WorldWideScience

Sample records for functionalized magnetic beads

  1. Microfabricated Passive Magnetic Bead separators

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Lund-Olesen, Torsten; Smistrup, Kristian

    2006-01-01

    The use and manipulation of functionalized magnetic beads for bioanalysis in lab-on-a-chip systems is receiving growing interest. We have developed microfluidic systems with integrated magnetic structures for the capture and release of magnetic beads. The systems are fabricated in silicon by deep...... reactive ion etching combined with a number of metal deposition and etching steps followed by anodic bonding of a pyrex lid....

  2. Lateral flow biosensor for multiplex detection of nitrofuran metabolites based on functionalized magnetic beads.

    Science.gov (United States)

    Lu, Xuewen; Liang, Xiaoling; Dong, Jianghong; Fang, Zhiyuan; Zeng, Lingwen

    2016-09-01

    The use of potential mutagenic nitrofuran antibiotic in food animal production has been banned world-wide. Common methods for nitrofuran detection involve complex extraction procedures. In the present study, magnetic beads functionalized with antibody against nitrofuran derivative were used as both the extraction and color developing media in lateral flow biosensor. Derivatization reagent carboxybenzaldehyde is firstly modified with ractopamine. After reaction with nitrofuran metabolites, the resultant molecule has two functional groups: the metabolite moiety and the ractopamine moiety. Metabolite moiety is captured by the antibody that is coated on magnetic beads. This duplex is then loaded onto biosensor and ractopamine moiety is further captured by the antibody immobilized on the test zone of nitrocellulose membrane. Without tedious organic reagent-based extraction procedure, this biosensor was capable of visually detecting four metabolites simultaneously with a detection limit of 0.1 μg/L. No cross-reactivity was observed in the presence of 50 μg/L interferential components. Graphical abstract Derivatization of nitrofuran metabolites (AHD, AOZ, SEM, or AMOZ) and LFA detection of the derivative products.

  3. A Magnetic Bead Actuator

    NARCIS (Netherlands)

    Derks, R.; Prins, M.W.J.; Wimberger-Friedl, R.

    2006-01-01

    Actuation principles of superparamagnetic beads applicable on biosensing (at single beads and chain orderning) are studied in this report. This research can be used to develop new techniques that are able to accelerate bio-assays. An experimental setup containing a sub-microliter fluid volume

  4. Microfluidic magnetic bead conveyor belt.

    Science.gov (United States)

    van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap

    2017-11-07

    Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.

  5. Generation of Internal-Image Functional Aptamers of Okadaic Acid via Magnetic-Bead SELEX

    Directory of Open Access Journals (Sweden)

    Chao Lin

    2015-12-01

    Full Text Available Okadaic acid (OA is produced by Dinophysis and Prorocentrum dinoflagellates and primarily accumulates in bivalves, and this toxin has harmful effects on consumers and operators. In this work, we first report the use of aptamers as novel non-toxic probes capable of binding to a monoclonal antibody against OA (OA-mAb. Aptamers that mimic the OA toxin with high affinity and selectivity were generated by the magnetic bead-assisted systematic evolution of ligands by exponential enrichment (SELEX strategy. After 12 selection rounds, cloning, sequencing and enzyme-linked immunosorbent assay (ELISA analysis, four candidate aptamers (O24, O31, O39, O40 were selected that showed high affinity and specificity for OA-mAb. The affinity constants of O24, O31, O39 and O40 were 8.3 × 108 M−1, 1.47 × 109 M−1, 1.23 × 109 M−1 and 1.05 × 109 M−1, respectively. Indirect competitive ELISA was employed to determine the internal-image function of the aptamers. The results reveal that O31 has a similar competitive function as free OA toxin, whereas the other three aptamers did not bear the necessary internal-image function. Based on the derivation of the curvilinear equation for OA/O31, the equation that defined the relationship between the OA toxin content and O31 was Y = 2.185X − 1.78. The IC50 of O31 was 3.39 ng·mL−1, which was close to the value predicted by the OA ELISA (IC50 = 4.4 ng·mL−1; the IC10 was 0.33 ng·mL−1. The above data provides strong evidence that internal-image functional aptamers could be applicable as novel probes in a non-toxic assay.

  6. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the...

  7. Magnetic bead detection using nano-transformers.

    Science.gov (United States)

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  8. Integration of antibody by surface functionalization of graphite-encapsulated magnetic beads using ammonia gas plasma technology for capturing influenza A virus.

    Science.gov (United States)

    Sakudo, Akikazu; Chou, Han; Ikuta, Kazuyoshi; Nagatsu, Masaaki

    2015-05-01

    Antibody-integrated magnetic beads have been functionalized for influenza A virus capture. First, ammonia plasma produced by a radio frequency power source was reacted with the surface of graphite-encapsulated magnetic beads to introduce amino groups. Anti-influenza A virus hemagglutinin antibody was then anchored by its surface sulfide groups to the amino groups on the beads via N-succinimidyl 3-(2-pyridyldithio) propionate. After incubation with influenza A virus, adsorption of the virus to the beads was confirmed by immunochromatography, polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and inoculation of chicken embryonated eggs, indicating that virus infectivity is maintained and that the proposed method is useful for the enhanced detection and isolation of influenza A virus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors.

    Science.gov (United States)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik; Hansen, Mikkel Fougt

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy and precision with which the coverage can be determined from a single sensor measurement. We show that statistical fluctuations between samples may reduce the sensitivity and dynamic range of a sensor significantly when the functionalized area is larger than the sensor area. Hence, the statistics of sampling is essential to sensor design. For illustration, we analyze three important published cases for which statistical fluctuations are dominant, significant, and insignificant, respectively.

  10. Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes.

    Science.gov (United States)

    Bayramoglu, Gulay; Yilmaz, Meltem; Yakup Arica, M

    2010-05-01

    Cross-linked magnetic chitosan beads were prepared by phase-inversion technique in the presence of epichlorohydrin under alkaline condition, and used for covalent immobilization of laccase. The activity of the immobilized laccase on the magnetic chitosan was about 260 U (g/dry beads) with an enzyme loading of about 16.33 +/- 0.39 mg [(g/dry beads) mg/g]. Kinetic parameters, V (max) and K (m) values were determined as 21.7 U/mg protein and 9.4 microM for free enzyme, and 15.6 U/mg protein and 19.7 microM for the immobilized laccase, respectively. The operational and thermal stabilities of the immobilized laccase were improved compared to free counterpart. The immobilized laccase was operated in a batch reactor for the decolorization of reactive dyes from aqueous solution. The laccase immobilized on magnetic chitosan beads was very effective for removal of textile dyes from aqueous solution which creates an important environmental problem in the discharged textile dying solutions.

  11. Expression, one-step purification, and immobilization of HaloTag(TM) fusion proteins on chloroalkane-functionalized magnetic beads.

    Science.gov (United States)

    Motejadded, Hassan; Kranz, Bertolt; Berensmeier, Sonja; Franzreb, Matthias; Altenbuchner, Josef

    2010-11-01

    The presented work introduces a novel method to immobilize enzymes either purified or directly out of a crude extract onto magnetic particles in the micrometer range. This method is based on the creation of a fusion protein consisting of the enzyme of choice and a mutant dehalogenase. The dehalogenase gene is commercially available from the company Promega under the name HaloTag(TM). When the fusion protein is contacted with magnetic beads having chemically synthesized, chloroalkane ligands on their surface, the dehalogenase and the ligand undergo a covalent coupling leading to stable and spatially defined immobilization. The principle was proved with a lipase fused to the HaloTag(TM) gene and magnetic poly(methyl)methacrylate beads as carriers. The solubility of the tagged lipase was strongly increased by fusion of the malE gene at the N-terminal end of the HaloTag(TM) lipase gene. This tripartite protein was purified on amylose resin and used for immobilization. About 13 µg protein could be immobilized per 1 mg of beads within a few minutes. Due to the defined binding site, no activity loss was observed in the course of the immobilization. The resulting enzyme carrier was tested with the same beads up to six times for lipase activity over a storage period of 36 days at 8 °C. No loss of activity was found during this time.

  12. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads.

    Directory of Open Access Journals (Sweden)

    Andras Franko

    Full Text Available To better understand molecular mechanisms regulating changes in metabolism, as observed e.g. in diabetes or neuronal disorders, the function of mitochondria needs to be precisely determined. The usual isolation methods such as differential centrifugation result in isolates of highly variable quality and quantity. To fulfill the need of a reproducible isolation method from solid tissues, which is suitable to handle parallel samples simultaneously, we developed a protocol based on anti-TOM22 (translocase of outer mitochondrial membrane 22 homolog antibody-coupled magnetic beads. To measure oxygen consumption rate in isolated mitochondria from various mouse tissues, a traditional Clark electrode and the high-throughput XF Extracellular Flux Analyzer were used. Furthermore, Western blots, transmission electron microscopic and proteomic studies were performed to analyze the purity and integrity of the mitochondrial preparations. Mitochondrial fractions isolated from liver, brain and skeletal muscle by anti-TOM22 magnetic beads showed oxygen consumption capacities comparable to previously reported values and little contamination with other organelles. The purity and quality of isolated mitochondria using anti-TOM22 magnetic beads was compared to traditional differential centrifugation protocol in liver and the results indicated an obvious advantage of the magnetic beads method compared to the traditional differential centrifugation technique.

  13. Microinjected magnetic beads induce curvature in Chara rhizoids

    Science.gov (United States)

    Scherp, P.; Hasenstein, K.

    The gravitropic response of the Chara rhizoid is based on the interaction between the statoliths and the actin network located in the rhizoid apex. The rhizoid represents a model system for the study of gravitropism, because its apical cell contains the gravity sensing and response mechanism. In order to study the function of the statoliths and the cytoskeleton, we supplemented the naturally occurring statoliths with magnetic beads. These beads can be moved by an external magnetic field and they can be coated to interact with the cytoskeleton. The magnetic beads (1μm diameter) were injected close to the tip of the rhizoid in the presence of an external osmoticum to offset turgor pressure. The injection caused the formation of a noticeable plug of dense material at the site of impalement. After a recovery period of ca. 2 - 4 hours, the whole plant was mounted on the rotatable stage of a custom- built horizontal microscope, equipped with a long-working distance objective and a video camera. This stage is designed to reorientate the cell and/or the injected beads. In order to study the effect of the displacement of magnetic beads, an external magnetic field was applied. This external field was capable of displacing the magnetic particles but did not affect the natural statoliths. Work is in progress to quantify the response, to study the effect of microinjection on wall formation, and utilize coating of the beads to investigate their possible interaction with the original statoliths and with the microfilament network. Supported by NASA grant NAG 2- 1423.

  14. The risks of gastrointestinal injury due to ingested magnetic beads ...

    African Journals Online (AJOL)

    The risks of gastrointestinal injury due to ingested magnetic beads. S Cox, R Brown, A Millar, A Numanoglu, A Alexander, A Theron. Abstract. Accidental ingestion of foreign bodies is a common problem in children. Magnetic bead toys are hazardous, having potentially lethal consequences if ingested. These magnets ...

  15. Towards a programmable magnetic bead microarray in a microfluidic channel

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bruus, Henrik; Hansen, Mikkel Fougt

    2007-01-01

    to use larger currents and obtain forces of longer range than from thin current lines at a given power limit. Guiding of magnetic beads in the hybrid magnetic separator and the construction of a programmable microarray of magnetic beads in the microfluidic channel by hydrodynamic focusing is presented....

  16. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains.

    Science.gov (United States)

    Jalal, Uddin M; Jin, Gyeong Jun; Eom, Kyu Shik; Kim, Min Ho; Shim, Joon S

    2017-11-06

    In this work, a Lab-on-a-Chip (LOC) platform is used to electromagnetically actuate magnetic bead chains for an enhanced immunoassay. Custom-made electromagnets generate a magnetic field to form, rotate, lift and lower the magnetic bead chains (MBCs). The cost-effective, disposable LOC platform was made with a polymer substrate and an on-chip electrochemical sensor patterned via the screen-printing process. The movement of the MBCs is controlled to improve the electrochemical signal up to 230% when detecting beta-type human chorionic gonadotropin (β-hCG). Thus, the proposed on-chip MBC-based immunoassay is applicable for rapid, qualitative electrochemical point-of-care (POC) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Controlling the magnetic field distribution on the micrometer scale and generation of magnetic bead patterns for microfluidic applications.

    Science.gov (United States)

    Yu, Xu; Feng, Xuan; Hu, Jun; Zhang, Zhi-Ling; Pang, Dai-Wen

    2011-04-19

    As is well known, controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip is significant and has many applications in bioanalysis based on magnetic beads. However, it is a challenge to tailor the magnetic field introduced by external permanent magnets or electromagnets on the micrometer scale. Here, we demonstrated a simple approach to controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip by nickel patterns encapsulated in a thin poly(dimethylsiloxane) (PDMS) film under the fluid channel. With the precisely controlled magnetic field, magnetic bead patterns were convenient to generate. Moreover, two kinds of fluorescent magnetic beads were patterned in the microfluidic channel, which demonstrated that it was possible to generate different functional magnetic bead patterns in situ, and could be used for the detection of multiple targets. In addition, this method was applied to generate cancer cell patterns. © 2011 American Chemical Society

  18. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    DEFF Research Database (Denmark)

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration of s...

  19. Monosize magnetic hydrophobic beads for lysozyme purification under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Altintas, Evrim Banu [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey)

    2009-06-01

    Monosize and magnetic poly(glycidyl methacrylate-N-methacryloyl-(L)-tryptophan) [mPGMATrp] beads (1.6 {mu}m in diameter) were used for hydrophobic affinity capture of lysozyme from chicken egg-white. N-methacryloyl-(L)-tryptophan (MATrp), which gives hydrophobicity to the resulting polymer, was synthesized by reacting methacryloyl chloride and L-tryptophan methyl ester then characterized by Nuclear Magnetic Resonance (NMR). mPGMATrp beads were produced by dispersion polymerization in the presence of magnetite nano-powder. mPGMATrp beads were characterized by means of swelling studies, elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Lysozyme adsorption experiments were performed under different experimental conditions (i.e., lysozyme concentration, temperature, and ionic strength) in magnetically stabilized fluidized bed system, (MSFB). Maximum adsorption capacity was 263.9 mg/g. It was observed that mPGMATrp beads can be used without significant loss in lysozyme adsorption capacity after 25 adsorption-elution cycle.

  20. Monosize magnetic hydrophobic beads for lysozyme purification under magnetic field

    International Nuclear Information System (INIS)

    Altintas, Evrim Banu; Denizli, Adil

    2009-01-01

    Monosize and magnetic poly(glycidyl methacrylate-N-methacryloyl-(L)-tryptophan) [mPGMATrp] beads (1.6 μm in diameter) were used for hydrophobic affinity capture of lysozyme from chicken egg-white. N-methacryloyl-(L)-tryptophan (MATrp), which gives hydrophobicity to the resulting polymer, was synthesized by reacting methacryloyl chloride and L-tryptophan methyl ester then characterized by Nuclear Magnetic Resonance (NMR). mPGMATrp beads were produced by dispersion polymerization in the presence of magnetite nano-powder. mPGMATrp beads were characterized by means of swelling studies, elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Lysozyme adsorption experiments were performed under different experimental conditions (i.e., lysozyme concentration, temperature, and ionic strength) in magnetically stabilized fluidized bed system, (MSFB). Maximum adsorption capacity was 263.9 mg/g. It was observed that mPGMATrp beads can be used without significant loss in lysozyme adsorption capacity after 25 adsorption-elution cycle.

  1. Towards a programmable magnetic bead microarray in a microfluidic channel

    International Nuclear Information System (INIS)

    Smistrup, Kristian; Bruus, Henrik; Hansen, Mikkel F.

    2007-01-01

    A new hybrid magnetic bead separator that combines an external magnetic field with 175 μm thick current lines buried in the back side of a silicon wafer is presented. A microfluidic channel was etched into the front side of the wafer. The large cross-section of the current lines makes it possible to use larger currents and obtain forces of longer range than from thin current lines at a given power limit. Guiding of magnetic beads in the hybrid magnetic separator and the construction of a programmable microarray of magnetic beads in the microfluidic channel by hydrodynamic focusing is presented

  2. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal

    Science.gov (United States)

    Li, Xiaoli; Lu, Haijun; Zhang, Yun; He, Fu; Jing, Lingyun; He, Xinghua

    2016-12-01

    A simple and efficient method for production of magnetic composites by decorating CoFe2O4 with polydopamine (PDA) through oxidative polymerization of dopamine was conducted. Further, magnetic alginate beads with porous structure containing well-dispersed CoFe2O4-PDA were fabricated by ionic crosslinking technology. The resulting SA@CoFe2O4-PDA beads were characterized using scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometer, vibrating sample magnetometer and X-ray photoelectron spectroscopy. Adsorption potential of SA@CoFe2O4-PDA beads for organic dyes including Methylene Blue (MB), Crystal Violet (CV) and Malachite Green (MG) was evaluated. SA@CoFe2O4-PDA beads exhibited excellent adsorption performances due to the composite effect, large surface area and porous structure. Organic dyes could be removed from water solution with high efficiency in a wide pH range of 4.0-9.0. Moreover, it exhibited much higher adsorptivity towards MB and CV with the maximum adsorption capacities of 466.60 and 456.52 mg/g, respectively, which were much higher than that of MG (248.78 mg/g). Ca-electrolyte had obvious adverse effects on MB and CV adsorption than MG. FTIR and XPS demonstrated that carboxylate, catechol, hydroxyl and amine groups might be involved in adsorption of organic dyes. The characteristics of wide pH range, high adsorption capacity and convenient magnetic separation would make SA@CoFe2O4-PDA beads as effective adsorbent for removal of organic dyes from wastewater.

  3. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    Science.gov (United States)

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  4. Theoretical study of moving magnetic beads on an inclined plane and its application in the ratchet separation technique

    Science.gov (United States)

    Rashidi, M. M.; Johnson, S.; Yang, Z.

    2016-01-01

    For first time, motion of a magnetic bead ascending an inclined surface is investigated. The translational and rotational velocities of magnetic beads traveling on an inclined plane in the creeping flow regime are studied. The governing equations considering lift force and magnetic torque are obtained. Rolling and slipping cases are studied in detail. It is shown that the lift force effect is critical for large values of sedimentation Reynolds number (Res) and negligible for small values of Res. This method is applicable for neutrally buoyant and heavy magnetic bead motion. Practical application of this study is implemented in the ratchet configuration for separation of magnetic beads with different sizes. This is applicable for novel applications such as drug delivery, magnetic tweezers, and magnetic actuated stiffness testing systems which require accurate magnetic bead sizes for accurate function.

  5. Theoretical study of moving magnetic beads on an inclined plane and its application in the ratchet separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, M.M., E-mail: mm_rashidi@tongji.edu.cn [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 4800 Cao An Rd., Jiading, Shanghai, 201804 (China); ENN-Tongji Clean Energy Institute of Advanced Studies, Shanghai (China); ENN-Tongji Clean Energy Institute of Advanced Studies, Shanghai (China); Johnson, S., E-mail: mm_rashidi@sawtc.com [University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai (China); Yang, Z., E-mail: shane.johnson@sjtu.edu.cn [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 4800 Cao An Rd., Jiading, Shanghai, 201804 (China); ENN-Tongji Clean Energy Institute of Advanced Studies, Shanghai (China)

    2016-01-15

    For first time, motion of a magnetic bead ascending an inclined surface is investigated. The translational and rotational velocities of magnetic beads traveling on an inclined plane in the creeping flow regime are studied. The governing equations considering lift force and magnetic torque are obtained. Rolling and slipping cases are studied in detail. It is shown that the lift force effect is critical for large values of sedimentation Reynolds number (Res) and negligible for small values of Res. This method is applicable for neutrally buoyant and heavy magnetic bead motion. Practical application of this study is implemented in the ratchet configuration for separation of magnetic beads with different sizes. This is applicable for novel applications such as drug delivery, magnetic tweezers, and magnetic actuated stiffness testing systems which require accurate magnetic bead sizes for accurate function. - Graphical abstract: Free body diagram for rolling/slipping motion a rough magnetic bead up a smooth plane. - Highlights: • For first time, motion of a magnetic bead ascending an inclined surface is investigated. • The governing equations considering lift force and magnetic torque are obtained. • Practical application of this study is implemented in the ratchet configuration for separation of magnetic beads with different sizes.

  6. Fabrication of magnetic alginate beads with uniform dispersion of CoFe{sub 2}O{sub 4} by the polydopamine surface functionalization for organic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoli, E-mail: lixiaoli@lzu.edu.cn [Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Lu, Haijun, E-mail: 784616040@qq.com [Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Zhang, Yun, E-mail: zhangyun@lzu.edu.cn [Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); He, Fu, E-mail: hef15@lzu.edu.cn [Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Jing, Lingyun, E-mail: jingly12@lzu.edu.cn [Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); He, Xinghua, E-mail: 466410250@qq.com [Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2016-12-15

    Highlights: • SA@CoFe{sub 2}O{sub 4}-PDA with magnetic particles and biopolymers were used for dye removal. • SA@CoFe{sub 2}O{sub 4}-PDA exhibited the synergistic effect. • High adsorption capacities and fast kinetics were obtained. • Cationic dyes could be removed with high efficiency in a wide pH range. • Possible mechanism of adsorption was investigated. - Abstract: A simple and efficient method for production of magnetic composites by decorating CoFe{sub 2}O{sub 4} with polydopamine (PDA) through oxidative polymerization of dopamine was conducted. Further, magnetic alginate beads with porous structure containing well-dispersed CoFe{sub 2}O{sub 4}-PDA were fabricated by ionic crosslinking technology. The resulting SA@CoFe{sub 2}O{sub 4}-PDA beads were characterized using scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometer, vibrating sample magnetometer and X-ray photoelectron spectroscopy. Adsorption potential of SA@CoFe{sub 2}O{sub 4}-PDA beads for organic dyes including Methylene Blue (MB), Crystal Violet (CV) and Malachite Green (MG) was evaluated. SA@CoFe{sub 2}O{sub 4}-PDA beads exhibited excellent adsorption performances due to the composite effect, large surface area and porous structure. Organic dyes could be removed from water solution with high efficiency in a wide pH range of 4.0–9.0. Moreover, it exhibited much higher adsorptivity towards MB and CV with the maximum adsorption capacities of 466.60 and 456.52 mg/g, respectively, which were much higher than that of MG (248.78 mg/g). Ca-electrolyte had obvious adverse effects on MB and CV adsorption than MG. FTIR and XPS demonstrated that carboxylate, catechol, hydroxyl and amine groups might be involved in adsorption of organic dyes. The characteristics of wide pH range, high adsorption capacity and convenient magnetic separation would make SA@CoFe{sub 2}O{sub 4}-PDA beads as effective adsorbent for removal of organic dyes from wastewater.

  7. Magnetic dye-affinity beads for human serum albumin purification.

    Science.gov (United States)

    Odabası, Mehmet

    2011-01-01

    Cibacron Blue F3GA was covalently attached onto magnetic poly(vinyl alcohol) (mPVAL) beads (100-150 μm in diameter) for human serum albumin (HSA) adsorption from human plasma. Despite low nonspecific adsorption of HSA on mPVAL beads, Cibacron Blue F3GA attachment significantly increased the HSA adsorption. The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma. Desorption of HSA from mPVAL beads was achieved by medium containing 1.0 M KSCN at pH 8.0. To test the efficiency of albumin adsorption from human serum, before and after albumin adsorption was demonstrated with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses. HSA molecules could be reversibly adsorbed and desorbed 10 times with the magnetic beads without noticeable loss in their HSA adsorption capacity.

  8. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  9. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2013-07-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20, and SPB motion is controlled by current-carrying, tapered, conducting lines made of Au. The MMC was realized using standard microfabrication techniques and provides a cheap and versatile platform for microfluidic systems for cell manipulation. © 2013 IEEE.

  10. A model for magnetic bead microrheometry

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Bespalova, S.; Zablotskyy, Vitaliy A.

    2007-01-01

    Roč. 311, - (2007), s. 162-165 ISSN 0304-8853 EU Projects: European Commission(XE) 3177 - NANOMAG-LAB Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic manoparticle * microrheology * viscoelastic parameter Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  11. A planar conducting microstructure to guide and confine magnetic beads to a sensing zone

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-08-01

    A novel planar conducting microstructure is proposed to transport and confine magnetic micro/nano beads to a sensing zone. Manipulation and concentration of magnetic beads are achieved by employing square-shaped conducting micro-loops, with a few hundred nano-meters in thickness, arranged in a unique fashion. These microstructures are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the magnetic beads. Furthermore, the size of the microstructures allows greater maneuverability and control of magnetic beads than what could be achieved by permanent magnets. The aim of the microstructures is to guide magnetic beads from a large area and confine them to a smaller area where for example quantification would take place. Experiments were performed with different concentrations of 2 μm diameter magnetic beads. Experimental results showed that magnetic beads could be successfully guided and confined to the sensing zone. © 2011 Elsevier B.V. All rights reserved.

  12. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    Magneto-resistive sensors capable of detecting superparamagnetic micro-/nano-sized beads are promising alternatives to standard diagnostic assays based on absorbance or fluorescence and streptavidin-functionalized beads are widely used as an integral part of these sensors. Here we have developed ...

  13. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    Science.gov (United States)

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  14. Planar Hall effect sensor bridge geometries optimized for magnetic bead detection

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl

    2014-01-01

    Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized...

  15. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Østerberg, Frederik Westergaard

    2015-01-01

    We investigate the self-heating of magnetoresistive sensors used for measurements on magnetic beads in magnetic biosensors. The signal from magnetic beads magnetized by the field due to the sensor bias current is proportional to the bias current squared. Therefore, we aim to maximize the bias...... current while limiting the sensor self-heating. We systematically characterize and model the Joule heating of magnetoresistive sensors with different sensor geometries and stack compositions. The sensor heating is determined using the increase of the sensor resistance as function of the bias current...

  16. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the di......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches...

  17. Magnetic Bead-Based Biosensing on an Automated & Integrated Lab-on-a-Disc Platform

    DEFF Research Database (Denmark)

    Uddin, Rokon

    centrifugal microfluidic platform with incorporated readout units. The assays were developed through surface functionalization of micro or nano-sized magnetic beads with specific antibodies or aptamers to specifically bind with the biomarker of interest resulting in the formation of the biomarker......-bridged magnetic bead clusters and hence called ‘agglutination’ assay. The concentration of the analyte or biomarker was quantified based on the size of the clusters. The model biomarkers studied in this project were thrombin – a blood coagulation protein; C-reactive protein – an acute phase protein......-biomarker for inflammatory diseases; and mononuclear white blood cell count – a biomarker for the prognosis of different medical conditions. Furthermore, the concept of the agglutination assay was utilized for a biomarker discovery application by investigating the mechanism of action of a T2D drug - metformin through...

  18. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  19. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    Science.gov (United States)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  20. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim [Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  1. On-chip measurements of Brownian relaxation vs. concentration of 40nm magnetic beads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2012-01-01

    We present on-chip Brownian relaxation measurements on a logarithmic dilution series of 40 nm beads dispersed in water with bead concentrations between 16 mu g/ml and 4000 mu g/ml. The measurements are performed using a planar Hall effect bridge sensor at frequencies up to 1 MHz. No external fields...... are needed as the beads are magnetized by the field generated by the applied sensor bias current. We show that the Brownian relaxation frequency can be extracted from fitting the Cole-Cole model to measurements for bead concentrations of 64 mu g/ml or higher and that the measured dynamic magnetic response...

  2. Efficient functionalization of poly (styrene) beads immobilized metal ...

    Indian Academy of Sciences (India)

    Three types of new bead-shaped heterogeneous nanoparticle (NP) catalysts were synthesized by simplified procedures and studied for continuous reduction of crystal violet (CV) dye. The stabilizing agent, viz., 2-acryloxyethyltrimethyl ammonium chloride (PAC) was functionalized efficiently onto the surface of insoluble ...

  3. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    an immunomicroarray for systematic studies of the binding properties of 10 different micro-/nano-sized streptavidin-functionalized beads to a biotin substrate immobilized on SiO2 with or without surface modification SiO2 surface cleaning, immobilized substrate concentration and surface blocking conditions were...

  4. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs.

    Science.gov (United States)

    Alshehri, Awatef M; Wilson, Otto C; Dahal, Bishnu; Philip, John; Luo, Xiaolong; Raub, Christopher B

    2017-11-01

    Magnetic nanoparticles (MNPs) self-align and transduce magnetic force, two properties which lead to promising applications in cell and tissue engineering. However, the toxicity of MNPs to cells which uptake them is a major impediment to applications in engineered tissue constructs. To address this problem, MNPs were embedded in millimeter-scale alginate beads, coated with glutaraldehyde cross-linked chitosan, and loaded in acellular and MDA-MB-231 cancer cell-seeded collagen hydrogels, providing local micro-actuation under an external magnetic field. Brightfield microscopy was used to assess nanoparticle diffusion from the bead. Phase contrast microscopy and digital image correlation were used to track collagen matrix displacement and estimate intratissue strain under magnetic actuation. Coating the magnetic alginate beads with glutaraldehyde-chitosan prevents bulk diffusion of nanoparticles into the surrounding microenvironment. Further, the beads exert force on the surrounding collagen gel and cells, resulting in intratissue strains of 0-10% tunable with bead dimensions, collagen density, and distance from the bead. Cells seeded adjacent to the embedded beads are subjected to strain gradients without loss of cell viability over two days culture. This study describes a simple way to fabricate crosslinked magnetic alginate beads to load in a collagen tissue construct without direct exposure of the construct to nanoparticles. The findings are significant to in vitro studies of mechanobiology in enabling precise control over dynamic mechanical loading of tissue constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [DNA extraction from decomposed tissue by double-digest and magnetic beads methods].

    Science.gov (United States)

    Yang, Dian; Liu, Chao; Liu, Hong

    2011-12-01

    To study the effect of the double-digest and magnetic beads method for DNA extraction from 3 types of decomposed tissues. DNA of cartilages, nails and joint capsule in 91 highly decomposed corpses which had not been extracted by common magnetic beads method, were prepared with the double-digest and magnetic beads methods, and quantified with Quantifiler kit, followed by amplification with Sinofiler kit or Minifiler kit. DNA concentration extracted from the 91 highly decomposed cartilages, nails and joint capsule samples was 0-0.225 ng/microL. Sixty-two samples whose DNA concentration were more than 0.020 ng/microL had obtained 9 or more STR loci successfully. The detection rate was 68.13%. The successful rate of STR genotyping for the 3 types of decomposed tissues can be significantly improved by the double-digest and magnetic beads methods.

  6. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...... is demonstrated through the motion of geometrically constrained DWs in specially designed magnetic nanoconduits fully integrated in a lab-on-a-chip platform....

  7. Discrimination of clostridium species using a magnetic bead based hybridization assay

    Science.gov (United States)

    Pahlow, Susanne; Seise, Barbara; Pollok, Sibyll; Seyboldt, Christian; Weber, Karina; Popp, Jürgen

    2014-05-01

    Clostridium chauvoei is the causative agent of blackleg, which is an endogenous bacterial infection. Mainly cattle and other ruminants are affected. The symptoms of blackleg are very similar to those of malignant edema, an infection caused by Clostridium septicum. [1, 2] Therefore a reliable differentiation of Clostridium chauvoei from other Clostridium species is required. Traditional microbiological detection methods are time consuming and laborious. Additionally, the unique identification is hindered by the overgrowing tendency of swarming Clostridium septicum colonies when both species are present. [1, 3, 4] Thus, there is a crucial need to improve and simplify the specific detection of Clostridium chauvoei and Clostridium septicum. Here we present an easy and fast Clostridium species discrimination method combining magnetic beads and fluorescence spectroscopy. Functionalized magnetic particles exhibit plentiful advantages, like their simple manipulation in combination with a large binding capacity of biomolecules. A specific region of the pathogenic DNA is amplified and labelled with biotin by polymerase chain reaction (PCR). These PCR products were then immobilized on magnetic beads exploiting the strong biotin-streptavidin interaction. The specific detection of different Clostridium species is achieved by using fluorescence dye labeled probe DNA for the hybridization with the immobilized PCR products. Finally, the samples were investigated by fluorescence spectroscopy. [5

  8. Observation of the dynamics of magnetically induced chains of sub-micron superparamagnetic beads in aqueous solutions by laser light scattering

    International Nuclear Information System (INIS)

    Tanizawa, Y; Tashiro, T; Sandhu, A; Ko, P J

    2013-01-01

    Optical monitoring the behaviour of magnetically induced self-assembled chains of superparamagnetic beads (SPBs) are of interest for biomedical applications such as biosensors. However, it is difficult to directly monitor magnetically induced self-assembly of sub-micron nano-beads with conventional optical microscopes. Here, we describe the optical observation of the dynamics of magnetically induced self-assembled rotating chains of 130 nm SPBs in aqueous solutions by laser light scattering. Magnetic fields of ∼1 kOe were applied to control the self-assembly chains of SPBs and their behaviour analyzed by monitoring the intensity of laser light scattered from the chain structures. We compared the light scattering from chains that were formed only by the application of external fields with chains formed by beads functionalized by EDC, where chemical reactions lead to the bonding of individual beads to form chains. The EDC experiments are a precursor to experiments on molecular recognition applications for biomedical diagnostics.

  9. Magnetic Bead Based Immunoassay for Autonomous Detection of Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y; Hara, C A; Knize, M G; Hwang, M H; Venkatesteswaran, K S; Wheeler, E K; Bell, P M; Renzi, R F; Fruetel, J A; Bailey, C G

    2008-05-01

    As a step towards toward the development of a rapid, reliable analyzer for bioagents in the environment, we are developing an automated system for the simultaneous detection of a group of select agents and toxins. To detect toxins, we modified and automated an antibody-based approach previously developed for manual medical diagnostics that uses fluorescent eTag{trademark} reporter molecules and is suitable for highly multiplexed assays. Detection is based on two antibodies binding simultaneously to a single antigen, one of which is labeled with biotin while the other is conjugated to a fluorescent eTag{trademark} through a cleavable linkage. Aqueous samples are incubated with the mixture of antibodies along with streptavidin-coated magnetic beads coupled to a photo-activatable porphyrin complex. In the presence of antigen, a molecular complex is formed where the cleavable linkage is held in proximity to the photoactivable group. Upon excitation at 680 nm, free radicals are generated, which diffuse and cleave the linkage, releasing the eTags{trademark}. Released eTags{trademark} are analyzed using capillary gel electrophoresis with laser-induced fluorescence detection. Limits of detection for ovalbumin and botulinum toxoid individually were 4 ng/mL (or 80 pg) and 16 ng/mL (or 320 pg), respectively, using the manual assay. In addition, we demonstrated the use of pairs of antibodies from different sources in a single assay to decrease the rate of false positives. Automation of the assay was demonstrated on a flow-through format with higher LODs of 125 ng/mL (or 2.5 ng) each of a mixture of ovalbumin and botulinum toxoid. This versatile assay can be easily modified with the appropriate antibodies to detect a wide range of toxins and other proteins.

  10. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bu, Minqiang; Wolff, Anders

    2008-01-01

    We present a theoretical analysis of a new design for microfluidic magnetic bead separation. It combines an external array of mm-sized permanent magnets with magnetization directions alternating between up and down with mu m-sized soft magnetic structures integrated in the bottom of the separatio...

  11. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  12. Iron Nanoparticles (Fe3O4 Used to Synthesize Magnetic Sodium Alginate Hydrogel Beads for the Removal of Basic Blue 159 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Atiyeh Ghajarieh

    2017-11-01

    Full Text Available Dyes are a main source of pollutants in textile plant effluents. Due to their molecular structure, they are usually toxic, carcinogenous, and persistent in the environment. The aim of the present work was to explore the removal of basic blue159 (BB159 using magnetic sodium alginate hydrogel beads. Magnetic sodium alginate hydrogel beads were initially synthesized  accoriodng to Rocher method using CaCl2 as a crosslink agent. Fourier transform infrared spectroscopy (FTIR was then employed to examine the functional groups on the surface of the magnetic sodium alginate hydrogel beads. In a third stage, the magnetic properties of the beads were measured using a vibrating sample magnetometer (VSM and the magnetic parameters were calculated. Subsequently, the effects of such parameters as adsorbent dosage, pH, initial concentration of dye, and contact time were evaluated on the BB159 removal efficiency of the adsorbent used. Finally, the Langmuir, Freundlich, Temkin, and B.E.T models were exploited to study the adsorption isotherm of BB159 onto the magnetic sodium alginate hydrogel beads. It was found that the magnetic sodium alginate beads possess both –COO and –OH groups that play important roles in the adsorption of the positively charged BB159 dye. A saturation magnetization equal to 21/8(emu/g was obtained for the sodium alginate beads/nano Fe3O4. Results also revealed that the highest dye removal from aqueous solutions was achieved at pH=11 in 120 minutes for 9 grams of the adsorbent. The study indicated that BB159 removal using the magnetic sodium alginate hydrogel beads as the adsorbent obeys the Langmuir model. Moreover, it was shown that the efficiency of the process for BB159 removal from aqueous solutions was satisfactory (85%.

  13. Investigation on rare earth magnets recycling by organophosphoric extractant encapsulated polymeric beads for separation of dysprosium

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) are a basic requirement of the electronics and new industries including green technology. In the present work an organophosphoric extractant encapsulating polyethersulfone (PES) beads has been developed and employed for dysprosium (Dy) separation from aqueous stream. Polyethersulfonic beads encapsulating PC88A were prepared by phase inversion method. During the synthesis of the beads, preparatory parameters were also optimized to obtain best suited beads which were subsequently characterized for their encapsulation capacity and micro structural investigation. The results obtained in the present investigation suggested that PES/PVAJPC88A composite beads could be used for separation of rare earths from aqueous medium obtained from the solubilisation of magnetic scrap materials

  14. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  15. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... biosensor based on the detection of the dynamic response of magnetic beads....

  16. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water

    Energy Technology Data Exchange (ETDEWEB)

    Bée, Agnès, E-mail: agnes.bee@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); Obeid, Layaly, E-mail: lghannoum@hotmail.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); CertiNergy Solutions, 33 avenue du Maine, BP 195, 75755 Paris Cedex 15 (France); Mbolantenaina, Rakotomalala, E-mail: mbolantenaina@yahoo.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); Welschbillig, Mathias, E-mail: welschbillig@certinergysolutions.com [CertiNergy Solutions, 33 avenue du Maine, BP 195, 75755 Paris Cedex 15 (France); Talbot, Delphine, E-mail: delphine.talbot@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France)

    2017-01-01

    A magnetic composite material composed of magnetic nanoparticles and clay encapsulated in cross-linked chitosan beads was prepared, characterized and used as a magsorbent for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The magnetic properties of these beads represent an advantage to recover them at the end of the depollution process. The optimal weight ratio R=clay:chitosan for the removal of MB in a large range of pH was determined. For beads without clay, the maximal adsorption capacity of MB occurs in the pH range [9–12], while for beads with clay, the pH range extends by increasing the amount of clay to reach [3–12] for R>0.5. Adsorption isotherms show that the adsorption capacity of magnetic beads is equal to 82 mg/g. Moreover, the kinetics of dye adsorption is relatively fast since 50% of the dye is removed in the first 13 min for an initial MB concentration equal to 100 mg/L. The estimation of the number of adsorption sites at a given pH shows that the main driving force for adsorption of MB in a large range of pH is the electrostatic interaction between the positively charged dye and the permanent negative charges of clay. - Highlights: • A magsorbent based on magnetic nanoparticles and clay encapsulated in chitosan beads was prepared and characterized. • Clay played significant role for the removal of a cationic dye. • The magnetic beads exhibit a maximum adsorption capacity of 82 mg/g for methylene blue. • The pH range of the maximum adsorption extends from [9–12] to [3–12] by increasing the amount of clay. • The magsorbent could be magnetically removed from solution.

  17. Comparison of La3+ and mixed rare earths-loaded magnetic chitosan beads for fluoride adsorption

    DEFF Research Database (Denmark)

    Liang, Peng; An, Ruiqi; Li, Ruifen

    2018-01-01

    La3+ and mixed-rare earth magnetic chitosan beads (MCLB and MCLRB) were successfully prepared for fluoride removal, respectively. The adsorbents were characterized by scanning electron microscope and magnetic response. Batch experiments were carried out to investigate the adsorbent performance...

  18. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water

    Science.gov (United States)

    Bée, Agnès; Obeid, Layaly; Mbolantenaina, Rakotomalala; Welschbillig, Mathias; Talbot, Delphine

    2017-01-01

    A magnetic composite material composed of magnetic nanoparticles and clay encapsulated in cross-linked chitosan beads was prepared, characterized and used as a magsorbent for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The magnetic properties of these beads represent an advantage to recover them at the end of the depollution process. The optimal weight ratio R=clay:chitosan for the removal of MB in a large range of pH was determined. For beads without clay, the maximal adsorption capacity of MB occurs in the pH range [9-12], while for beads with clay, the pH range extends by increasing the amount of clay to reach [3-12] for R>0.5. Adsorption isotherms show that the adsorption capacity of magnetic beads is equal to 82 mg/g. Moreover, the kinetics of dye adsorption is relatively fast since 50% of the dye is removed in the first 13 min for an initial MB concentration equal to 100 mg/L. The estimation of the number of adsorption sites at a given pH shows that the main driving force for adsorption of MB in a large range of pH is the electrostatic interaction between the positively charged dye and the permanent negative charges of clay.

  19. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Lenin, Nayagam; Sankarganesh, Murugesan; Dhaveethu Raja, Jeyaraj; Rajesh, Jegathalaprathaban

    2018-02-01

    Facile one-pot synthesis has been demonstrated for new biocompatible and dual responsive magnetic iron oxide nanoparticles cross-linked poly(vinyl alcohol) (PVA) blended natural polymer chitosan (CS) based hydrogel beads (mCS-PVA) as a controlled natural anticancer alkaloid Luotonin A (LuA) delivery system. The prepared magnetic hydrogel beads were characterized using powder X-ray diffraction measurement, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. The magnetic hydrogel beads are exhibited significant water retention and follow the second order kinetic model in swelling study. The swelling ratio of the magnetic gel beads increased by the addition of PVA and showed a maximum swelling ratio of 40.83 ± 1.01 g/g and follows non-Fickian water transport mechanism. Stimuli responsive mCS and mCS-PVA hydrogel beads functionalized with LuA is demonstrated for controlled release at physiological pH and under magnetic field. The magnetic hydrogel beads show highest LuA releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 73.33 ± 1.44%. This efficacy may also be tuned by altering the external magnetic field as well as the weight percentage (wt %) of polyethylene glycol. It is clearly that the newly produced magnetic hydrogel beads can be served as an effective intestinal LuA delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 543-551, 2018. © 2017 Wiley Periodicals, Inc.

  20. Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis

    Directory of Open Access Journals (Sweden)

    Yunzi Li

    2014-03-01

    Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

  1. Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: biodegradation of reactive dyes.

    Science.gov (United States)

    Bayramoğlu, Gülay; Yilmaz, Meltem; Arica, M Yakup

    2010-09-01

    Poly(4-vinyl pyridine), poly(VP), as a novel metal-chelating fibrous polymer was grafted on the magnetic beads. Poly(4-VP) grafted and/or Cu(II) ions chelated magnetic beads were used for reversible immobilization of Trametes versicolor laccase, and the amounts of immobilized laccase on the beads were determined as 36.8 and 56.4 mg/g beads, respectively. The adsorption of laccase on both modified magnetic beads appeared to follow the Langmuir isotherm model. The degradation of textile dyes with immobilized laccase on the metal chelated magnetic beads was evaluated in a batch system. Three different reactive textile dyes (i.e., Reactive Green 19, Reactive Red 2 and Reactive Brown 10) were successfully degraded in the enzyme reactor. It was observed that the decolorization rate varied widely with chemical structure and types of the substitute group of the reactive dye molecules. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads.

    Science.gov (United States)

    Mahdavinia, Gholam Reza; Soleymani, Moslem; Etemadi, Hossein; Sabzi, Mohammad; Atlasi, Ziba

    2018-02-01

    Chitosan-based magnetic beads were developed by solution-mixing method. Firstly, the Fe 3 O 4 nanoparticles were in situ immobilized on laponite RD sheets. The magnetic laponite RD was then dispersed in PVA and mixed with chitosan solution. PVA was aimed to prevent the disintegration of chitosan under acidic media due to its ability to form hydrogel network through freezing-thawing method. The manufactured magnetic chitosan/PVA/laponite RD beads were utilized for adsorption study of a model protein, bovine serum albumin (BSA). The adsorption of BSA on beads was pH-dependent where smaller mass of protein was adsorbed at pH values lower than isoelectric point of BSA. Moreover, it was discovered that introduction of magnetic laponite RD can improve the adsorption capacity of magnetic beads for BSA in which hydrogel with the highest content of magnetic laponite RD demonstrated the maximum adsorption capacity for BSA (q m =240.5mg/g). Langmuir model described the isotherm data better than Freundlich model. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Construction of microscale structures in enclosed microfluidic networks by using a magnetic beads based method.

    Science.gov (United States)

    Wang, Zhenyu; Zhang, Xiaojuan; Yang, Jun; Yang, Zhong; Wan, Xiaoping; Hu, Ning; Zheng, Xiaolin

    2013-08-20

    A large number of microscale structures have been used to elaborate flowing control or complex biological and chemical reaction on microfluidic chips. However, it is still inconvenient to fabricate microstructures with different heights (or depths) on the same substrate. These kinds of microstructures can be fabricated by using the photolithography and wet-etching method step by step, but involves time-consuming design and fabrication process, as well as complicated alignment of different masters. In addition, few existing methods can be used to perform fabrication within enclosed microfluidic networks. It is also difficult to change or remove existing microstructures within these networks. In this study, a magnetic-beads-based approach is presented to build microstructures in enclosed microfluidic networks. Electromagnetic field generated by microfabricated conducting wires (coils) is used to manipulate and trap magnetic beads on the bottom surface of a microchannel. These trapped beads are accumulated to form a microscale pile with desired shape, which can adjust liquid flow, dock cells, modify surface, and do some other things as those fabricated microstructures. Once the electromagnetic field is changed, trapped beads may form new shapes or be removed by a liquid flow. Besides being used in microfabrication, this magnetic-beads-based method can be used for novel microfluidic manipulation. It has been validated by forming microscale dam structure for cell docking and modified surface for cell patterning, as well as guiding the growth of neurons. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Removal of textile dye, direct red 23, with glutaraldehyde cross-linked magnetic chitosan beads.

    Science.gov (United States)

    Sanlier, Senay Hamarat; Ak, Güliz; Yilmaz, Habibe; Ozbakir, Gizem; Cagliyan, Oguzhan

    2013-01-01

    One of the most important classes of pollutants is dyes, and today there are more than 100,000 commercial dyes. Conventional treatment processes are very expensive, so it is essential to develop low-cost sorbent materials with high adsorption capacities. The aim of this study is to prepare magnetic microsized adsorbents that have high adsorption capacity for removal of direct red 23. Through this objective, glutaraldehyde cross-linked magnetic chitosan beads were formed in order to remove the textile dye direct red 23. Barium ferrite was used to give a magnetic property so that the beads could easily be separated from the water after treatment. The effects of barium ferrite, pH, incubation time, dye concentration, and glutaraldehyde amounts were investigated. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The adsorption capacity had a very large value: 1250 mg/g at pH 4.0, at room temperature. Compared with activated carbon, magnetic cross-linked chitosan exhibits excellent performance in the adsorption of anionic dyes and the magnetic properties of beads enable us to remove the beads from the water after treatment. Pseudo-second-order and intraparticle diffusion kinetic models were applied.

  5. On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    We demonstrate the use of planar Hall effect magnetoresistive sensors for AC susceptibility measurements of magnetic beads with frequencies ranging from DC to 1 MHz. This wide frequency range allows for measuring Brownian relaxation of magnetic beads with diameters ranging from 10 nm to 250 nm...

  6. Performance of dye-affinity beads for aluminium removal in magnetically stabilized fluidized bed

    Science.gov (United States)

    Yavuz, Handan; Say, Ridvan; Andaç, Müge; Bayraktar, Necmi; Denizli, Adil

    2004-01-01

    Background Aluminum has recently been recognized as a causative agent in dialysis encephalopathy, osteodystrophy, and microcytic anemia occurring in patients with chronic renal failure who undergo long-term hemodialysis. Only a small amount of Al(III) in dialysis solutions may give rise to these disorders. Methods Magnetic poly(2-hydroxyethyl methacrylate) (mPHEMA) beads in the size range of 80–120 μm were produced by free radical co-polymerization of HEMA and ethylene dimethacrylate (EDMA) in the presence of magnetite particles (Fe3O4). Then, metal complexing ligand alizarin yellow was covalently attached onto mPHEMA beads. Alizarin yellow loading was 208 μmol/g. These beads were used for the removal of Al(III) ions from tap and dialysis water in a magnetically stabilized fluidized bed. Results Al(III) adsorption capacity of the beads decreased with an increase in the flow-rate. The maximum Al(III) adsorption was observed at pH 5.0. Comparison of batch and magnetically stabilized fluidized bed (MSFB) maximum capacities determined using Langmuir isotherms showed that dynamic capacity (17.5 mg/g) was somewhat higher than the batch capacity (11.8 mg/g). The dissociation constants for Al(III) were determined using the Langmuir isotherm equation to be 27.3 mM (MSFB) and 6.7 mM (batch system), indicating medium affinity, which was typical for pseudospecific affinity ligands. Al(III) ions could be repeatedly adsorbed and desorbed with these beads without noticeable loss in their Al(III) adsorption capacity. Conclusions Adsorption of Al(III) demonstrate the affinity of magnetic dye-affinity beads. The MSFB experiments allowed us to conclude that this inexpensive sorbent system may be an important alternative to the existing adsorbents in the removal of aluminium. PMID:15329149

  7. Specificity and kinetics of norovirus binding to magnetic bead- conjugated histo-blood group antigens

    Science.gov (United States)

    Histo-blood group antigens (HBGA) have been identified as candidate receptors for human norovirus (NOR). Type A, type H1, and Lewis histo-blood group antigens (HBGAs) in humans have been identified as major targets for NOR binding. Pig HBGA-conjugated magnetic beads have been utilized as a means ...

  8. Magnetic polymer beads: Recent trends and developments in synthetic design and applications

    KAUST Repository

    Philippova, Olga

    2011-04-01

    The paper describes the synthesis, properties and applications of magnetic polymer beads. State-of-the-art, future challenges, and promising trends in this field are analyzed. New applications in oil recovery are described. © 2010 Elsevier Ltd. All rights reserved.

  9. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A

    DEFF Research Database (Denmark)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membran...

  10. A half-ring GMR sensor for detection of magnetic beads immobilized on a circular micro-trap

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-11-01

    Utilizing magnetic principles in biological immunoassays is an attractive option given its ability to remotely and non-invasively manipulate and detect cells tagged with micro/nano size superparamagnetic type beads and due to the fact that even the most complex biological immunoassays will have very little magnetic effect. The presence of magnetic beads can be detected by a magnetic sensor which quantifies the amount of target cells present in the immunoassay. In order to increase the detection rate a circular conducting micro-trap is employed to attract, trap and transport the magnetic beads to the sensing area. In this research we propose a half-ring spin valve type giant magnetoresistance (GMR) sensor for the measurement of stray fields produced by 2 μm magnetic beads which are around the circular micro-trap. A couple of half-ring GMR sensors can be used to cover the entire circular border width, in order to detect the majority of the immobilized magnetic beads. Analytical and numerical analysis leading towards the fabrication of the half-ring GMR sensor are presented. DC characterization of the fabricated sensor showed a magnetoresistance of 5.9 %. Experimental results showed that the half-ring GMR sensor detected the presence of 2 μm magnetic beads. Hence, half-ring GMR sensors integrated with a circular micro-trap have great potential to be used as an effective disease diagnostic device. © 2011 IEEE.

  11. Automated solid-phase subcloning based on beads brought into proximity by magnetic force.

    Science.gov (United States)

    Hudson, Elton P; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan

    2012-01-01

    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.

  12. Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force

    DEFF Research Database (Denmark)

    Hudson, Elton P.; Nikoshkov, Andrej; Uhlén, Mathias

    2012-01-01

    contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable...... and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close...... for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications....

  13. A micro-pillar array to trap magnetic beads in microfluidic systems

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2012-12-01

    A micro-pillar array (MPA) is proposed in this paper to trap and separate magnetic beads (MBs) in microfluidic systems. MBs are used in many biomedical applications due to being compatible in dimension to biomolecules, the large surface area available to attach biomolecules, and the fact that they can be controlled by a magnetic field. Trapping and separating these labeled biomolecules is an important step toward achieving reliable and accurate quantification for disease diagnostics. Nickel Iron (Ni50Fe 50) micro-pillars were fabricated on a Silicon (Si) substrate by standard microfabrication techniques. Experimental results showed that MBs could be trapped on the MPA at the single bead level and separated from other non-target particles. This principle can easily be extended to trap and separate target biomolecules in heterogeneous biological samples. © 2012 IEEE.

  14. Removal of diethyl phthalate from aqueous phase using magnetic poly(EGDMA-VP) beads.

    Science.gov (United States)

    Özer, Elif Tümay; Osman, Bilgen; Kara, Ali; Beşirli, Necati; Gücer, Seref; Sözeri, Hüseyin

    2012-08-30

    The barium hexaferrite (BaFe(12)O(19)) containing magnetic poly(ethylene glycol dimethacrylate-vinyl pyridine), (mag-poly(EGDMA-VP)) beads (average diameter=53-212 μm) were synthesized and characterized. Their use as an adsorbent in the removal of diethyl phthalate (DEP) from an aqueous solution was investigated. The mag-poly(EGDMA-VP) beads were prepared by copolymerizing of 4-vinyl pyridine (VP) with ethylene glycol dimethacrylate (EGDMA). The mag-poly(EGDMA-VP) beads were characterized by N(2) adsorption/desorption isotherms (BET), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), elemental analysis, scanning electron microscope (SEM) and swelling studies. At a fixed solid/solution ratio, the various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. The maximum DEP adsorption capacity of the mag-poly(EGDMA-VP) beads was determined as 98.9 mg/g at pH 3.0, 25°C. All the isotherm data can be fitted with both the Langmuir and the Dubinin-Radushkevich isotherm models. The pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The thermodynamic parameters obtained indicated the exothermic nature of the adsorption. The DEP adsorption capacity did not change after 10 batch successive reactions, demonstrating the usefulness of the magnetic beads in applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection

    Czech Academy of Sciences Publication Activity Database

    Yan, J.; Horák, Daniel; Lenfeld, Jiří; Hammond, M.; Kamali-Moghaddam, M.

    2013-01-01

    Roč. 167, č. 3 (2013), s. 235-240 ISSN 0168-1656 R&D Projects: GA ČR GAP503/10/0664; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : bead cellulose * magnetic * protein detection Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.884, year: 2013

  16. Performance of dye-affinity beads for aluminium removal in magnetically stabilized fluidized bed

    OpenAIRE

    Yavuz, Handan; Say, Ridvan; Andaç, Müge; Bayraktar, Necmi; Denizli, Adil

    2004-01-01

    Background Aluminum has recently been recognized as a causative agent in dialysis encephalopathy, osteodystrophy, and microcytic anemia occurring in patients with chronic renal failure who undergo long-term hemodialysis. Only a small amount of Al(III) in dialysis solutions may give rise to these disorders. Methods Magnetic poly(2-hydroxyethyl methacrylate) (mPHEMA) beads in the size range of 80–120 μm were produced by free radical co-polymerization of HEMA and ethylene dimethacrylate (EDMA) i...

  17. Salmonella detection in a microfluidic channel using orbiting magnetic beads

    Science.gov (United States)

    Ballard, Matt; Mills, Zachary; Owen, Drew; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-03-01

    We use three-dimensional simulations to model the detection of salmonella in a complex fluid sample in a microfluidic channel. Salmonella is captured using magnetic microbeads orbiting around soft ferromagnetic discs at the microchannel bottom subjected to a rotating external magnetic field. Numerical simulations are used to model the dynamics of salmonella and microbeads throughout the detection process. We examine the effect of the channel geometry on the salmonella capture, and the forces applied to the salmonella as it is dragged through the fluid after capture. Our findings guide the design of a lab-on-a-chip device to be used for detection of salmonella in food samples in a way that ensures that salmonella captured by orbiting microbeads are preserved until they can be extracted from the system for testing, and are not washed away by the fluid flow or damaged due to the experience of excessive stresses. Such a device is needed to detect bacteria at the food source and prevention of consumption of contaminated food, and also can be used for the detection of a variety of biomaterials of interest from complex fluid samples. Support from USDA and NSF is gratefully acknowledged.

  18. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    We present a simple 'click-on' fluidic system with integrated electrical contacts, which is suited for electrical measurements on chips in microfluidic systems. We show that microscopic magnetic field sensors based on the planar Hall effect can be used for detecting the complex magnetic response...... using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...

  19. Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA

    Directory of Open Access Journals (Sweden)

    Na Feng

    Full Text Available ABSTRACT We developed a loop-mediated isothermal amplification (LAMP assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.

  20. An immune sandwich assay of carcinoembryonic antigen based on the joint use of upconversion phosphors and magnetic beads.

    Science.gov (United States)

    Li, Yaohua; Wu, Zhengjun; Liu, Zhihong

    2015-06-21

    We herein report a sensitive and selective immunosensor for carcinoembryonic antigen (CEA) based on the joint use of upconversion phosphors (UCPs) and magnetic beads (MBs). UCPs as the signal probe were designed with a core-shell structure which provided a 40-fold enhancement of the luminescence intensity. Poly(acrylic acid) (PAA)-modified UCPs were covalently conjugated with the anti-CEA antibody (coating), and streptavidin functionalized magnetic beads were combined with another biotin-tagged anti-CEA antibody. With the assistance of a magnet, the as-formed immune sandwich in the presence of CEA can be readily separated from the assay matrix. The immunosensor showed a linear dynamic range for CEA within 0.05-20 ng mL(-1) in a buffered aqueous solution, and 0.1-20 ng mL(-1) in a human serum sample. The sensor was highly specific to CEA. Our results have suggested the potential application of the UCP-MB based immunoassay for CEA in clinical analysis.

  1. Acetylcholinesterase Immobilized on Magnetic Beads for Pesticides Detection: Application to Olive Oil Analysis

    Directory of Open Access Journals (Sweden)

    Ihya Ait-Ichou

    2012-06-01

    Full Text Available This work presents the development of bioassays and biosensors for the detection of insecticides widely used in the treatment of olive trees. The systems are based on the covalent immobilisation of acetylcholinesterase on magnetic microbeads using either colorimetry or amperometry as detection technique. The magnetic beads were immobilised on screen-printed electrodes or microtitration plates and tested using standard solutions and real samples. The developed devices showed good analytical performances with limits of detection much lower than the maximum residue limit tolerated by international regulations, as well as a good reproducibility and stability.

  2. Rapid and reagent-saving immunoassay using innovative stirring actions of magnetic beads in microreactors in the sequential injection mode.

    Science.gov (United States)

    Tanaka, K; Imagawa, H

    2005-12-15

    We developed new ELISA techniques in sequential injection analysis (SIA) mode using microreactors with content of a few microliters. We immobilized antibodies on magnetic beads 1.0mum in diameter, injected the beads into microreactors and applied rotating magnetic fields of several hundred gauss. Magnetic beads, suspended in liquid in density of approximately 10(9)-10(10) particles per millilitre, form a large number of thin rod clusters, whose length-wise axes are oriented in parallel with the magnetic field. We rotate the Nd magnets below the center of the microreactor by a tiny motor at about 2000-5000rpm. These rotating clusters remarkably accelerate the binding rate of the antibodies with antigens in the liquid. The beads are trapped around the center of the rotating magnetic field even in the flowing liquid. This newly found phenomenon enables easy bead handling in microreactors. Modification of reactor walls with selected blocking reagents was essential, because protein-coated beads often stick to the wall surface and cannot move freely. Washing steps were also shortened.

  3. Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuni, Wulan Tri, E-mail: wulantriws@gmail.com [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680 (Indonesia); Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Ivandini, Tribidasari A.; Saepudin, Endang [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); CREST, JST, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Biomolecule modified magnetic beads has been widely used in separation and sensing process. This study used streptavidin modified magnetic beads to immobilize biotin modified zanamivir. Biotin-streptavidin affinity facilitates immobilization of zanamivir on magnetic beads. Then interaction of zanamivir and neuraminidase was adopted as basic for enzyme detection. Detection of neuraminidase was performed at gold modified BDD using cyclic voltammetry technique. The measurement was carried out based on alteration of electrochemical signals of working electrode as neuraminidase response. The result showed that zanamivir was successfully immobilized on magnetic beads. The optimum amount of magnetic beads for zanamivir immobilization was 120 ug. Linear responses of neuraminidase were detected in concentration range of 0-15 mU. Detection limit (LOD) of measurement was 2.32 mU (R2 = 0.959) with precision as % RSD of 1.41%. Measurement of neuraminidase on magnetic beads could be also performed in the presence of mucin matrix. The linearity range was 0-8 mU with LOD of 0.64 mU (R2 = 0.950) and % RSD of 7.25%.

  4. Paramagnetic beads and magnetically mediated strain enhance cardiomyogenesis in mouse embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Laura R Geuss

    Full Text Available Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC in vitro. In addition, manipulation of the embryoid body (EB microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2 expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4 supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols.

  5. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Science.gov (United States)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  6. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Directory of Open Access Journals (Sweden)

    H. Corte-León

    2016-05-01

    Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  7. Electrochemical detection of miRNA-222 by use of a magnetic bead-based bioassay.

    Science.gov (United States)

    Bettazzi, Francesca; Hamid-Asl, Ezat; Esposito, Carla Lucia; Quintavalle, Cristina; Formisano, Nello; Laschi, Serena; Catuogno, Silvia; Iaboni, Margherita; Marrazza, Giovanna; Mascini, Marco; Cerchia, Laura; De Franciscis, Vittorio; Condorelli, Gerolama; Palchetti, Ilaria

    2013-01-01

    MicroRNAs (miRNAs, miRs) are naturally occurring small RNAs (approximately 22 nucleotides in length) that have critical functions in a variety of biological processes, including tumorigenesis. They are an important target for detection technology for future medical diagnostics. In this paper we report an electrochemical method for miRNA detection based on paramagnetic beads and enzyme amplification. In particular, miR 222 was chosen as model sequence, because of its involvement in brain, lung, and liver cancers. The proposed bioassay is based on biotinylated DNA capture probes immobilized on streptavidin-coated paramagnetic beads. Total RNA was extracted from the cell sample, enriched for small RNA, biotinylated, and then hybridized with the capture probe on the beads. The beads were then incubated with streptavidin-alkaline phosphatase and exposed to the appropriate enzymatic substrate. The product of the enzymatic reaction was electrochemically monitored. The assay was finally tested with a compact microfluidic device which enables multiplexed analysis of eight different samples with a detection limit of 7 pmol L(-1) and RSD = 15 %. RNA samples from non-small-cell lung cancer and glioblastoma cell lines were also analyzed.

  8. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array.

    Science.gov (United States)

    Wan, Yuan; Liu, Yaling; Allen, Peter B; Asghar, Waseem; Mahmood, M Arif Iftakher; Tan, Jifu; Duhon, Holli; Kim, Young-tae; Ellington, Andrew D; Iqbal, Samir M

    2012-11-21

    Early detection and isolation of circulating tumor cells (CTC) can enable better prognosis for cancer patients. A Hele-Shaw device with aptamer functionalized glass beads is designed, modeled, and fabricated to efficiently isolate cancer cells from a cellular mixture. The glass beads are functionalized with anti-epidermal growth factor receptor (EGFR) aptamer and sit in ordered array of pits in polydimethylsiloxane (PDMS) channel. A PDMS encapsulation is then used to cover the channel and to flow through cell solution. The beads capture cancer cells from flowing solution depicting high selectivity. The cell-bound glass beads are then re-suspended from the device surface followed by the release of 92% cells from glass beads using combination of soft shaking and anti-sense RNA. This approach ensures that the cells remain in native state and undisturbed during capture, isolation and elution for post-analysis. The use of highly selective anti-EGFR aptamer with the glass beads in an array and subsequent release of cells with antisense molecules provide multiple levels of binding and release opportunities that can help in defining new classes of CTC enumeration devices.

  9. Flow-orthogonal bead oscillation in a microfluidic chip with a magnetic anisotropic flux-guide array

    DEFF Research Database (Denmark)

    Van Pelt, Stijn; Derks, Roy; Matteucci, Marco

    2011-01-01

    A new concept for the manipulation of superparamagnetic beads inside a microfluidic chip is presented in this paper. The concept allows for bead actuation orthogonal to the flow direction inside a microchannel. Basic manipulation functionalities were studied by means of finite element simulations...

  10. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk.

    Science.gov (United States)

    Ruiz-Valdepeñas Montiel, Víctor; Campuzano, Susana; Torrente-Rodríguez, Rebeca M; Reviejo, A Julio; Pingarrón, José M

    2016-12-15

    Alpha-lactalbumin (α-LA) is one of the whey proteins in cows' milk that has been identified as allergenic. In this work, we present, for the first time, a very sensitive magnetic beads (MBs)-based immunosensor for the determination of α-LA. A sandwich configuration involving selective capture and horseradish peroxidase-labeled detector antibodies was implemented on carboxylic acid-modified magnetic beads, captured magnetically under the surface of a disposable screen-printed carbon electrode for amperometric detection using the hydroquinone (HQ)/H2O2 system. The α-LA immunosensor exhibited a wide linear range (37.0-5000pg/ml), a low limit of detection (LOD, 11.0pg/ml) and noteworthy selectivity against other non-target proteins. The MBs-based immunosensing platform was applied successfully for the determination of α-LA in several varieties of milk (raw and UHT cows' milk as well as human milk) and infant formulations. The results were corroborated with those obtained using a commercial ELISA method, thereby substantiating the analytical merits of this unique method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fabrication of a pen-shaped portable biochemical reaction system based on magnetic bead manipulation

    International Nuclear Information System (INIS)

    Shikida, Mitsuhiro; Inagaki, Noriyuki; Okochi, Mina; Honda, Hiroyuki; Sato, Kazuo

    2011-01-01

    A pen-shaped platform that is similar to a mechanical pencil is proposed for producing a portable reaction system. A reaction unit, as the key component in the system, was produced by using a heat shrinkable tube. A mechanical pencil supplied by Mitsubishi Pencil Co. Ltd was used as the pen-shaped platform for driving the reaction cylinder. It was actuated using an inchworm motion. We confirmed that the magnetic beads were successfully manipulated in the droplet in the cylinder-shaped reaction units. (technical note)

  12. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    Science.gov (United States)

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting.

    Science.gov (United States)

    Isabey, Daniel; Pelle, Gabriel; André Dias, Sofia; Bottier, Mathieu; Nguyen, Ngoc-Minh; Filoche, Marcel; Louis, Bruno

    2016-08-01

    Cellular adhesion forces depend on local biological conditions meaning that adhesion characterization must be performed while preserving cellular integrity. We presently postulate that magnetic bead twisting provides an appropriate stress, i.e., basically a clamp, for assessment in living cells of both cellular adhesion and mechanical properties of the cytoskeleton. A global dissociation rate obeying a Bell-type model was used to determine the natural dissociation rate ([Formula: see text]) and a reference stress ([Formula: see text]). These adhesion parameters were determined in parallel to the mechanical properties for a variety of biological conditions in which either adhesion or cytoskeleton was selectively weakened or strengthened by changing successively ligand concentration, actin polymerization level (by treating with cytochalasin D), level of exerted stress (by increasing magnetic torque), and cell environment (by using rigid and soft 3D matrices). On the whole, this multiscale evaluation of the cellular and molecular responses to a controlled stress reveals an evolution which is consistent with stochastic multiple bond theories and with literature results obtained with other molecular techniques. Present results confirm the validity of the proposed bead-twisting approach for its capability to probe cellular and molecular responses in a variety of biological conditions.

  15. Automated solid-phase subcloning based on beads brought into proximity by magnetic force.

    Directory of Open Access Journals (Sweden)

    Elton P Hudson

    Full Text Available In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.

  16. [Construction of cDNA library of Magnaporthe grisea with magnetic bead].

    Science.gov (United States)

    Feng, Xu; Xiaoli, Wu; Dewen, Qiu

    2008-06-01

    We constructed cDNA library of Magnaporthe grisea. The good quality cDNA library could facilitate finding proteinaceous elicitors of M. grisea, and elucidating the mechanisms of the M. grisea--rice interaction. The Oligo(dT) combined with the magnetic bead was used to extract mRNA from total RNA of Magnaporthe grisea and as primers to synthesize the first-strand cDNA. Terminal transferase introduced PolyA into 3'terminal of the first cDNA strand, then the PolyA was used for amplifying the second-strand cDNA. Restriction enzyme and adapter were avoided in this research, which could solve technical limitation of the traditional method. Because all reactions were done in one centrifuge tube, this process could reduce the risk of cDNA loss and cross-contamination. The primers designed in this research could clone the amplified cDNAs into expression vector in a desirable orientation. The cDNA library constructed had a high titer of 8.9 x 10(6) cfu/mL, and contained a total clones of 8.9 x 10(7) cfu, with an average inserts size of about 1380 bp. Constructing cDNA library with magnetic bead was a highly efficient method using only small amount of experimental materials within a short period.

  17. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    Science.gov (United States)

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Identification of novel serum biomarkers for gastric cancer by magnetic bead.

    Science.gov (United States)

    Liu, Wentao; Gao, Xiang; Cai, Qu; Li, Jianfang; Zhu, Zhenglun; Li, Chen; Yao, Xuexin; Yang, Qiumeng; Xiang, Ming; Yan, Min; Zhu, Zhenggang

    2010-06-01

    Early diagnosis and early treatment is known to improve prognosis for gastric cancer. Magnetic affinity beads can be used to extract peptides from un-fractionated serum samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) can detect the presence and the molecular mass of peptides. MALDI-TOF-MS mass spectra of peptides and proteins were generated after WCX CLINPROT bead fractionation of 62 gastric cancer serum samples. The discovery set consisted of 44 samples while the validation set was 18 serum samples. The spectra were analyzed statistically using flexAnalysisTM and Clin-ProtTM bioinformatic software. The six most significant peaks were selected out by ClinProTool software and utilized to train a Supervised Neural Network to identify gastric cancer sera from control sera. The sensitivity and specificity of the model when tested on the validation set were 100% and 75%, respectively. A set of 6 peptides that can be used to distinguish serum from gastric cancer patients with good sensitivity and specificity were identified, and these peptides may be useful biomarkers to distinguish cancer individuals who may benefit from radiologic or endoscopic examination.

  19. A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers.

    Directory of Open Access Journals (Sweden)

    Jesse V Jokerst

    Full Text Available Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH from prostate cancer (CaP. To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total, prostatic acid phosphatase, carbonic anhydrase 1 (CA1, osteonectin, IL-6 soluble receptor (IL-6sr, and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation--the area under the curve was 0.84 with a p value below 10(-6. Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair.

  20. A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers.

    Science.gov (United States)

    Jokerst, Jesse V; Chen, Zuxiong; Xu, Lingyun; Nolley, Rosalie; Chang, Edwin; Mitchell, Breeana; Brooks, James D; Gambhir, Sanjiv S

    2015-01-01

    Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH) from prostate cancer (CaP). To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total), prostatic acid phosphatase, carbonic anhydrase 1 (CA1), osteonectin, IL-6 soluble receptor (IL-6sr), and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation--the area under the curve was 0.84 with a p value below 10(-6). Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair.

  1. Comparison between magnetic bead and qPCR library normalisation methods for forensic MPS genotyping.

    Science.gov (United States)

    Mehta, Bhavik; Venables, Samantha; Roffey, Paul

    2018-01-01

    Massively parallel sequencing (MPS) is fast approaching operational use in forensic science, with the capability to analyse hundreds of DNA identity and DNA intelligence markers in multiple samples simultaneously. The ForenSeq™ DNA Signature Kit on MiSeq FGx™ (Illumina) workflow can provide profiles for autosomal short tandem repeats (STRs), X chromosome and Y chromosome STRs, identity single nucleotide polymorphisms (SNPs), biogeographical ancestry SNPs and phenotype (eye and hair colour) SNPs from a sample. The library preparation procedure involves a series of steps including target amplification, library purification and library normalisation. This study highlights the comparison between the manufacturer recommended magnetic bead normalisation and quantitative polymerase chain reaction (qPCR) methods. Furthermore, two qPCR chemistries, KAPA® (KAPA Biosystems) and NEBNext® (New England Bio Inc.), have also been compared. The qPCR outperformed the bead normalisation method, while the NEBNext® kit obtained higher genotype concordance than KAPA®. The study also established an MPS workflow that can be utilised in any operational forensic laboratory.

  2. Proteomic profiling of renal allograft rejection in serum using magnetic bead-based sample fractionation and MALDI-TOF MS.

    Science.gov (United States)

    Sui, Weiguo; Huang, Liling; Dai, Yong; Chen, Jiejing; Yan, Qiang; Huang, He

    2010-12-01

    Proteomics is one of the emerging techniques for biomarker discovery. Biomarkers can be used for early noninvasive diagnosis and prognosis of diseases and treatment efficacy evaluation. In the present study, the well-established research systems of ClinProt Micro solution incorporated unique magnetic bead sample preparation technology, which, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), have become very successful in bioinformatics due to its outstanding performance and reproducibility for discovery disease-related biomarker. We collected fasting blood samples from patients with biopsy-confirmed acute renal allograft rejection (n = 12), chronic rejection (n = 12), stable graft function (n = 12) and also from healthy volunteers (n = 13) to study serum peptidome patterns. Specimens were purified with magnetic bead-based weak cation exchange chromatography and analyzed with a MALDI-TOF mass spectrometer. The results indicated that 18 differential peptide peaks were selected as potential biomarkers of acute renal allograft rejection, and 6 differential peptide peaks were selected as potential biomarkers of chronic rejection. A Quick Classifier Algorithm was used to set up the classification models for acute and chronic renal allograft rejection. The algorithm models recognize 82.64% of acute rejection and 98.96% of chronic rejection episodes, respectively. We were able to identify serum protein fingerprints in small sample sizes of recipients with renal allograft rejection and establish the models for diagnosis of renal allograft rejection. This preliminary study demonstrated that proteomics is an emerging tool for early diagnosis of renal allograft rejection and helps us to better understand the pathogenesis of disease process.

  3. Acetylcholinesterase immobilized on modified magnetic beads as a tool for screening a compound library

    International Nuclear Information System (INIS)

    Vanzolini, Kenia L.; Vieira, Lucas C. C.; Corrêa, Arlene G.; Cass, Quezia B.; Moaddel, Ruin

    2015-01-01

    Acetylcholinesterase (AChE) from Electrophorus electricus was immobilized on the surface of amino-modified magnetic beads (AChE-MB), and its activity evaluated by the quantification of acetylcholine hydrolysis. A reference mixture composed of AChE binders (galanthamine and a probe coumarin, K i  = 0.031 ± 0.010 μM) and non-binders (ketamine and propranolol) was used to probe the fishing assay. The performance of the bioconjugation assay was demonstrated with a library of 12 reference coumarins from which two ligands were directly identified by LC-MS/MS in a single assay, demonstrating the usefulness of this approach. (author)

  4. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  5. Rolling circle amplification-based detection of human topoisomerase I activity on magnetic beads.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Cerroni, Barbara; Ottaviani, Alessio; Knudsen, Birgitta Ruth; Balasubramanian, Kannan; Desideri, Alessandro

    2014-04-15

    A high-sensitivity assay has been developed for the detection of human topoisomerase I with single molecule resolution. The method uses magnetic sepharose beads to concentrate rolling circle products, produced by the amplification of DNA molecules circularized by topoisomerase I and detectable with a confocal microscope as single and discrete dots, once reacted with fluorescent probes. Each dot, corresponding to a single cleavage-religation event mediated by the enzyme, can be counted due to its high signal/noise ratio, allowing detection of 0.3pM enzyme and representing a valid method to detect the enzyme activity in highly diluted samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Magnetic Bead-based Salivary Peptidome Profiling for Accelerated Osteogenic Orthodontic Treatments.

    Science.gov (United States)

    Wu, Jia Qi; Jiang, Jiu Hui; Xu, Li; Liang, Cheng; Wang, Xiu Jing; Bai, Yunyang

    2018-01-01

    To identify a panel of differentially expressed candidate biomarkers for patients undergoing accelerated osteogenic orthodontics (AOO). This study included 36 saliva samples taken from six Class III surgical patients at six time points: the date before the corticotomy procedure (T1) and at 1 week, 2 weeks, 1 month, 2 months and 6 months after the procedure (T2, T3, T4, T5 and T6, respectively). After the maxillary dental arch was aligned and levelled, AOO procedures were performed in the maxillary alveolar bone. Saliva samples were used to create peptide mass fingerprints using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) combined with magnetic beads. When the six groups were compared, 182 peaks were significantly different (P accelerated tooth movement induced by AOO. This method provides a tool for investigating corticotomy-induced accelerated tooth movement in humans, and explored the critical factors responsible for the regional acceleratory phenomenon.

  7. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry

    Science.gov (United States)

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice.

  8. Magnetic bead purification of labeled DNA fragments forhigh-throughput capillary electrophoresis sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Elkin, Christopher; Kapur, Hitesh; Smith, Troy; Humphries, David; Pollard, Martin; Hammon, Nancy; Hawkins, Trevor

    2001-09-15

    We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620 phred20 bases as part of Joint Genome Institutes Production Process.

  9. Serum peptidome patterns of hepatocellular carcinoma based on magnetic bead separation and mass spectrometry analysis.

    Science.gov (United States)

    Ying, Xia; Han, Su-xia; Wang, Jun-lan; Zhou, Xia; Jin, Gui-hua; Jin, Long; Wang, Hao; Wu, Lei; Zhang, Jianying; Zhu, Qing

    2013-08-05

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world,and the identification of biomarkers for the early detection is a relevant target. The purpose of the study is to discover specific low molecular weight (LMW) serum peptidome biomarkers and establish a diagnostic pattern for HCC. We undertook this pilot study using a combined application of magnetic beads with Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique and ClinPro Tools v2.2 to detect 32 patients with HCC, 16 patients with chronic hepatitis (CH), 16 patients with liver cirrhosis (LC) and 16 healthy volunteers. The results showed 49, 33 and 37 differential peptide peaks respectively appeared in HCC, LC and CH groups. A Supervised Neural Network (SNN) algorithm was used to set up the classification model. Eleven of the identified peaks at m/z 5247.62, 7637.05, 1450.87, 4054.21, 1073.37, 3883.64, 5064.37, 4644.96, 5805.51, 1866.47 and 6579.6 were used to construct the peptides patterns. According to the model, we could clearly distinguish between HCC patients and healthy controls as well as between LC or CH patients and healthy controls. The study demonstrated that a combined application of magnetic beads with MALDI-TOF MB technique was suitable for identification of potential serum biomarkers for HCC and it is a promising way to establish a diagnostic pattern. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1503629821958720.

  10. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    Science.gov (United States)

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  11. Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads.

    Science.gov (United States)

    Tang, Dianping; Hou, Li; Niessner, Reinhard; Xu, Mingdi; Gao, Zhuangqiang; Knopp, Dietmar

    2013-08-15

    A novel multiplexed stripping voltammetric immunoassay protocol was designed for the simultaneous detection of multiple biomarkers (CA 125, CA 15-3, and CA 19-9 used as models) using PAMAM dendrimer-metal sulfide quantum dot (QD) nanolabels as distinguishable signal tags and trifunctionalized magnetic beads as an immunosensing probe. The probe was prepared by means of co-immobilization of primary monoclonal anti-CA 125, anti-CA 15-3 and anti-CA 19-9 antibodies on a single magnetic bead. The PAMAM dendrimer-metal sulfide QD nanolabels containing CdS, ZnS and PbS were synthesized by using in situ synthesis method, which were utilized for the labeling of polyclonal rabbit anti-CA 125, anti-CA 15-3 and anti-CA 19-9 detection antibodies, respectively. A sandwich-type immunoassay format was adopted for the simultaneous determination of target biomarkers in a low-binding microtiter plate. The subsequent anodic stripping voltammetric analysis of cadmium, zinc, and lead components released by acid from the corresponding QD nanolabels was conducted at an in situ prepared mercury film electrode based on the difference of peak potentials. Experimental results indicated that the multiplexed immunoassay enabled the simultaneous detection of three cancer biomarkers in a single run with wide dynamic ranges of 0.01-50 U mL(-1) and detection limits (LODs) of 0.005 U mL(-1). Intra-assay and inter-assay coefficients of variation (CVs) were less than 7.2% and 10.4%, respectively. No significant differences at the 0.05 significance level were encountered in the analysis of 10 clinical serum specimens between the multiplexed immunoassay and a commercially available enzyme-linked immunosorbent assay (ELISA). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka P.

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  13. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.

    Science.gov (United States)

    Aydemir, Tülin; Güler, Semra

    2015-01-01

    Laccase from Trametes versicolor was immobilized on magnetic chitosan-clay composite beads by glutaraldehyde crosslinking. The physical, chemical, and biochemical properties of the immobilized laccase and its application in phenol removal were comprehensively investigated. The structure and morphology of the composite beads were characterized by SEM, TGA, and FTIR analyses. The immobilized laccase showed better storage stability and higher tolerance to the changes in pH and temperature compared with free laccase. Moreover, the immobilized laccase retained more than 75% of its original activity after 10 cycles. The efficiency of phenol removal by immobilized laccase was about 80% under the optimum conditions after 4 h.

  14. Synthesis of tentacle-type magnetic beads as immobilized metal-chelate affinity support for cytochrome c adsorption.

    Science.gov (United States)

    Türkmen, Deniz; Yavuz, Handan; Denizli, Adil

    2006-03-30

    Magnetic poly(2-hydroxyethylmethacrylate) (mPHEMA) beads with an average diameter of 100-140 microm were produced by suspension polymerization in the presence of magnetite particles (i.e. Fe3O4). Specific surface area and average pore size of the magnetic beads was found to be 50 m2/g and 819 nm, respectively. Ester groups in the mPHEMA structure were converted to imine groups by reacting with poly(ethyleneimine) (PEI) in the presence of NaH. Amino (-NH2) content of PEI-attached mPHEMA beads was determined as 102 mg PEI/g. Then, Cu2+ ions were chelated on the magnetic beads in the range of 20-793 micromol Cu2+/g. Cytochrome c (cyt c) adsorption was performed on the metal chelating beads from aqueous solutions containing different amounts of cyt c at different pHs, Cu2+ loadings and temperatures. Cyt c adsorption on the mPHEMA/PEI beads was 4.6 mg/g. Cu2+ chelation increased the cyt c adsorption significantly (40.1 mg/g). Adsorption capacity increased with Cu2+ loading and then reached a saturation value. Cyt c adsorption decreased with increasing temperature. Cyt c molecules could be reversibly adsorbed and eluted ten times with the magnetic adsorbents without noticeable loss in their cyt c adsorption capacity. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. In the last part of this article, cyt c adsorption experiments were performed in a magnetically stabilized fluidized bed (MSFB) system at optimum conditions determined from the batch experiments. The adsorption capacity decreased significantly from 46.8 to 15.4 mg/g polymer with the increase of the flow-rate from 0.5 to 4.0 ml/min. The resulting magnetic chelator beads possessed excellent long-term storage stability.

  15. Use of immuno-magnetic beads for direct capture of nanosized microparticles from plasma.

    Science.gov (United States)

    Yuana, Yuana; Osanto, Susanne; Bertina, Rogier M

    2012-04-01

    Increased microparticle tissue factor (TF) activity is not only found in cancer patients, but also in patients with cardiovascular and inflammatory diseases. Methods such as flow cytometry and impedance-based flow cytometry allow the analysis of microparticle subsets but provide no insight on which microparticles carry active TF. Conversely, the microparticle-TF activity itself does not reveal the cellular origin of the microparticles carrying the active TF.For this reason, we developed an immuno-magnetic bead method to capture subsets of microparticles directly from plasma. The method was optimized for capture of platelet-derived microparticles (PMPs) from plasma. Only 100 μl platelet-poor plasma (PPP) was needed in combination with 135 μl (27 μg) of biotinylated antihuman CD41 monoclonal antibody (MoAb) and 200 μl of streptavidin beads to achieve complete separation of PMPs from plasma. As a control, biotinylated mouse IgG1 isotype control MoAb was used instead of the anti-CD41 MoAb. Using biotinylated anti-CD14 MoAb, CD14-positive microparticles were captured from normal plasma spiked with microparticles isolated from the supernatant of lipopolysaccharide-stimulated monocytes (MoMPs). TF activity was found both in the positive (selected) and negative (depleted) fractions indicating that both CD14-positive and negative MoMPs carry active TF. We propose that this method can be used in the future to investigate the source of microparticles carrying active TF in plasma of patients with cancer and other diseases.

  16. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode.

    Science.gov (United States)

    Biscay, Julien; González García, María Begoña; Costa García, Agustín

    2015-01-01

    The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 μL of the mixture is injected and after 30s 100 μL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2012-03-01

    Magnetic beads are utilized effectively in a wide variety of medical applications due to their small size, biocompatibility and large surface to volume ratio. Microfluidic lab-on-a-chip (LOC) devices, which utilize magnetic beads, are promising tools for accurate and rapid cell sorting and counting. Effective manipulation of beads is a critical factor for the performance of LOC devices. In this paper we propose a planar conducting micro-loop structure to trap, manipulate and transport magnetic beads. Current through the micro-loops produces magnetic field gradients that are proportional to the force required to manipulate the beads. Numerical analyses were performed to study the magnetic forces and their spatial distributions. Experimental results showed that magnetic beads could not only be transported towards a target region, e.g., for sensing purposes, but also the trapping rate could be increased by switching current between the different loops in the micro-loop structure. This method could lead to rapid and accurate quantification of biological entities tagged with magnetic beads. Copyright © 2012 American Scientific Publishers. All rights reserved.

  18. Functionalized glass beads for the recovery of waste radioactive elements. Final report

    International Nuclear Information System (INIS)

    Geldard, J.F.

    1979-09-01

    Various substituted ethylenediamine tetraacetic acids and their precursors have been prepared and characterized. In addition to containing groups that can chelate metal ions, these substances also contain groups that can be used to bond them to glass beads. Experiments have shown, however, that a large enough number of active sites cannot be achieved by this route. An alternative scheme was devised, whereby trimethoxysilyl groups are incorporated into molecules that have the necessary functional groups. These silyl compounds can be bonded directly to glass beads; the ethylenediamine tetraacetic acid can then be formed in place. The prognosis for this reaction scheme is good, based on the experiments done so far. Stability constants have been measured for some metal ion complexes of the acids mentioned above

  19. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing.

    Science.gov (United States)

    de Almeida, Fernando G; Vanzolini, Kenia L; Cass, Quezia B

    2017-01-05

    Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC 50 ) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: an anticipated analytical tool for food safety.

    Science.gov (United States)

    Hervás, Miriam; López, Miguel Angel; Escarpa, Alberto

    2009-10-27

    In this work, electrochemical immunoassay involving magnetic beads to determine zearalenone in selected food samples has been developed. The immunoassay scheme has been based on a direct competitive immunoassay method in which antibody-coated magnetic beads were employed as the immobilisation support and horseradish peroxidase (HRP) was used as enzymatic label. Amperometric detection has been achieved through the addition of hydrogen peroxide substrate and hydroquinone as mediator. Analytical performance of the electrochemical immunoassay has been evaluated by analysis of maize certified reference material (CRM) and selected baby food samples. A detection limit (LOD) of 0.011 microg L(-1) and EC(50) 0.079 microg L(-1) were obtained allowing the assessment of the detection of zearalenone mycotoxin. In addition, an excellent accuracy with a high recovery yield ranging between 95 and 108% has been obtained. The analytical features have shown the proposed electrochemical immunoassay to be a very powerful and timely screening tool for the food safety scene.

  1. Equilibrium and kinetics of Sin Nombre hantavirus binding at DAF/CD55 functionalized bead surfaces.

    Science.gov (United States)

    Buranda, Tione; Swanson, Scarlett; Bondu, Virginie; Schaefer, Leah; Maclean, James; Mo, Zhenzhen; Wycoff, Keith; Belle, Archana; Hjelle, Brian

    2014-03-10

    Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)₂-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24-30 nM; k(on) ~ 10⁵ M⁻¹ s⁻¹, k(off) ~ 0.0045 s⁻¹). The bivalent (DAF)₂-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (K(d) = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.

  2. Rapid detection of Clostridium difficile via magnetic bead aggregation in cost-effective polyester microdevices with cell phone image analysis.

    Science.gov (United States)

    DuVall, Jacquelyn A; Cabaniss, Scott T; Angotti, Morgan L; Moore, John H; Abhyankar, Mayuresh; Shukla, Nishant; Mills, Daniel L; Kessel, Bryan G; Garner, Gavin T; Swami, Nathan S; Landers, James P

    2016-10-07

    Pathogen detection has traditionally been accomplished by utilizing methods such as cell culture, immunoassays, and nucleic acid amplification tests; however, these methods are not easily implemented in resource-limited settings because special equipment for detection and thermal cycling is often required. In this study, we present a magnetic bead aggregation assay coupled to an inexpensive microfluidic fabrication technique that allows for cell phone detection and analysis of a notable pathogen in less than one hour. Detection is achieved through the use of a custom-built system that allows for fluid flow control via centrifugal force, as well as manipulation of magnetic beads with an adjustable rotating magnetic field. Cell phone image capture and analysis is housed in a 3D-printed case with LED backlighting and a lid-mounted Android phone. A custom-written application (app.) is employed to interrogate images for the extent of aggregation present following loop-mediated isothermal amplification (LAMP) coupled to product-inhibited bead aggregation (PiBA) for detection of target sequences. Clostridium difficile is a pathogen of increasing interest due to its causative role in intestinal infections following antibiotic treatment, and was therefore chosen as the pathogen of interest in the present study to demonstrate the rapid, cost-effective, and sequence-specific detection capabilities of the microfluidic platform described herein.

  3. Bioreactors with Light-Beads Fluidized Bed: The Voidage Function and its Expression

    Directory of Open Access Journals (Sweden)

    Iliev Vasil

    2014-12-01

    Full Text Available Light-beads fluidized bed bioreactors with gel particles are an attractive alternative for the implementation of a system with immobilized cells. They have a number of advantages: soft operating conditions, ability to work in an ideal mixing regime, intensification of heat- and mass transfer processes in the fermentation system. The expansion characteristics of the fluidized bed were investigated in the present work. The fluidized bed expansion was described using the voidage function. It was found that the voidage can be described by nonlinear regression relationships and the regression coefficients were a function of the particles parameters.

  4. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution

  5. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  6. Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescent quantum dots and magnetic nanocrystals

    International Nuclear Information System (INIS)

    Tu Chifeng; Yang Yunhua; Gao Mingyuan

    2008-01-01

    Bifunctional polystyrene beads simultaneously incorporated with fluorescent CdTe quantum dots (Q-dots) and superparamagnetic Fe 3 O 4 nanocrystals were prepared by a modified mini-emulsion polymerization method, in which polymerizable surfactants were used as both phase transfer agent for aqueous colloidal nanoparticles and emulsifier. In addition, silica coating was also introduced to Fe 3 O 4 nanocrystals for regulating the internal structure of the composite beads. Transmission electron microscopy, confocal fluorescence microscopy and conventional spectroscopy were used to characterize the composite beads, as well as the polymerizable surfactant-coated CdTe Q-dots and silica-coated Fe 3 O 4 nanoparticles. Different mixing methods were also attempted in order to vary the size of the resultant bifunctional beads

  7. Rapid sample preparation for detection and identification of avian influenza virus from chicken faecal samples using magnetic bead microsystem

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Bu, Minqiang; Handberg, Kurt

    2010-01-01

    -PCR is a sensitive method for detection of AIV, it requires sample preparation including separation and purification of AIV and concentrate viral RNA. It is laborious and complex process especially for diagnosis using faecal sample. In this study, magnetic beads were used for immunoseparation of AIV in chicken...... faecal sample by a magnetic microsystem. Using this system, all the 16 hemagglutinin (H) and 9 neuraminidase (N) subtypes of AIV were separated and detected in spiked faecal samples using RT-PCR, without an RNA extraction step. This rapid sample preparation method can be integrated with a total analysis...

  8. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Science.gov (United States)

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by laser-induced fluorescence. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous work, which combined continuous engagement electrophoretically mediated microanalysis (EMMA) and transient engagement EMMA to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L-tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures. PMID:20024913

  9. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  10. Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads for magnetic affinity separation of histidine-tagged proteins.

    Science.gov (United States)

    Vereshchagina, T A; Fedorchak, M A; Sharonova, O M; Fomenko, E V; Shishkina, N N; Zhizhaev, A M; Kudryavtsev, A N; Frank, L A; Anshits, A G

    2016-01-28

    Magnetic Ni(2+)-zeolite/ferrosphere and Ni(2+)-silica/ferrosphere beads (Ni-ferrosphere beads - NFB) of a core-shell structure were synthesized starting from coal fly ash ferrospheres having diameters in the range of 0.063-0.050 mm. The strategy of NFB fabrication is an oriented chemical modification of the outer surface preserving the magnetic core of parent beads with the formation of micro-mesoporous coverings. Two routes of ferrosphere modification were realized, such as (i) hydrothermal treatment in an alkaline medium resulting in a NaP zeolite layer and (ii) synthesis of micro-mesoporous silica on the glass surface using conventional methods. Immobilization of Ni(2+) ions in the siliceous porous shell of the magnetic beads was carried out via (i) the ion exchange of Na(+) for Ni(2+) in the zeolite layer or (ii) deposition of NiO clusters in the zeolite and silica pores. The final NFB were tested for affinity in magnetic separation of the histidine-tagged green fluorescent protein (GFP) directly from a cell lysate. Results pointed to the high affinity of the magnetic beads towards the protein in the presence of 10 mM EDTA. The sorption capacity of the ferrosphere-based Ni-beads with respect to GFP was in the range 1.5-5.7 mg cm(-3).

  11. Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of β-agonists in pork and pig liver samples.

    Science.gov (United States)

    Hu, Yuling; Li, Yuanwen; Liu, Ruijin; Tan, Wei; Li, Gongke

    2011-04-15

    Novel magnetic molecularly imprinted polymer (MIP) beads using ractopamine as template for use in extraction was developed by microwave heating initiated suspension polymerization. Microwave heating, as an alternative heating source, significantly accelerate the polymerization process. By incorporating magnetic iron oxide, superparamagnetic composite MIP beads with average diameter of 80 μm were obtained. The imprinted beads were then characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and vibrating sample magnetometer. Highly cross-linked porous surface and good magnetic property were observed. The adsorption isotherm modeling was performed by fitting the data to Freundlich isotherm model. The binding sites measured were 3.24 μmol g(-1) and 1.17 μmol g(-1) for the magnetic MIP beads and the corresponding non-imprinted magnetic beads, respectively. Cross-selectivity experiments showed the recognition ability of the magnetic MIP beads to analytes is relative to degree of molecular analogy to the template. Finally, this magnetic MIP bead was successfully used for enrichment of ractopamine, isoxsuprine and fenoterol from ultrasonically extracted solution of pork and pig liver followed by high performance chromatography with fluorescence detection. The proposed method presented good linearity and the detection limits was 0.52-1.04 ng mL(-1).The recoveries were from 82.0% to 90.0% and from 80.4% to 86.8% for the spiked pork and pig liver, respectively, with the RSDs of 5.8-10.0%. Combination of the specific adsorption property of the MIP material and the magnetic separation provided a powerful analytical tool of simplicity, flexibility, and selectivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. New Evidence for the Mechanism of Action of a Type-2 Diabetes Drug Using a Magnetic Bead-Based Automated Biosensing Platform

    DEFF Research Database (Denmark)

    Uddin, Rokon; Nur-E-Habiba; Rena, Graham

    2017-01-01

    of adding a closely related but blood-glucose neutral drug propanediimidamide (PDI) showed completely different responses to the clusters. The entire assay was integrated in an automated microfluidics platform with an advanced optical imaging unit by which we investigated these aggregation...... platform for investigating the MOA of metformin using a magnetic microbead-based agglutination assay which has allowed us to demonstrate for the first time the interaction between Cu and metformin at clinically relevant low micromolar concentrations of the drug, thus suggesting a potential pathway...... of metformin's blood-glucose lowering action. In this assay, cysteine-functionalized magnetic beadswere agglutinated in the presence of Cu due to cysteine's Cu-chelation property. Addition of clinically relevant doses of metformin resulted in disaggregation of Cu-bridged bead-clusters, whereas the effect...

  13. Bifunctional groups grafted polyethersulfone magnetic beads for selective sequestration of plutonium

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2014-01-01

    The present study involves synthesis of polyethersulfone (PES) beads grafted with two different monomers viz. 2-hydroxyethylmethacrylate phosphoric acid ester (HEMP) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) by photo-induced free radical polymerization method. The selection of bifunctional polymer was based on our previous studies, which indicated its efficacy for selective preconcentration of Pu from 3-4 mol L -1 HNO 3 . The HEMP-co-AMPS grafted PES beads were used for selective extraction of plutonium from dissolver solution

  14. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues.

    Science.gov (United States)

    Zhang, Yi; Li, Yuanwen; Hu, Yuling; Li, Gongke; Chen, Yueqin

    2010-11-19

    Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70

  15. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders

    2014-01-01

    -binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis...... phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis...

  16. Specific serum protein biomarkers of rheumatoid arthritis detected by MALDI-TOF-MS combined with magnetic beads.

    Science.gov (United States)

    Niu, Qian; Huang, Zhuochun; Shi, Yunying; Wang, Lanlan; Pan, Xiaofu; Hu, Chaojun

    2010-07-01

    To identify novel serum protein biomarkers and establish diagnostic pattern for rheumatoid arthritis (RA) by using proteomic technology. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) combined with weak cationic exchange magnetic beads. A training set of spectra, derived from analyzing sera from 22 patients with RA, 26 patients with other autoimmune diseases and 25 age- and sex-matched healthy volunteers, was used to train and develop a decision tree model with a machine learning algorithm called decision boosting. A blinded testing set, including 21 patients with RA, 24 patients with other autoimmune diseases and 25 healthy people, was used to examine the accuracy of the model. A decision tree model was established, consisting of four potential protein biomarkers whose m/z values were 4966.88, 5065.3, 5636.97 and 7766.87, respectively. In validation test, the decision tree model could differentiate RA from other autoimmune diseases and healthy people with the sensitivity of 85.71% and specificity of 87.76%, respectively. The present data suggested that MALDI-TOF-MS combined with magnetic beads could screen and identify some novel serum protein biomarkers related to RA. The proteomic pattern based on the four candidate biomarkers is of value for laboratory diagnosis of RA.

  17. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    International Nuclear Information System (INIS)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  18. Magnetic Bead and Fluorescent Silica Nanoparticles Based Optical Immunodetection of Staphylococcal Enterotoxin B (SEB in Bottled Water

    Directory of Open Access Journals (Sweden)

    Shiva K. RASTOGI

    2009-10-01

    Full Text Available Staphylococcal enterotoxins (SEs are a major cause of food-borne diseases, most commonly SEs assayed immunologically with ELISA. An immunoassay based on fluorescein dye doped silica dioxide nanoparticles (F-SiNPs and magnetic bead (MB is described here for the detection of staphylococcal enterotoxin B (SEB. F-SiNPs have unique optical properties which make them attractive for biosensing. The water-in-oil (W/O reverse microemulsion method was used for the synthesis of F-SiNPs (~ 95 nm of diameter. The F-SiNPs were characterized using SEM, TEM and FTIR spectroscopy. The detection of SEB is preformed in PBS buffer, and bottled drinking water using sandwich immunoassay format. Target analytes were captured using MBs modified with the antigen-specific “capture” antibody, and detected using F-SiNP labeled secondary antigen-specific antibody. We report a limit of detection down to 1 ng/mL SEB spiked sample in less than 2 hr assay time using fluorocount method. This study demonstrates the bio warfare agent SEB capture by magnetic beads and detection using F-SiNPs.

  19. Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: An anticipated analytical tool for food safety

    International Nuclear Information System (INIS)

    Hervas, Miriam; Lopez, Miguel Angel; Escarpa, Alberto

    2009-01-01

    In this work, electrochemical immunoassay involving magnetic beads to determine zearalenone in selected food samples has been developed. The immunoassay scheme has been based on a direct competitive immunoassay method in which antibody-coated magnetic beads were employed as the immobilisation support and horseradish peroxidase (HRP) was used as enzymatic label. Amperometric detection has been achieved through the addition of hydrogen peroxide substrate and hydroquinone as mediator. Analytical performance of the electrochemical immunoassay has been evaluated by analysis of maize certified reference material (CRM) and selected baby food samples. A detection limit (LOD) of 0.011 μg L -1 and EC 50 0.079 μg L -1 were obtained allowing the assessment of the detection of zearalenone mycotoxin. In addition, an excellent accuracy with a high recovery yield ranging between 95 and 108% has been obtained. The analytical features have shown the proposed electrochemical immunoassay to be a very powerful and timely screening tool for the food safety scene.

  20. Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms

    Directory of Open Access Journals (Sweden)

    Víctor Ruiz-Valdepeñas Montiel

    2016-06-01

    Full Text Available In this work, a novel magnetic beads (MBs-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2 is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs. Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs and the H2O2/hydroquinone (HQ system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens.

  1. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  2. Planar Hall effect bridge sensors with NiFe/Cu/IrMn stack optimized for self-field magnetic bead detection

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2016-01-01

    . The exchange bias field was found to decay exponentially with tCu and inversely with tFM. The reduced exchange field for larger values of tFM and tCu resulted in higher sensitivities to both magnetic fields and magnetic beads. We argue that the maximum magnetic bead signal is limited by Joule heating......The stack composition in trilayer Planar Hall effect bridge sensors is investigated experimentally to identify the optimal stack for magnetic bead detection using the sensor self-field. The sensors were fabricated using exchange-biased stacks Ni80Fe20(tFM)/Cu(tCu)/Mn80Ir20(10 nm) with tFM = 10, 20......, and 30 nm, and 0 ≤ tCu ≤ 0.6 nm. The sensors were characterized by magnetic hysteresis measurements, by measurements of the sensor response vs. applied field, and by measurements of the sensor response to a suspension of magnetic beads magnetized by the sensor self-field due to the sensor bias current...

  3. Removal of Hg(II) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: Synthesis, adsorption mechanism and separation properties.

    Science.gov (United States)

    Cui, Limei; Wang, Yaoguang; Gao, Liang; Hu, Lihua; Wei, Qin; Du, Bin

    2015-10-15

    Resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet (MCD-GO-R) was synthesized successfully and found to be an excellent adsorbent for Hg(II) removal. The as-prepared adsorbent was characterized by SEM, FTIR, BET, magnetization curve and zeta potential analysis respectively. Good magnetic performance made MCD-GO-R simply recover from aqueous solution at low magnetic field within 30s. And also, the rich functional groups and outstanding dispersity play an important role in the adsorption process. The maximum adsorption capacity was 88.43 mg g(-1) at 323 K and pH 7.1. The as-prepared adsorbent could perform well in a wide pH range from 4.0 to 10.0. Static adsorption experimental data showed good correlation with pseudo-second-order model and Freundlich isotherm models. It was found that the contaminant adsorption was accomplished mainly via chelation or ion exchange and come to equilibrium in only 30 min. All experimental results, especially the excellent reproducibility and resistance to ion interference, suggest that MCD-GO-R has promising applications in water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    Science.gov (United States)

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  6. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    Science.gov (United States)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  7. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads

    International Nuclear Information System (INIS)

    Bayramoglu, Guelay; Arica, M. Yakup

    2008-01-01

    Horseradish peroxidase was immobilized on the magnetic poly(glycidylmethacrylate-co-methylmethacrylate) (poly(GMA-MMA)), via covalent bonding and used for the treatment of phenolic wastewater in continuous systems. For this purposes, horseradish peroxidase (HRP) was covalently immobilized onto magnetic poly(GMA-MMA) beds using glutaraldehyde (GA) as a coupling agent. The maximum HRP immobilization capacity of the magnetic poly(GMA-MMA)-GA beads was 3.35 mg g -1 . The immobilized HRP retained 79% of the activity of the free HRP used for immobilization. The immobilized HRP was used for the removal of phenol and p-chlorophenol via polymerization of dissolved phenols in the presence of hydrogen peroxide (H 2 O 2 ). The effect of pH and temperature on the phenol oxidation rate was investigated. The results were compared with the free HRP, which showed that the optimum pH value for the immobilized HRP is similar to that for the free HRP. The optimum pH value for free and immobilized HRP was observed at pH 7.0. The optimum temperature for phenols oxidation with immobilized HRP was between 25 and 35 deg. C and the immobilized HRP has more resistance to temperature inactivation than that of the free form. Finally, the immobilized HRP was operated in a magnetically stabilized fluidized bed reactor, and phenols were successfully removed in the enzyme reactor

  8. Magnetic resonance imaging on CO(2) miscible and immiscible displacement in oil-saturated glass beads pack.

    Science.gov (United States)

    Liu, Yu; Zhao, Yuechao; Zhao, Jiafei; Song, Yongchen

    2011-10-01

    In this study, the displacement processes were observed as gaseous or supercritical CO(2) was injected into n-decane-saturated glass beads packs using a 400-MHz magnetic resonance imaging (MRI) system. Two-dimensional images of oil distribution in the vertical median section were obtained using a spin-echo pulse sequence. Gas channeling and viscous fingering appeared obviously in immiscible gaseous CO(2) displacement. A piston-like displacement front was detected in miscible supercritical CO(2) displacement that provided high sweep efficiency. MRI images were processed with image intensity analysis methods to obtain the saturation profiles. Final oil residual saturations and displacement coefficients were also estimated using this imaging intensity analysis. It was proved that miscible displacement can enhance the efficiency of CO(2) displacement notably. Finally, a special coreflood analysis method was applied to estimate the effects of capillary, viscosity and buoyancy based on the obtained saturation data. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review.

    Science.gov (United States)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rapid Detection and Isolation of Escherichia coli O104:H4 from Milk Using Monoclonal Antibody-coated Magnetic Beads

    Science.gov (United States)

    Luciani, Mirella; Di Febo, Tiziana; Zilli, Katiuscia; Di Giannatale, Elisabetta; Armillotta, Gisella; Manna, Laura; Minelli, Fabio; Tittarelli, Manuela; Caprioli, Alfredo

    2016-01-01

    Monoclonal antibodies (MAbs) specific for the lipopolysaccharide (LPS) of Escherichia coli O104:H4 were produced by fusion of Sp2/O-Ag-14 mouse myeloma cells with spleen cells of Balb/c mice, immunized with heat-inactivated and sonicated E. coli O104:H4 bacterial cells. Four MAbs specific for the E. coli O104:H4 LPS (1E6G6, 1F4C9, 3G6G7, and 4G10D2) were characterized and evaluated for the use in a method for the detection of E. coli O104:H4 in milk samples that involves antibody conjugation to magnetic microbeads to reduce time and increase the efficiency of isolation. MAb 1E6G6 was selected and coupled to microbeads, then used for immuno-magnetic separation (IMS); the efficiency of the IMS method for E. coli O104:H4 isolation from milk was evaluated and compared to that of the EU RL VTEC conventional culture-based isolation procedure. Milk suspensions also containing other pathogenic bacteria that could potentially be found in milk (Campylobacter jejuni, Listeria monocytogenes, and Staphylococcus aureus) were also tested to evaluate the specificity of MAb-coated beads. Beads coated with MAb 1E6G6 showed a good ability to capture the E. coli O104:H4, even in milk samples contaminated with other bacteria, with a higher number of E. coli O104:H4 CFU reisolated in comparison with the official method (121 and 41 CFU, respectively, at 103 E. coli O104:H4 initial load; 19 and 6 CFU, respectively, at 102 E. coli O104:H4 initial load; 1 and 0 CFU, respectively, at 101 E. coli O104:H4 initial load). The specificity was 100%. PMID:27379071

  11. Magnetism: a supramolecular function

    International Nuclear Information System (INIS)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W.

    1996-01-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T c = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs

  12. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  13. Detection of Schistosoma mansoni eggs in feces through their interaction with paramagnetic beads in a magnetic field.

    Directory of Open Access Journals (Sweden)

    Candida Fagundes Teixeira

    Full Text Available BACKGROUND: Diagnosis of intestinal schistosomiasis in low endemic areas is a problem because often control measures have reduced egg burdens in feces to below the detection limits of classical coproparasitological methods. Evaluation of molecular methods is hindered by the absence of an established standard with maximum sensitivity and specificity. One strategy to optimize method performance, where eggs are rare events, is to examine large amounts of feces. A novel diagnostic method for isolation of Schistosoma mansoni eggs in feces, and an initial evaluation of its performance is reported here. METHODOLOGY/PRINCIPAL FINDINGS: Known amounts of S. mansoni eggs were seeded into 30 g of normal human feces and subjected to a sequence of spontaneous sedimentation, sieving, Ritchie method, incubation and isolation through interaction with paramagnetic beads. Preliminary tests demonstrated the efficacy of lectins as ligands, but they also indicated that the paramagnetic beads alone were sufficient to isolate the eggs under a magnetic field through an unknown mechanism. Eggs were identified by microscopic inspection, with a sensitivity of 100% at 1.3 eggs per gram of feces (epg. Sensitivity gradually decreased to 25% at a concentration of 0.1 epg. In a preliminary application of the new method to the investigation of a recently established focus in southern Brazil, approximately 3 times more eggs were detected than with the thick-smear Kato-Katz method. CONCLUSIONS/SIGNIFICANCE: The novel S. mansoni detection method may significantly improve diagnosis of infections with low burdens in areas of recent introduction of the parasite, areas under successful control of transmission, or in infected travelers. It may also improve the evaluation of new treatments and vaccines.

  14. Magnetic ZIC-HILIC Beads Enrichment for Neutral and Acidic Glycopeptides

    Science.gov (United States)

    Wohlgemuth, J.; Andrecht, S.; Schneider, A.; Schweiger-Hufnagel, U.; Suckau, D.; Resemann, A.

    2011-01-01

    Glycosylation is the most abundant protein posttranslational modification and is involved in many relevant biological processes and crucial to the understanding of many diseases. In depth analysis of glycosylation sites is difficult, however, as glycopeptides exhibit a significant micro heterogeneity at glycosylation sites. In addition, ion suppression effects require selective methods for glycopeptide enrichment. Mass spectrometric analysis of glycopeptides is challenging because both the peptide as well as the glycan moiety have to be elucidated for a full structural understanding. We used Fetuin, Asialo-Fetuin and Alpha-1-Acidglycoprotein to equally representing sialylated and non-sialylated glycosylic structures. In addition, monoclonal antibodies were analyzed as a dedicated example for pharmaceutical QC. Proteins were digested with trypsin and glycopeptides were enriched using a dedicated ZICHILIC glycocapture beads in combination with an optimized buffer system (EMD Chemicals Inc.). The glycopeptides were analyzed using ESI ion trap MS for glycoprofiling and MALDI-TOF/TOF-MS for in depth characterization of the glycopeptides. For database searches, an integrated software approach was used: protein searches of the glycopeptide MS/MS spectra were performed for obtaining the amino acid sequence of the glycopeptide, and searches in glycan databases based on the same glycopeptide MS/MS spectra were carried out to complete the characterization of N-linked glycopeptides. In the current study, two important features of glycoprotein analysis are shown: (1) The employed integrated software approach allowed the glycan identification in a similar way as peptide identification. The important step of interactive result validation was facilitated by a suite of dedicated data and result viewers. (2) Compared to MS analysis of native glycoprotein digests, the enriched samples allowed to detect more glycopeptides and permitted the acquisition of higher quality MS/MS spectra

  15. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins

    Czech Academy of Sciences Publication Activity Database

    Čadková, M.; Metelka, R.; Holubová, L.; Horák, Daniel; Dvořáková, V.; Bílková, Z.; Korecká, L.

    2015-01-01

    Roč. 484, 1 September (2015), s. 4-8 ISSN 0003-2697 R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : electrochemical immunosensor * magnetic particles * ovalbumin Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.243, year: 2015

  16. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  17. Sandwich immunoassay for the prostate specific antigen using a micro-fluxgate and magnetic bead labels

    International Nuclear Information System (INIS)

    Sun, Xue-cheng; Lei, Chong; Guo, Lei; Zhou, Yong

    2016-01-01

    We describe a micro fluxgate based device with rectangular magnetic core for the determination of prostate specific antigen (PSA) labeled with Dynabeads. A sandwich immunoassay was employed where PSA is captured on a gold film modified with a self-assembled monolayer of antibody. The secondary antibody is labeled with Dynabeads. By applying a DC magnetic fields in the range of 460 to 700 μT, PSA can be detected with detection limit as low as 0.1 ng mL −1 . This micro fluxgate-based assay offers the advantages of miniaturization, simple and conveniently manipulation, re-usability and stability. In our perception, it offers a viable approach towards clinical determination of PSA or other biomarkers. (author)

  18. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads

    Directory of Open Access Journals (Sweden)

    Harikrishnan Jayamohan

    2015-05-01

    Full Text Available In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic beads for capture and polyguanine (polyG oligonucleotide functionalized secondary (polystyrene beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead. While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10\\(^{8}\\ guanine tags per secondary bead (\\(7.5\\times10^{6}\\ biotin-FITC per secondary bead, 20 guanines per oligonucleotide bound to the target (E. coli. A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridineruthenium(II (Ru(bpy\\(_{3}^{2+}\\ as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3

  19. Thrombin-linked aptamer assay for detection of platelet derived growth factor BB on magnetic beads in a sandwich format.

    Science.gov (United States)

    Guo, Limin; Zhao, Qiang

    2016-09-01

    Here we describe a thrombin-linked aptamer assay (TLAA) for protein by using thrombin as an enzyme label, harnessing enzyme activity of thrombin and aptamer affinity binding. TLAA converts detection of specific target proteins to the detection of thrombin by using a DNA sequence that consists of two aptamers with the first aptamer binding to the specific target protein and the second aptamer binding to thrombin. Through the affinity binding, the thrombin enzyme is labeled on the protein target, and thrombin catalyzes the hydrolysis of small peptide substrate into product, generating signals for quantification. As a proof of principle, we show a sandwich TLAA for platelet derived growth factor BB (PDGF-BB) by using anti-PDGF-BB antibody coated on magnetic beads and an oligonucleotide containing the aptamer for PDGF-BB and the aptamer for thrombin. The binding of PDGF-BB to both the antibody and the aptamer results in labeling the complex with thrombin. We achieved detection of PDGF-BB at 16 pM. This TLAA contributes a new application of thrombin and its aptamer in bioanalysis, and shows potentials in assay developments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Proteomic profiling of nephrotic syndrome in serum using magnetic bead based sample fractionation & MALDI-TOF MS

    Science.gov (United States)

    Sui, Weiguo; Dai, Yong; Zhang, Yue; Chen, Jiejing; Liu, Huaying; Huang, He

    2012-01-01

    Background & objectives: At present, the diagnosis of nephrotic syndrome (NS) requires a renal biopsy which is an invasive procedure. We undertook this pilot study to develop an alternative method and potential new biomarkers for diagnosis, and validated a set of well-integrated tools called ClinProt to investigate serum petidome in NS patients. Methods: The fasting blood samples from 49 patients diagnosed with NS by renal biopsy, including 17 mesangial proliferative glomerulonephritis (MsPGN), 12 minimal change nephrotic syndrome (MCNS), 10 focal segmental glomerulosclerosis (FSGS) and 10 membranous nephropathy (MN), were collected and screened to describe their variability of the serum peptidome. The results in NS group were compared with those in 10 control healthy individuals. Specimens were purified with magnetic beads-based weak cation exchange chromatography and analyzed in a MALDI-TOF MS. Results: The results showed 43, 61, 45 and 19 differential peptide peaks in MsPGN, MCNS, MN and FSGS groups, respectively. A Genetic Algorithm was used to set up the classification models. Cross validation of healthy controls from MsPGN, MCNS, MN and FSGS was 96.18, 100, 98.53 and 94.12 per cent, respectively. The recognition capabilities were 100 per cent. Interpretation & conclusions: Our results showed that proteomic analysis of serum with MALDI-TOF MS is a fast and reproducible approach, which may give an early idea of the pathology of nephrotic syndrome. PMID:22561615

  1. Hyphal responses of Neurospora crassa to micron-sized beads with functional chemical surface groups

    Science.gov (United States)

    Held, Marie; Edwards, Clive; Nicolau, Dan V.

    2011-02-01

    Filamentous fungi include serious plant and animal pathogens that explore their environment efficiently in order to penetrate the host. This environment is physically and chemically heterogeneous and the fungi rely on specific physical and chemical signals to find the optimal point/s of attack. This study presents a methodology to introduce distinct structures with dimensions similar to the hyphal diameter and specific chemical surface groups into a controllable environment in order to study the fungal response. We introduced 3.3 μm polystyrene beads covered with Epoxy surface groups into microfluidic channels made from PDMS by rapid replica molding. The experimental setup resulted in different areas with low and high densities of beads as well as densely packed patches. The observations of the fungus exploring the areas long-term showed that the growth parameters were altered significantly, compared with the values measured on agar. The fungus responded to both, the physical and chemical parameters of the beads, including temporary directional changes, increased branching angles, decreased branching distances, decreased apical extension velocities and occasional cell wall lysis. The wealth and magnitude of the observed responses indicates that the microfluidic structures provide a powerful platform for the investigation of micron-sized features on filamentous fungi.

  2. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    Science.gov (United States)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  3. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid leishmania detection in sandflies.

    Science.gov (United States)

    Bruno, John G; Richarte, Alicia M; Phillips, Taylor; Savage, Alissa A; Sivils, Jeffrey C; Greis, Alex; Mayo, Michael W

    2014-01-01

    A fluorescent peroxidase-linked DNA aptamer-magnetic bead sandwich assay is described which detects as little as 100 ng of soluble protein extracted from Leishmania major promastigotes with a high molarity chaotropic salt. Lessons learned during development of the assay are described and elucidate the pros and cons of using fluorescent dyes or nanoparticles and quantum dots versus a more consistent peroxidase-linked Amplex Ultra Red (AUR; similar to resazurin) fluorescence version of the assay. While all versions of the assays were highly sensitive, the AUR-based version exhibited lower variability between tests. We hypothesize that the AUR version of this assay is more consistent, especially at low analyte levels, because the fluorescent product of AUR is liberated into bulk solution and readily detectable while fluorophores attached to the reporter aptamer might occasionally be hidden behind magnetic beads near the detection limit. Conversely, fluorophores could be quenched by nearby beads or other proximal fluorophores on the high end of analyte concentration, if packed into a small area after magnetic collection when an enzyme-linked system is not used. A highly portable and rechargeable battery-operated fluorometer with on board computer and color touchscreen is also described which can be used for rapid (<1 h) and sensitive detection of Leishmania promastigote protein extracts (∼ 100 ng per sample) in buffer or sandfly homogenates for mapping of L. major parasite geographic distributions in wild sandfly populations.

  4. Synthesis and characterization of SIRT6 protein coated magnetic beads: identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts.

    Science.gov (United States)

    Yasuda, M; Wilson, D R; Fugmann, S D; Moaddel, R

    2011-10-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus, the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. The aim of this study was to develop a screening method for the identification of novel modulators of SIRT6 from a natural plant extract. We immobilized SIRT6 onto the surface of magnetic beads, and assessed SIRT6 enzymatic activity on synthetic acetylated histone tails (H3K9Ac) by measuring products of the deacetylation process. The SIRT6 coated magnetic beads were then suspended in fenugreek seed extract (Trigonella foenum-graecum) as a bait to identify active ligands that suppress SIRT6 activity. While the entire extract also inhibited SIRT6 activity in a cell-based assay, the inhibitory effect of two flavonoids from this extract, quercetin and vitexin, was only detected in vitro. This is the first report on the use of protein-coated magnetic beads for the identification of an active ligand from a botanical matrix, and it sets the basis for the de novo identification of SIRT6 modulators from complex biological mixtures.

  5. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7.

    Science.gov (United States)

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-09-19

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.

  6. Neuro-differentiated Ntera2 cancer stem cells encapsulated in alginate beads: First evidence of biological functionality.

    Science.gov (United States)

    Cacciotti, Ilaria; Ceci, Claudia; Bianco, Alessandra; Pistritto, Giuseppa

    2017-12-01

    The present communication investigates an application of alginate encapsulation technology to the differentiation of the embryonic cancer stem NTera2 cells (NT2) into dopamine-producing cells. The encapsulation of cells in polymeric beads allows their immune isolation and makes them eligible for transplantation, thus representing a promising biotech tool for the delivery of biologically active compounds to the brain. The polysaccharide alginate is one of the most commonly used material for this procedure since it is well tolerated by various tissues, including the brain. Two different initial cell concentrations (i.e. 0.5∗10 6 /ml and 1.0∗10 6 /ml) were tested, in order to identify which one could better reflect the homogeneous cell distribution into the alginate beads and guarantee a good cell viability at different times of culture. As evidenced, the higher number of cells promoted the formation of clusters resulting in a better interaction among encapsulated cells and the subsequent promotion of mitotic activity. The distribution of alive/dead cells into the alginate beads was verified and followed at different time points through the fluorescein diacetate/propidium iodide (FDA/PI) staining, confirming the presence of living neuronal positive cells, as determined from fluorescence microscopy imaging. The functionality of the encapsulated NT2 cells was confirmed by their dopamine production capability as assessed by UV-Vis spectrophotometric analysis and by liquid chromatography-mass spectrometry (LC-MS). The NT2/microspheres system can be considered a groundbreaking experimental procedure, a functionally active platform, able to produce and release dopamine, and thus potentially exploitable for therapy in Parkinson's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analysis of serum transthyretin by on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using magnetic beads.

    Science.gov (United States)

    Peró-Gascón, Roger; Pont, Laura; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2016-05-01

    In this paper, an on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry (IA-SPE-CE-MS) method using magnetic beads (MBs) is described for the analysis of serum transthyretin (TTR), which is a protein related to different types of amyloidosis. First, purification of TTR from serum was investigated by off-line immunoprecipitation and CE-MS. The suitability of three Protein A (ProA) MBs (Protein A Ultrarapid Agarose(TM) (UAPA), Dynabeads(®) Protein A (DyPA) and SiMAG-Protein A (SiPA) and AffiAmino Ultrarapid Agarose(TM) (UAAF) MBs to prepare an IA sorbent with a polyclonal antibody (Ab) against TTR, was studied. In all cases, results were repeatable and it was possible the identification and the quantitation of the relative abundance of the six most abundant TTR proteoforms. Although recoveries were the best with UAPA MBs, UAAF MBs were preferred for on-line immunopurification because Ab was not eluted from the MBs. Under the optimized conditions with standards in IA-SPE-CE-MS, microcartridge lifetime (>20 analyses/day) and repeatability (2.9 and 4.3% RSD for migration times and peak areas) were good, the method was linear between 5 and 25 μg/mL and LOD was around 1 μg/mL (25 times lower than by CE-MS, ≈25 μg/mL). A simple off-line sample pretreatment based on precipitation of the most abundant proteins with 5% (v/v) of phenol was necessary to clean-up serum samples. The potential of the on-line method to screen for familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, was demonstrated analysing serum samples from healthy controls and FAP-I patients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA.

    Science.gov (United States)

    Frohnmeyer, Esther; Frisch, Farina; Falke, Sven; Betzel, Christian; Fischer, Markus

    2018-03-10

    Aptamers are single-stranded DNA or RNA oligonucleotides, which have been emerging as recognition elements in disease diagnostics and food control, including the detection of bacterial toxins. In this study, we employed the semi-automated just in time-selection to identify aptamers that bind to cholera toxin (CT) with high affinity and specificity. CT is the main virulence factor of Vibrio cholerae and the causative agent of the eponymous disease. For the selected aptamers, dissociation constants in the low nanomolar range (23-56 nM) were determined by fluorescence-based affinity chromatography and cross-reactivity against related proteins was evaluated by direct enzyme-linked aptamer assay (ELAA). Aptamer CT916 has a dissociation constant of 48.5 ± 0.5 nM and shows negligible binding to Shiga-like toxin 1B, protein A and BSA. This aptamer was chosen to develop a sandwich ELAA for the detection of CT from binding buffer and local tap water. Amine-C6- or biotin-modified CT916 was coupled to magnetic beads to serve as the capture element. Using an anti-CT polyclonal antibody as the reporter, detection limits of 2.1 ng/ml in buffer and 2.4 ng/ml in tap water, with a wide log-linear dynamic range from 1 ng/ml to 1000 ng/ml and 500 ng/ml, respectively, were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment.

    Science.gov (United States)

    Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu

    2016-04-15

    We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Isolating Sperm from Cell Mixtures Using Magnetic Beads Coupled with an Anti-PH-20 Antibody for Forensic DNA Analysis.

    Directory of Open Access Journals (Sweden)

    Xing-Chun Zhao

    Full Text Available Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs. Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB-sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP. Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases.

  11. Isolating Sperm from Cell Mixtures Using Magnetic Beads Coupled with an Anti-PH-20 Antibody for Forensic DNA Analysis

    Science.gov (United States)

    Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian

    2016-01-01

    Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB–sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases. PMID:27442128

  12. Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs

    Directory of Open Access Journals (Sweden)

    Eva Vargas

    2017-11-01

    Full Text Available This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs. The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21 with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs, and labeling of the resulting heteroduplexes with a specific DNA–RNA antibody and the bacterial protein A (ProtA conjugated with an horseradish peroxidase (HRP homopolymer (Poly-HRP40 as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs using the H2O2/hydroquinone (HQ system. The magnitude of the cathodic signal obtained at −0.20 V (vs. the Ag pseudo-reference electrode demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD of 10 attomoles (in a 25 μL sample without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared. This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA–RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt extracted from human mammary epithelial normal (MCF-10A and cancer (MCF-7 cells and tumor tissues.

  13. Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS for Proteins Profiling of Peritoneal Dialysis Effluent

    Directory of Open Access Journals (Sweden)

    Na Guo

    2014-01-01

    Full Text Available Peritoneal dialysis effluent (PDE potentially carries an archive of peptides relevant to pathological processes in abdominal and surrounding tissues. Magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is one such approach that offers a unique tool for profiling of peptides, but this approach has not been used in the PDE analysis. In this study, we developed a strategy for screening PDE proteins <15 kDa and applied this technique to identify potential biomarkers for peritonitis. We examined four kinds of magnetic beads, including a carbon series (C3, C8, weak cation exchange (WCX and immobilized metal-affinity chromatography (IMAC-Cu beads. Samples processed with IMAC-Cu magnetic beads consistently showed more MS signals across all beads within the measured mass range. Moreover, there was no difference in the number and morphology of MS signals between concentrated and unconcentrated samples. The PDE peptidome pattern, based on a panel of 15 peaks, accurately recognized peritonitis PD patients from peritonitis-free patients with sensitivity of 90.5% and specificity of 94.7% respectively. Therefore, IMAC-Cu magnetic beads and unconcentrated samples can be used as a fast and cost-effective approach for sample preparation prior to more in-depth discovery of predictive biomarkers of disease in patients on dialysis.

  14. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karkeh-abadi, Fatemeh [Department of Chemistry, University of Kashan, Kashan (Iran, Islamic Republic of); Saber-Samandari, Samaneh, E-mail: samaneh.saber@gmail.com [Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10 (Turkey); Saber-Samandari, Saeed, E-mail: saeedss@aut.ac.ir [New Technologies Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-07-15

    Highlights: • The sodium alginate-hydroxyapatite-CNT nanocomposite beads were prepared. • Amide functionalized CNT imprinted in the network of sodium alginate containing HAp. • The prepared beads were used as adsorbents of cobalt ions from an aqueous solution. • The adsorption was fit with the Freundlich isotherm and second-order kinetic models. • The endothermic adsorption process is spontaneous and thermodynamically favorable. - Abstract: Significant efforts have been made to develop highly efficient adsorbents to remove radioactive Co(II) ion pollutants from medical and industrial wastewaters. In this study, amide group functionalized multi-walled carbon nanotube (CNT-CONH{sub 2}) imprinted in the network of sodium alginate containing hydroxyapatite, and new nanocomposite beads were synthesized. Then, they were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The prepared nanocomposite beads were used as an adsorbent of Co(II) ions from an aqueous solution. The presence and distribution of Co(II) ions in the surface of the nanocomposite beads was confirmed using FESEM, EDS and metal mapping analysis. The effect of various experimental conditions such as time, pH, and initial concentration of the adsorbate solution and temperature on the adsorption capacity of the nanocomposite beads were explored. The maximum Co(II) ions adsorption capacity of the prepared nanocomposite beads with the largest surface area of 163.4 m{sup 2} g{sup −1} was 347.8 mg g{sup −1} in the optimized condition. The adsorption mechanism followed a pseudo-second-order kinetic model. Furthermore, the Freundlich appears to produce better fit than the Langmuir adsorption isotherm. Finally, thermodynamic studies suggest that endothermic adsorption process of Co(II) ions is spontaneous and

  15. Calcium/Cobalt Alginate Beads as Functional Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Stefano Focaroli

    2016-01-01

    Full Text Available Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes the in vitro behavior of human adipose-derived mesenchymal stem cells (hADSCs encapsulated within calcium/cobalt (Ca/Co alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2 ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs or bone morphogenetic proteins (BMPs to direct hADSC differentiation into cartilage-producing chondrocytes.

  16. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus.

    Science.gov (United States)

    Huang, Zhuochun; Shi, Yunying; Cai, Bei; Wang, Lanlan; Wu, Yongkang; Ying, Binwu; Qin, Li; Hu, Chaojun; Li, Yongzhe

    2009-06-01

    To discover novel potential biomarkers and establish a diagnostic pattern for SLE by using proteomic technology. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with weak cationic exchange magnetic beads. A training set of spectra, derived from analysing sera from 32 patients with SLE, 43 patients with other autoimmune diseases and 43 age- and sex-matched healthy volunteers, was used to train and develop a decision tree model with a machine learning algorithm called decision boosting. A blinded testing set, including 32 patients with SLE, 42 patients with other autoimmune diseases and 40 healthy people, was used to determine the accuracy of the model. The diagnostic pattern with a panel of four potential protein biomarkers of mass-to-charge (m/z) ratio 4070.09, 7770.45, 28 045.1 and 3376.02 could accurately recognize 25 of 32 patients with SLE, 36 of 42 patients with other autoimmune diseases and 36 of 40 healthy people. The preliminary data suggested a potential application of MALDI-TOF MS combined with magnetic beads as an effective technology to profile serum proteome, and with pattern analysis, a diagnostic model comprising four potential biomarkers was indicated to differentiate individuals with SLE from RA, SS, SSc and healthy controls rapidly and precisely.

  17. [Detection of serum proteins in the patients of lung adenocarcinoma by the method of magnetic bead based sample fractionation and MALDI-TOF-MS].

    Science.gov (United States)

    Liu, Dan; Liu, Lun-Xu; Yuan, Quan; Li, Xiao-Liang; Huang, Na; Yang, Xiao-Dong

    2010-05-01

    To screen the serum proteins related to human lung adenocarcinoma using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) technology. The blood samples were collected from 10 patients of lung adenocarcinoma before and one week after the surgery, while 10 healthy subjects were used as control. The differential protein expression between the two groups and the change of those proteins after surgery were studied by ClinProt magnetic bead enrichment and MALDI-TOF-MS. Six protein peaks were identified, 2 of them were highly expressed protein biomarkers with relative molecular weights of 2661, 2991, and increased after the surgery, 4 of them were lowly expressed protein biomarkers with relative molecular weights of 4091, 4210, 4644, 5336, which continuously decreased after the surgery. ClinProt magnetic bead enrichment and MALDI-TOF-MS is a quick, easy and sensitive method of proteomics. The differential expressed proteins may be the latent tumor marker of lung adenocarcinoma. The alteration of those proteins after surgery might be helpful to assess the therapeutic effect and prognosis.

  18. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by magnetic beads separating B cells and single cell RT-PCR cloning].

    Science.gov (United States)

    Huang, Xiang-Ying; Yu, Shuang-Qing; Cheng, Zhan; Ye, Jing-Rong; Xu, Ke; Feng, Xia; Zeng, Yi

    2013-04-01

    To establish a simple and practical method for screening of Env-specific monoclonal antibodies from HIV-1 infected individuals. Human B cells were purified by negative sorting from PBMCs and memory B cells were further enriched using anti-CD27 microbeads. Gp120 antigen labbled with biotin was incubated with memory B cells to specifically bind IgG on cells membrane. The memory B cells expressing the Env-specific antibody were harvested by magnetic beads separating, counted and diluted to the level of single cell in each PCR well that loading with catch buffer containing RNase inhibitor to get RNAs. The antibody genes were amplified by single cell RT-PCR and nested PCR, cloned into eukaryotic expression vectors and transfected into 293T cells. The binding activity of recombinant antibodies to Env were tested by ELISA. Three monocolonal Env-specific antibodies were isolated from one HIV-1 infected individual. We can obtain Env-specific antibody by biotin labbled antigen, magnetic beads separating technique coupled with single cell RT-PCR and expression cloning.

  19. Novel functional magnetic materials fundamentals and applications

    CERN Document Server

    2016-01-01

    This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect.  Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdis...

  20. Magnetic susceptibility of functional groups

    International Nuclear Information System (INIS)

    Herr, T.; Ferraro, M.B.; Contreras, R.H.

    1990-01-01

    Proceeding with a series of works where new criteria are applied to the the calculation of the contribution of molecular fragments to certain properties, results are presented for a group of 1-X-benzenes and 1-X-naphtalenes for the magnetic susceptibility constant. Both the diamagnetic and paramagnetic parts are taken into account. To reduce the problems associated with the Gauge dependence originated in the approximations made, Gauge independent atomic orbitals (GIAO) orbitals are used in the atomic orbital basis. Results are discussed in terms of functional groups. (Author). 17 refs., 1 fig., 3 tabs

  1. Bead magnetorelaxometry with an on-chip magnetoresistive sensor

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco

    2011-01-01

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility ...

  2. Telling Beads: The Forms and Functions of the Buddhist Rosary in Japan

    OpenAIRE

    Tanabe, George J. Jr.

    2012-01-01

    This article discusses the many meanings of Japanese Buddhist rosaries according to scriptural sources, nomenclature, materials, function, and sectarian teachings. Rosary designs vary according to sectarian traditions, and their meanings are reflected accordingly. The advantages of using rosaries include the acquisition of practical benefits (health, wealth, longevity, etc.), going to nirvana, returning to the world, achieving the bodhisattva stages, dispensation from sin, and promotion of pr...

  3. Volumetric assessment of tumour response using functional MR imaging in patients with hepatocellular carcinoma treated with a combination of doxorubicin-eluting beads and sorafenib

    International Nuclear Information System (INIS)

    Corona-Villalobos, Celia Pamela; Halappa, Vivek Gowdra; Bonekamp, Susanne; Kamel, Ihab R.; Geschwind, Jean-Francois H.; Reyes, Diane; Cosgrove, David; Pawlik, Timothy M.

    2015-01-01

    To prospectively assess treatment response using volumetric functional magnetic resonance imaging (MRI) metrics in patients with hepatocellular carcinoma (HCC) treated with the combination of doxorubicin-eluting bead-transarterial chemoembolization (DEB TACE) and sorafenib. A single center study enrolled 41 patients treated with systemic sorafenib, 400 mg twice a day, combined with DEB TACE. All patients had a pre-treatment and 3-4 week post-treatment MRI. Anatomic response criteria (RECIST, mRECIST and EASL) and volumetric functional response (ADC, enhancement) were assessed. Statistical analyses included paired Student's t-test, Kaplan-Meier curves, Cohen's Kappa, and multivariate cox proportional hazard model. Median tumour size by RECIST remained unchanged post-treatment (8.3 ± 4.1 cm vs. 8.1 ± 4.3 cm, p = 0.44). There was no significant survival difference for early response by RECIST (p = 0.93). EASL and mRECIST could not be analyzed in 12 patients. Volumetric ADC increased significantly (1.32 x 10 -3 mm 2 /sec to 1.60 x 10 -3 mm 2 /sec, p < 0.001), and volumetric enhancement decreased significantly in HAP (38.2 % to 17.6 %, p < 0.001) and PVP (76.6 % to 41.2 %, p < 0.005). Patients who demonstrated ≥ 65 % decrease PVP enhancement had significantly improved overall survival compared to non-responders (p < 0.005). Volumetric PVP enhancement was demonstrated to be significantly correlated with survival in the combination of DEB TACE and sorafenib for patients with HCC, enabling precise stratification of responders and non-responders. (orig.)

  4. Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis

    DEFF Research Database (Denmark)

    Hansen, HG; Overgaard, Julie; Lajer, M

    2010-01-01

    PURPOSE AND EXPERIMENTAL DESIGN: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease and improved biomarkers would help identify high-risk individuals. The aim of this study was to discover candidate biomarkers for DN in the plasma peptidome in an in-house cross...... with a MALDI-TOF-MS readout were successfully established. Using these protocols and a combined univariate (Kruskal-Wallis) and multivariate (independent component analysis) statistical analysis approach, ten single peptides and three multi-peptide candidate biomarkers were found. Employment of RPC18 and weak...... cation exchange magnetic beads proved to be complementary. CONCLUSIONS AND CLINICAL RELEVANCE: The proteins found in this study, including C3f and apolipoprotein C-I, represent new candidate biomarkers for DN from the plasma peptidome. The automated procedures and implementation of independent components...

  5. Solid-state sensor incorporated in microfluidic chip and magnetic-bead enzyme immobilization approach for creatinine and glucose detection in serum

    Science.gov (United States)

    Lin, Yen-Heng; Chiang, Chien-Hung; Wu, Min-Hsien; Pan, Tung-Ming; Luo, Ji-Dung; Chiou, Chiuan-Chian

    2011-12-01

    Solid-state sensors are stable and inexpensive electric transducers for biomedical measurement. This study proposes a microfluidic chip incorporated with a solid-state sensor for measuring glucose and creatinine in blood serum. Magnetic beads are employed to immobilize enzymes and deliver them in a micro-channel. Glucose and creatinine can be measured at 2-8 mM and 10-2 to 10 mM, respectively, which is a meaningful range in human blood. The immobilization approach also addresses the issue of the long-term preservation of enzymes in microfluidic devices. The proposed device is suitable for multi-target measurement in a point-of-care system.

  6. The defouling of membranes using polymer beads containing ...

    African Journals Online (AJOL)

    This paper reports on an investigation into the possibility of obtaining flux enhancement during the filtration process, as well as the cleaning of membranes, using magnetic polymer beads moving under the influence of an AC magnetic field. Methods, procedures and results for cleaning membranes using magnetic beads, ...

  7. Development of a single-antigen magnetic bead assay (SAMBA) for the sensitive detection of HPA-1a alloantibodies using tag-engineered recombinant soluble β3 integrin.

    Science.gov (United States)

    Skaik, Younis; Battermann, Anja; Hiller, Oliver; Meyer, Oliver; Figueiredo, Constanca; Salama, Abdulgabar; Blasczyk, Rainer

    2013-05-31

    Timely and accurate testing for human platelet antigen 1a (HPA-1a) alloantibodies is vital for clinical diagnosis of neonatal alloimmune thrombocytopenia (NAIT). Current antigen-specific assays used for the detection of HPA-1 alloantibodies are technically very complex and cumbersome for most diagnostic laboratories. Hence, we designed and applied recombinant soluble (rs) β3 integrins displaying HPA-1a or HPA-1b epitopes for the development of a single-antigen magnetic bead assay (SAMBA). Soluble HPA-1a and HPA-1b were produced recombinantly in human embryonic kidney 293 (HEK293) cells and differentially tagged. The recombinant soluble proteins were then immobilized onto paramagnetic beads and used for analysis of HPA-1 alloantibodies by enzyme-linked immunosorbent assay (ELISA). HPA-1a serum samples (n=7) from NAIT patients, inert sera and sera containing non-HPA-1a antibodies were used to evaluate the sensitivity and specificity of the SAMBA. Fusion of V5-His or GS-SBP-His tags to the rsβ3 integrins resulted in high-yield expression. SAMBA was able to detect all HPA-1a and -1b alloantibodies recognized by monoclonal antibody-specific immobilization of platelet antigens assay (MAIPA). No cross-reactions between the sera were observed. Two out of seven of the HPA-1a alloantibody-containing sera demonstrated weak to moderate reactivity in MAIPA but strong signals in SAMBA. SAMBA provides a very reliable method for the detection of HPA-1 antibodies with high specificity and sensitivity. This simple and rapid assay can be adapted for use in any routine laboratory and can be potentially adapted for use on automated systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. ... African Journal of Biotechnology ... The bioreactor containing algal beads (4 mm diameter) with 1.5 x 106 cells bead-1 (cell stocking) at concentration of 10.66 beads ml-1 wastewater (1:3 bead: wastewater, v/v) achieved ...

  9. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear.

    Science.gov (United States)

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R O; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Murine NIH 3T3 fibroblasts-genetically modified to produce BDNF-were labelled with MB. Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest.

  10. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear.

    Directory of Open Access Journals (Sweden)

    Pooyan Aliuos

    Full Text Available Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated.Murine NIH 3T3 fibroblasts-genetically modified to produce BDNF-were labelled with MB.Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release.Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest.

  11. Development and Validation of a Novel Diagnostic Test for Human Brucellosis Using a Glyco-engineered Antigen Coupled to Magnetic Beads

    Science.gov (United States)

    Ciocchini, Andrés E.; Rey Serantes, Diego A.; Melli, Luciano J.; Iwashkiw, Jeremy A.; Deodato, Bettina; Wallach, Jorge; Feldman, Mario F.; Ugalde, Juan E.; Comerci, Diego J.

    2013-01-01

    Brucellosis is a highly contagious zoonosis and still a major human health problem in endemic areas of the world. Although several diagnostic tools are available, most of them are difficult to implement especially in developing countries where complex health facilities are limited. Taking advantage of the identical structure and composition of the Brucella spp. and Yersinia enterocolitica O:9 O-polysaccharide, we explored the application of a recombinant Y. enterocolitica O:9-polysaccharide-protein conjugate (OAg-AcrA) as a novel antigen for diagnosis of human brucellosis. We have developed and validated an indirect immunoassay using OAg-AcrA coupled to magnetic beads. OAg-AcrA was produced and purified with high yields in Y. enterocolitica O:9 cells co-expressing the oligosaccharyltransferase PglB and the protein acceptor AcrA of Campylobacter jejuni without the need for culturing Brucella. Expression of PglB and AcrA in Y. enterocolitica resulted in the transfer of the host O-polysaccharide from its lipid carrier to AcrA. To validate the assay and determine the cutoff values, a receiver-operating characteristic analysis was performed using a panel of characterized serum samples obtained from healthy individuals and patients of different clinical groups. Our results indicate that, using this assay, it is possible to detect infection caused by the three main human brucellosis agents (B. abortus, B. melitensis and B. suis) and select different cutoff points to adjust sensitivity and specificity levels as needed. A cutoff value of 13.20% gave a sensitivity of 100% and a specificity of 98.57%, and a cutoff value of 16.15% resulted in a test sensitivity and specificity of 93.48% and 100%, respectively. The high diagnostic accuracy, low cost, reduced assay time and simplicity of this new glycoconjugate-magnetic beads assay makes it an attractive diagnostic tool for using not only in clinics and brucellosis reference laboratories but also in locations with limited

  12. Magnetism and Structure in Functional Materials

    CERN Document Server

    Planes, Antoni; Saxena, Avadh

    2005-01-01

    Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related magnanites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.

  13. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  14. Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports

    International Nuclear Information System (INIS)

    Leonardo, Sandra; Campàs, Mònica

    2016-01-01

    Electrochemical biosensors based on diamine oxidase (DAO) conjugated to magnetic beads (MBs) were developed for the detection of histamine (Hist), putrescine (Put) and cadaverine (Cad), the most relevant biogenic amines (BAs) related to food safety and quality. DAO-MBs were immobilised on Co(II)-phthalocyanine/carbon and Prussian Blue/carbon electrodes to obtain mono-enzymatic biosensors, and on Os-wired HRP-modified carbon electrodes to obtain bi-enzymatic biosensors. The three sensor have low working potentials (+0.4 V, −0.1 V and −0.05 V vs Ag/AgCl, respectively), a linear range of two orders of magnitude (from 0.01 to 1 mM BA), good reproducibility (variability lower than 10 %), high repeatability (up to 8 consecutive measurements), limits of detection in the µM concentration range for Hist and in the sub-µM concentration range for Put and Cad, and no response from possible interfering compounds. The DAO-MB conjugates display excellent long-term stability (at least 3 months). The biosensor has been applied to the determination of BAs in spiked and naturally-spoiled fish, demonstrating its suitability both as screening tool and for BAs quantification. The use of MBs as supports for enzyme immobilisation is advantageous because the resulting biosensors are simple, fast, stable, affordable, and can be integrated into array platforms. This makes them suitable for high-throughput analysis of BAs in the food industry. (author)

  15. The identification of a novel SIRT6 modulator from Trigonella foenum-graecum using ligand fishing with protein coated magnetic beads.

    Science.gov (United States)

    Singh, N; Ravichandran, S; Spelman, K; Fugmann, S D; Moaddel, R

    2014-10-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. We have previously developed an H3K9 deacetylation guided assay with SIRT6 coated magnetic beads (SIRT6-MB). With the developed assay, we identified quercetin, naringenin and vitexin as SIRT6 inhibitors from T. foenum-graecum seed extract using a candidate approach. Currently, the predominant method for the identification of active compounds from a plant extract is carried out through a dereplication process. A novel targeted approach for the direct identification of active compounds from a complex matrix could save time and resources. Herein, we report the application of the SIRT6-MB for 'fishing' experiments utilizing T. foenum-graecum seed extract. In which orientin, and seventeen other compounds were identified as SIRT6 binders. This is the first use of this method for 'fishing' out active ligands from a botanical matrix, and sets the basis for the identification of active compounds from a complex matrix. Published by Elsevier B.V.

  16. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects

    Science.gov (United States)

    Becker, Ina; Strauch, Sebastian M.; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.

  17. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects.

    Science.gov (United States)

    Becker, Ina; Strauch, Sebastian M; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  18. Rapid Synthesis of a Long Double-Stranded Oligonucleotide from a Single-Stranded Nucleotide Using Magnetic Beads and an Oligo Library.

    Directory of Open Access Journals (Sweden)

    Sumate Pengpumkiat

    Full Text Available Chemical synthesis of oligonucleotides is a widely used tool in the field of biochemistry. Several methods for gene synthesis have been introduced in the growing area of genomics. In this paper, a novel method of constructing dsDNA is proposed. Short (28-mer oligo fragments from a library were assembled through successive annealing and ligation processes, followed by PCR. First, two oligo fragments annealed to form a dsDNA molecule. The double-stranded oligo was immobilized onto magnetic beads (solid support via streptavidin-biotin binding. Next, single-stranded oligo fragments were added successively through ligation to form the complete DNA molecule. The synthesized DNA was amplified through PCR and gel electrophoresis was used to characterize the product. Sanger sequencing showed that more than 97% of the nucleotides matched the expected sequence. Extending the length of the DNA molecule by adding single-stranded oligonucleotides from a basis set (library via ligation enables a more convenient and rapid mechanism for the design and synthesis of oligonucleotides on the go. Coupled with an automated dispensing system and libraries of short oligo fragments, this novel DNA synthesis method would offer an efficient and cost-effective method for producing dsDNA.

  19. Magnetic fields and density functional theory

    International Nuclear Information System (INIS)

    Salsbury, Freddie Jr.

    1999-01-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules

  20. Tutte polynomial in functional magnetic resonance imaging

    Science.gov (United States)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  1. Functionalized magnetic nanoparticle analyte sensor

    Science.gov (United States)

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  2. A rapid, highly sensitive and culture-free detection of pathogens from whole blood by removal of white blood cells using immuno-magnetic beads.

    Science.gov (United States)

    Vutukuru, Manjula Ramya; Sharma, Divya Khandige; Ms, Ragavendar; Mitra, Nivedita

    2016-08-01

    Using anti-human CD45 antibody coated beads, we show a 98% reduction of WBCs from spiked blood samples in 1h, thereby enriching it for pathogens. This enrichment allowed the detection of blood using quantitative PCR; something not observed in unenriched samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Magnetic spectroscopy and microscopy of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine Ann [Univ. of Mainz (Germany)

    2011-05-01

    Heusler intermetallics Mn2Y Ga and X2MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X2MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn2Y Ga to the logical Mn3Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co2FeSi (Appendix B).

  4. Magnetic coil design considerations for functional magnetic stimulation.

    Science.gov (United States)

    Lin, V W; Hsiao, I N; Dhaka, V

    2000-05-01

    Our studies have demonstrated effective stimulation of the bladder, bowel, and expiratory muscles in patients with spinal cord injury using functional magnetic stimulation. However, one limitation of the magnetic coils (MC) is related to their inability to specifically stimulate the target tissue without activation of surrounding tissue. The primary goal of this study was to determine the governing parameters in the MC design, such as coil configuration, diameter, and number of turns in one loop of the coil. By varying these parameters, our approach was to design, construct, and evaluate the induced electric field distributions of two sets of novel MC's. Based on the slinky coil design, the first set of coils was constructed to compare their abilities in generating induced electric fields for focal nerve excitation. The second set of coils was built to determine the effect that changes in two parameters, coil diameter and number of turns in one loop, had on field penetration. The results showed that the slinky coil design produced more focalized stimulation when compared to the planar round coils. The primary-to-secondary peak ratios of the induced electric field from slinky 1 to 5 were 1.00, 2.20, 2.85, 2.62, and 3.54. We also determined that coils with larger diameters had better penetration than those with smaller diameters. Coils with less number of turns in one loop had higher initial field strengths; when compared to coils that had more turns per loop, initial field strengths remained higher as distance from the coil increased. In our attempt to customize MC design according to each functional magnetic stimulation application and patients of different sizes, the parameters of MC explored in this study may facilitate designing an optimal MC for a certain clinical application.

  5. Functionalized magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Gudovan, Dragoș; Balaure, Paul Cătălin; Mihăiescu, Dan Eduard; Fudulu, Adrian; Purcăreanu, Bogdan; Radu, Mihai

    2015-01-01

    Functionalized magnetic nanoparticles followed two main directions in the field of biomedical applications: one direction is as image enhancing agents for magnetic resonance imaging (MRI) and the other is as drugdelivery devices for various biologically-active substances. A third field which just emerges in nanomedicine is the field of the so-called theranostic devices which combines in the same delivery vehicle both the therapeutic agent and the contrast substance. The advantages of using nanoparticles instead of larger carriers for delivery of both drug and image contrast enhancing agents will be highlighted throughout this review article. Despite the ever increasing number of articles reporting both in vitro and in vivo studies carried out on functionalized magnetic nanoparticles and envisaging their potential biomedical applications, only few formulations reached the phase of clinical trials and even fewer became marketed products. The perspectives in the field are open, since new drugs require new delivery devices and possibly new means of functionalization. At the same time, the field of nanomedicine also provides the opportunity to better exploit drugs that are already in clinical use by improving their bioavailability through appropriate nanoformulations.

  6. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Laboratory experiments were performed to study nitrogen and phosphorus uptake by the unicellular green microalga Chlorella vulgaris immobilized in calcium alginate beads. Different cell stockings in beads, different bead sizes and different algal bead concentrations in wastewaters were tested. Significant higher nutrients ...

  7. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  8. New Detection Modality for Label-Free Quantification of DNA in Biological Samples via Superparamagnetic Bead Aggregation

    Science.gov (United States)

    Leslie, Daniel C.; Li, Jingyi; Strachan, Briony C.; Begley, Matthew R.; Finkler, David; Bazydlo, Lindsay L.; Barker, N. Scott; Haverstick, Doris; Utz, Marcel; Landers, James P.

    2012-01-01

    Combining DNA and superparamagnetic beads in a rotating magnetic field produces multiparticle aggregates that are visually striking, and enables label-free optical detection and quantification of DNA at levels in the picogram per microliter range. DNA in biological samples can be quantified directly by simple analysis of optical images of microfluidic wells placed on a magnetic stirrer without DNA purification. Aggregation results from DNA/bead interactions driven either by the presence of a chaotrope (a nonspecific trigger for aggregation) or by hybridization with oligonucleotides on functionalized beads (sequence-specific). This paper demonstrates quantification of DNA with sensitivity comparable to that of the best currently available fluorometric assays. The robustness and sensitivity of the method enable a wide range of applications, illustrated here by counting eukaryotic cells. Using widely available and inexpensive benchtop hardware, the approach provides a highly accessible low-tech microscale alternative to more expensive DNA detection and cell counting techniques. PMID:22423674

  9. The statistic-thermodynamically calculations of magnetic thermodynamically functions for nuclear magnetic moments

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Luo Deli; Feng Kaiming

    2013-01-01

    The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)

  10. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    International Nuclear Information System (INIS)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli; Yanez-Sedeno, Paloma; Pingarron, Jose M.

    2011-01-01

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL -1 with a slope value of 7.0 nA mL ng -1 . The limit of detection was 3.74 ng mL -1 . Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  11. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma, E-mail: yseo@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain)

    2011-04-29

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL{sup -1} with a slope value of 7.0 nA mL ng{sup -1}. The limit of detection was 3.74 ng mL{sup -1}. Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  12. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  13. Half bead welding technique

    International Nuclear Information System (INIS)

    Canonico, D.A.; Holz, P.P.

    1978-05-01

    The ORNL has employed the Section XI half-bead procedure for six repair welds. Table 2 identifies the repairs and the components upon which they were accomplished. The weld repairs were performed to permit us to evaluate material properties, residual stresses, weld repair procedures, and structural behavior of repaired pressure vessels. As a consequence of our study we concluded that when the half bead procedure is correctly applied: (1) there is no metallurgical degradation of the base material, (2) residual stresses of yield point magnitude will be present, and (3) the structural integrity of the pressure vessel is not impaired at Charpy V-notch upper shelf temperatures

  14. Clinical application of functional magnetic resonance imaging

    CERN Document Server

    Alwatban, A Z W

    2002-01-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a ...

  15. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z.W

    2002-07-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  16. Clinical application of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Alwatban, Adnan Z.W.

    2002-01-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  17. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    Science.gov (United States)

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  18. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  19. Functional hydrophilic polystyrene beads with uniformly size and high cross-linking degree facilitated rapid separation of exenatide.

    Science.gov (United States)

    Li, Qiang; Zhao, Lan; Zhang, Rongyue; Huang, Yongdong; Zhang, Yan; Zhang, Kun; Wu, Xuexing; Zhang, Zhigang; Gong, Fangling; Su, Zhiguo; Ma, Guanghui

    2016-04-01

    A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Functional Magnetic Resonance Imaging in Consumer Research

    DEFF Research Database (Denmark)

    Reimann, Martin; Schilke, Oliver; Weber, Bernd

    2011-01-01

    of prior fMRI research related to consumer behavior and highlights the features that make fMRI an attractive method for consumer and marketing research. The authors discuss advantages and limitations and illustrate the proposed procedures with an applied study, which investigates loss aversion when buying......Although the field of psychology is undergoing an immense shift toward the use of functional magnetic resonance imaging (fMRI), the application of this methodology to consumer research is relatively new. To assist consumer researchers in understanding fMRI, this paper elaborates on the findings...... and selling a common product. Results reveal a significantly stronger activation in the amygdala while consumers estimate selling prices versus buying prices, suggesting that loss aversion is associated with the processing of negative emotion. © 2011 Wiley Periodicals, Inc....

  1. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool......-in piezoelectric torque transducer. This technique results in a very sensitive measurement of friction, which furthermore enables recording of lubricant film breakdown as function of drawing distance. The proposed test is validated in an experimental investigation of the influence of lubricant viscosity...

  2. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    International Nuclear Information System (INIS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-01-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core–shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase. - Highlights: • Three Amino-silane modified magnetic nanospheres were prepared. • Cellulase immobilized AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than free cellulase. • The potential of biofuel production using this immobilized cellulase

  3. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  4. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    Science.gov (United States)

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  5. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min......We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum...... of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates...

  6. Bead-probe complex capture a couple of SINE and LINE family from genomes of two closely related species of East Asian cyprinid directly using magnetic separation

    Directory of Open Access Journals (Sweden)

    Guo Baocheng

    2009-02-01

    Full Text Available Abstract Background Short and long interspersed elements (SINEs and LINEs, respectively, two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members, designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 × 105 and 1.7 × 105 per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp

  7. Vision research with functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nakadomari, Satoshi

    1999-01-01

    Present state of functional magnetic resonance imaging (fMRI), which is based on changes of MR signals produced by blood circulation changes due to the nerve activity, in vision research was reviewed. In this field, there are international associations of Human Brain Mapping and for Research in Vision and Ophthalmology (ARVO) and reports presented in ARVO in 1998 and 1999 were firstly described. Next, the comparison between two conditions was defined as the experimental paradigm of fMRI and analyses with the event related fMRI and with classification into visual central regions were explained. Major findings obtained by stimulation of visual central regions were discussed on the lateral corpus geniculatum, areas of V1, V2, V3 (VP), V3A, V4A (V8), V5 and LO (lateral occipital complex), and others. In practice of actual fMRI, the noise is often attributable to the examinee factor and notification for speculating the result is important. The value of fMRI in the clinical ophthalmological diagnosis was discussed and thought to be further investigated. (K.H.)

  8. Functional magnetic nanoparticles for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Yuko [Graduate School of Engineering, Department of Physics, Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: yuko@ynu.ac.jp; Moritake, Shinji [Graduate School of Engineering, Department of Physics, Yokohama National University, Yokohama 240-8501 (Japan); Taira, Shu [Mitsubishi Kagaku Institute of Life Sciences, Molecular Gerontology Research Group, Tokyo 194-8511 (Japan); Setou, Mitsutoshi [Mitsubishi Kagaku Institute of Life Sciences, Molecular Gerontology Research Group, Tokyo 194-8511 (Japan)

    2007-03-15

    We prepared an amino-substituted nanoparticle by means of the amino-silane coupling procedure. The original magnetic particles were {gamma}-Fe{sub 2}O{sub 3}, which ranged in size from 1.3 to 34 nm, surrounded by amorphous SiO{sub 2}. The modification of the magnetic particle by the addition of an amino group was confirmed using a Fourier transform infrared spectrophotometer (FT-IR). The X-ray diffraction patterns showed a spinel structure both before and after modification of the amino group. The magnetization curve indicated paramagnetic behavior for the 3 nm particles, superparamagnetic behavior for the 7 nm particles, and ferromagnetic behavior for 9 nm particles at room temperature. A fluorescent reagent was applied to the particle, and the particle was introduced into a cell. The magnetic particles in the cell were localized using an external magnetic field.

  9. Functional magnetic nanoparticles for medical application

    International Nuclear Information System (INIS)

    Ichiyanagi, Yuko; Moritake, Shinji; Taira, Shu; Setou, Mitsutoshi

    2007-01-01

    We prepared an amino-substituted nanoparticle by means of the amino-silane coupling procedure. The original magnetic particles were γ-Fe 2 O 3 , which ranged in size from 1.3 to 34 nm, surrounded by amorphous SiO 2 . The modification of the magnetic particle by the addition of an amino group was confirmed using a Fourier transform infrared spectrophotometer (FT-IR). The X-ray diffraction patterns showed a spinel structure both before and after modification of the amino group. The magnetization curve indicated paramagnetic behavior for the 3 nm particles, superparamagnetic behavior for the 7 nm particles, and ferromagnetic behavior for 9 nm particles at room temperature. A fluorescent reagent was applied to the particle, and the particle was introduced into a cell. The magnetic particles in the cell were localized using an external magnetic field

  10. bEADS

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    While there are a great variety of digital musical interfaces available to the working musician, few offer the level of immediate, nuanced and instinctive interaction that one finds in an acoustic shaker. bEADS is a prototype of a digital musical instrument that utilises the gestural vocabulary...... associated with shaken idiophones and expands on the techniques and sonic possibilities associated with them. By using a bespoke physically informed synthesis engine, in conjunction with accelerometer and pressure sensor data, an actuated handheld instrument has been built that allows for quickly switching...... between widely differing percussive sound textures. The prototype has been evaluated by three experts with different levels of involvement in professional music making....

  11. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  12. Functionalization of magnetic nanowires by charged biopolymers

    DEFF Research Database (Denmark)

    Magnin, D.; Callegari, V.; Mátéfi-Tempfli, Stefan

    2008-01-01

    We report on a facile method for the preparation of biocompatible and bioactive magnetic nanowires. The method consists of the direct deposition of polysaccharides by layer-by-layer (LbL) assembly onto a brush of metallic nanowires; obtained by electrodeposition of the metal within the nanopores ...

  13. A magnetic window into bodily functions

    International Nuclear Information System (INIS)

    Sutton, C.

    1986-01-01

    The paper concerns the uses of Nuclear Magnetic Resonance (NMR) spectroscopy in Medical Science. The physics of NMR and the chemical shift are both explained. The use of NMR in studying metabolism and deep tissue is described; these studies include brain metabolites in babies, muscle disorders, and monitoring malfunctions in the human body. (UK)

  14. Amine-functionalized magnetic nanoparticles as robust support for ...

    Indian Academy of Sciences (India)

    Keywords. Biomaterials; enzyme activity; enzyme biocatalysis; nanoparticles; surface properties. Abstract. Preparation of magnetic nanoparticles with controlled size and shape along with modulation of their surface properties via introduction of functional groups holds great prospect in the field of nanotechnology.

  15. Familial Essential Tremor Studied With Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Hernandez, A.; Salgado, P.; Gil, A.; Barrios, F. A.

    2003-09-01

    Functional Magnetic Resonance Imaging has become an important analytical tool to study neurodegenerative diseases. We applied the EPI-BOLD functional Magnetic Resonance Imaging technique to acquire functional images of patients with familial essential tremor (FET) disorder and healthy control volunteers, during a motor task activity. Functional and anatomic images were used to produce the brain activation maps of the patients and volunteers. These functional maps of the primary somatosensorial and motor cortexes of patients and control subjects were compared for functional differences per subject. The averaged functional brain images of eight of each case were acquired were, it can be clearly observed the differences in active zones. The results presented in this work show that there are differences in the functional maps during motor task activation between control subjects and FET patients suggesting a cerebral functional reorganization that can be mapped with BOLD-fMRI.

  16. Single-Step Incubation Determination of miRNAs in Cancer Cells Using an Amperometric Biosensor Based on Competitive Hybridization onto Magnetic Beads

    Directory of Open Access Journals (Sweden)

    Eva Vargas

    2018-03-01

    Full Text Available This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs and amperometric transduction at screen-printed carbon electrodes (SPCEs. The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs. Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at −0.20 V (versus the Ag pseudo-reference electrode was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD of 0.2 nM (5 fmol in 25 μL of sample for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNAt extracted from breast cancer cells (MCF-7 were demonstrated.

  17. Collisionless distribution function of charged particles ensemble in a tokamak magnetic configuration with magnetic island

    Science.gov (United States)

    Podturova, O. I.

    2017-10-01

    The collisionless distribution function of charged particle ensemble in the magnetic field of tokamak with a magnetic island is calculated. The calculation is based on the solution of the kinetic equation with source together with three-dimensional numerical calculations of charged particle trajectories. It is shown that in case of an inhomogeneous source trajectory, motion of trapped particles leads to anisotropization of the initially isotropic distribution of particle ensemble. The absence of contribution from the passing particles decreases the efficiency of spontaneous generation of a non-induction current in the magnetic island in comparison with the bootstrap effect in the system of nested magnetic surfaces.

  18. Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system.

    Science.gov (United States)

    Day, J B; Basavanna, U

    2015-04-01

    Listeriosis, a disease contracted via the consumption of foods contaminated with pathogenic Listeria species, can produce severe symptoms and high mortality in susceptible people and animals. The development of molecular methods and immuno-based techniques for detection of pathogenic Listeria in foods has been challenging due to the presence of assay inhibiting food components. In this study, we utilize a macrophage cell culture system for the isolation and enrichment of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables for subsequent identification using the Luminex xMAP technique. Macrophage monolayers were exposed to infant formula, lettuce and celery contaminated with L. monocytogenes or L. ivanovii. Magnetic microspheres conjugated to Listeria specific antibody were used to capture Listeria from infected macrophages and then analyzed using the Bio-Plex 200 analyzer. As few as 10 CFU/mL or g of L. monocytogenes was detected in all foods tested. The detection limit for L. ivanovii was 10 CFU/mL in infant formula and 100 CFU/g in leafy greens. Microsphere bound Listeria obtained from infected macrophage lysates could also be isolated on selective media for subsequent confirmatory identification. This method presumptively identifies L. monocytogenes and L. ivanovii from infant formula, lettuce and celery in less than 28 h with confirmatory identifications completed in less than 48 h. Published by Elsevier Ltd.

  19. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical......, if the stimulated cortex makes a critical contribution to the brain functions subserving the task. While the relationship between task and functional activation as revealed by fMRI is correlative in nature, the neurodisruptive effect of TMS reflects a causal effect on brain activity.The use of preoperative f...

  20. Pediatric applications of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Nolan R. [Miami Children' s Hospital, Department of Radiology, Miami, FL (United States); Bernal, Byron [Miami Children' s Hospital, Pediatric Neuroradiology, Miami, FL (United States)

    2015-09-15

    Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions. (orig.)

  1. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    cerebral pathophysiology, characterization and distinct regional mapping of human cognitive functions such as vision, motor, language, memory, etc. ..... Rosen B R 1991 Functional mapping of the human visual cortex by magnetic resonance imaging; Science 254 716–. 719. Blinkenberg M, Bonde C, Holm S, Svarer C, ...

  2. Magnetic Field Design of Combined-function Magnets Wound with Coated Conductors

    Science.gov (United States)

    Li, Q.; Amemiya, N.; Nakamura, T.; Ogitsu, T.

    For accelerator magnets, high Tc superconductors (HTS) are a remarkable option comparing with low Tc superconductors (LTS), since they possess several distinctive characteristics, such as good thermal stability and high cooling efficiency. On the other side, HTSs have strong mechanical constraints which make them hard to shape, like bending and winding. In this paper, a method is proposed to solve the mechanical constraint problems of HTSs, and the feasibility of applying HTSs to combined-function accelerator magnets is proved. The detailed method is presented to apply coated conductors into the design of a combined function accelerator magnet containing both dipole and quadrupole magnetic field components, which is named 2+4 pole magnet in this paper. This method takes electromagnetic characteristics of coated conductors into account, and it is capable of solving their mechanical constraint problems. First a 2D cross-sectional design of the straight section was completed, with a layout in the form of multi-layers to generate required magnetic fields. Then a 3D design was carried out to wind coil ends considering flat-wise/edge- wise bending and torsion tolerance. The locations and angles of coated conductors were optimized to improve the efficiency of field generation and minimize the field error. Results show that coil ends can be successfully designed, and electromagnetic analyses show that the designed magnet can properly generate required magnetic field.

  3. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    Science.gov (United States)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  4. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles.

    Science.gov (United States)

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C D; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell-derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  5. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  6. Fluorescent detection of C-reactive protein using polyamide beads

    Science.gov (United States)

    Jagadeesh, Shreesha; Chen, Lu; Aitchison, Stewart

    2016-03-01

    Bacterial infection causes Sepsis which is one of the leading cause of mortality in hospitals. This infection can be quantified from blood plasma using C - reactive protein (CRP). A quick diagnosis at the patient's location through Point-of- Care (POC) testing could give doctors the confidence to prescribe antibiotics. In this paper, the development and testing of a bead-based procedure for CRP quantification is described. The size of the beads enable them to be trapped in wells without the need for magnetic methods of immobilization. Large (1.5 mm diameter) Polyamide nylon beads were used as the substrate for capturing CRP from pure analyte samples. The beads captured CRP either directly through adsorption or indirectly by having specific capture antibodies on their surface. Both methods used fluorescent imaging techniques to quantify the protein. The amount of CRP needed to give a sufficient fluorescent signal through direct capture method was found suitable for identifying bacterial causes of infection. Similarly, viral infections could be quantified by the more sensitive indirect capture method. This bead-based assay can be potentially integrated as a disposable cartridge in a POC device due to its passive nature and the small quantities needed.

  7. Magnetic elements in otoliths of lagena and their function

    International Nuclear Information System (INIS)

    Harada, Yasuo

    2002-01-01

    The mystery of pigeons' homing abilities has been the subject of much interest, and it is widely believed that information from the earth's magnetic field may be involved. However, no specific magnetic sensory organ has yet been identified. The recent finding of magnetic materials in the lagenal otolith of fishes and birds raises the possibility that these structures might be key elements in the elusive magnetic sensor system. For the elemental analysis inside materials, x-ray fluorescence method (Synchrotron radiation) is one of the most powerful techniques. BL4A beam line of Photo factory of KEK at Tsukuba was used for analysis of the otolith. Comparing the compositions of the three different kinds of otolith among several species of sea fishes and birds, we found that the saccular and utricular otolith rarely contain detectable levels of Fe (iron), but that Fe is present in significant quantities in the lagenal otolith of the birds. The lagenal otolith is tiny crystal that contains magnetic elements and is sensitively displaced by imposed magnetic fields, providing the animal with geomagnetic sensory input, from which the brain would infer navigational information. Behavioral experiments of the homing abilities of the pigeons involving sectioning the lagenal nerves and the magnetic interfere to their lagena were done using 30 controlled birds and 21 treated birds from the same loft of the racing pigeons. The result of homing test of the control and treated pigeons clearly indicates the magnetic influence and lagenal function to pigeon's navigation ability, and the treated pigeons were either lost or significantly delayed, while the controls returned within 30 minutes after the release. Thus the birds' lagena is unique organ, and it may be concluded that the lagena is a key element to magnetic sensory system for birds. (author)

  8. Magnetic Exchange Couplings with Range-Separated Hybrid Density Functionals.

    Science.gov (United States)

    Peralta, Juan E; Melo, Juan I

    2010-06-08

    We investigate the effect of Hartree-Fock range-separation on the calculation of magnetic exchange couplings in a set of nine bimetallic transition-metal complexes containing 3d elements (V, Cr, Mn, and Cu). To this end, we have compared magnetic exchange couplings calculated as self-consistent energy differences using two global hybrid functionals, B3LYP (Becke 3-parameter exchange and Lee-Yang-Parr correlation) and PBEh (hybrid Perdew-Burke-Ernzerhof) with the short-range separated HSE (Heyd-Scuseria-Ernzerhof) and the long-range corrected LC-ωPBE. Our results show that, although there is no clear superiority of any of these functionals when compared with experimental data, the LC-ωPBE provides a better description of the magnetization on the metallic centers, yielding self-consistent solutions that mimic more closely a Heisenberg-like behavior.

  9. Density-functional theory for internal magnetic fields

    Science.gov (United States)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  10. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  11. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    Science.gov (United States)

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  12. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

    Science.gov (United States)

    Jeon, Seongbeom; Subbiah, Ramesh; Bonaedy, Taufik; Van, Seyoung; Park, Kwideok; Yun, Kyusik

    2018-02-01

    Magnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under "on" or "off" magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics. © 2017 Wiley Periodicals, Inc.

  13. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  14. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  15. Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications

    Science.gov (United States)

    Kim, Hojin; Choi, In Ho; Lee, Sanghyun; Won, Dong-Joon; Oh, Yong Suk; Kwon, Donghoon; Sung, Hyung Jin; Jeon, Sangmin; Kim, Joonwon

    2017-04-01

    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.

  16. Three-bead steering microswimmers

    Science.gov (United States)

    Rizvi, Mohd Suhail; Farutin, Alexander; Misbah, Chaouqi

    2018-02-01

    The self-propelled microswimmers have recently attracted considerable attention as model systems for biological cell migration as well as artificial micromachines. A simple and well-studied microswimmer model consists of three identical spherical beads joined by two springs in a linear fashion with active oscillatory forces being applied on the beads to generate self-propulsion. We have extended this linear microswimmer configuration to a triangular geometry where the three beads are connected by three identical springs in an equilateral triangular manner. The active forces acting on each spring can lead to autonomous steering motion; i.e., allowing the swimmer to move along arbitrary paths. We explore the microswimmer dynamics analytically and pinpoint its rich character depending on the nature of the active forces. The microswimmers can translate along a straight trajectory, rotate at a fixed location, as well as perform a simultaneous translation and rotation resulting in complex curved trajectories. The sinusoidal active forces on the three springs of the microswimmer contain naturally four operating parameters which are more than required for the steering motion. We identify the minimal operating parameters which are essential for the motion of the microswimmer along any given arbitrary trajectory. Therefore, along with providing insights into the mechanics of the complex motion of the natural and artificial microswimmers, the triangular three-bead microswimmer can be utilized as a model for targeted drug delivery systems and autonomous underwater vehicles where intricate trajectories are involved.

  17. Uniform magnetic fields in density-functional theory.

    Science.gov (United States)

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M

    2018-01-14

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  18. Software Tools for the Analysis of Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Mehdi Behroozi

    2012-09-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. In this paper, several software tools have been introduced and they have been evaluated for comparison of their functionality and their features. The description of each program has been discussed and summarized.

  19. Software Tools for the Analysis of functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Mehdi Behroozi

    2012-12-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. In this paper, several software tools have been introduced and they have been evaluated for comparison of their functionality and their features. The description of each program has been discussed and summarized

  20. Zero-field magnetic response functions in Landau levels

    Science.gov (United States)

    Gao, Yang; Niu, Qian

    2017-07-01

    We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models.

  1. Multi-modal particle manipulator to enhance bead-based bioassays

    Science.gov (United States)

    Glynne-Jones, P.; Boltryk, R. J.; Hill, M.; Zhang, F.; Dong, L.; Wilkinson, J. S.; Brown, T.; Melvin, T.; Harris, N. R.

    2010-01-01

    By sequentially pushing micro-beads towards and away from a sensing surface, we show that ultrasonic radiation forces can be used to enhance the interaction between a functionalized glass surface and polystyrene micro-beads, and distinguish those that bind to the surface, ultimately by using an integrated optical waveguide implanted in the reflector to facilitate optical detection. The movement towards and immobilization of streptavidin coated beads onto a biotin functionalized waveguide surface is achieved by using a quarter-wavelength mode pushing beads onto the surface, while the removal of non-specifically bound beads uses a second quarter-wavelength mode which exhibits a kinetic energy maxima at the boundary between the carrier layer and fluid, drawing beads towards this surface. This has been achieved using a multi-modal acoustic device which exhibits both these quarter-wavelength resonances. Both 1-D acoustic modeling and finite element analysis has been used to design this device and investigate the spatial uniformity of the field. We demonstrate experimentally that 90% of specifically bound beads remain attached after applying ultrasound, with 80% of non-specifically bound control beads being successfully removed acoustically. This approach overcomes problems associated with lengthy sedimentation processes used for bead-based bioassays and surface (electrostatic) forces, which delay or prevent immobilization. We explain the potential of this technique in the development of DNA and protein assays in terms of detection speed and multiplexing.

  2. Arbitrary function generator for APS injector synchrotron correction magnets

    International Nuclear Information System (INIS)

    Despe, O.D.

    1991-01-01

    The APS injector synchrotron has eighty correction magnets around its circumference to provide the vernier field changes required for beam orbit correction during acceleration. The arbitrary function generator (AFG) design is based on scanning out encoded data from a semi-conductor memory, a first-in-first-out (FIFO) device. The data input consists of a maximum of 20 correction values specified within the acceleration window. Additional points between these values are then linearly interpolated to create a uniformly spaced 1000 data-point function stored in the FIFO. Each point, encoded as a 3-bit value is scanned out in synchronism with the injection pulse and used to clock the up/down counter driving the DAC. The DAC produces the analog reference voltage used to control the magnet current. 1 ref., 4 figs

  3. Magnetic resonance imaging based functional imaging in paediatric oncology.

    Science.gov (United States)

    Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C

    2017-02-01

    Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Functional magnetic resonance imaging in oncology: state of the art

    Directory of Open Access Journals (Sweden)

    Marcos Duarte Guimaraes

    2014-04-01

    Full Text Available In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.

  5. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    International Nuclear Information System (INIS)

    Hall, W.A.; Truwit, C.L.; Univ. of Minnesota Medical School, Minneapolis, MN; Univ. of Minnesota Medical School, Minneapolis, MN; Hennepin Country Medical Center, Minneapolis, MN

    2006-01-01

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  6. Quenching of the elastic magnetic response function of 49Ti

    International Nuclear Information System (INIS)

    Selig, A.M.; Suzuki, T.; Lapikas, L.; Witt Huberts, P.K.A. de; Platchkov, S.K.; Frois, B.; Mooy, R.B.M.; Zybert, L.; Glaudemans, P.W.M.

    1985-01-01

    Cross sections for elastic magnetic electron scattering from 49 Ti have been obtained in the momentum transfer range 0.75 -1 . Apart from the M1 and M7 moments the observed quenching of the response function cannot be described by the present large space shell-model calculations. Core-polarization calculations including the effect of meson-exchange currents yield a considerably better description of the present data. (orig.)

  7. Functional renormalization group for three-dimensional quantum magnetism

    Science.gov (United States)

    Iqbal, Yasir; Thomale, Ronny; Parisen Toldin, Francesco; Rachel, Stephan; Reuther, Johannes

    2016-10-01

    We formulate a pseudofermion functional renormalization group (PFFRG) scheme to address frustrated quantum magnetism in three dimensions. In a scenario where many numerical approaches fail due to sign problem or small system size, three-dimensional (3D) PFFRG allows for a quantitative investigation of the quantum spin problem and its observables. We illustrate 3D PFFRG for the simple cubic J1-J2-J3 quantum Heisenberg antiferromagnet, and benchmark it against other approaches, if available.

  8. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  9. Formation of RNA Beads from Various DNA Nanoring Structures.

    Science.gov (United States)

    Kim, Hyejin; Lee, Jong Bum

    2016-05-01

    By taking advantages of rolling circle transcription, one of the powerful methods to overcome the instability of RNA, we successfully synthesized RNA particles having high copy numbers of RNA strands. To examine dependence of RNA particle formation to template circular DNA strands, we synthesized RNA beads with 65-nt, 92-nt and 200-nt DNA nanoring structures as template circular DNA. Our conclusion is that characteristics of RNA beads could be controlled with various template circular DNA for RCT. It is feasible that our RNA beads could be used for RNAzyme-based metal sensors such as aqueous lead ion sensing. In this case, we expect that multi-metal ion detection would be possible by using 200-nt circular DNA bearing multiple desired functions as a template for RNA bead formation. Furthermore, certain features of RNA beads such as sensitivity to nuclease digestion and maximum loading amount of drugs when used as a carrier are expected to be further adjusted by choosing appropriate porosity and size.

  10. Selective extraction of plutonium from nitric acid medium by bifunctional polyethersulfone beads for quantification with thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Polyethersulfone (PES) magnetic beads were prepared by phase inversion technique. The beads were grafted with two monomers, viz. 2-hydroxyethylmethacrylate phosphoric acid (HEMP) and (3-acrylamidopropyl)trimethyl ammonium chloride (AMAC), by photo-induced free radical polymerization. Effect of different HNO 3 concentrations on the sorption profiles of Am(III) and Pu(IV) was studied using the grafted PES beads. The beads were found to extract plutonium quantitatively from high nitric acid medium (3-8 M). The effect of presence of competing actinide, e.g. U(VI), on the sorption of Pu(IV) was also studied. (author)

  11. IV injection of polystyrene beads for mouse model of sepsis causes severe glomerular injury.

    Science.gov (United States)

    Arima, Hajime; Hirate, Hiroyuki; Sugiura, Takeshi; Suzuki, Shugo; Takahashi, Satoru; Sobue, Kazuya

    2014-01-01

    Infusion fluids may be contaminated with different types of particulates that are a potential health hazard. Particulates larger than microvessels may cause an embolism by mechanical blockage and inflammation; however, it has been reported that particulates smaller than capillary diameter are relatively safe. Against such a background, one report showed that polystyrene beads smaller than capillary diameter decreased tissue perfusion in ischemia-reperfusion injury. This report suggested that polystyrene beads from 1.5- to 6-μm diameter (dia.) may have unfavorable effects after pretreatment. Here, we investigated whether injection of polystyrene beads (3- and 6-μm dia.) as an artificial contaminant of intravenous fluid after lipopolysaccharide (LPS) injection affected mortality and organ damage in mice. Mice were divided into four groups and injected: polystyrene beads only, LPS only, polystyrene beads 30 min after LPS, or saline. A survival study, histology, blood examination, and urine examination were performed. The survival rate after LPS and polystyrene bead (6-μm dia.) injection was significantly lower than that of the other three groups. In the kidney sections, injured glomeruli were significantly higher with LPS and polystyrene bead injection than that of the other three groups. LPS and polystyrene bead injection decreased the glomerular filtration rate and led to renal failure. Inflammatory reactions induced with LPS were not significantly different between with or without polystyrene beads. Polystyrene beads were found in urine after LPS and polystyrene bead injection. Injection of polystyrene beads after LPS injection enhanced glomerular structural injury and caused renal function injury in a mouse sepsis model.

  12. Metallic Bead Detection by Using Eddy-Current Probe with SV-GMR Sensor

    International Nuclear Information System (INIS)

    Yamada, S.; Chomsuwan, K.; Hagino, T.; Iwahara, M.; Tian, H.

    2005-01-01

    The progress of the ECT probe with micro magnetic sensor becomes possible to apply to various applications. The detection of micro metallic bead used for electric packaging has been reported in this paper. We proposed micro ECT probes with meander coil as exciter and spin-valve giant magneto-resistance (SV-GMR) as receiver. Micro metallic bead(solder ball) with the diameter of 0.25 to 0.76 mm is used as a measuring object. We discuss the detection and alignment of metallic bead by using ECT technique

  13. The dispersion of fine chitosan particles by beads-milling

    Science.gov (United States)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  14. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible.

  15. Avian magnetic compass: Its functional properties and physical basis

    Directory of Open Access Journals (Sweden)

    Roswitha WILTSCHKO, Wolfgang WILTSCHKO

    2010-06-01

    Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].

  16. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Science.gov (United States)

    Ko, Saebom; Kim, Eun Song; Park, Siman; Daigle, Hugh; Milner, Thomas E.; Huh, Chun; Bennetzen, Martin V.; Geremia, Giuliano A.

    2017-04-01

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36˜72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  17. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Saebom, E-mail: saebomko@austin.utexas.edu [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Kim, Eun Song [University of Texas, Department of Biomedical Engineering (United States); Park, Siman [University of Texas, Department of Civil, Architectural and Environmental Engineering (United States); Daigle, Hugh [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Milner, Thomas E. [University of Texas, Department of Biomedical Engineering (United States); Huh, Chun [University of Texas, Department of Petroleum and Geosystems Engineering (United States); Bennetzen, Martin V. [Maersk Oil Corporate (Denmark); Geremia, Giuliano A. [Maersk Oil Research and Technology Centre (Qatar)

    2017-04-15

    Magnetic nanoparticles (MNPs) with surface coatings designed for water treatment, in particular for targeted removal of contaminants from produced water in oil fields, have drawn considerable attention due to their environmental merit. The goal of this study was to develop an efficient method of removing very stable, micron-scale oil droplets dispersed in oilfield produced water. We synthesized MNPs in the laboratory with a prescribed surface coating. The MNPs were superparamagnetic magnetite, and the hydrodynamic size of amine functionalized MNPs ranges from 21 to 255 nm with an average size of 66 nm. The initial oil content of 0.25 wt.% was reduced by as much as 99.9% in separated water. The electrostatic attraction between negatively charged oil-in-water emulsions and positively charged MNPs controls, the attachment of MNPs to the droplet surface, and the subsequent aggregation of the electrically neutral oil droplets with attached MNPs (MNPs-oils) play a critical role in accelerated and efficient magnetic separation. The total magnetic separation time was dramatically reduced to as short as 1 s after MNPs, and oil droplets were mixed, in contrast with the case of free, individual MNPs with which separation took about 36∼72 h, depending on the MNP concentrations. Model calculations of magnetic separation velocity, accounting for the MNP magnetization and viscous drag, show that the total magnetic separation time will be approximately 5 min or less, when the size of the MNPs-oils is greater than 360 nm, which can be used as an optimum operating condition.

  18. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  19. TOPICAL REVIEW: Simulating functional magnetic materials on supercomputers

    Science.gov (United States)

    Gruner, Markus Ernst; Entel, Peter

    2009-07-01

    The recent passing of the petaflop per second landmark by the Roadrunner project at the Los Alamos National Laboratory marks a preliminary peak of an impressive world-wide development in the high-performance scientific computing sector. Also, purely academic state-of-the-art supercomputers such as the IBM Blue Gene/P at Forschungszentrum Jülich allow us nowadays to investigate large systems of the order of 103 spin polarized transition metal atoms by means of density functional theory. Three applications will be presented where large-scale ab initio calculations contribute to the understanding of key properties emerging from a close interrelation between structure and magnetism. The first two examples discuss the size dependent evolution of equilibrium structural motifs in elementary iron and binary Fe-Pt and Co-Pt transition metal nanoparticles, which are currently discussed as promising candidates for ultra-high-density magnetic data storage media. However, the preference for multiply twinned morphologies at smaller cluster sizes counteracts the formation of a single-crystalline L10 phase, which alone provides the required hard magnetic properties. The third application is concerned with the magnetic shape memory effect in the Ni-Mn-Ga Heusler alloy, which is a technologically relevant candidate for magnetomechanical actuators and sensors. In this material strains of up to 10% can be induced by external magnetic fields due to the field induced shifting of martensitic twin boundaries, requiring an extremely high mobility of the martensitic twin boundaries, but also the selection of the appropriate martensitic structure from the rich phase diagram.

  20. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  1. Alternative Equation on Magnetic Pair Distribution Function for Quantitative Analysis

    Science.gov (United States)

    Kodama, Katsuaki; Ikeda, Kazutaka; Shamoto, Shin-ichi; Otomo, Toshiya

    2017-12-01

    We derive an alternative equation of magnetic pair distribution function (mPDF) related to the mPDF equation given in a preceding study [B. A. Frandsen, X. Yang, and S. J. L. Billinge, https://doi.org/10.1107/S2053273313033081" xlink:type="simple">Acta Crystallogr., Sect. A 70, 3 (2014)] for quantitative analysis of realistic experimental data. The additional term related to spontaneous magnetization included in the equation is particularly important for the mPDF analysis of ferromagnetic materials. Quantitative estimation of mPDF from neutron diffraction data is also shown. The experimental mPDFs estimated from the neutron diffraction data of the ferromagnet MnSb and the antiferromagnet MnF2 are quantitatively consistent with the mPDFs calculated using the presented equation.

  2. Ligand fishing using new chitosan based functionalized Androgen Receptor magnetic particles.

    Science.gov (United States)

    Marszałł, Michał Piotr; Sroka, Wiktor Dariusz; Sikora, Adam; Chełminiak, Dorota; Ziegler-Borowska, Marta; Siódmiak, Tomasz; Moaddel, Ruin

    2016-08-05

    Superparamagnetic nanoparticles with chemically modified chitosan has been proposed as a potential support for the immobilization of the androgen receptor (AR). The study involved comparison of different AR carriers like commercially available magnetic beads coated with silica (BcMag) and chitosan coated nanoparticles with different amount of amino groups. The immobilization was carried out through covalent immobilization of the AR through the terminal amino group or through available carboxylic acids. The initial characterization of the AR coated magnetic beads was carried out with dihydrotestosterone, a known AR ligand. Subsequently, chitosan modified nanporticles with long-distanced primary amino groups (Fe3O4CS-(NH2)3) (upto 8.34mM/g) were used for further study to isolate known AR ligands (bicalutamide, flutamide, hydroxyflutamide and levonogestrel) from a mixture of tested compounds in ammonium acetate buffer [10mM, pH 7.4]. The results showed that the selected nanoparticles are a promising semi-quantitative tool for the identification of high affinity compounds to AR and might be of special importance in the identification of novel agonists or antiandrogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.

    Science.gov (United States)

    Asaoka, Teruo; Ohtake, Shoji; Furukawa, Katsuko S; Tamura, Akito; Ushida, Takashi

    2013-11-01

    Porous beads of bioactive ceramics such as hydroxyapatite (HAp) and tribasic calcium phosphate (TCP) are considered a promising scaffold for cultivating bone cells. To realize this, α-TCP/HAp functionally graded porous beads are fabricated with two main purposes: to maintain the function of the scaffold with sufficient strength up to the growth of new bone, and is absorbed completely after the growth. HAp is a bioactive material that has both high strength and strong tissue-adhesive properties, but is not readily absorbed by the human body. On the contrary, α-TCP is highly bioabsorbable, resulting in a scaffold that is absorbed before it is completely replaced by bone. In this study, we produced porous, bead-shaped carriers as scaffolds for osteoblast culture. To control the solubility in vivo, the fabricated beads contained α-TCP at the center and HAp at the surface. Cell adaptability of these beads for bone tissue engineering was confirmed in vitro. It was found that α-TCP/HAp bead carriers exhibit low toxicity in the initial stages of cell seeding and cell adhesion. The presence of HAp in the composite bead form effectively increased ALP activity. In conclusion, it is suggested that these newly developed α-TCP/HAp beads are a promising tool for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  4. Whiplash Injuries Can be Visible by Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Bengt H Johansson

    2006-01-01

    Full Text Available Whiplash trauma can result in injuries that are difficult to diagnose. Diagnosis is particularly difficult in injuries to the upper segments of the cervical spine (craniocervical joint [CCJ] complex. Studies indicate that injuries in that region may be responsible for the cervicoencephalic syndrome, as evidenced by headache, balance problems, vertigo, dizziness, eye problems, tinnitus, poor concentration, sensitivity to light and pronounced fatigue. Consequently, diagnosis of lesions in the CCJ region is important. Functional magnetic resonance imaging is a radiological technique that can visualize injuries of the ligaments and the joint capsules, and accompanying pathological movement patterns.

  5. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo, E-mail: montemag@ualberta.ca [Ingenuity Lab, 1-070C (Canada)

    2017-02-15

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  6. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  7. Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jose R., E-mail: correa@fq.uh.cu [Department of General Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Bordallo, Eduardo [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Canetti, Dora [Department of Inorganic Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Leon, Vivian [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Otero-Diaz, Luis C. [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain); Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Negro, Carlos [Chemical Engineering Department, Complutense University of Madrid, Madrid 28040 (Spain); Gomez, Adrian [Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Saez-Puche, Regino [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain)

    2010-08-15

    Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l{sup -1} with ammonia at 25 and 70 {sup o}C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.

  8. Magnetic scanning gate microscopy of a domain wall nanosensor using microparticle probe

    Energy Technology Data Exchange (ETDEWEB)

    Corte-León, H., E-mail: hector.corte@npl.co.uk [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Gribkov, B. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Krzysteczko, P. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Marchi, F.; Motte, J.-F. [University of Grenoble Alpes, Inst. NEEL, Grenoble F-38042 (France); CNRS, Inst. NEEL, Grenoble F-38042 (France); Schumacher, H.W. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Antonov, V. [Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Kazakova, O. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)

    2016-02-15

    We apply the magnetic scanning gate microscopy (SGM) technique to study the interaction between a magnetic bead (MB) and a domain wall (DW) trapped in an L-shaped magnetic nanostructure. Magnetic SGM is performed using a custom-made probe, comprising a hard magnetic NdFeB bead of diameter 1.6 µm attached to a standard silicon tip. The MB–DW interaction is detected by measuring changes in the electrical resistance of the device as a function of the tip position. By scanning at different heights, we create a 3D map of the MB–DW interaction and extract the sensing volume for different widths of the nanostructure's arms. It is shown that for 50 nm wide devices the sensing volume is a cone of 880 nm in diameter by 1.4 µm in height, and reduces down to 800 nm in height for 100 nm devices with almost no change in its diameter. - Highlights: • AFM tips with a magnetic bead attached used to test interaction with domain wall. • Domain wall inside a nanostructure affect the electrical resistance. • Recording electrical resistance while scanning with modified AFM probe. • Change of resistance as a function of the position of the magnetic bead. • This allows comparing different devices in a reproducible and controllable way.

  9. Functional imaging of the human placenta with magnetic resonance.

    Science.gov (United States)

    Siauve, Nathalie; Chalouhi, Gihad E; Deloison, Benjamin; Alison, Marianne; Clement, Olivier; Ville, Yves; Salomon, Laurent J

    2015-10-01

    Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract

  10. A compatible electrocutaneous display for functional magnetic resonance imaging application.

    Science.gov (United States)

    Hartwig, V; Cappelli, C; Vanello, N; Ricciardi, E; Scilingo, E P; Giovannetti, G; Santarelli, M F; Positano, V; Pietrini, P; Landini, L; Bicchi, A

    2006-01-01

    In this paper we propose an MR (magnetic resonance) compatible electrocutaneous stimulator able to inject an electric current, variable in amplitude and frequency, into the fingertips in order to elicit tactile skin receptors (mechanoreceptors). The desired goal is to evoke specific tactile sensations selectively stimulating skin receptors by means of an electric current in place of mechanical stimuli. The field of application ranges from functional magnetic resonance imaging (fMRI) tactile studies to augmented reality technology. The device here proposed is designed using safety criteria in order to comply with the threshold of voltage and current permitted by regulations. Moreover, MR safety and compatibility criteria were considered in order to perform experiments inside the MR scanner during an fMRI acquisition for functional brain activation analysis. Psychophysical laboratory tests are performed in order to define the different evoked tactile sensation. After verifying the device MR safety and compatibility on a phantom, a test on a human subject during fMRI acquisition is performed to visualize the brain areas activated by the simulated tactile sensation.

  11. PEG-Functionalized Magnetic Nanoparticles for Drug Delivery and Magnetic Resonance Imaging Applications

    Science.gov (United States)

    Yallapu, Murali Mohan; Foy, Susan P; Jain, Tapan K; Labhasetwar, Vinod

    2010-01-01

    Purpose Polyethylene glycol (PEG) functionalized magnetic nanoparticles (MNPs) were tested as a drug carrier system, magnetic resonance imaging (MRI) agent, and ability to conjugate to an antibody. Methods An iron oxide core coated with oleic acid (OA) and then with OA-PEG forms a water dispersible MNP formulation. Hydrophobic doxorubicin partitions into the OA layer for sustained drug delivery. The T1 and T2 MRI contrast properties were determined in vitro and the circulation of the MNPs measured in mouse carotid arteries. An N-hydroxysuccinimide group (NHS) on the OA-PEG-80 was used to conjugate the amine functional group on antibodies for active targeting in the human MCF-7 breast cancer cell line. Results The optimized formulation had a mean hydrodynamic diameter of 184 nm with an 8 nm iron-oxide core. The MNPs enhance the T2 MRI contrast, and have a long circulation time in vivo with 30% relative concentration 50 min post-injection. Doxorubicin-loaded MNPs showed sustained drug release and dose-dependent antiproliferative effects in vitro; the drug effect was enhanced with transferrin antibody conjugated MNPs. Conclusion PEG functionalized MNPs could be developed as a targeted drug delivery system and MRI contrast agent. PMID:20845067

  12. Functional and perfusion magnetic resonance imaging at 3 tesla

    CERN Document Server

    Klarhoefer, M

    2001-01-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flo...

  13. TOPICAL REVIEW: Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics

    Science.gov (United States)

    Sandhu, Adarsh; Handa, Hiroshi; Abe, Masanori

    2010-11-01

    Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate—an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)—a hormone secreted in excess amounts by the heart when stressed—to a level of 2.0 pg ml - 1. We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer sized 'probe

  14. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    Science.gov (United States)

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  16. Modulating functional and dysfunctional mentalizing by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tobias eSchuwerk

    2014-11-01

    Full Text Available Mentalizing, the ability to attribute mental states to others and oneself, is a cognitive function with high relevance for social interactions. Recent neuroscientific research has increasingly contributed to attempts to decompose this complex social cognitive function into constituting neurocognitive building blocks. Additionally, clinical research that focuses on social cognition to find links between impaired social functioning and neurophysiological deviations has accumulated evidence that mentalizing is affected in most psychiatric disorders. Recently, both lines of research have started to employ transcranial magnetic stimulation: the first to modulate mentalizing in order to specify its neurocognitive components, the latter to treat impaired mentalizing in clinical conditions. This review integrates findings of these two different approaches to draw a more detailed picture of the neurocognitive basis of mentalizing and its deviations in psychiatric disorders. Moreover, we evaluate the effectiveness of hitherto employed stimulation techniques and protocols, paradigms and outcome measures. Based on this overview we highlight new directions for future research on the neurocognitive basis of functional and dysfunctional social cognition.

  17. Expanded polylactide bead foaming - A new technology

    Science.gov (United States)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  18. Functional magnetic resonance imaging in the activation of working memory

    International Nuclear Information System (INIS)

    Spitzer, M.; Kammer, T.; Bellemann, M.E.; Gueckel, F.; Georgi, M.; Gass, A.; Brix, G.

    1996-01-01

    Functional magnetic resonance imaging was used in conjunction with a letter detection task for the study of working memory in 16 normal subjects. Because of movement artifacts, data from only 9 subjects were analysed. In the activation taks, subjects responded by pressing a button whenever any presented letter was the same as the second last in the sequence. In the control condition, the subjects had to respond to a fixed letter. Hence, the activation condition and the control condition differend only subjectively, i.e., regarding the task demand, whereas the stimuli and the type and frequency of response were identical. The activation condition produced significant activation in the dorsolateral prefrontal cortex (Brodmann's areas 10, 46, and 9). In contrast to experimental tasks previsouly used rather extensively to study the prefrontal cortex, the present paradigm is characterized by its simplicity, interpretability, and its ties to known neurophysiology of the frontal cortex. (orig.) [de

  19. Functional magnetic resonance imaging of autism spectrum disorders

    Science.gov (United States)

    Dichter, Gabriel S.

    2012-01-01

    This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDs), Although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the “social brain” during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments. PMID:23226956

  20. Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multifunctionalities

    DEFF Research Database (Denmark)

    Zhou, Tongchang; Jørgensen, Lars; Mattebjerg, Maria Ahlm

    2014-01-01

    A nicotine imprinted polymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid (MAA) as a functional monomer. The resulting molecularly imprinted polymers were monodispersed beads with an average diameter of 1.55 mm. The molecular...... selectivity of the imprinted polymer beads was evaluated by studying the uptake of nicotine and its structural analogs by the polymer beads. Equilibrium binding results indicate that the amount of nicotine bound to the imprinted polymer beads is significantly higher than that bound to the nonimprinted polymer...

  1. First order magneto-structural transition in functional magnetic ...

    Indian Academy of Sciences (India)

    Magnetic materials are used widely in electric motors, loudspeakers, transformers, automobiles, magnetic reso- nance devices, magnetic memory storage and a diverse ..... firm the applicability of disorder-influenced FOPT in. CMR manganites and further emphasize that phase- coexistence can occur in any system in the ...

  2. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    Science.gov (United States)

    Tsai, H. Y.; Chang, C. Y.; Li, Y. C.; Chu, W. C.; Viswanathan, K.; Bor Fuh, C.

    2011-06-01

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic ( 80 nm) and fluorescent ( 180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  3. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. Y., E-mail: annetsai@csmu.edu.tw [Chung Shan Medical University, Department of Applied Chemistry (China); Chang, C. Y.; Li, Y. C.; Chu, W. C.; Viswanathan, K.; Bor Fuh, C., E-mail: cbfuh@ncnu.edu.tw [National Chi Nan University, Department of Applied Chemistry (China)

    2011-06-15

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic ({approx}80 nm) and fluorescent ({approx}180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  4. Functional magnetic resonance imaging of the human motor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Sasahira, Masahiro; Asakura, Tetsuhiko; Niiro, Masaki; Haruzono, Akihiro; Hirakawa, Wataru [Kagoshima Univ. (Japan). Faculty of Medicine; Matsumoto, Tetsuro; Fujimoto, Toshiro

    1995-05-01

    Functional magnetic resonance (MR) imaging of the brain was performed during motor task activation in five normal subjects and a patient with meningioma using conventional fast low-angle shot sequences and a 2.0 T system. A high intensity area in the motor cortex was observed in all normal subjects. Single-slice studies showed the right-sided finger task produced an increase of 1.9-23.5% (6.67{+-}4.36%) in the signal intensity of the left motor cortex, while the left-sided finger task increased the signal by 1.5-18.2% (6.09{+-}3.34%) in the right motor cortex. There was no significant difference between the sides. Multiple-slice studies also showed the activated motor cortex as a high intensity area. The maximum signal intensity increase in the activated motor area was 11.0% for the left motor cortex and 8.8% for the right motor cortex. There was no significant difference between the sides. Preoperative mapping of the patient with meningioma showed that the motor cortex was displaced posteriorly by the tumor. Functional MR imaging is possible with a standard MR imaging system and conventional gradient echo sequences. Useful clinical information can be obtained by preoperative mapping of the motor cortex. (author).

  5. Functional magnetic resonance imaging (FMRI) and expert testimony.

    Science.gov (United States)

    Kulich, Ronald; Maciewicz, Raymond; Scrivani, Steven J

    2009-03-01

    Medical experts frequently use imaging studies to illustrate points in their court testimony. This article reviews how these studies impact the credibility of expert testimony with judges and juries. The apparent "objective" evidence provided by such imaging studies can lend strong credence to a judge's or jury's appraisal of medical expert's testimony. However, as the court usually has no specialized scientific expertise, the use of complex images as part of courtroom testimony also has the potential to mislead or at least inappropriately bias the weight given to expert evidence. Recent advances in brain imaging may profoundly impact forensic expert testimony. Functional magnetic resonance imaging and other physiologic imaging techniques currently allow visualization of the activation pattern of brain regions associated with a wide variety of cognitive and behavioral tasks, and more recently, pain. While functional imaging technology has a valuable role in brain research and clinical investigation, it is important to emphasize that the use of imaging studies in forensic matters requires a careful scientific foundation and a rigorous legal assessment.

  6. A hitchhiker’s guide to functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Jose Soares

    2016-11-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain function. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community.

  7. Microfluidic magnetic separator using an array of soft magnetic elements

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete...... capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s....

  8. Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task.

    Directory of Open Access Journals (Sweden)

    Christine Esslinger

    Full Text Available INTRODUCTION: Metacognition, i.e. critically reflecting on and monitoring one's own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a "Jumping to Conclusions" (JTC bias in schizophrenia patients. METHODS: We used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the "beads task", which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making. RESULTS: Analysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula. CONCLUSIONS: Our data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link.

  9. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

    Directory of Open Access Journals (Sweden)

    Chiao-Fang Hung

    2017-02-01

    Full Text Available In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss, the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g and z-axis vibration (sine-wave, 142 Hz, 3.8 g, the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  10. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  11. Assessing motor function in young children with transcranial magnetic stimulation.

    Science.gov (United States)

    Narayana, Shalini; Rezaie, Roozbeh; McAfee, Samuel S; Choudhri, Asim F; Babajani-Feremi, Abbas; Fulton, Stephen; Boop, Frederick A; Wheless, James W; Papanicolaou, Andrew C

    2015-01-01

    Accurate noninvasive assessment of motor function using functional MRI (fMRI) and magnetoencephalography (MEG) is a challenge in patients who are very young or who are developmentally delayed. In such cases, passive mapping of the sensorimotor cortex is performed under sedation. We examined the feasibility of using transcranial magnetic stimulation (TMS) as a motor mapping tool in awake children younger than 3 years of age. Six children underwent motor mapping with TMS while awake as well as passive sensorimotor mapping under conscious sedation with MEG during tactile stimulation (n = 5) and fMRI during passive hand movements (n = 4). Stimulation of the motor cortex via TMS successfully elicited evoked responses in contralateral hand muscles in 5 patients. The location of primary motor cortex in the precentral gyrus identified by TMS corresponded with the postcentral location of the primary sensory cortex identified by MEG in 2 patients and to the sensorimotor cortex identified by fMRI in 3 children. In this cohort, we demonstrate that TMS can illuminate abnormalities in motor physiology including motor reorganization. We also demonstrate the feasibility of using TMS-derived contralateral silent periods to approximate the location of motor cortex in the absence of an evoked response. When compared to chronological age, performance functioning level appears to be better in predicting successful mapping outcome with TMS. Our findings indicate that awake TMS is a safe alternative to MEG and fMRI performed under sedation to localize the motor cortex and provides additional insight into the underlying pathophysiology and motor plasticity in toddlers. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads.

    Science.gov (United States)

    Zhu, Yinglian; Wang, Dongfeng

    2016-12-01

    Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×10 6 cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chronic antiepileptic drug use and functional network efficiency: A functional magnetic resonance imaging study.

    Science.gov (United States)

    van Veenendaal, Tamar M; IJff, Dominique M; Aldenkamp, Albert P; Lazeron, Richard H C; Hofman, Paul A M; de Louw, Anton J A; Backes, Walter H; Jansen, Jacobus F A

    2017-06-28

    To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug (AED) treatment. The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of patients with epilepsy with a different risk profile for developing cognitive side effects were included: A "low risk" category (lamotrigine or levetiracetam, n = 16), an "intermediate risk" category (carbamazepine, oxcarbazepine, phenytoin, or valproate, n = 34) and a "high risk" category (topiramate, n = 5). Brain connectivity was assessed using resting state functional magnetic resonance imaging and graph theoretical network analysis. The Computerized Visual Searching Task was used to measure central information processing speed, a common cognitive side effect of AED treatment. Central information processing speed was lower in patients taking AEDs from the intermediate and high risk categories, compared with patients from the low risk category. The effect of risk category on global efficiency was significant ( P effect on the clustering coefficient (ANCOVA, P > 0.2). Also no significant associations between information processing speed and global efficiency or the clustering coefficient (linear regression analysis, P > 0.15) were observed. Only the four patients taking topiramate show aberrant network measures, suggesting that alterations in functional brain network organization may be only subtle and measureable in patients with more severe cognitive side effects.

  14. [Magnetic micro-/nano-materials: functionalization and their applications in pretreatment for food samples].

    Science.gov (United States)

    Gao, Qiang; Feng, Yuqi

    2014-10-01

    Magnetic solid phase extraction technique, based on functional magnetic materials, is currently a hot topic in the separation and analysis of complex samples. This paper reviews the reported methods for the functionalization of magnetic micro-/nano-materials, such as sur- face grafting organic groups, coating carbon or inorganic oxide, grafting or coating polymer, being loaded to the surface or pores of supports, being introduced into the skeleton of sup- ports, and physically co-mixing methods. Moreover, we briefly introduce the applications of the functional magnetic micro-/nano-materials in pretreatment for food samples.

  15. TETHERED-BEAD, IMMUNE SANDWICH ASSAY

    Science.gov (United States)

    Silver, Jonathan; Li, Zhenyu; Neuman, Keir

    2014-01-01

    We describe a proof-of-principal, immune sandwich assay in which immune complexes link micron-size beads via DNA tethers to a sensor surface. The number of tethered beads, counted using low-magnification microscopy, provides a measure of the concentration of analyte. The prototype assay was sensitive to pM concentration of analyte. In theory, the assay could be sensitive to sub-fM analyte because beads attached via single-immune complexes and DNA strands form tethers, and tether formation in the absence of analyte is extremely rare. The limiting step at present is binding of streptavidin at the end of DNA to biotin on capture beads. Potential advantages of this type of sensor are discussed. PMID:25064819

  16. BeadArray expression analysis using bioconductor.

    Directory of Open Access Journals (Sweden)

    Matthew E Ritchie

    2011-12-01

    Full Text Available Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio, there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered.

  17. [Functional magnetic resonance imaging and dynamic neuroanatomy of addictive disorders].

    Science.gov (United States)

    Mel'nikov, M E; Shtark, M B

    2014-01-01

    Research into the cerebral patterns that govern the formation and development of addictive behavior is one of the most interesting goals of neurophysiology. Authors of contemporary papers on the matter define a number of symptoms that are all part of substance or non-substance dependence, each one of them leading to abnormalities in the corresponding system of the brain. During the last twenty years the functional magnetic resonance imaging (fMR1) technology has been instrumental in locating such abnormalities, identifying specific parts of the brain that, when dysfunctional, may enhance addiction and cause its positive or negative symptoms. This article reviews fMRI studies aimed toward locating areas in the brain that are responsible for cognitive, emotional, and motivational dysfunction. Cerebral correlatives of impulsiveness, behavior control, and drug cravings are reviewed separately. The article also contains an overview of possibilities to further investigate the Selves of those dependent on substances, identify previously unknown diagnostic markers of substance dependence, and evaluate the effectiveness of therapy. The research under review in this article provides data that points to a special role of the nucleus caudatus as well as the nucleus accumbens, the thalamus, the insular cortex (IC), the anterior cingulate, prefrontal and orbitofrontal areas in psychological disorders that are part of substance dependence. General findings of the article are in accordance with contemporary models of addictive pattern.

  18. Multi-function magnetic jack control drive mechanism

    International Nuclear Information System (INIS)

    Bollinger, L.R.; Crawford, D.C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism is described for controlling a nuclear reactor comprising: an elongate pressure housing; closely-spaced drive rods located in the pressure housing, the drive rod being connected to a reactor rod which is insertable in a reactor core; electrochemical stationary latch means which are selectively actuatable for holding a respective one of the drive rods stationary with respect to the pressure housing, the plurality of stationary latch means including at least one coil located about the pressure housing; longitudinally spaced electromechanical movable latch means, individually associated with one of the drive rods and each including a base for the drive rod associated therewith, for, when actuated, holding the associated drive rod stationary with respect to the base associated therewith, the movable latch means including an associated coil located about the pressure housing; and longitudinally spaced electromechanical lift means, individually associated with the base, for, when actuated, moving an associated base longitudinally along the pressure housing from a first position to a second position to thereby enable movement of one or more of the other drive rods longitudinally independently of the other drive rods in response to sequential and repeated operation of the electromechanical means, the lift means including an associated coil located about the pressure housing

  19. Venous refocusing for volume estimation: VERVE functional magnetic resonance imaging.

    Science.gov (United States)

    Stefanovic, Bojana; Pike, G Bruce

    2005-02-01

    A novel, noninvasive magnetic resonance imaging-based method for measuring changes in venous cerebral blood volume (CBV(v)) is presented. Venous refocusing for volume estimation (VERVE) exploits the dependency of the spin-spin relaxation rate of deoxygenated blood on the refocusing interval. Interleaved CPMG EPI acquisitions following a train of either tightly or sparsely spaced hard refocusing pulses (every 3.7 or 30 msec, respectively) at matched echo time were used to isolate the blood signal while minimizing the intravascular blood oxygenation level dependent (BOLD) signal contribution. The technique was employed to determine the steady-state increase in the CBV(v) in the visual cortex (VC) in seven healthy adult volunteers during flickering checkerboard photic stimulation. A functional activation model and a set of previously collected in vitro human whole blood relaxometry data were used to evaluate the intravascular BOLD effect on the VERVE signal. The average VC venous blood volume change was estimated to be 16 +/- 2%. This method has the potential to provide efficient and continuous monitoring of venous cerebral blood volume, thereby enabling further exploration of the mechanism underlying BOLD signal changes upon physiologic, pathophysiologic, and pharmacologic perturbations.

  20. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.

    Science.gov (United States)

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.

  1. Functional magnetic resonance imaging of internet addiction in young adults.

    Science.gov (United States)

    Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo

    2016-02-28

    To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical

  2. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    Science.gov (United States)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  3. Bilingual brain organization: a functional magnetic resonance adaptation study.

    Science.gov (United States)

    Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Milner, Brenda; Crane, Joelle; Belin, Pascal; Bouffard, Marc

    2006-05-15

    We used functional magnetic resonance adaptation (fMRA) to examine whether intra-voxel functional specificity may be present for first (L1)- and second (L2)-language processing. We examined within- and across-language adaptation for spoken words in English-French bilinguals who had acquired their L2 after the age of 4 years. Subjects listened to words presented binaurally through earphones. In two control conditions (one for each language), six identical words were presented to obtain maximal adaptation. The remaining six conditions each consisted of five words that were identical followed by a sixth word that differed. There were thus a total of eight experimental conditions: no-change (sixth word identical to first five); a change in meaning (different final word in L1); a change in language (final item translated into L2); a change in meaning and language (different final word in L2). The same four conditions were presented in L2. The study also included a silent baseline. At the neural level, within- and across-language word changes resulted in release from adaptation. This was true for separate analyses of L1 and L2. We saw no evidence for greater recovery from adaptation in across-language relative to within-language conditions. While many brain regions were common to L1 and L2, we did observe differences in adaptation for forward translation (L1 to L2) as compared to backward translation (L2 to L1). The results support the idea that, at the lexical level, the neural substrates for L1 and L2 in bilinguals are shared, but with some populations of neurons within these shared regions showing language-specific responses.

  4. Frictionless Demonstration Using Fine Plastic Beads For Teaching Mechanics

    International Nuclear Information System (INIS)

    Ishii, K.; Kagawa, K.; Khumaeni, A.; Kurniawan, K. H.

    2010-01-01

    New equipment for demonstrating laws of mechanics have successfully been constructed utilizing fine sphere plastic beads (0.3 mm in diameter). Fine plastic beads function as ball bearings to reduce the friction between the object and the plate surface. By this method, a quantitative measurement of energy conservation law has successfully been carried out with a small error of less 3%. The strong advantage of this frictionless method is that we can always use the same objects like Petri dishes for demonstrating many kinds of mechanics laws, such as the first, second, and the third laws of motion, momentum conservation law, and energy conservation law. This demonstration method surely has a beneficial effect for students, who can then understand mechanics laws systematically with a unified concept and no confusion.

  5. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads

    Directory of Open Access Journals (Sweden)

    Igor Rocha

    2018-03-01

    Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  6. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    Science.gov (United States)

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  7. Theory of multichannel magnetic stimulation: toward functional neuromuscular rehabilitation.

    Science.gov (United States)

    Ruohonen, J; Ravazzani, P; Grandori, F; Ilmoniemi, R J

    1999-06-01

    Human excitable cells can be stimulated noninvasively with externally applied time-varying electromagnetic fields. The stimulation can be achieved either by directly driving current into the tissue (electrical stimulation) or by means of electro-magnetic induction (magnetic stimulation). While the electrical stimulation of the peripheral neuromuscular system has many beneficial applications, peripheral magnetic stimulation has so far only a few. This paper analyzes theoretically the use of multiple magnetic stimulation coils to better control the excitation and also to eventually mimic electrical stimulation. Multiple coils allow electronic spatial adjustment of the shape and location of the stimulus without moving the coils. The new properties may enable unforeseen uses for peripheral magnetic stimulation, e.g., in rehabilitation of patients with neuromuscular impairment.

  8. Functional magnetic resonance maps obtained by personal computer

    International Nuclear Information System (INIS)

    Gomez, F. j.; Manjon, J. V.; Robles, M.; Marti-Bonmati, L.; Dosda, R.; Molla, E.

    2001-01-01

    Functional magnetic resonance (fMR) is of special relevance in the analysis of certain types of brain activation. The present report describes the development of a simple software program for use with personal computers (PCs) that analyzes these images and provides functional activation maps. Activation maps are based on the temporal differences in oxyhemoglobin in tomographic images. To detect these differences, intensities registered repeatedly during brain control and activation are compared. The experiments were performed with a 1.5-Tesla MR unit. To verify the reliability of the program fMR studies were carried out in 4 healthy individuals (12 contiguous slices, 80 images per slice every 3.1 seconds for a total of 960 images). All the images were transferred to a PC and were processed pixel by pixel within each sequence to obtain an intensity/time curve. The statistical study of the results (Student's test and cross correlation analysis) made it possible to establish the activation of each pixel. The images were prepared using spatial filtering, temporal filtering, baseline correction, normalization and segmentation of the parenchyma. The postprocessing of the results involved the elimination of single pixels, superposition of an anatomical image of greater spatial resolution and anti-aliasing. The application (Xfun 1.0, Valencia, Spain) was developed in Microsoft Visual C++5.0 Developer Studio for Windows NT Workstation. As a representative example, the program took 8.2 seconds to calculate and present the results of the entire study (12 functional maps). In the motor and visual activation experiments, the activation corresponding to regions proximal to the central sulcus of the hemisphere contralateral to the hand that moved and in the occipital cortex were observed. While programs that calculate activation maps are available, the development of software for PCs running Microsoft Windows ensures several key features for its use on a daily basis: it is easy

  9. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas.

    Science.gov (United States)

    Mortini, Pietro; Gagliardi, Filippo; Bailo, Michele; Spina, Alfio; Parlangeli, Andrea; Falini, Andrea; Losa, Marco

    2016-01-01

    Quality of life of craniopharyngioma patients can be severely impaired by derangement of hypothalamic function. A classification, taking into account preoperative hypothalamic damage, evaluated by magnetic resonance imaging (MRI), and correlating it with postoperative weight change is still missing in the literature. The aim of our study is to identify objective radiological criteria as preoperative prognostic factors for hypothalamic damage. Pre- and post-operative MRI and clinical data of 47 patients, treated at our Institution for craniopharyngioma, were retrospectively analyzed, based on radiological variables, identified as prognostic factor for hypothalamic involvement. Main factors associated with postoperative obesity were hypothalamic hyperintensity in T2-weighted/FLAIR imaging (p < 0.033), mammillary body involvement according to Müller classification (p < 0.020), unidentifiable pituitary stalk (p < 0.001), dislocated chiasm (p < 0.038), either not visible infundibular recess (p < 0.019) or unrecognizable supra-optic recess (p < 0.004), and retrochiasmatic tumor extension (p < 0.019). Accordingly, postoperative hypothalamic syndrome was associated with peritumoral edema in T2-weighted/FLAIR images (p < 0.003), unidentifiable hypothalamus (p < 0.024), hypothalamic compression (p < 0.006), fornix displacement (p < 0.032), and unrecognizable supra-optic recess (p < 0.031). Ultimately, variables identified as predictive factors of postoperative hypothalamic syndrome were the degree of hypothalamic involvement according to the classification described by Sainte-Rose and Puget (p < 0.002; grade 0 vs 2 p < 0.001), Van Gompel (p < 0.002; grade 0 vs 1, p < 0.027; and grade 0 vs 2, p < 0.002), and Muller (p < 0.006; grade 0 vs 1, p < 0.05; and grade 0 vs 2, p < 0.004). The identification of these predictive factors will help to define and score the preoperative hypothalamic involvement in craniopharyngioma patients.

  10. A Mössbauer study of the chemical stability of iron oxide nanoparticles in PMMA and PVB beads

    DEFF Research Database (Denmark)

    Chen, Wei; Mørup, Steen; Hansen, Mikkel Fougt

    2008-01-01

    We have prepared magnetic beads consisting of iron oxide nanoparticles in a polymethyl methacrylate (PMMA) and a polyvinyl butyral (PVB) matrix. High-field Mossbauer studies show that the particles have an almost perfect collinear spin structure and magnetization measurements show that they are s...

  11. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement

    Science.gov (United States)

    Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...

  12. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  13. Longitudinal magnetization dynamics in Heisenberg magnets: Spin Green functions approach (Review Article)

    Science.gov (United States)

    Krivoruchko, V. N.

    2017-11-01

    In spite of the fact that dynamical properties of magnets have been extensively studied over the past years, the longitudinal magnetization dynamics is still much less understood than transverse one even in the equilibrium state of a system. In this paper, we give a review of existing, based on quantum-mechanical approach, theoretical descriptions of the longitudinal magnetization dynamics for ferro-, ferri- and antiferromagnetic dielectrics. The aim is to reveal specific features of this type of magnetization vibrations under description a system within the framework of one of the basic model theory of magnetism—the Heisenberg model. Related experimental investigations as well as open questions are also briefly discussed. We hope that understanding of the longitudinal magnetization dynamics distinctive features in the equilibrium state have to be a reference point for a theory uncovering the physical mechanisms that govern ultrafast spin dynamics after femtosecond laser pulse demagnetization when a system is far beyond an equilibrium state.

  14. Engineering magnetism at functional oxides interfaces: manganites and beyond.

    Science.gov (United States)

    Yi, Di; Lu, Nianpeng; Chen, Xuegang; Shen, Shengchun; Yu, Pu

    2017-11-08

    The family of transition metal oxides (TMOs) is a large class of magnetic materials that has been intensively studied due to the rich physics involved as well as the promising potential applications in next generation electronic devices. In TMOs, the spin, charge, orbital and lattice are strongly coupled, and significant advances have been achieved to engineer the magnetism by different routes that manipulate these degrees of freedom. The family of manganites is a model system of strongly correlated magnetic TMOs. In this review, using manganites thin films and the heterostructures in conjunction with other TMOs as model systems, we review the recent progress of engineering magnetism in TMOs. We first discuss the role of the lattice that includes the epitaxial strain and the interface structural coupling. Then we look into the role of charge, focusing on the interface charge modulation. Having demonstrated the static effects, we continue to review the research on dynamical control of magnetism by electric field. Next, we review recent advances in heterostructures comprised of high T c cuprate superconductors and manganites. Following that, we discuss the emergent magnetic phenomena at interfaces between 3d TMOs and 5d TMOs with strong spin-orbit coupling. Finally, we provide our outlook for prospective future directions.

  15. Bacterial Nanocellulose Magnetically Functionalized for Neuro-Endovascular Treatment.

    Science.gov (United States)

    Echeverry-Rendon, Mónica; Reece, Lisa M; Pastrana, Fernando; Arias, Sandra L; Shetty, Akshath R; Pavón, Juan Jose; Allain, Jean Paul

    2017-06-01

    Current treatments for brain aneurysms are invasive, traumatic, and not suitable in most patients with increased risks. A new alternative method is using scaffold stents to create a local and focal attraction force of cells for an in situ reconstruction of the tunica media. For this purpose, a nanostructured bioactive coating is designed to render an asymmetric region of the stent scaffold magnetic and biomimetic, which utilizes bacterial nanocellulose (BNC) as a platform for both magnetic and cell attraction as well as proliferation. The magnetization of the BNC is realized through the reaction of Fe III and II, precipitating superparamagnetic iron oxide nanoparticles (SPION). Subsequently, magnetic bacterial nanocellulose (MBNC) is coated with polyethylene glycol to improve its biocompatibility. Cytotoxicity and biocompatibility are evaluated using porcine aortic smooth muscle cells. Preliminary cellular migration assays demonstrate the behavior between MBNC and cells labeled with SPION. In this work, (1) synthesis of BNC impregnated with magnetic nanoparticles is successfully demonstrated; (2) a viable, resilient, and biocompatible hydrogel membrane is tested for neuroendovascular application using a stent scaffold; (3) cell viability and minimal cytotoxicity is achieved; (4) cell migration tests and examination of cellular magnetic attraction confirm the viability of MBNC as a multifunctional coating. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magnetostatic Green's functions for the description of spin waves in finite rectangular magnetic dots and stripes

    International Nuclear Information System (INIS)

    Guslienko, Konstantin Y.; Slavin, Andrei N.

    2011-01-01

    We present derivation of the magnetostatic Green's functions used in calculations of spin-wave spectra of finite-size non-ellipsoidal (rectangular) magnetic elements. The elements (dots) are assumed to be single domain particles having uniform static magnetization. We consider the case of flat dots, when the in-plane dot size is much larger than the dot height (film thickness), and assume the uniform distribution of the variable magnetization along the dot height. The limiting cases of magnetic waveguides with rectangular cross-section and thin magnetic stripes are also considered. The developed method of tensorial Green's functions is used to solve the Maxwell equations in the magnetostatic limit, and to represent the Landau-Lifshitz equation of motion for the magnetization of a magnetic element in a closed integro-differential form. - Highlights: → The Green's functions method is used to solve the magnetostatic equations. → Explicit Green's functions are written for thin magnetic dots and stripes. → Spin-wave frequencies for finite rectangular magnetic elements are calculated.

  17. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    Science.gov (United States)

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  18. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    International Nuclear Information System (INIS)

    Qiu, R.K.; Guo, F.F.; Zhang, Z.D.

    2016-01-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  19. Influence of External Static Magnetic Fields on Properties of Metallic Functional Materials

    Directory of Open Access Journals (Sweden)

    Xiaowei Zuo

    2017-12-01

    Full Text Available Influence of external static magnetic fields on solidification, solid phase transformation of metallic materials have been reviewed in terms of Lorentz force, convection, magnetization, orientation, diffusion, and so on. However, the influence of external static magnetic fields on properties of metallic functional materials is rarely reviewed. In this paper, the effect of static magnetic fields subjected in solidification and/or annealing on the properties of Fe–Ga magnetostrictive material, high strength high conductivity Cu-based material (Cu–Fe and Cu–Ag alloys, and Fe–Sn magnetic material were summarized. Both the positive and negative impacts from magnetic fields were found. Exploring to maximize the positive influence of magnetic fields is still a very meaningful and scientific issue in future.

  20. Aerogel Beads as Cryogenic Thermal Insulation System

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  1. Construction and characterisation of a modular microfluidic system: coupling magnetic capture and electrochemical detection

    DEFF Research Database (Denmark)

    Godino, N.; Snakenborg, Detlef; Kutter, Jörg Peter

    2010-01-01

    , and a polycarbonate base where permanent magnets are hosted; these parts are designed to fit so that wire bonding and encapsulation are avoided. This system can perform bioassays over the surface of magnetic beads and uses only 50 mu L of bead suspension per assay. Following detection, captured beads are released...

  2. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daigeun; Jo, Ara [Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo [Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Lee, Taek Seung, E-mail: tslee@cnu.ac.kr [Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-03-15

    Highlights: • Organic/inorganic hybridized alginate beads were newly synthesized via sol-gel chemistry. • Interaction between the azopyridine and metal ion is the main cause of Co ion detection. • The beads showed improved stability and least leakage of azopyridine during use. • Removal of Co ion was assessed by the ion-exchange of carboxylate groups in alginate. • The beads with dual functions of detection and removal of Co ion were successfully accomplished. - Abstract: We demonstrate a simple method for the visual determination and removal of Co ions using a bead-shaped, capturing probe based on hybridized sodium alginate. For Co ions, the designed protocol consisted of three main constituents: an azopyridine-based Co ion-probe for visual detection; sodium alginate as an adsorbent for the Co ion and a bead construct for removal and structure; silica as a linker for the probe and the alginate, leading to a robust structure. When the composite beads were exposed to Co ions, the yellow color of the beads turned to intensive violet and the color intensity was associated with the Co ion concentration. The color variation was quantified using red-green-blue (RGB) color values that were obtained with a scanner and evaluated with Photoshop. The technique achieved both visual recognition with obvious color change of the beads and efficient removal of the radioactive {sup 60}Co ion. The sensing and removal of any radioactive isotope could be achieved with an appropriate sensing probe, to provide a simple and universal platform for remediation.

  3. Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads

    International Nuclear Information System (INIS)

    Kim, Daigeun; Jo, Ara; Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo; Lee, Taek Seung

    2017-01-01

    Highlights: • Organic/inorganic hybridized alginate beads were newly synthesized via sol-gel chemistry. • Interaction between the azopyridine and metal ion is the main cause of Co ion detection. • The beads showed improved stability and least leakage of azopyridine during use. • Removal of Co ion was assessed by the ion-exchange of carboxylate groups in alginate. • The beads with dual functions of detection and removal of Co ion were successfully accomplished. - Abstract: We demonstrate a simple method for the visual determination and removal of Co ions using a bead-shaped, capturing probe based on hybridized sodium alginate. For Co ions, the designed protocol consisted of three main constituents: an azopyridine-based Co ion-probe for visual detection; sodium alginate as an adsorbent for the Co ion and a bead construct for removal and structure; silica as a linker for the probe and the alginate, leading to a robust structure. When the composite beads were exposed to Co ions, the yellow color of the beads turned to intensive violet and the color intensity was associated with the Co ion concentration. The color variation was quantified using red-green-blue (RGB) color values that were obtained with a scanner and evaluated with Photoshop. The technique achieved both visual recognition with obvious color change of the beads and efficient removal of the radioactive 60 Co ion. The sensing and removal of any radioactive isotope could be achieved with an appropriate sensing probe, to provide a simple and universal platform for remediation.

  4. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Science.gov (United States)

    Pradhan, S.; Raj, P.; Prasad, U.; Ghate, M.; Khristi, Y.; Panchal, A.; Bhavsar, D.; Banudha, M.; Kedia, S.; Sharma, A. N.; Kanabar, D.; Parghi, B.

    2017-07-01

    A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions, all magnets including

  5. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Directory of Open Access Journals (Sweden)

    Pradhan S.

    2017-01-01

    Full Text Available A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions

  6. Superconducting toroidal combined-function magnet for a compact ion beam cancer therapy gantry

    International Nuclear Information System (INIS)

    Robin, D.S.; Arbelaez, D.; Caspi, S.; Sun, C.; Sessler, A.; Wan, W.; Yoon, M.

    2011-01-01

    A superconducting, combined-function, 5 T, 90°, toroidal magnet with a large bore is described in this paper. This magnet is designed to be the last and most difficult part of a compact superconducting magnet-based carbon gantry optics for ion beam cancer therapy. The relatively small size of this toroidal magnet allows for a gantry the size of which is smaller or at least comparable to that of a proton gantry. The gantry design places the toroidal magnet between the scanning magnets and the patient, that is the scanning magnets are placed midway through the gantry. By optimizing the coil winding configuration of this magnet, near point-to-parallel optics is achieved between the scanning magnets and the patient; while at the same time there is only a small distortion of the beam-shape when scanning. We show that the origin of the beam-shape distortion is the strong sextupole components, whose effects are greatly pronounced when the beam is widely steered in the magnet. A method to correct such an undesirable effect is suggested and demonstrated by a numerical particle tracking through the calculated three-dimensional magnetic field.

  7. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  8. Density functional theory study of structure, electronic and magnetic ...

    Indian Academy of Sciences (India)

    ABHIJIT DUTTA

    2018-01-30

    Jan 30, 2018 ... Abstract. Rhodium clusters are very important finite size materials because of their unique electronic, magnetic and catalytic properties. Tuning the physical and chemical properties of rhodium clusters by incorporating different metal and non-metal atoms have found a great research interest in recent years.

  9. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    Science.gov (United States)

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  10. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    Science.gov (United States)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  11. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  12. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study.

    NARCIS (Netherlands)

    Takashima, A.; Petersson, K.M.; Rutters, F.; Tendolkar, I.; Jensen, O.; Zwarts, M.J.; McNaughton, B.L.; Fernandez, G.S.E.

    2006-01-01

    Retrieval of recently acquired declarative memories depends on the hippocampus, but with time, retrieval is increasingly sustainable by neocortical representations alone. This process has been conceptualized as system-level consolidation. Using functional magnetic resonance imaging, we assessed over

  13. Time-Evolution Contrast of Target MRI Using High-Stability Antibody Functionalized Magnetic Nanoparticles: An Animal Model

    Directory of Open Access Journals (Sweden)

    K. W. Huang

    2014-01-01

    Full Text Available In this work, high-quality antibody functionalized Fe3O4 magnetic nanoparticles are synthesized. Such physical characterizations as particle morphology, particle size, stability, and relaxivity of magnetic particles are investigated. The immunoreactivity of biofunctionalized magnetic nanoparticles is examined by utilizing immunomagnetic reduction. The results show that the mean diameter of antibody functionalized magnetic nanoparticles is around 50 nm, and the relaxivity of the magnetic particles is 145 (mM·s−1. In addition to characterizing the magnetic nanoparticles, the feasibility of using the antibody functionalized magnetic nanoparticles for the contrast medium of target magnetic resonance imaging is investigated. These antibody functionalized magnetic nanoparticles are injected into mice bearing with tumor. The tumor magnetic-resonance image becomes darker after the injection and then recovers 50 hours after the injection. The tumor magnetic-resonance image becomes the darkest at around 20 hours after the injection. Thus, the observing time window for the specific labeling of tumors with antibody functionalized magnetic nanoparticles was found to be 20 hours after injecting biofunctionalized magnetic nanoparticles into mice. The biopsy of tumor is stained after the injection to prove that the long-term darkness of tumor magnetic-resonance image is due to the specific anchoring of antibody functionalized magnetic nanoparticles at tumor.

  14. Beads from Inhumation Rite Burials of Gnezdovo Burial Mound

    Directory of Open Access Journals (Sweden)

    Dobrova Olga P.

    2017-12-01

    Full Text Available The beads from 33 inhumation burials at Gnezdovo burial mound are examined in the article. The beads (total 367 were crafted from stretched tube (258, stretched stick (3, winding (45, press molding (2 pcs., welding (2 pcs., and mosaic beads (9 pcs.. The burial mound contains virtually no broken beads, including the settlement's most common yellow glass beads. Besides glass beads, cornelian, crystal, amber and faience beads have been registered among the burial mound material, as well as beads crafted with metal. Apart from beads, grave inventories contained a series of pendants with a bead strung on a wire ring. The considered complexes contain five pendants of this type. Besides Gnezdovo, similar pendants have been discovered in Kiev, Timerev, Pskov and Vladimir barrows. A comparison between bead sets from Gnezdovo and Kiev burial mounds allows to conclude that the general composition and occurrence frequency of beads is identical for these burials. At the same time, beads crafted with rock crystal, cornelian and metal are more frequently discovered in Kiev inhumations.

  15. Direct oligonucleotide synthesis onto super-paramagnetic beads

    Science.gov (United States)

    Jensen, Michael A; Akhras, Michael S.; Fukushima, Marilyn; Pourmand, Nader; Davis, Ron W.

    2013-01-01

    Super-paramagnetic beads (SPMB)s used for a variety of molecular diagnostic assays are prepared by attaching pre-synthesized oligonucleotides to the surface via a cumbersome and low efficient method of carbodiimide-mediated amide bond formation. To mainstream the process, we describe a novel procedure of direct oligonucleotide synthesis onto the surface of SPMBs (e.g. MyOne Dynabeads). With the many challenges surrounding containment of paramagnetic beads (≤ 1 μm) during automated oligonucleotide synthesis, we show that by applying a magnetic force directly to the SPMBs we prevent their loss caused by high-pressure drain steps during synthesis. To date we have synthesized 40mers using a Spacer 9 phosphoramidite (triethylene glycol) coupled to the surface of hydroxylated SPMBs. HPLC analysis shows successful product generation with an average yield of 200 pmoles per sample. Furthermore, because of the versatility of this powerful research tool, we envision its use in any laboratory working with conventional synthesis automation, as employed for single columns and for multi-well titer plates. In addition to direct synthesis of oligodeoxynucleotides (DNA) onto SPMBs, this platform also has the potential for RNA and peptide nucleic acid synthesis. PMID:23942380

  16. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  17. Small-angle neutron scattering correlation functions of bulk magnetic materials.

    Science.gov (United States)

    Mettus, Denis; Michels, Andreas

    2015-10-01

    On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets ( e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣ M /dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣ M /dΩ ( e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength H p to the jump Δ M in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio H p /Δ M , the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel.

  18. High pressure cells for magnetic measurements - destruction and functional tests

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Machátová, Zuzana; Arnold, Zdeněk

    2004-01-01

    Roč. 75, č. 11 (2004), s. 5022-5025 ISSN 0034-6748 R&D Projects: GA ČR GA202/02/0739; GA AV ČR IAA1010315 Institutional research plan: CEZ:AV0Z1010914 Keywords : pressure cells * pressure transmitting media * CuBe * MP35N Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.226, year: 2004

  19. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Orendac, M., E-mail: martin.orendac@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Kolska, Z., E-mail: zdenka.kolska@seznam.cz [Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Cizmar, E., E-mail: erik.cizmar@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Dendisova, M., E-mail: vyskovsm@vscht.cz [Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, V., E-mail: vaclav.svorcik@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-12-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  20. Gel bead composition for metal adsorption

    Science.gov (United States)

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1990-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  1. Wood mimetic hydrogel beads for enzyme immobilization.

    Science.gov (United States)

    Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun

    2015-01-22

    Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...

  3. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance

    International Nuclear Information System (INIS)

    Fiechter, Michael; Gaemperli, Oliver; Kaufmann, Philipp A; Fuchs, Tobias A; Gebhard, Catherine; Stehli, Julia; Klaeser, Bernd; Stähli, Barbara E; Manka, Robert; Manes, Costantina; Tanner, Felix C

    2013-01-01

    The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20–29, 30–49, 50–69, and ≥70 years) and cardiac measurements were compared using Pearson’s rank correlation over the four different groups. With advanced age a slight but significant decrease in ESV (r=−0.41 for both ventricles, P<0.001) and EDV (r=−0.39 for left ventricle, r=−0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies

  4. Analysis of Bead Sizes for MR Capsules Labeled for Sprinkle

    OpenAIRE

    Nagavelli, Laxma R.; Lionberger, Robert A.; Sayeed, Vilayat A.; Yu, Lawrence; Allgire, James; Smith, Anjanette; Wokovich, Anna; Westenberger, Benjamin J.; Buhse, Lucinda

    2010-01-01

    The bead sizes used in approved modified release capsules labeled for sprinkling on food was investigated to generate bead size guidelines for generic products labeled for sprinkling. The conclusions from a survey of FDA databases were corroborated with experimental data obtained by measuring the bead sizes of several reference-listed drugs on the market labeled for administration by sprinkling on food. The experimental data show that majority of the marketed products were found to have bead ...

  5. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  6. Getting a Bead on It

    Science.gov (United States)

    Ferrucci, Beverly J.; McDougall, Jennifer; Carter, Jack

    2009-01-01

    One challenge that middle school teachers commonly face is finding insightful, hands-on applications when teaching basic mathematical concepts. One concept that is a foundation of middle school mathematics is the notion of "linear functions." Although a variety of models can be used for linear equations, such as temperature conversions,…

  7. Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults.

    Science.gov (United States)

    Chuang, Yi-Fang; Eldreth, Dana; Erickson, Kirk I; Varma, Vijay; Harris, Gregory; Fried, Linda P; Rebok, George W; Tanner, Elizabeth K; Carlson, Michelle C

    2014-06-01

    Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health Study, a nested study of the Baltimore Experience Corps Trial, underwent functional magnetic resonance imaging using the Flanker task. We found that participants with higher CV risk had greater task-related activation in the left inferior parietal region, and this increased activation was associated with poorer task performance. Our results provide insights into the neural systems underlying the relationship between CV risk and executive function. Increased activation of the inferior parietal region may offer a pathway through which CV risk increases risk for cognitive impairment. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. New Nanoparticles Dispersing Beads Mill with Ultra Small Beads and its Application

    International Nuclear Information System (INIS)

    Inkyo, M; Tahara, T; Imajyo, Y

    2011-01-01

    Two of the major problems related to nanoparticle dispersion with a conventional beads mill are re-agglomeration and damage to the crystalline structure of the particles. The Ultra Apex Mill was developed to solve these problems by enabling the use of ultra-small beads with a diameter of less than 0.1mm. The core of this breakthrough development is centrifugation technology which allows the use of beads as small as 0.015mm. When dispersing agglomerated nanoparticles the impulse of the small beads is very low which means there is little influence on the particles. The surface energy of the nanoparticles remains low so the properties are not likely to change. As a result, stable nanoparticle dispersions can be achieved without re-cohesion. The Ultra Apex Mill is superior to conventional beads mills that are limited to much larger bead sizes. The technology of the Ultra Apex Mill has pioneered practical applications for nanoparticles in various fields: composition materials for LCD screens, ink-jet printing, ceramic condensers and cosmetics.

  9. Compressive and Tensile Strength of Expanded Polystyrene Beads Concrete

    OpenAIRE

    Subhan, Tengku Fitriani L

    2005-01-01

    Penelitian ini betujuan untuk mempelajari property dari beton ringan yang mengandung expanded polystyrene beads, yaitu kuat tekan (compressive strength) dan kuat tarik (tensile strength). Property tersebut kemudian dibandingkan dengan beton normal (beton tanpa expanded polystyrene beads) sebagai campuran pengontrol. Hasil penelitian ini menunjukkan bahwa jumlah polystyrene beads yang dimasukkan sebagai campuran beton mempengaruhi property beton; yaitu dapat menurunkan kuat tekan beton. Tetapi...

  10. Assessment of the Problems of Manual Automobile Tyre Bead ...

    African Journals Online (AJOL)

    The tyre-rim bead bond must be broken to carry out repairs on a failed automobile tyre. The use of the locally fabricated manual bead breaking equipment as it is being practiced today by commercial tyre repair artisans in Nigeria is characterized by drudgery. This article reports a study of the local manual bead breaking ...

  11. A Controlled Drug-Delivery Experiment Using Alginate Beads

    Science.gov (United States)

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  12. Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging.

    Science.gov (United States)

    Boronat, Consuelo B; Buxbaum, Laurel J; Coslett, H Branch; Tang, Kathy; Saffran, Eleanor M; Kimberg, Daniel Y; Detre, John A

    2005-05-01

    A prominent account of conceptual knowledge proposes that information is distributed over visual, tactile, auditory, motor and verbal-declarative attribute domains to the degree to which these features were activated when the knowledge was acquired [D.A. Allport, Distributed memory, modular subsystems and dysphagia, In: S.K. Newman, R. Epstein (Eds.), Current perspectives in dysphagia, Churchill Livingstone, Edinburgh, 1985, pp. 32-60]. A corollary is that when drawing upon this knowledge (e.g., to answer questions), particular aspects of this distributed information is re-activated as a function of the requirements of the task at hand [L.J. Buxbaum, E.M. Saffran, Knowledge of object manipulation and object function: dissociations in apraxic and non-apraxic subjects. Brain and Language, 82 (2002) 179-199; L.J. Buxbaum, T. Veramonti, M.F. Schwartz, Function and manipulation tool knowledge in apraxia: knowing 'what for' but not 'how', Neurocase, 6 (2000) 83-97; W. Simmons, L. Barsalou, The similarity-in-topography principle: Reconciling theories of conceptual deficits, Cognitive Neuropsychology, 20 (2003) 451-486]. This account predicts that answering questions about object manipulation should activate brain regions previously identified as components of the distributed sensory-motor system involved in object use, whereas answering questions about object function (that is, the purpose that it serves) should activate regions identified as components of the systems supporting verbal-declarative features. These predictions were tested in a functional magnetic resonance imaging (fMRI) study in which 15 participants viewed picture or word pairs denoting manipulable objects and determined whether the objects are manipulated similarly (M condition) or serve the same function (F condition). Significantly greater and more extensive activations in the left inferior parietal lobe bordering the intraparietal sulcus were seen in the M condition with pictures and, to a lesser

  13. Structure, function, and use of the magnetic sense in animals (invited)

    Science.gov (United States)

    Walker, Michael M.; Diebel, Carol E.; Green, Colin R.

    2000-05-01

    The hypothesis that animals navigate magnetically is attractive because the earth's magnetic field provides consistent information about position and direction in all environments through which animals travel. However, the hypothesis has been difficult to test because (i) the structure and function of the sense could not readily be analyzed in the laboratory and (ii) the effects of experimental treatments on behavior in the laboratory and field could not be reliably predicted. Our research is focused on the structure and function of the sense in rainbow trout and on applying the understanding gained in the laboratory to studies of navigation by homing pigeons. We have found iron-rich crystals (most likely single-domain magnetite) in candidate magnetoreceptor cells located within a discrete layer of sensory tissue in the nose of rainbow trout. The candidate receptor cells are closely associated with a branch of the trigeminal nerve that responds to changes in intensity but not direction of magnetic fields. In parallel work, we have developed a model of magnetic position determination in which pigeons derive magnetic analogues of geographic latitude and longitude from (i) the total intensity and (ii) the direction of the intensity slope of the earth's magnetic field. Taken together with our other results, the model gives us confidence that a coherent understanding of the structure, function, and use of the magnetic sense in animals is now developing.

  14. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  15. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye.

    Science.gov (United States)

    Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas

    2018-02-01

    Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  17. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.

    Science.gov (United States)

    Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve

    2017-09-12

    We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.

  18. Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion

    International Nuclear Information System (INIS)

    Serenjeh, Fariba Nazari; Hashemi, Payman; Ghiasvand, Ali Reza; Naeimi, Hossein; Zakerzadeh, Elham

    2016-01-01

    The authors describe a method for magnetic solid phase extraction of uranyl ions from water samples. It is based on the use of spherical agarose-coated magnetic nanoparticles along with magnetic field agitation. The salen type Schiff base N,N’-bis(4-hydroxysalicylidene)-1,2-phenylenediamine was synthesized from resorcinol in two steps and characterized by infrared and nucleic magnetic resonance spectroscopies. The particles were then activated by an epichlorohydrin method and functionalized with the Schiff base which acts as a selective ligand for the extraction of UO 2 (II). Following preconcentration and elution with HCl, the ions were quantified by spectrophotometry using Arsenazo III as the indicator. The effects of pH value, ionic strength and amount of the adsorbent on the extraction of UO 2 (II) were optimized by a multivariate central composite design method. Six replicate analyses under optimized conditions resulted in a recovery of 96.6 % with a relative standard deviation of 3.4 % for UO 2 (II). The detection limit of the method (at a signal-to-noise ratio of 3σ) is 10 μg L -1 . The method was successfully applied to the determination of UO 2 (II) in spiked water samples. (author)

  19. Static magnetic field influence on rat tail nerve function.

    Science.gov (United States)

    Hong, C Z; Harmon, D; Yu, J

    1986-10-01

    Motor nerve conduction and excitability were measured on the tail nerve of anesthetized rats before and after the nerve was exposed perpendicularly to a static electromagnetic field of various intensities and durations. There was no significant change in either the distal latencies or the amplitudes of the compound muscle action potential (CMAP) measured from stimulating the tail nerve after it was exposed to the electromagnetic field with a density up to 1.2 Tesla (T) for a duration of 60 seconds. However, the nerve excitability expressed as changes of the amplitudes of the submaximally evoked CMAP increased significantly when the tail nerve was exposed to a magnetic field with a density higher than 0.5T for more than 30 seconds. The finding that an electromagnetic field increases motor nerve excitability suggests a possible mechanism of its therapeutic effects.

  20. Group Theory of Wannier Functions Providing the Basis for a Deeper Understanding of Magnetism and Superconductivity

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2015-05-01

    Full Text Available The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the paper considers usual, as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors (Ekkehard Krüger in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the optimally-localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly-correlated localized electrons makes clear predictions of whether or not the system can possess superconducting or magnetic eigenstates.

  1. SparseBeads data: benchmarking sparsity-regularized computed tomography

    Science.gov (United States)

    Jørgensen, Jakob S.; Coban, Sophia B.; Lionheart, William R. B.; McDonald, Samuel A.; Withers, Philip J.

    2017-12-01

    Sparsity regularization (SR) such as total variation (TV) minimization allows accurate image reconstruction in x-ray computed tomography (CT) from fewer projections than analytical methods. Exactly how few projections suffice and how this number may depend on the image remain poorly understood. Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT, however empirical results suggest a similar connection. The present work establishes for real CT data a connection between gradient sparsity and the sufficient number of projections for accurate TV-regularized reconstruction. A collection of 48 x-ray CT datasets called SparseBeads was designed for benchmarking SR reconstruction algorithms. Beadpacks comprising glass beads of five different sizes as well as mixtures were scanned in a micro-CT scanner to provide structured datasets with variable image sparsity levels, number of projections and noise levels to allow the systematic assessment of parameters affecting performance of SR reconstruction algorithms6. Using the SparseBeads data, TV-regularized reconstruction quality was assessed as a function of numbers of projections and gradient sparsity. The critical number of projections for satisfactory TV-regularized reconstruction increased almost linearly with the gradient sparsity. This establishes a quantitative guideline from which one may predict how few projections to acquire based on expected sample sparsity level as an aid in planning of dose- or time-critical experiments. The results are expected to hold for samples of similar characteristics, i.e. consisting of few, distinct phases with relatively simple structure. Such cases are plentiful in porous media, composite materials, foams, as well as non-destructive testing and metrology. For samples of other characteristics the proposed methodology may be used to investigate similar relations.

  2. Multichannel superconducting gap function in a quantizing magnetic field

    International Nuclear Information System (INIS)

    Kowalewski, L.; Nogala, M.M.; Thomas, M.; Wojciechowski, R.J.

    1995-01-01

    Temperature and field dependences of the gap functions in s-wave and p-wave superconductors are presented. For both cases of local attractive interactions the pairing within the nth Landau level is realized via n+1 channels. ((orig.))

  3. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    Science.gov (United States)

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  4. Magnetic edge states in MoS2 characterized using density-functional theory

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Hinnemann, B.; Nørskov, Jens Kehlet

    2009-01-01

    It is known that the edges of a two-dimensional slab of insulating MoS2 exhibit one-dimensional metallic edge states, the so-called "brim states." Here, we find from density-functional theory calculations that several edge structures, which are relevant for the hydrodesulfurization process......, are magnetic. The magnetism is an edge phenomenon associated with certain metallic edge states. Interestingly, we find that among the two low-index edges, only the S edge displays magnetism under hydrodesulfurization conditions. In addition, the implications of this on the catalytic activity are investigated...

  5. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks.

    Science.gov (United States)

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks.

  6. A magnetic biosensor system for detection of E. coli

    KAUST Repository

    Li, Fuquan

    2013-07-01

    This work describes a device for detecting E. coli bacteria by manipulating superparamagnetic beads to a sensing area and immobilizing them in a trapping well. The trapping well replaces the biochemical immobilization layer, which is commonly used in magnetic biosensor systems. A concept exploiting the volume difference between bare magnetic beads and magnetic bead-bioanalyte compounds is utilized to detect E. coli bacteria. Trapped beads are detected by the help of a tunnel magneto-resistive sensor. Frequency modulation is employed, in order to increase the signal-to-noise ratio, enabling the detection of individual superparamagnetic beads of 2.8 μm in diameter. Replacing the biochemical immobilization layer by the trapping well greatly simplifies the detection process. After applying the mixture of E. coli and magnetic beads to the biosensor system, bacteria detection is achieved in a single step, within a few minutes. © 2013 IEEE.

  7. Functional Magnetic Resonance Imaging in Patients with the Wet Form of Age-Related Macular Degeneration

    Science.gov (United States)

    Lešták, Jan; Tintěra, Jaroslav; Karel, Ivan; Svatá, Zuzana; Rozsíval, Pavel

    2013-01-01

    Abstract The study is designed to determine the relationship between the progress of the wet form of age-related macular degeneration and the activity of the visual cortex examined using functional magnetic resonance imaging. Ten patients with the wet form of age-related macular degeneration (9 female and 1 male) with a mean age of 74.7 years (58–85 years) at various stages of bilateral involvement of the disease were included. Patients did not suffer from any other ocular nor neurological disease. All the patients underwent functional magnetic resonance imaging examinations with stimulation of both eyes using a black-and-white checkerboard of size 25.8 × 16.2 degrees. The group was compared with a group of healthy subjects with an average age of 54.1 years (45–65 years). For statistical evaluation, the Mann-Whitney U test was used. Comparing the extent of visual cortex activations we found a statistically significant difference between both the groups (p = 0.0247). However, the dependence of functional magnetic resonance imaging activity on visual acuity was not statistically significant (p = 0.223). We conclude that in patients with the wet form of age-related macular degeneration, lower functional magnetic resonance imaging activity of the visual cortex was found compared with the control group of healthy subjects. Dependence of functional magnetic resonance imaging activity on visual acuity was not statistically significant. PMID:28167987

  8. Biosorption of americium by alginate beads

    International Nuclear Information System (INIS)

    Borba, Tania Regina de; Marumo, Julio Takehiro; Goes, Marcos Maciel de; Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi

    2009-01-01

    The use of biotechnology to remove heavy metals from wastes plays great potential in treatment of radioactive wastes and therefore the aim of this study was to evaluate the biosorption of americium by alginate beads. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. The calcium alginate beads as biosorbent were prepared and analyzed for americium uptaking. The experiments were performed in different solution activity concentrations, pH and exposure time. The results suggest that biosorption process is more efficient at pH 4 and for 75, 150, 300 Bq/mL and 120 minutes were necessary to remove almost 100% of the americium-241 from the solution. (author)

  9. A novel adjuvant: polymerised serum albumin beads

    International Nuclear Information System (INIS)

    Dewar, J.B.

    1985-09-01

    There is an ongoing need to develop new vaccine formulations. To complement accumulating knowledge on the structure of antigens and their interaction with cells of the immune system, new vaccine vehicles to optimise the immunogenic potential of the antigen must be developed. Associated with this adjuvanticity, should be minimal adverse side effects. This study was initiated to develop a vaccine vehicle, consisting of covalently cross-linked serum albumin beads, themselves non-immunogenic, containing virus. Following inoculation, in vivo proteolysis of the beads would allow a gradual release of antigen for sustained immunostimulation. This system might have application in virus vaccine programmes to improve low immunogenic vaccines, to allow optimal delivery of the recently derived synthetic virus subunit peptides as well as for inactivated virus vaccine preparations. 35 S-methionine labelled Blue Tongue Virus was used in this study

  10. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads

    Czech Academy of Sciences Publication Activity Database

    Hassan, A F.; Abdel-Mohsen, A. M.; Elhadidy, Hassan

    2014-01-01

    Roč. 68, JUL (2014), s. 125-130 ISSN 0141-8130 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : Apricot stone * Alginate beads * Composite * Arsenic * Adsorption Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.858, year: 2014

  11. Green stone beads at the dawn of agriculture

    Science.gov (United States)

    Bar-Yosef Mayer, Daniella E.; Porat, Naomi

    2008-01-01

    The use of beads and other personal ornaments is a trait of modern human behavior. During the Middle and Upper Paleolithic periods, beads were made out of shell, bone, ivory, egg shell, and occasionally of minerals. During the transition to agriculture in the Near East, stone, in particular green stone, was used for the first time to make beads and pendants. We observed that a large variety of minerals of green colors were sought, including apatite, several copper-bearing minerals, amazonite and serpentinite. There seems to be an increase with time of distance from which the green minerals were sought. Because beads in white, red, yellow, brown, and black colors had been used previously, we suggest that the occurrence of green beads is directly related to the onset of agriculture. Green beads and bead blanks were used as amulets to ward off the evil eye and as fertility charms. PMID:18559861

  12. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. ``Green'' functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging

    Science.gov (United States)

    Jiang, Wen; Lai, Kuilin; Liu, Kexia; Xia, Rui; Gao, Fabao; Wu, Yao; Gu, Zhongwei

    2014-01-01

    Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake.Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake. Electronic supplementary information (ESI) available: Additional information and figures (Fig. S1-S7), including experimental sections, characterization of the products, protein corona analysis, cytotoxicity and cellular uptake quantification. See DOI: 10.1039/c3nr05003c

  14. Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill.

    Science.gov (United States)

    Pan, Zhidong; Huang, Ying; Wang, Yanmin; Wu, Zhiwei

    2017-12-01

    The Nannochloropsis sp. cells in aqueous solution were disintegrated in an improved bead mill with turbine agitator. The disintegration rates of cell samples disrupted under various operating parameters (i.e., circumferential speed, bead size, disintegration time, and cell concentration) were analyzed. An experimental strategy to optimize the parameters affecting the cell disintegration process was proposed. The results show that Nannochloropsis sp. cells can be effectively disintegrated in the turbine stirred bead mill under the optimum condition (i.e., circumferential speed of 2.3m/s, concentration of 15vol.%, disintegration time of 40min and bead size of 0.3-0.4mm). The disintegration mechanism was discussed via the selection and breakage functions from population balance modelling. It is revealed that the impact and compression effects of stirring beads are more effective for the disruption of coarser fraction of cells, and the shear effect dominates the production of finer fractions of disintegrated cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adsorption of Cu2+ from aqueous solution onto modified glass beads with 3-aminopropyltriethoxysilane

    Directory of Open Access Journals (Sweden)

    Z Torkshavand

    2014-08-01

    Full Text Available The discharge of heavy metals into the aquatic ecosystem is a main concern over the last few decades. These pollutants are introduced into aquatic systems as a result of various industrial operations. This study investigates the efficiency of the modified glass beads with APTES ligand for removal of Cu2+ from the aqueous solution. Response surface methodology based on Box-Behnken was used to assess the effect of independent variables, including flow rate, solution pH, initial concentration and glass beads size on the response function and prediction of the best response value. Atomic absorption spectroscopic analysis of eluents of a column of the modified glass beads showed that Cu2+ ion was more than 90% entrapped on a column of glass beads. The isotherm evaluations indicate that the equilibrium data for Cu2+ adsorption could be fitted with the Langmuir model. Experimental data were also evaluated in terms of adsorption kinetics using the pseudo-first-order and pseudo-second-order kinetic models. The results also showed that the adsorption process of the Cu2+ well suited with the pseudo-second-order kinetics model. All the results demonstrated that modified glass beads successfully absorbed heavy metals from aqueous solution.

  16. Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads.

    Science.gov (United States)

    Stojanovic, Radoslava; Belscak-Cvitanovic, Ana; Manojlovic, Verica; Komes, Drazenka; Nedovic, Viktor; Bugarski, Branko

    2012-02-01

    Encapsulation of Thymus serpyllum L. aqueous extract within calcium alginate beads was studied in order to produce dosage formulations containing polyphenolic compounds. Electrostatic extrusion was applied for encapsulation of thyme aqueous extract in alginate gel beads. In addition to hydrogel beads, heat-dried and freeze-dried forms of beads were examined. Encapsulation systems were examined and compared in order to choose the optimal one with respect to entrapment efficiency, preservation of antioxidant activity and thermal behaviour under heating conditions simulating the usual food processing. The beads obtained with approximately 2 mg g⁻¹ of gallic acid equivalents encapsulated in 0.015 g mL⁻¹ of alginate were spheres of a uniform size of about 730 µm. Encapsulation efficiency varied in the range 50-80% depending on the encapsulation method. Besides, the analysis reveals that the encapsulation process and the material used did not degrade the bioactive compounds, as the total antioxidant content remained unchanged. This was verified by Fourier transform infrared analysis, which proved the absence of chemical interactions between extracted compounds and alginate. Addition of a filler substance, such as sucrose and inulin, in the dried product reduced its collapse and roundness distortion during drying process. This study demonstrates the potential of using hydrogel material for encapsulation of plant poplyphenols to improve their functionality and stability in food products. Copyright © 2011 Society of Chemical Industry.

  17. Imaging based agglutination measurement of magnetic micro-particles on a lab-on-a-disk platform

    DEFF Research Database (Denmark)

    Wantiya, P.; Burger, Robert; Alstrøm, Tommy Sonne

    2014-01-01

    In this work we present a magnetic micro beads based agglutination assay on a centrifugal microfluidic platform. An imaging based method is used to quantify bead agglutination and measure the concentration of antibodies or C-reactive protein in solution.......In this work we present a magnetic micro beads based agglutination assay on a centrifugal microfluidic platform. An imaging based method is used to quantify bead agglutination and measure the concentration of antibodies or C-reactive protein in solution....

  18. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  19. Magnetic Bead—Magic Bullet

    Directory of Open Access Journals (Sweden)

    Christine Ruffert

    2016-01-01

    Full Text Available Microfluidics is assumed to be one of the leading and most promising areas of research since the early 1990s. In microfluidic systems, small spherical magnetic particles with superparamagnetic properties, called magnetic beads, play an important role in the design of innovative methods and tools, especially in bioanalysis and medical sciences. The intention of this review paper is to address main aspects from the state-of-the-art in the area of magnetic bead research, while demonstrating the broad variety of applications and the huge potential to solve fundamental biological and medical problems in the fields of diagnostics and therapy. Basic issues and demands related to the fabrication of magnetic particles and physical properties of nanosize magnets are discussed in Section 2. Of main interest are the control and adjustment of the nanoparticles’ properties and the availability of adequate approaches for particle detection via their magnetic field. Section 3 presents an overview of magnetic bead applications in nanomedicine. In Section 4, practical aspects of sample manipulation and separation employing magnetic beads are described. Finally, the benefits related to the use of magnetic bead-based microfluidic systems are summarized, illustrating ongoing questions and open tasks to be solved on the way to an approaching microfluidic age.

  20. Amine-functionalized magnetic nanoparticles as robust support for ...

    Indian Academy of Sciences (India)

    and 2,2 -(ethylenedioxy)bis(ethylamine) (EDBE) as amine precursors. These aminated nanoparticles were used as support for the immobilization of lipase, an important industrial enzyme. Lipase was immobilized via glutaraldehyde coupling agent. These functionalized nanoparticles were characterized by XRD, FTIR, TEM,.

  1. Randomised controlled trial of extraarticular gold bead implantation for treatment of knee osteoarthritis: a pilot study

    DEFF Research Database (Denmark)

    Nejrup, Kirsten; Olivarius, Niels de Fine; Jacobsen, Judith L.

    2008-01-01

    The primary objective of this double-blind, randomised, controlled trial was to determine if implanting gold beads at five acupuncture points around the knee joint improves 1-year outcomes for patients with osteoarthritis (OA) of the knee. Participants were 43 adults aged 18-80 years with pain...... and stiffness from non-specific OA of the knee for over a year. The intervention was blinded implantation of gold beads at five acupuncture points around the affected knee through a hypodermic needle, or needle insertion alone. Primary outcome measures were knee pain, stiffness and function assessed...... acupuncture had greater relative improvements in self-assessed outcomes. The treatment was well tolerated. This 1-year pilot study indicates that extraarticular gold bead implantation is a promising treatment modality for patients with OA of the knee. The new treatment should be tested in a larger trial...

  2. Biosorption of strontium ions from aqueous solution using Ca-alginate biopolymer beads

    International Nuclear Information System (INIS)

    Goek, C.; Aytas, S.; Gerstmann, U.

    2009-01-01

    Biosorption of strontium ions from aqueous solution onto calcium alginate biopolymer beads was investigated in a batch system. Ca-alginate biopolymer beads were prepared from Na-alginate via cross-linking with divalent calcium ions according to the egg box model. Optimum biosorption conditions were determined as a function of initial solution pH, initial Sr concentration, contact time, biomass dosage and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of Sr ions by Ca-alginate biopolymer beads. The thermodynamic parameters (ΔH, ΔS, ΔG) for Sr sorption onto biosorbent were also determined from the temperature dependence. The results indicate that this biosorbent has a good potential for removal of Sr ions from dilute aqueous solution.

  3. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    Science.gov (United States)

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping. © 2013.

  4. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs.

    Science.gov (United States)

    Li, Tingxiao; Ding, Xin; Tian, Lingling; Hu, Jiyong; Yang, Xudong; Ramakrishna, Seeram

    2017-05-01

    Bead-on-string nanofibers, with appropriate control of the beads diameter, are potential fibrous structures for efficient encapsulation of particle drugs in micron scales and could achieve controlled drug release for tissue engineering applications. In this study, the beads diameter of electrospun bead-on-string nanofibers was controlled by adjusting the concentration of spinning polymer, poly (lactic-co-glycolic acid) (PLGA), and the solvent ratio of chloroform to acetone. The images of the scanning electron microscopy (SEM) suggested that bead-on-string nanofibers could be successfully obtained only with a certain range of PLGA solution concentration. Moreover, with the decrease in the solvent ratio of chloroform to acetone, the range was left-shifted towards a smaller concentration. In addition, increase in the PLGA solution concentration within the range the beads diameter became greater and the shape of the beads changed from oval to slender when increasing the PLGA concentration within the range. The bead-on-string nanofibers with different beads diameter were further used to load micro-particle drugs of tetracycline hydrochloride, as a model drug, to examine the release behavior of nanofibers scaffold. The release profiles of drug loaded bead-on-string nanofibers demonstrated the possibility to alleviate the burst drug release by means of beads diameter control. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Demonstrations of the Action and Reaction Law and the Energy Conservation Law Using Fine Spherical Plastic Beads

    Science.gov (United States)

    Khumaeni, A.; Tanaka, S.; Kobayashi, A.; Lee, Y. I.; Kurniawan, K. H.; Ishii, K.; Kagawa, K.

    2008-01-01

    Equipment for demonstrating Newton's third law and the energy conservation law in mechanics have successfully been constructed utilizing fine spherical plastic beads in place of metal ball bearings. To demonstrate Newton's third law, special magnetized Petri dishes were employed as objects, while to examine the energy conservation law, a…

  6. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

    Directory of Open Access Journals (Sweden)

    Andreas Hütten

    2013-09-01

    Full Text Available Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  7. Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

    Science.gov (United States)

    Mehran, E.; Farjami Shayesteh, S.; Sheykhan, M.

    2016-10-01

    The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. Project supported by the University of Guilan and the Iran Nanotechnology Initiative Council.

  8. Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

    International Nuclear Information System (INIS)

    Mehran, E; Farjami Shayesteh, S; Sheykhan, M

    2016-01-01

    The structural and magnetic properties of the synthesized pure and functionalized CoFe 2 O 4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT–IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. (paper)

  9. Caffeine and cognition in functional magnetic resonance imaging.

    Science.gov (United States)

    Koppelstaetter, Florian; Poeppel, Thorsten D; Siedentopf, Christian M; Ischebeck, Anja; Kolbitsch, Christian; Mottaghy, Felix M; Felber, Stephan R; Jaschke, Werner R; Krause, Bernd J

    2010-01-01

    Caffeine has been consumed since ancient times due to its beneficial effects on attention, psychomotor function, and memory. Caffeine exerts its action mainly through an antagonism of cerebral adenosine receptors, although there are important secondary effects on other neurotransmitter systems. Recently, functional MRI (fMRI) entered the field of neuropharmacology to explore the intracerebral sites and mechanisms of action of pharmacological agents. However, as caffeine possesses vasoconstrictive properties it may interfere with the mechanisms underlying the functional contrast in fMRI. Yet, only a limited number of studies dealt with the effect of caffeine on measures in fMRI. Even fewer neuroimaging studies examined the effects that caffeine exerts on cognition: Portas and colleagues used fMRI in an attentional task under different levels of arousal (sleep deprivation or caffeine administration), concluding that the thalamus is involved in mediating the interaction of attention and arousal. Bendlin and colleagues found caffeine to stabilize the extent of neuronal activation in repetitive word stem completion, counteracting the general task practice effect. Recently, Koppelstaetter and colleagues assessed the effect of caffeine on verbal working memory demonstrating a modulatory effect of caffeine on brain regions (medial frontopolar and anterior cingulate cortex) that have been associated with attentional and executive functions. This review surveys and discusses neuroimaging findings on 1) how caffeine affects the contrast underlying fMRI techniques, particularly the blood oxygen level dependent contrast (BOLD fMRI), and 2) how caffeine operates on neuronal activity underlying cognition, to understand the effect of caffeine on behavior and its neurobiological underpinnings.

  10. Distribution functions of magnetic nanoparticles determined by a numerical inversion method

    International Nuclear Information System (INIS)

    Bender, P; Balceris, C; Ludwig, F; Posth, O; Bogart, L K; Szczerba, W; Castro, A; Nilsson, L; Costo, R; Gavilán, H; González-Alonso, D; Pedro, I de; Barquín, L Fernández; Johansson, C

    2017-01-01

    In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. (paper)

  11. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  12. Interface Behavior in Functionally Graded Ceramics for the Magnetic Refrigeration: Numerical Modeling

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    material is needed. Tape casting is a common process in producing functional ceramics, and it has recently been established for producing side-by-side (SBS) functionally graded ceramics (FGCs). The main goal of the present work is to study the multiple material flows in SBS tape casting and analyze......The active magnetic regenerator refrigerator is currently the most common magnetic refrigeration device for near room temperature applications, and it is driven by the magnetocaloric effect in the regenerator material. In order to make this efficient, a graded configuration of the magnetocaloric...

  13. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    Science.gov (United States)

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  14. Special Considerations for Functional Magnetic Resonance Imaging of Pediatric Populations

    Science.gov (United States)

    Kotsoni, Eleni; Byrd, Dana; Casey, BJ

    2010-01-01

    Functional MRI (fMRI) provides a non-invasive means of studying both typical and atypical brain development in vivo. However, the developmental and clinical status of the populations of interest impact how neuroimaging data should be collected, analyzed, and interpreted. In the present paper, we review methodological and theoretical issues relevant to developmental and clinical neuroimaging research and provide possible approaches for addressing each. These issues include accounting for differences in biological noise, neuroanatomy, motion, and task performance. Finally, we emphasize the importance of a converging methods approach in constraining and supporting interpretations of pediatric imaging results. PMID:16649204

  15. Functional magnetic resonance imaging and dementia; Funktionelle Magnetresonanztomographie und Demenz

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, F.L. [Abteilung fuer onkologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum (dkfz) Heidelberg (Germany); Abteilung fuer onkologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum (dkfz), Im Neuenheimer Feld 280, 69120, Heidelberg (Germany); Hempel, A.; Schoenknecht, P.; Schroeder, J. [Sektion Gerontopsychiatrie, Psychiatrische Universitaetsklinik Heidelberg (Germany); Wuestenberg, T. [Neurologische Klinik der Charite, Humboldt-Universitaet Berlin (Germany); Weber, M.A.; Essig, M. [Abteilung fuer onkologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum (dkfz) Heidelberg (Germany)

    2003-07-01

    Currently, different cerebral neuroimaging methods are being applied to varying questions in the diagnosis of dementia. In patients with manifest Alzheimer's disease a reduction of cortical perfusion and metabolism in temporal and temporoparietal regions has been demonstrated when compared to healthy controls on a diversity of memory tasks. Since differing levels of performance and varying degrees of cortical atrophy may influence functional results considerably, an understanding of the processes associated with normal ageing is perceived as prerequisite for studies applying functional neuroimaging. The integration of knowledge concerning neuropsychological and neurobiological alterations associated with healthy ageing allows hypotheses for the differentiation of pathological ageing processes to be phrased. In this connection non-invasive methods such as fMRI and ASL are of increasing importance. (orig.) [German] In der zerebralen Bildgebung werden heute verschiedene Methoden zu einzelnen Fragestellungen in der Demenzdiagnostik mit unterschiedlichem Stellenwert eingesetzt. Bei Patienten mit manifester Alzheimer-Demenz wurde eine Verminderung der kortikalen Durchblutung bzw. des zerebralen Glukoseumsatzes in temporalen Strukturen und im temporoparietalen Uebergang im Vergleich zu Gesunden unter verschiedenen Gedaechtnisaufgaben nachgewiesen. Da unterschiedliche Testleistungen und unterschiedliche Auspraegungen der kortikalen Atrophie die funktionellen Befunde wesentlich beeinflussen, wird das Verstaendnis der normalen Alterungsprozesse als Voraussetzung fuer neuere Studien mittels funktioneller Bildgebung angesehen. Die Integration der Kenntnisse ueber neuropsychologische und neurobiologische Veraenderungen gesunden Alterns erlaubt Hypothesen zur Differenzierung pathologischer Alterungsprozesse. Dabei nehmen heute die nichtinvasiven Verfahren wie fMRT und ASL einen zunehmenden Stellenwert ein. (orig.)

  16. Functionalization of carbon nanotubes with magnetic nanoparticles: general nonaqueous synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Zhang Hui; Du Ning; Wu Ping; Chen Bingdi; Yang Deren

    2008-01-01

    A novel approach has been developed to synthesize magnetic nanoparticle and carbon nanotube (CNT) core-shell nanostructures, such as CoO/CNTs and Mn 3 O 4 /CNTs, by the nonaqueous solvothermal treatment of metal carbonyl on CNT templates using hexane as the solvent. The morphological and structural characterizations indicate that numerous cubic CoO or tetragonal Mn 3 O 4 nanoparticles are deposited on the surfaces of the CNTs to form CNT-based core-shell nanostructures. It is revealed that the hydrophobic interaction between nanoparticles and CNTs in hexane plays the critical role for the formation of CNT-based core-shell nanostructures. A physical property measurement system (PPMS-9, Quantum Design) analysis indicates that the CoO/CNT core-shell nanostructures show weak ferromagnetic performance at 300 K due to the ferromagnetic Co clusters and the uncompensated surface spin states, while the Mn 3 O 4 /CNT core-shell nanostructures display ferromagnetic behavior at low temperature (34.5 K), which transforms into paramagnetic behavior with increasing temperature

  17. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  18. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  19. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  20. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids

    International Nuclear Information System (INIS)

    Roy, Sindhunil Barman

    2013-01-01

    We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors. (topical review)

  1. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids.

    Science.gov (United States)

    Roy, Sindhunil Barman

    2013-05-08

    We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors.

  2. Oscillatory magnetism of palladium nano-film depending on its film thickness: Density functional study

    International Nuclear Information System (INIS)

    Hong, Soon Cheol; Lee, Jae Il; Wu, Ruqian

    2007-01-01

    In order to investigate the magnetism of palladium nano-films, we performed first-principles calculations employing the highly precise full-potential linerized augmented plane-wave method based on density functional theory. The magnetism is investigated as a function of the thickness of the Pd thickness within a range of 1-21 monolayers. The magnetic stability of the Pd nano-films is calculated to depend delicately on its thickness. The ferromagnetic state is calculated to be stable for only some particular thicknesses of 1, 3, 9, and 15 layers. Invoking the ferromagnetism is not due to the localization at the surface but to the high density of states (DOS) at Fermi energy at the second layer from the surface

  3. Impaired emotion processing in functional (psychogenic tremor: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Alberto J. Espay

    2018-01-01

    Conclusions: In response to emotional stimuli, functional tremor is associated with alterations in activation and functional connectivity in networks involved in emotion processing and theory of mind. These findings may be relevant to the pathophysiology of functional movement disorders.

  4. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  5. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  6. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  7. Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging.

    Science.gov (United States)

    Könönen, Mervi; Tamsi, Niko; Säisänen, Laura; Kemppainen, Samuli; Määttä, Sara; Julkunen, Petro; Jutila, Leena; Äikiä, Marja; Kälviäinen, Reetta; Niskanen, Eini; Vanninen, Ritva; Karjalainen, Pasi; Mervaala, Esa

    2015-06-15

    Navigated transcranial magnetic stimulation (nTMS) is a modern precise method to activate and study cortical functions noninvasively. We hypothesized that a combination of nTMS and functional magnetic resonance imaging (fMRI) could clarify the localization of functional areas involved with motor control and production of speech. Navigated repetitive TMS (rTMS) with short bursts was used to map speech areas on both hemispheres by inducing speech disruption during number recitation tasks in healthy volunteers. Two experienced video reviewers, blinded to the stimulated area, graded each trial offline according to possible speech disruption. The locations of speech disrupting nTMS trials were overlaid with fMRI activations of word generation task. Speech disruptions were produced on both hemispheres by nTMS, though there were more disruptive stimulation sites on the left hemisphere. Grade of the disruptions varied from subjective sensation to mild objectively recognizable disruption up to total speech arrest. The distribution of locations in which speech disruptions could be elicited varied among individuals. On the left hemisphere the locations of disturbing rTMS bursts with reviewers' verification followed the areas of fMRI activation. Similar pattern was not observed on the right hemisphere. The reviewer-verified speech disruptions induced by nTMS provided clinically relevant information, and fMRI might explain further the function of the cortical area. nTMS and fMRI complement each other, and their combination should be advocated when assessing individual localization of speech network. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Functional magnetic resonance imaging of the normal and abnormal visual system in early life

    DEFF Research Database (Denmark)

    Born, A.P.; Miranda Gimenez-Ricco, Maria Jo; Rostrup, Egill

    2000-01-01

    Functional magnetic resonance imaging (fMRI) in young children may provide information about the development of the visual cortex, and may have predictive value for later visual performance. The purpose of this study was to evaluate the usefulness of fMRI for examining cerebral processing of visi...

  9. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson's disease.

    NARCIS (Netherlands)

    Helmich, R.C.G.; Siebner, H.R.; Bakker, M.; Munchau, A.; Bloem, B.R.

    2006-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can produce lasting changes in excitability and activity in cortical regions underneath the stimulation coil (local effect), but also within functionally connected cortical or subcortical regions

  10. Time of acquisition and network stability in pediatric resting-state functional magnetic resonance imaging

    NARCIS (Netherlands)

    T.J.H. White (Tonya); R.L. Muetzel (Ryan); M. Schmidt (Marcus); S.J.E. Langeslag (Sandra); V.W.V. Jaddoe (Vincent); A. Hofman (Albert); V.D. Calhoun Vince D. (V.); F.C. Verhulst (Frank); H.W. Tiemeier (Henning)

    2014-01-01

    textabstractResting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of ∼5 to 6 min provide adequate sampling to produce stable spatial maps

  11. Functional Magnetic Resonance Imaging Connectivity Analyses Reveal Efference-Copy to Primary Somatosensory Area, BA2

    NARCIS (Netherlands)

    Cui, Fang; Arnstein, Dan; Thomas, Rajat Mani; Maurits, Natasha M.; Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively.

  12. Functional magnetic resonance imaging connectivity analyses reveal efference-copy to primary somatosensory area, BA2

    NARCIS (Netherlands)

    Cui, Fang; Arnstein, Dan; Thomas, Rajat Mani; Maurits, Natasha M; Keysers, C.; Gazzola, Valeria

    2014-01-01

    Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively.

  13. Functional Magnetic Resonance Imaging of Cognitive Processing in Young Adults with Down Syndrome

    Science.gov (United States)

    Jacola, Lisa M.; Byars, Anna W.; Chalfonte-Evans, Melinda; Schmithorst, Vincent J.; Hickey, Fran; Patterson, Bonnie; Hotze, Stephanie; Vannest, Jennifer; Chiu, Chung-Yiu; Holland, Scott K.; Schapiro, Mark B.

    2011-01-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate neural activation during a semantic-classification/object-recognition task in 13 persons with Down syndrome and 12 typically developing control participants (age range = 12-26 years). A comparison between groups suggested atypical patterns of brain activation for the…

  14. Sulphamic acid-functionalized magnetic Fe 3 O 4 nanoparticles as ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation. Javad Safari Zohre Zarnegar. Volume 125 Issue 4 July 2013 pp 835-841 ...

  15. Functional Assessment of Corticospinal Conduction with Transcranial Magnetic Stimulation: Basic Principles

    DEFF Research Database (Denmark)

    Groppa, S.; Peller, M.; Siebner, Hartwig R.

    2010-01-01

    Here we review how transcranial magnetic stimulation (TMS) is used in clinical practice to examine the functional integrity of the fast conducting fibres of the human corticomotor path ways. We first summarise the technical and physiological principles of TMS that are relevant to its clinical use...

  16. Detection of ''beading faults'' in welded tubes

    International Nuclear Information System (INIS)

    Mondot, J.

    In the steel tube industry the word ''beading'' refers to a highly localised leak affecting the welded zone. During the pneumatic test its flow rate is generally very low no more than a few thousandths of a mm 3 /second. Detection of such a fault by this test is consequently slow, and those which are choked or at the limit of leakage may escape detection. For greater safety, the tube technician is now using non-destructive testing methods such as eddy-currents and ultrasonics [fr

  17. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  18. Study of human brain functions by functional magnetic resonance imaging (fMRI) and spectroscopy (fMRS)

    International Nuclear Information System (INIS)

    Jagannathan, N.R.

    1998-01-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool in the detection and assessment of cerebral pathophysiology and the regional mapping and characterization of cognitive processes such as motor skills, vision, language and memory. The results of the effect of motor cortex stimulation during repetitive hand squeezing task activation using in-vivo single voxel NMR spectroscopy carried out on normal volunteer subjects are presented

  19. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    OpenAIRE

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d?Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present stu...

  20. Variability in functional magnetic resonance imaging : influence of the baseline vascular state and physiological fluctuations

    OpenAIRE

    Behzadi, Yashar

    2006-01-01

    In recent years, functional magnetic resonance imaging (fMRI) has become an increasingly important tool for studying the working human brain. The blood oxygenation level dependent signal signal used in most fMRI experiments is an indirect measure of neural activity and reflects local changes in deoxyhemoglobin content, which is a complex function of dynamic changes in cerebral blood flow, cerebral blood volume, and the cerebral metabolic rate of oxygen. Although significant progress has been ...

  1. Magnetic-particle-sensing based diagnostic protocols and applications.

    Science.gov (United States)

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-06-04

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized "columnar particles" by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or "magnetic washing").

  2. Enzyme-linked electrochemical DNA ligation assay using magnetic beads

    Czech Academy of Sciences Publication Activity Database

    Stejskalová, Eva; Horáková Brázdilová, Petra; Vacek, J.; Bowater, R. P.; Fojta, Miroslav

    2014-01-01

    Roč. 406, č. 17 (2014), s. 4129-4136 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GPP206/11/P739; GA ČR(CZ) GAP206/11/1638; GA AV ČR(CZ) IAA400040901 Institutional support: RVO:68081707 Keywords : Electrochemistry * Enzyme labeling * DNA ligase Subject RIV: BO - Biophysics Impact factor: 3.436, year: 2014

  3. Magnetic manipulation and sensing of beads for bioapplications

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl

    to a central laboratory. This will reduce the analysis time leading to earlier detections and easier disease monitoring, both of which are critical parameters for the efficacy of the applied treatment. So far, the commercially successful point-of-care devices have all been single purpose. However, much...

  4. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  5. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  6. Pullulan/dextran/nHA macroporous composite beads for bone repair in a femoral condyle defect in rats.

    Directory of Open Access Journals (Sweden)

    Silke Schlaubitz

    Full Text Available The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone repair. Here, we propose to evaluate the cellular penetration and bone formation of new macroporous beads based on pullulan/dextran that has been supplemented with nanocrystalline hydroxyapatite in a rat model. Cross-linked beads of 300-500 µm diameters were used in a lateral femoral condyle defect and analyzed by magnetic resonance imaging, micro-computed tomography, and histology in comparison to the empty defects 15, 30, and 70 days after implantation. Inflammation was absent for both conditions. For empty defects, cellularisation and mineralization started from the periphery of the defect. For the defects containing beads, cellular structures filling out the spaces between the scaffolds with increasing interconnectivity and trabecular-like organization were observed over time. The analysis of calcified sections showed increased mineralization over time for both conditions, but was more pronounced for the samples containing beads. Bone Mineral Density and Bone Mineral Content were both significantly higher at day 70 for the beads in comparison to empty defects as well as compared with earlier time points. Analysis of newly formed tissue around the beads showed an increase of osteoid tissue, measured as percentage of the defect surface. This study suggests that the use of beads for the repair of small size defects in bone may be expanded on to meet the clinical need for a ready-to-use fill-up material that can favor bone formation and mineralization, as well as promote vessel ingrowth into the defect site.

  7. A magnetic method to concentrate and trap biological targets

    KAUST Repository

    Li, Fuquan

    2012-11-01

    Magnetoresistive sensors in combination with magnetic particles have been used in biological applications due to, e.g., their small size and high sensitivity. A growing interest is to integrate magnetoresistive sensors with microchannels and electronics to fabricate devices that can perform complex analyses. A major task in such systems is to immobilize magnetic particles on top of the sensor surface, which is required to detect the particles\\' stray field. In the presented work, a bead concentrator, consisting of gold microstructures, at the bottom of a microchannel, is used to attract and move magnetic particles into a trap. The trap is made of a chamber with a gold microstructure underneath and is used to attract and immobilize a defined number of magnetic beads. In order to detect targets, two kinds of solutions were prepared; one containing only superparamagnetic particles, the other one containing beads with the protein Bovine serum albumin as the target and fluorescent markers. Due to the size difference between bare beads and beads with target, less magnetic beads were immobilized inside the volume chamber in case of magnetic beads with target as compared to bare magnetic beads. © 1965-2012 IEEE.

  8. SparseBeads data: benchmarking sparsity-regularized computed tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Coban, Sophia B.; Lionheart, William R. B.

    2017-01-01

    Sparsity regularization (SR) such as total variation (TV) minimization allows accurate image reconstruction in x-ray computed tomography (CT) from fewer projections than analytical methods. Exactly how few projections suffice and how this number may depend on the image remain poorly understood....... Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT, however empirical results suggest a similar connection. The present work establishes for real CT data a connection between gradient sparsity and the sufficient number of projections for accurate TV......, number of projections and noise levels to allow the systematic assessment of parameters affecting performance of SR reconstruction algorithms6. Using the SparseBeads data, TV-regularized reconstruction quality was assessed as a function of numbers of projections and gradient sparsity. The critical number...

  9. Chromium (VI) ion adsorption by grafted cross-linked chitosan beads in aqueous solution - a mathematical and statistical modeling study.

    Science.gov (United States)

    Igberase, E; Osifo, P; Ofomaja, A

    2017-12-01

    Chitosan outstanding qualities and efficient way of binding metal ions even to near zero concentration is the major reason for special attention. Modification of chitosan allows the polymer to be applied in numerous field of research. Depending on the modification techniques, chitosan possesses increased adsorption capacity. In this study chitosan beads (CS) were formulated from chitosan flakes, the beads were cross-linked with glutaraldehyde and thereafter grafted with ethyldiaminetetraacetic acid. The stability and amine concentration of the beads were determined. The chemical functionalities of the beads were obtained by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis (TGA). However, in the adsorption studies with Cr(VI), the number of runs in the experiment was obtained by response surface methodology (RSM), and the maximum adsorption capacity (Q m ) from each run was determined from the Langmuir model. The results of the experiment showed that the non-modified beads were soluble at pH 1-4 and insoluble at pH 5, while the modified beads were insoluble at pH 1-6. The amine concentration of CS, CCS and grafted cross-linked chitosan beads (GCCS) were 4.4, 3.8 and 5.0 mmol/g, respectively. The point of zero charge (pH PZC ) of GCCS was found to be 4.4. The quadratic model was significant and adequate in describing the experimental data. The difference between experimental and predicted Q m was negligible. From the design matrix and results, increased Q m was achieved at pH 5, contact time 70 min, temperature 45°C, adsorbent dosage 5 g and initial concentration 70 mg/l. The desorption of the beads loaded with Cr(VI) was successful with 0.5 M HCl eluant and contact time of 180 min, leading to cost minimization.

  10. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death

    KAUST Repository

    Martinez Banderas, Aldo Isaac

    2016-10-24

    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  11. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death.

    Science.gov (United States)

    Martínez-Banderas, Aldo Isaac; Aires, Antonio; Teran, Francisco J; Perez, Jose Efrain; Cadenas, Jael F; Alsharif, Nouf; Ravasi, Timothy; Cortajarena, Aitziber L; Kosel, Jürgen

    2016-10-24

    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  12. Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes

    International Nuclear Information System (INIS)

    Lim, I-Im S; Njoki, Peter N; Wang, Lingyan; Mott, Derrick; Zhong, Chuan-Jian; Park, Hye-Young; Wang Xin

    2008-01-01

    The ability to create bio-functional nanoprobes for the detection of biological reactivity is important for developing bioassay and diagnostic methods. This paper describes the findings of an investigation of the surface functionalization of gold (Au) and magnetic nanoparticles coated with gold shells (M/Au) by proteins and spectroscopic labels for the creation of nanoprobes for use in surface enhanced Raman scattering (SERS) assays. Highly monodispersed Au nanoparticles and M/Au nanoparticles with two types of magnetic nanoparticle cores (Fe 2 O 3 and MnZn ferrite) were studied as model systems for the bio-functionalization and Raman labeling. Comparison of the SERS intensities obtained with different particle sizes (30-100 nm) and samples in solution versus on solid substrates have revealed important information about the manipulation of the SERS signals. In contrast to the salt-induced uncontrollable and irreversible aggregation of nanoparticles, the ability to use a centrifugation method to control the formation of stable small clustering sizes of nanoparticles was shown to enhance SERS intensities for samples in solution as compared with samples on solid substrates. A simple method for labeling protein-capped Au nanoparticles with Raman-active molecules was also described. The functionalized Au and M/Au nanoparticles are shown to exhibit the desired functional properties for the detection of SERS signals in the magnetically separated reaction products. These results are discussed in terms of the interparticle distance dependence of 'hot-spot' SERS sites and the delineation of the parameters for controlling the core-shell reactivity of the magnetic functional nanocomposite materials in bio-separation and spectroscopic probing

  13. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    Science.gov (United States)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  14. Quantification of right and left ventricular function by cardiovascular magnetic resonance

    International Nuclear Information System (INIS)

    Bellenger, N.G.; Smith, G.C.; Pennell, D.J.; Grothues, F.

    2000-01-01

    Cardiac dysfunction is a major cause of cardiovascular morbidity and mortality. Accurate and reproducible assessment of cardiac function is essential for the diagnosis, the assessment of prognosis and evaluation of a patient's response to therapy. Cardiovascular magnetic resonance (CMR) provides a measure of global and regional function that is not only accurate and reproducible but is noninvasive, free of ionising radiation, and independent of the geometric assumptions and acoustic windows that limit echocardiography. With the advent of faster scanners, automated analysis, increasing availability and reducing costs, CMR is fast becoming a clinically tenable reference standard for the measurement of cardiac function. (orig.) [de

  15. FUNCTIONAL MAGNETIC STIMULATION – A NEW PROMISING TREATMENT METHOD FOR WOMEN WITH URINARY INCONTINENCE

    Directory of Open Access Journals (Sweden)

    Igor But

    2018-02-01

    Full Text Available Background. For urinary incontinence there are different treatment options available and among them we are in favor of those, which are the least aggressive and are similarly efficient at the same time. In the last decade there has been an increasing body of evidence suggesting that the functional magnetic stimulation (FMS might be a new and promising treatment modality for treating of women with urinary incontinence. FMS has been applied to pelvic floor therapy and the treatment of urinary incontinence for the first time in 1999. Contrary to electrical stimulation, FMS aims to stimulate the pelvic floor muscles without insertion of a vaginal probe. During the treatment patient is positioned in a special chair. Under the seat is a magnetic field generator which is producing a pulsating magnetic field which is penetrating the perineum. Structures such as pudendal nerves can therefore be magnetically stimulated without patient’s discomfort or inconvenience of probe insertion as it may be true for electrical stimulation. One of the drawbacks of FMS with magnetic chair is the need for repeated office-based treatment, what may represent a major burden for patients and also for national healthcare system. Therefore we developed a new small magnetic stimulator producing electromagnetic pulses which penetrate either the perineum or pubic bone and thus stimulate the pelvic floor and detrusor muscle. One of advantages of this small portable stimulator apart of its clinical eficacy is a continuous 24-hours stimulation which can be performed either at home/work or during different activities. Conclusions. In this article we are presenting the literature overview regarding magnetic stimulation including our initial experiencies with this new treatment method. Based on our clinical results we feel that FMS represents a new and noninvasive treatment method for urinary incontinence.

  16. Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.

    Science.gov (United States)

    Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W

    2013-08-01

    Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.

  17. Feasibility Study of Large Combined Function Magnets for the Jefferson Lab 12 GeV Upgrade

    International Nuclear Information System (INIS)

    Brindza, P. D.; LeRose, J. J.; Leung, E. M.

    2005-01-01

    The 12 GeV upgrade at Jefferson Lab has identified two new large spectrometers as Physics detectors for the project. The first is a 7.5 Gev/c 35 m-sr. spectrometer that requires a pair of identical Combined Function Superconducting Magnets (CFSM) that can simultaneously produce 1.5 T dipole fields and 4.5 T/m quadrupole fields inside a warm bore of 120 cm. The second is an 11 GeV/c 2 m-sr. spectrometer that requires a CFSM that simultaneously produces a dipole field of 4.0 T and a quadruple field of 3.0 T/m in a 60 cm warm bore. Magnetic designs using TOSCA 3D have been performed to realize the magnetic requirements, provide 3d fields for optics analysis and produce field and force information for the engineering feasibility of the magnets. A two-sector cos(theta)/cos(2theta) design with a low nominal current density, warm bore and warm iron design has been selected and analyzed. These low current densities are consistent with the limits for a cryostable winding. The current paper will summarize the requirement definition of these two magnets. The conceptual design arrived at during the feasibility study involving the choice of conductors, thermal and structural analyses will be presented. A discussion of the manufacturing approach and challenges will be provided

  18. Transcranial magnetic motor evoked potentials and magnetic resonance imaging findings in paraplegic dogs with recovery of motor function.

    Science.gov (United States)

    Siedenburg, Johannes S; Wang-Leandro, Adriano; Amendt, Hanna-Luise; Rohn, Karl; Tipold, Andrea; Stein, Veronika M

    2018-03-22

    Transcranial magnetic motor evoked potentials (TMMEP) are associated with severity of clinical signs and magnetic resonance imaging (MRI) findings in dogs with spinal cord disease. That in initially paraplegic dogs with thoracolumbar intervertebral disc herniation (IVDH), MRI findings before surgery and TMMEPs obtained after decompressive surgery are associated with long-term neurological status and correlate with each other. Seventeen client-owned paraplegic dogs with acute thoracolumbar IVDH. Prospective observational study. TMMEPs were obtained from pelvic limbs and MRI (3T) of the spinal cord was performed at initial clinical presentation. Follow-up studies were performed ≤ 2 days after reappearance of motor function and 3 months later. Ratios of compression length, intramedullary hyperintensities' length (T2-weighted hyperintensity length ratio [T2WLR]), and lesion extension (T2-weighted-lesion extension ratio) in relation to the length of the 2nd lumbar vertebral body were calculated. TMMEPs could be elicited in 10/17 (59%) dogs at 1st and in 16/17 (94%) dogs at 2nd follow-up. Comparison of TMMEPs of 1st and 2nd follow-up showed significantly increased amplitudes (median from 0.19 to 0.45 mV) and decreased latencies (from 69.38 to 40.26 ms; P = .01 and .001, respectively). At 2nd follow-up latencies were significantly associated with ambulatory status (P = .024). T2WLR obtained before surgery correlated with latencies at 2nd follow-up (P = .04). TMMEP reflect motor function recovery after severe spinal cord injury. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    Science.gov (United States)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  20. [Functional connectivity of temporal parietal junction in online game addicts:a resting-state functional magnetic resonance imaging study].

    Science.gov (United States)

    Yuan, Ji; Qian, Ruobing; Lin, Bin; Fu, Xianming; Wei, Xiangpin; Weng, Chuanbo; Niu, Chaoshi; Wang, Yehan

    2014-02-11

    To explore the functions of temporal parietal junction (TPJ) as parts of attention networks in the pathogenesis of online game addiction using resting-state functional magnetic resonance imaging (fMRI). A total of 17 online game addicts (OGA) were recruited as OGA group and 17 healthy controls during the same period were recruited as CON group. The neuropsychological tests were performed for all of them to compare the inter-group differences in the results of Internet Addiction Test (IAT) and attention functions. All fMRI data were preprocessed after resting-state fMRI scanning. Then left and right TPJ were selected as regions of interest (ROIs) to calculate the linear correlation between TPJ and entire brain to compare the inter-group differences. Obvious differences existed between OGA group (71 ± 5 scores) and CON group (19 ± 7 scores) in the IAT results and attention function (P online game addicts showed decreased functional connectivity with bilateral ventromedial prefrontal cortex (VMPFC), bilateral hippocampal gyrus and bilateral amygdaloid nucleus, but increased functional connectivity with right cuneus.However, left TPJ demonstrated decreased functional connectivity with bilateral superior frontal gyrus and bilateral middle frontal gyrus, but increased functional connectivity with bilateral cuneus (P online game addicts.It suggests that TPJ is an important component of attention networks participating in the generation of online game addiction.

  1. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  2. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  4. Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters

    Science.gov (United States)

    Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.

    2017-10-01

    The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.

  5. Development of New Contrast Agents for Imaging Function and Metabolism by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Alexandra Carvalho

    2017-07-01

    Full Text Available Liposomes are interesting nanosystems with a wide range of medical application. One particular application is their ability to enhance contrast in magnetic resonance images; when properly loaded with magnetic/superparamagnetic nanoparticles, this means to act as contrast agents. The design of liposomes loaded with magnetic particles, magnetoliposomes, presents a large number of possibilities depending on the application from image function to metabolism. More interesting is its double function application as theranostics (diagnostics and therapy. The synthesis, characterization, and possible medical applications of two types of magnetoliposomes are reviewed. Their performance will be compared, in particular, their efficiency as contrast agents for magnetic resonance imaging, measured by their relaxivities r 1 and r 2 relating to their particular composition. One of the magnetoliposomes had 1,2-diacyl-sn-glycero-3-phosphocholine (soy as the main phospholipid component, with and without cholesterol, varying its phospholipid to cholesterol molar ratios. The other formulation is a long-circulating liposome composed of 1,2-diacyl-sn-glycero-3-phosphocholine (egg, cholesterol, and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine- N -[methoxy(polyethylene glycol-2000]. Both nanosystems were loaded with superparamagnetic iron oxide nanoparticles with different sizes and coatings.

  6. Functional expression of an scFv on bacterial magnetic particles by in vitro docking

    Energy Technology Data Exchange (ETDEWEB)

    Sugamata, Yasuhiro; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko, E-mail: y-tomoko@cc.tuat.ac.jp

    2014-02-28

    Highlights: • We present a novel expression system called “in vitro docking” on bacterial magnetic particles. • An scFv–Fc was functionally expressed on bacterial magnetic particles of magnetotactic bacteria. • Our novel expression system on BacMPs will be effective for disulfide-bonded proteins. - Abstract: A Gram-negative, magnetotactic bacterium, Magnetospirillum magneticum AMB-1 produces nano-sized magnetic particles (BacMPs) in the cytoplasm. Although various applications of genetically engineered BacMPs have been demonstrated, such as immunoassay, ligand–receptor interaction or cell separation, by expressing a target protein on BacMPs, it has been difficult to express disulfide-bonded proteins on BacMPs due to lack of disulfide-bond formation in the cytoplasm. Here, we propose a novel dual expression system, called in vitro docking, of a disulfide-bonded protein on BacMPs by directing an immunoglobulin Fc-fused target protein to the periplasm and its docking protein ZZ on BacMPs. By in vitro docking, an scFv–Fc fusion protein was functionally expressed on BacMPs in the dimeric or trimeric form. Our novel disulfide-bonded protein expression system on BacMPs will be useful for efficient screening of potential ligands or drugs, analyzing ligand–receptor interactions or as a magnetic carrier for affinity purification.

  7. Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

    Science.gov (United States)

    Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-01-01

    Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215. PMID:24621307

  8. exploring traditional glass bead making techniques in jewellery

    African Journals Online (AJOL)

    User

    Decorations with glass beads communicate cultural values in a symbolic lan- guage which expresses status, ... enced by environmental factors. Fitch (1992) traces the history of glass bead making from Western Asia and ... these two areas with similar characteristics from the accessible areas which give a true reflection of ...

  9. Middle stone age shell beads from South Africa

    CSIR Research Space (South Africa)

    Henshilwood, C

    2004-04-16

    Full Text Available undisputed African personal ornaments are 13 ostrich eggshell beads from Enkapune Ya Muto in Kenya similar to 40 ka. Evidence from Eurasia includes two perforated teeth, dated similar to 43 ka, from Bacho Kiro in Bulgaria and 58 marine shell beads from...

  10. Bead Collage: An Arts-Based Research Method

    Science.gov (United States)

    Kay, Lisa

    2013-01-01

    In this paper, "bead collage," an arts-based research method that invites participants to reflect, communicate and construct their experience through the manipulation of beads and found objects is explained. Emphasizing the significance of one's personal biography and experiences as a researcher, I discuss how my background as an…

  11. Growth and morphology of thermophilic dairy starters in alginate beads.

    Science.gov (United States)

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  12. Exploring Traditional Glass Bead Making Techniques in Jewellery ...

    African Journals Online (AJOL)

    Exploring Traditional Glass Bead Making Techniques in Jewellery. IK Agye, J Adu-Agyem, R Steiner. Abstract. Exploring traditional glass bead making techniques in jewellery in some prominent areas in Ghana is a means to exposing the area for metal and ceramic artists and other related fields of discipline such as ...

  13. Enhanced biocatalytic esterification with lipase-immobilized chitosan/graphene oxide beads.

    Directory of Open Access Journals (Sweden)

    Siaw Cheng Lau

    Full Text Available In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS and 1-ethyl-(3-dimethylaminopropyl carbodiimide (EDC, and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.

  14. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease caused by recurring attacks of neuroinflammation leading to neuronal death. Immune-suppressing gold salts are used for treating connective tissue diseases; however, side effects occur from systemic spread of gold ions. This is limited...... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  15. Entrapment of laurel lipase in chitosan hydrogel beads.

    Science.gov (United States)

    Yagar, Hulya; Balkan, Ugur

    2017-08-01

    Laurel seed lipase was entrapped within chitosan beads with ionotropic gelatin method using tripolyphosphate (TPP) as multivalent covalent counter ion. Immobilization yield was 78%. First, optimum immobilization conditions were determined, and morphology of chitosan beads was characterized by scanning electron microscopy. Optimum pH and temperature were evaluated as 6.0 and 40 °C, respectively. The immobilized beads saved about 55% of its activities at 60° while saved about 32% at 70 °C for 30 min. V max /K m values were determined as 31.75 and 2.87 using olive oil as substrate for immobilized beads and free enzyme, respectively. Immobilized beads showed the activities during 30 days at +4 °C.

  16. Analysis of bead sizes for MR capsules labeled for sprinkle.

    Science.gov (United States)

    Nagavelli, Laxma R; Lionberger, Robert A; Sayeed, Vilayat A; Yu, Lawrence; Allgire, James; Smith, Anjanette; Wokovich, Anna; Westenberger, Benjamin J; Buhse, Lucinda

    2010-12-01

    The bead sizes used in approved modified release capsules labeled for sprinkling on food was investigated to generate bead size guidelines for generic products labeled for sprinkling. The conclusions from a survey of FDA databases were corroborated with experimental data obtained by measuring the bead sizes of several reference-listed drugs on the market labeled for administration by sprinkling on food. The experimental data show that majority of the marketed products were found to have bead sizes of less than 1,500 microm (1.5 mm). Based on this information, a bead size of less than 1,500 microm should generally be considered acceptable for use in generic products labeled for sprinkling.

  17. Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica

    Science.gov (United States)

    Radecki, Guillaume; Nargeot, Romuald; Jelescu, Ileana Ozana; Le Bihan, Denis; Ciobanu, Luisa

    2014-01-01

    In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn2+ concentrations. We establish that Mn2+ accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus. We also show that we can distinguish between neuronal activities elicited by different types of stimuli. This method opens up a new avenue into probing the functional organization and plasticity of neuronal networks involved in goal-directed behaviors with single-cell resolution. PMID:24872449

  18. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-11-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann`s areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann`s areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  19. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-01-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann's areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann's areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  20. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption

    Science.gov (United States)

    Mattila, Pipsa; Heinonen, Hanna; Loimula, Kalle; Forsman, Johanna; Johansson, Leena-Sisko; Tapper, Unto; Mahlberg, Riitta; Hentze, Hans-Peter; Auvinen, Ari; Jokiniemi, Jorma; Milani, Roberto

    2014-09-01

    Magnetic cobalt nanoparticles coated with a thin carbon shell were produced by means of a scalable method based on hydrogen reduction synthesis. The presence of oxidized groups on the surface of the carbon shell enabled the reaction with alkoxysilanes bearing amino and thiol reactive functions under mild conditions, and therefore the formation of a thin functional silane layer which holds the potential for further modification in consideration of specific applications, e.g., in the separation and catalysis fields. The magnetic nanoparticles bearing surface thiol groups were also used in metal adsorption tests. These nanoparticles could efficiently adsorb not only gold from a chloride salt aqueous solution, but also several other metals when incubated in a thiocyanate-leached solution obtained from crushed printed circuit boards. The combination of a scalable production method with a simple and versatile surface modification strategy opens up a wide array of potential industrial applications in the fields of separation, sensing, and biomedical devices.

  1. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.

    Science.gov (United States)

    Ehresmann, Arno; Koch, Iris; Holzinger, Dennis

    2015-11-13

    A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs' magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate's MFL and the pulse scheme of the external magnetic field.

  2. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  3. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian [Department of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China); Lu Chunhua; Xu Zhongzi [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China)], E-mail: yjfeng@nju.edu.cn

    2008-11-07

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  4. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  5. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  6. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  8. Immobilized OBOC combinatorial bead array to facilitate multiplicative screening

    Science.gov (United States)

    Townsend, Jared; Li, Yuanpei; Liu, Ruiwu; Lam, Kit S.

    2015-01-01

    One-bead-one-compound (OBOC) combinatorial library screening has been broadly utilized for the last two decades to identify small molecules, peptides or peptidomimetics targeting variable screening probes such as cell surface receptors, bacteria, protein kinases, phosphatases, proteases etc. In previous screening methods, library beads were suspended in solution and screened against one single probe. Only the positive beads were tracked and isolated for additional screens and finally selected for chemical decoding. During this process, the remaining negative beads were not tracked and discarded. Here we report a novel bead immobilization method such that a bead library array can be conveniently prepared and screened in its entirety, sequentially many times with a series of distinct probes. This method not only allows us to increase the screening efficiency but also permits us to determine the binding profile of each and every library bead against a large number of target receptors. As proof of concept, we serially screened a random OBOC disulfide containing cyclic heptapeptide library with three water soluble dyes as model probes: malachite green, bromocresol purple and indigo carmine. This multiplicative screening approach resulted in a rapid determination of the binding profile of each and every bead respective to each of the three dyes. Beads that interacted with malachite green only, bromocresol purple only, or both indigo carmine and bromocresol purple were isolated, and their peptide sequences were determined with microsequencer. Ultimately, the novel OBOC multiplicative screening approach could play a key role in the enhancement of existing on-bead assays such as whole cell binding, bacteria binding, protein binding, post-translational modifications etc. with increased efficiency, capacity, and specificity. PMID:23488896

  9. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor.

    Science.gov (United States)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63s -1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0×10 -7 to 1.0×10 -4 mol/L with detection limit (S/N=3)of 4.3×10 -8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12%-102.66%. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Visual Imagery and False Memory for Pictures: A Functional Magnetic Resonance Imaging Study in Healthy Participants

    OpenAIRE

    Stephan-Otto, Christian; Siddi, Sara; Senior, Carl; Mu?oz-Samons, Daniel; Ochoa, Susana; S?nchez-Laforga, Ana Mar?a; Br?bion, Gildas

    2017-01-01

    BACKGROUND: Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. METHODS: A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, ...

  11. Cognitive Modules Utilized for Narrative Comprehension in Children: A Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Schmithorst, Vincent J.; Holland, Scott K.; Plante, Elena

    2005-01-01

    The ability to comprehend narratives constitutes an important component of human development and experience. The neural correlates of auditory narrative comprehension in children were investigated in a large-scale functional magnetic resonance imaging (fMRI) study involving 313 subjects ages 5–18. Using group Independent Component Analysis (ICA), bilateral task-related components were found comprising the primary auditory cortex, the mid-superior temporal gyrus, the hippocampus, the angular g...

  12. Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    OpenAIRE

    Mitchell, Teresa V.; Morey, Rajendra A.; Inan, Seniha; Belger, Aysenil

    2005-01-01

    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust acti...

  13. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    OpenAIRE

    Reginold, William; Luedke, Angela C.; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    Background/Aims: This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods: Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tes...

  14. Pt/Ru-functionalized magnetic spheres for a magnetic-field stimulated methanol and oxygen redox processes. Towards on-demand activation of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Musameh, Mustafa; Laocharoensuk, Rawiwan; Gonzalez-Garcia, Olga; Oni, Joshua; Gervasio, Don [Departments of Chemical and Materials Engineering and Chemistry and Biochemistry, Ira A. Fulton School of Engineering, The Biodesign Institute, Arizona State University, P.O. Box 876006, Tempe, AZ 85287-5801 (United States)

    2006-07-15

    Pt/Ru-functionalized magnetic spheres were used for a magnetic-field stimulated methanol oxidation and oxygen reduction processes. The electrocatalytic alloy magnetic particles were prepared by a galvanostatic co-deposition of platinum and ruthenium onto nickel spheres. The electrocatalytic oxidation of methanol and reduction of oxygen could be triggered by switching the position of an external magnet below the surface of the carbon electrode to confine the Pt/Ru-coated particles. The magnetic stimulation of the redox processes of methanol and oxygen allowed the reversible activation and deactivation of the operation of direct-methanol fuel cells. Such switching of fuel cells would enable on-demand power generation, for meeting the specific needs of power consuming units. (author)

  15. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. II. Effect of temperature on the structure of Ca2+-alginate beads.

    Science.gov (United States)

    Serp, D; Mueller, M; Von Stockar, U; Marison, I W

    2002-08-05

    Calcium alginate beads were thermally treated at temperatures ranging from 25 degrees C to 130 degrees C for periods of up to 30 minutes. Important modifications to the structure of the alginate beads were shown to be a function of the temperature and period of incubation at each temperature. Modifications to the alginate beads included reduction in size, mechanical resistance, and molecular weight cut-off with increasing temperature and incubation period. Thus, heating 700 microm calcium alginate beads for 20 min at 130 degrees C resulted in a 23% reduction in diameter, 70% increase in mechanical resistance, and 67% reduction in molecular weight cut-off. Incubation of calcium alginate beads containing 2 x 10(6) kDa blue dextran for 20 min at 130 degrees C resulted in no detectable loss of either dye or alginate. This indicates the shrinkage of the beads was due to re-arrangement of the alginate chains within the beads, coupled with loss of water. This hypothesis was verified by direct visual observation of calcium alginate beads before and after thermal treatment using cryo-scanning electron microscopy (cryo-SEM). Unlike other microscopy methods cryo-SEM offers the advantage of extremely rapid freezing which preserves the original structure of the alginate network. As a result cryo-SEM is a powerful tool for studies of hydrogel and capsule structure and formation. Differential scanning calorimetry (DSC) showed that the water entrapped in 2% alginate beads was present in a single state, irrespective of the thermal treatment. This result is attributed to the low alginate concentration used to form the beads. Copyright 2002 Wiley Periodicals, Inc.

  16. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined, a...... in microfluidic systems, and recommendations are given for the choice of magnetic design based on the desired application......., and it is argued that it is a good measure, when comparing the performance of magnetic bead separators. It is described how numeric modelling is used to aid the design of microfluidic magnetic separation systems. An example of a design optimization study is given. A robust fabrication scheme has been developed...... for fabrication of silicon based systems. This fabrication scheme is explained, and it is shown how, it is applied with variations for several designs of magnetic separators. An experimental setup for magnetic separation experiments has been developed. It has been coupled with an image analysis program...

  17. Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates

    NARCIS (Netherlands)

    Postma, P.R.; Suarez Garcia, E.; Safi, Carl; Yonathan, K.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.

    2017-01-01

    The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3–1 mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order

  18. Facile and green synthesis of core-shell structured magnetic chitosan submicrospheres and their surface functionalization.

    Science.gov (United States)

    Li, Yiya; Yuan, Dongying; Dong, Mingjie; Chai, Zhihua; Fu, Guoqi

    2013-09-17

    Submicrometer-sized magnetite colloid nanocrystal clusters (MCNCs) provide a new avenue for constructing uniformly sized and highly magnetic composite submicrospheres. Herein, a facile and eco-friendly method is described for the synthesis of Fe3O4@poly(acrylic acid) (PAA)/chitosan (CS) core-shell submicrospheres using MCNCs bearing carboxyl groups as the magnetic cores. It is based on the self-assembly of positively charged CS chains on the surface of the oppositely charged MCNCs dispersed in the aqueous solution containing acrylic acid (AA) and a cross-linker N,N'-methylenebis(acrylamide) (MBA), followed by radical induced cross-linking copolymerization of AA and MBA along the CS chains. The resulting polymer shell comprises a medium shell of cross-linked PAA/CS polyelectrolyte complexes and an outer shell of protonated CS chains. It was found that the shell thickness could be tuned by varying either the concentration of radical initiator or the molar ratio of AA to aminoglucoside units of CS. To the surface of thus obtained Fe3O4@PAA/CS particles, Au nanoparticles, a variety of functional groups such as fluorescein, carboxyl, quaternary ammonium, and aliphatic bromide, and even functional polymer chains were successfully introduced. Therefore, such Fe3O4@PAA/CS submicrospheres may be used as versatile magnetic functional scaffolds in biorelated areas like bioseparation and medical assay, considering the unique features of CS like nontoxicity and biocompatibility.

  19. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  20. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    Science.gov (United States)

    Xie, Jining; Chen, Linfeng; Varadan, Vijay K.; Yancey, Justin; Srivatsan, Malathi

    2008-03-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.