBA-15的Cu(II)席夫碱配合物多相催化剂Cu-SBA-15.采用X射线衍射、红外光谱仪、紫外可见分光光度计、场发射电镜、透射电镜、N2吸附-脱附、元素分析、原子发射光谱和热重分析对催化剂进行了表征,并将此催化剂用于无有机溶剂条件下催化氧化苯乙烯制备苯甲醛,考察了反应时间、反应温度、H2O2用量、水的用量

  9. Cycloaddition of carbon dioxide with epoxide catalyzed by SBA-15 molecular sieves loaded with graphitic carbon nitride%SBA -15分子筛负载氮化碳催化二氧化碳与环氧化合物环加成反应

    Institute of Scientific and Technical Information of China (English)

    柳士鑫; 闫洪伟

    2015-01-01

    The catalytic activation of carbon dioxide is the key for its utilization as C1 resource. In order to develop efficient catalysts for the activation of carbon dioxide,dicyandiamide was loaded on the mesochannels of SBA-15 molecular sieve by impregnation method,and then after calcination,SBA-15 loaded graphitic carbon nitride(g-C3 N4 )catalysts were obtained. The catalysts were characterized by transmission electron microscopy,X-ray diffraction,N2 adsorption and X-ray photoelectron spectroscopy. The results showed that the mesoporous structure of SBA-15 molecular sieve had not changed significantly after loading g-C3 N4 . g-C3 N4 nanophases were dispersed in the channels of SBA-15 molecular sieve. g-C3 N4 / SBA-15 catalyst was employed for the catalytic synthesis of cyclic carbonate from cycloaddition of carbon dioxide with epoxide. The effects of catalyst composition and the reaction conditions on catalytic performance were investigated. The results showed that g-C3N4 / SBA-15 catalyst could effectively catalyze the cycloaddition of carbon dioxide with epoxide. Under the condition of reaction temperature 140 ℃,reaction pressure 3.5 MPa, reaction time 4 h,ZnBr2 amount 1. 0mol% ,dicyandiamide mass fraction 20% and g-C3 N4 / SBA-15 as the catalyst,cyclic carbonate yield reached 91. 6% . g-C3 N4 / SBA-15 catalyst had the advantages of simple preparation process,cheap raw materials and excellent catalytic performance.%二氧化碳的催化活化是其作为 C1资源利用的关键。为了开发高效二氧化碳活化催化剂,将二聚氰胺通过浸渍法负载到介孔分子筛 SBA -15孔道中,高温焙烧后,得到 SBA -15负载的石墨相氮化碳 g - C3 N4催化剂。采用透射电镜、X 射线衍射、N2吸附和 X 射线光电子能谱对催化剂进行表征。结果表明,负载 g - C3 N4后,SBA -15分子筛的介孔结构未发生明显变化,g - C3 N4以纳米态分布于 SBA -15分子筛的孔道中。将 g - C3 N4/ SBA -15催化剂用

  10. CO2 activation through silylimido and silylamido zirconium hydrides supported on N-donor chelating SBA15 surface ligand

    KAUST Repository

    Pasha, Fahran Ahmad

    2016-01-04

    Density functional theory calculations and 2D 1H-13C HETCOR solid state NMR spectroscopy prove that CO2 can probe, by its own reactivity, different types of N-donor surface ligands on SBA15-supported ZrIV hydrides: [(≡Si-O-)(≡Si-N=)[Zr]H] and [(≡Si-NH-)(≡Si-X-)[Zr]H2] (X = O or NH). Moreover, [(≡Si-O-)(≡Si-N=)[Zr]H] activates CO2 more efficiently than the other complexes and leads to a carbimato Zr formate.

  11. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  12. Turn-off Fluorescence Chemosensor for Iron with Bis(2-aminoethyl)-2-(9-fluorenyl)malonamide Functionlized SBA-15.

    Science.gov (United States)

    Yadavi, Marzieh; Badiei, Alireza

    2014-03-01

    An bis(2-aminoethyl)-2-(9-fluorenyl)malonamide as fluorophore ligand was immobilized onto mesoporous silica type SBA-15 via post synthesis grafting. The obtained material was characterized by small and wide angle X-ray diffraction, N2 adsorption-desorption, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis that indicate the successful immobilization of the ligand on the surface of mesoporous silica. The sensing ability of the obtained material was studied by addition of the cations Fe(3+), Mg(2+), Cr(3+), Co(2+), Ni(2+), Cu(2+), Hg(2+) and Zn(2+) to water suspensions of the assayed solid. Of all the cations tested addition of Fe(3+) ion to a suspension of this material resulted in the largest decrease in the fluorescence intensity. Turn-off photoluminescence of this material was remarkably observed for iron ions in comparing of the other cations. A good linearity between the fluorescence intensity of this material and the concentration of Fe(3+) ion is constructed, which enables it as a fluorescence chemosensor for detecting the Fe(3+) ion with a suitable detection limit of 1.35 × 10(-5). It can be introduced as a novel fluorescent sensor in aqueous solution for a lot of practical applications in chemical, environmental and biological systems.

  13. Mercaptosilane-assisted synthesis of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials and their enhanced hydrogenation properties

    Science.gov (United States)

    Gao, Daowei; Zheng, Anmin; Zhang, Xin; Sun, Hui; Dai, Xiaoping; Yang, Ying; Wang, Hai; Qin, Yuchen; Xu, Shutao; Duan, Aijun

    2015-06-01

    A novel catalyst that consists of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials was synthesized. This catalyst exhibited high stability and a hierarchically porous structure of a micro-mesoporous composite and possessed a high density of active sites by confinement of sub-nanosized Pt particles within small-pore zeolites, showing high catalytic properties for the hydrogenation of 1,3-butadiene and cyclooctadiene at room temperature.A novel catalyst that consists of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials was synthesized. This catalyst exhibited high stability and a hierarchically porous structure of a micro-mesoporous composite and possessed a high density of active sites by confinement of sub-nanosized Pt particles within small-pore zeolites, showing high catalytic properties for the hydrogenation of 1,3-butadiene and cyclooctadiene at room temperature. Electronic supplementary information (ESI) available: Experimental details, characterization, reaction data. See DOI: 10.1039/c5nr02749g

  14. Direct decomposition of methane over Pd promoted Ni/SBA-15 catalysts

    Science.gov (United States)

    Pudukudy, Manoj; Yaakob, Zahira; Akmal, Zubair Shamsul

    2015-10-01

    The catalytic performance of Ni/SBA-15 catalysts promoted with different loadings of Pd is investigated for the thermocatalytic decomposition of methane into COx-free hydrogen and nanocarbon. The catalysts are characterized in terms of their structural, textural and redox properties. The results showed that the Pd deposition increased the crystallinity of NiO and allowed the fine dispersion of NiO on the SBA-15 support. The decreased surface area of SBA-15 after Ni loading, due to pore blocking, increased after the Pd deposition. Moreover, it reduced the reduction temperatures of NiO interacting with the SBA-15 due to the spillover effect of hydrogen. Furthermore, the addition of Pd increased the catalytic efficiency of the catalysts. A maximum hydrogen yield of 59% is observed over the 0.4% Pd catalyst within 30 min of time on stream. No deactivation is observed until 420 min of streaming for all of the catalysts, indicating a high catalytic stability of the Ni/SBA-15 catalysts for methane decomposition. A new set of multi-walled carbon nanotubes with open tips were deposited over the catalysts, irrespective of the role of Pd and its loading. Moreover, a high graphitization degree and oxidation stability are observed for the nanotubes deposited over the 0.4% Pd catalyst.

  15. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15.

    Science.gov (United States)

    Subbaramaiah, V; Srivastava, Vimal Chandra; Mall, Indra Deo

    2013-03-15

    Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter≈70-100Ǻ and pore volume≈0.025cm(3)/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5-6g/l), stoichiometric ratio of H2O2/pyridine (1-6), initial pyridine concentration (50-800mg/l) and temperature (313-358K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  16. Direct synthesis of Al-SBA-15 containing aluminosilicate species plugs in an acid-free medium and structural adjustment by hydrothermal post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei [Key Laboratory of Fine Chemicals in Universities of Shandong, Shandong Polytechnic University, Daxue Road, Changqing District, Jinan 250353 (China); Xu, Yan [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101 (China); Institute of Petrochemical Technology, Changzhou University, Gehu Road, Changzhou 213164 (China); Zhang, Na [Key Laboratory of Fine Chemicals in Universities of Shandong, Shandong Polytechnic University, Daxue Road, Changqing District, Jinan 250353 (China); Lin, Sen, E-mail: linsen@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101 (China); Li, Xiangping; Guo, Peng; Li, Xuebing [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101 (China)

    2013-07-15

    A series of Al-SBA-15 with controllable aluminosilicate plug structures inside straight mesopores has been hydrothermally synthesized in a one-step synthesis in an environmentally friendly acid-free medium, using triblock copolymer Pluronic P123 as a structure-directing agent, water as solvent, tetraethyl orthosilicate (TEOS) and aluminum nitrate (Al(NO){sub 3}·9H{sub 2}O) as silica and aluminum sources, respectively. The effects of the P123/Si molar ratio in the initial solution and aging temperature on the structural properties of the resulting materials were investigated by powder X-ray diffraction (XRD), nitrogen adsorption–desorption at 77 K, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric (TG), FT-IR spectra and inductively coupled plasma (ICP) analyses. The nature of the Al species and the acidity of the resultant samples were studied by solid state {sup 27}Al MAS NMR and pyridine adsorption measurements. The specific surface area (935–755 m{sup 2}g{sup −1}), pore volume (1.03–0.56 cm{sup 3}g{sup −1}) and especially the concentration and distribution of open type mesopores (0–68% to the total pores) of the synthesized Al-SBA-15 can be controlled by a simple adjustment of the P123/Si molar ratio in the initial solution. Moreover, increasing the aging temperature higher than 363 K can remarkably decrease the formation of plug structures to obtain “open” form mesopores. The observation by TEM of alternate defined gray and white areas inside the mesopores gives the strong evidence of isolated microporous aluminosilicate plugs inside the channels. In addition, a moderate hydrothermal post-treatment can finely modify the mesostructures through the partial or complete dissolution of the aluminosilicate plugs. - Graphical abstract: The plugs-containing structures can be interpreted as the distribution of individual isolated plugs along the mesoporous channel. - Highlights: • Al-SBA-15 with controllable

  17. Studies on the preparation and performance of Ag-SBA-15 antibacterial agent%Ag-SBA-15抗菌剂的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    丁志杰; 马忠友; 郭雨; 郭腾; 陈君华

    2016-01-01

    Using platelet SBA-15 and fiber SBA-15 as carriers,platelet Ag-SBA-15 and fiber Ag-SBA-15 with the broad-spectrum antibacterial activity were prepared by a double solvent technique,in which n-hexane is used as a hydrophobic solvent and AgNO3 solution is used as a hydrophilic solvent. The structure of samples was investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and energy dispersive spectrometer(EDS). The antibacterial effect of Ag-SBA-15 was investigated by the tube dilution method. The results showed that Ag-SBA-15 with highly ordered two-dimensional hexagonal structure was synthesized using platelet and fiber SBA-15 as support respectively. Silver nanoparticles were uniformly loaded on the porous support. The tube dilution method showed the minimal inhibitory concentration( MIC) of platelet Ag-SBA-15 for Staphylococcus? aureus is 8ug/mL,whereas the MIC of conventional fiber Ag-SBA-15 is 32ug/mL.%以板状和纤维状SBA-15为载体,采用正己烷为疏水溶剂、硝酸银的水溶液为亲水溶剂的双溶剂法制备了广谱抗菌剂板状Ag-SBA-15和纤维状Ag-SBA-15。以X射线衍射、扫描电子显微镜、透射电子显微镜和X射线能谱等手段表征了抗菌剂的结构和特性。通过试管稀释法考察了抗菌剂抗菌性能。结果显示,两种形貌SBA-15为载体制得的Ag-SBA-15都保持高度有序的二维六方相介孔结构,银颗粒在载体中均匀分散。试管稀释法测得由板状SBA-15制得抗菌剂对金黄色葡萄球菌的最小抑菌浓度达8ug/mL,而相应条件下由传统纤维状SBA-15为载体制得的抗菌剂最小抑菌浓度为32ug/mL。

  18. Synthesis in Phosphoric Acid Medium and Catalytic Activity of Fe/SBA-15%磷酸介质中Fe/SBA-15的合成及其催化性能

    Institute of Scientific and Technical Information of China (English)

    赵红建; 马富

    2013-01-01

    在磷酸介质中,通过水热合成法合成介孔分子筛SBA-15,再用浸渍法制备Fe/SBA-15催化剂,并采用XRD,N2-BET,FT-IR和UV-Vis对合成的样品进行表征,结果表明Fe成功负载到SBA-15上,并且合成的Fe/SBA-15催化剂对H2O2氧化环己酮生成己内酯的反应具有催化作用.

  19. Studies on preparation and luminescent character of Er{sup 3+}/Zn{sup 2+}-(SBA-15) composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui, E-mail: yh2001101@163.com [School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Xia, Long [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhao, Xin-le [Research Institute for New Energy, Changchun University of Science and Technology, Changchun 130022 (China); Dong, Xiang-ting [School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2015-02-15

    In this study, SBA-15 surface was modified with silane reagent. Then, the EDTA was grafted on the surface of the modification SBA-15. The Zn{sup 2+}/Er{sup 3+} was grafted on the surface of the SBA-15 porous, and Er{sup 3+}/Zn{sup 2+}-(SBA-15) composite materials were prepared. The organic ligands EDTA enhanced the energy-transfer efficiency from the triplet level of ligands to the 4f electrons of Er{sup 3+} ion, and enhanced the luminescence intensity of the Er{sup 3+} ion. At the same time, Zn composite material has strong absorption to ultraviolet light, which has superior furtherance action to rare earth ion luminescence. The temperature quenching effect of Er{sup 3+} could be suppressed when it was introduced into porous of SBA-15. These factors provided the prepared materials with much higher relative luminescent intensities. The prepared Er{sup 3+}/Zn{sup 2+}-(SBA-15) composite materials showed the excellent luminescent characteristics. - Highlights: • SBA-15 surface was modified with silane reagent to increase its surface active. • The EDTA was grafted on the surface of the modification SBA-15. • The Zn{sup 2+}/Er{sup 3+} was grafted on the surface of the EDTA-Ph-SBA-15 porous, and prepared Er{sup 3+}/Zn{sup 2+}-(SBA-15) composite materials. • The organic ligands EDTA, Zn{sup 2+} and SBA-15 enhanced the luminescence intensity of the Er{sup 3+} ion. • The prepared Er{sup 3+}/Zn{sup 2+}-(SBA-15) composite materials had potential application in optical conduction and photocatalysis fields.

  20. Industrial water treatment, by adsorption, using organized mesoporous materials

    Science.gov (United States)

    Koubaissy, Bachar; Toufaily, Joumana; Kafrouny, Lina; Joly, Guy; Magnoux, Patrick; Hamieh, Tayssir

    In this work, pure silica SBA-15 was synthesized by a sol-gel method and in-situ functionalized by a series of organosilane. These mesoporous materials are used to absorb polluants from wastewater. We studied the influence of functional groups on adsorption of phenol drifts. The carboxylic acid groups and substituted chlorine on phenol have been studied. There is a sharp increase of adsorption (more than double compared to phenol) which is very encouraging. Furthermore we note that the percentage of grafted ligands also plays an important role in adsorption. Finally, the adsorption capacity also depends on the nature and percentage of ligands present.

  1. Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Chunling Wei

    2016-10-01

    Full Text Available A series of vanadia catalysts supported on SBA-15 (V/SBA with a vanadia (V content ranging from 1% to 11% were prepared by an incipient wetness method. Their catalytic behavior in the dehydrogenation of isobutane to isobutene with CO2 was examined. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, and temperature-programmed reduction (TPR. It was found that these catalysts were effective for the dehydrogenation reaction, and the catalytic activity is correlated with the amount of dispersed vanadium species on the SBA-15 support. The 7% V/SBA catalyst shows the highest activity, which gives 40.8% isobutane conversion and 84.8% isobutene selectivity. The SBA-15-supported vanadia exhibits higher isobutane conversion and isobutene selectivity than the MCM-41-supported one.

  2. Grafting of Amines on Ethanol-Extracted SBA-15 for CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Yuhan Sun

    2013-03-01

    Full Text Available SBA-15 prepared via ethanol extraction for template removing was grafted with three kinds of amine precursors (mono-, di-, tri-aminosilanes to synthesis new CO2 adsorbents. The SBA-15 support and the obtained adsorbents were characterized by X-ray diffraction (XRD, small-angle X-ray scattering (SAXS, N2 adsorption/desorption, thermogravimetry (TG, elemental analysis, Fourier transform infrared (FTIR spectrometry, scanning electron microscopy (SEM and transmission electron microscopy (TEM. It was found that, except higher silanol density, the ethanol-extracted SBA-15 support possessed a more regular mesophase and thicker walls than traditionally calcined samples, leading to a good stability of the adsorbent under steam treatment. The adsorption capacity of different amine-grafted samples was found to be influenced by not only the surface amine density, but also their physiochemical properties. These observations provide important support for further studies of applying amine-grafted adsorbents in practical CO2 capture process.

  3. Effect of aluminum modification on catalytic properties of PtSn-based catalysts supported on SBA-15 for propane dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Yongzheng Duan; Yuming Zhou; Yiwei Zhang; Xiaoli Sheng; Shijian Zhou; Zewu Zhang

    2012-01-01

    The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15,such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15),for propane dehydrogenation were investigated.Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution,or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene.N2-physisorption,FT-IR spectroscopy,solid-state 27Al MAS NMR spectroscopy,hydrogen chemisorption,XRF,NH3 temperature-programmed desorption,X-ray photoelectron spectroscopy and TPO were used to characterize these samples.Among these catalysts,the PtSn-based catalyst supported on Al2O3/SBA-15,which was grafted with Al(OC3H7)3,exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt,Sn,and the support.

  4. Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis.

    Science.gov (United States)

    Cai, Chunsheng; Gao, Yongqing; Liu, Yan; Zhong, Nanjing; Liu, Ning

    2016-12-01

    In this study, Candida antarctica lipase B (CALB) was immobilized on SBA-15 with three pore diameters. CALB loading was found increased with CALB concentration increasing from 20.3 to 80.12μg/ml. Higher CALB loading was observed from SBA-15 with pore diameters at 8.1nm (SBA-15(8.1)), yet highest hydrolytic activity was found at SBA-15(12.5). Thermal stability of the immobilized CALB (SBA-15-CALB) samples was greatly influenced by their water content, after 4h storage at 70°C, 8.93 and 67.4% of the initial activity was observed from SBA-15-CALB samples with water content at 9.23 and 3.22% respectively. The SBA-15-CALB samples were then used in glycerolysis of corn oil, and 53.6wt% of diacylglycerols was obtained after optimization. The operational stability was tested, and after 5 consecutive applications, 92.5 and 80.3% of the initial glycerolysis activity was remained respectively from SBA-15(6.6)-CALB and SBA-15(12.5)-CALB.

  5. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15{sub -500}) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15{sub -500} supported zirconium complexes were characterized by in situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  6. Surfactant-assisted Nanocasting Route for Synthesis of Highly Ordered Mesoporous Graphitic Carbon and Its Application in CO2 Adsorption

    Science.gov (United States)

    Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng

    2016-05-01

    Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant.

  7. Probing Intramolecular versus Intermolecular CO2 Adsorption on Amine-Grafted SBA-15.

    Science.gov (United States)

    Yoo, Chun-Jae; Lee, Li-Chen; Jones, Christopher W

    2015-12-15

    A mesoporous silica SBA-15 is modified with an array of amine-containing organosilanes including (i) propylamine, SiCH2CH2CH2NH2 (MONO), (ii) propylethylenediamine, SiCH2CH2CH2NHCH2CH2NH2 (DI), (iii) propyldiethylenetriamine, SiCH2CH2CH2NHCH2CH2NHCH2CH2NH2 (TRI), and (iv) propyltriethylenetetramine, SiCH2CH2CH2NHCH2CH2N(CH2CH2NH2)2 (TREN) and the low loading silane adsorbents (∼0.45 mmol silane/g) are evaluated for their CO2 adsorption properties, with a focus on gaining insight into the propensity for intramolecular vs intermolecular CO2 adsorption. Adsorption isotherms at low CO2 coverages are measured while simultaneously recording the heat evolved via a Tian-Calvet calorimeter. The results are compared on a silane molecule efficiency basis (mol CO2 adsorbed/mol silane) to assess the potential for intramolecular CO2 adsorption, employing two amine groups in a single silane molecule. As the number of amines in the silane molecule increases (MONO capture CO2. Analysis of the CO2 uptake for samples with the surface silanols removed by capping demonstrates that cooperative uptake due to amine-CO2-silanol interactions is also possible over these adsorbents and is the primary mode of sorption for the MONO material at the studied low silane loading. As the propensity for intramolecular CO2 capture increases due to the presence of multiple amines in a single silane molecule (MONO amine-containing silanes at low coverage is the first to provide significant, direct evidence for intramolecular CO2 capture in a single silane molecule. Furthermore, it provides evidence for the relative heats of adsorption for physisorption on a silanol laden surface (ca. 37 kJ/mol), a silanol-capped surface (ca. 25 kJ/mol), via amine-CO2-silanol interactions (ca. 46 kJ/mol), and via amine-CO2-amine interactions at low surface coverages (ca. 65 kJ/mol).

  8. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  9. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  10. 负载型Pd/SBA-15催化剂催化性能研究%Research on catalytic hydrogenation performance of Pd/SBA-15 supported catalyst

    Institute of Scientific and Technical Information of China (English)

    刘大伟

    2012-01-01

    The hydrogenation of 2-nitrochlorobenzene is carried out by Pd/SBA-15 supported catalyst. The effect of temperature and amount of catalysts on catalytic activity and life-span are investigated. The results show that Pd/SBA-15 supported catalyst has excellent catalytic performance and is expected to be applied in industry.%将负载型催化剂Pd/SBA-15用于催化邻氯硝基苯加氢.考察了反应温度、催化剂用量对Pd/SBA-15催化性能的影响,并考察了催化剂的使用寿命.实验结果表明,Pd/SBA-15催化剂表现出很好的催化性能,有望应用于工业生产.

  11. On the drug adsorption capacity of SBA-15 obtained from various detemplation protocols

    NARCIS (Netherlands)

    Zhang, Zheng; Santangelo, D.; ten Brink, Gert; Kooi, Bart; Moulijn, J.A.; Melian Cabrera, Ignacio

    2014-01-01

    The effect of the mild detemplation method, based on Fenton chemistry (with and without previous solvent extraction), and calcination was evaluated by the drug uptake capacity of SBA-15 materials. A number of characterization techniques were applied for evaluation and comparison of the materials pro

  12. Textural and morphological studies of transition metal doped SBA-15 by co-condensation method

    Indian Academy of Sciences (India)

    P H K Charan; G Ranga Rao

    2015-05-01

    The 3d transition metals were incorporated into SBA-15 matrix by co-condensation synthesis method. Very low concentrations of metals were introduced into silica framework by maintaining the metal to silica ratio in the synthesis gel at 0.01. The difference in hydrolysis rates of metal and silica precursors have led to textural modifications while demonstrating the structural integrity akin to pristine SBA-15. The physicochemical properties obtained offer some insights into the P123 micelle aggregation and mechanism of formation of silica network in the presence of metal salts under similar synthesis conditions of pure SBA-15. The metal doping into SBA-15 leads to increased pore diameters. Higher lattice constants (a0) observed in these samples are attributed to the increased pore wall thickness. The significant retention of the hexagonal mesostructure seen in LXRD indicates diminutive influence of metal salts at lower concentrations.Macroscopic morphologies studied by SEM show the formation of spheres along with conventional fibre-like rods.

  13. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Zr(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15-500) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15-500 supported zirconium complexes were characterized by in situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  14. Al-SBA-15介孔分子筛的制备及表征

    Institute of Scientific and Technical Information of China (English)

    齐晶瑶; 强亮生; 杜茂松; 李颖; 唐冬雁

    2007-01-01

    采用溶胶-凝胶法合成了纯硅SBA-15介孔分子筛,并对盐酸的用量、硅源(TEOS)的用量以及晶化温度等影响产物质量的主要因素进行了考察。在此基础上通过后嫁接掺铝法将不同含量的铝掺入介孔分子筛SBA-15的骨架中,合成出Al-SBA-15介孔分子筛。通过X射线粉末衍射和氮气吸附.脱附分析等手段对所得样品进行了表征。结果表明,掺铝后SBA-15骨架的六方介孔结构仍保持其高度的有序性。

  15. Thermal detemplation of SBA-15 mesophases. Effect of the activation protocol on the framework contraction

    NARCIS (Netherlands)

    Zhang, Zheng; Yin, Jie; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    The potential use of the solvothermal extraction (SE) as a preliminary step to calcination for detemplating SBA-15 mesophases is investigated; aiming to reduce the amount of organics to be burnt and thereby the corresponding structural shrinkage. A systematic study was carried out by soxhlet extract

  16. Conversion of producer gas using NiO/SBA-15 obtained with different synthesis methods

    Institute of Scientific and Technical Information of China (English)

    Baowang Lu; Yiwen Ju; Katsuya Kawamoto

    2014-01-01

    In this study, NiO/SBA-15 was prepared by both direct and post synthesis methods. TEM images revealed that NiO particles aggregated in NiO/SBA-15 obtained with post synthesis method, regardless of NiO loading. However, NiO particles were monodispersed in NiO/SBA-15 with a NiO loading of less than 15 wt% by using the direct synthesis method. In this case, NiO particles aggregated when NiO loading was over 20 wt%. TPR analysis verified that with direct synthesis method the location boundary of NiO particles on outer and pore surface could be observed clearly, whereas that could not observed in the case of post synthesis method. This indicates that the type of synthesis method displays significant effect on the location of NiO particles dispersed into the SBA-15. Producer gas conversion was carried out using NiO/SBA-15 as catalysts, which were synthesized with different synthesis methods. The gas conversion including methanation occurred at low temperature (i.e., 300–400 ?C) and the reverse water gas shift (RWGS) reaction at high temperature (i.e., 400–900 ?C). High temperatures facilitated CO2 conversion to CO with CO selectivity close to 100%, regardless of the synthesis method of the used catalyst. At low temperatures the dispersion type of NiO particles affected the CO2 conversion reaction, i.e., monodispersed NiO particles gave a CO selectivity of close to 100%, similar to that obtained at high temperature. The aggregated NiO particles resulted in a CO selectivity of less than 100%owing to CH4 formation, regardless of synthesis method of catalyst. Therefore, NiO/SBA-15 obtained with direct synthesis method favored RWGS reaction because of high CO selectivity. NiO/SBA-15 obtained with post synthesis method is suited for methanation because of high CH4 selectivity, and the conversion of CO2 to CH4 through methanation increased with increasing NiO loading.

  17. Synthesis and Photocatalytic Activity of Highly Dispersed TiO2/SBA-15%高分散TiO2/SBA-15的制备及光催化性能

    Institute of Scientific and Technical Information of China (English)

    张书翠; 姜东; 唐涛; 李君华; 徐耀

    2010-01-01

    提出了一种制备高分散TiO2/SBA-15光催化剂的新方法.以钛酸四正丁酯(TB)和羧基改性的SBA-15(COOH/SBA-15)为原料,利用COOH/SBA-15表面上高分散的羧基与TB的配合作用将TB锚定,经过溶剂热及焙烧处理制得TiO2/SBA-15光催化剂.采用粉末X射线衍射(XRD),N2吸脱附,傅罩叶变换红外光谱(FT-IR),透射电镜(TEM)等对所得催化剂进行了表征.结果表明:所得TiO2/SBA-15光催化剂为高结晶度的锐钛矿晶型,TiO2均匀地分散在SBA-15表面,TiO2/SBA-15光催化剂保持较好的介孔特征结构,具有较大比表面积.以降解罗丹明B(RhB)为探针反应,考察了所得TiO2/SBA-15光催化剂的光催化性能.与后处理浸渍法制备的光催化剂相比,本文制备的TiO2/SBA-15光催化剂表现出了更加优越的光催化性能.

  18. Synthesis, characterization and catalytic performance of supported solid base catalyst of KOH/SBA-15%KOH/SBA-15负载型固体碱催化剂的合成、表征及催化性能

    Institute of Scientific and Technical Information of China (English)

    朱明明; 万庆宇; 宋芊慧; 蔡天凤; 李会鹏; 赵华

    2013-01-01

    采用后合成法制备出固体碱催化剂KOH/SBA-15,利用X射线衍射法(XRD)、N2吸附-脱附(BET)、透射电镜(TEM)、化学吸附剂表面碱性测定(CO2-TPD)等对其进行表征.考察了其在大豆油酯交换反应制备生物柴油中的催化性能.结果表明,在相同反应条件下,与CaO/SBA-15和MgO/SBA-15相比,KOH/SBA-15在催化活性和孔扩散上都具有较大的优越性,催化制备生物柴油产率最高(83.56%).%SBA-15 was modified by introducing an active component by post-synthetic method for preparing a solid base catalyst KOH/SBA-15. Characterization was carried out by XRD,BET,TEM and CO2-TDP to understand the nature. KOH/SBA-15 catalytic performance on transesterification to produce biodiesel from soybean oil was studied. In the same reaction conditions, compared to CaO/SBA-15 and MgO/SBA-15,(15%)KOH/SBA-15 showed the highest yield of biodiesel,due to its favorable superiority on catalytic activity and pore diffusion.

  19. STUDY ON W-SBA-15 PREPARATION AND ITS ADSORPTIVE DENITRIFICATION PERFORMANCE%W-SBA-15的制备及其吸附脱氮性能研究

    Institute of Scientific and Technical Information of China (English)

    唐磊; 纪桂杰; 沈健

    2015-01-01

    分别以钨酸钠和钨酸铵为钨源、以正硅酸乙酯为硅源,分别采用直接合成法和后合成法制得W-SBA-15(x)和W/SBA-15 (x)(x表示硅钨摩尔比),采用XRD,BET,NH3-TPD等分析手段对样品进行表征,并考察不同制备方法、不同WO3负载量以及焙烧温度、焙烧时间对样品吸附脱氮效果的影响.结果表明:直接合成法制备的W-SBA-15 (20)和后合成法制备的W/SBA-15(20)都能很好地保留SBA-15的介孔结构,而直接合成法制备的W-SBA-15(10)使分子筛的有序结晶度明显变差;W SBA-15(20)相对于W/SBA-15 (20)和W-SBA-15(10)具有更好的吸附能力;当焙烧温度为550℃、焙烧时间为6h时,所制W-SBA-15(20)吸附剂的吸附脱氮效果最好,在反应温度为140℃、反应时间为30 min、剂油质量比为1∶30的条件下,对喹啉的十二烷溶液模拟油的脱氮率为66.32%,饱和吸附量为25.66 mg/g.

  20. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    Science.gov (United States)

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.

  1. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  2. Immunoprecipitation of bisphenol A by antibody–mesoporous silica composites

    Directory of Open Access Journals (Sweden)

    Toru Orita

    2014-09-01

    Full Text Available Bisphenol A (BPA is of global concern because of its disruption of endocrine systems and ubiquity in aquatic environment. In this study, BPA antibody was successfully immobilised on novel mesoporous silica (MPS carriers that display unique properties such as high surface area, highly uniform pore distribution and high adsorption capacity. Mobil Crystalline Material MCM-41 (2.7 nm, Santa Barbara Amorphous SBA-15-1 (12.3 nm and SBA-15-2 (24.0 nm materials were used as supports for these antibodies. On these carriers, the BPA antibody immobilisation reached 40 μg mg−1. For each MPS, 15 ng of BPA antigen was adsorbed on 1 mg of MPS–antibody composite, which resulted in an antibody activity of 30%. The highest recovery rate of BPA antigen was observed for 80% acetonitrile in 10 mM phosphate buffer (pH 7. After six repeated runs, BPA antibodies immobilised on SBA-15-1 and SBA-15-2 retained about 30% of their initial activity. In contrast, these antibodies showed 13% lower residual activity on MCM-41 than on SBA-15-1 and SBA-15-2. This result indicated that entire antibody molecules were adsorbed inside SBA-15-1 and SBA-15-2 pores, stabilising their structural conformation.

  3. Unusual phase behavior of decane-dodecane mixtures confined in SBA-15: Size effect on binary phase diagram

    Institute of Scientific and Technical Information of China (English)

    Hai Rong Pei; Xiao Yan; Xiao Zheng Lan

    2012-01-01

    Phase behavior of normal decane-dodecane (n-C10H22-C12H26,C10-C12) system confined in SBA-15 (Santa Barbara Amorphous,pore diameters 3.8,7.8,and 17.2 nm) has been studied by using differential scanning calorimetry.It has been found solid-liquid phase diagram of the C 10-C12/SBA-15 system is composed of a straight line (3.8 nm),a curve (7.8 nm) and a loop line (17.2 nm).The growth of the phase diagram clearly shows the size effect on phase behavior of binary alkanes.Phase behavior has been compared among the systems C10H22-C12H26/SBA-15,C12H26-C14H30/SBA-15 and C14H30-C16H34/SBA-15.

  4. Effect of surface acidity and pore size of Al-substituted plugs-containing SBA-15 and MCM-41 silicas on the polymerization of THF

    Institute of Scientific and Technical Information of China (English)

    Zhi Qi Jia; Ming Zhao; Chun Guang Gao; Yong Xiang Zhao

    2011-01-01

    We reported here the simultaneous influence of surface acidity and pore size of Al-substituted hexagonal mesoporous silicas (Aldoped plugs-containing SBA-15 and Al-doped MCM-41) on polymerization of THF.These materials were directly synthesized by introduced aluminum isopropoxide into reaction mixture including surfactant and siliceous precursor.Al-doped plugs-containing SBA-15 (denotes as PAS) samples not only possess typical two-step desorption isotherms,which implied PAS materials generated plugs in their mesochannel,but also exhibit larger pore size and thicker wall than that of Al-doped MCM-41 (denotes as ACM),which implied PAS would have a great advantage on catalytic reaction involving large molecular (e.g.polymer of TI-IF) in industrial point'of view.To investigate catalytic activity of PAS and ACM with moderate acidic sites the polymerization of THF in the presence of acetic anhydride was carded out.The results showed PAS exhibiting good performance on polymerization of THF.Such result could be related to the large pore size and moderate acidic sites.

  5. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2016-08-11

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  6. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    Science.gov (United States)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  7. Colloidal suspensions of functionalized mesoporous silica nanoparticles.

    Science.gov (United States)

    Kobler, Johannes; Möller, Karin; Bein, Thomas

    2008-04-01

    The synthesis and characterization of colloidal mesoporous silica (CMS) functionalized with vinyl-, benzyl-, phenyl-, cyano-, mercapto-, aminopropyl- or dihydroimidazole moieties is reported. Uniform mesoporous particles ranging in size from 40 to 150 nm are generated in a co-condensation process of tetraethylorthosilicate (TEOS) and organotriethoxysilanes (RTES) in alkaline aqueous media containing triethanolamine (TEA) in combination with cetyltrimethylammonium chloride (CTACl) serving as a structure-directing agent. The materials are obtained as colloidal suspensions featuring long-term stability after template removal by ion exchange with an ethanolic solution of ammonium nitrate or HCl. The spherical particles exhibit a wormlike pore system with defined pore sizes and high surface areas. Samples are analyzed by a number of techniques including TEM, SEM, DLS, TGA, Raman, and cross-polarized (29)Si-MAS NMR spectroscopy, as well as nitrogen sorption measurements. We demonstrate that co-condensation and grafting methods result in similar changes in the nitrogen adsorption behavior, indicating a successful internal lining of the pores with functional groups through both procedures.

  8. 研磨法和浸渍法制备Cu/SBA-15和Cu-ZnO/SBA-15及对甲醇脱氢制甲酸甲酯的催化性能

    Institute of Scientific and Technical Information of China (English)

    汪青松; 李国儒; 李工

    2014-01-01

    以介孔分子筛SBA-15做载体,用研磨法制备Cu/SBA-15-G和Cu-ZnO/SBA-15-G,对它们进行XRD、TEM、TPR和氮气吸附-脱附表征,考察其对甲醇脱氢制甲酸甲酯的催化活性,并与浸渍法制备的Cu/SBA-15-I和Cu-ZnO/SBA-15-I进行对比.实验表明研磨法制备的样品其Cu和ZnO在载体上的分散性比浸渍法的差,其CuO的还原温度明显低于浸渍法的还原温度,加入ZnO能提高产物的选择性.当反应温度为270℃时,研磨法制备的Cu-ZnO/SBA-15-G对甲醇转化率和甲酸甲醑的选择性分别为15.23%和79.81%,浸渍法制备的Cu-ZnO/SBA-15-I对甲醇转化率和甲酸甲酯的选择性分别为13.41%和83.36%.

  9. PU/SBA-15介孔分子筛复合材料的制备及性能研究%Study on Preparation and Properties of PU/Zeolite SBA-15 Composites

    Institute of Scientific and Technical Information of China (English)

    张鑫; 佟玉超; 李海艳; 吕志平

    2013-01-01

    采用预聚法制备聚氨酯(PU)/SBA-15介孔分子筛复合材料,并采用DSC、SEM、DMA和TG等方法对复合材料进行表征.结果表明,PU/SBA-15分子筛复合材料与纯聚氨酯相比,拉伸强度有所提高,耐撕裂性能明显增大;复合材料的耐热性能和耐溶剂性能提高不明显;SBA-15分子筛对聚氨酯软硬段的微相分离影响较小.%The polyurethane(PU)/zeolite SBA-15 composites were prepared by prepolymerization method and characterized by DSC, SEM, DMA and TG. The result showed that, compared with the pure PU, PU/zeolite SBA-15 composites showed an increasing of tensile strength and tear-resistance property. The heat-resistance property and solvent resistance property of PU/zeolite SBA-15 composites were not increased obviously. The zeolite SBA-15 had not the obvious effect for microphase separation of PU hard segments and soft segments.

  10. Preparation and application of Al-SBA-15 molecular sieve modified with lanthanum and SO24-%La-SO24-改性Al-SBA-15催化剂的制备与应用

    Institute of Scientific and Technical Information of China (English)

    于婷婷; 田志茗

    2012-01-01

    Using Al-SBA-15 as the support,La-SO42-/Al-SBA-15 catalysts were prepared by impregnation method,and their preparation conditions were investigated. The results showed that La-SO42-/Al-SBA-15 catalyst had good catalytic performance under the preparation condition of impregnation solution c(La3 + ) = 0. 03 mol · L-1,calcination temperature 500 ℃ ,and calcination time 3 h. La-SO42-/Al-SBA-15 catalyst was applied to synthetize butyl acetate. The yield of butyl acetate of 97. 85% was attained under the optimum condition as follows:mole ratio of acetic acid to n-butyl alcohol 1: 1. 2, La-SO4 /Al-SBA-15 catalyst dosage 6% of acetic acid mass, and reaction time 3.5 h.%以Al-SBA-15为载体,采用浸渍法制备La-SO24-/Al-SBA-15催化剂,考察催化剂的制备条件.结果表明,La3+浓度为0.03 mol· L-1和500℃焙烧3 h制得的La-SO24-/Al-SBA-15在催化乙酸正丁酯反应中具有良好的催化性能.将制得的La-SO24-/Al-SBA-15催化剂应用于乙酸正丁酯合成,结果表明,在n(冰乙酸)∶n(正丁醇)=1∶1.2、催化剂用量为冰乙酸质量的6%和反应3.5h条件下,酯化率达97.85%.

  11. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH.

  12. Characteristics of post-impregnated SBA-15 with 12- Tungstophosphoric acid and its correlation with catalytic activity in selective esterification of glycerol to monolaurate

    Science.gov (United States)

    Hoo, P. Y.; Abdullah, A. Z.

    2016-06-01

    Selective esterification of glycerol and lauric acid to monolaurin was conducted using 12-tungstophosphoric acid (HPW) incorporated SBA-15 as catalyst. They were synthesized with HPW loadings of 10-40 wt. % via post impregnation and characterized in terms of surficial and structural characteristic, acidity and morphology. Relatively high lauric acid conversion (up to 95%) and monolaurin yield (53%) were observed while the activity was successfully correlated to the material behaviours, i.e. highly acidic active acid sites within highly uniformed mesopores. The effects of different reaction parameters including reactant ratio (1:1-5:1), catalyst loading (1-5 wt. %) and length of fatty acid were also elucidated. Reduced fatty acid conversion was observed when longer fatty acids were used, thus further strengthen the idea of size selectivity effect provided by the synthesized catalysts.

  13. Effect of method of preparation on hydrodesulphurization activity of Co- or Ni-promoted MoS2/SBA-15 catalysts

    Indian Academy of Sciences (India)

    Shelu Garg; Kapil Soni; V V D N Prasad; Manoj Kumar; Thallada Bhaskar; J K Gupta; G Murali Dhar; C S Gopinath

    2014-03-01

    Ordered mesoporous material SBA-15 was synthesized and used as a support for the preparation of molybdenum sulphide catalysts through precipitation from homogeneous solution (PFHS) technique with the Mo content varying from 2-12 wt%. The prepared catalysts were evaluated for thiophene hydrodesulphurization catalytic activities at 400°RC. Catalysts prepared through PFHS method resulted in highly dispersed MoS2 catalysts, which were inferred from powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low temperature oxygen chemisorptions (LTOC) and BET surface area analysis. The relationship between XPS intensity ratio, oxygen chemisorption and catalytic activities is discussed in terms of highly dispersed nano particles of MoS2 and its consequence in accommodating more promoted atoms at the edge sites.

  14. Fast, selective adsorption of Cu2+ from aqueous mixed metal ions solution using 1,4,7-triazacyclononane modified SBA-15 silica adsorbent (SBA-TACN)

    Science.gov (United States)

    Tapaswi, Pradip Kumar; Moorthy, Madhappan Santha; Park, Sung Soo; Ha, Chang-Sik

    2014-03-01

    A new SBA-15 supported 1,4,7-triazacyclononane modified mesoporous silica adsorbent (SBA-TACN) has been synthesized using post grafting route and has thoroughly been characterized by small angle X-ray scattering (SAXS), N2 adsorption-desorption measurements, Fourier-transform infrared (FT-IR), solid-state 29Si MAS and 13C CP MAS NMR spectroscopy, transmission electron (TEM) and scanning electron microscopy (SEM), elemental analysis (EA) and thermogravimetric analysis (TGA). The synthesized material shows excellent copper (II) ion adsorption selectivity at pH 5 in mixed metal ion solution containing Cu2+, Cr3+, Ni2+, Co2+ and Li+. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. Possible adsorption mechanism of metal ions on SBA-TACN has been discussed. The adsorbent can be readily regenerated by HNO3-NH3 treatment.

  15. Synthesis and characterization of Nb2O5 supported Pd(II)@SBA15: Catalytic activity towards oxidation of benzhydrol and Rhodamine-B

    Science.gov (United States)

    Ramanjaneya Reddy, G.; Chennakesavulu, K.

    2014-10-01

    The mesoporous silica (SBA15) supported niobium pentoxide(Nb2O5) along with the palladium(II) nanocomposite catalysts was synthesised. The nanocomposites (PdSBA and NbPdSBA) impregnation and stability were studied by several spectroscopic, thermal analysis, sorption and microscopic techniques (FTIR, DRS/UV-Vis, XRD, XPS, BET - nitrogen adsorption isotherms, TGA, SEM and TEM). The catalytic activity of the nanocomposites was studied in liquid phase oxidation of benzhydrol/H2O2 and photo degradation of the Rhodamine-B (RhB) under UV light irradiation. The catalytic activity of the nanocomposite NbPdSBA was shows higher catalytic activity in the benzhydrol oxidation and RhB degradation. The oxidation ability of the nanocomposites was determined by the spectrophotometrically. Thus a reusable catalyst shows comparable activity with fresh catalyst without loss of it's activity.

  16. Alginate beads as a carrier for omeprazole/SBA-15 inclusion compound: A step towards the development of personalized paediatric dosage forms.

    Science.gov (United States)

    Del Gaudio, Pasquale; De Cicco, Felicetta; Sansone, Francesca; Aquino, Rita Patrizia; Adami, Renata; Ricci, Maurizio; Giovagnoli, Stefano

    2015-11-20

    The treatment of gastro-esophageal reflux disease (GERD) shows several issues among paediatric patients. This work aims to the formulation of enteric alginate beads loaded with omeprazole (OME) allowing age- and weight-related personalized dosages in children. OME was entrapped in SBA-15 mesoporous compound, characterized and loaded into alginate beads by prilling at different OME and alginate concentrations. The beads resulted of homogeneous size, spherical morphology and very consistent in drug loading and distribution. Formulations demonstrated limited swelling and release (about 10%) in simulated gastric fluid (SGF) after 2h and a prolonged release in simulated intestinal fluid (SIF), till 6h, due to a mixed diffusion-case II transport mechanism. The beads were superior to the market product, which showed lower release in SGF but immediate dissolution in SIF. The high alginate beads uniformity and release properties make them a potential novel tool for a personalized treatment of GERD in children.

  17. Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM

    DEFF Research Database (Denmark)

    s Aires, F. J. Cadete Santo; Epicier, T.; Wagner, Jakob Birkedal

    2012-01-01

    In situ studies of micro- and nano-objects in their characteristic environment have been performed ever since the early days of electron microscopy [1]. Over several decades the in situ observation of the synthesis of filamentous carbon (nanotubes/nanofilaments) during hydrocarbon decomposition has...... been one of the most popular topics [2] for investigation in the environmental transmission electron microscope (ETEM). In this work we study the growth of carbon nanotubes (CNTs) by the decomposition of acetylene on Co nanoparticles inserted into mesoporous silicas (SBA-15) using both conventional...... post mortem TEM measurements and real-time in situ ETEM observations. In situ observation of the formation of the carbon nanotubes was performed in an FEI Titan 80-300 ETEM equipped with an objective lens spherical aberration corrector [3]. Prior to acetylene decomposition, the catalyst nanoparticles...

  18. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  19. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  20. Preparation, characterization and catalytic behaviors of lanthanum-doped SBA-15 modified by solid state grinding%无溶剂法镧改性SBA-15的制备、表征及催化性能

    Institute of Scientific and Technical Information of China (English)

    田志茗; 邓启刚; 尹燕磊; 赵德丰

    2009-01-01

    以介孔分子筛SBA-15为载体,采用固相研磨法掺杂La元素,以SO2-4或S2O2-8为助催化剂同时掺杂在介孔分子筛中增强SBA-15表面活性中心,制备了La-SO2-4/SBA-15和La-S2O2-8/SBA-15负载型固体酸催化剂.用X射线衍射、透射电镜、低温N2吸附-脱附、红外光谱、热重分析和NH3-TPD等分析方法对改性材料的结构性能及表面酸性能进行了表征.表征结果显示,制得的La-SO2-4/SBA-15和La-S2O2-8/SBA-15保持高度有序的二维六方介孔结构.用Hammett指示剂法测得La-SO2-4/SBA-15和La-S2O2-8/SBA-15表面酸强度(H0)分别为2.77~3.30和0.78~0.99,表明制备的改性材料为固体酸.以改性的SBA-15为催化剂,催化合成乙酸正丁酯,在酸醇物质的量比为1∶ 1.2、催化剂用量0.375 g(为冰醋酸质量的5%)和反应时间140 min的条件下,采用La-S2O2-8/SBA-15和La-SO2-4/SBA-15为催化剂,其酯化率分别为97.31%和89.28%.

  1. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting.

    Science.gov (United States)

    Bhagiyalakshmi, Margandan; Yun, Lee Ji; Anuradha, Ramani; Jang, Hyun Tae

    2010-03-15

    Mesoporous MCM-41, MCM-48 and SBA-15 were synthesized using Rice husk ash (RHA) as the silica source and their defective Si-OH sites were functionalized by 3-chloropropyltrimethoxysilane (CPTMS) which was subsequently grafted with amine compounds, Tris(2-aminoethyl)amine (TREN) and Tetraethylenepentamine (TEPA). X-ray powder diffraction (XRD) and BET results of the parent mesoporous silica suggested their closeness of structural properties to those obtained from conventional silica sources. CO(2) adsorption of branched amine TREN and straight chain amine TEPA at 25, 50 and 75 degrees C was obtained by Thermogravimetric Analyser (TGA) at atmospheric pressure. TREN grafted mesoporous silica showed 7% of CO(2) adsorption while TEPA grafted mesoporous silicas showed less CO(2) adsorption, which is due to the presence of isolated amine groups in TREN. TREN grafted mesoporous silicas were also observed to be selective towards CO(2), thermally stable and recyclable. The order of CO(2) adsorption with respect to amount of amine grafting was observed to be MCM-48/TREN>MCM-41/TREN>SBA-15/TREN.

  2. Adsorption of La(III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Tadjarodi, Azadeh, E-mail: tajarodi@iust.ac.ir; Jalalat, Vahideh; Zare-Dorabei, Rouholah

    2015-01-15

    Highlights: • HESI-SBA-15 as a new adsorbent was synthesized for the first time. • This adsorbent was selective for lanthanum ion removal in presence of other ions. • The factors that affected adsorption of La(III) in aqueous solution were studied. • La{sup 3+} uptake process was according to pseudo-second-order kinetic model. - Abstract: In this work, a novel modified SBA-15 with covalently bonded N-(2-hydroxyethyl) salicylaldimine Schiff base as a ligand (HESI-SBA-15) was successfully synthesized, characterized and used as a selective absorbent for lanthanum ions removal from water systems. The structure and physicochemical properties were identified by elemental analysis, X-ray diffraction, nitrogen adsorption–desorption, thermogravimetric analysis and FTIR spectroscopy, scanning electron microscopy, BET surface area and BJH pore size. These techniques have confirmed that the Schiff base ligand was successfully grafted on the SBA-15 surface and ordered arrangement of the silica support was preserved under functionalization. The effect of pH, adsorbent dose, contact time, ionic strength and initial metal ions concentration were studied by using a batch method. This new adsorbent showed high adsorption capacity and selectivity for lanthanum in the presence of other ions. The adsorption process was exactly according to the pseudo-second-order kinetic model. The adsorbent showed a good reusability after four cycles recovery.

  3. 介孔分子筛增强聚双环戊二烯%REINFORCING EFFECT OF MESOPOROUS MOLECULAR

    Institute of Scientific and Technical Information of China (English)

    陆昶; 刘宪俊; 陈权; 张玉清

    2011-01-01

    The polydicyclopentadiene (PDCPD)/mesoporous molecular sieve SBA-15 composites were prepared by the methods of in situ polymerization and SBA-15 supported catalyst, in-situ polymerization. The mechanical performances of PDCPD/SBA-15 composites were studied. The reinforcing mechanism of mesoporous molecular sieve was investigated by XRD, TEM, TG, SEM, etc. The results showed that when the method of in situ polymerization was employed to prepare PDCPD/SBA-15 composites, the polymerization of dicyclopentadiene monomers was difficult to occur in the pores of SBA-15 ,causing that few molecular chains of PDCPD can form in the pores. The mechanical performances of composites improved weakly, compared with PDCPD,due to the weak interface compatibility between SBA-15 and PDCPD, and the conglomeration phenomenon of SBA-15 in PDCPD. The method of SBA-15 supported catalyst in situ polymerization is beneficial to the form of PDCPD molecular chains in the pores of SBA-15. The form of molecular chains in the pores can improve the interface interaction between SBA-15 surface and PDCPD molecular chains,prevent the conglomeration of SBA-15 particles in PDCPD, and enhance the tensile strength and heat-stability of composites greatly. Compared with PDCPD, the tensile strength of PDCPD/SBA-15 improves by 24. 5% with 2% SBA-15 content.%分别采用介孔分子筛SBA-15原位聚合及SBA-15负载催化剂原位聚合的方法,制备聚双环戊二烯(PDCPD)/SBA-15复合材料.比较不同制备方法对PDCPD/SBA-15力学性能的影响,运用XRD、TEM、TG、SEM等研究了SBA-15的增强机理.研究结果表明,采用原位聚合的方法制备的复合材料,SBA-15孔道中的双环戊二烯(DCPD)单体难以发生聚合反应,生成PDCPD分子链,致使SBA-15与PDCPD界面作用力弱且发生团聚,导致复合材料的力学性能没有明显改善.采用SBA-15负载催化剂,原位聚合的方法制备的复合材料,PDCPD分子链可在SBA-15孔道大量生成,提高了PDCPD基体与SBA

  4. Spectroscopic and catalytic investigations of VxOy/SBA-15 and magnesium vanadate model catalysts for selective propene oxidation

    OpenAIRE

    Walter, Anke

    2011-01-01

    The objective of the present work was elucidating structure-activity relationships concerning the individual role of vanadium sites in selective propene oxidation. Two suitable vanadium oxide model catalyst systems were employed: vanadium oxides supported on SBA-15, “VxOy/SBA-15”, and various magnesium vanadate phases. Detailed investigations on the preparation, thermal stability, structure, and structural evolution under reducing and propene oxidizing condition were conducted. Various in sit...

  5. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    Science.gov (United States)

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are