Dindar, Gülcin; Anger, Andreas M; Mehlhorn, Christine; Hake, Sandra B; Janzen, Christian J
2014-11-12
DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes.
International Nuclear Information System (INIS)
Kim, Jinsoo; Lee, Soojoon; Chi, Dong Pyo
2002-01-01
The limitation on the size of quantum computers makes it important to reuse qubits for auxiliary registers even though they are entangled with others and are occupied by other computational processes. We construct a quantum algorithm that performs the functional phase rotation, which is the generalized form of the conventional conditional phase transforms, using the functional evaluation oracle. The constructed algorithm works without any a priori knowledge of the state of an auxiliary register at the beginning and it recovers the initial state of an auxiliary register at the end. This provides ample scope to choose qubits for auxiliary registers at will. (author)
Arithmetic of quantum entropy function
International Nuclear Information System (INIS)
Sen, Ashoke
2009-01-01
Quantum entropy function is a proposal for computing the entropy associated with the horizon of a black hole in the extremal limit, and is related via AdS/CFT correspondence to the dimension of the Hilbert space in a dual quantum mechanics. We show that in N = 4 supersymmetric string theories, quantum entropy function formalism naturally explains the origin of the subtle differences between the microscopic degeneracies of quarter BPS dyons carrying different torsion, i.e. different arithmetical properties. These arise from additional saddle points in the path integral - whose existence depends on the arithmetical properties of the black hole charges - constructed as freely acting orbifolds of the original AdS 2 x S 2 near horizon geometry. During this analysis we demonstrate that the quantum entropy function is insensitive to the details of the infrared cutoff used in the computation, and the details of the boundary terms added to the action. We also discuss the role of the asymptotic symmetries of AdS 2 in carrying out the path integral in the definition of quantum entropy function. Finally we show that even though quantum entropy function is expected to compute the absolute degeneracy in a given charge and angular momentum sector, it can also be used to compute the index. This can then be compared with the microscopic computation of the index.
DOT1L and H3K79 Methylation in Transcription and Genomic Stability.
Wood, Katherine; Tellier, Michael; Murphy, Shona
2018-02-27
The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.
DOT1L and H3K79 Methylation in Transcription and Genomic Stability
Directory of Open Access Journals (Sweden)
Katherine Wood
2018-02-01
Full Text Available The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79. H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.
Function Package for Computing Quantum Resource Measures
Huang, Zhiming
2018-05-01
In this paper, we present a function package for to calculate quantum resource measures and dynamics of open systems. Our package includes common operators and operator lists, frequently-used functions for computing quantum entanglement, quantum correlation, quantum coherence, quantum Fisher information and dynamics in noisy environments. We briefly explain the functions of the package and illustrate how to use the package with several typical examples. We expect that this package is a useful tool for future research and education.
Quantum mechanics with non-negative quantum distribution function
International Nuclear Information System (INIS)
Zorin, A.V.; Sevastianov, L.A.
2010-01-01
Full text: (author)Among numerous approaches to probabilistic interpretation of the conventional quantum mechanics the most close to the N. Bohr idea of the correspondence principle is the D.I. Blokhintzev - Ya.P. Terletsky approach using the quantum distribution function on the coordinate- momentum space. The detailed investigation of this approach has lead to the correspondence rule of V.V. Kuryshkin. Quantum mechanics of Kuryshkin (QMK) embody the program proposed by Yu.M. Shirokov for unifying classical and quantum mechanics in similar mathematical models. QMK develops and enhances Wigner's proposal concerning the calculation of quantum corrections to classical thermodynamic parameters using a phase distribution function. The main result of QMK is the possibility of description by mean of a positively-valued distribution function. This represents an important step towards a completely statistical model of quantum phenomena, compared with the quasi-probabilistic nature of Wigner distribution. Wigner's model does not permit to perform correctly the classical limit in quantum mechanics as well. On the other hand, QMK has a much more complex structure of operators of observables. One of the unsolved problems of QMK is the absence of a priori rules for establishing of auxiliary functions. Nevertheless, while it is impossible to overcome the complex form of operators, we find it quite possible to derive some methods of filing sets of auxiliary functions
Density functional theory in quantum chemistry
Tsuneda, Takao
2014-01-01
This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.
Quantum algorithms for testing Boolean functions
Directory of Open Access Journals (Sweden)
Erika Andersson
2010-06-01
Full Text Available We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.
Theta vectors and quantum theta functions
International Nuclear Information System (INIS)
Chang-Young, Ee; Kim, Hoil
2005-01-01
In this paper, we clarify the relation between Manin's quantum theta function and Schwarz's theta vector. We do this in comparison with the relation between the kq representation, which is equivalent to the classical theta function, and the corresponding coordinate space wavefunction. We first explain the equivalence relation between the classical theta function and the kq representation in which the translation operators of the phase space are commuting. When the translation operators of the phase space are not commuting, then the kq representation is no longer meaningful. We explain why Manin's quantum theta function, obtained via algebra (quantum torus) valued inner product of the theta vector, is a natural choice for the quantum version of the classical theta function. We then show that this approach holds for a more general theta vector containing an extra linear term in the exponent obtained from a holomorphic connection of constant curvature than the simple Gaussian one used in Manin's construction
High Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 um Tunnel Injection Laser
Bhowmick, Sishir; Baten, Md Zunaid; Bhattacharya, Pallab K.; Frost, Thomas; Ooi, Boon S.
2014-01-01
The characteristics of 1.55 ? InAs self-organized quantum-dot lasers, grown on (001) InP substrates by molecular beam epitaxy, have been investigated. Modulation doping of the dots with holes and tunnel injection of electrons have been incorporated
2-point functions in quantum cosmology
International Nuclear Information System (INIS)
Gielen, Steffen
2012-01-01
We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories, with particular reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, deriving vertex expansions and composition laws they satisfy. We clarify the tie between definitions using a group averaging procedure and those in a deparametrised framework. We draw some conclusions about the physics of a single quantum universe and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Wigner Functions for Arbitrary Quantum Systems.
Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae
2016-10-28
The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.
Two point function for a simple general relativistic quantum model
Colosi, Daniele
2007-01-01
We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
High Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 um Tunnel Injection Laser
Bhowmick, Sishir
2014-01-01
The characteristics of 1.55 ? InAs self-organized quantum-dot lasers, grown on (001) InP substrates by molecular beam epitaxy, have been investigated. Modulation doping of the dots with holes and tunnel injection of electrons have been incorporated in the design of the active (gain) region of the laser heterostructure. Large values of To=227 K (5 °C ? T ?45 °C) and 100 K (45 °C ? T ? 75 °C) were derived from temperature dependent measurements of the light-current characteristics. The modal gain per dot layer is 14.5 cm -1 and the differential gain derived from both light-current and small-signal modulation measurements is 0.8}\\times 10-15 cm}2. The maximum measured 3 rm dB small-signal modulation bandwidth is 14.4 GHz and the gain compression factor is 5.4\\times 10-17 cm}2. The lasers are characterized by a chirp of 0.6 AA for a modulation frequency of 10 GHz and a near zero ?-parameter at the peak of the laser emission. These characteristics are amongst the best from any 1.55 ? edge-emitting semiconductor laser. © 1965-2012 IEEE.
Quantum mechanics of history: The decoherence functional in quantum mechanics
International Nuclear Information System (INIS)
Dowker, H.F.; Halliwell, J.J.
1992-01-01
We study a formulation of quantum mechanics in which the central notion is that of a quantum-mechanical history---a sequence of events at a succession of times. The primary aim is to identify sets of ''decoherent'' (or ''consistent'') histories for the system. These are quantum-mechanical histories suffering negligible interference with each other, and, therefore, to which probabilities may be assigned. These histories may be found for a given system using the so-called decoherence functional. When the decoherence functional is exactly diagonal, probabilities may be assigned to the histories, and all probability sum rules are satisfied exactly. We propose a condition for approximate decoherence, and argue that it implies that most probability sum rules will be satisfied to approximately the same degree. We also derive an inequality bounding the size of the off-diagonal terms of the decoherence functional. We calculate the decoherence functional for some simple one-dimensional systems, with a variety of initial states. For these systems, we explore the extent to which decoherence is produced using two different types of coarse graining. The first type of coarse graining involves imprecise specification of the particle's position. The second involves coupling the particle to a thermal bath of harmonic oscillators and ignoring the details of the bath (the Caldeira-Leggett model). We argue that both types of coarse graining are necessary in general. We explicitly exhibit the degree of decoherence as a function of the temperature of the bath, and of the width to within which the particle's position is specified. We study the diagonal elements of the decoherence functional, representing the probabilities for the possible histories of the system
The Wave Function and Quantum Reality
International Nuclear Information System (INIS)
Gao Shan
2011-01-01
We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic
Correlation Functions in Open Quantum-Classical Systems
Hsieh, Chang-Yu; Kapral, Raymond
2013-01-01
Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...
Green's functions in quantum physics
Economou, Eleftherios N
2006-01-01
The main part of this book is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound-level information. The bound-level treatment gives a clear physical understanding of "difficult" questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book.
Zeta function methods and quantum fluctuations
International Nuclear Information System (INIS)
Elizalde, Emilio
2008-01-01
A review of some recent advances in zeta function techniques is given, in problems of pure mathematical nature but also as applied to the computation of quantum vacuum fluctuations in different field theories, and specially with a view to cosmological applications
Functional integral in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Ktitarev, D.V.
1990-01-01
The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs
Quantum gravitational contributions to the beta function of quantum electrodynamics
International Nuclear Information System (INIS)
Felipe, Jean Carlos Coelho; Brito, Luis Cleber Tavares de; Nemes, Maria Carolina; Sampaio, Marcos
2011-01-01
Full text: Because of the negative mass dimension of the coupling constant perturbative Einstein quantum gravity (EQG) is nonrenormalizable. However, one can still make sense of EQG if it's interpreted as an effective field theory within a low energy expansion of a more fundamental theory. In an effective field theory all interactions compatible with its essential symmetry content are in principle allowed into the Lagrangian and thus it establishes a systematic framework to calculate quantum gravitational effects. This approach has been used to study the asymptotic behavior at high energies of quantum field theories that incorporate the gravitational field. Some studies analyze the asymptotic freedom for the coupling constants of some theories including gravitation near the Planck scale. For example, Robinson and Wilczek suggest that the gravitational field improve the asymptotic freedom of pure Yang-Mills near the Planck scale. Already , a similar calculation in the Maxwell-Einstein theory suggest that such conclusion is gauge dependence. This result was obtained by Pietrykowski. D. Toms say what the effective action is calculated in a gauge-condition independent version of the background field method using dimensional regularization it's argued that the gravitational field plays no role in the beta function of the Yang-Mills coupling. Another calculation done by Ebert, Plefka and Rodigast using conventional diagrammatic methods confirms the result obtained by Toms. In a recent publication, again published by Toms in 2010, claimed that quadratic divergent contributions were responsible to improve asymptotic freedom of fine structure constant by quantum gravity effects by using proper time cutoff regularization and effective action methods. However, the physical reality of the result in Tom's was questioned in recent work. This purpose of this work is to shed light on the origin of such controversies using only a diagrammatic analysis. As an effective model EQG is
Spectral functions from Quantum Monte Carlo
International Nuclear Information System (INIS)
Silver, R.N.
1989-01-01
In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
WINTEC
density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.
Quantum functional analysis non-coordinate approach
Helemskii, A Ya
2010-01-01
This book contains a systematic presentation of quantum functional analysis, a mathematical subject also known as operator space theory. Created in the 1980s, it nowadays is one of the most prominent areas of functional analysis, both as a field of active research and as a source of numerous important applications. The approach taken in this book differs significantly from the standard approach used in studying operator space theory. Instead of viewing "quantized coefficients" as matrices in a fixed basis, in this book they are interpreted as finite rank operators in a fixed Hilbert space. This allows the author to replace matrix computations with algebraic techniques of module theory and tensor products, thus achieving a more invariant approach to the subject. The book can be used by graduate students and research mathematicians interested in functional analysis and related areas of mathematics and mathematical physics. Prerequisites include standard courses in abstract algebra and functional analysis.
Almost Automorphic Functions on the Quantum Time Scale and Applications
Directory of Open Access Journals (Sweden)
Yongkun Li
2017-01-01
Full Text Available We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we also give a concept of almost automorphic functions on more general time scales that can unify the concepts of almost automorphic functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.
Discrete Wigner functions and quantum computation
International Nuclear Information System (INIS)
Galvao, E.
2005-01-01
Full text: Gibbons et al. have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set C d of states having non-negative W simultaneously in all definitions of W in this class. I then argue that states in this set behave classically in a well-defined computational sense. I show that one-qubit states in C 2 do not provide for universal computation in a recent model proposed by Bravyi and Kitaev [quant-ph/0403025]. More generally, I show that the only pure states in C d are stabilizer states, which have an efficient description using the stabilizer formalism. This result shows that two different notions of 'classical' states coincide: states with non-negative Wigner functions are those which have an efficient description. This suggests that negativity of W may be necessary for exponential speed-up in pure-state quantum computation. (author)
Gluon Green functions free of quantum fluctuations
Directory of Open Access Journals (Sweden)
A. Athenodorou
2016-09-01
Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.
Green's functions in quantum physics. 3. ed.
International Nuclear Information System (INIS)
Economou, E.N.
2006-01-01
The new edition of a standard reference will be of interest to advanced students wishing to become familiar with the method of Green's functions for obtaining simple and general solutions to basic problems in quantum physics. The main part is devoted to the simplest kind of Green's functions, namely the solutions of linear differential equations with a -function source. It is shown that these familiar Green's functions are a powerful tool for obtaining relatively simple and general solutions of basic problems such as scattering and bound level information. The bound-level treatment gives a clear physical understanding of ''difficult'' questions such as superconductivity, the Kondo effect, and, to a lesser degree, disorder-induced localization. The more advanced subject of many-body Green's functions is presented in the last part of the book. This third edition is 50% longer than the previous and offers end-of-chapter problems and solutions (40% are solved) and additional appendices to help it is to serve as an effective self-tutorial and self-sufficient reference. Throughout, it demonstrates the powerful and unifying formalism of Green's functions across many applications, including transport properties, carbon nanotubes, and photonics and photonic crystals. (orig.)
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Behaviour of boundary functions for quantum billiards
International Nuclear Information System (INIS)
Baecker, A; Fuerstberger, S; Schubert, R; Steiner, F
2002-01-01
We study the behaviour of the normal derivative of eigenfunctions of the Helmholtz equation inside billiards with Dirichlet boundary condition. These boundary functions are of particular importance because they uniquely determine the eigenfunctions inside the billiard and also other physical quantities of interest. Therefore, they form a reduced representation of the quantum system, analogous to the Poincare section of the classical system. For the normal derivatives we introduce an equivalent to the standard Green function and derive an integral equation on the boundary. Based on this integral equation we compute the first two terms of the mean asymptotic behaviour of the boundary functions for large energies. The first term is universal and independent of the shape of the billiard. The second one is proportional to the curvature of the boundary. The asymptotic behaviour is compared with numerical results for the stadium billiard, different limacon billiards and the circle billiard, and good agreement is found. Furthermore, we derive an asymptotic completeness relation for the boundary functions
Understanding squeezing of quantum states with the Wigner function
Royer, Antoine
1994-01-01
The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.
Correlation function behavior in quantum systems which are classically chaotic
International Nuclear Information System (INIS)
Berman, G.P.; Kolovsky, A.R.
1983-01-01
The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)
The Wigner function in the relativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.
2016-12-15
A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.
Spectral functions in quantum chromodynamics and applications
International Nuclear Information System (INIS)
Tran, M.D.
1981-01-01
The longitudinal and transverse spectral functions for arbitrary conserved and non-conserved vector and axial vector currents of massive quarks are calculated to first order in α/sub s/ and exact analytical expressions are given. As an intermediate step the form factors to the same order in α/sub s/ are determined. A remarkably simple result for the combination of the spectral functions corresponding to the Weinberg's first sum rule is derived. It behaves asymptotically like α/sub s/s 2 thus ensuring the convergence of the sum rule. The Weinberg's second sum rule is shown to fail to hold, a new sum rule is then proposed to replace the original one. The current algebra calculation of the pion electromagnetic mass difference is reexamined in the light of quantum chromodynamics. The old analysis cannot be upheld because of the failure of the Weinberg's second sum rule. After a modification based on Dashen's theorem, the proposed sum rule then can be used to obtain a mass difference close to experimental value. Using the derived QCD corrected spectral functions on finite Q 2 sum rules, the current couplings of the five low-lying mesons π, rho, K, K*, A 1 are computed. For values of quark masses m/sub u/ = m/sub d/ = 0.25 GeV, m/sub s/ = 0.4 GeV and of the QCD scale parameter Λ = 0.5 GeV, a striking agreement with experiment is obtained. We investigate decay properties of the intermediate vector bosons Z, W. Gluonic corrections to hadronic decay modes are calculated with the account of quark mass effect. Implications of the results for decay widths, branching ratios are examined. The ratio R of reaction e + e - → hadrons is calculated to first order in α/sub s/, the quark mass effect is shown to be important
Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.
Terraneo, M; Georgeot, B; Shepelyansky, D L
2005-06-01
We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-02-01
In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.
Functional renormalization group methods in quantum chromodynamics
International Nuclear Information System (INIS)
Braun, J.
2006-01-01
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Functional renormalization group methods in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Braun, J.
2006-12-18
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
On quantum mechanical phase-space wave functions
DEFF Research Database (Denmark)
Wlodarz, Joachim J.
1994-01-01
An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....
Gravity induced corrections to quantum mechanical wave functions
International Nuclear Information System (INIS)
Singh, T.P.
1990-03-01
We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs
International Nuclear Information System (INIS)
Trovato, M.; Reggiani, L.
2011-01-01
By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of (ℎ/2π) 2 . In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when (ℎ/2π)→0.
Off-diagonal series expansion for quantum partition functions
Hen, Itay
2018-05-01
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
Functional renormalization and ultracold quantum gases
International Nuclear Information System (INIS)
Floerchinger, Stefan
2010-01-01
Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
N-Level Quantum Systems and Legendre Functions
Mazurenko, A. S.; Savva, V. A.
2001-01-01
An excitation dynamics of new quantum systems of N equidistant energy levels in a monochromatic field has been investigated. To obtain exact analytical solutions of dynamic equations an analytical method based on orthogonal functions of a real argument has been proposed. Using the orthogonal Legendre functions we have found an exact analytical expression for a population probability amplitude of the level n. Various initial conditions for the excitation of N-level quantum systems have been co...
Characteristic functions of quantum heat with baths at different temperatures
Aurell, Erik
2018-06-01
This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015), 10.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017), 10.3390/e19110595].
Wigner function and the probability representation of quantum states
Directory of Open Access Journals (Sweden)
Man’ko Margarita A.
2014-01-01
Full Text Available The relation of theWigner function with the fair probability distribution called tomographic distribution or quantum tomogram associated with the quantum state is reviewed. The connection of the tomographic picture of quantum mechanics with the integral Radon transform of the Wigner quasidistribution is discussed. The Wigner–Moyal equation for the Wigner function is presented in the form of kinetic equation for the tomographic probability distribution both in quantum mechanics and in the classical limit of the Liouville equation. The calculation of moments of physical observables in terms of integrals with the state tomographic probability distributions is constructed having a standard form of averaging in the probability theory. New uncertainty relations for the position and momentum are written in terms of optical tomograms suitable for directexperimental check. Some recent experiments on checking the uncertainty relations including the entropic uncertainty relations are discussed.
Multi-functional quantum router using hybrid opto-electromechanics
Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang
2018-03-01
Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.
International Nuclear Information System (INIS)
Li Qianshu; Lue Liqiang; Wei Gongmin
2004-01-01
This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed
Wave function of the quantum black hole
International Nuclear Information System (INIS)
Brustein, Ram; Hadad, Merav
2012-01-01
We show that the Wald Noether-charge entropy is canonically conjugate to the opening angle at the horizon. Using this canonical relation, we extend the Wheeler-DeWitt equation to a Schrödinger equation in the opening angle, following Carlip and Teitelboim. We solve the equation in the semiclassical approximation by using the correspondence principle and find that the solutions are minimal uncertainty wavefunctions with a continuous spectrum for the entropy and therefore also of the area of the black hole horizon. The fact that the opening angle fluctuates away from its classical value of 2π indicates that the quantum black hole is a superposition of horizonless states. The classical geometry with a horizon serves only to evaluate quantum expectation values in the strict classical limit.
Discrete Wigner function and quantum-state tomography
Leonhardt, Ulf
1996-05-01
The theory of discrete Wigner functions and of discrete quantum-state tomography [U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995)] is studied in more detail guided by the picture of precession tomography. Odd- and even-dimensional systems (angular momenta and spins, bosons, and fermions) are considered separately. Relations between simple number theory and the quantum mechanics of finite-dimensional systems are pointed out. In particular, the multicomplementarity of the precession states distinguishes prime dimensions from composite ones.
Positive Wigner functions render classical simulation of quantum computation efficient.
Mari, A; Eisert, J
2012-12-07
We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.
Optimized Perturbation Theory for Wave Functions of Quantum Systems
International Nuclear Information System (INIS)
Hatsuda, T.; Tanaka, T.; Kunihiro, T.
1997-01-01
The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society
Modelling of multidimensional quantum systems by the numerical functional integration
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Zhidkov, E.P.
1990-01-01
The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs
On the distribution functions in the quantum mechanics and Wigner functions
International Nuclear Information System (INIS)
Kuz'menkov, L.S.; Maksimov, S.G.
2002-01-01
The problem on the distribution functions, leading to the similar local values of the particles number, pulse and energy, as in the quantum mechanics, is formulated and solved. The method is based on the quantum-mechanical determination of the probability density. The derived distribution function coincides with the Wigner function only for the spatial-homogeneous systems. The Bogolyubov equations chain, the Liouville equation for the distribution quantum functions by any number of particles in the system, the general expression for the tensor of the dielectric permittivity of the plasma electron component are obtained [ru
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
Directory of Open Access Journals (Sweden)
Jen-Tsung Hsiang
2018-05-01
Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for
Quantum phase space with a basis of Wannier functions
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
Functional methods underlying classical mechanics, relativity and quantum theory
International Nuclear Information System (INIS)
Kryukov, A
2013-01-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.
Functional methods and mappings of dissipative quantum systems
International Nuclear Information System (INIS)
Baur, H.
2006-01-01
In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...
Density functional theory, natural bond orbital and quantum theory of ...
Indian Academy of Sciences (India)
Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes. XIQIAN NIU, ZHENGGUO HUANG. ∗. , LINGLING MA, TINGTING SHEN and LINGFEI GUO. Tianjin Key Laboratory of Structure and Performance for ...
Chameleon fields, wave function collapse and quantum gravity
International Nuclear Information System (INIS)
Zanzi, A
2015-01-01
Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)
A Simple Quantum Neural Net with a Periodic Activation Function
Daskin, Ammar
2018-01-01
In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...
Multiconfigurational Green's function approaches in quantum chemistry
International Nuclear Information System (INIS)
Yeager, D.L.
1984-01-01
The author discusses multiconfigurational Green's function techniques and generalizations. In particular he is interested in developing and applying these techniques for isolated atoms and small molecules. Furthermore, he develops formalisms that are fairly clear, accurate, and capable of being applied to open-shell and highly-correlated systems as well as to closed-shell systems with little electronic correlation. The two kinds of Green's functions that this article discusses are the single-particle Green's function and the retarded two-time Green's function in the energy representation. The poles of the former give the ionization potentials and electron affinities while the poles of the latter give the excitation energies. The multiconfigurational approximations are known as the multiconfigurational electron propagator (MCEP) and the multiconfigurational time-dependent Hartree-Fock (MCTDHF) (also known as the multiconfigurational random phase approximation (MCRPA) or the multiconfigurational linear response), respectively. 44 references
Horizon wave-function and the quantum cosmic censorship
Casadio, RobertoDipartimento di Fisica e Astronomia, Alma Mater Università di Bologna, via Irnerio 46, Bologna, 40126, Italy; Micu, Octavian(Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele, RO-077125, Romania); Stojkovic, Dejan(HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY, 14260-1500, United States)
2015-01-01
We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superxtremal case (with charge-to-mass ratio $\\alpha>1$), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for $\\alpha^2 2$, and the uncertainty in t...
Two-point functions in (loop) quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca; Oriti, Daniele [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Gielen, Steffen [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2011-07-01
We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions, with particular but non-exclusive reference to loop quantum cosmology (LQC). Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Two-point functions in (loop) quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele, E-mail: calcagni@aei.mpg.de, E-mail: gielen@aei.mpg.de, E-mail: doriti@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany)
2011-06-21
The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Two-point functions in (loop) quantum cosmology
International Nuclear Information System (INIS)
Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele
2011-01-01
The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.
2018-03-01
The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.
Quantum readout of physical unclonable functions
Skoric, B.
2012-01-01
Physical unclonable functions (PUFs) are physical structures that are hard to clone and have a unique challenge-response behavior. The term PUF was coined by Pappu et al. in 2001. That work triggered a lot of interest, and since then a substantial number of papers has been written about the use of a
Nonequilibrium Green function techniques applied to hot electron quantum transport
International Nuclear Information System (INIS)
Jauho, A.P.
1989-01-01
During the last few years considerable effort has been devoted to deriving quantum transport equations for semiconductors under extreme conditions (high electric fields, spatial quantization in one or two directions). Here we review the results obtained with nonequilibrium Green function techniques as formulated by Baym and Kadanoff, or by Keldysh. In particular, the following topics will be discussed: (i) Systematic approaches to reduce the transport equation governing the correlation function to a transport equation for the Wigner function; (ii) Approximations reducing the nonmarkovian quantum transport equation to a numerically tractable form, and results for model semiconductors; (iii) Recent progress in extending the formalism to inhomogeneous systems; and (iv) Nonequilibrium screening. In all sections we try to direct the reader's attention to points where the present understanding is (at best) incomplete, and indicate possible lines for future work. (orig.)
Density-functional theory simulation of large quantum dots
Jiang, Hong; Baranger, Harold U.; Yang, Weitao
2003-10-01
Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.
What Density Functional Theory could do for Quantum Information
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Quantum anharmonic oscillator: The airy function approach
Energy Technology Data Exchange (ETDEWEB)
Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)
2014-05-15
New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.
Green's function approach to calculate spin injection in quantum dot
International Nuclear Information System (INIS)
Tan, S.G.; Jalil, M.B.A.; Liew, Thomas; Teo, K.L.
2006-01-01
We present a theoretical model to study spin injection (η) through a quantum dot system sandwiched by two ferromagnetic contacts. The effect of contact magnetization on η was studied using Green's function descriptions of the density of states. Green's function models have the advantages that coherent effects of temperature, electron occupation in the QD, and lead perturbation on the state wave function and hence the current can be formally included in the calculations. In addition, self-consistent treatment of current with applied electrochemical potential or lead conductivity, a necessary step which has not been considered in previous works, has also been implemented in our model
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Horizon wave-function and the quantum cosmic censorship
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-07-01
Full Text Available We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio α>1, which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for α22, and the uncertainty in the location of the horizon blows up at α2=2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of 2 can exist.
Fine structure and analytical quantum-defect wave functions
International Nuclear Information System (INIS)
Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.
1988-01-01
We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms
Quantum electrodynamics and light rays. [Two-point correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.
Imaging electron wave functions inside open quantum rings.
Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S
2007-09-28
Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).
Theory of brain function, quantum mechanics and superstrings
Nanopoulos, Dimitri V.
1995-01-01
Recent developments/efforts to understand aspects of the brain function at the {\\em sub-neural} level are discussed. MicroTubules (MTs) participate in a wide variety of dynamical processes in the cell especially in bioinformation processes such as learning and memory, by possessing a well-known binary error-correcting code with 64 words. In fact, MTs and DNA/RNA are unique cell structures that possess a code system. It seems that the MTs' code system is strongly related to a kind of ``Mental Code" in the following sense. The MTs' periodic paracrystalline structure make them able to support a superposition of coherent quantum states, as it has been recently conjectured by Hameroff and Penrose, representing an external or mental order, for sufficient time needed for efficient quantum computing. Then the quantum superposition collapses spontaneously/dynamically through a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and myself. At the moment of collapse, organized quantum exo...
Commuting quantum circuits and complexity of Ising partition functions
International Nuclear Information System (INIS)
Fujii, Keisuke; Morimae, Tomoyuki
2017-01-01
Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy collapses to the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of calculating the imaginary-valued partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising partition functions with imaginary coupling constants. Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for almost all imaginary coupling constants even on planar lattices of a bounded degree. (paper)
DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos
DEFF Research Database (Denmark)
Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan
2017-01-01
Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...
Generating functionals for quantum field theories with random potentials
International Nuclear Information System (INIS)
Jain, Mudit; Vanchurin, Vitaly
2016-01-01
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.
Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl
International Nuclear Information System (INIS)
Noori, Keian; Giustino, Feliciano; Hübener, Hannes; Kymakis, Emmanuel
2016-01-01
Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.
Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl
Energy Technology Data Exchange (ETDEWEB)
Noori, Keian; Giustino, Feliciano [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hübener, Hannes [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, Av. Tolosa 72, 20018 San Sebastián (Spain); Kymakis, Emmanuel [Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, Heraklion, 71004 Crete (Greece)
2016-03-21
Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.
Quantum-mechanical Green's functions and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.
1986-01-01
The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt
Quantum-mechanical Green's function and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.
1986-01-01
It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field
Fluctuations of quantum fields via zeta function regularization
International Nuclear Information System (INIS)
Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio
2002-01-01
Explicit expressions for the expectation values and the variances of some observables, which are bilinear quantities in the quantum fields on a D-dimensional manifold, are derived making use of zeta function regularization. It is found that the variance, related to the second functional variation of the effective action, requires a further regularization and that the relative regularized variance turns out to be 2/N, where N is the number of the fields, thus being independent of the dimension D. Some illustrating examples are worked through. The issue of the stress tensor is also briefly addressed
Algebras of functions on compact quantum groups, Schubert cells and quantum tori
International Nuclear Information System (INIS)
Levendorskij, S.; Soibelman, Ya.
1991-01-01
The structure of Poisson Lie groups on a simple compact group are parametrized by pairs (a, u), where aelement ofR, uelement ofΛ 2 f R , and f R is a real Cartan subalgebra of complexification of Lie algebra of the group in question. In the present article the description of the symplectic leaves for all pairs (a, u) is given. Also, the corresponding quantized algebras of functions are constructed and their irreducible representations are described. In the course of investigation Schubert cells and quantum tori appear. At the end of the article the quantum analog of the Weyl group is constructed and some of its applications, among them the formula for the universal R-matrix, are given. (orig.)
On asymptotic continuity of functions of quantum states
International Nuclear Information System (INIS)
Synak-Radtke, Barbara; Horodecki, Michal
2006-01-01
A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this letter, we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called robustness under admixture. This allows us to show that relative entropy distance from a convex set including a maximally mixed state is asymptotically continuous. Subsequently, we consider arrowing-a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples. (letter to the editor)
Functional analysis and quantum mechanics: an introduction for physicists
International Nuclear Information System (INIS)
Ranade, Kedar S.
2015-01-01
We give an introduction to certain topics from functional analysis which are relevant for physics in general and in particular for quantum mechanics. Starting from some examples, we discuss the theory of Hilbert spaces, spectral theory of unbounded operators, distributions and their applications and present some facts from operator algebras. We do not give proofs, but present examples and analogies from physics which should be useful to get a feeling for the topics considered. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Functional analysis and quantum mechanics: an introduction for physicists
Energy Technology Data Exchange (ETDEWEB)
Ranade, Kedar S. [Ulm Univ. (Germany). Inst. fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST)
2015-09-15
We give an introduction to certain topics from functional analysis which are relevant for physics in general and in particular for quantum mechanics. Starting from some examples, we discuss the theory of Hilbert spaces, spectral theory of unbounded operators, distributions and their applications and present some facts from operator algebras. We do not give proofs, but present examples and analogies from physics which should be useful to get a feeling for the topics considered. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum gravitational corrections to the functional Schroedinger equation
International Nuclear Information System (INIS)
Kiefer, C.; Singh, T.P.
1990-10-01
We derive corrections to the Schroedinger equation which arise from the quantization of the gravitational field. This is achieved through an expansion of the full functional Wheeler-DeWitt equation with respect to powers of the Planck mass. We demonstrate that the corrections terms are independent of the factor ordering which is chosen for the gravitational kinetic term. Although the corrections are numerically extremely tiny, we show how they lead, at least in principle, to shift in the spectral lines of hydrogen type atoms. We discuss the significance of these corrections for quantum field theory near the Planck scale. (author). 35 refs
On the interpretation of wave function overlaps in quantum dots
DEFF Research Database (Denmark)
Stobbe, Søren; Hvam, Jørn Märcher; Lodahl, Peter
2011-01-01
The spontaneous emission rate of excitons strongly confined in quantum dots (QDs) is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission rate is proportional to the probability...... that the electron and the hole are located at the same point or region in space, i.e., they must coincide spatially to recombine. Here, we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap...... integral, and the probability of electrons and holes coinciding, and find that the frequency dependence of the envelope wave function overlap integral is very different from that expected from the common interpretation. We show that these theoretical considerations lead to predictions for measurements. We...
A quantum speedup in machine learning: finding an N-bit Boolean function for a classification
International Nuclear Information System (INIS)
Yoo, Seokwon; Lee, Jinhyoung; Bang, Jeongho; Lee, Changhyoup
2014-01-01
We compare quantum and classical machines designed for learning an N-bit Boolean function in order to address how a quantum system improves the machine learning behavior. The machines of the two types consist of the same number of operations and control parameters, but only the quantum machines utilize the quantum coherence naturally induced by unitary operators. We show that quantum superposition enables quantum learning that is faster than classical learning by expanding the approximate solution regions, i.e., the acceptable regions. This is also demonstrated by means of numerical simulations with a standard feedback model, namely random search, and a practical model, namely differential evolution. (paper)
Photoresponse of polyaniline-functionalized graphene quantum dots
Lai, Sin Ki; Luk, Chi Man; Tang, Libin; Teng, Kar Seng; Lau, Shu Ping
2015-03-01
Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics.Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The
Relating zeta functions of discrete and quantum graphs
Harrison, Jonathan; Weyand, Tracy
2018-02-01
We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.
International Nuclear Information System (INIS)
Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi
2007-01-01
We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly
Structure of the vertex function in finite quantum electrodynamics
International Nuclear Information System (INIS)
Mannheim, P.D.
1975-01-01
We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap
Convergence of repeated quantum nondemolition measurements and wave-function collapse
International Nuclear Information System (INIS)
Bauer, Michel; Bernard, Denis
2011-01-01
Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.
Complex logic functions implemented with quantum dot bionanophotonic circuits.
Claussen, Jonathan C; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L
2014-03-26
We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.
Asymptotic series and functional integrals in quantum field theory
International Nuclear Information System (INIS)
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2.
Directory of Open Access Journals (Sweden)
Hongyu Wu
Full Text Available Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1l(AC develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1l(AC vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1l(AC kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5' flanking region in Dot1l(AC vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1l(AC mice and in patients with diabetic nephropathy.
Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.
Feng, Hui; Qian, Zhaosheng
2018-05-01
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generating functional of the mean field in quantum electrodynamics with non-stable vacuum
International Nuclear Information System (INIS)
Gitman, D.M.; Kuchin, V.A.
1981-01-01
Generating functional for calculating a mean field, in the case of unstable vacuum, in quantum field theory has been suggested. Continual representation for the generating functional of the mean field has been found in the case of quantum electrodynamics with an external field. Generating electron-positron pairs from vacuum [ru
Thermal quantum time-correlation functions from classical-like dynamics
Hele, Timothy J. H.
2017-07-01
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
Introduction to functional and path integral methods in quantum field theory
International Nuclear Information System (INIS)
Strathdee, J.
1991-11-01
The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2009-11-01
Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.
Design of Biotin-Functionalized Luminescent Quantum Dots
Directory of Open Access Journals (Sweden)
Kimihiro Susumu
2007-01-01
Full Text Available We report the design and synthesis of a tetraethylene glycol- (TEG- based bidentate ligand functionalized with dihydrolipoic acid (DHLA and biotin (DHLA—TEG—biotin to promote biocompatibility of luminescent quantum dots (QD's. This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG- (molecular weight average ∼600 modified DHLA (DHLA—PEG600 and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
Some exact results for the two-point function of an integrable quantum field theory
International Nuclear Information System (INIS)
Creamer, D.B.; Thacker, H.B.; Wilkinson, D.
1981-02-01
The two point correlation function for the quantum nonlinear Schroedinger (delta-function gas) model is studied. An infinite series representation for this function is derived using the quantum inverse scattering formalism. For the case of zero temperature, the infinite coupling (c → infinity) result of Jimbo, Miwa, Mori and Sato is extended to give an exact expression for the order 1/c correction to the two point function in terms of a Painleve transcendent of the fifth kind
The meaning of the wave function in search of the ontology of quantum mechanics
Gao, Shan
2017-01-01
At the heart of quantum mechanics lies the wave function, a powerful but mysterious mathematical object which has been a hot topic of debate from its earliest stages. Covering much of the recent debate and providing a comprehensive and critical review of competing approaches, this ambitious text provides new, decisive proof of the reality of the wave function. Aiming to make sense of the wave function in quantum mechanics and to find the ontological content of the theory, this book explores new ontological interpretations of the wave function in terms of random discontinuous motion of particles. Finally, the book investigates whether the suggested quantum ontology is complete in solving the measurement problem and if it should be revised in the relativistic domain. A timely addition to the literature on the foundations of quantum mechanics, this book is of value to students and researchers with an interest in the philosophy of physics. Presents a concise introduction to quantum mechanics, including the c...
Method of trial distribution function for quantum turbulence
International Nuclear Information System (INIS)
Nemirovskii, Sergey K.
2012-01-01
Studying quantum turbulence the necessity of calculation the various characteristics of the vortex tangle (VT) appears. Some of 'crude' quantities can be expressed directly via the total length of vortex lines (per unit of volume) or the vortex line density L(t) and the structure parameters of the VT. Other more 'subtle' quantities require knowledge of the vortex line configurations {s(xi,t) }. Usually, the corresponding calculations are carried out with the use of more or less truthful speculations concerning arrangement of the VT. In this paper we review other way to solution of this problem. It is based on the trial distribution functional (TDF) in space of vortex loop configurations. The TDF is constructed on the basis of well established properties of the vortex tangle. It is designed to calculate various averages taken over stochastic vortex loop configurations. In this paper we also review several applications of the use this model to calculate some important characteristics of the vortex tangle. In particular we discussed the average superfluid mass current J induced by vortices and its dynamics. We also describe the diffusion-like processes in the nonuniform vortex tangle and propagation of turbulent fronts.
Magnetic field effects on the quantum wire energy spectrum and Green's function
International Nuclear Information System (INIS)
Morgenstern Horing, Norman J.
2010-01-01
We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.
Energy Technology Data Exchange (ETDEWEB)
Tang, Jau
1996-02-01
As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Quantum Drude friction for time-dependent density functional theory
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
Friction is a desired property in quantum dynamics as it allows for localization, prevents backscattering, and is essential in the description of multistage transfer. Practical approaches for friction generally involve memory functionals or interactions with system baths. Here, we start by requiring that a friction term will always reduce the energy of the system; we show that this is automatically true once the Hamiltonian is augmented by a term of the form ∫a(q ;n0)[∂j(q,t)/∂t]ṡJ(q)dq, which includes the current operator times the derivative of its expectation value with respect to time, times a local coefficient; the local coefficient will be fitted to experiment, to more sophisticated theories of electron-electron interaction and interaction with nuclear vibrations and the nuclear background, or alternately, will be artificially constructed to prevent backscattering of energy. We relate this term to previous results and to optimal control studies, and generalize it to further operators, i.e., any operator of the form ∫a(q ;n0)[∂c(q,t)/∂t]ṡC(q)dq (or a discrete sum) will yield friction. Simulations of a small jellium cluster, both in the linear and highly nonlinear excitation regime, demonstrate that the friction always reduces energy. The energy damping is essentially double exponential; the long-time decay is almost an order of magnitude slower than the rapid short-time decay. The friction term stabilizes the propagation (split-operator propagator here), therefore increasing the time-step needed for convergence, i.e., reducing the overall computational cost. The local friction also allows the simulation of a metal cluster in a uniform jellium as the energy loss in the excitation due to the underlying corrugation is accounted for by the friction. We also relate the friction to models of coupling to damped harmonic oscillators, which can be used for a more sophisticated description of the coupling, and to memory functionals. Our results open the
International Nuclear Information System (INIS)
Sudheer, K. Sebastian; Sabir, M.
2009-01-01
This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
Quantum Many-Body Virial Theorem And Matsubara Green's Function
International Nuclear Information System (INIS)
Anma, D.; Fukuda, T.; Fujita, M.; Toyoda, T.; Takiuchi, K.
2004-01-01
We discuss the quantum field theoretical formulation of the virial theorem on the basis of the canonical field theory of the generalized coordinate transformation and show the equation of motion of a charged Fermion system coupled to an electromagnetic field. Possible application to Fermion-Boson mixtures is also discussed
Quantum chemical calculations of using density functional theory ...
Indian Academy of Sciences (India)
K RACKESH JAWAHER
2018-02-15
Feb 15, 2018 ... Quantum chemical calculations have been employed to study the molecular effects produced by. Cr2O3/SnO2 optimised structure. ... are exploited in solar cells [2], high-capacity lithium– storage [3], solid-state chemical ..... bond distance of metal–oxygen is positively (0.5 Е) deviated to oxygen–oxygen ...
International Nuclear Information System (INIS)
Anas, M. M.; Othman, A. P.; Gopir, G.
2014-01-01
Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T d ) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V xc ) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional
Some exact results for the two-point function of an integrable quantum field theory
International Nuclear Information System (INIS)
Creamer, D.B.; Thacker, H.B.; Wilkinson, D.
1981-01-01
The two-point correlation function for the quantum nonlinear Schroedinger (one-dimensional delta-function gas) model is studied. An infinite-series representation for this function is derived using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-coupling (c→infinity) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expression for the order-1/c correction to the two-point function in terms of a Painleve transcendent of the fifth kind
Quantum corrections to Bekenstein–Hawking black hole entropy and gravity partition functions
International Nuclear Information System (INIS)
Bytsenko, A.A.; Tureanu, A.
2013-01-01
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS 3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein–Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS 3 /CFT 2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson–Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors
Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.
2016-12-01
The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.
Savel'ev, Sergey E; Zagoskin, Alexandre M
2018-06-25
A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.
Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon
2017-08-03
Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.
[Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].
Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang
2013-08-01
This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.
International Nuclear Information System (INIS)
Arik, M.
1991-01-01
It is shown that the differential calculus of Wess and Zumino for the quantum hyperplane is intimately related to the q-difference operator acting on the n-dimensional complex space C n . An explicit transformation relates the variables and the q-difference operators on C n to the variables and the quantum derivatives on the quantum hyperplane. For real values of the quantum parameter q, the consideration of the variables and the derivatives as hermitean conjugates yields a quantum deformation of the Bargmann-Segal Hilbert space of analytic functions on C n . Physically such a system can be interpreted as the quantum deformation of the n dimensional harmonic oscillator invariant under the unitary quantum group U q (n) with energy eigenvalues proportional to the basic integers. Finally, a construction of the variables and quantum derivatives on the quantum hyperplane in terms of variables and ordinary derivatives on C n is presented. (orig.)
Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture
International Nuclear Information System (INIS)
Pi, S.Y.
1990-01-01
Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes
Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?
International Nuclear Information System (INIS)
Matyas, A; Jirauschek, C; Kubis, T; Lugli, P
2009-01-01
We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture
International Nuclear Information System (INIS)
Pi, S.Y.
1989-01-01
Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)
Functional characterization and axonal transport of quantum dot labeled BDNF
Xie, Wenjun; Zhang, Kai; Cui, Bianxiao
2012-01-01
Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dot (QD-BDNF) a...
Exact wave functions of two-electron quantum rings.
Loos, Pierre-François; Gill, Peter M W
2012-02-24
We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.
Improving the quantum cost of reversible Boolean functions using reorder algorithm
Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf
2018-05-01
This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.
Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere
Energy Technology Data Exchange (ETDEWEB)
Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica
1996-07-01
We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.
Generating function for Clebsch-Gordan coefficients of the SUq(2) quantum algebra
International Nuclear Information System (INIS)
Avancini, S.S.; Menezes, D.P.
1992-05-01
Some methods have been developed to calculate the s u q (2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating function through the use of quantum algebraic coherent states. Calculating the s u q (2) CGC by means of this generating function is an easy and straight-forward task. (author)
A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group
International Nuclear Information System (INIS)
Klimov, A B; Romero, J L
2008-01-01
We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit
Quantum phase space points for Wigner functions in finite-dimensional spaces
Luis Aina, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.
Quantum phase space points for Wigner functions in finite-dimensional spaces
International Nuclear Information System (INIS)
Luis, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas
Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions
Marcolli, Matilde; Cornelissen, Gunther
2014-01-01
The zeta function of a number field can be interpreted as the partition function of an associated quantum statistical mechanical (QSM) system, built from abelian class field theory. We introduce a general notion of isomorphism of QSM-systems and prove that it preserves (extremal) KMS equilibrium
Influence of wetting layer wave functions on carrier capture in quantum dots
DEFF Research Database (Denmark)
Markussen, Troels; Kristensen, Philip; Tromborg, Bjarne
2005-01-01
This work numerically solves the effective mass Schrodinger equation and shows that the capture times are strongly influenced by details of the continuum states not accounted for by the approximate wave functions. Results show that calculations of capture time for phonon mediated carrier capture...... from a wetting layer into a quantum dot depend critically on the approximations used for the wetting layer wave functions....
On the zero temperature limit of the Kubo-transformed quantum time correlation function
Hernández de la Peña, Lisandro
2014-04-01
The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.
Quantum gravity and the functional renormalization group the road towards asymptotic safety
Reuter, Martin
2018-01-01
During the past two decades the gravitational asymptotic safety scenario has undergone a major transition from an exotic possibility to a serious contender for a realistic theory of quantum gravity. It aims at a mathematically consistent quantum description of the gravitational interaction and the geometry of spacetime within the realm of quantum field theory, which keeps its predictive power at the highest energies. This volume provides a self-contained pedagogical introduction to asymptotic safety, and introduces the functional renormalization group techniques used in its investigation, along with the requisite computational techniques. The foundational chapters are followed by an accessible summary of the results obtained so far. It is the first detailed exposition of asymptotic safety, providing a unique introduction to quantum gravity and it assumes no previous familiarity with the renormalization group. It serves as an important resource for both practising researchers and graduate students entering thi...
Functional Wigner representation of quantum dynamics of Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Opanchuk, B.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn VIC 3122 (Australia)
2013-04-15
We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
The metric on field space, functional renormalization, and metric–torsion quantum gravity
International Nuclear Information System (INIS)
Reuter, Martin; Schollmeyer, Gregor M.
2016-01-01
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.
On the functional measure for quantum gravity in the light-cone gauge
International Nuclear Information System (INIS)
Endo, Ryusuke; Kimura, Toshiei
1978-01-01
It is shown that the argument of Kaku and Senjanovic on the functional measure for quantum gravity holds irrespective of the order of the perturbation expansion in powers of the gravitational constant. Accordingly, the functional measure for quantum gravity coincides with that of Fradkin and Vilkovisky in the strict sense. The argument is carried out with the aid of two propositions in which we postulate that the inverse of the differential operator deltasub(-) = delta/delta x - (x - = (x 0 - x 3 )/√2) exists uniquely. (author)
Energy Technology Data Exchange (ETDEWEB)
Kastrup, H.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2017-10-17
The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.
Real-time functional integral approach to the quantum disordered spin systems
International Nuclear Information System (INIS)
Kopec, T.K.
1989-01-01
In this paper the effect of randomness and frustration in the quantum Ising spin glass in a transverse field is studied by using the thermofield dynamics (TFD), the real time, finite temperature quantum field theory. It is shown that the method can be conveniently used for the averaging of the free energy of the system by completely avoiding the use of the n-replica trick. The effective dynamic Lagrangian for the disorder averaged causal, correlations and response Green functions is derived by functional integral approach. Furthermore, the properties of this Lagrangian are analyzed by the saddle point method which leads to the self-consistent equation for the spin glass order parameter
International Nuclear Information System (INIS)
Kastrup, H.A.
2017-01-01
The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.
Reason of method of density functional in classical and quantum statistical mechanisms
International Nuclear Information System (INIS)
Dinariev, O.Yu.
2000-01-01
Interaction between phenomenological description of a multi-component mixture on the basis of entropy functional with members, square in terms of component density gradients and temperature, on the one hand, and description in the framework of classical and quantum statistical mechanics, on the other hand, was investigated. Explicit expressions for the entropy functional in the classical and quantum theory were derived. Then a square approximation for the case of minor disturbances of uniform state was calculated. In the approximation the addends square in reference to the gradient were singlet out. It permits calculation of the relevant phenomenological coefficients from the leading principles [ru
Directory of Open Access Journals (Sweden)
Renato Lemus
2012-11-01
Full Text Available The eigenfunction approach used for discrete symmetries is deduced from the concept of quantum numbers. We show that the irreducible representations (irreps associated with the eigenfunctions are indeed a shorthand notation for the set of eigenvalues of the class operators (character table. The need of a canonical chain of groups to establish a complete set of commuting operators is emphasized. This analysis allows us to establish in natural form the connection between the quantum numbers and the eigenfunction method proposed by J.Q. Chen to obtain symmetry adapted functions. We then proceed to present a friendly version of the eigenfunction method to project functions.
Analysis of Green's functions and stability problem in models of quantum field theory with solitons
International Nuclear Information System (INIS)
Raczka, R.; Roszkowski, L.
1983-10-01
A class of models of quantum field theory for a multiplet phi-vector=(phi 1 ,...,phisub(N)) of real scalar fields, possessing a particle-like classical solution phi-vector 0 , is considered. A new formula for generating functional for time-ordered Green's functions in terms of effective propagators is derived. The problem of classical and quantum stability is analyzed in detail. It is shown by partly non-perturbative analysis that in the considered models the excited states of mesons do exist and form the trajectories in the plane mass 2 -spin. These trajectories are linear or approximately linear like experimental trajectories. (author)
Covariance operator of functional measure in P(φ)2-quantum field theory
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Zhidkov, E.P.
1988-01-01
Functional integration measure in the Euclidean quantum field theory with polynomial interactions of boson fields with zero spin in two-dimensional space-time is investigated. The representation for the kernal of the measure covariance operator is obtained in the form of expansion over the eigenfunctions of some boundary problem for the heat equation. Two cases of the integration domains with different configurations are considered. Some trends and perspectives of employing the functional integration method in quantum field theory are also discussed. 43 refs
Quantum tests for the linearity and permutation invariance of Boolean functions
Energy Technology Data Exchange (ETDEWEB)
Hillery, Mark [Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021 (United States); Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2011-12-15
The goal in function property testing is to determine whether a black-box Boolean function has a certain property or is {epsilon}-far from having that property. The performance of the algorithm is judged by how many calls need to be made to the black box in order to determine, with high probability, which of the two alternatives is the case. Here we present two quantum algorithms, the first to determine whether the function is linear and the second to determine whether it is symmetric (invariant under permutations of the arguments). Both require order {epsilon}{sup -2/3} calls to the oracle, which is better than known classical algorithms. In addition, in the case of linearity testing, if the function is linear, the quantum algorithm identifies which linear function it is. The linearity test combines the Bernstein-Vazirani algorithm and amplitude amplification, while the test to determine whether a function is symmetric uses projective measurements and amplitude amplification.
Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao
2018-03-31
Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wigner functions for noncommutative quantum mechanics: A group representation based construction
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)
2015-12-15
This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.
Progressive methylation of ageing histones by Dot1 functions as a timer
De Vos, Dirk; Frederiks, Floor; Terweij, Marit; van Welsem, Tibor; Verzijlbergen, Kitty F.; Iachina, Ekaterina; de Graaf, Erik L.; Altelaar, A. F. Maarten; Oudgenoeg, Gideon; Heck, Albert J. R.; Krijgsveldz, Jeroen; Bakker, Barbara M.; van Leeuwen, Fred
Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated
High temperature limit of the order parameter correlation functions in the quantum Ising model
Reyes, S. A.; Tsvelik, A. M.
2006-06-01
In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.
High temperature limit of the order parameter correlation functions in the quantum Ising model
Energy Technology Data Exchange (ETDEWEB)
Reyes, S.A. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tsvelik, A.M. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States) and Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)]. E-mail tsvelik@bnl.gov
2006-06-12
In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.
Compact baby universe model in ten dimension and probability function of quantum gravity
International Nuclear Information System (INIS)
Yan Jun; Hu Shike
1991-01-01
The quantum probability functions are calculated for ten-dimensional compact baby universe model. The authors find that the probability for the Yang-Mills baby universe to undergo a spontaneous compactification down to a four-dimensional spacetime is greater than that to remain in the original homogeneous multidimensional state. Some questions about large-wormhole catastrophe are also discussed
Improved Green’s function measurement for hybridization expansion quantum Monte Carlo
Czech Academy of Sciences Publication Activity Database
Augustinský, Pavel; Kuneš, Jan
2013-01-01
Roč. 184, č. 9 (2013), s. 2119-2126 ISSN 0010-4655 Institutional support: RVO:68378271 Keywords : continuous time quantum Monte Carlo method * Green function estimator Subject RIV: BE - Theoretical Physics Impact factor: 2.407, year: 2013
Modern functional quantum field theory summing Feynman graphs
Fried, Herbert M
2013-01-01
A monograph, which can also be used as a textbook for graduate students, this book contains new and novel applications of Schwinger's well-known functional solutions, made possible by the use of Fradkin's little-known functional representations, together with recent research work of the author and his colleagues.
Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?
Energy Technology Data Exchange (ETDEWEB)
Matyas, A; Jirauschek, C [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , TU Muenchen, D-80333 Muenchen (Germany); Kubis, T [Walter Schottky Institute, TU Muenchen, D-85748 Garching (Germany); Lugli, P, E-mail: alparmat@mytum.d [Institute of Nanoelectronics, TU Muenchen, D-80333 Muenchen (Germany)
2009-11-15
We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.
Estimations for the Schwinger functions of relativistic quantum field theories
International Nuclear Information System (INIS)
Mayer, C.D.
1981-01-01
Schwinger functions of a relativistic neutral scalar field the basing test function space of which is S or D are estimated by methods of the analytic continuation. Concerning the behaviour in coincident points it is shown: The two-point singularity of the n-point Schwinger function of a field theory is dominated by an inverse power of the distance of both points modulo a multiplicative constant, if the other n-2 points a sufficiently distant and remain fixed. The power thereby, depends only on n. Using additional conditions on the field the independence of the power on n may be proved. Concerning the behaviour at infinite it is shown: The n-point Schwinger functions of a field theory are globally bounded, if the minimal distance of the arguments is positive. The bound depends only on n and the minimal distance of the arguments. (orig.) [de
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
Colmenares, Pedro J.
2018-05-01
This article has to do with the derivation and solution of the Fokker-Planck equation associated to the momentum-integrated Wigner function of a particle subjected to a harmonic external field in contact with an ohmic thermal bath of quantum harmonic oscillators. The strategy employed is a simplified version of the phenomenological approach of Schramm, Jung, and Grabert of interpreting the operators as c numbers to derive the quantum master equation arising from a twofold transformation of the Wigner function of the entire phase space. The statistical properties of the random noise comes from the integral functional theory of Grabert, Schramm, and Ingold. By means of a single Wigner transformation, a simpler equation than that mentioned before is found. The Wigner function reproduces the known results of the classical limit. This allowed us to rewrite the underdamped classical Langevin equation as a first-order stochastic differential equation with time-dependent drift and diffusion terms.
Bohmian Conditional Wave Functions (and the status of the quantum state)
International Nuclear Information System (INIS)
Norsen, Travis
2016-01-01
The de Broglie - Bohm pilot-wave theory - uniquely among realistic candidate quantum theories - allows a straightforward and simple definition of the wave function of a subsystem of some larger system (such as the entire universe). Such sub-system wave functions are called “Conditional Wave Functions” (CWFs). Here we explain this concept and indicate the CWF's role in the Bohmian explanation of the usual quantum formalism, and then develop (and motivate) the more speculative idea that something like single-particle wave functions could replace the (ontologically problematical) universal wave function in some future, empirically adequate, pilot-wave-type theory. Throughout the presentation is pedagogical and points are illustrated with simple toy models. (paper)
Non-perturbative Green functions in quantum gauge theories
International Nuclear Information System (INIS)
Shabanov, S.V.
1991-01-01
Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs
The quantum dual string wave functional in Yang-Mills theories
International Nuclear Information System (INIS)
Gervais, J.-L.; Neveu, A.
1979-01-01
From any solution of the classical Yang-Mills equations, a string wave functional based on the Wilson loop integral is defined. Its precise definition is given by replacing the string by a finite set of N points, and taking the limit N → infinity. It is shown that this functional satisfies the Schroedinger equation of the relativistic dual string to leading order in N. The relevance of this object to the quantum problem is speculated. (Auth.)
Green's functions for a graphene sheet and quantum dot in a normal magnetic field
International Nuclear Information System (INIS)
Horing, Norman J Morgenstern; Liu, S Y
2009-01-01
This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field
Long and short time quantum dynamics: I. Between Green's functions and transport equations
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2005-01-01
Roč. 29, - (2005), s. 154-174 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport * density functional the ory Subject RIV: BE - The oretical Physics Impact factor: 0.946, year: 2005
Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems
International Nuclear Information System (INIS)
Guan, X-W; Batchelor, M T
2011-01-01
We demonstrate that the thermodynamics of one-dimensional Lieb-Liniger bosons can be accurately calculated in analytic fashion using the polylog function in the framework of the thermodynamic Bethe ansatz. The approach does away with the need to numerically solve the thermodynamic Bethe ansatz (Yang-Yang) equation. The expression for the equation of state allows the exploration of Tomonaga-Luttinger liquid physics and quantum criticality in an archetypical quantum system. In particular, the low-temperature phase diagram is obtained, along with the scaling functions for the density and compressibility. It has been shown recently by Guan and Ho (arXiv:1010.1301) that such scaling can be used to map out the criticality of ultracold fermionic atoms in experiments. We show here how to map out quantum criticality for Lieb-Liniger bosons. More generally, the polylog function formalism can be applied to a wide range of Bethe ansatz integrable quantum many-body systems which are currently of theoretical and experimental interest, such as strongly interacting multi-component fermions, spinor bosons and mixtures of bosons and fermions. (fast track communication)
Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.
2012-01-01
Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.
A new quantum statistical evaluation method for time correlation functions
International Nuclear Information System (INIS)
Loss, D.; Schoeller, H.
1989-01-01
Considering a system of N identical interacting particles, which obey Fermi-Dirac or Bose-Einstein statistics, the authors derive new formulas for correlation functions of the type C(t) = i= 1 N A i (t) Σ j=1 N B j > (where B j is diagonal in the free-particle states) in the thermodynamic limit. Thereby they apply and extend a superoperator formalism, recently developed for the derivation of long-time tails in semiclassical systems. As an illustrative application, the Boltzmann equation value of the time-integrated correlation function C(t) is derived in a straight-forward manner. Due to exchange effects, the obtained t-matrix and the resulting scattering cross section, which occurs in the Boltzmann collision operator, are now functionals of the Fermi-Dirac or Bose-Einstein distribution
International Nuclear Information System (INIS)
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe
Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics
Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies
1997-01-01
We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...
Blue functions: probability and current density propagators in non-relativistic quantum mechanics
International Nuclear Information System (INIS)
Withers, L P Jr
2011-01-01
Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)
Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.
Vallone, Giuseppe; Dequal, Daniele
2016-01-29
Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.
Mobility gap and quantum transport in a functionalized graphene bilayer
Missaoui, Ahmed; Jemaa Khabthani, Jouda; Jaidane, Nejm-Eddine; Mayou, Didier; Trambly de Laissardière, Guy
2018-05-01
In a Bernal graphene bilayer, carbon atoms belong to two inequivalent sublattices A and B, with atoms that are coupled to the other layer by bonds belonging to sublattice A and the other atoms belonging to sublattice B. We analyze the density of states and the conductivity of Bernal graphene bilayers when atoms of sublattice A or B only are randomly functionalized. We find that for a selective functionalization on sublattice B only, a mobility gap of the order of 0.5 eV is formed close to the Dirac energy at concentration of adatoms . In addition, at some other energies conductivity presents anomalous behaviors. We show that these properties are related to the bipartite structure of the graphene layer.
Relationship of Quantum Entanglement to Density Functional Theory
Rajagopal, A. K.; Rendell, R. W.
2005-01-01
The maximum von Neumann entropy principle subject to given constraints of mean values of some physical observables determines the density matrix. Similarly the stationary action principle in the case of time-dependent (dissipative) situations under similar constraints yields the density matrix. The free energy and measures of entanglement are expressed in terms of such a density matrix and thus define respective functionals of the mean values. In the light of several model calculations, it is...
Preequilibrium decay models and the quantum Green function method
International Nuclear Information System (INIS)
Zhivopistsev, F.A.; Rzhevskij, E.S.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)
1977-01-01
The nuclear process mechanism and preequilibrium decay involving complex particles are expounded on the basis of the Green function formalism without the weak interaction assumptions. The Green function method is generalized to a general nuclear reaction: A+α → B+β+γ+...rho, where A is the target nucleus, α is a complex particle in the initial state, B is the final nucleus, and β, γ, ... rho are nuclear fragments in the final state. The relationship between the generalized Green function and Ssub(fi)-matrix is established. The resultant equations account for: 1) direct and quasi-direct processes responsible for the angular distribution asymmetry of the preequilibrium component; 2) the appearance of addends corresponding to the excitation of complex states of final nucleus; and 3) the relationship between the preequilibrium decay model and the general models of nuclear reaction theories (Lippman-Schwinger formalism). The formulation of preequilibrium emission via the S(T) matrix allows to account for all the differential terms in succession important to an investigation of the angular distribution assymetry of emitted particles
International Nuclear Information System (INIS)
Freidel, L.; Maillet, J.M.
1992-09-01
Using a geometrical approach to the quantum Yang-Baxter equation, the quantum algebra U h (sl 2 ) and its universal quantum R-matrix are explicitly constructed as functionals of the associated classical r-matrix. In this framework, the quantum algebra U h (sl 2 ) is naturally imbedded in the universal enveloping algebra of the sl 2 current algebra. (author) 13 refs
Coping with the node problem in quantum hydrodynamics: The covering function method
International Nuclear Information System (INIS)
Babyuk, Dmytro; Wyatt, Robert E.
2004-01-01
A conceptually simple approach, the covering function method (CFM), is developed to cope with the node problem in the hydrodynamic formulation of quantum mechanics. As nodes begin to form in a scattering wave packet (detected by a monitor function), a nodeless covering wave function is added to it yielding a total function that is also nodeless. Both local and global choices for the covering function are described. The total and covering functions are then propagated separately in the hydrodynamic picture. At a later time, the actual wave function is recovered from the two propagated functions. The results obtained for Eckart barrier scattering in one dimension are in excellent agreement with exact results, even for very long propagation times t=1.2 ps. The capability of the CFM is also demonstrated for multidimensional propagation of a vibrationally excited wave packet
Green's functions in quantum chemistry - I. The Σ perturbation method
International Nuclear Information System (INIS)
Sebastian, K.L.
1978-01-01
As an improvement over the Hartree-Fock approximation, a Green's Function method - the Σ perturbation method - is investigated for molecular calculations. The method is applied to the hydrogen molecule and to the π-electron system of ethylene under PPP approximation. It is found that when the algebraic approximation is used, the energy obtained is better than that of the HF approach, but is not as good as that of the configuration-interaction method. The main advantage of this procedure is that it is devoid of the most serious defect of HF method, viz. incorrect dissociation limits. (K.B.)
Hole spectral functions in lightly doped quantum antiferromagnets
Kar, Satyaki; Manousakis, Efstratios
2011-11-01
We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.
Quantum Statistics of the Toda Oscillator in the Wigner Function Formalism
Vojta, Günter; Vojta, Matthias
Classical and quantum mechanical Toda systems (Toda molecules, Toda lattices, Toda quantum fields) recently found growing interest as nonlinear systems showing solitons and chaos. In this paper the statistical thermodynamics of a system of quantum mechanical Toda oscillators characterized by a potential energy V(q) = Vo cos h q is treated within the Wigner function formalism (phase space formalism of quantum statistics). The partition function is given as a Wigner- Kirkwood series expansion in terms of powers of h2 (semiclassical expansion). The partition function and all thermodynamic functions are written, with considerable exactness, as simple closed expressions containing only the modified Hankel functions Ko and K1 of the purely imaginary argument i with = Vo/kT.Translated AbstractQuantenstatistik des Toda-Oszillators im Formalismus der Wigner-FunktionKlassische und quantenmechanische Toda-Systeme (Toda-Moleküle, Toda-Gitter, Toda-Quantenfelder) haben als nichtlineare Systeme mit Solitonen und Chaos in jüngster Zeit zunehmend an Interesse gewonnen. Wir untersuchen die statistische Thermodynamik eines Systems quantenmechanischer Toda-Oszillatoren, die durch eine potentielle Energie der Form V(q) = Vo cos h q charakterisiert sind, im Formalismus der Wigner-Funktion (Phasenraum-Formalismus der Quantenstatistik). Die Zustandssumme wird als Wigner-Kirkwood-Reihe nach Potenzen von h2 (semiklassische Entwicklung) dargestellt, und aus ihr werden die thermodynamischen Funktionen berechnet. Sämtliche Funktionen sind durch einfache geschlossene Formeln allein mit den modifizierten Hankel-Funktionen Ko und K1 des rein imaginären Arguments i mit = Vo/kT mit großer Genauigkeit darzustellen.
Quantum algorithms on Walsh transform and Hamming distance for Boolean functions
Xie, Zhengwei; Qiu, Daowen; Cai, Guangya
2018-06-01
Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.
Theory of quantum dynamics in fermionic environment: an influence functional approach
International Nuclear Information System (INIS)
Chen, Y.
1987-01-01
Quantum dynamics of a particle coupled to a fermionic environment is considered, with particular emphasis on the formulation of macroscopic quantum phenomena. The framework is based on a path integral formalism for the real-time density matrix. After integrating out of the fermion variables of the environment, they embed the whole environmental effects on the particle into the so-called influence functional in analogy to Feynman and Vernon's initial work. They then show that to the second order of the coupling constant, the exponent of the influence functional is in exact agreement with that due to a linear dissipative environment (boson bath). Having obtained this, they turn to a specific model in which the influence functional can be exactly evaluated in a long-term limit (long compared to the inverse of the cutoff frequency of the environmental spectrum). In this circumstance, they mainly address their attention to the quantum mechanical representation of the system-plus-environment from the known classical properties of the particle. It is shown that, in particular, the equivalence between the fermion bath and the boson bath is generally correct for a single-channel coupling provided they make a simple mapping between the nonlinear interaction functions of the baths. Finally, generalizations of the model to more complicated situations are discussed and significant applications and connections to certain practically interesting problems are mentioned
DEFF Research Database (Denmark)
Markussen, Troels; Kristensen, Philip Trøst; Tromborg, Bjarne
2006-01-01
Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave functions. In this work we numerically solve the one-band effective mass Schrodinger equation to calculate the capture times of phonon-mediated carrier capture into self-assembled quantum dots. C....... Comparing with results obtained using approximate carrier wave functions, we demonstrate that the capture times are strongly influenced by properties of the wetting layer wave functions not accounted for by earlier theoretical analyses....
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function
Directory of Open Access Journals (Sweden)
Jun-ichi Yoshikawa
2013-12-01
Full Text Available Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been all-optically created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources are also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as antibunching, they are not nonclassical enough for advanced quantum-information processing. On the other hand, the intrinsic randomness of pure, heralded states can be circumvented by first storing and then releasing them on demand. Here, we propose such a controlled release, and we experimentally demonstrate it for heralded single photons. We employ two optical cavities, where the photons are both created and stored inside one cavity and finally released through a dynamical tuning of the other cavity. We demonstrate storage times of up to 300 ns while keeping the single-photon purity around 50% after storage. Our experiment is the first demonstration of a negative Wigner function at the output of an on-demand photon source or a quantum memory. In principle, our storage system is compatible with all kinds of nonclassical states, including those known to be essential for many advanced quantum-information protocols.
Nonequilibrium Green's function method for quantum thermal transport
Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar
2014-12-01
This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.
Energy Technology Data Exchange (ETDEWEB)
Feswick, A., E-mail: afeswick@yahoo.ca [Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); Canadian Rivers Institute, University of New Brunswick, PO Box 5050, Saint John NB, CA (United States); Griffitt, R.J., E-mail: joe.griffitt@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Siebein, K., E-mail: kerry.siebein@nist.gov [Major Analytical Instrumentation Center, University of Florida, PO Box 116400, Gainesville, FL 32611 (United States); Barber, D.S., E-mail: barberd@vetmed.ufl.edu [Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)
2013-04-15
Highlights: ► Daphnia underwent a waterborne exposure of PEG, NH{sub 2} and COOH functionalized quantum dot nanoparticles. ► There was preferential retention of COOH nanoparticles. ► TEM demonstrated that NH{sub 2} and COOH nanoparticles were internalized in cells adjacent to the GI tract. ► This cellular internalization was confirmed using energy dispersive spectroscopy. -- Abstract: Nanomaterials are a diverse group of compounds whose inevitable release into the environment warrants study of the fundamental processes that govern the ingestion, uptake and accumulation in aquatic organisms. Nanomaterials have the ability to transfer to higher trophic levels in aquatic ecosystems, and recent evidence suggests that the surface chemistry of both the nanoparticle and biological membrane can influence uptake kinetics. Therefore, our study investigates the effect of surface functionalization on uptake, internalization and depuration in Daphnia spp. Uncharged (polyethylene glycol; PEG), positively charged (amino-terminated: NH{sub 2}) and negatively charged (carboxyl-modified; COOH) cadmium selenide/zinc sulfide quantum dots were used to monitor ingestion, uptake and depuration of nanometals in Daphnia magna and Ceriodaphnia dubia over 24 h of exposure. These studies demonstrated that particles with higher negative charge (COOH quantum dots) were taken up to a greater extent by Daphnia (259.17 ± 17.70 RFU/20 Daphnia) than either the NH{sub 2} (150.01 ± 18.91) or PEG quantum dots (95.17 ± 9.78), however this is likely related to the functional groups attached to the nanoparticles as there were no real differences in zeta potential. Whole body fluorescence associates well with fluorescent microscopic images obtained at the 24 h timepoint. Confocal and electron microscopic analysis clearly demonstrated that all three types of quantum dots could cross the intestinal epithelial barrier and be translocated to other cells. Upon cessation of exposure, elimination of
Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field
International Nuclear Information System (INIS)
Haegele, G.
1979-01-01
The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)
Green's function for electrons in a narrow quantum well in a parallel magnetic field
International Nuclear Information System (INIS)
Horing, Norman J. Morgenstern; Glasser, M. Lawrence; Dong Bing
2005-01-01
Electron dynamics in a narrow quantum well in a parallel magnetic field of arbitrary strength are examined here. We derive an explicit analytical closed-form solution for the Green's function of Landau-quantized electrons in skipping states of motion between the narrow well walls coupled with in-plane translational motion and hybridized with the zero-field lowest subband energy eigenstate. Such Landau-quantized modes are not uniformly spaced
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
International Nuclear Information System (INIS)
Wu, C.-H.; Lee, D.-S.
2005-01-01
We employ the Schwinger-Keldysh formalism to study the nonequilibrium dynamics of the mirror with perfect reflection moving in a quantum field. In the case where the mirror undergoes the small displacement, the coarse-grained effective action is obtained by integrating out the quantum field with the method of influence functional. The semiclassical Langevin equation is derived, and is found to involve two levels of backreaction effects on the dynamics of mirrors: radiation reaction induced by the motion of the mirror and backreaction dissipation arising from fluctuations in quantum field via a fluctuation-dissipation relation. Although the corresponding theorem of fluctuation and dissipation for the case with the small mirror's displacement is of model independence, the study from the first principles derivation shows that the theorem is also independent of the regulators introduced to deal with short-distance divergences from the quantum field. Thus, when the method of regularization is introduced to compute the dissipation and fluctuation effects, this theorem must be fulfilled as the results are obtained by taking the short-distance limit in the end of calculations. The backreaction effects from vacuum fluctuations on moving mirrors are found to be hardly detected while those effects from thermal fluctuations may be detectable
Energy Technology Data Exchange (ETDEWEB)
Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
2010-07-15
To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Bros, J.
1980-01-01
In this lecture, we present some of the ideas of a global consistent approach to the analytic and monodromic structure of Green's functions and scattering amplitudes of elementary particles on the basis of general quantum field theory. (orig.)
Morgenstern Horing, Norman J
2017-01-01
This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...
Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A
2017-08-01
Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.
Some properties of the functions satisfying Bell's inequalities in relation to quantum mechanics
International Nuclear Information System (INIS)
Roussel, P.
1986-01-01
A detailed comparison of Bell's inequalities (B.I.) and quantum mechanics (Q.M.) in an E.P.R.B. situation is given. It is first shown that Q.M. violates the original (3 directions) or generalized (4 directions) B.I. almost everywhere. The properties of functions satisfying the original B.I. are then derived and compared to Q.M. predictions. Finally, the behaviour of functions which satisfy B.I. and attempt to fit Q.M. is described. Altogether, an incompatibility is shown to be stronger than that resulting from just the usual examination
On the asymptotics of the Gell-Mann-Low function in quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.; Popov, V.S.
2003-01-01
The problem of reconstructing the Gell-Mann-Low function in quantum field theory starting with its asymptotic series with the first terms calculated by perturbation theory is discussed. And though in a strict mathematical sense this is not unambiguously realizable, under reasonable assumptions about the function it appears to be possible to reconstruct it in some finite interval of g. However, any attempts to find its asymptotics as g→∞ from our point of view are not justified. We also present the conditions under which the sum of the asymptotic series may decrease at infinity
Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field
International Nuclear Information System (INIS)
Philipp, W.
1975-01-01
The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de
Dominant role of many-body effects on the carrier distribution function of quantum dot lasers
Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.
2016-03-01
The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Shidkov, E.P.
1987-01-01
The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated
Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides
Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.
2018-03-01
Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.
Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G
2016-03-01
In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.
Kwato-Njock, K
2002-01-01
A search is conducted for the determination of expectation values of r sup q between Dirac and quasirelativistic radial wave functions in the quantum-defect approximation. The phenomenological and supersymmetry-inspired quantum-defect models which have proven so far to yield accurate results are used. The recursive structure of formulae derived on the basis of the hypervirial theorem enables us to develop explicit relations for arbitrary values of q. Detailed numerical calculations concerning alkali-metal-like ions of the Li-, Na- and Cu-iso electronic sequences confirm the superiority of supersymmetry-based quantum-defect theory over quantum-defect orbital and exact orbital quantum number approximations. It is also shown that relativistic rather than quasirelativistic treatment may be used for consistent inclusion of relativistic effects.
Kwato-Njock, M G; Oumarou, B
2002-01-01
A search is conducted for the determination of expectation values of $r^q$ between Dirac and quasirelativistic radial wave functions in the quantum-defect approximation. The phenomenological and supersymmetry-inspired quantum-defect models which have proven so far to yield accurate results are used. The recursive structure of formulae derived on the basis of the hypervirial theorem enables us to develop explicit relations for arbitrary values of $q$. Detailed numerical calculations concerning alkali-metal-like ions of the Li-, Na- and Cu-iso electronic sequences confirm the superiority of supersymmetry-based quantum-defect theory over quantum-defect orbital and exact orbital quantum number approximations. It is also shown that relativistic rather than quasirelativistic treatment may be used for consistent inclusion of relativistic effects.
Partition functions for quantum gravity, black holes, elliptic genera and Lie algebra homologies
Energy Technology Data Exchange (ETDEWEB)
Bonora, L., E-mail: bonora@sissa.it [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A., E-mail: abyts@uel.br [Departamento de Fisica, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina (Brazil)
2011-11-11
There is a remarkable connection between quantum generating functions of field theory and formal power series associated with dimensions of chains and homologies of suitable Lie algebras. We discuss the homological aspects of this connection with its applications to partition functions of the minimal three-dimensional gravities in the space-time asymptotic to AdS{sub 3}, which also describe the three-dimensional Euclidean black holes, the pure N=1 supergravity, and a sigma model on N-fold generalized symmetric products. We also consider in the same context elliptic genera of some supersymmetric sigma models. These examples can be considered as a straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to partition functions represented by means of formal power series that encode Lie algebra properties.
International Nuclear Information System (INIS)
Zhao, Peiji; Horing, Norman J.M.; Woolard, Dwight L.; Cui, H.L.
2003-01-01
We present a nonequilibrium Green's function formulation of many-body quantum transport theory for multi-band semiconductor systems with a phonon bath. The equations are expressed exactly in terms of single particle nonequilibrium Green's functions and self-energies, treating the open electron-hole system in weak interaction with the bath. A decoupling technique is employed to separate the individual band Green's function equations of motion from one another, with the band-band interaction effects embedded in ''cross-band'' self-energies. This nonequilibrium Green's function formulation of quantum transport theory is amenable to solution by parallel computing because of its formal decoupling with respect to inter-band interactions. Moreover, this formulation also permits coding the simulator of an n-band semiconductor in terms of that for an (n-1)-band system, in step with the current tendency and development of programming technology. Finally, the focus of these equations on individual bands provides a relatively direct route for the determination of carrier motion in energy bands, and to delineate the influence of intra- and inter-band interactions. A detailed description is provided for three-band semiconductor systems
Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.
Ebrish, Mona A; Olson, Eric J; Koester, Steven J
2014-07-09
The concentration-dependent density of states in graphene allows the capacitance in metal-oxide-graphene structures to be tunable with the carrier concentration. This feature allows graphene to act as a variable capacitor (varactor) that can be utilized for wireless sensing applications. Surface functionalization can be used to make graphene sensitive to a particular species. In this manuscript, the effect on the quantum capacitance of noncovalent basal plane functionalization using 1-pyrenebutanoic acid succimidyl ester and glucose oxidase is reported. It is found that functionalized samples tested in air have (1) a Dirac point similar to vacuum conditions, (2) increased maximum capacitance compared to vacuum but similar to air, (3) and quantum capacitance "tuning" that is greater than that in vacuum and ambient atmosphere. These trends are attributed to reduced surface doping and random potential fluctuations as a result of the surface functionalization due to the displacement of H2O on the graphene surface and intercalation of a stable H2O layer beneath graphene that increases the overall device capacitance. The results are important for future application of graphene as a platform for wireless chemical and biological sensors.
Time-dependent density functional theory of open quantum systems in the linear-response regime.
Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán
2011-02-21
Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.
International Nuclear Information System (INIS)
Nozawa, Tomohiro; Arakawa, Yasuhiko
2014-01-01
The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)
Snyder, D
2002-01-01
A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.
Computer algebra in quantum field theory integration, summation and special functions
Schneider, Carsten
2013-01-01
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including
Horizon wave function for single localized particles: GUP and quantum black-hole decay
International Nuclear Information System (INIS)
Casadio, Roberto; Scardigli, Fabio
2014-01-01
A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle's energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts. (orig.)
Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots
Douglas-Gallardo, Oscar A.; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban
2018-04-01
Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.
International Nuclear Information System (INIS)
Wyatt, Robert E.; Kouri, Donald J.; Hoffman, David K.
2000-01-01
The quantum trajectory method (QTM) was recently developed to solve the hydrodynamic equations of motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are integrated for N fluid elements (particles) moving under the influence of both the force from the potential surface and from the quantum potential. In this study, distributed approximating functionals (DAFs) are used on a uniform grid to compute the necessary derivatives in the equations of motion. Transformations between the physical grid where the particle coordinates are defined and the uniform grid are handled through a Jacobian, which is also computed using DAFs. A difficult problem associated with computing derivatives on finite grids is the edge problem. This is handled effectively by using DAFs within a least squares approach to extrapolate from the known function region into the neighboring regions. The QTM-DAF is then applied to wave packet transmission through a one-dimensional Eckart potential. Emphasis is placed upon computation of the transmitted density and wave function. A problem that develops when part of the wave packet reflects back into the reactant region is avoided in this study by introducing a potential ramp to sweep the reflected particles away from the barrier region. (c) 2000 American Institute of Physics
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
Electronic structure and correlated wave functions of a few electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)
2015-01-22
The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.
Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.
Lian, Biao; Zhang, Shou-Cheng
2018-02-16
We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.
Some properties of the functions satisfying Bell's inequalities in relation to quantum mechanics
International Nuclear Information System (INIS)
Roussel, P.
1985-01-01
Having recalled the 1935 debate between A. Einstein and N. Bohr about quantum mechanics (Q.M.) the thought-experiment of D. Bohm is described and a new derivation of the Bell's inequalities is established to test the class of theories based on the hypothesis of hidden-parameters in the common past. It is shown that Q.M. violates these inequalities almost everywhere. The general properties of functions satisfying Bell's inequalities are studied in order to compare them to Q.M. predictions as regards derivatives, integrals, values, intervals, amplitudes and finally the overall behaviour: a few of the Bell's functions chosen to approach somehow Q.M. are given. Altogether, in the comparison between Q.M. and functions satisfying Bell's inequalities, an incompatibility is revealed that is stronger then that resulting from consideration of just the inequalities [fr
Method of hyperspherical functions in a few-body quantum mechanics
International Nuclear Information System (INIS)
Dzhibuti, R.I.; Krupennikova, N.B.
1984-01-01
A new method for solving a few-body problem in quantum mechanics based on the expansion of the wave function of many-particle system in terms of basis hyperspherical functions is outlined in the monograph. This method gives the possibility to obtain important results in nuclear physics. A materials of general character is presented which can be useful when considering a few-body problem in atomic and molecular physics as well as in elementary particle physics. The paper deals with the theory of hyperspherical functions and the method of expansion in terms of hyperspherical functions basis can be formally considered as a certain generalization of the partial expansion method in the two-body problem. The Raynal-Revai theory is stated for the three-body problem and coe-- fficients of unitary transformations for four-particle hyperspherical function coefficients are introduced. Five-particle hyperspherical functions are introduced and an attempt of generalization of the theory for the systems With any number of particles has been made. The rules of plotting symmetrized hyperspherical functions for three and four identical particles are given. Also described is the method of expansion in terms of hyperspherical functions basis in the coordinate and impulse representations for discrete and continuous spectrum, respectively
Energy Technology Data Exchange (ETDEWEB)
Belloni, M., E-mail: mabelloni@davidson.edu [Physics Department, Davidson College, Davidson, NC 28035 (United States); Robinett, R.W., E-mail: rick@phys.psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)
2014-07-01
The infinite square well and the attractive Dirac delta function potentials are arguably two of the most widely used models of one-dimensional bound-state systems in quantum mechanics. These models frequently appear in the research literature and are staples in the teaching of quantum theory on all levels. We review the history, mathematical properties, and visualization of these models, their many variations, and their applications to physical systems.
Spurr, Sophie S; Bayle, Elliott D; Yu, Wenyu; Li, Fengling; Tempel, Wolfram; Vedadi, Masoud; Schapira, Matthieu; Fish, Paul V
2016-09-15
A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cohendet, O.
1989-01-01
We consider a quantum system with a finite number N of states and we show that a Markov process evolving in an 'extended' discrete phase can be associated with the discrete Wigner function of the system. This Wigner function is built using the Weyl quantization procedure on the group Z N xZ N . Moreover we can use this process to compute the quantum mean values as probabilistic expectations of functions of this process. This probabilistic formulation can be seen as a stochastic mechanics in phase space. (orig.)
Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States
Chatterjee, Arpita
2018-02-01
We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation (\\hat {a}) and creation (\\hat {a}^{\\dagger }) operators of the type (s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.
DEFF Research Database (Denmark)
Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer
2011-01-01
Quantum interference (QI) in molecular transport junctions can lead to dramatic reductions of the electron transmission at certain energies. In a recent work [Markussen et al., Nano Lett., 2010, 10, 4260] we showed how the presence of such transmission nodes near the Fermi energy can be predicted...... solely from the structure of a conjugated molecule when the energies of the atomic pz orbitals do not vary too much. Here we relax the assumption of equal on-site energies and generalize the graphical scheme to molecules containing different atomic species. We use this diagrammatic scheme together......, the transmission functions of functionalized aromatic molecules generally display a rather complex nodal structure due to the interplay between molecular topology and the energy of the side group orbital....
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
Band-gap engineering of functional perovskites through quantum confinement and tunneling
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Pandey, Mohnish; Thygesen, Kristian Sommer
2015-01-01
An optimal band gap that allows for a high solar-to-fuel energy conversion efficiency is one of the key factors to achieve sustainability. We investigate computationally the band gaps and optical spectra of functional perovskites composed of layers of the two cubic perovskite semiconductors BaSnO3...... and BaTaO2N. Starting from an indirect gap of around 3.3 eV for BaSnO3 and a direct gap of 1.8 eV for BaTaO2N, different layerings can be used to design a direct gap of the functional perovskite between 2.3 and 1.2 eV. The variations of the band gap can be understood in terms of quantum confinement...
Functional techniques in quantum field theory and two-dimensional models
International Nuclear Information System (INIS)
Souza, C. Farina de.
1985-03-01
Functional methods applied to Quantum Field Theory are studied. It is shown how to construct the Generating Functional using three of the most important methods existent in the literature, due to Feynman, Symanzik and Schwinger. The Axial Anomaly is discussed in the usual way, and a non perturbative method due to Fujikawa to obtain this anomaly in the path integral formalism is presented. The ''Roskies-Shaposnik-Fujikawa's method'', which makes use of Fujikawa's original idea to solve bidimensional models, is introduced in the Schwinger's model, which, in turn, is applied to obtain the exact solution of the axial model. It is discussed briefly how different regularization procedures can affect the theory in question. (author)
Soirat, Arnaud J. A.
Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine
Spin storage in quantum dot ensembles and single quantum dots
International Nuclear Information System (INIS)
Heiss, Dominik
2009-01-01
electron spin lifetimes. The longest measured value is T 1 h =270 μs at B=1.5 T and T=8 K. Based on this spin detection technique in small ensembles, electron spin resonance experiments with the goal to study coherence properties were attempted. After optical charge generation and storage, a spin-conditional absorption of a circularly polarized light pulse tuned to the singly charged quantum dot s-shell absorption converts the spin information of the resident electron to charge information. Subsequently, time-gated photoluminescence directly reveals the charge state of the quantum dot (1e, 2e) and, therefore, the spin orientation of the resident electron. Schottky diode devices suitable for this single dot spin readout scheme were fabricated and characterized with time-gated photoluminescence. The electric field regimes applicable for reset, optical charging and reliable charge storage were identified. Furthermore, the fidelity of charge readout was investigated as a function of excitation wavelength, applied electric field and optical excitation power. Additional measurements using resonant excitation showed that a single quantum dot can be selectively charged with a single electron via optical excitation in its p-shell. The tunneling escape of this optically initialized electron has been determined, proving the feasibility of reliable charge detection in time-resolved measurements. Extrapolated to reasonable storage fields F=20 kV/cm the tunneling time of the electron exceeds seconds. The electron spin relaxation in a single quantum dot has been determined as a function of temperature at B=12 T. (orig.)
Spin storage in quantum dot ensembles and single quantum dots
Energy Technology Data Exchange (ETDEWEB)
Heiss, Dominik
2009-10-15
} in the microsecond range, therefore, comparable with electron spin lifetimes. The longest measured value is T{sub 1}{sup h} =270 {mu}s at B=1.5 T and T=8 K. Based on this spin detection technique in small ensembles, electron spin resonance experiments with the goal to study coherence properties were attempted. After optical charge generation and storage, a spin-conditional absorption of a circularly polarized light pulse tuned to the singly charged quantum dot s-shell absorption converts the spin information of the resident electron to charge information. Subsequently, time-gated photoluminescence directly reveals the charge state of the quantum dot (1e, 2e) and, therefore, the spin orientation of the resident electron. Schottky diode devices suitable for this single dot spin readout scheme were fabricated and characterized with time-gated photoluminescence. The electric field regimes applicable for reset, optical charging and reliable charge storage were identified. Furthermore, the fidelity of charge readout was investigated as a function of excitation wavelength, applied electric field and optical excitation power. Additional measurements using resonant excitation showed that a single quantum dot can be selectively charged with a single electron via optical excitation in its p-shell. The tunneling escape of this optically initialized electron has been determined, proving the feasibility of reliable charge detection in time-resolved measurements. Extrapolated to reasonable storage fields F=20 kV/cm the tunneling time of the electron exceeds seconds. The electron spin relaxation in a single quantum dot has been determined as a function of temperature at B=12 T. (orig.)
Miller, W., Jr.; Li, Q.
2015-04-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.
International Nuclear Information System (INIS)
Miller, W Jr; Li, Q
2015-01-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L 2 of H in terms of an eigenbasis of another symmetry operator L 1 , but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions. (paper)
International Nuclear Information System (INIS)
Finkelstein, D.
1989-01-01
The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics
International Nuclear Information System (INIS)
Luque, N.B.; Woelki, S.; Henderson, D.; Schmickler, W.
2011-01-01
Highlights: · We augment a double-layer model based on integral equations by calculating the interaction parameters with the electrode from quantum density functional theory · Explicit model calculations for Ag(1 1 1) in aqueous solutions give at least qualitatively good results for the particle profiles · Ours is the only method which allows the calculation of capacity-charge characteristics. · We obtain reasonable values for the Helmholtz (inner-layer) capacity. - Abstract: We have complemented the singlet reference interaction site model for the electric double layer by quantum chemical calculations for the interaction of ions and solvents with an electrode. Specific calculations have been performed for an aqueous solution of NaCl in contact with a Ag(1 1 1) electrode. The particle profiles near the electrode show the specific adsorption of Cl - ions, but not of Na + , and are at least in qualitative agreement with those obtained by molecular dynamics. Including the electronic response of the silver surface into the model results in reasonable capacity-charge characteristics.
Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system
Energy Technology Data Exchange (ETDEWEB)
He, Yuezhen; Wang, Xiaoxun; Sun, Jian; Jiao, Shoufeng; Chen, Hongqi; Gao, Feng; Wang, Lun, E-mail: wanglun@mail.ahnu.edu.cn
2014-01-31
Graphical abstract: -- Highlights: •Hemin is assembled onto the surfaces of graphene quantum dots (GQDs). •With the aid of hemin, H{sub 2}O{sub 2} could quench the FL signal of GQDs obviously. •Based on this effect, a fluorescent platform is proposed for the sensing of glucose. •The proposed method provides a new pathway to explore practical application of GQDs. -- Abstract: In the present work, a highly sensitive and specific fluorescent biosensor for blood glucose monitoring is developed based on hemin-functionalized graphene quantum dots (GQDs) and glucose oxidase (GOx) system. The GQDs which are simply prepared by pyrolyzing citric acid exhibit strong fluorescence and good water-solubility. Due to the noncovalent assembly between hemin and GQDs, the addition of hemin can make hydrogen peroxide (H{sub 2}O{sub 2}) to destroy the passivated surface of GQDs, leading to significant fluorescence quenching of GQDs. Based on this effect, a novel fluorescent platform is proposed for the sensing of glucose. Under the optimized conditions, the linear range of glucose is from 9 to 300 μM, and the limit of detection is 0.1 μM. As unique properties of GQDs, the proposed biosensor is green, simple, cost-efficient, and it is successfully applied to the determination of glucose in human serum. In addition, the proposed method provides a new pathway to further design the biosensors based on the assembly of GQDs with hemin for detection of biomolecules.
Energy Technology Data Exchange (ETDEWEB)
Toloza, Carlos A.T.; Khan, Sarzamin; Silva, Renan L.D. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900 (Brazil); Romani, Eric C.; Freire, F.L. [Department of Physics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900 (Brazil); Aucélio, Ricardo Q., E-mail: aucelior@puc-rio.br [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900 (Brazil)
2016-11-15
The determination of captopril is proposed using graphene quantum dots produced by the pyrolysis of citric acid and glutathione (GSH-GQDs). Captopril induces both quenching and spectral red-shifting in the photoluminescence from aqueous dispersions of GSH-GQDs. By employing Fe{sup 3+} as mediator (that enables signal quenching of GSH-GQDs), the presence of captopril restored the photoluminescence of quantum dots. Under optimized experimental conditions, the signal quenching from the GSH-GQDs as function of the concentration of captopril showed a linear response range covering three orders of magnitude (10{sup −6} to 10{sup −4} mol L{sup −1}). The proposed approaches were tested by determining captopril in simulated samples and in commercial pharmaceutical formulations. The measurement of either the spectral shifting observed of the GSH-GQDs probe or the photoluminescence switch on/off using GQDs-GSH-Fe{sup 3+} resulted in satisfactory recoveries of captopril, showing the quantitative sensing potential.
Non-commutative algebra of functions of 4-dimensional quantum Hall droplet
International Nuclear Information System (INIS)
Chen Yixin; Hou Boyu; Hou Boyuan
2002-01-01
We develop the description of non-commutative geometry of the 4-dimensional quantum Hall fluid's theory proposed recently by Zhang and Hu. The non-commutative structure of fuzzy S 4 , which is the base of the bundle S 7 obtained by the second Hopf fibration, i.e., S 7 /S 3 =S 4 , appears naturally in this theory. The fuzzy monopole harmonics, which are the essential elements in the non-commutative algebra of functions on S 4 , are explicitly constructed and their obeying the matrix algebra is obtained. This matrix algebra is associative. We also propose a fusion scheme of the fuzzy monopole harmonics of the coupling system from those of the subsystems, and determine the fusion rule in such fusion scheme. By products, we provide some essential ingredients of the theory of SO(5) angular momentum. In particular, the explicit expression of the coupling coefficients, in the theory of SO(5) angular momentum, are given. We also discuss some possible applications of our results to the 4-dimensional quantum Hall system and the matrix brane construction in M-theory
Fröb, Markus B.
2018-02-01
We study a proposal for gauge-invariant correlation functions in perturbative quantum gravity, which are obtained by fixing the geodesic distance between points in the fluctuating geometry. These correlation functions are non-local and strongly divergent, and we show how to renormalise them by performing a ‘wave function renormalisation’ of the geodesic embedding coordinates. The result is finite and gauge-independent, but displays unusual features such as double logarithms at one-loop order.
Green functions and dimensional reduction of quantum fields on product manifolds
International Nuclear Information System (INIS)
Haba, Z
2008-01-01
We discuss Euclidean Green functions on product manifolds P=N x M. We show that if M is compact and N is not compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R D-1 x S β , where S β is a circle of radius β, then the result reduces to the well-known approximation of the D-dimensional finite temperature quantum field theory by (D - 1)-dimensional one in the high-temperature limit. Analytic continuation of Euclidean fields is discussed briefly
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Directory of Open Access Journals (Sweden)
Muhammad Mus-’ab Anas
2015-01-01
Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.
The functional renormalization group for interacting quantum systems with spin-orbit interaction
International Nuclear Information System (INIS)
Grap, Stephan Michael
2013-01-01
We studied the influence of spin-orbit interaction (SOI) in interacting low dimensional quantum systems at zero temperature within the framework of the functional renormalization group (fRG). Among the several types of spin-orbit interaction the so-called Rashba spin-orbit interaction is especially intriguing for future spintronic applications as it may be tuned via external electric fields. We investigated its effect on the low energy physics of an interacting quantum wire in an applied Zeeman field which is modeled as a generalization of the extended Hubbard model. To this end we performed a renormalization group study of the two particle interaction, including the SOI and the Zeeman field exactly on the single particle level. Considering the resulting two band model, we formulated the RG equations for the two particle vertex keeping the full band structure as well as the non trivial momentum dependence of the low energy two particle scattering processes. In order to solve these equations numerically we defined criteria that allowed us to classify whether a given set of initial conditions flows towards the strongly coupled regime. We found regions in the models parameter space where a weak coupling method as the fRG is applicable and it is possible to calculate additional quantities of interest. Furthermore we analyzed the effect of the Rashba SOI on the properties of an interacting multi level quantum dot coupled to two semi in nite leads. Of special interest was the interplay with a Zeeman field and its orientation with respect to the SOI term. We found a renormalization of the spin-orbit energy which is an experimental quantity used to asses SOI effects in transport measurements, as well as renormalized effective g factors used to describe the Zeeman field dependence. In particular in asymmetrically coupled systems the large parameter space allows for rich physics which we studied by means of the linear conductance obtained via the generalized Landauer
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Energy Technology Data Exchange (ETDEWEB)
Silverstone, H.J.; Nakai, S.; Harris, J.G.
1985-09-01
Asymptotic expansions for Airy functions and more generally confluent hypergeometric functions, which are of fundamental importance in semiclassical quantum mechanics, are summable. The Stokes lines of the expansions are cuts of the Borel sums of the power series occurring in the expansions. At a Stokes line on which the function is continuous, the asymptotic expansions change discontinuously, but their composite sums do not: a fact that greatly clarifies the role of the Stokes line. On a Stokes line itself, it is still possible to evaluate the asymptotic expansion by Borel summation via analytic continuation, and as a consequence complex expansions may have real sums, and vice versa. This observation has important implications for the significance and use of asymptotic expansions recently derived for the resonances of the LoSurdo-Stark effect and for the energy eigenvalues of H/sub 2/ /sup +/. For both of these problems the physical values of the expansion parameters, the electric field strength and the reciprocal of the internuclear distance, lie on Stokes lines.
International Nuclear Information System (INIS)
Ghirardi, G.C.; Rimini, A.; Weber, T.
1987-06-01
It is shown that the assumption of a stochastic localization process for the quantum wave function is essentially different from the suppression of coherence over macroscopic distances arising from the interaction with the environment and allows for a conceptually complete derivation of the classical behaviour of macroscopic bodies. (author). 4 refs
Floris, F.; Filippi, Claudia; Amovilli, C.
2012-01-01
We present density functional theory (DFT) and quantum Monte Carlo (QMC) calculations of the glutamic acid and glutamate ion in vacuo and in various dielectric continuum media within the polarizable continuum model (PCM). In DFT, we employ the integral equation formalism variant of PCM while, in
Fracchia, F.; Filippi, Claudia; Amovilli, C.
2014-01-01
We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we
Czech Academy of Sciences Publication Activity Database
Horáček, Miroslav
2005-01-01
Roč. 76, č. 9 (2005), 093704:1-6 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA202/03/1575 Keywords : electron bombarded CCD * modulation transfer function * detective quantum efficiency Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.235, year: 2005
Remarks on time-dependent [current]-density functional theory for open quantum systems.
Yuen-Zhou, Joel; Aspuru-Guzik, Alán
2013-08-14
Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.
Haghighi Mood, Kaveh; Lüchow, Arne
2017-08-17
Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.
Work function and quantum efficiency study of metal oxide thin films on Ag(100)
Chang, V.; Noakes, T. C. Q.; Harrison, N. M.
2018-04-01
Increasing the quantum efficiency (QE) of metal photocathodes is in the design and development of photocathodes for free-electron laser applications. The growth of metal oxide thin films on certain metal surfaces has previously been shown to reduce the work function (WF). Using a photoemission model B. Camino et al. [Comput. Mater. Sci. 122, 331 (2016), 10.1016/j.commatsci.2016.05.025] based on the three-step model combined with density functional theory calculations we predict that the growth of a finite number of MgO(100) or BaO(100) layers on the Ag(100) surface increases significantly the QE compared with the clean Ag(100) surface for a photon energy of 4.7 eV. Different mechanisms for affecting the QE are identified for the different metal oxide thin films. The addition of MgO(100) increases the QE due to the reduction of the WF and the direct excitation of electrons from the Ag surface to the MgO conduction band. For BaO(100) thin films, an additional mechanism is in operation as the oxide film also photoemits at this energy. We also note that a significant increase in the QE for photons with an energy of a few eV above the WF is achieved due to an increase in the inelastic mean-free path of the electrons.
Ishizaki, Akihito; Tanimura, Yoshitaka
2008-05-01
Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.
Kadioglu, Yelda; Santana, Juan A.; Özaydin, H. Duygu; Ersan, Fatih; Aktürk, O. Üzengi; Aktürk, Ethem; Reboredo, Fernando A.
2018-06-01
We have studied the structural stability of monolayer and bilayer arsenene (As) in the buckled (b) and washboard (w) phases with diffusion quantum Monte Carlo (DMC) and density functional theory (DFT) calculations. DMC yields cohesive energies of 2.826(2) eV/atom for monolayer b-As and 2.792(3) eV/atom for w-As. In the case of bilayer As, DMC and DFT predict that AA-stacking is the more stable form of b-As, while AB is the most stable form of w-As. The DMC layer-layer binding energies for b-As-AA and w-As-AB are 30(1) and 53(1) meV/atom, respectively. The interlayer separations were estimated with DMC at 3.521(1) Å for b-As-AA and 3.145(1) Å for w-As-AB. A comparison of DMC and DFT results shows that the van der Waals density functional method yields energetic properties of arsenene close to DMC, while the DFT + D3 method closely reproduced the geometric properties from DMC. The electronic properties of monolayer and bilayer arsenene were explored with various DFT methods. The bandgap values vary significantly with the DFT method, but the results are generally qualitatively consistent. We expect the present work to be useful for future experiments attempting to prepare multilayer arsenene and for further development of DFT methods for weakly bonded systems.
Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.
Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A
2018-05-25
The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.
Non-local ground-state functional for quantum spin chains with translational broken symmetry
Energy Technology Data Exchange (ETDEWEB)
Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica
2011-07-01
Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to
Non-local ground-state functional for quantum spin chains with translational broken symmetry
International Nuclear Information System (INIS)
Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.
2011-01-01
Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to
Directory of Open Access Journals (Sweden)
Jerrica L. Breindel
2017-09-01
Full Text Available Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment.
International Nuclear Information System (INIS)
Balzer, Matthias
2008-01-01
The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable improvement of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results. (orig.)
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
International Nuclear Information System (INIS)
Kiefer, C.
2004-01-01
The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)
Ying, Mingsheng; Yu, Nengkun; Feng, Yuan
2012-01-01
A remarkable difference between quantum and classical programs is that the control flow of the former can be either classical or quantum. One of the key issues in the theory of quantum programming languages is defining and understanding quantum control flow. A functional language with quantum control flow was defined by Altenkirch and Grattage [\\textit{Proc. LICS'05}, pp. 249-258]. This paper extends their work, and we introduce a general quantum control structure by defining three new quantu...
Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities
Directory of Open Access Journals (Sweden)
Jeffrey C. McCallum
2012-01-01
Full Text Available Interest in single-ion implantation is driven in part by research into development of solid-state devices that exhibit quantum behaviour in their electronic or optical characteristics. Here, we provide an overview of international research work on single ion implantation and single ion detection for development of electronic devices for quantum computing. The scope of international research into single ion implantation is presented in the context of our own research in the Centre for Quantum Computation and Communication Technology in Australia. Various single ion detection schemes are presented, and limitations on dopant placement accuracy due to ion straggling are discussed together with pathways for scale-up to multiple quantum devices on the one chip. Possible future directions for ion implantation in quantum computing and communications are also discussed.
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
International Nuclear Information System (INIS)
Dong Jianping; Xu Mingyu
2008-01-01
The space fractional Schroedinger equation with a finite square potential, periodic potential, and delta-function potential is studied in this paper. We find that the continuity or discontinuity condition of a fractional derivative of the wave functions should be considered to solve the fractional Schroedinger equation in fractional quantum mechanics. More parity states than those given by standard quantum mechanics for the finite square potential well are obtained. The corresponding energy equations are derived and then solved by graphical methods. We show the validity of Bloch's theorem and reveal the energy band structure for the periodic potential. The jump (discontinuity) condition for the fractional derivative of the wave function of the delta-function potential is given. With the help of the jump condition, we study some delta-function potential fields. For the delta-function potential well, an alternate expression of the wave function (the H function form of it was given by Dong and Xu [J. Math. Phys. 48, 072105 (2007)]) is obtained. The problems of a particle penetrating through a delta-function potential barrier and the fractional probability current density of the particle are also discussed. We study the Dirac comb and show the energy band structure at the end of the paper
Directory of Open Access Journals (Sweden)
Arūnas Jagminas
2017-08-01
Full Text Available Biocompatible superparamagnetic iron oxide nanoparticles (NPs through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM, atomic force microscopy (AFM, FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS, and X-ray photoelectron spectroscopy (XPS of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.
Measurement of the lepton τ spectral functions and applications to quantum chromodynamic
International Nuclear Information System (INIS)
Hoecker, A.
1997-01-01
This thesis presents measurements of the τ vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e + e - annihilation. A combined fit of the pion form factor from τ decays and e + e - data is performed using different parametrizations. The mass and the width of the ρ ± (770) and the ρ 0 (770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M ρ ± (770) - M ρ 0 (770) =(0.0±1.0) MeV/c 2 and Γ ρ ± (770) - Γ ρ 0 (770) =(0.1 ± 1.9) MeV/c 2 . Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be α E =(2.68±0.91) x 10 -4 fm 3 . The τ vector and axial-vector hadronic widths and certain spectral moments are exploited to measure α s and non-perturbative contributions at the τ mass scale. The best, and experimentally and theoretically most robust, determination of α s (M τ ) is obtained from the inclusive (V + A) fit that yields α s (M τ )= 0.348±0.017 giving α s (M Z )=0.1211 ± 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the τ hadronic width to masses smaller that the τ mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6.9±0.5. The vector spectral functions are used to improve the precision of the experimental determination of the hadronic contribution to the anomalous magnetic moment of the muon a μ =(g - 2)/2 and to the running of the QED
One- and two-particle correlation functions in the dynamical quantum cluster approach
International Nuclear Information System (INIS)
Hochkeppel, Stephan
2008-01-01
This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes
Isar, Aurelian
1995-01-01
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.
Wave function analysis of type-II self-assembled quantum dot structures using magneto-optics
International Nuclear Information System (INIS)
Godoy, Marcio Peron Franco de; Nakaema, Marcelo K.K.; Gomes, Paulo F.; Iikawa, Fernando; Brasil, Maria Jose S.P.; Bortoleto, Jose Roberto R.; Cotta, Monica A.; Ribeiro, Evaldo; Medeiros-Ribeiro, Gilberto; Marques, Gilmar E.; Bittencourt, A.C.R.
2004-01-01
Full text: Recently, self-assembled quantum dots have attracted considerable attention for their potential for device applications. Type II interface, in particular, present interesting properties due to the space separation of the carriers. One of the carriers is confined at the lower band gap layer and the other remains at the barrier layers and is only localized by the Coulomb attraction. An essential information for using type II quantum wells and quantum dots on technological applications is the localization of the carrier wave function, which is an experimentally difficult parameter to be measured. Some techniques have been proposed to map the wave functions in quantum dots such as magneto-tunneling spectroscopy and near- field scanning optical microscopy. These techniques involve however a very complex experimental apparatus and sample processing. The magneto-exciton transition can be used as an alternative tool to investigate the exciton wave function distribution, since this distribution has a strong influence on the diamagnetic shift and Zeeman splitting. In this work, we present magneto-optical studies of In P/GaAs type II self-assembled quantum dots, where the electron is strongly confined at the In P, while the hole is weakly localized at the GaAs barrier due to the Coulombic attraction from the electrons. This scenery is very distinct from type I systems. The weaker hole confinement should alter the valence band mixing resulting in a different valence band contribution on the Zeeman splitting as compared to type I systems. Based on the results of the magneto-exciton emission from the wetting layer and from the individual dots, we obtained interesting results concerning the wave function distribution in our system. We discuss the localization of the hole wave function along the growth direction based on the measured Zeeman splitting and the in-plane wave function distribution, based on the observed diamagnetic shift. A remarkable result is that the
International Nuclear Information System (INIS)
Child, M S; Hiyama, M
2007-01-01
It is shown that the inherent arbitrariness in the construction of basis functions in quantum defect theory allows a choice that eliminates the occurrence of false roots of the quantization condition, with energies below the minimum of the channel potential. Comparisons are given with the well-known Ham procedure and with the more recent generalization to arbitrary fields by Jungen and Texier. The significance of the results for ab initio R matrix/MQDT studies is also discussed
Experimental tests of the properties of the quantum mechanical wave function
International Nuclear Information System (INIS)
Tarozzi, G.
1985-01-01
A new experimental proposal on the wave-particle dualism is discussed, unifying the two different classes of experiments recently advanced to detect the physical properties of quantum waves of producing interference or stimulated emission
Introduction to quantum groups
International Nuclear Information System (INIS)
Sudbery, A.
1996-01-01
These pedagogical lectures contain some motivation for the study of quantum groups; a definition of ''quasi triangular Hopf algebra'' with explanations of all the concepts required to build it up; descriptions of quantised universal enveloping algebras and the quantum double; and an account of quantised function algebras and the action of quantum groups on quantum spaces. (author)
Energy Technology Data Exchange (ETDEWEB)
Bastos-Arrieta, Julio, E-mail: julio.bastos@upc.edu [Department of Chemical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muñoz, Jose, E-mail: josemaria.munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Stenbock-Fermor, Anja, E-mail: stenbock@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Muñoz, Maria, E-mail: Maria.Munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muraviev, Dmitri N., E-mail: Dimitri.Muraviev@uab.es [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Céspedes, Francisco, E-mail: francisco.cespedes@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Tsarkova, Larisa A., E-mail: tsarkova@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Baeza, Mireia, E-mail: MariaDelMar.Baeza@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain)
2016-04-15
Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.
International Nuclear Information System (INIS)
Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia
2016-01-01
Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.
Ryan, Robert G; Stacey, Alastair; O'Donnell, Kane M; Ohshima, Takeshi; Johnson, Brett C; Hollenberg, Lloyd C L; Mulvaney, Paul; Simpson, David A
2018-04-18
Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp 2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
Energy Technology Data Exchange (ETDEWEB)
Blanco, E., E-mail: eduardo.blanco@uca.es; Blanco, G.; Gonzalez-Leal, J. M.; Barrera, M. C.; Domínguez, M.; Ramirez-del-Solar, M. [University of Cádiz, Institute of Electron Microscopy and Materials (Spain)
2015-05-15
Graphene quantum dots (GQDs) were prepared using a top-down approach with a green microwave-assisted hydrothermal synthesis from ultrathin graphite, previously ultrasound delaminated. Results obtained by transmission electron microscopy and atomic force microscopy indicate that the so-fabricated GQDs are plates with 6 nm of average diameter, mostly single- or bi-layered. Photoluminescence characterization shows that the strongest emission occurs at 410–415 nm wavelength when the samples are excited at 310–320 nm wavelength. In addition to these down-conversion features, GQDs also exhibit up-conversion photoluminescence when excited in the range 560–800 nm wavelength, with broad emission peaks at 410–450 nm wavelength. Analysis of X-ray photoelectron spectroscopy measurements indicates a higher proportion of C–C sp{sup 2} than sp{sup 3} bonds, with the sp{sup 3} ones mainly located at the GQD surfaces. Also evidences of C–O and C–N bonds at the GQD surface have been observed. The combination of these results with Raman and ultraviolet–visible absorption experiments allows envisaging the GQDs to be composed of amino-functionalized sp{sup 2} islands with a high degree of surface oxidation. This would explain the photoluminescent properties observed in the samples under study. The combined up- and down-conversion photoluminescence processes would made these GQDs a powerful energy-transfer component in GQDs–TiO{sub 2} nanocomposite systems, which could be used in photocatalyst devices with superior performance compared to simple TiO{sub 2} systems.
Liu, Yihua; Inoue, Yuuki; Ishihara, Kazuhiko
2015-11-01
To add novel functionality to quantum dots (QDs), we synthesized water-soluble and pH-responsive block-type polymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were composed of cytocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer segments, which contain a small fraction of active ester groups and can be used to conjugate biologically active compounds to the polymer, and pH-responsive poly(2-(N,N-diethylamino) ethyl methacrylate (DEAEMA)) segments. One terminal of the polymer chain had a hydrophobic alkyl group that originated from the RAFT initiator. This hydrophobic group can bind to the hydrophobic layer on the QD surface. A fluorescent dye was conjugated to the polymer chains via the active ester group. The block-type polymers have an amphiphilic nature in aqueous medium. The polymers were thus easily bound to the QD surface upon evaporation of the solvent from a solution containing the block-type polymer and QDs, yielding QD/fluorescence dye-conjugated polymer hybrid nanoparticles. Fluorescence resonance energy transfer (FRET) between the QDs (donors) and the fluorescent dye molecules (acceptors) was used to obtain information on the conformational dynamics of the immobilized polymers. Higher FRET efficiency of the QD/fluorescent dye-conjugated polymer hybrid nanoparticles was observed at pH 7.4 as compared to pH 5.0 due to a stretching-shrinking conformational motion of the poly(DEAEMA) segments in response to changes in pH. We concluded that the block-type MPC polymer-modified nanoparticles could be used to evaluate the pH of cells via FRET fluorescence based on the cytocompatibility of the MPC polymer. Copyright © 2015 Elsevier B.V. All rights reserved.
Nanocomposites of phosphonic-acid-functionalized polyethylenes with inorganic quantum dots.
Rünzi, Thomas; Baier, Moritz C; Negele, Carla; Krumova, Marina; Mecking, Stefan
2015-01-01
Insertion of diethyl vinyl phosphonates and free vinyl phosphonic acid, respectively, into [(P^O)Pd(Me)(dmso)] ((P^O) = κ(2)-P,O-Ar2PC6H4SO2O with Ar = 2-MeOC6H4) (1-dmso) occurs in a 2,1- as well as 1,2-fashion, to form a four-and a five-membered chelate [(P^O)Pd{κ(2)-C,O-CH(P(O)(OR)2)CH2CH3}] and [(P^O)Pd{κ(2)-C,O-CH2CH(P(O)(OR)2)CH3}] (R = H, Et). No decomposition or other reactions of 1 by free phosphonic acid moieties occur. Copolymerization in a pressure reactor by 1-dmso yields linear random poly(ethylene-co-diethyl vinyl phosphonate) and poly(ethylene-co-vinyl phosphonic acid). In these copolymerizations, reversible coordination of the phosphonate moieties of free monomer as well as chelate formation by incorporated monomer retards chain growth as also evidenced by relative binding studies of diethyl phosphonate towards 1. Post-polymerization emulsification of poly(ethylene-co-vinyl phosphonic acid) together with CdSe/CdS quantum dots (QDs) yields submicron (ca. 50 nm from dynamic light scattering (DLS) and transmission electron microscopy (TEM)) polymer particles with the QDs embedded in the functionalized polyethylene in a nonaggregated fashion. This embedding benefits the fluorescence behavior in terms of continuous emission and life-time as revealed by wide-field fluorescence measurements. These composite particle dispersions are employed as a ″masterbatch" together with an aqueous high density polyethylene (HDPE) dispersion to generate thin films (by spin-coating) and bulk materials (from the melt), respectively, in which the inorganic nanoparticles remain highly disperse. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Yun Chen
Full Text Available Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide functionalized QDs (VQDs from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor [Formula: see text] (TNF-[Formula: see text] treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-[Formula: see text]-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Time Evolution Of The Wigner Function In Discrete Quantum Phase Space For A Soluble Quasi-spin Model
Galetti, D
2000-01-01
Summary: The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wigner function is written for some chosen states associated to discrete angle and angular momentum variables, and the time evolution is numerically calculated using the discrete von Neumann-Liouville equation. Direct evidences in the time evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with an $SU(2)$-based semiclassical continuous approach to the Lipkin model is also presented.
International Nuclear Information System (INIS)
Santos, Beate S.; Farias, Patricia M.A. de; Menezes, Frederico D. de; Ferreira, Ricardo C. de; Junior, Severino A.; Figueiredo, Regina C.B.Q.; de Carvalho, Luiz B. Jr.; Beltrao, Eduardo I.C.
2006-01-01
We report the use of CdS/Cd(OH) 2 quantum dots functionalized with glutaraldehyde and conjugated to concanavalin-A (Con-A) lectin to investigate cell alterations regarding carbohydrate profile in human mammary tissues diagnosed as fibroadenoma (benigne tumor). The Con-A lectin is a biomolecule which binds specifically to glucose/mannose residues present in the cellular membrane. These bioconjugated-particles were incubated with tissue sections of normal and to Fibroadenoma, a benign type of mammary tumor. The tissue sections were deparafinized, hydrated in graded alcohol and treated with a solution of Evans Blue in order to avoid autofluorescence. The fluorescence intensity of QD-Con-A stained tissues showed different patterns which reflect the carbohydrate expression of glucose/mannose in fibroadenoma when compared to the detection of the normal carbohydrate expression. The pattern of inespecific labeling of the tissues with glutharaldehyde functionalized CdS/Cd(OH) 2 quantum dots is compared to the targeting driven by the Con-A lectin. The preliminary findings reported here support the use of CdS/Cd(OH) 2 quantum dots as specific probes of cellular alterations possibiliting their use in diagnostics. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum-like model of brain's functioning: decision making from decoherence.
Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei
2011-07-21
We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantum random oracle model for quantum digital signature
Shang, Tao; Lei, Qi; Liu, Jianwei
2016-10-01
The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
Gupta, Ved Prakash; Sunder, V S
2015-01-01
This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann’s foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator space...
Energy Technology Data Exchange (ETDEWEB)
Azevedo, G.; Monte, A. F. G.; Reis, A. F.; Messias, D. N. [Laboratório de Espectroscopia Óptica, Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902 (Brazil)
2014-11-17
The study of the spatial photon migration as a function of the concentration brings into attention the problem of the energy transfer in quantum dot embedded systems. By measuring the photon propagation and its spatial dependence, it is possible to understand the whole dynamics in a quantum dot system, and also improve their concentration dependence to maximize energy propagation due to radiative and non-radiative processes. In this work, a confocal microscope was adapted to scan the spatial distribution of photoluminescence from CdSe-ZnS core-shell quantum dots in colloidal solutions. The energy migration between the quantum dots was monitored by the direct measurement of the photon diffusion length, according to the diffusion theory. We observed that the photon migration length decreases by increasing the quantum dot concentration, this kind of behavior has been regarded as a signature of Förster resonance energy transfer in the system.
Solvent effects on excited-state structures: A quantum Monte Carlo and density functional study
Guareschi, R.; Floris, F.M.; Amovilli, C.; Filippi, Claudia
2014-01-01
We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and
Directory of Open Access Journals (Sweden)
Marcos Moshinsky
2008-07-01
Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
Maksym, P.A.; Roy, M.; Wijnheijmer, A.P.; Koenraad, P.M.
2008-01-01
Computational models are used to investigate the role of electron-electron interactions in cross-sectional STM of cleaved quantum dots. If correlation effects are weak, the tunnelling current reflects the nodal structure of the non-interacting dot states. If correlation is strong, peaks in the
2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method
Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)
2000-01-01
The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.
Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.
2012-04-01
We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.
International Nuclear Information System (INIS)
Castro, A; Gross, E K U
2014-01-01
We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H 2 + molecule in the presence of a laser field. (paper)
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
International Nuclear Information System (INIS)
Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal
2016-01-01
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
classical information theory and, arguably, quantum from classical physics. Basic quantum information ideas are next outlined, including qubits and data compression, quantum gates, the 'no cloning' property and teleportation. Quantum cryptography is briefly sketched. The universal quantum computer (QC) is described, based on the Church-Turing principle and a network model of computation. Algorithms for such a computer are discussed, especially those for finding the period of a function, and searching a random list. Such algorithms prove that a QC of sufficiently precise construction is not only fundamentally different from any computer which can only manipulate classical information, but can compute a small class of functions with greater efficiency. This implies that some important computational tasks are impossible for any device apart from a QC. To build a universal QC is well beyond the abilities of current technology. However, the principles of quantum information physics can be tested on smaller devices. The current experimental situation is reviewed, with emphasis on the linear ion trap, high-Q optical cavities, and nuclear magnetic resonance methods. These allow coherent control in a Hilbert space of eight dimensions (three qubits) and should be extendable up to a thousand or more dimensions (10 qubits). Among other things, these systems will allow the feasibility of quantum computing to be assessed. In fact such experiments are so difficult that it seemed likely until recently that a practically useful QC (requiring, say, 1000 qubits) was actually ruled out by considerations of experimental imprecision and the unavoidable coupling between any system and its environment. However, a further fundamental part of quantum information physics provides a solution to this impasse. This is quantum error correction (QEC). An introduction to QEC is provided. The evolution of the QC is restricted to a carefully chosen subspace of its Hilbert space. Errors are almost certain to
Energy Technology Data Exchange (ETDEWEB)
Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)
1998-02-01
classical information theory and, arguably, quantum from classical physics. Basic quantum information ideas are next outlined, including qubits and data compression, quantum gates, the 'no cloning' property and teleportation. Quantum cryptography is briefly sketched. The universal quantum computer (QC) is described, based on the Church-Turing principle and a network model of computation. Algorithms for such a computer are discussed, especially those for finding the period of a function, and searching a random list. Such algorithms prove that a QC of sufficiently precise construction is not only fundamentally different from any computer which can only manipulate classical information, but can compute a small class of functions with greater efficiency. This implies that some important computational tasks are impossible for any device apart from a QC. To build a universal QC is well beyond the abilities of current technology. However, the principles of quantum information physics can be tested on smaller devices. The current experimental situation is reviewed, with emphasis on the linear ion trap, high-Q optical cavities, and nuclear magnetic resonance methods. These allow coherent control in a Hilbert space of eight dimensions (three qubits) and should be extendable up to a thousand or more dimensions (10 qubits). Among other things, these systems will allow the feasibility of quantum computing to be assessed. In fact such experiments are so difficult that it seemed likely until recently that a practically useful QC (requiring, say, 1000 qubits) was actually ruled out by considerations of experimental imprecision and the unavoidable coupling between any system and its environment. However, a further fundamental part of quantum information physics provides a solution to this impasse. This is quantum error correction (QEC). An introduction to QEC is provided. The evolution of the QC is restricted to a carefully chosen subspace of its Hilbert space. Errors are almost certain to
International Nuclear Information System (INIS)
Nguyen Bich Ha; Nguyen Van Hop
2009-01-01
The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.
Renormalized G-convolution of n-point functions in quantum field theory. I. The Euclidean case
International Nuclear Information System (INIS)
Bros, Jacques; Manolessou-Grammaticou, Marietta.
1977-01-01
The notion of Feynman amplitude associated with a graph G in perturbative quantum field theory admits a generalized version in which each vertex v of G is associated with a general (non-perturbative) nsub(v)-point function Hsup(nsub(v)), nsub(v) denoting the number of lines which are incident to v in G. In the case where no ultraviolet divergence occurs, this has been performed directly in complex momentum space through Bros-Lassalle's G-convolution procedure. The authors propose a generalization of G-convolution which includes the case when the functions Hsup(nsub(v)) are not integrable at infinity but belong to a suitable class of slowly increasing functions. A finite part of the G-convolution integral is then defined through an algorithm which closely follows Zimmermann's renormalization scheme. The case of Euclidean four-momentum configurations is only treated
Measurement in quantum physics
International Nuclear Information System (INIS)
Danos, M.; Kieu, T.D.; Columbia Univ., New York, NY
1997-01-01
The conceptual problems in quantum mechanics - including the collapse of the wave functions, the particle-wave duality, the meaning of measurement-arise from the need to ascribe particle character to the wave function, which describes only the wave aspects. It is demonstrated that all these problems can be resolved when working instead with quantum fields, which have both wave and particle character. The predictions of quantum physics, including Bell's inequalities, remain unchanged from the standard treatments of quantum mechanics. 16 refs
Quantum Computations: Fundamentals and Algorithms
International Nuclear Information System (INIS)
Duplij, S.A.; Shapoval, I.I.
2007-01-01
Basic concepts of quantum information theory, principles of quantum calculations and the possibility of creation on this basis unique on calculation power and functioning principle device, named quantum computer, are concerned. The main blocks of quantum logic, schemes of quantum calculations implementation, as well as some known today effective quantum algorithms, called to realize advantages of quantum calculations upon classical, are presented here. Among them special place is taken by Shor's algorithm of number factorization and Grover's algorithm of unsorted database search. Phenomena of decoherence, its influence on quantum computer stability and methods of quantum errors correction are described
International Nuclear Information System (INIS)
Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta
2003-01-01
We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)
International Nuclear Information System (INIS)
Korlyukov, Alexander A; Antipin, Mikhail Yu
2012-01-01
The review generalizes the results of structural studies of crystals of organic and organometallic compounds by modern quantum chemical calculations within the framework of the density functional theory reported in the last decade. Features of the software for such calculations are discussed. Examples of the use of quantum chemical calculations for the studies of the electronic structure, spectroscopic and other physicochemical properties of molecular crystals are presented. The bibliography includes 223 references.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design
Czech Academy of Sciences Publication Activity Database
Lepšík, Martin; Řezáč, Jan; Kolář, Michal; Pecina, Adam; Hobza, Pavel; Fanfrlík, Jindřich
2013-01-01
Roč. 78, č. 9 (2013), s. 921-931 ISSN 2192-6506 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : computational chemistry * drug design * noncovalent interactions * quantum chemistry * semiempirical calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013
Spectral function sum rules in quantum chromodynamics. I. Charged currents sector
International Nuclear Information System (INIS)
Floratos, E.G.; Narison, Stephan; Rafael, Eduardo de.
1978-07-01
The Weinberg sum rules of the algebra of currents are reconsidered in the light of quantum chromodynamics (QCD). The authors derive new finite energy sum rules which replace the old Weinberg sum rules. The new sum rules are convergent and the rate of convergence is explicitly calculated in perturbative QCD at the one loop approximation. Phenomenological applications of these sum rules in the charged current sector are also discussed
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibart, J.
1997-01-01
This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)
Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function
Mavromatos, Nikolaos E
1995-01-01
Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...
Energy Technology Data Exchange (ETDEWEB)
Pooja, D., E-mail: poojaiitr@csio.res.in [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Saini, Sonia; Thakur, Anupma; Kumar, Baban; Tyagi, Sachin [Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Nayak, Manoj K. [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India)
2017-04-15
Highlights: • Environmental friendly carbon quantum dots grafted with thiol moieties. • The functionalized CQDs demonstrated for optical detection of arsenite in water. • High analytical performance in terms of sensitivity, selectivity and detection limit (0.086 ppb). - Abstract: Carbon quantum dots (CQDs) have emerged out as promising fluorescent probes for hazardous heavy metals detection in recent past. In this study, water soluble CQDs were synthesized by facile microwave pyrolysis of citric acid & cysteamine, and functionalized with ditheritheritol to impart thiol functionalities at surface for selective detection of toxic arsenite in water. Microscopic analysis reveals that the synthesized CQDs are of uniform size (diameter ∼5 nm) and confirmed to have surface −SH groups by FT-IR. The functionalized probe is then demonstrated for arsenite detection in water by “Turn-On” read out mechanism, which reduces the possibility of false positive signals associated with “turn off’ probes reported earlier. The blue luminescent functionalized CQDs exhibit increase in fluorescence intensity on arsenite addition in 5–100 ppb wide detection range. The probe can be used for sensitive detection of arsenite in environmental water to a theoretical detection limit (3s) of 0.086 ppb (R{sup 2} = 0.9547) with good reproducibility at 2.6% relative standard deviation. The presented reliable, sensitive, rapid fCQDs probe demonstrated to exhibit high selectivity towards arsenite and exemplified for real water samples as well. The analytical performance of the presented probe is comparable to existing organic & semiconductor based optical probes.
Quantum signature scheme for known quantum messages
International Nuclear Information System (INIS)
Kim, Taewan; Lee, Hyang-Sook
2015-01-01
When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)
Quantum Communication Scheme Using Non-symmetric Quantum Channel
International Nuclear Information System (INIS)
Cao Haijing; Chen Zhonghua; Song Heshan
2008-01-01
A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel. quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel
International Nuclear Information System (INIS)
Faraggi, A.E.; Matone, M.
1998-01-01
We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0
International Nuclear Information System (INIS)
Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin
2012-01-01
Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.
International Nuclear Information System (INIS)
Primas, H.; Schleicher, M.
1975-01-01
A comprehensive review of the attempts to rephrase molecular quantum mechanics in terms of the particle density operator and the current density or phase density operator is given. All pertinent investigations which have come to attention suffer from severe mathematical inconsistencies and are not adequate to the few-body problem of quantum chemistry. The origin of the failure of these attempts is investigated, and it is shown that a realization of a local quantum field theory of molecular matter in terms of observables would presuppose the solution of many highly nontrivial mathematical problems
Relevance of quantum mechanics on some aspects of ion channel function
Roy, Sisir; Llinás, Rodolfo
2009-01-01
Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the phy...
Baruah, Upama; Chowdhury, Devasish
2016-04-01
Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.
Green function of the model two-centre quantum-mechanical problem
International Nuclear Information System (INIS)
Khoma, M.V.; Lazur, V.Yu.
2002-01-01
The expansions of a Green function for the Simmons molecular potential (SMP) in terms of spheroidal function are built. The solutions of degenerate hypergeometric equation are used as basis function system while expanding regular and irregular model spheroidal functions into series. Rather simple three-terms recurrence relations are obtained for the coefficients of these expansions. Much attentions is given to different asymptotic representation as well as Sturmian expansions of the Green function of the two-centre SMP wave functions. In all cases considered the Green function is reduced to the form similar to the Hostler's representation of the Coulomb Green function
Ablayev, F. M.; Vasiliev, A. V.
2014-02-01
We present a version of quantum hash functions based on non-binary discrete functions. The proposed quantum procedure is ‘classical-quantum’, that is, it takes a classical bit string as an input and produces a quantum state. The resulting function has the property of a one-way function (pre-image resistance); in addition it has properties analogous to classical cryptographic hash second pre-image resistance and collision resistance. We also show that the proposed function can be naturally used in a quantum digital signature protocol.
International Nuclear Information System (INIS)
Ablayev, F M; Vasiliev, A V
2014-01-01
We present a version of quantum hash functions based on non-binary discrete functions. The proposed quantum procedure is ‘classical-quantum’, that is, it takes a classical bit string as an input and produces a quantum state. The resulting function has the property of a one-way function (pre-image resistance); in addition it has properties analogous to classical cryptographic hash second pre-image resistance and collision resistance. We also show that the proposed function can be naturally used in a quantum digital signature protocol. (letter)
Simulation of quantum computers
De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB
2001-01-01
We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software
Simulation of quantum computers
Raedt, H. De; Michielsen, K.; Hams, A.H.; Miyashita, S.; Saito, K.
2000-01-01
We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software
International Nuclear Information System (INIS)
Beenakker, C W J
2005-01-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The
International Nuclear Information System (INIS)
Ness, H.; Dash, L. K.
2014-01-01
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments
Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami
2018-04-01
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami
2018-04-01
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
Sabatino, Manuela; Rotili, Dante; Patsilinakos, Alexandros; Forgione, Mariantonietta; Tomaselli, Daniela; Alby, Fréderic; Arimondo, Paola B; Mai, Antonello; Ragno, Rino
2018-03-01
Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.
Sabatino, Manuela; Rotili, Dante; Patsilinakos, Alexandros; Forgione, Mariantonietta; Tomaselli, Daniela; Alby, Fréderic; Arimondo, Paola B.; Mai, Antonello; Ragno, Rino
2018-03-01
Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.
Quantum measure and integration theory
International Nuclear Information System (INIS)
Gudder, Stan
2009-01-01
This article begins with a review of quantum measure spaces. Quantum forms and indefinite inner-product spaces are then discussed. The main part of the paper introduces a quantum integral and derives some of its properties. The quantum integral's form for simple functions is characterized and it is shown that the quantum integral generalizes the Lebesgue integral. A bounded, monotone convergence theorem for quantum integrals is obtained and it is shown that a Radon-Nikodym-type theorem does not hold for quantum measures. As an example, a quantum-Lebesgue integral on the real line is considered.
Functionalizing Ultra-Low Energy Nonlinear Optics: Analysis and Suppression of Quantum Fluctuations
2010-01-24
34 Phys. Rev. A 80, 045802 (2009). M. A. Armen , A. E. Miller and H. Mabuchi, "Spontaneous Dressed-State Polarization in the Strong Driving Regime of...H. Mabuchi, “Derivation of Maxwell‐Bloch‐type equations by projection of quantum models,” Phys. Rev. A 78, 015801, (2008). [4] M. Armen and H...models of switches for attojoule‐scale nanophotonic logic,” Phys. Rev. A 80, 045802 (2009). [7] M. A. Armen , A. E. Miller and H. Mabuchi, “Spontaneous
Gauges and functional measures in quantum gravity II: higher-derivative gravity
Energy Technology Data Exchange (ETDEWEB)
Ohta, N. [Kindai University, Department of Physics, Higashi-Osaka, Osaka (Japan); Percacci, R. [International School for Advanced Studies, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Pereira, A.D. [UERJ-Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)
2017-09-15
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work with a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered ''duality'' that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable. (orig.)
States, ideals and automorphisms of the algebra of test functions for quantum fields
International Nuclear Information System (INIS)
Yngvason, J.
1984-01-01
I report on two subjects: 1. Construction of positive, linear functionals on Borcher's tensor algebra satisfying parts of the linear Wightman conditions, and 2. a criterion for the existence of Euclidean invariant integral representations for Schwinger functionals. (orig./HSI)
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
International Nuclear Information System (INIS)
Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT
1997-01-01
We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)
International Nuclear Information System (INIS)
O'Carroll, M.
1993-01-01
The author considers models of statistical mechanics and quantum field theory (in the Euclidean formulation) which are treated using renormalization group methods and where the action is a small perturbation of a quadratic action. The author obtains multiscale formulas for the generating and correlation functions after n renormalization group transformations which bring out the relation with the nth effective action. The author derives and compares the formulas for different RGs. The formulas for correlation functions involve (1) two propagators which are determined by a sequence of approximate wave function renormalization constants and renormalization group operators associated with the decomposition into scales of the quadratic form and (2) field derivatives of the nth effective action. For the case of the block field open-quotes δ-functionclose quotes RG the formulas are especially simple and for asymptotic free theories only the derivatives at zero field are needed; the formulas have been previously used directly to obtain bounds on correlation functions using information obtained from the analysis of effective actions. The simplicity can be traced to an open-quotes orthogonality-of-scalesclose quotes property which follows from an implicit wavelet structure. Other commonly used RGs do not have the open-quotes orthogonality of scalesclose quotes property. 19 refs
International Nuclear Information System (INIS)
Ness, H
2006-01-01
In this paper, we consider the problem of inelastic electron transport in molecular systems in which both electronic and vibrational degrees of freedom are considered on the quantum level. The electronic transport properties of the corresponding molecular nanojunctions are obtained by means of a non-perturbative Landauer-like multi-channel inelastic scattering technique. The connections between this approach and other Green's function techniques that are useful in particular cases are studied in detail. The validity of the wide-band approximation, the effects of the lead self-energy and the dynamical polaron shift are also studied for a wide range of parameters. As a practical application of the method, we consider the effects of the temperature on the conductance properties of molecular breakjunctions in relation to recent experiments
International Nuclear Information System (INIS)
Grendel, M.
1981-01-01
Boundary conditions for distribution functions of quasiparticles scattered by an interface between two crystalline grains are presented. Contrary to former formulations where Maxwell-Boltzmann statistics was considered, the present boundary conditions take into account the quantum statistics (Fermi-Dirac or Bose-Einstein) of quasiparticles. Provided that small deviations only from thermodynamic equilibrium are present, the boundary conditions are linearized, and then their ''renormalization'' is investigated in case of elastic scattering. The final results of the renormalization, which are obtained for a simplified model of an interface, sugo.est that the portion of the Fermi (Bose)-quasiparticles reflected or transmitted specularly is decreased (increased) in comparison with the case of quasiparticles obeying Maxwell-Boltzmann statistics. (author)
Padgett, R; Kotre, C J
2005-01-01
This project aimed to produce programs to calculate the modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE) of digital X-ray systems, given a suitable digital image. The MTF was calculated using the edge technique and the NPS was calculated from a flat field image. Both programs require a suitably edited DICOM image as input. The DQE was then calculated from the output of MTF and NPS programs. This required data external to the DQE program to estimate the number of quanta per mm2 in the beam which formed the NPS image. All three programs run independent of each other on a PC and require no special software to be installed. Results for MTF, NPS and DQE for a Philips AC3 CR system are presented. In addition, the results for MTF from a Siemens Duo CT scanner with a specially designed PTFE edge are also shown.
Algebraic and analyticity properties of the n-point function in quantum field theory
International Nuclear Information System (INIS)
Bros, Jacques
1970-01-01
The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr
Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1983-01-01
This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions
Generalized Airy functions for use in one-dimensional quantum mechanical problems
Eaves, J. O.
1972-01-01
The solution of the one dimensional, time independent, Schroedinger equation in which the energy minus the potential varies as the nth power of the distance is obtained from proper linear combinations of Bessel functions. The linear combinations called generalized Airy functions, reduce to the usual Airy functions Ai(x) and Bi(x) when n equals 1 and have the same type of simple asymptotic behavior. Expressions for the generalized Airy functions which can be evaluated by the method of generalized Gaussian quadrature are obtained.
On the functional integral approach in quantum statistics. 1. Some approximations
International Nuclear Information System (INIS)
Dai Xianxi.
1990-08-01
In this paper the susceptibility of a Kondo system in a fairly wide temperature region is calculated in the first harmonic approximation in a functional integral approach. The comparison with that of the renormalization group theory shows that in this region the two results agree quite well. The expansion of the partition function with infinite independent harmonics for the Anderson model is studied. Some symmetry relations are generalized. It is a challenging problem to develop a functional integral approach including diagram analysis, mixed mode effects and some exact relations in the Anderson system proved in the functional integral approach. These topics will be discussed in the next paper. (author). 22 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Bohigas, Oriol [Laboratoire de Physique Theorique et Modeles Statistiques, Orsay (France)
2005-04-18
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's {zeta}-function, which has become a testing ground for RMT, QC, POT, and their relationship.
International Nuclear Information System (INIS)
Bohigas, Oriol
2005-01-01
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's ζ-function, which has become a testing ground for RMT, QC, POT, and their relationship
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots
Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao
2009-06-01
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.
Rodriguez, A.; Ayers, P.W.; Gotz, A.W.; Castillo-Alvarado, F.L.
2009-01-01
A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-03-01
To effectively promote the research and development of quantum function devices, the advancement of the research and development concerned is surveyed and problems in the course of research and development are isolated, analyzed, and discussed, and a survey is conducted on technological trends. Researches are conducted through research committee meetings, on-the-spot surveys of overseas activities, and international conferences. As the result, reports are compiled on the integration of multi-value logic devices using tunnelling control function devices, integration of logic memory devices based on quantum levels, integration of quantum interband coupled multifunction devices, silicon insulation film tunnel memory device, mass dot function memory, quantum wave switching function device, integration of single electron logic devices, integration of CMOS coupled type single electron devices, basic technology of single electron device, etc. As for common basic technology, an integrated device in which a quantum function element and CMOS are merged, superspeed quantum device using light, spontaneous formation of InGaN quantum dot and GaSb/GaAs quantum dot, electron moderation mechanism in quantum dot, etc., are compiled into reports. (NEDO)
International Nuclear Information System (INIS)
Ritus, V.I.
1987-01-01
This chapter gives methods of formulating the Lagrangian function of an intense field and its asymptotic properties are investigated. Section 2 gives a derivation of the correction pounds to the Lagrangian function resulting from the change in the radiation interaction of the vacuum electrons induced by a constant external field. Section 3 is devoted to the renormalization of the external field as well as the charge and mass of the electron. Like charge renormalization, mass renormalization is performed within the scope of the calculation of the Lagrangian function of the electromagnetic field (without separate consideration of the mass operator or the position of the pole of the Green function of the electron) using a general physical renormalization principle requiring vanishing of the radiation corrections to the observed charge and mass when the field is switched off. This calculation process is performed explicitly in Section 4 where the imaginary part of the Lagrangian function is calculated for weak and strong fields. Here it is noted that the asymptotic behavior of the Lagrangian function with large fields coincides with logarithmic accuracy to the asymptotic behavior of a polarized function with large momenta
Belloni, M.; Robinett, R. W.
2014-07-01
The infinite square well and the attractive Dirac delta function potentials are arguably two of the most widely used models of one-dimensional bound-state systems in quantum mechanics. These models frequently appear in the research literature and are staples in the teaching of quantum theory on all levels. We review the history, mathematical properties, and visualization of these models, their many variations, and their applications to physical systems. quote>For the ISW and the attractive DDF potentials, Eq. (4) implies, as expected, that energy eigenfunctions will have a kink-a discontinuous first derivative at the location of the infinite jump(s) in the potentials. However, the large |p| behavior of the momentum-space energy eigenfunction given by Eq. (5) will be |ϕ(p)|∝1/p2. Therefore for the ISW and the attractive DDF potentials, expectation value of p will be finite, but even powers of p higher than 2 will not lead to convergent integrals. This analysis proves that despite the kinks in the ISW and attractive DDF eigenfunctions, is finite, and therefore yield appropriate solutions to the Schrödinger equation.The existence of power-law ‘tails’ of a momentum distribution as indicated in Eq. (5) in the case of ‘less than perfect’ potentials [41], including a 1/p2 power-law dependence for a singular potential (such as the DDF form) may seem a mathematical artifact, but we note two explicit realizations of exactly this type of behavior in well-studied quantum systems.As noted below (in Section 6.2) the momentum-space energy eigenfunction of the ground state of one of the most familiar (and singular) potentials, namely that of the Coulomb problem, is given by ϕ1,0,0(p)=√{8p0/π}p0/2 where p0=ħ/a0 with a0 the Bohr radius. This prediction for the p-dependence of the hydrogen ground state momentum-space distribution was verified by Weigold [42] and collaborators with measurements taken out to p-values beyond 1.4p0; well out onto the power-law
Quantum field theory in the presence of a medium: Green's function expansions
Energy Technology Data Exchange (ETDEWEB)
Kheirandish, Fardin [Department of Physics, Islamic Azad University, Shahreza-Branch, Shahreza (Iran, Islamic Republic of); Salimi, Shahriar [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-12-15
Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.
Rück, Marlon; Reuther, Johannes
2018-04-01
We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.
International Nuclear Information System (INIS)
Kist, Tarso B.L.; Orszag, M.; Davidovich, L.
1997-01-01
The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model
Zeta-function regularization of the quantum fluctuations around the Yang-Mills pseudoparticle
International Nuclear Information System (INIS)
Chadha, S.; Di Vecchia, P.; D'Adda, A.; Nicodemi, F.
1977-01-01
The hypersphere stereographic projection and the zeta-function regularization procedure are used to compute the one loop correction around the Yang-Mills pseudoparticle with scalars and fermions in an arbitrary representation of the SU(2) gauge group. (Auth.)
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Hyperspherical functions and quantum-mechanical three-body problem with application to carbon 12
International Nuclear Information System (INIS)
Letz, H.
1975-01-01
In this work a system of three identical particles (bosons) interacting by a particular two-body force is discussed. Using the complete set of the hyperspherical functions (K-harmonics), analytical expressions for eigenvalues and wave functions of the stationary states are found. The numerical evaluation gives a level sequence for a definite pair of potential parameters similar to that of the nucleus carbon 12
Green's functions through so(2,1) lie algebra in nonrelativistic quantum mechanics
International Nuclear Information System (INIS)
Boschi-Filho, H.; Vaidya, A.N.
1991-01-01
The authors discuss an algebraic technique to construct the Green's function for systems described by the noncompact so(2,1) Lie algebra. They show that this technique solves the one-dimensional linear oscillator and Coulomb potentials and also generates particular solutions for other one-dimensional potentials. Then they construct explicitly the Green's function for the three-dimensional oscillator and the three-dimensional Coulomb potential, which are generalizations of the one-dimensional cases, and the Coulomb plus an Aharanov-Bohm, potential. They discuss the dynamical algebra involved in each case and also find their wave functions and bound state spectra. Finally they introduce in each case and also find their wave functions and bound state spectra. Finally they introduce a point canonical transformation in the generators of so(2,10) Lie algebra, show that this procedure permits us to solve the one-dimensional Morse potential in addition to the previous cases, and construct its Green's function and find its energy spectrum and wave functions
International Nuclear Information System (INIS)
Adegoke, Oluwasesan; Hosten, Eric; McCleland, Cedric; Nyokong, Tebello
2012-01-01
Graphical abstract: A bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) showed a high selectivity and sensitivity for the determination of bromide ion using fluorescence recovery. Highlights: ► Water soluble CdTe quantum dots interact with tetramethylpiperidine-N-oxide. ► Quantum dots fluorescence is quenched by the radical. ► In the presence of bromide ions the fluorescence is restored. ► The sensor is more selective to bromine ions than other common ions. - Abstract: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 μM. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.
Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin
2017-10-01
We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.
Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying
2013-02-07
Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
Directory of Open Access Journals (Sweden)
Huaping Zhu
2014-01-01
Full Text Available The colloidal photoluminescent quantum dots (QDs of CdSe (core and CdSe/ZnS (core/shell were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO and trioctylphosphine (TOP, and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.
Supersymmetric quantum mechanics: another nontrivial quantum superpotential
International Nuclear Information System (INIS)
Cervero, J.M.
1991-01-01
A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
Multiple logic functions from extended blockade region in a silicon quantum-dot transistor
International Nuclear Information System (INIS)
Lee, Youngmin; Lee, Sejoon; Im, Hyunsik; Hiramoto, Toshiro
2015-01-01
We demonstrate multiple logic-functions at room temperature on a unit device of the Si single electron transistor (SET). Owing to the formation of the multi-dot system, the device exhibits the enhanced Coulomb blockade characteristics (e.g., large peak-to-valley current ratio ∼200) that can improve the reliability of the SET-based logic circuits. The SET displays a unique feature useful for the logic applications; namely, the Coulomb oscillation peaks are systematically shifted by changing either of only the gate or the drain voltage. This enables the SET to act as a multi-functional one-transistor logic gate with AND, OR, NAND, and XOR functions
Multiple logic functions from extended blockade region in a silicon quantum-dot transistor
Energy Technology Data Exchange (ETDEWEB)
Lee, Youngmin; Lee, Sejoon, E-mail: sejoon@dongguk.edu; Im, Hyunsik [Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100-715 (Korea, Republic of); Hiramoto, Toshiro [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan)
2015-02-14
We demonstrate multiple logic-functions at room temperature on a unit device of the Si single electron transistor (SET). Owing to the formation of the multi-dot system, the device exhibits the enhanced Coulomb blockade characteristics (e.g., large peak-to-valley current ratio ∼200) that can improve the reliability of the SET-based logic circuits. The SET displays a unique feature useful for the logic applications; namely, the Coulomb oscillation peaks are systematically shifted by changing either of only the gate or the drain voltage. This enables the SET to act as a multi-functional one-transistor logic gate with AND, OR, NAND, and XOR functions.
Energy level alignment and quantum conductance of functionalized metal-molecule junctions
DEFF Research Database (Denmark)
Jin, Chengjun; Strange, Mikkel; Markussen, Troels
2013-01-01
We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density...... functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method...... predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close...
Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations
Energy Technology Data Exchange (ETDEWEB)
Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian
2006-10-01
An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
International Nuclear Information System (INIS)
Shankar, Sadasivan; Simka, Harsono; Haverty, Michael
2008-01-01
In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development
International Nuclear Information System (INIS)
Mittelstaedt, P.
1979-01-01
The subspaces of Hilbert space constitute an orthocomplemented quasimodular lattice Lsub(q) for which neither a two-valued function nor generalized truth function exist. A generalisation of the dialogic method can be used as an interpretation of a lattice Lsub(qi), which may be considered as the intuitionistic part of Lsub(q). Some obvious modifications of the dialogic method are introduced which come from the possible incommensurability of propositions about quantum mechanical systems. With the aid of this generalized dialogic method a propositional calculus Qsub(eff) is derived which is similar to the calculus of effective (intuitionistic) logic, but contains a few restrictions which are based on the incommensurability of quantum mechanical propositions. It can be shown within the framework of the calculus Qsub(eff) that the value-definiteness of the elementary propositions which are proved by quantum mechanical propositions is inherited by all finite compund propositions. In this way one arrives at the calculus Q of full quantum logic which incorporates the principle of excluded middle for all propositions and which is a model for the lattice Lsub(q). (Auth.)
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
A new method for calculating the hyperspherical functions for the quantum mechanics of three bodies
International Nuclear Information System (INIS)
Marsh, S.; Buck, B.
1982-01-01
Using the shift operators of Hughes (J. Phys. A.; 6:48 and 281 (1973)) for the group SU(3) in an O(3) basis, a simple method is developed to obtain the three-body hyperspherical functions of a definite symmetry for any angular momentum in a given SU(3) representation. (author)
On the definition of the partition function in quantum Regge calculus
International Nuclear Information System (INIS)
Nishimura, Jun
1995-01-01
We argue that the definition of the partition function used recently to demonstrate the failure of Regge calculus is wrong. In fact, in the one-dimensional case, we show that there is a more natural definition, with which one can reproduce the correct results. (author)
Effect of quantum confinement on the dielectric function of PbSe
Hens, Z.; Vanmaekelbergh, D.; Kooij, Ernst S.; Wormeester, Herbert; Allan, G.; Delerue, C.
2004-01-01
Monolayers of lead selenide nanocrystals of a few nanometers in height have been made by electrodeposition on a Au(111) substrate. These layers show a thickness-dependent dielectric function, which was determined using spectroscopic ellipsometry. The experimental results are compared with electronic
Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory
International Nuclear Information System (INIS)
Gamboa, J.
1989-08-01
Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt
Kohn-Sham density functional theory for quantum wires in arbitrary correlation regimes
Malet, F.; Mirtschink, A.P.; Cremon, J. C.; Reimann, S. M.; Gori Giorgi, P.
2013-01-01
We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to construct an approximation for the exchange-correlation term of the Kohn-Sham approach. The resulting exchange-correlation potential is able to capture the features of the strongly correlated regime without
Quantum discord with weak measurements
International Nuclear Information System (INIS)
Singh, Uttam; Pati, Arun Kumar
2014-01-01
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength
Galloway, Justin F.
To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically
Chen, L.; Lai, C.; Marchewka, R.; Berry, R. M.; Tam, K. C.
2016-07-01
Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films
International Nuclear Information System (INIS)
Christian, George M.; Hammersley, Simon; Davies, Matthew J.; Dawson, Philip; Kappers, Menno J.; Massabuau, Fabien C.P.; Oliver, Rachel A.; Humphreys, Colin J.
2016-01-01
We report on the effects of varying the number of quantum wells (QWs) in an InGaN/GaN multiple QW (MQW) structure containing a 23 nm thick In0.05Ga0.95N prelayer doped with Si. The calculated conduction and valence bands for the structures show an increasing total electric field across the QWs with increasing number of QWs. This is due to the reduced strength of the surface polarisation field, which opposes the built-in field across the QWs, as its range is increased over thicker samples. Low temperature photoluminescence (PL) measurements show a red shifted QW emission peak energy, which is attributed to the enhanced quantum confined Stark effect with increasing total field strength across the QWs. Low temperature PL time decay measurements and room temperature internal quantum efficiency (IQE) measurements show decreasing radiative recombination rates and decreasing IQE, respectively, with increasing number of QWs. These are attributed to the increased spatial separation of the electron and hole wavefunctions, consistent with the calculated band profiles. It is also shown that, for samples with fewer QWs, the reduction of the total field across the QWs makes the radiative recombination rate sufficiently fast that it is competitive with the efficiency losses associated with the thermal escape of carriers. (copyright 2016 The Authors. Phys. Status Solidi C published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Vladimirov, V.S.; Volovich, I.V.
1988-01-01
Quantum mechanics above the field of p-adic numbers is constructed. Three formulations of p-adic quantum mechanics are considered: 1) quantum mechanics with complex-valued wave functions and p-adic coordinates and pulses; an approach based on Weyl representation is suggested; 2) the probability (Euclidean) formulation; 3) the secondary quantization representation (Fock representation) with p-adic wave functions
Kiewisch, K.; Jacob, C.R.; Visscher, L.
2013-01-01
The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other
Functional methods for the solution of one-dimensional quantum systems
International Nuclear Information System (INIS)
Wirth, Tobias
2010-01-01
Subject of this work are integrable spin chains with general boundary conditions. In the framework of the Quantum Inverse Scattering Method Sklyanin has shown how to construct a family of commuting operators (transfer matrix) containing the hamiltonian of the XXX or XXZ spin chain with general boundary fields. Key ingredient is the underlying algebraic structure which is a combination of the Yang-Baxter algebra, using the known R-matrix representations, and a so-called Reflection algebra. The latter includes fields of arbitrary strength and direction acting on the first and last position of the chain. This setup is solvable via algebraic Bethe ansatz in the case of diagonal boundaries, i.e. the fields are parallel to each other and in the case of the XXZ model parallel to the distinguished direction. Kitanine et. al. have managed to express local operators in terms of the non-local elements of the underlying algebraic structure in the case of half-infinite chain length hence establishing a possible approach to evaluate expectation values of physical observables. Their results are picked up in this work and generalized to spin chains of arbitrary (including finite) lengths using non-linear integral equations for the lowest lying state with zero magnetization. In the case of non-diagonal boundary fields the lack of a reference state or pseudo vacuum prohibits the solution by algebraic Bethe ansatz. The method of separation of variables proposed by Sklyanin is not constrained in that sense and will be applied to this situation. In this approach for the XXX spin chain no restrictions to the boundary parameters are needed. The result is a TQ-equation on finite discrete set of points and the eigenvalues of the transfer matrix are obtainable from this finite difference equation. As the underlying algebraic structure is independent of the representation, the analysis for the XXX spin chain can be extended to a spin-boson model. Using a known representation of the algebra
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Quantum Ising model in transverse and longitudinal fields: chaotic wave functions
International Nuclear Information System (INIS)
Atas, Y Y; Bogomolny, E
2017-01-01
The construction of a statistical model for eigenfunctions of the Ising model in transverse and longitudinal fields is discussed in detail for the chaotic case. When the number of spins is large, each wave function coefficient has the Gaussian distribution with zero mean and variance calculated from the first two moments of the Hamiltonian. The main part of the paper is devoted to the discussion of various corrections to the asymptotic result. One type of correction is related to higher order moments of the Hamiltonian, and can be taken into account by Gibbs-like formulae. Other corrections are due to symmetry contributions, which manifest as different numbers of non-zero real and complex coefficients. The statistical model with these corrections included agrees well with numerical calculations of wave function moments. (paper)
Dynamic response functions, helical gaps, and fractional charges in quantum wires
Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.
We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.
Critical values of the Yang-Yang functional in the quantum sine-Gordon model
International Nuclear Information System (INIS)
Lukyanov, Sergei L.
2011-01-01
The critical values of the Yang-Yang functional corresponding to the vacuum states of the sine-Gordon QFT in the finite-volume are studied. Two major applications are discussed: (i) generalization of Fendley-Saleur-Zamolodchikov relations to arbitrary values of the sine-Gordon coupling constant, and (ii) connection problem for a certain two-parameter family of solutions of the Painleve III equation.
Quantum field theory in non-stationary coordinate systems and Green functions
International Nuclear Information System (INIS)
Svaiter, B.F.; Svaiter, N.F.
1988-01-01
In this paper we studied a neutral massive scalar field in a bi-dimensional Milne space time. The quantization is made on hyperboles which are Lorentz invariant surfaces. The expansion for the field operator was carried on using a complete set of orthonormal modes which have definite positive and negative dilatation frequence. We have calculated the advanced and retarded Green function and proved that the Feynman propagator diverges in the usual sense. (author) [pt
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
International Nuclear Information System (INIS)
Osborne, Tobias J.; Eisert, Jens; Verstraete, Frank
2010-01-01
We show how continuous matrix product states of quantum fields can be described in terms of the dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Two-point Green's functions in quantum electrodynamics at finite temperature and density
International Nuclear Information System (INIS)
Bechler, A.
1981-01-01
One-particle propagators of the relativistic electron--positron gas are systematically investigated. With the nonvanishing chemical potential the neutrality of the whole system is secured by a uniformly charged classical background described by a classical current J/sub μ/. Due to the translational invariance of this model it is natural to investigate the properties of the propagators in the momentum space. The Fourier-transforms of the Green's functions have been expressed in terms of the generalized spectral Lehmann representation and the second-order spectral functions of the photon and electron propagators have been found. The matter-dependent part of the propagator is finite and only the vacuum part has to be renormalized with the use of standard renormalization counterterms. The singularities of the gauge-independent photon propagator have been further investigated with the use of the spectral representation and nonperturbative expressions for the spectrum of collective excitations have been obtained. In the second order of perturbation they reproduce the asymptotic formulas at T→0 and T→infinity cited previously in the literature. In particular, the relativistic plasma frequency (photon effective mass) has been expressed in a simple form in terms of the integrals over the spectral functions. Our formulas for the relativistic plasmon mass squared Ω 2 exhibit an interesting property that at some temperature and density Ω 2 should become negative. However, simple estimates show that this phenomenon occurs at highly nonrealistic temperatures of the order of e 137 , i.e., in the region where the perturbation theory fails. The damping of the collective excitations is also considered
Special function solutions of a spectral problem for a nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A; Morris, J R
2012-01-01
We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)
International Nuclear Information System (INIS)
De la Incera, V.; Ferrer, E.; Shalad, A.Y.
1987-01-01
A homogeneous and isotropic plasma made up of electrons and positrons is examined. The coefficients of the covariant expansion of the three-photon vertex are calculated in the one-loop approximation of the Green's function technique, together with the probability amplitudes of various processes involving three photons that produce information on the probability of the polarization states of the incoming and outgoing photons in the splitting process. The calculation results are used to verify the consequences of all exact symmetries which must be done for the vertex tensor. The case of a charge-symmetric plasma is considered together with the special case of photon collinearity
Layered Architecture for Quantum Computing
Directory of Open Access Journals (Sweden)
N. Cody Jones
2012-07-01
Full Text Available We develop a layered quantum-computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction. In doing so, we propose a new quantum-computer architecture based on optical control of quantum dots. The time scales of physical-hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum-dot architecture we study could solve such problems on the time scale of days.
International Nuclear Information System (INIS)
Akhiezer, A.I.
1983-01-01
Basic ideas of quantum electrodynamics history of its origination and its importance are outlined. It is shown low the notion of the field for each kind of particles and the notion of vacuum for such field had originated and been affirmed how a new language of the Feynman diagrams had appeared without which it is quite impossible to described complex processes of particle scattering and mutual transformation. The main problem of the quantum electrodynamics is to find a scattering matrix, which solution comes to the determination of the Green electrodynamic functions. A review is given of papers on clarifying the asymptotic behaviour of the Green electrodynamic functions in the range of high pulses, on studying the Compton effect, bremsstrahlung irradiation Raman light scattering elastic scattering during channeling of charged particles in a crystal
Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama
2013-12-01
Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.
Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia
2016-04-01
Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.
International Nuclear Information System (INIS)
Horacek, Miroslav
2005-01-01
The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 μm, is 0.75≅-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope
International Nuclear Information System (INIS)
Chi Tran, Thi Kim; Vu, Duc Chinh; Thuy Ung, Thi Dieu; Nguyen, Hai Yen; Nguyen, Ngoc Hai; Dao, Tran Cao; Pham, Thu Nga; Nguyen, Quang Liem
2012-01-01
This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor. (paper)
Green's function approach to the Kondo effect in nanosized quantum corrals
Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.
2018-04-01
We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.
International Nuclear Information System (INIS)
Neumann, Martin; Zoppi, Marco
2002-01-01
We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the condensed phases. From the single-particle distribution function n(r) one can derive the momentum distribution and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using mostly the semiempirical HFD-C2 pair potential by Aziz et al. [R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 79, 295 (1983)], but, in a few cases, we have also used the Lennard-Jones potential. The differences between the potentials, as measured by the properties investigated, are not very large, especially when compared with the actual precision of the experimental data. The simulation results have been compared with all the experimental information that is available from neutron scattering. The overall agreement with the experiments is very good
Ferenczy, György G
2013-04-05
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Pavel Bona
2000-01-01
The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded
Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories
Burnier, Yannis; Rothkopf, Alexander
2013-11-01
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33TC.
International Nuclear Information System (INIS)
Thompson, K.; Martinez, T.J.
1999-01-01
We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics
Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann
2013-06-01
In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.
Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu
2017-11-01
Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
Stohler, Michael Lehman
2002-01-01
Non-cooperative quantum games have received much attention recently. This thesis defines and divides current works into two major categories of gaming techniques with close attention paid to Nash equilibria, form and possibilities for the payoff functions, and the benefits of using a quantum strategy. In addition to comparing and contrasting these techniques, new applications and calculations are discussed. Finally, the techniques are expanded into 3 x 3 games which allows the study of non-transitive strategies in quantum games.
Lippert, Lisa G.; Hallock, Jeffrey T.; Dadosh, Tali; Diroll, Benjamin T.; Murray, Christopher B.; Goldman, Yale E.
2016-01-01
We developed methods to solubilize, coat, and functionalize with NeutrAvidin elongated semiconductor nanocrystals (quantum nanorods, QRs) for use in single molecule polarized fluorescence microscopy. Three different ligands were compared with regard to efficacy for attaching NeutrAvidin using the “zero-length cross-linker” 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). Biotin-4-fluorescene (B4F), a fluorophore that is quenched when bound to avidin proteins, was used to quantify bioti...
An, Seong Soo; Ankireddy,Seshadri Reddy; Kim,Jongsung
2015-01-01
Seshadri Reddy Ankireddy, Jongsung Kim Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do, South Korea Abstract: Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescen...
Functionalized Self-Assembled InAs/GaAs Quantum-Dot Structures Hybridized with Organic Molecules
DEFF Research Database (Denmark)
Chen, Miaoxiang Max; Kobashi, K.; Chen, B.
2010-01-01
Low-dimensional III-V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs...
Khrennikov, Andrei
2017-08-01
Starting with the quantum-like paradigm on application of quantum information and probability outside of physics we proceed to the social laser model describing Stimulated Amplification of Social Actions (SASA). The basic components of social laser are the quantum information field carrying information excitations and the human gain medium. The aim of this note is to analyze constraints on these components making possible SASA. The soical laser model can be used to explain the recent wave of color revolutions as well as such “unpredictable events” as Brexit and election of Donald Trump as the president of the United States of America. The presented quantum-like model is not only descriptive. We shall list explicitly conditions for creation of social laser.
Yanagisawa, Masahiro
2007-01-01
We provide a control theoretical method for a computational lower bound of quantum algorithms based on quantum walks of a finite time horizon. It is shown that given a quantum network, there exists a control theoretical expression of the quantum system and the transition probability of the quantum walk is related to a norm of the associated transfer function.
Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S
2017-08-22
Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Relativistic quantum chemistry on quantum computers
DEFF Research Database (Denmark)
Veis, L.; Visnak, J.; Fleig, T.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...
Wong, Kin-Yiu; Gao, Jiali
2008-09-09
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu
2018-01-31
The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
Directory of Open Access Journals (Sweden)
Sam P De Visser
2013-12-01
Full Text Available Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.
Energy Technology Data Exchange (ETDEWEB)
Adegoke, Oluwasesan [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Hosten, Eric; McCleland, Cedric [Department of Chemistry, Nelson Mandela Metropolitan University (South Campus), Port Elizabeth 6031 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)
2012-04-06
Graphical abstract: A bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) showed a high selectivity and sensitivity for the determination of bromide ion using fluorescence recovery. Highlights: Black-Right-Pointing-Pointer Water soluble CdTe quantum dots interact with tetramethylpiperidine-N-oxide. Black-Right-Pointing-Pointer Quantum dots fluorescence is quenched by the radical. Black-Right-Pointing-Pointer In the presence of bromide ions the fluorescence is restored. Black-Right-Pointing-Pointer The sensor is more selective to bromine ions than other common ions. - Abstract: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 {mu}M. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-03-01
An examination is in progress with a view to establishing fundamental technology for a quantum functional device, which engineeringly uses various quantum mechanical effects emerging in a ultrafine dimentional area, for the purpose of contributing to the micro electronics technology that deals with ultra high speed and ultra high functional information processing necessitated in an advanced information-oriented society. As a general research study, survey on the technological trend was done, as was the analysis/examination of the R and D. In regard to the R and D of quantization technology, with the object of structuring an element device by means of quantization functions and structuring an integration system, examinations were made on tunneling in semiconductors, physical phenomenon like electrical conduction, ultrafine fabrication techniques, etc., with R and D conducted on structures and forming technique for realizing quantization functions such as quantum wire and quantum dot, crystal growing technology, simulation technology, design of materials, etc.. (NEDO)
Spin interactions in InAs quantum dots
Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
Introduction to quantum groups
Chaichian, Masud
1996-01-01
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure
Threshold quantum cryptography
International Nuclear Information System (INIS)
Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki
2005-01-01
We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
International Nuclear Information System (INIS)
Petrosky, T.; Tasaki, S.; Prigogine, I.
1991-01-01
In 1977, Misra and Sudarshan showed, based on the quantum measurement theory, that an unstable particle will never be found to decay when it is continuously observed. They called it the quantum Zeno effect (or paradox). More generally the quantum Zeno effect is associated to the inhibition of transitions by frequent measurements. This possibility has attracted much interest over the last years. Recently, Itano, Heinzen, Bollinger and Wineland have reported that they succeeded in observing the quantum Zeno effect. This would indeed be an important step towards the understanding of the role of the observer in quantum mechanics. However, in the present paper, we will show that their results can be recovered through conventional quantum mechanics and do not involve a repeated reduction (or collapse) of the wave function. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Santos, Beate S. [Dept. Ciencias Farmaceuticas, UFPE, Recife, PE, 50740-521 (Brazil); Dept. Quimica Fundamental, UFPE, Recife, PE, 50670-901 (Brazil); Farias, Patricia M.A. de [Dept. Biofisica e Radiobiologia, UFPE, Recife, PE, 50740-521 (Brazil); Menezes, Frederico D. de [Dept. Quimica Fundamental, UFPE, Recife, PE, 50670-901 (Brazil); Dept. Ciencias Farmaceuticas, UFPE, Recife, PE, 50740-521 (Brazil); Ferreira, Ricardo C. de; Junior, Severino A. [Dept. Quimica Fundamental, UFPE, Recife, PE, 50670-901 (Brazil); Figueiredo, Regina C.B.Q. [Centro de Pesquisas Ageu Magalhaes Fiocruz, Recife, PE, 50670-901 (Brazil); de Carvalho, Luiz B. Jr.; Beltrao, Eduardo I.C. [Laboratorio de Imunopatologia Keizo Asami, UFPE, Recife, PE, 50670-910 (Brazil); Dept. Bioquimica, UFPE, Recife, PE, 50670-910 (Brazil)
2006-07-01
We report the use of CdS/Cd(OH){sub 2} quantum dots functionalized with glutaraldehyde and conjugated to concanavalin-A (Con-A) lectin to investigate cell alterations regarding carbohydrate profile in human mammary tissues diagnosed as fibroadenoma (benigne tumor). The Con-A lectin is a biomolecule which binds specifically to glucose/mannose residues present in the cellular membrane. These bioconjugated-particles were incubated with tissue sections of normal and to Fibroadenoma, a benign type of mammary tumor. The tissue sections were deparafinized, hydrated in graded alcohol and treated with a solution of Evans Blue in order to avoid autofluorescence. The fluorescence intensity of QD-Con-A stained tissues showed different patterns which reflect the carbohydrate expression of glucose/mannose in fibroadenoma when compared to the detection of the normal carbohydrate expression. The pattern of inespecific labeling of the tissues with glutharaldehyde functionalized CdS/Cd(OH){sub 2} quantum dots is compared to the targeting driven by the Con-A lectin. The preliminary findings reported here support the use of CdS/Cd(OH){sub 2} quantum dots as specific probes of cellular alterations possibiliting their use in diagnostics. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Polyakov, Evgeny A.; Rubtsov, Alexey N.
2018-02-01
When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Shukla, P. K.; Eliasson, B.; Akbari-Moghanjoughi, M.
2013-01-01
In a paper on arXiv, Bonitz et al (2012 arXiv:1205.4922v1 [physics.plasm-ph]) (hereafter referred to as BPS) erroneously attributed the qualitative discrepancy between their density functional theory (DFT) simulation results with the analytical discovery of the Shukla-Eliasson (SE) attractive force which brings ions closer to the failure of the linearized quantum hydrodynamic theory. In this paper, we describe the underlying physics of the novel SE attractive force and its validity, as well as discuss some of the key features of the well-established quantum hydrodynamic theory and working mechanisms for DFT simulations, in addition to giving some critical notes on the falsified and misleading conclusions presented by BPS in their dubious paper. Furthermore, we also present a mass-density value for possible 4He metallic plasma lattice formation under the SE force.
International Nuclear Information System (INIS)
Shukla, P K; Eliasson, B; Akbari-Moghanjoughi, M
2013-01-01
In a paper on arXiv, Bonitz et al (2012 arXiv:1205.4922v1 [physics.plasm-ph]) (hereafter referred to as BPS) erroneously attributed the qualitative discrepancy between their density functional theory (DFT) simulation results with the analytical discovery of the Shukla-Eliasson (SE) attractive force which brings ions closer to the failure of the linearized quantum hydrodynamic theory. In this paper, we describe the underlying physics of the novel SE attractive force and its validity, as well as discuss some of the key features of the well-established quantum hydrodynamic theory and working mechanisms for DFT simulations, in addition to giving some critical notes on the falsified and misleading conclusions presented by BPS in their dubious paper. Furthermore, we also present a mass-density value for possible 4 He metallic plasma lattice formation under the SE force.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
International Nuclear Information System (INIS)
Paz, Juan Pablo; Roncaglia, Augusto Jose; Saraceno, Marcos
2005-01-01
We analyze and further develop a method to represent the quantum state of a system of n qubits in a phase-space grid of NxN points (where N=2 n ). The method, which was recently proposed by Wootters and co-workers (Gibbons et al., Phys. Rev. A 70, 062101 (2004).), is based on the use of the elements of the finite field GF(2 n ) to label the phase-space axes. We present a self-contained overview of the method, we give insights into some of its features, and we apply it to investigate problems which are of interest for quantum-information theory: We analyze the phase-space representation of stabilizer states and quantum error-correction codes and present a phase-space solution to the so-called mean king problem
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Energy Technology Data Exchange (ETDEWEB)
Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.
Introduction to quantum statistical mechanics
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Bogolyubov, N.N.
1980-01-01
In a set of lectures, which has been delivered at the Physical Department of Moscow State University as a special course for students represented are some basic ideas of quantum statistical mechanics. Considered are in particular, the Liouville equations in classical and quantum mechanics, canonical distribution and thermodynamical functions, two-time correlation functions and Green's functions in the theory of thermal equilibrium
Energy Technology Data Exchange (ETDEWEB)
Rao, Yeluri Narayana; Datta, Aparna [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India); Das, Satyendra K. [Radiochemistry Division, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064 (India); Saha, Abhijit, E-mail: abhijit@alpha.iuc.res.in [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India)
2016-08-15
Highlights: • Radiation chemical technique can provide a useful route for synthesis of ZnSe QDs. • Chelating nature of ethylene diamine is exploited for capping nanoparticles. • ZnSe QDs can be a suitable sensitive alternative to toxic cadmium-based system. • Cu(II) ion is probed by QDs in the presence of other physiologically relevant ions. - Abstract: Size-controlled synthesis of stable ZnSe QDs with narrow distribution in aqueous environment through conventional soft chemical method still poses a challenge. The proposed radiation assisted strategy demonstrates aqueous synthesis of stable, monodisperse and luminescent ZnSe QDs capped with chelating ethylene diamine under ambient conditions and at room temperature. Radiation chemical method facilitates in slow and in-situ release of selenium ion from sodium selenosulfate. The concentrations of precursors, such as zinc salt, selenium source, ethylene diamine and absorbed radiation (7–90 kGy) dose were optimized for obtaining good quality particles. Selective quenching of luminescence of as-synthesized quantum dots (QDs) by Cu{sup 2+} ions vis-à-vis other physiologically important cations provide evidence for use of ZnSe quantum dots as alternative to toxic Cd-based quantum dots to probe Cu{sup 2+} ions. The linear relation of ratio of loss in emission intensity as a function of concentration of Cu(II) indicates detection limit in nano-molar range.
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Directory of Open Access Journals (Sweden)
Suhufa Alfarisa
2016-03-01
Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Differential calculus on quantum spaces and quantum groups
International Nuclear Information System (INIS)
Zumino, B.
1992-01-01
A review of recent developments in the quantum differential calculus. The quantum group GL q (n) is treated by considering it as a particular quantum space. Functions on SL q (n) are defined as a subclass of functions on GL q (n). The case of SO q (n) is also briefly considered. These notes cover part of a lecture given at the XIX International Conference on Group Theoretic Methods in Physics, Salamanca, Spain 1992
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum information theory and quantum statistics
International Nuclear Information System (INIS)
Petz, D.
2008-01-01
Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)
Fundamentals of quantum mechanics
Erkoc, Sakir
2006-01-01
HISTORICAL EXPERIMENTS AND THEORIESDates of Important Discoveries and Events Blackbody RadiationPhotoelectrice Effect Quantum Theory of Spectra TheComptone Effect Matterwaves, the de Broglie HypothesisThe Davisson -Germer Experiment Heisenberg's Uncertainity PrincipleDifference Between Particles and Waves Interpretation of the Wavefunction AXIOMATIC STRUCTURE OF QUANTUM MECHANICSThe Necessity of Quantum TheoryFunction Spaces Postulates of Quantum Mechanics The Kronecker Delta and the Dirac Delta Function Dirac Notation OBSERVABLES AND SUPERPOSITIONFree Particle Particle In A Box Ensemble Average Hilbert -Space Interpretation The Initial Square Wave Particle Beam Superposition and Uncertainty Degeneracy of States Commutators and Uncertainty TIME DEVELOPMENT AND CONSERVATION THEOREMSTime Development of State Functions, The Discrete Case The Continuous Case, Wave Packets Particle Beam Gaussian Wave Packet Free Particle Propagator The Limiting Cases of the Gaussian Wave Packets Time Development of Expectation Val...
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
We review the development of the non-Abelian generalization of the Kolmogorov-Sinai(KS) entropy invariant, as initated by Connes and Stormer and completed by Connes, Narnhofer and Thirring only recently. As an introduction and motivation, the classical KS theory is reformulated in terms of Abelian W * -algebras. Finally, we describe simple physical applications of the developed characteristic invariant to space-time symmetry group actions on infinite quantum systems. 42 refs. (Author)
Malinowska, Agnieszka B
2014-01-01
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations fo...
Quantum evolution across singularities
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg
2008-01-01
Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)
Quantum crystallography: A perspective.
Massa, Lou; Matta, Chérif F
2018-06-30
Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Frackiewicz, Piotr
2014-01-01
We present a quantum approach to a signaling game; a special kind of extensive game of incomplete information. Our model is based on quantum schemes for games in strategic form where players perform unitary operators on their own qubits of some fixed initial state and the payoff function is given by a measurement on the resulting final state. We show that the quantum game induced by our scheme coincides with a signaling game as a special case and outputs nonclassical results in general. As an example, we consider a quantum extension of the signaling game in which the chance move is a three-parameter unitary operator whereas the players' actions are equivalent to classical ones. In this case, we study the game in terms of Nash equilibria and refine the pure Nash equilibria adapting to the quantum game the notion of a weak perfect Bayesian equilibrium. (paper)
International Nuclear Information System (INIS)
Gudder, Stan
2010-01-01
An anhomomorphic logic A* is the set of all possible realities for a quantum system. Our main goal is to find the 'actual reality' Φ a element of A* for the system. Reality filters are employed to eliminate unwanted potential realities until only φ a remains. In this paper, we consider three reality filters that are constructed by means of quantum integrals. A quantum measure μ can generate or actualize a Φ element of A* if μ(A) is a quantum integral with respect to φ for a density function f over events A. In this sense, μ is an 'average' of the truth values of φ with weights given by f. We mainly discuss relations between these filters and their existence and uniqueness properties. For example, we show that a quadratic reality generated by a quantum measure is unique. In this case we obtain the unique actual quadratic reality.
Ferenczy, György G
2013-04-05
Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.
Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.
2016-04-01
In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for
Energy Technology Data Exchange (ETDEWEB)
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-03-01
Researches are in progress with a view to establishing fundamental technology for a quantum functional device, which engineeringly uses various quantum mechanical effects emerging in a ultrafine dimentional area, for the purpose of contributing to the micro electronics technology that deals with ultra high speed and ultra high functional information processing necessitated in an advanced information-oriented society. Survey on research activities was conducted concerning the peripheral technologies of a quantum functional device project, for example, related technologies such as a high temperature scanning tunneling microscope enabling preparation of a micro structure of nm order, and an ultra high vacuum CVD device. In addition, discussions were held on the subjects of preparation/evaluation technology of a quantum functional device and a single electronic device, with the purpose of predicting/judging, from a wider viewpoint, indications of unexpected research results of the R and D in the remarkably evolving field of quantum functional devices, quickly taking the indications into projects, and efficiently promoting the R and D by making sure of the directions to proceed. (NEDO)
Wang, Guoying; Niu, XiuLi; Shi, Gaofeng; Chen, Xuefu; Yao, Ruixing; Chen, Fuwen
2014-12-01
A novel screening method was developed for the detection and identification of radical scavenging natural antioxidants based on a free radical reaction combined with liquid chromatography with tandem mass spectrometry. Functionalized graphene quantum dots were prepared for loading free radicals in the complex screening system. The detection was performed with and without a preliminary exposure of the samples to specific free radicals on the functionalized graphene quantum dots, which can facilitate charge transfer between free radicals and antioxidants. The difference in chromatographic peak areas was used to identify potential antioxidants. This is a novel approach to simultaneously evaluate the antioxidant power of a component versus a free radical, and to identify it in a vegetal matrix. The structures of the antioxidants in the samples were identified using tandem mass spectrometry and comparison with standards. Fourteen compounds were found to possess potential antioxidant activity, and their free radical scavenging capacities were investigated. The order of scavenging capacity of 14 compounds was compared according to their free radical scavenging rate. 4',5,6,7-Tetrahydroxyflavone (radical scavenging rate: 0.05253 mL mg(-1) s(-1) ) showed the strongest capability for scavenging free radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
International Nuclear Information System (INIS)
Lamehi-Rachti, Mohammad.
1976-01-01
The Einstein-Podolsky-Rosen paradox is briefly exposed with the Bell theorem on hidden variables and the locality principle. The conditions for an ideal experiment are discussed and the results from γ-γ correlation experiments are given. The principle of an experimental measurement of the spin correlation function predicted by the quantum mechanics theory is derived, new hypotheses to be introduced are discussed. The formula giving the dependence of the counting asymmetry on the spin correlation function, polarimeter analyzing power, and geometric correlation is developed. The principle of a Monte Carlo calculation is also exposed. The experimental device is described with the methods for measuring the subsidiary quantities and experimental results are analyzed [fr