WorldWideScience

Sample records for functional total rna

  1. A Rapid and Efficient Method for Purifying High Quality Total RNA from Peaches (Prunus persica for Functional Genomics Analyses

    Directory of Open Access Journals (Sweden)

    LEE MEISEL

    2005-01-01

    Full Text Available Prunus persica has been proposed as a genomic model for deciduous trees and the Rosaceae family. Optimized protocols for RNA isolation are necessary to further advance studies in this model species such that functional genomics analyses may be performed. Here we present an optimized protocol to rapidly and efficiently purify high quality total RNA from peach fruits (Prunus persica. Isolating high-quality RNA from fruit tissue is often difficult due to large quantities of polysaccharides and polyphenolic compounds that accumulate in this tissue and co-purify with the RNA. Here we demonstrate that a modified version of the method used to isolate RNA from pine trees and the woody plant Cinnamomun tenuipilum is ideal for isolating high quality RNA from the fruits of Prunus persica. This RNA may be used for many functional genomic based experiments such as RT-PCR and the construction of large-insert cDNA libraries.

  2. Monocytic microRNA profile associated with coronary collateral artery function in chronic total occlusion patients.

    Science.gov (United States)

    Hakimzadeh, Nazanin; Elias, Joëlle; Wijntjens, Gilbert W M; Theunissen, Ruud; van Weert, Angela; Smulders, Martijn W; van den Akker, Nynke; Moerland, Perry D; Verberne, Hein J; Hoebers, Loes P; Henriques, Jose P S; van der Laan, Anja M; Ilhan, Mustafa; Post, Mark; Bekkers, Sebastiaan C A M; Piek, Jan J

    2017-05-08

    An expansive collateral artery network is correlated with improved survival in case of adverse cardiac episodes. We aimed to identify cellular microRNAs (miRNA; miR) important for collateral artery growth. Chronic total occlusion (CTO) patients (n = 26) were dichotomized using pressure-derived collateral flow index (CFI p ) measurements; high collateral capacity (CFI p  > 0.39; n = 14) and low collateral (CFI p  collateral capacity patients. Validation by real-time polymerase chain reaction demonstrated significantly decreased expression of miR339-5p in all stimulated monocyte phenotypes of low collateral capacity patients. MiR339-5p showed significant correlation with CFI p values in stimulated monocytes. Ingenuity pathway analysis of predicted gene targets of miR339-5p and differential gene expression data from high versus low CFI p patients (n = 20), revealed significant association with STAT3 pathway, and also suggested a possible regulatory role for this signaling pathway. These results identify a novel association between miR339-5p and coronary collateral function. Future work examining modulation of miR339-5p and downstream effects on the STAT3 pathway and subsequent collateral vessel growth are warranted.

  3. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  4. Preparation of Total RNA from Fission Yeast.

    Science.gov (United States)

    Bähler, Jürg; Wise, Jo Ann

    2017-04-03

    Treatment with hot phenol breaks open fission yeast cells and begins to strip away bound proteins from RNA. Deproteinization is completed by multiple extractions with chloroform/isoamyl alcohol and separation of the aqueous and organic phases using MaXtract gel, an inert material that acts as a physical barrier between the phases. The final step is concentration of the RNA by ethanol precipitation. The protocol can be used to prepare RNA from several cultures grown in parallel, but it is important not to process too many samples at once because delays can be detrimental to RNA quality. A reasonable number of samples to process at once would be three to four for microarray or RNA sequencing analyses and six for preliminary investigations of mutants implicated in RNA metabolism. © 2017 Cold Spring Harbor Laboratory Press.

  5. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    Science.gov (United States)

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  6. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Science.gov (United States)

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  7. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  8. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  9. Extraction of total RNA in the developing chicken forebrain

    Directory of Open Access Journals (Sweden)

    Sayed Rasoul Zaker

    2014-01-01

    Full Text Available Background: Gene expression of Gama-Aminobutyric acid (GABA A receptor subunits may change during development. Procedures in molecular biology are required to understand the gene expression profile GABA A R in chicken. The outcome of the results depends on good-quality high-molecular-weight RNA. Several procedures can be used to isolate RNA from the brain of chicken; however, most of them are time-consuming and require disruption of cells or freeze and thaw in the presence of RNase inhibitors. The aim of this experiment was isolation of RNA from chicken embryonic brain tissues using appropriate RNA extraction kit. Materials and Methods: Fertilized eggs from Ross breed (Gallus gallus were incubated at 38°C and 60% relative humidity in a forced-draft incubator and were turned every 3 h. After 3, 7, 14 and 20 days of incubation, eggs were cooled on ice to induce deep anesthesia. Then whole brains were dissected out. As brains could not be excised in a reproducible way from earlier embryos (embryonic days 4 and 6, whole heads were collected. Chicken embryos between day 7 to 20 and 1 day after birth were decapitated, and their brains removed. Samples were immediately inserted into lysis buffer and stored at −70°C. Total RNA was isolated and a contaminating genomic deoxyribonucleic acid (DNA was digested. RNA quality was checked using gel electrophoresis. Results: We obtained 52 mg/ml to 745 mg/ml with A260/280 1.7-2.2. Only high-quality RNA, with no signs of degradation, was used for further experiments. Conclusion: In conclusion, protocol was found to be suitable for the isolation of total RNA from embryonic chicken cells.

  10. Next Generation Sequencing Analysis of Human Platelet PolyA+ mRNAs and rRNA-Depleted Total RNA

    Science.gov (United States)

    Kissopoulou, Antheia; Jonasson, Jon; Lindahl, Tomas L.; Osman, Abdimajid

    2013-01-01

    Background Platelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA. Materials and Methods We used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT) isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed. The bioinformatic tools HTSeq and DESeq from Bioconductor were employed for further statistical analyses of read counts. Results Consistent with previous findings our data suggests that mitochondrially expressed genes comprise a substantial fraction of the platelet transcriptome. We also identified high transcript levels for protein coding genes related to the cytoskeleton function, chemokine signaling, cell adhesion, aggregation, as well as receptor interaction between cells. Certain transcripts were particularly abundant in platelets compared with other cell and tissue types represented by RNA-Seq data from the Illumina Human Body Map 2.0 project. Irrespective of the different library preparation and sequencing protocols, there was good agreement between samples from the 4 individuals. Eighteen differentially expressed genes were identified in the two sexes at 10% false discovery rate using DESeq. Conclusion The present data suggests that platelets may have a unique transcriptome profile characterized by a relative over-expression of mitochondrially encoded genes and also of genomic transcripts related to the cytoskeleton function, chemokine signaling and surface components compared with other cell and

  11. On a total function which overtakes all total recursive functions

    OpenAIRE

    da Costa, N. C. A.; Doria, F. A.

    2001-01-01

    This paper discusses a function that is frequently presented as a simile or look-alike of the so-called ``counterexample function to P=NP,'' that is, the function that collects all first instances of a problem in NP where a poly machine incorrectly `guesses' about the instance. We state and give in full detail a crucial result on the computation of Goedel numbers for some families of poly machines.

  12. Using RNA Interference to Study Protein Function

    OpenAIRE

    Curtis, Carol D.; Nardulli, Ann M.

    2009-01-01

    RNA interference can be extremely useful in determining the function of an endogenously-expressed protein in its normal cellular environment. In this chapter, we describe a method that uses small interfering RNA (siRNA) to knock down mRNA and protein expression in cultured cells so that the effect of a putative regulatory protein on gene expression can be delineated. Methods of assessing the effectiveness of the siRNA procedure using real time quantitative PCR and Western analysis are also in...

  13. Modulation of RNA function by aminoglycoside antibiotics.

    Science.gov (United States)

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-04

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science.

  14. Argonaute: The executor of small RNA function.

    Science.gov (United States)

    Azlan, Azali; Dzaki, Najat; Azzam, Ghows

    2016-08-20

    The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  15. Four RNA families with functional transient structures.

    Science.gov (United States)

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All

  16. Next generation sequencing analysis of human platelet PolyA+ mRNAs and rRNA-depleted total RNA.

    Directory of Open Access Journals (Sweden)

    Antheia Kissopoulou

    Full Text Available BACKGROUND: Platelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA. MATERIALS AND METHODS: We used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed. The bioinformatic tools HTSeq and DESeq from Bioconductor were employed for further statistical analyses of read counts. RESULTS: Consistent with previous findings our data suggests that mitochondrially expressed genes comprise a substantial fraction of the platelet transcriptome. We also identified high transcript levels for protein coding genes related to the cytoskeleton function, chemokine signaling, cell adhesion, aggregation, as well as receptor interaction between cells. Certain transcripts were particularly abundant in platelets compared with other cell and tissue types represented by RNA-Seq data from the Illumina Human Body Map 2.0 project. Irrespective of the different library preparation and sequencing protocols, there was good agreement between samples from the 4 individuals. Eighteen differentially expressed genes were identified in the two sexes at 10% false discovery rate using DESeq. CONCLUSION: The present data suggests that platelets may have a unique transcriptome profile characterized by a relative over-expression of mitochondrially encoded genes and also of genomic transcripts related to the cytoskeleton function, chemokine signaling and surface components

  17. Retroviral RNA Dimerization: From Structure to Functions

    Directory of Open Access Journals (Sweden)

    Noé Dubois

    2018-03-01

    Full Text Available The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…, the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.

  18. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2016-01-01

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters

  19. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor

    2016-07-28

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.

  20. Isolated total RNA and protein are preserved after thawing for more than twenty-four hours

    Science.gov (United States)

    de Oliveira, Ivone Braga; Ramos, Débora Rothstein; Lopes, Karen Lucasechi; de Souza, Regiane Machado; Heimann, Joel Claudio; Furukawa, Luzia Naôko Shinohara

    2012-01-01

    OBJECTIVE: The preservation of biological samples at a low temperature is important for later biochemical and/or histological analyses. However, the molecular viability of thawed samples has not been studied sufficiently in depth. The present study was undertaken to evaluate the viability of intact tissues, tissue homogenates, and isolated total RNA after defrosting for more than twenty-four hours. METHODS: The molecular viability of the thawed samples (n = 82) was assessed using the A260/A280 ratio, the RNA concentration, the RNA integrity, the level of intact mRNA determined by reverse transcriptase polymerase chain reaction, the protein level determined by Western blotting, and an examination of the histological structure. RESULTS: The integrity of the total RNA was not preserved in the thawed intact tissue, but the RNA integrity and level of mRNA were perfectly preserved in isolated defrosted samples of total RNA. Additionally, the level of β-actin protein was preserved in both thawed intact tissue and homogenates. CONCLUSION: Isolated total RNA does not undergo degradation due to thawing for at least 24 hours, and it is recommended to isolate the total RNA as soon as possible after tissue collection. Moreover, the protein level is preserved in defrosted tissues. PMID:22473407

  1. Biochemistry and Function of the RNA Exosomes

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Chlebowski, Aleksander; Dziembowski, Andrzej

    2012-01-01

    Discovery of the evolutionary conserved RNA exosome was a milestone in RNA biology. First identified as an activity essential for the processing of ribosomal RNA, the exosome has since proved to be central for RNA processing and degradation in both the nucleus and the cytoplasm of eukaryotic cell...

  2. Total Variation Depth for Functional Data

    KAUST Repository

    Huang, Huang

    2016-11-15

    There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is investigated through simulations. Compared to magnitude outliers, shape outliers are often masked among the rest of samples and harder to identify. We show that the proposed total variation depth has many desirable features and is well suited for outlier detection. In particular, we propose to decompose the total variation depth into two components that are associated with shape and magnitude outlyingness, respectively. This decomposition allows us to develop an effective procedure for outlier detection and useful visualization tools, while naturally accounting for the correlation in functional data. Finally, the proposed methodology is demonstrated using real datasets of curves, images, and video frames.

  3. MicroRNA function in Drosophila melanogaster.

    Science.gov (United States)

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".

    Science.gov (United States)

    Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán

    2013-01-01

    Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.

  5. Functions of microRNA in response to cocaine stimulation.

    Science.gov (United States)

    Xu, L-F; Wang, J; Lv, F B; Song, Q

    2013-12-04

    MicroRNAs (miRNAs) are a type of non-protein-coding single-stranded RNA, which are typically 20-25 nt in length. miRNAs play important roles in various biological processes, including development, cell proliferation, differentiation, and apoptosis. We aimed to detect the miRNA response to cocaine stimulations and their target genes. Using the miRNA expression data GSE21901 downloaded from the Gene Expression Omnibus database, we screened out the differentially expressed miRNA after short-term (1 h) and longer-term (6 h) cocaine stimulations based on the fold change >1.2. Target genes of differentially expressed miRNAs were retrieved from TargetScan database with the context score -0.3. Functional annotation enrichment analysis was performed for all the target genes with DAVID. A total of 121 differentially expressed miRNAs between the 1-h treatment and the control samples, 58 between the 6-h treatment and the control samples, and 69 between the 1-h and the 6-h treatment samples. Among them, miR-212 results of particular interest, since its expression level was constantly elevated responding to cocaine treatment. After functional and pathway annotations of target genes, we proved that miR-212 was a critical element in cocaine-addiction, because of its involvement in regulating several important cell cycle events. The results may pave the way for further understanding the regulatory mechanisms of cocaine-response in human bodies.

  6. RNA.

    Science.gov (United States)

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  7. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, Joseph Albert [Univ. of California, Berkeley, CA (United States)

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 121±s are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  8. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  9. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  10. Isolation of high-quality total RNA from rumen anaerobic bacteria and fungi, and subsequent detection of glycoside hydrolases.

    Science.gov (United States)

    Wang, Pan; Qi, Meng; Barboza, Perry; Leigh, Mary Beth; Ungerfeld, Emilio; Selinger, L Brent; McAllister, Tim A; Forster, Robert J

    2011-07-01

    The rumen is one of the most powerful fibrolytic fermentation systems known. Gene expression analyses, such as reverse transcription PCR (RT-PCR), microarrays, and metatranscriptomics, are techniques that could significantly expand our understanding of this ecosystem. The ability to isolate and stabilize representative RNA samples is critical to obtaining reliable results with these procedures. In this study, we successfully isolated high-quality total RNA from the solid phase of ruminal contents by using an improved RNA extraction method. This method is based on liquid nitrogen grinding of whole ruminal solids without microbial detachment and acid guanidinium - phenol - chloroform extraction combined with column purification. Yields of total RNA were as high as 150 µg per g of fresh ruminal content. The typical large subunit/small subunit rRNA ratio ranged from 1.8 to 2.0 with an RNA integrity number (Agilent Technologies) greater than 8.5. By eliminating the detachment step, the resulting RNA was more representative of the complete ecosystem. Our improved method removed a major barrier limiting analysis of rumen microbial function from a gene expression perspective. The polyA-tailed eukaryotic mRNAs obtained have successfully been applied to next-generation sequencing, and metatranscriptomic analysis of the solid fraction of rumen contents revealed abundant sequences related to rumen fungi.

  11. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  12. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0080 TITLE: Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer . 5a. CONTRACT NUMBER 5b. GRANT NUMBER GRANT11489...institutional, NIH-funded study of genetic and epigenetic alterations of pre-invasive DCIS that did or did not progress to invasive breast cancer , with an

  13. Intracellular coordination of potyviral RNA functions in infection

    Directory of Open Access Journals (Sweden)

    Kristiina eMäkinen

    2014-03-01

    Full Text Available Abstract Establishment of an infection cycle requires mechanisms to allocate the genomes of (+-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein (RNP complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes (VRCs, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions.

  14. Intracellular coordination of potyviral RNA functions in infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Hafrén, Anders

    2014-01-01

    Establishment of an infection cycle requires mechanisms to allocate the genomes of (+)-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA) to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions.

  15. Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes

    Science.gov (United States)

    Bruskiewich, Richard; Burris, Jason N.; Carrigan, Charlotte T.; Chase, Mark W.; Clarke, Neil D.; Covshoff, Sarah; dePamphilis, Claude W.; Edger, Patrick P.; Goh, Falicia; Graham, Sean; Greiner, Stephan; Hibberd, Julian M.; Jordon-Thaden, Ingrid; Kutchan, Toni M.; Leebens-Mack, James; Melkonian, Michael; Miles, Nicholas; Myburg, Henrietta; Patterson, Jordan; Pires, J. Chris; Ralph, Paula; Rolf, Megan; Sage, Rowan F.; Soltis, Douglas; Soltis, Pamela; Stevenson, Dennis; Stewart, C. Neal; Surek, Barbara; Thomsen, Christina J. M.; Villarreal, Juan Carlos; Wu, Xiaolei; Zhang, Yong; Deyholos, Michael K.; Wong, Gane Ka-Shu

    2012-01-01

    Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ≥1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers. PMID:23185583

  16. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  17. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    Science.gov (United States)

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server

  18. Computing the partition function for kinetically trapped RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    William A Lorenz

    Full Text Available An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3 time and O(n2 space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1 the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2 the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3 the (modified maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected

  19. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  20. High-quality total RNA isolation from melon (Cucumis melo L. fruits rich in polysaccharides

    Directory of Open Access Journals (Sweden)

    Gabrielle Silveira de Campos

    2017-08-01

    Full Text Available Melon, a member of the family Cucurbitaceae, is the fourth most important fruit in the world market and, on a volume basis, is Brazil’s main fresh fruit export. Many molecular techniques used to understand the maturation of these fruits require high concentrations of highly purified RNA. However, melons are rich in polyphenolic compounds and polysaccharides, which interfere with RNA extraction. This study aimed to determine the most appropriate method for total RNA extraction from melon fruits. Six extraction buffers were tested: T1 guanidine thiocyanate/phenol/chloroform; T2 sodium azide/?-mercaptoethanol; T3 phenol/guanidine thiocyanate; T4 CTAB/PVP/?-mercaptoethanol; T5 SDS/sodium perchlorate/PVP/?-mercaptoethanol, and T6 sarkosyl/PVP/guanidine thiocyanate, using the AxyPrepTM Multisource Total RNA Miniprep Kit. The best method for extracting RNA from both mature and green fruit was based on the SDS/PVP/?-mercaptoethanol buffer, because it rapidly generated a high quality and quantity of material. In general, higher amounts of RNA were obtained from green than mature fruits, probably due to the lower concentration of polysaccharides and water. The purified material can be used as a template in molecular techniques, such as microarrays, RT-PCR, and in the construction of cDNA and RNA-seq data.

  1. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  2. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Luna, Joseph M; Liniger, Matthias

    2016-01-01

    , critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de...... immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries...

  3. Functional RNA during Zika virus infection

    NARCIS (Netherlands)

    Göertz, Giel P.; Abbo, Sandra R.; Fros, Jelke J.; Pijlman, Gorben P.

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae; genus Flavivirus) is a pathogenic mosquito-borne RNA virus that currently threatens human health in the Americas, large parts of Asia and occasionally elsewhere in the world. ZIKV infection is often asymptomatic but can cause severe symptoms including

  4. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    Science.gov (United States)

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-07

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Total Variation Depth for Functional Data

    KAUST Repository

    Huang, Huang; Sun, Ying

    2016-01-01

    that are associated with shape and magnitude outlyingness, respectively. This decomposition allows us to develop an effective procedure for outlier detection and useful visualization tools, while naturally accounting for the correlation in functional data. Finally

  6. Comparative evaluation of total RNA extraction methods in Theobroma cacao using shoot apical meristems.

    Science.gov (United States)

    Silva, D V; Branco, S M J; Holanda, I S A; Royaert, S; Motamayor, J C; Marelli, J P; Corrêa, R X

    2016-03-04

    Theobroma cacao is a species of great economic importance with its beans used for chocolate production. The tree has been a target of various molecular studies. It contains many polyphenols, which complicate the extraction of nucleic acids with the extraction protocols requiring a large amount of plant material. These issues, therefore, necessitate the optimization of the protocols. The aim of the present study was to evaluate different methods for extraction of total RNA from shoot apical meristems of T. cacao 'CCN 51' and to assess the influence of storage conditions for the meristems on the extraction. The study also aimed to identify the most efficient protocol for RNA extraction using a small amount of plant material. Four different protocols were evaluated for RNA extraction using one shoot apical meristem per sample. Among these protocols, one that was more efficient was then tested to extract RNA using four different numbers of shoot apical meristems, subjected to three different storage conditions. The best protocol was tested for cDNA amplification using reverse transcription-polymerase chain reaction; the cDNA quality was determined to be satisfactory for molecular analyses. The study revealed that with the best RNA extraction protocol, one shoot apical meristem was sufficient for extraction of high-quality total RNA. The results obtained might enable advances in genetic analyses and molecular studies using reduced amount of plant material.

  7. Production Function Geometry with "Knightian" Total Product

    Science.gov (United States)

    Truett, Dale B.; Truett, Lila J.

    2007-01-01

    Authors of principles and price theory textbooks generally illustrate short-run production using a total product curve that displays first increasing and then diminishing marginal returns to employment of the variable input(s). Although it seems reasonable that a temporary range of increasing returns to variable inputs will likely occur as…

  8. Covalent Chemical 5'-Functionalization of RNA with Diazo Reagents.

    Science.gov (United States)

    Gampe, Christian M; Hollis-Symynkywicz, Micah; Zécri, Frédéric

    2016-08-22

    Functionalization of RNA at the 5'-terminus is important for analytical and therapeutic purposes. Currently, these RNAs are synthesized de novo starting with a chemically functionalized 5'-nucleotide, which is incorporated into RNA using chemical synthesis or biochemical techniques. Methods for direct chemical modification of native RNA would provide an attractive alternative but are currently underexplored. Herein, we report that diazo compounds can be used to selectively alkylate the 5'-phosphate of ribo(oligo)nucleotides to give RNA labelled through a native phosphate ester bond. We applied this method to functionalize oligonucleotides with biotin and an orthosteric inhibitor of the eukaryotic initiation factor 4E (eIF4E), an enzyme involved in mRNA recognition. The modified RNA binds to eIF4E, demonstrating the utility of this labelling technique to modulate biological activity of RNA. This method complements existing techniques and may be used to chemically introduce a broad range of functional handles at the 5'-end of RNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Total scattering of disordered crystalline functional materials

    International Nuclear Information System (INIS)

    Shamoto, Shin-Ichi; Kodama, Katsuaki; Iikubo, Satoshi; Taguchi, Tomitsugu

    2009-01-01

    There are disorders in some modern functional materials. As an example, the crystalline phase of an optical recording material has low thermal conductivity but high electrical conductivity, simultaneously. This contradiction is a challenge to material scientists in designing good functional materials, which should have at least two types of crystallographic sites. One site limits thermal conductivity while the other site carries electrons or holes with high mobility. This problem exists with not only optical recording materials but also thermoelectric materials. The periodic boundary condition gets lost in the disordered parts. This therefore, makes atomic pair distribution function (PDF) analysis with a wide range of real space suitable for investigating the form and size of crystalline parts as well as disordered parts in the material. Pulsed neutron powder diffraction is one of the best tools for use in this new type of emerging research, together with synchrotron X-ray powder diffraction and electron diffraction.

  10. Functional RNA structures throughout the Hepatitis C Virus genome.

    Science.gov (United States)

    Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie

    2017-06-01

    The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Renal function after elective total hip replacement

    DEFF Research Database (Denmark)

    Perregaard, Helene; Damholt, Mette B; Solgaard, Søren

    2016-01-01

    Background and purpose - Acute kidney injury (AKI) is associated with increased short-term and long-term mortality in intensive care populations and in several surgical specialties, but there are very few data concerning orthopedic populations. We have studied the incidence of AKI and the prevale......Background and purpose - Acute kidney injury (AKI) is associated with increased short-term and long-term mortality in intensive care populations and in several surgical specialties, but there are very few data concerning orthopedic populations. We have studied the incidence of AKI...... and the prevalence of chronic kidney disease (CKD) in an elective population of orthopedic patients undergoing primary total hip replacement, hypothesizing that chronic kidney disease predisposes to AKI. Patients and methods - This was a single-center, population-based, retrospective, registry-based cohort study...... involving all primary elective total hip replacements performed from January 2003 through December 2012. Patient demographics and creatinine values were registered. We evaluated the presence of CKD and AKI according to the international guidelines for kidney disease (KDIGO Acute Kidney Injury Workgroup 2013...

  13. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs

    OpenAIRE

    Chang, Tzu-Hao; Huang, Hsi-Yuan; Hsu, Justin Bo-Kai; Weng, Shun-Long; Horng, Jorng-Tzong; Huang, Hsien-Da

    2013-01-01

    Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform. Methods ...

  14. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    Science.gov (United States)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  15. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone

    Science.gov (United States)

    Xia, Hongjie; Wang, Peipei; Wang, Guang-Chuan; Yang, Jie; Sun, Xianlin; Wu, Wenzhe; Qiu, Yang; Shu, Ting; Zhao, Xiaolu; Yin, Lei; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our

  16. RNA function and phosphorus use by photosynthetic organisms

    Directory of Open Access Journals (Sweden)

    John Albert Raven

    2013-12-01

    Full Text Available Phosphorus (P in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is forecast for the next few decades, the paper analyses what economies in P allocation to RNA could, in principle, increase P use efficiency of growth (rate of dry matter production per unit organism P. The possibilities of decreasing P allocation to RNA without decreasing growth rate include a more widespread down-regulation of RNA production in P-limited organisms (as in the growth rate hypothesis, optimal allocation of P to RNA spatially among cell compartments and organs, and temporally depending on the stage of growth, and, for exponentially growing organisms with a constant fraction of P in RNA, a constant rate of protein synthesis through the diel cycle. Acting on these suggestions would be technically demanding, and could have unintended consequences for other aspect of metabolism.

  17. Open Maximal Mucosa-Sparing Functional Total Laryngectomy

    Directory of Open Access Journals (Sweden)

    Pavel Dulguerov

    2017-10-01

    Full Text Available BackgroundTotal laryngectomy after (chemoradiotherapy is associated with a high incidence of fistula and therefore flaps are advocated. The description of a transoral robotic total laryngectomy prompted us to develop similar minimally invasive open approaches for functional total laryngectomy.MethodsA retrospective study of consecutive unselected patients with a dysfunctional larynx after (chemoradiation that underwent open maximal mucosal-sparing functional total laryngectomy (MMSTL between 2014 and 2016 is presented. The surgical technique is described, and the complications and functional outcome are reviewed.ResultsThe cohorts included 10 patients who underwent open MMSTL. No pedicled flap was used. Only one postoperative fistula was noted (10%. All patients resumed oral diet and experienced a functional tracheo-esophageal voice.ConclusionMMSTL could be used to perform functional total laryngectomy without a robot and with minimal incidence of complications.

  18. Reconstruction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in rheumatoid arthritis.

    Science.gov (United States)

    Jiang, Hui; Ma, Rong; Zou, Shubiao; Wang, Yongzhong; Li, Zhuqing; Li, Weiping

    2017-06-01

    Rheumatoid arthritis (RA) is an autoimmune disease with an unknown etiology, occurring in approximately 1.0% of general population. More and more studies have suggested that long non-coding RNAs (lncRNAs) could play important roles in various biological processes and be associated with the pathogenesis of different kinds of diseases including RA. Although a large number of lncRNAs have been found, our knowledge of their function and physiological/pathological significance is still in its infancy. In order to reveal functional lncRNAs and identify the key lncRNAs in RA, we reconstructed a global triple network based on the competitive endogenous RNA (ceRNA) theory using the data from National Center for Biotechnology Information Gene Expression Omnibus and our previous paper. Meanwhile, Gene Ontology (GO) and pathway analysis were performed using Cytoscape plug-in BinGO and Database for Annotation, Visualization, and Integration Discovery (DAVID), respectively. We found that the lncRNA-miRNA-mRNA network was composed of 7 lncRNA nodes, 90 mRNA nodes, 24 miRNA nodes, and 301 edges. The functional assay showed that 147 GO terms and 23 pathways were enriched. In addition, three lncRNAs (S5645.1, XR_006437.1, J01878) were highly related to RA, and therefore, were selected as key lncRNAs. This study suggests that specific lncRNAs are associated with the development of RA, and three lncRNAs (S5645.1, XR_006437.1, J01878) could be used as potential diagnostic biomarkers and therapeutic targets.

  19. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Oyoshi Takanori

    2012-01-01

    Full Text Available Abstract The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs, resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT activity in human cells. Transcription regulator EWS (Ewing's sarcoma, which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.

  20. a locally adapted functional outcome measurement score for total

    African Journals Online (AJOL)

    Results and success of total hip arthroplasty are often measured using a functional outcome scoring system. Most current scores were developed in Europe and. North America (1-3). During the evaluation of a Total. Hip Replacement (THR) project in Ouagadougou,. Burkina Faso (4) it was felt that these scores were not.

  1. KLE Translog production function and total factor productivity

    Czech Academy of Sciences Publication Activity Database

    Klacek, J.; Vošvrda, Miloslav; Schlosser, Š.

    2007-01-01

    Roč. 87, č. 4 (2007), s. 261-274 ISSN 0322-788X Institutional research plan: CEZ:AV0Z10750506 Keywords : total factor productivity * translog production function * aggregate production function * least squares method * ridge regression Subject RIV: AH - Economics

  2. Non-functional genes repaired at the RNA level.

    Science.gov (United States)

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Intragraft interleukin 2 mRNA expression during acute cellular rejection and left ventricular total wall thickness after heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Hagman, E M; Mol, W M; Niesters, H G; Maat, A P; Zondervan, P E; Weimar, W; Balk, A H

    OBJECTIVE: To assess whether diastolic graft function is influenced by intragraft interleukin 2 (IL-2) messenger RNA (mRNA) expression in rejecting cardiac allografts. DESIGN: 16 recipients of cardiac allografts were monitored during the first three months after transplantation. The presence of IL-2

  4. Determination of an effective scoring function for RNA-RNA interactions with a physics-based double-iterative method.

    Science.gov (United States)

    Yan, Yumeng; Wen, Zeyu; Zhang, Di; Huang, Sheng-You

    2018-05-18

    RNA-RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA-RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA-RNA interactions based on a training set of 97 diverse RNA-RNA complexes. The double-iterative strategy circumvented the reference state problem in knowledge-based scoring functions by updating the potentials through iteration and also overcame the decoy-dependent limitation in previous iterative methods by constructing the decoys iteratively. The derived scoring function, which is referred to as DITScoreRR, was evaluated on an RNA-RNA docking benchmark of 60 test cases and compared with three other scoring functions. It was shown that for bound docking, our scoring function DITScoreRR obtained the excellent success rates of 90% and 98.3% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 63.3% and 71.7% for van der Waals interactions, 45.0% and 65.0% for ITScorePP, and 11.7% and 26.7% for ZDOCK 2.1, respectively. For unbound docking, DITScoreRR achieved the good success rates of 53.3% and 71.7% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 13.3% and 28.3% for van der Waals interactions, 11.7% and 26.7% for our ITScorePP, and 3.3% and 6.7% for ZDOCK 2.1, respectively. DITScoreRR also performed significantly better in ranking decoys and obtained significantly higher score-RMSD correlations than the other three scoring functions. DITScoreRR will be of great value for the prediction and design of RNA structures and RNA-RNA complexes.

  5. The γ total cross section and the photon structure functions

    International Nuclear Information System (INIS)

    Alexander, G.

    1986-01-01

    A review on the current experimental status of the photon-photon total hadronic cross section as a function of energy and Q 2 is given in addition to the results obtained for the leptonic and hadronic photon structure functions. The results are discussed in terms of the point-like part of the photon and non-perturbative VDM part. It is shown that the cross section at Q 2 = 0 is well described by VDM derived models

  6. Functional assessment of patients after total knee replacement

    Directory of Open Access Journals (Sweden)

    Matla Joanna

    2017-06-01

    Full Text Available Introduction: In the society of the 21st century, osteoarthritis is considered one of the primary causes of the occurrence of pain and disability. Arthroplasty is the treatment of choice for advanced degenerative changes. The aim of the study was to carry out a functional assessment of patients at early stages of rehabilitation after total knee replacement.

  7. Communication, functional disorders and lifestyle changes after total laryngectomy

    NARCIS (Netherlands)

    Ackerstaff, A. H.; Hilgers, F. J.; Aaronson, N. K.; Balm, A. J.

    1994-01-01

    Functional changes after total laryngectomy, including voice quality, hyposmia and dysgeusia, nasal discharge, swallowing and smoking habits were studied by means of a structured interview with 63 laryngectomized patients. Eighty per cent of the patients reported that they were satisfied with the

  8. Renal Function Recovery with Total Artificial Heart Support.

    Science.gov (United States)

    Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar

    2016-01-01

    Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.

  9. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    OpenAIRE

    Zhang, Yunpeng; Liu, Wei; Xu, Yanjun; Li, Chunquan; Wang, Yingying; Yang, Haixiu; Zhang, Chunlong; Su, Fei; Li, Yixue; Li, Xia

    2015-01-01

    Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it i...

  10. Essential nontranslational functions of tRNA synthetases.

    Science.gov (United States)

    Guo, Min; Schimmel, Paul

    2013-03-01

    Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid-binding site for another purpose.

  11. Essential Non-Translational Functions of tRNA Synthetases

    Science.gov (United States)

    Guo, Min; Schimmel, Paul

    2013-01-01

    Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. While these new functions were thought to be ‘moonlighting activities’, many are as critical for cellular homeostasis as the activity in translation. New roles have been associated with cytoplasmic forms as well as with nuclear and secreted extracellular forms that impact pathways for cardiovascular development, the immune response, and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. Novel architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. While a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid binding site for another purpose. PMID:23416400

  12. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function.

    Science.gov (United States)

    Cheng, Liang; Hu, Yang; Sun, Jie; Zhou, Meng; Jiang, Qinghua

    2018-06-01

    DincRNA aims to provide a comprehensive web-based bioinformatics toolkit to elucidate the entangled relationships among diseases and non-coding RNAs (ncRNAs) from the perspective of disease similarity. The quantitative way to illustrate relationships of pair-wise diseases always depends on their molecular mechanisms, and structures of the directed acyclic graph of Disease Ontology (DO). Corresponding methods for calculating similarity of pair-wise diseases involve Resnik's, Lin's, Wang's, PSB and SemFunSim methods. Recently, disease similarity was validated suitable for calculating functional similarities of ncRNAs and prioritizing ncRNA-disease pairs, and it has been widely applied for predicting the ncRNA function due to the limited biological knowledge from wet lab experiments of these RNAs. For this purpose, a large number of algorithms and priori knowledge need to be integrated. e.g. 'pair-wise best, pairs-average' (PBPA) and 'pair-wise all, pairs-maximum' (PAPM) methods for calculating functional similarities of ncRNAs, and random walk with restart (RWR) method for prioritizing ncRNA-disease pairs. To facilitate the exploration of disease associations and ncRNA function, DincRNA implemented all of the above eight algorithms based on DO and disease-related genes. Currently, it provides the function to query disease similarity scores, miRNA and lncRNA functional similarity scores, and the prioritization scores of lncRNA-disease and miRNA-disease pairs. http://bio-annotation.cn:18080/DincRNAClient/. biofomeng@hotmail.com or qhjiang@hit.edu.cn. Supplementary data are available at Bioinformatics online.

  13. Establishment of the total RNA extraction system for lily bulbs with ...

    African Journals Online (AJOL)

    USER

    2011-12-07

    Dec 7, 2011 ... The brightness of. CTAB was higher than that of SDS, which indicated that only improved CTAB method can extract biologically active. RNA from lily bulbs. DISCUSSION. The presence of RNase, which can be classified into endogenous and exogenous, is the major cause for the failure of RNA extraction.

  14. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...

  15. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.

    Science.gov (United States)

    Tay, Felix Chang; Lim, Jia Kai; Zhu, Haibao; Hin, Lau Cia; Wang, Shu

    2015-01-01

    Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  17. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Xiong

    2015-08-01

    Full Text Available microRNAs (miRNAs are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs that contain Argonaute (AGO family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be

  18. An Improved Quick Method for the Isolation of Total RNA from Cotton ...

    African Journals Online (AJOL)

    David PANG

    2011-11-02

    Nov 2, 2011 ... in liquid nitrogen in a mortar and pestle and stored until. RNA isolation. ... our laboratory for microarray analysis, cDNA pyro- sequencing studies and construction ..... Economic and rapid method for extracting cotton genomic ...

  19. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.

    2010-01-01

    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response

  20. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    Science.gov (United States)

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  1. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    Science.gov (United States)

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  2. The identification and functional annotation of RNA structures conserved in vertebrates

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Mirza, Aashiq Hussain; Hansen, Claus

    2017-01-01

    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure-b......-structured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.......Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure......-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ~516k human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (i) co-localize consistently with binding sites of the same RNA binding proteins...

  3. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  4. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    International Nuclear Information System (INIS)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F; Yang, B

    2009-01-01

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  5. Expression and Functional Studies on the Noncoding RNA, PRINS

    Directory of Open Access Journals (Sweden)

    Márta Széll

    2012-12-01

    Full Text Available PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s of PRINS, we searched for a direct interacting partner(s of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin.

  6. Functional long non-coding RNA transcription in Schizosaccharomyces pombe

    OpenAIRE

    Ard, Ryan Anthony

    2016-01-01

    Eukaryotic genomes are pervasively transcribed and frequently generate long noncoding RNAs (lncRNAs). However, most lncRNAs remain uncharacterized. In this work, a set of positionally conserved intergenic lncRNAs in the fission yeast Schizosaccharomyces pombe genome are selected for further analysis. Deleting one of these lncRNA genes (ncRNA.1343) exhibited a clear phenotype: increased drug sensitivity. Further analyses revealed that deleting ncRNA.1343 also disrupted a prev...

  7. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan; Strekalovskiy, Evgeny; Koetter, Sabrina; Cremers, Daniel

    2013-01-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  8. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan

    2013-12-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  9. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC.

    Science.gov (United States)

    Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt

    2017-07-27

    In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Cardiopulmonary function and oxygen delivery during total liquid ventilation.

    Science.gov (United States)

    Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P

    2011-10-01

    Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.

  11. Hepatitis C virus RNA functionally sequesters miR-122

    DEFF Research Database (Denmark)

    Luna, Joseph M; Scheel, Troels K H; Danino, Tal

    2015-01-01

    Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during...

  12. RNA-Mediated Regulation of HMGA1 Function

    Directory of Open Access Journals (Sweden)

    Arndt G. Benecke

    2015-05-01

    Full Text Available The high mobility group protein A1 (HMGA1 is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.

  13. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

    Directory of Open Access Journals (Sweden)

    Aneeshkumar G Arimbasseri

    2015-12-01

    Full Text Available Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(22G26 modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(22G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(22G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(22G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(22G26 modification and that this response is conserved among highly divergent yeasts and human cells.

  15. The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function

    Science.gov (United States)

    Brosius, Jürgen

    2014-01-01

    Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery. PMID:25081515

  16. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    Science.gov (United States)

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    Science.gov (United States)

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  18. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    Science.gov (United States)

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-04

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  19. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    Science.gov (United States)

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  20. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.

    KAUST Repository

    Cesana, Marcella

    2011-10-01

    Recently, a new regulatory circuitry has been identified in which RNAs can crosstalk with each other by competing for shared microRNAs. Such competing endogenous RNAs (ceRNAs) regulate the distribution of miRNA molecules on their targets and thereby impose an additional level of post-transcriptional regulation. Here we identify a muscle-specific long noncoding RNA, linc-MD1, which governs the time of muscle differentiation by acting as a ceRNA in mouse and human myoblasts. Downregulation or overexpression of linc-MD1 correlate with retardation or anticipation of the muscle differentiation program, respectively. We show that linc-MD1 "sponges" miR-133 and miR-133 [corrected] to regulate the expression of MAML1 and MEF2C, transcription factors that activate muscle-specific gene expression. Finally, we demonstrate that linc-MD1 exerts the same control over differentiation timing in human myoblasts, and that its levels are strongly reduced in Duchenne muscle cells. We conclude that the ceRNA network plays an important role in muscle differentiation.

  1. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.

    KAUST Repository

    Cesana, Marcella; Cacchiarelli, Davide; Legnini, Ivano; Santini, Tiziana; Sthandier, Olga; Chinappi, Mauro; Tramontano, Anna; Bozzoni, Irene

    2011-01-01

    Recently, a new regulatory circuitry has been identified in which RNAs can crosstalk with each other by competing for shared microRNAs. Such competing endogenous RNAs (ceRNAs) regulate the distribution of miRNA molecules on their targets and thereby impose an additional level of post-transcriptional regulation. Here we identify a muscle-specific long noncoding RNA, linc-MD1, which governs the time of muscle differentiation by acting as a ceRNA in mouse and human myoblasts. Downregulation or overexpression of linc-MD1 correlate with retardation or anticipation of the muscle differentiation program, respectively. We show that linc-MD1 "sponges" miR-133 and miR-133 [corrected] to regulate the expression of MAML1 and MEF2C, transcription factors that activate muscle-specific gene expression. Finally, we demonstrate that linc-MD1 exerts the same control over differentiation timing in human myoblasts, and that its levels are strongly reduced in Duchenne muscle cells. We conclude that the ceRNA network plays an important role in muscle differentiation.

  2. Structural and functional characterisation of Aichi virus RNA dependent RNA polymerase

    Czech Academy of Sciences Publication Activity Database

    Dubánková, Anna; Humpolíčková, Jana; Šilhán, Jan; Bäumlová, Adriana; Chalupská, Dominika; Klíma, Martin; Bouřa, Evžen

    2017-01-01

    Roč. 15, č. 1 (2017), s. 7-8 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : Aichi virus * RNA replication Subject RIV: CE - Biochemistry

  3. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  4. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  5. A longitudinal study of quality of life and functional status in total hip and total knee replacement patients.

    Science.gov (United States)

    Mandzuk, Lynda L; McMillan, Diana E; Bohm, Eric R

    2015-05-01

    Primary total hip and primary total knee surgeries are commonly performed to improve patients' quality of life and functional status. This longitudinal retrospective study (N = 851) examined self-reported quality of life and functional status over the preoperative and postoperative periods: 12 months prior to surgery, one month prior to surgery and 12 months following surgery. A linear mixed effects model was used to analyze the changes in quality of life and functional status over the sampling period. Patients in the convenience sample reported improvements in quality of life and functional status utilizing the SF-12 and Oxford Hip and Oxford Knee, although differences were noted by procedure and gender. Total hip patients tended to demonstrate greater improvement than total knee patients and males reported higher levels of physical and mental quality of life as well as functional status when compared to females. Of particular note was that mental health scores were consistently lower in both total hip and total knee replacement patients across the perioperative period and up to one year postoperative. This study identifies an opportunity for health care providers to proactively address the mental health of total hip and total knee replacement patients throughout their joint replacement trajectory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks.

    Science.gov (United States)

    Oh, Sangnam; Park, Mi Ri; Son, Seok Jun; Kim, Younghoon

    2015-01-01

    Bovine milk provides essential nutrients, including immunologically important molecules, as the primary source of nutrition to newborns. Recent studies showed that RNAs from bovine milk contain immune-related microRNAs (miRNA) that regulate various immune systems. To evaluate the biological and immunological activity of miRNAs from milk products, isolation methods need to be established. Six methods for extracting total RNAs from bovine colostrums were adopted to evaluate the isolating efficiency and expression of miRNAs. Total RNA from milk was presented in formulation of small RNAs, rather than ribosomal RNAs. Column-combined phenol isolating methods showed high recovery of total RNAs, especially the commercial columns for biofluid samples, which demonstrated outstanding efficiency for recovering miRNAs. We also evaluated the quantity of five immune-related miRNAs (miR-93, miR-106a, miR-155, miR-181a, miR-451) in milk processed by temperature treatments including low temperature for long time (LTLT, 63℃ for 30 min)-, high temperature for short time (HTST, 75℃ for 15 s)-, and ultra heat treatment (UHT, 120-130℃ for 0.5-4 s). All targeted miRNAs had significantly reduced levels in processed milks compared to colostrum and raw mature milk. Interestingly, the amount of immune-related miRNAs from HTST milk was more resistant than those of LTLT and UHT milks. Our present study examined defined methods of RNA isolation and quantification of immune-specific miRNAs from small volumes of milk for use in further analysis.

  7. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    OpenAIRE

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their func...

  8. Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses

    Directory of Open Access Journals (Sweden)

    Justin A. Roby

    2014-01-01

    Full Text Available Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV, Japanese encephalitis virus (JEV, yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA derived from the 3' untranslated region (UTR. sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated.

  9. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.M.; Buermans, H.P.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.H.M.; `t Hoen, P.A.C.

    2012-01-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used

  10. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  11. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows.

    Science.gov (United States)

    Paraskevopoulou, Maria D; Georgakilas, Georgios; Kostoulas, Nikos; Vlachos, Ioannis S; Vergoulis, Thanasis; Reczko, Martin; Filippidis, Christos; Dalamagas, Theodore; Hatzigeorgiou, A G

    2013-07-01

    MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA-gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines.

  12. HIGH ECCENTRICITY EOQ TOTAL COST FUNCTION YIELDS JIT RESULTs

    Directory of Open Access Journals (Sweden)

    Willian Roach

    2010-06-01

    Full Text Available No estoque de bens perecíveis, o custo de armazenamento H é muito maior do que o previsto na fórmula clássica do lote econômico do pedido (EOQ. Para bens perecíveis, a função custo total no EOQ é um pico e não uma reta horizontal. Esta forma pontiaguda leva o modelo EOQ a produzir entregas just in time (JIT - resultados semelhantes. O efeito pontiagudo (excentricidade da curva de custo total do lote econômico EOQ depende apenas do custo de armazenamento (H e não da demanda anual (D ou do custo do pedido (S. D e S determinam o nível (altura da curva de custo total do estoque (TC, mas não a forma.

  13. Dual function of the McaS small RNA in controlling biofilm formation

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel Girke; Thomason, Maureen K.; Havelund, Johannes

    2013-01-01

    , and biofilm formation. Moreover, ectopic McaS expression leads to induction of two additional CsrA-repressed genes encoding diguanylate cyclases. Collectively, our study shows that McaS is a dual-function sRNA with roles in the two major post-transcriptional regulons controlled by the RNA-binding proteins Hfq...

  14. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts

    KAUST Repository

    Alam, Tanvir

    2016-10-12

    Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna

  15. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts

    KAUST Repository

    Alam, Tanvir; Uludag, Mahmut; Essack, Magbubah; Salhi, Adil; Ashoor, Haitham; Hanks, John B.; Kapfer, Craig Eric; Mineta, Katsuhiko; Gojobori, Takashi; Bajic, Vladimir B.

    2016-01-01

    Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna

  16. A locally adapted functional outcome measurement score for total ...

    African Journals Online (AJOL)

    ... in Europe or North America and seem not optimally suited for a general West ... We introduce a cross-cultural adaptation of the Lequesne index as a new score. ... Keywords: THR, Hip, Africa, Functional score, Hip replacement, Arthroscopy ...

  17. MicroRNA Functions in Osteogenesis and Dysfunctions in Osteoporosis

    Science.gov (United States)

    van Wijnen, Andre J.; van de Peppel, Jeroen; van Leeuwen, Johannes P.; Lian, Jane B.; Stein, Gary S.; Westendorf, Jennifer J.; Oursler, Merry-Jo; Sampen, Hee-Jeong Im; Taipaleenmaki, Hanna; Hesse, Eric; Riester, Scott; Kakar, Sanjeev

    2013-01-01

    MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression that control osteoblast mediated bone formation and osteoclast-related bone remodelling. Deregulation of miRNA mediated mechanisms is emerging as an important pathological factor in bone degeneration (e.g., osteoporosis) and other bone-related diseases. MiRNAs are intriguing regulatory molecules that are networked with cell signaling pathways and intricate transcriptional programs through ingenuous circuits with remarkably simple logic. This overview examines key principles by which miRNAs control differentiation of osteoblasts as they evolve from mesenchymal stromal cells during osteogenesis, or of osteoclasts as they originate from monocytic precursors in the hematopoietic lineage during osteoclastogenesis. Of particular note are miRNAs that are temporally up-regulated during osteoblastogenesis (e.g., miR-218) or osteoclastogenesis (e.g., miR-148a). Each miRNA stimulates differentiation by suppressing inhibitory signalling pathways (‘double-negative’ regulation). The excitement surrounding miRNAs in bone biology stems from the prominent effects that individual miRNAs can have on biological transitions during differentiation of skeletal cells and correlations of miRNA dysfunction with bone diseases. MiRNAs have significant clinical potential which is reflected by their versatility as disease-specific biomarkers and their promise as therapeutic agents to ameliorate or reverse bone tissue degeneration. PMID:23605904

  18. Establishment of Lipofection for Studying miRNA Function in Human Adipocytes

    OpenAIRE

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNA...

  19. COMPARISON OF TWO TOTAL RNA EXTRACTION PROTOCOLS FROM CHO-K1 CELLS FOR RT-PCR: CUT-OFF COST FOR RESEARCHERS

    Directory of Open Access Journals (Sweden)

    Vasila Packeer Mohamed

    2014-05-01

    Full Text Available ABSTRACT: Various methods have been described to extract RNA from adherent mammalian cells. RNA isolation in conjunction with reverse transcription polymerase chain reaction (RT-PCR is a valuable tool used to study gene expression profiling. This approach is now being used in mammalian cell bioprocessing to help understand and improve the system. The objective of this study was to compare and determine the most suitable RNA extraction method for CHO-K1 cells in a setting where a relatively large amount of samples was involved. Total RNA was extracted using Total RNA purification kit (without DNase treatment; Norgen, Canada and RNeasy mini kit (with DNase treatment; Qiagen, USA respectively. The extracted RNA was then reverse transcribed, and the cDNA was subjected to PCR-amplifying 18S. Yield from RNeasy kit was significantly higher (0.316 ± 0.033 µg/µl; p=0.004 than Total RNA purification kit (0.177 ± 0.0243 µg/µl. However, RNA purity for both methods was close to 2.0 and there was no significant difference between the methods. Total RNA purification kit is less expensive than RNeasy kit. Since there is no DNase treatment step in the former, extraction time for RNA is shorter. When the extracted RNA was subjected to RT-PCR, both methods were able to show detection of 18S at 219 bp.   Therefore, this study demonstrates that both protocols are suitable for RNA extraction for CHO-K1 cells. RNeasy mini kit (Qiagen is recommended if higher yields is the primary concern and Total RNA Purification kit (Norgen is recommended if time and cost are concerned. ABSTRAK: Pelbagai kaedah telah digunakan untuk mengekstrak RNA daripada sel mamalia lekat.  Pemencilan RNA dengan menggunakan reaksi rantai polimerase transkripsi berbalik (RT-PCR merupakan kaedah penting yang digunakan dalam mengkaji pernyataan gen berprofil.  Pendekatan ini kini digunakan dalam pemprosesan bio sel mamalia untuk memahami dan menambah baik sistem.  Tujuan kajian dijalankan

  20. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  1. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    Directory of Open Access Journals (Sweden)

    Tiffiny Rye-McCurdy

    2016-09-01

    Full Text Available Retroviruses specifically package full-length, dimeric genomic RNA (gRNA even in the presence of a vast excess of cellular RNA. The “psi” (Ψ element within the 5′-untranslated region (5′UTR of gRNA is critical for packaging through interaction with the nucleocapsid (NC domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1 Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.

  2. MicroRNA functional network in pancreatic cancer: From biology to ...

    Indian Academy of Sciences (India)

    [Wang J and Sen S 2011 MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease. ... growth factor type I receptor; INSR, insulin receptor; IPA, Ingenuity Pathway Analysis; IPMN, ..... Prostate cancer signalling.

  3. Stabilization of RNA through Absorption by Functionalized Mesoporous Silicate Nanospheres

    Science.gov (United States)

    2012-11-30

    contaminating RNA ribonucleases (RNases). RNases are known to be present endogenously in cells, tissues, body oils, and bacteria and/or fungi in airborne dust...CTAB was dissolved at 80uC in 475 mL water and 7.0 mL 1.0 M NaOH with stirring. The reactor vessel was a polyethylene bottle suspended in a temperature...of the pores in these materials. Large polyethylene glycol (PEG) molecules, for example, would be expected to occupy a large portion of the available

  4. Foundations of Total Functional Data-Flow Programming

    Directory of Open Access Journals (Sweden)

    Baltasar Trancón y Widemann

    2014-06-01

    Full Text Available The field of declarative stream programming (discrete time, clocked synchronous, modular, data-centric is divided between the data-flow graph paradigm favored by domain experts, and the functional reactive paradigm favored by academics. In this paper, we describe the foundations of a framework for unifying functional and data-flow styles that differs from FRP proper in significant ways: It is based on set theory to match the expectations of domain experts, and the two paradigms are reduced symmetrically to a low-level middle ground, with strongly compositional semantics. The design of the framework is derived from mathematical first principles, in particular coalgebraic coinduction and a standard relational model of stateful computation. The abstract syntax and semantics introduced here constitute the full core of a novel stream programming language.

  5. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.

    2010-07-01

    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response to disease states, growth, developmental and stress signals. RdDM machinery is composed of proteins that produce and modify 24-nt- long siRNAs, recruit the RdDM complex to genomic targets, methylate DNA and remodel chromatin. The final DNA methylation pattern is determined by either DNA methyltransferase alone or by the combined action of DNA methyltransferases and demethylases. The dynamic interaction between RdDM and demethylases may render the plant epigenome plastic to growth, developmental, and environmental cues. The epigenome plasticity may allow the plant genome to assume many epigenomes and to have the right epigenome at the right time in response to intracellular or extracellular stimuli. This review discusses recent advances in RdDM research and considers future perspectives.

  6. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    Science.gov (United States)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  7. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  8. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  9. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  10. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions

    Directory of Open Access Journals (Sweden)

    Jaeil Han

    2016-09-01

    Full Text Available The RNA exosome is a 3′–5′ ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44ch, RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44da, RNA gains direct access to the active site. Here, we show that the Rrp44da exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  11. DIANA-microT web server: elucidating microRNA functions through target prediction.

    Science.gov (United States)

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.

  12. Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2015-01-01

    Full Text Available The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.

  13. Structure and function of initiator methionine tRNA from the mitochondria of Neurospora crassa

    International Nuclear Information System (INIS)

    Heckman, J.E.; Hecker, L.I.; Schwartzbach, S.D.; Barnett, W.E.; Baumstark, B.; RajBhandary, U.L.

    1978-01-01

    Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5' terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from 3' end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence - T psiCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or psi)CG- as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56 to 60%) than to eucaryotic cytoplasmic initiator tRNAs

  14. The identification and functional annotation of RNA structures conserved in vertebrates

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Mirza, Aashiq Hussain; Hansen, Claus

    2017-01-01

    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure...... (RBPs) or (ii) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared...... expression and shared structure despite low abundance and low sequence identity. About 30k CRS regions are located near coding or long non-coding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their non-structured...

  15. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    Directory of Open Access Journals (Sweden)

    Arturo Diaz

    2015-03-01

    Full Text Available Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV RNA replication occurs on perinuclear endoplasmic reticulum (ER membranes in ~70 nm vesicular invaginations (spherules. BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  16. The identification and functional annotation of RNA structures conserved in vertebrates.

    Science.gov (United States)

    Seemann, Stefan E; Mirza, Aashiq H; Hansen, Claus; Bang-Berthelsen, Claus H; Garde, Christian; Christensen-Dalsgaard, Mikkel; Torarinsson, Elfar; Yao, Zizhen; Workman, Christopher T; Pociot, Flemming; Nielsen, Henrik; Tommerup, Niels; Ruzzo, Walter L; Gorodkin, Jan

    2017-08-01

    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality. © 2017 Seemann et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.

    Science.gov (United States)

    Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B

    2018-05-22

    RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.

  18. LNA-modified oligonucleotides mediate specific inhibition of microRNA function

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Kauppinen, Sakari; Lund, Anders H

    2006-01-01

    microRNAs are short, endogenous non-coding RNAs that act as post-transcriptional modulators of gene expression. Important functions for microRNAs have been found in the regulation of development, cellular proliferation and differentiation, while perturbed miRNA expression patterns have been...... observed in many human cancers. Here we present a method for specific inhibition of miRNA function through interaction with LNA-modified antisense oligonucleotides and report the specificity of this application. We show that LNA-modified oligonucleotides can inhibit exogenously introduced miRNAs with high...... specificity using a heterologous reporter assay, and furthermore demonstrate their ability to inhibit an endogenous miRNA in Drosophila melanogaster cells, leading to up-regulation of the cognate target protein. The method shows stoichiometric and reliable inhibition of the targeted miRNA and can thus...

  19. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel

    2015-01-01

    at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...... involved in pathways at the RNA regulatory level with potential to mediate normal and disease-associated functions of the FUS and EWS proteins.......Background FUS (TLS) and EWS (EWSR1) belong to the FET-protein family of RNA and DNA binding proteins. FUS and EWS are structurally and functionally related and participate in transcriptional regulation and RNA processing. FUS and EWS are identified in translocation generated cancer fusion proteins...

  20. The Functional Characterization of Long Noncoding RNA SPRY4-IT1 in Human Melanoma Cells

    OpenAIRE

    Mazar, Joseph; Zhao, Wei; Khalil, Ahmad M.; Lee, Bongyong; Shelley, John; Govindarajan, Subramaniam S.; Yamamoto, Fumiko; Ratnam, Maya; Aftab, Muhammad Nauman; Collins, Sheila; Finck, Brian N.; Han, Xianlin; Mattick, John S.; Dinger, Marcel E.; Perera, Ranjan J.

    2014-01-01

    Expression of the long noncoding RNA (lncRNA) SPRY4-IT1 is low in normal human melanocytes but high in melanoma cells. siRNA knockdown of SPRY4-IT1 blocks melanoma cell invasion and proliferation, and increases apoptosis. To investigate its function further, we affinity purified SPRY4-IT1 from melanoma cells and used mass spectrometry to identify the protein lipin 2, an enzyme that converts phosphatidate to diacylglycerol (DAG), as a major binding partner. SPRY4-IT1 knockdown increases the ac...

  1. Total rRNA-Seq Analysis Gives Insight into Bacterial, Fungal, Protozoal and Archaeal Communities in the Rumen Using an Optimized RNA Isolation Method

    Directory of Open Access Journals (Sweden)

    Chijioke O. Elekwachi

    2017-09-01

    Full Text Available Advances in high throughput, next generation sequencing technologies have allowed an in-depth examination of biological environments and phenomena, and are particularly useful for culture-independent microbial community studies. Recently the use of RNA for metatranscriptomic studies has been used to elucidate the role of active microbes in the environment. Extraction of RNA of appropriate quality is critical in these experiments and TRIzol reagent is often used for maintaining stability of RNA molecules during extraction. However, for studies using rumen content there is no consensus on (1 the amount of rumen digesta to use or (2 the amount of TRIzol reagent to be used in RNA extraction procedures. This study evaluated the effect of using various quantities of ground rumen digesta and of TRIzol reagent on the yield and quality of extracted RNA. It also investigated the possibility of using lower masses of solid-phase rumen digesta and lower amounts of TRIzol reagent than is used currently, for extraction of RNA for metatranscriptomic studies. We found that high quality RNA could be isolated from 2 g of ground rumen digesta sample, whilst using 0.6 g of ground matter for RNA extraction and using 3 mL (a 5:1 TRIzol : extraction mass ratio of TRIzol reagent. This represents a significant savings in the cost of RNA isolation. These lower masses and volumes were then applied in the RNA-Seq analysis of solid-phase rumen samples obtained from 6 Angus X Hereford beef heifers which had been fed a high forage diet (comprised of barley straw in a forage-to-concentrate ratio of 70:30 for 102 days. A bioinformatics analysis pipeline was developed in-house that generated relative abundance values of archaea, protozoa, fungi and bacteria in the rumen and also allowed the extraction of individual rRNA variable regions that could be analyzed in downstream molecular ecology programs. The average relative abundances of rRNA transcripts of archaea, bacteria

  2. Total rRNA-Seq Analysis Gives Insight into Bacterial, Fungal, Protozoal and Archaeal Communities in the Rumen Using an Optimized RNA Isolation Method.

    Science.gov (United States)

    Elekwachi, Chijioke O; Wang, Zuo; Wu, Xiaofeng; Rabee, Alaa; Forster, Robert J

    2017-01-01

    Advances in high throughput, next generation sequencing technologies have allowed an in-depth examination of biological environments and phenomena, and are particularly useful for culture-independent microbial community studies. Recently the use of RNA for metatranscriptomic studies has been used to elucidate the role of active microbes in the environment. Extraction of RNA of appropriate quality is critical in these experiments and TRIzol reagent is often used for maintaining stability of RNA molecules during extraction. However, for studies using rumen content there is no consensus on (1) the amount of rumen digesta to use or (2) the amount of TRIzol reagent to be used in RNA extraction procedures. This study evaluated the effect of using various quantities of ground rumen digesta and of TRIzol reagent on the yield and quality of extracted RNA. It also investigated the possibility of using lower masses of solid-phase rumen digesta and lower amounts of TRIzol reagent than is used currently, for extraction of RNA for metatranscriptomic studies. We found that high quality RNA could be isolated from 2 g of ground rumen digesta sample, whilst using 0.6 g of ground matter for RNA extraction and using 3 mL (a 5:1 TRIzol : extraction mass ratio) of TRIzol reagent. This represents a significant savings in the cost of RNA isolation. These lower masses and volumes were then applied in the RNA-Seq analysis of solid-phase rumen samples obtained from 6 Angus X Hereford beef heifers which had been fed a high forage diet (comprised of barley straw in a forage-to-concentrate ratio of 70:30) for 102 days. A bioinformatics analysis pipeline was developed in-house that generated relative abundance values of archaea, protozoa, fungi and bacteria in the rumen and also allowed the extraction of individual rRNA variable regions that could be analyzed in downstream molecular ecology programs. The average relative abundances of rRNA transcripts of archaea, bacteria, protozoa and fungi in

  3. Targeting MicroRNA Function in Respiratory Diseases: Mini-review

    Directory of Open Access Journals (Sweden)

    Steven eMaltby

    2016-02-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNA molecules that modulate expression of the majority of genes by inhibiting protein translation. Growing literature has identified functional roles for miRNAs across a broad range of biological processes. As such, miRNAs are recognised as potential disease biomarkers and novel targets for therapies. While several miRNA-targeted therapies are currently in clinical trials (e.g. for the treatment of hepatitis C virus infection and cancer, no therapies have targeted miRNAs in respiratory diseases in the clinic. In this mini-review, we review the current knowledge on miRNA expression and function in respiratory diseases, intervention strategies to target miRNA function and considerations specific to respiratory diseases. Altered miRNA expression profiles have been reported in a number of respiratory diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis and idiopathic pulmonary fibrosis. These include alterations in isolated lung tissue, as well as sputum, bronchoalveolar lavage fluids and peripheral blood or serum. The observed alterations in easily accessible body fluids (e.g. serum have been proposed as new biomarkers that may inform disease diagnosis and patient management. In a subset of studies, miRNA-targeted interventions also improved disease outcomes, indicating functional roles for altered miRNA expression in disease pathogenesis. In fact, direct administration of miRNA-targeting molecules to the lung has yielded promising results in a number of animal models. The ability to directly administer compounds to the lung holds considerable promise and may limit potential off-target effects and side effects caused by the systemic administration required to treat other diseases.

  4. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.

    Science.gov (United States)

    Bakan, Feray; Kara, Goknur; Cokol Cakmak, Melike; Cokol, Murat; Denkbas, Emir Baki

    2017-10-01

    Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca ++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse.

    Directory of Open Access Journals (Sweden)

    Oleg M Ganichkin

    Full Text Available Selenocysteine tRNAs (tRNA(Sec exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec-interacting factors are incompletely understood.We applied rational mutagenesis to obtain well diffracting crystals of murine tRNA(Sec. tRNA(Sec lacking the single-stranded 3'-acceptor end ((ΔGCCARNA(Sec yielded a crystal structure at 2.0 Å resolution. The global structure of (ΔGCCARNA(Sec resembles the structure of human tRNA(Sec determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNA(Sec used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2'-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNA(Secin vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn(2+-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNA(Sec.We provide the most highly resolved structure of a tRNA(Sec molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNA(Sec support its interaction with proteins.

  6. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    Science.gov (United States)

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hemodynamics of a functional centrifugal-flow total artificial heart with functional atrial contraction in goats.

    Science.gov (United States)

    Shiga, Takuya; Shiraishi, Yasuyuki; Sano, Kyosuke; Taira, Yasunori; Tsuboko, Yusuke; Yamada, Akihiro; Miura, Hidekazu; Katahira, Shintaro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2016-03-01

    Implantation of a total artificial heart (TAH) is one of the therapeutic options for the treatment of patients with end-stage biventricular heart failure. There is no report on the hemodynamics of the functional centrifugal-flow TAH with functional atrial contraction (fCFTAH). We evaluated the effects of pulsatile flow by atrial contraction in acute animal models. The goats received fCFTAH that we created from two centrifugal-flow ventricular assist devices. Some hemodynamic parameters maintained acceptable levels: heart rate 115.5 ± 26.3 bpm, aortic pressure 83.5 ± 10.1 mmHg, left atrial pressure 18.0 ± 5.9 mmHg, pulmonary pressure 28.5 ± 9.7 mmHg, right atrial pressure 13.6 ± 5.2 mmHg, pump flow 4.0 ± 1.1 L/min (left) 3.9 ± 1.1 L/min (right), and cardiac index 2.13 ± 0.14 L/min/m(2). fCFTAH with atrial contraction was able to maintain the TAH circulation by forming a pulsatile flow in acute animal experiments. Taking the left and right flow rate balance using the low internal pressure loss of the VAD pumps may be easier than by other pumps having considerable internal pressure loss. We showed that the remnant atrial contraction effected the flow rate change of the centrifugal pump, and the atrial contraction waves reflected the heart rate. These results indicate that remnant atria had the possibility to preserve autonomic function in fCFTAH. We may control fCFTAH by reflecting the autonomic function, which is estimated with the flow rate change of the centrifugal pump.

  8. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing

    Directory of Open Access Journals (Sweden)

    C Pellicciari

    2009-06-01

    Full Text Available Advancing adult age is associated with a progressive decrease in skeletal muscle mass, strength and quality known as sarcopenia. The mechanisms underlying age-related skeletal muscle wasting and weakness are manifold and still remain to be fully elucidated. Despite the increasing evidence that the progress of muscle diseases leading to muscle atrophy/dystrophy may be related to defective RNA processing, no data on the morpho-functional features of skeletal muscle nuclei in sarcopenia are available at present. In this view, we have investigated, by combining morphometry and immunocytochemistry at light and electron microscopy, the fine structure of myonuclei as well as the distribution and amount of RNA processing factors in skeletal myofibres of biceps brachii and quadriceps femoris from adult and old rats. Results demonstrate that the myonuclei of aged type II fibres show an increased amount of condensed chromatin and lower amounts of phosphorylated polymerase II and DNA/RNA hybrid molecules, clearly indicating a decrease in pre-mRNA transcription rate compared to adult animals. In addition, myonuclei of aged fibres show decreased amounts of nucleoplasmic splicing factors and an accumulation of cleavage factors, polyadenilated RNA and perichromatin granules, suggesting a reduction in the processing and transport rate of premRNA. During ageing, it seems therefore that in rat myonuclei the entire production chain of mRNA, from synthesis to cytoplasmic export, is less efficient. This failure likely contributes to the reduced responsiveness of muscle cells to anabolic stimuli in the elderly.

  9. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions.

    Science.gov (United States)

    Luo, Yonglun; Blechingberg, Jenny; Fernandes, Ana Miguel; Li, Shengting; Fryland, Tue; Børglum, Anders D; Bolund, Lars; Nielsen, Anders Lade

    2015-11-14

    FUS (TLS) and EWS (EWSR1) belong to the FET-protein family of RNA and DNA binding proteins. FUS and EWS are structurally and functionally related and participate in transcriptional regulation and RNA processing. FUS and EWS are identified in translocation generated cancer fusion proteins and involved in the human neurological diseases amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. To determine the gene regulatory functions of FUS and EWS at the level of chromatin, we have performed chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes involved in pathways at the RNA regulatory level with potential to mediate normal and disease-associated functions of the FUS and EWS proteins.

  10. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Marco Todesco

    2010-07-01

    Full Text Available Many targets of plant microRNAs (miRNAs are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for approximately 20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA-resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants.

  11. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  12. Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite.

    Science.gov (United States)

    Peng, Hui; Lan, Chaowang; Zheng, Yi; Hutvagner, Gyorgy; Tao, Dacheng; Li, Jinyan

    2017-03-24

    MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.

  13. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    Science.gov (United States)

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  14. Comparison of the functional microRNA expression in immune cell subsets of neonates and adults

    Directory of Open Access Journals (Sweden)

    Hong-Ren Yu

    2016-12-01

    Full Text Available Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs are reported involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte sub-populations is important for understanding immune system regulation. In order to explore the unique microRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells (pDCs, and myeloid dendritic cells (mDCs from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced IL-6 and TNF-alpha production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-alpha production. With this functional approach, we provide intact differential microRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.

  15. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

    Science.gov (United States)

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2010-05-01

    Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

  16. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.

    Science.gov (United States)

    Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong

    2017-12-15

    Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM

  17. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  18. The potential lipolysis function of musclin and its mRNA expression ...

    African Journals Online (AJOL)

    Musclin is a newly discovered factor and its functions remain to be defined. This study investigated the tissue expression pattern of musclin gene and its potential effect on lipid metabolism. Musclin mRNA levels in adipose, muscle tissues and primary adipocytes were examined by quantitative PCR. The musclin gene ...

  19. Early days of tRNA research: Discovery, function, purification and ...

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... function in protein synthesis and methods for its purification ... intermediate carrier of the amino acid in protein synthesis. (table 1). .... 14C-leucine were incubated with GTP, PEP, and pyruvate kinase as indicated (adapted from: Hoagland et al 1958). .... Purification of N. crassa mitochondrial initiator tRNA.

  20. Characterization of the TRBP domain required for Dicer interaction and function in RNA interference

    Directory of Open Access Journals (Sweden)

    El Far Mohamed

    2009-05-01

    Full Text Available Abstract Background Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC. While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain. Results We show that the TRBP binding site in Dicer is a 165 amino acid (aa region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4, co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. tarbp2-/- cells, which do not express TRBP, do not support RNA interference (RNAi mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function. Conclusion The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.

  1. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection.

    Directory of Open Access Journals (Sweden)

    Jaspreet S Khurana

    2010-12-01

    Full Text Available Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.

  2. Function and anatomy of plant siRNA pools derived from hairpin transgenes

    Directory of Open Access Journals (Sweden)

    Lee Kevin AW

    2007-11-01

    Full Text Available Abstract Background RNA interference results in specific gene silencing by small-interfering RNAs (siRNAs. Synthetic siRNAs provide a powerful tool for manipulating gene expression but high cost suggests that novel siRNA production methods are desirable. Strong evolutionary conservation of siRNA structure suggested that siRNAs will retain cross-species function and that transgenic plants expressing heterologous siRNAs might serve as useful siRNA bioreactors. Here we report a detailed evaluation of the above proposition and present evidence regarding structural features of siRNAs extracted from plants. Results Testing the gene silencing capacity of plant-derived siRNAs in mammalian cells proved to be very challenging and required partial siRNA purification and design of a highly sensitive assay. Using the above assay we found that plant-derived siRNAs are ineffective for gene silencing in mammalian cells. Plant-derived siRNAs are almost exclusively double-stranded and most likely comprise a mixture of bona fide siRNAs and aberrant partially complementary duplexes. We also provide indirect evidence that plant-derived siRNAs may contain a hitherto undetected physiological modification, distinct from 3' terminal 2-O-methylation. Conclusion siRNAs produced from plant hairpin transgenes and extracted from plants are ineffective for gene silencing in mammalian cells. Thus our findings establish that a previous claim that transgenic plants offer a cost-effective, scalable and sustainable source of siRNAs is unwarranted. Our results also indicate that the presence of aberrant siRNA duplexes and possibly a plant-specific siRNA modification, compromises the gene silencing capacity of plant-derived siRNAs in mammalian cells.

  3. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase.

    Science.gov (United States)

    Watashi, Koichi; Ishii, Naoto; Hijikata, Makoto; Inoue, Daisuke; Murata, Takayuki; Miyanari, Yusuke; Shimotohno, Kunitada

    2005-07-01

    Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.

  4. MicroRNA function and dysregulation in bone tumors: the evidence to date

    International Nuclear Information System (INIS)

    Nugent, Mary

    2014-01-01

    Micro ribonucleic acids (miRNAs) are small non-coding RNA segments that have a role in the regulation of normal cellular development and proliferation including normal osteogenesis. They exert their effects through inhibition of specific target genes at the post-transcriptional level. Many miRNAs have altered expression levels in cancer (either increased or decreased depending on the specific miRNA). Altered miRNA expression profiles have been identified in several malignancies including primary bone tumors such as osteosarcoma and Ewing’s sarcoma. It is thought that they may function as tumor suppressor genes or oncogenes and hence when dysregulated contribute to the initiation and progression of malignancy. miRNAs are also thought to have a role in the development of bone metastases in other malignancies. In addition, evidence increasingly suggests that miRNAs may play a part in determining the response to chemotherapy in the treatment of osteosarcoma. These molecules are readily detectable in tissues, both fresh and formalin fixed paraffin embedded and, more recently, in blood. Although there are fewer published studies regarding circulating miRNA profiles, they appear to reflect changes in tissue expression. Thus miRNAs may serve as potential indicators of disease presence but more importantly, may have a role in disease characterization or as potential therapeutic targets. This review gives a brief overview of miRNA biochemistry and explores the evidence to date implicating these small molecules in the pathogenesis of bone tumors

  5. Establishment of lipofection for studying miRNA function in human adipocytes.

    Science.gov (United States)

    Enlund, Eveliina; Fischer, Simon; Handrick, René; Otte, Kerstin; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2014-01-01

    miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNAs into these cells. To achieve this, we compared the efficiencies of three transfection agents, Lipofectamine 2000, ScreenFect A and BPEI 1.2 k in delivering fluorescent-labelled siRNA into human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes and adipocytes. Downregulation of a specific target gene in response to miRNA mimic overexpression was assayed in SGBS cells and also in ex vivo differentiated primary human adipocytes. Our results demonstrated that while all three transfection agents were able to internalize the oligos, only lipofection resulted in the efficient downregulation of a specific target gene both in SGBS cells and in primary human adipocytes. Lipofectamine 2000 outperformed ScreenFect A in preadipocytes, but in adipocytes the two reagents gave comparable results making ScreenFect A a notable new alternative for the gold standard Lipofectamine 2000.

  6. Establishment of lipofection for studying miRNA function in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Eveliina Enlund

    Full Text Available miRNA dysregulation has recently been linked to human obesity and its related complications such as type 2 diabetes. In order to study miRNA function in human adipocytes, we aimed for the modulation of mature miRNA concentration in these cells. Adipocytes, however, tend to be resistant to transfection and there is often a need to resort to viral transduction or electroporation. Our objective therefore was to identify an efficient, non-viral transfection reagent capable of delivering small RNAs into these cells. To achieve this, we compared the efficiencies of three transfection agents, Lipofectamine 2000, ScreenFect A and BPEI 1.2 k in delivering fluorescent-labelled siRNA into human Simpson-Golabi-Behmel syndrome (SGBS preadipocytes and adipocytes. Downregulation of a specific target gene in response to miRNA mimic overexpression was assayed in SGBS cells and also in ex vivo differentiated primary human adipocytes. Our results demonstrated that while all three transfection agents were able to internalize the oligos, only lipofection resulted in the efficient downregulation of a specific target gene both in SGBS cells and in primary human adipocytes. Lipofectamine 2000 outperformed ScreenFect A in preadipocytes, but in adipocytes the two reagents gave comparable results making ScreenFect A a notable new alternative for the gold standard Lipofectamine 2000.

  7. Structural Analysis of ‘key’ Interactions in Functional RNA Molecules

    KAUST Repository

    Chawla, Mohit

    2018-04-01

    The main objective of the thesis is to carry out structural bioinformatics study along with usage of advanced quantum chemical methods to look at the structural stability and energetics of RNA building blocks. The main focus of the work described here lies on understanding the reasons behind the intrinsic stability of key interactions in nucleic acids. Crystal structures of RNA molecules exhibit fascinating variety of non-covalent interactions, which play an important role in maintaining the three dimensional structures. An accurate atomic level description of these interactions in the structural building blocks of RNA is a key to understand the structure-function relationship in these molecules. An effort has been made to link the conclusions drawn from quantum chemical computations on RNA base pairs in wide biochemical context of their occurrence in RNA structures. The initial attention was on the impact of natural and non-natural modifications of the nucleic acid bases on the structure and stability of base pairs that they are involved in. In the remaining sections we cover other molecular interactions shaping nucleic acids, as the interaction between ribose and the bases, and the fluoride sensing riboswitch system in order to investigate structure and dynamics of nucleic acids at the atomic level and to gain insight into the physical chemistry behind.

  8. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    Science.gov (United States)

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  9. MicroRNA function and dysregulation in bone tumors: the evidence to date.

    LENUS (Irish Health Repository)

    Nugent, Mary

    2014-01-01

    Micro ribonucleic acids (miRNAs) are small non-coding RNA segments that have a role in the regulation of normal cellular development and proliferation including normal osteogenesis. They exert their effects through inhibition of specific target genes at the post-transcriptional level. Many miRNAs have altered expression levels in cancer (either increased or decreased depending on the specific miRNA). Altered miRNA expression profiles have been identified in several malignancies including primary bone tumors such as osteosarcoma and Ewing\\'s sarcoma. It is thought that they may function as tumor suppressor genes or oncogenes and hence when dysregulated contribute to the initiation and progression of malignancy. miRNAs are also thought to have a role in the development of bone metastases in other malignancies. In addition, evidence increasingly suggests that miRNAs may play a part in determining the response to chemotherapy in the treatment of osteosarcoma. These molecules are readily detectable in tissues, both fresh and formalin fixed paraffin embedded and, more recently, in blood. Although there are fewer published studies regarding circulating miRNA profiles, they appear to reflect changes in tissue expression. Thus miRNAs may serve as potential indicators of disease presence but more importantly, may have a role in disease characterization or as potential therapeutic targets. This review gives a brief overview of miRNA biochemistry and explores the evidence to date implicating these small molecules in the pathogenesis of bone tumors.

  10. Structural Analysis of ‘key’ Interactions in Functional RNA Molecules

    KAUST Repository

    Chawla, Mohit

    2018-01-01

    The main objective of the thesis is to carry out structural bioinformatics study along with usage of advanced quantum chemical methods to look at the structural stability and energetics of RNA building blocks. The main focus of the work described here lies on understanding the reasons behind the intrinsic stability of key interactions in nucleic acids. Crystal structures of RNA molecules exhibit fascinating variety of non-covalent interactions, which play an important role in maintaining the three dimensional structures. An accurate atomic level description of these interactions in the structural building blocks of RNA is a key to understand the structure-function relationship in these molecules. An effort has been made to link the conclusions drawn from quantum chemical computations on RNA base pairs in wide biochemical context of their occurrence in RNA structures. The initial attention was on the impact of natural and non-natural modifications of the nucleic acid bases on the structure and stability of base pairs that they are involved in. In the remaining sections we cover other molecular interactions shaping nucleic acids, as the interaction between ribose and the bases, and the fluoride sensing riboswitch system in order to investigate structure and dynamics of nucleic acids at the atomic level and to gain insight into the physical chemistry behind.

  11. Structure-function relationship of substituted bromomethylcoumarins in nucleoside specificity of RNA alkylation.

    Science.gov (United States)

    Kellner, Stefanie; Kollar, Laura Bettina; Ochel, Antonia; Ghate, Manjunath; Helm, Mark

    2013-01-01

    Selective alkylation of RNA nucleotides is an important field of RNA biochemistry, e.g. in applications of fluorescent labeling or in structural probing experiments, yet detailed structure-function studies of labeling agents are rare. Here, bromomethylcoumarins as reactive compounds for fluorescent labeling of RNA are developed as an attractive scaffold on which electronic properties can be modulated by varying the substituents. Six different 4-bromomethyl-coumarins of various substitution patterns were tested for nucleotide specificity of RNA alkylation using tRNA from Escherichia coli as substrate. Using semi-quantitative LC-MS/MS analysis, reactions at mildly acidic and slightly alkaline pH were compared. For all tested compounds, coumarin conjugates with 4-thiouridine, pseudouridine, guanosine, and uridine were identified, with the latter largely dominating. This data set shows that selectivity of ribonucleotide alkylation depends on the substitution pattern of the reactive dye, and even more strongly on the modulation of the reaction conditions. The latter should be therefore carefully optimized when striving to achieve selectivity. Interestingly, the highest selectivity for labeling of a modified nucleoside, namely of 4-thiouridine, was achieved with a compound whose selectivity was somewhat less dependent on reaction conditions than the other compounds. In summary, bromomethylcoumarin derivatives are a highly interesting class of compounds, since their selectivity for 4-thiouridine can be efficiently tuned by variation of substitution pattern and reaction conditions.

  12. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  13. Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes.

    Science.gov (United States)

    Tu, Shikui; Wu, Monica Z; Wang, Jie; Cutter, Asher D; Weng, Zhiping; Claycomb, Julie M

    2015-01-01

    As a champion of small RNA research for two decades, Caenorhabditis elegans has revealed the essential Argonaute CSR-1 to play key nuclear roles in modulating chromatin, chromosome segregation and germline gene expression via 22G-small RNAs. Despite CSR-1 being preserved among diverse nematodes, the conservation and divergence in function of the targets of small RNA pathways remains poorly resolved. Here we apply comparative functional genomic analysis between C. elegans and Caenorhabditis briggsae to characterize the CSR-1 pathway, its targets and their evolution. C. briggsae CSR-1-associated small RNAs that we identified by immunoprecipitation-small RNA sequencing overlap with 22G-RNAs depleted in cbr-csr-1 RNAi-treated worms. By comparing 22G-RNAs and target genes between species, we defined a set of CSR-1 target genes with conserved germline expression, enrichment in operons and more slowly evolving coding sequences than other genes, along with a small group of evolutionarily labile targets. We demonstrate that the association of CSR-1 with chromatin is preserved, and show that depletion of cbr-csr-1 leads to chromosome segregation defects and embryonic lethality. This first comparative characterization of a small RNA pathway in Caenorhabditis establishes a conserved nuclear role for CSR-1 and highlights its key role in germline gene regulation across multiple animal species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Functional regulation of RNA-induced silencing complex by photoreactive oligonucleotides.

    Science.gov (United States)

    Matsuyama, Yohei; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2014-02-01

    We developed a novel method for regulation of RISC function by photoreactive oligonucleotides (Ps-Oligo) containing 2'-O-psoralenylmethoxyethyl adenosine (Aps). We observed that inhibitory effects of Ps-Oligos on RISC function were enhanced by UV-irradiation compared with 2'-O-methyl-oligonucleotide without Aps. These results suggest Ps-Oligo inhibited RISC function by cross-linking effect, and we propose that the concept described in this report may be promising and applicable one to regulate the small RNA-mediated post-transcriptional regulation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Flexible and Versatile as a Chameleon—Sophisticated Functions of microRNA-199a

    Directory of Open Access Journals (Sweden)

    Shen Gu

    2012-07-01

    Full Text Available Although widely studied in the past decade, our knowledge of the functional role of microRNAs (miRNAs remains limited. Among the many miRNAs identified in humans, we focus on miR-199a due to its varied and important functions in diverse models and systems. Its expression is finely regulated by promoter methylation and direct binding of transcription factors such as TWIST1. During tumorigenesis, depending on the nature of the cancer, miR-199a, especially its -3p mature form, may act as either a potential tumor suppressor or an oncogene. Its 5p mature form has been shown to protect cardiomyocytes from hypoxic damage via its action on HIF1α. It also has a functional role in stem cell differentiation, embryo development, hepatitis, liver fibrosis, etc. Though it has varied biological activities, its regulation has not been reviewed. The varied and protean functions of miR-199a suggest that efforts to generalize the action of a miRNA are problematic. This review provides a comprehensive survey of the literature on miR-199a as an example of the complexity of miRNA biology and suggests future directions for miRNA research.

  16. Site-Specific Incorporation of Functional Components into RNA by an Unnatural Base Pair Transcription System

    Directory of Open Access Journals (Sweden)

    Rie Kawai

    2012-03-01

    Full Text Available Toward the expansion of the genetic alphabet, an unnatural base pair between 7-(2-thienylimidazo[4,5-b]pyridine (Ds and pyrrole-2-carbaldehyde (Pa functions as a third base pair in replication and transcription, and provides a useful tool for the site-specific, enzymatic incorporation of functional components into nucleic acids. We have synthesized several modified-Pa substrates, such as alkylamino-, biotin-, TAMRA-, FAM-, and digoxigenin-linked PaTPs, and examined their transcription by T7 RNA polymerase using Ds-containing DNA templates with various sequences. The Pa substrates modified with relatively small functional groups, such as alkylamino and biotin, were efficiently incorporated into RNA transcripts at the internal positions, except for those less than 10 bases from the 3′-terminus. We found that the efficient incorporation into a position close to the 3′-terminus of a transcript depended on the natural base contexts neighboring the unnatural base, and that pyrimidine-Ds-pyrimidine sequences in templates were generally favorable, relative to purine-Ds-purine sequences. The unnatural base pair transcription system provides a method for the site-specific functionalization of large RNA molecules.

  17. Variation in Differential and Total Cross Sections Due to Different Radial Wave Functions

    Science.gov (United States)

    Williamson, W., Jr.; Greene, T.

    1976-01-01

    Three sets of analytical wave functions are used to calculate the Na (3s---3p) transition differential and total electron excitation cross sections by Born approximations. Results show expected large variations in values. (Author/CP)

  18. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes.

    Science.gov (United States)

    Carlson, Hanqian L; Quinn, Jeffrey J; Yang, Yul W; Thornburg, Chelsea K; Chang, Howard Y; Stadler, H Scott

    2015-12-01

    Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage.

  19. Long Noncoding RNA HOTAIR Controls Cell Cycle by Functioning as a Competing Endogenous RNA in Esophageal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Kewei Ren

    2016-12-01

    Full Text Available Recent studies have shown that long noncoding RNAs (lncRNAs play pivotal roles in the initiation and progression of cancer, including esophageal squamous cell carcinoma (ESCC. The lncRNA HOX transcript antisense RNA (HOTAIR was reported to be dysregulated and correlated with the progression of ESCC. However, the biological role and the underlying mechanism of HOTAIR in the development of ESCC remain unclear. Herein, we found that HOTAIR was aberrantly upregulated in ESCC cells and that HOTAIR depletion inhibited proliferation and led to G1 cell cycle arrest in ESCC cells. Besides, we found that HOTAIR acted as an endogenous sponge to downregulate miR-1 expression by directly binding to miR-1. Furthermore, HOTAIR overturned the effect of miR-1 on the proliferation and cell cycle profile in ESCC cells, which involved the derepression of cyclin D1 (CCND1 expression, a target of miR-1. Taken together, our study elucidated a novel HOTAIR /miR-1/CCND1 regulatory axis in which HOTAIR acted as a competing endogenous RNA by sponging miR-1 and upregulated CCND1 expression, thereby facilitating the tumorigenesis of ESCC. Investigation of this lncRNA/miRNA/mRNA pathway may contribute to a better understanding of ESCC pathogenesis and facilitate the development of lncRNA-directed therapy against this disease.

  20. Natural aminoacyl tRNA synthetase fragment enhances cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Margaret E McCormick

    Full Text Available A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.

  1. Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins.

    Science.gov (United States)

    Mondal, Samiran; Begum, Nasim A; Hu, Wenjun; Honjo, Tasuku

    2016-03-15

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.

  2. Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC.

    Science.gov (United States)

    Ariyoshi, Jumpei; Momokawa, Daiki; Eimori, Nao; Kobori, Akio; Murakami, Akira; Yamayoshi, Asako

    2015-12-16

    MicroRNAs (miRNAs) are known to be important post-transcription regulators of gene expression. Aberrant miRNA expression is associated with pathological disease processes, including carcinogenesis. Therefore, miRNAs are considered significant therapeutic targets for cancer therapy. MiRNAs do not act alone, but exhibit their functions by forming RNA-induced silencing complex (RISC). Thus, the regulation of RISC activity is a promising approach for cancer therapy. MiRNA is a core component of RISC and is an essential to RISC for recognizing target mRNA. Thereby, it is expected that development of the method to promote the release of miRNA from RISC would be an effective approach for inhibition of RISC activity. In this study, we synthesized novel peptide-conjugated oligonucleotides (RINDA-as) to promote the release of miRNA from RISC. RINDA-as showed a high rate of miRNA release from RISC and high level of inhibitory effect on RISC activity.

  3. Tiny giants of gene regulation: experimental strategies for microRNA functional studies

    Science.gov (United States)

    Steinkraus, Bruno R.; Toegel, Markus

    2016-01-01

    The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA–target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high‐throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA–target binding events in vivo drove the emergence of a slew of high‐throughput multiplex strategies, which now provide a viable prospect for elucidating genome‐wide miRNA–target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post‐transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high‐precision interference with their direct, endogenous targets. WIREs Dev Biol 2016, 5:311–362. doi: 10.1002/wdev.223 For further resources related to this article, please visit the WIREs website. PMID:26950183

  4. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    Science.gov (United States)

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-10-11

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  5. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex.

    Science.gov (United States)

    Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel

    2003-08-01

    Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.

  6. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle.

    Science.gov (United States)

    Borgenvik, Marcus; Apró, William; Blomstrand, Eva

    2012-03-01

    Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.

  7. A Note on Using Unbounded Functions on Totally Bounded Sets in ...

    African Journals Online (AJOL)

    From a real-valued function f, unbounded on a totally bounded subset of a metric space, we construct a Cauchy sequence in S on which f is unbounded. Taking f to be a reciprocal Lebesgue number function, for an open cover of S, gives a rapid proof that S is compact when it is complete, without recourse to ...

  8. Male sexual function and lower urinary tract symptoms after laparoscopic total mesorectal excision

    NARCIS (Netherlands)

    Breukink, S. O.; Driel, M. F. van; Pierie, J. P. E. N.; Dobbins, C.; Wiggers, T.; Meijerink, W. J. H. J.

    2008-01-01

    The aim of this study was to investigate sexual function and the presence of lower urinary tract symptoms (LUTS) in male patients with rectal cancer following short-term radiotherapy and laparoscopic total mesorectal excision (LTME) by physical and psychological measurements. Sexual function and

  9. Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex

    Science.gov (United States)

    Hu, Guangzhen; Gupta, Shiv K.; Troska, Tammy P.; Nair, Asha; Gupta, Mamta

    2017-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by rapid disease progression. The needs for new therapeutic strategies for MCL patients call for further understanding on the molecular mechanisms of pathogenesis of MCL. Recently, long noncoding RNAs (lncRNAs) have been recognized as key regulators of gene expression and disease development, however, the role of lncRNAs in non-Hodgkin lymphoma and specifically in MCL is still unknown. Next generation RNA-sequencing was carried out on MCL patient samples along with normal controls and data was analyzed. As a result, several novel lncRNAs were found significantly overexpressed in the MCL samples with lncRNA ROR1-AS1 the most significant one. We cloned the ROR1-AS1 lncRNA in expression vector and ectopically transfected in MCL cell lines. Results showed that overexpression of ROR1-AS1 lncRNA promoted growth of MCL cells while decreased sensitivity to the treatment with drugs ibrutinib and dexamethasone. ROR-AS1 overexpression also decreased the mRNA expression of P16 (P = 0.21), and SOX11 (p = 0.017), without much effect on P53, ATM and P14 mRNA. RNA-immunoprecipitation assays demonstrated high affinity binding of lncRNA ROR1-AS1 with EZH2 and SUZ12 proteins of the polycomb repressive complex-2 (PRC2). Suppressing EZH2 activity with pharmacological inhibitor GSK343 abolished binding of ROR1-AS1 with EZH2. Taken together, this study identified a functional lncRNA ROR-AS1 involved with regulation of gene transcription via associating with PRC2 complex, and may serve as a novel biomarker in MCL patients. PMID:29113297

  10. Total-dielectric-function approach to electron and phonon response in solids

    International Nuclear Information System (INIS)

    Penn, D.R.; Lewis, S.P.; Cohen, M.L.

    1995-01-01

    The interaction between two test charges, the response of a solid to an external field, and the normal modes of the solid can be determined from a total dielectric function that includes both electronic and lattice polarizabilities as well as local-field effects. In this paper we examine the relationship between superconductivity and the stability of a solid and derive sum rules for the electronic part of the dielectric function. It is also shown that there are negative eigenvalues of the total static dielectric function, implying the possibility of an attractive interaction between test charges. An attractive interaction is required for superconductivity

  11. Effect of pre-operative neuromuscular training on functional outcome after total knee replacement

    DEFF Research Database (Denmark)

    Huber, Erika O; de Bie, Rob A; Roos, Ewa M.

    2013-01-01

    Total Knee Replacement (TKR) is the standard treatment for patients with severe knee osteoarthritis (OA). Significant improvement in pain and function are seen after TKR and approximately 80% of patients are very satisfied with the outcome. Functional status prior to TKR is a major predictor...... of outcome after the intervention. Thus, improving functional status prior to surgery through exercise may improve after surgery outcome. However, results from several previous trials testing the concept have been inconclusive after surgery....

  12. Developmental and functional expression of miRNA-stability related genes in the nervous system.

    Science.gov (United States)

    de Sousa, Érica; Walter, Lais Takata; Higa, Guilherme Shigueto Vilar; Casado, Otávio Augusto Nocera; Kihara, Alexandre Hiroaki

    2013-01-01

    In the nervous system, control of gene expression by microRNAs (miRNAs) has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We first detected two genes in the retina that have been associated to miRNA stability, XRN2 and PAPD4. These genes are highly expressed during retinal development, however with distinct subcellular localization. We investigated whether these proteins are regulated during specific phases of the cell cycle. Combined analyses of nuclei position in neuroblastic layer and labeling using anti-cyclin D1 revealed that both proteins do not accumulate in S or M phases of the cell cycle, being poorly expressed in progenitor cells. Indeed, XRN2 and PAPD4 were observed mainly after neuronal differentiation, since low expression was also observed in astrocytes, endothelial and microglial cells. XRN2 and PAPD4 are expressed in a wide variety of neurons, including horizontal, amacrine and ganglion cells. To evaluate the functional role of both genes, we carried out experiments addressed to the retinal adaptation in response to different ambient light conditions. PAPD4 is upregulated after 3 and 24 hours of dark- adaptation, revealing that accumulation of this protein is governed by ambient light levels. Indeed, the fast and functional regulation of PAPD4 was not related to changes in gene expression, disclosing that control of protein levels occurs by post-transcriptional mechanisms. Furthermore, we were able to quantify changes in PAPD4 in specific amacrine cells after dark -adaptation, suggesting for circuitry-related roles in visual perception. In summary, in this study we first described the

  13. Orthogonal use of a human tRNA synthetase active site to achieve multi-functionality

    Science.gov (United States)

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B.; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A.; Schimmel, Paul; Yang, Xiang-Lei

    2011-01-01

    Protein multi-functionality is an emerging explanation for the complexity of higher organisms. In this regard, while aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, some also act in pathways for inflammation, angiogenesis, and apoptosis. How multiple functions evolved and their relationship to the active site is not clear. Here structural modeling analysis, mutagenesis, and cell-based functional studies show that the potent angiostatic, natural fragment of human TrpRS associates via Trp side chains that protrude from the cognate cellular receptor VE-cadherin. Modeling indicates that (I prefer the way it was because the conclusion was reached not only by modeling, but more so by experimental studies.)VE-cadherin Trp side chains fit into the Trp-specific active site of the synthetase. Thus, specific side chains of the receptor mimic (?) amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multi-functionality of human tRNA synthetases and other proteins. PMID:20010843

  14. Harris functional and related methods for calculating total energies in density-functional theory

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1990-01-01

    The simplified energy functional of Harris has given results of useful accuracy for systems well outside the limits of weakly interacting fragments for which the method was originally proposed. In the present study, we discuss the source of the frequent good agreement of the Harris energy with full Kohn-Sham self-consistent results. A procedure is described for extending the applicability of the scheme to more strongly interacting systems by going beyond the frozen-atom fragment approximation. A gradient-force expression is derived, based on the Harris functional, which accounts for errors in the fragment charge representation. Results are presented for some diatomic molecules, illustrating the points of this study

  15. Considerations in the identification of functional RNA structural elements in genomic alignments

    Directory of Open Access Journals (Sweden)

    Blencowe Benjamin J

    2007-01-01

    Full Text Available Abstract Background Accurate identification of novel, functional noncoding (nc RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. Results We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component was

  16. An intronic microRNA silences genes that are functionally antagonistic to its host gene.

    Science.gov (United States)

    Barik, Sailen

    2008-09-01

    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.

  17. The functional half-life of an mRNA depends on the ribosome spacing in an early coding region

    DEFF Research Database (Denmark)

    Pedersen, Margit; Nissen, Søren; Mitarai, Namiko

    2011-01-01

    Bacterial mRNAs are translated by closely spaced ribosomes and degraded from the 5'-end, with half-lives of around 2 min at 37 °C in most cases. Ribosome-free or "naked" mRNA is known to be readily degraded, but the initial event that inactivates the mRNA functionally has not been fully described...

  18. Characteristics of Patients With Satisfactory Functional Gain Following Total Joint Arthroplasty in a Postacute Rehabilitation Setting.

    Science.gov (United States)

    Hershkovitz, Avital; Vesilkov, Marina; Beloosesky, Yichayaou; Brill, Shai

    2017-01-10

    Total joint arthroplasty (TJA) is an effective and successful treatment of osteoarthritis of the hip and knee as quantified by several measures, such as pain relief, improved walking, improved self-care, functions, and increased quality of life. Data are lacking as to the definition of a satisfactory functional gain in a postacute setting and identifying the characteristics of older patients with TJA who may achieve that gain. Our aim was to characterize patients who may achieve a satisfactory functional gain in a postacute rehabilitation setting following TJA. This was a retrospective study of 180 patients with TJA admitted during 2010-2013. The main outcome measures were the Functional Independence Measure (FIM), the Montebello Rehabilitation Factor Score (MRFS) on the motor FIM, and the Timed Get Up and Go Test. Satisfactory functional gain was defined as an mFIM MRFS score above median score. Comparisons of clinical and demographic characteristics between patients who achieved a satisfactory functional gain versus those who did not were performed by the Mann-Whitney U test and the χ test. The proportion of patients who achieved a satisfactory functional gain was similar in the total knee arthroplasty and total hip arthroplasty (THA) groups. The most significant characteristic of patients who achieved a satisfactory functional gain was their admission functional ability. Age negatively impacted the ability to achieve a satisfactory functional gain in patients with THA. Functional level on admission is the best predictive factor for a better rehabilitation outcome for patients with TJA. Age negatively affects functional gain in patients with THA.

  19. Relationship between circulating microRNA-30c with total- and LDL-cholesterol, their circulatory transportation and effect of statins.

    Science.gov (United States)

    Sodi, Ravinder; Eastwood, Jarlath; Caslake, Muriel; Packard, Chris J; Denby, Laura

    2017-03-01

    Small non-coding microRNAs (miR) have important regulatory roles and are used as biomarkers of disease. We investigated the relationship between lipoproteins and circulating miR-30c, evaluated how they are transported in circulation and determined whether statins altered the circulating concentration of miR-30c. To determine the relationship between lipoproteins and circulating miR-30c, serum samples from 79 subjects recruited from a lipid clinic were evaluated. Ultracentrifugation and nanoparticle tracking analysis was used to evaluate the transportation of miR-30c in the circulation by lipoproteins and extracellular vesicles in three healthy volunteers. Using archived samples from previous studies, the effects of 40mg rosuvastatin (n=22) and 40mg pravastatin (n=24) on miR-30c expression was also examined. RNA extraction, reverse transcription-quantitative real-time polymerase chain reaction was carried out using standard procedures. When stratified according to total cholesterol concentration, there was increased miR-30c expression in the highest compared to the lowest tertile (p=0.035). There was significant positive correlation between miR-30c and total- (r=0.367; p=0.002) and LDL-cholesterol (r=0.391; p=0.001). We found that miR-30c was transported in both exosomes and on HDL3. There was a 3.8-fold increased expression of circulating miR-30c after pravastatin treatment for 1year (p=0.005) but no significant change with atorvastatin after 8weeks (p=0.145). This study shows for the first-time in humans that circulating miR-30c is significantly, positively correlated with total- and LDL-cholesterol implicating regulatory functions in lipid homeostasis. We show miR-30c is transported in both exosomes and on HDL3 and pravastatin therapy significantly increased circulating miR-30c expression adding to the pleiotropic dimensions of statins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

    Science.gov (United States)

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo

    2018-05-20

    We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The influence of optimism on functionality after total hip replacement surgery.

    Science.gov (United States)

    Balck, Friedrich; Lippmann, Maike; Jeszenszky, Csilla; Günther, Klaus-Peter; Kirschner, Stephan

    2016-08-01

    Among other factors, optimism has been shown to significantly influence the course of some diseases (cancer, HIV, coronary heart disease). This study investigated whether optimism of a patient before a total hip replacement can predict the functionality of the lower limbs 3 and 6 months after surgery. A total of 325 patients took part in the study (age: 58.7 years; w: 55%). The functionality was measured with the Western Ontario and McMaster Universities arthrosis index, and optimism with the Life Orientation Test. To analyse the influences of age, gender and optimism, general linear models were calculated. In optimistic patients, functionality improved significantly over time. The study showed a clear influence of dispositional optimism on the recovery after total hip replacement in the first 3 months after surgery. © The Author(s) 2015.

  2. Function and Application Areas in Medicine of Non-Coding RNA

    Directory of Open Access Journals (Sweden)

    Figen Guzelgul

    2009-06-01

    Full Text Available RNA is the genetic material converting the genetic code that it gets from DNA into protein. While less than 2 % of RNA is converted into protein , more than 98 % of it can not be converted into protein and named as non-coding RNAs. 70 % of noncoding RNAs consists of introns , however, the rest part of them consists of exons. Non-coding RNAs are examined in two classes according to their size and functions. Whereas they are classified as long non-coding and small non-coding RNAs according to their size , they are grouped as housekeeping non-coding RNAs and regulating non-coding RNAs according to their function. For long years ,these non-coding RNAs have been considered as non-functional. However, today, it has been proved that these non-coding RNAs play role in regulating genes and in structural, functional and catalitic roles of RNAs converted into protein. Due to its taking a role in gene silencing mechanism, particularly in medical world , non-coding RNAs have led to significant developments. RNAi technolgy , which is used in designing drugs to be used in treatment of various diseases , is a ray of hope for medical world. [Archives Medical Review Journal 2009; 18(3.000: 141-155

  3. A simple functional form for proton-208Pb total reaction cross sections

    International Nuclear Information System (INIS)

    Majumdar, S.; Deb, P.K.; Amos, K.

    2001-01-01

    A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering from 208 Pb of protons with energies in the range 30 to 300 MeV. The ratios of the total reaction cross sections calculated under this approximations compared well (to within a few percent) to those determined from the microscopic optical model potentials

  4. Respective Functions of Two Distinct Siwi Complexes Assembled during PIWI-Interacting RNA Biogenesis in Bombyx Germ Cells

    Directory of Open Access Journals (Sweden)

    Kazumichi M. Nishida

    2015-01-01

    Full Text Available PIWI-interacting RNA (piRNA biogenesis consists of two sequential steps: primary piRNA processing and the ping-pong cycle that depends on reciprocal Slicer-mediated RNA cleavage by PIWI proteins. However, the molecular functions of the factors involved remain elusive. Here, we show that RNAs cleaved by a Bombyx mori PIWI, Siwi, remain bound to the protein upon cleavage but are released by a DEAD box protein BmVasa. BmVasa copurifies with Siwi but not another PIWI BmAgo3. A lack of BmVasa does not affect primary piRNA processing but abolishes the ping-pong cycle. Siwi also forms a complex with BmSpn-E and BmQin. This complex is physically separable from the Siwi/BmVasa complex. BmSpn-E, unlike BmVasa, is necessary for primary piRNA production. We propose a model for piRNA biogenesis, where the BmSpn-E/BmQin dimer binds Siwi to function in primary piRNA processing, whereas BmVasa, by associating with Siwi, ensures target RNA release upon cleavage to facilitate the ping-pong cycle.

  5. The functional dependence of the total hazard from an air pollution incidence on the environmental parameters

    International Nuclear Information System (INIS)

    Skibin, D.

    1980-01-01

    A general case of release to the atmosphere of a pollutant is considered. In hazards evaluation the processes involved are usually estimated conservatively so as to maximize the computed doses. The present work helps to identify the worst cases. In addition, a model of the total dose is presented and its variations are studied as a function of wind speed, deposition velocity and source height. The value of each parameter giving the highest total dose as a function of the model's parameters is determined. (H.K.)

  6. The total cross section as a function of energy for elastic scattering of noble gas atoms

    International Nuclear Information System (INIS)

    Linse, C.A.

    1978-01-01

    Precise relative measurements of the total cross-sections as a function of velocity is presented for the systems Ar-Ar, Ar-Kr, Kr-Ar, Ar-Xe, Ne-Ar, Ne-Kr, and Ne-Xe, the primary beam particle being mentioned first. A discription of the apparatus is given. Then the method for extracting total cross-sections from the measured beam attenuation is analyzed. A comparison is made with total cross-sections calculated from various potentials that have been proposed in the literature

  7. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  8. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  9. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus.

    Science.gov (United States)

    Gallo, Araiz; Valli, Adrian; Calvo, María; García, Juan Antonio

    2018-05-01

    Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans , was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection. IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus

  10. Ionization and fragmentation of DNA-RNA bases: a density functional theory study

    International Nuclear Information System (INIS)

    Sadr-Arani, Leila

    2014-01-01

    Ionizing radiation (IR) cross human tissue, deposit energy and dissipate fragmenting molecules. The resulting fragments may be highlighted by mass spectrometry. Despite the amount of information obtained experimentally by the interpretation of the mass spectrum, experience alone cannot answer all the questions of the mechanism of fragmentation of DNA/RNA bases and a theoretical study is a complement to this information. A theoretical study allows us to know the weakest bonds in the molecule during ionization and thus may help to provide mechanisms of dissociation and produced fragments. The purpose of this work, using the DFT with the PBE functional, is to study the ionization and fragmentation mechanisms of DNA/RNA bases (Uracil, Cytosine, Adenine and Guanine) and to identify the cations corresponding to each peak in mass spectra. For all RNA bases, the retro Diels-Alder reaction (elimination of HNCO or NCO*) is a major route for dissociating, with the exception of adenine for which there is no atom oxygen in its structure. Loss of NH 3 (NH 2 *) molecule is another common way to all bases that contain amine group. The possibility of the loss of hydrogen from the cations is also investigated, as well as the dissociation of dehydrogenated cations and protonated uracil. This work shows the interest of providing DFT calculation in the interpretation of mass spectra of DNA bases. (author)

  11. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  12. UPF201 Archaeal Specific Family Members Reveals Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.N.; Swaminathan, S.; Burley, S. K.

    2008-12-11

    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel {beta}-sheet and five {alpha}-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  13. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes.

    Science.gov (United States)

    Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie

    2009-10-01

    MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.

  14. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures.

    Science.gov (United States)

    Wiebe, Nicholas J P; Meyer, Irmtraud M

    2010-06-24

    The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular

  15. The Msi Family of RNA-Binding Proteins Function Redundantly as Intestinal Oncoproteins

    Directory of Open Access Journals (Sweden)

    Ning Li

    2015-12-01

    Full Text Available Members of the Msi family of RNA-binding proteins have recently emerged as potent oncoproteins in a range of malignancies. MSI2 is highly expressed in hematopoietic cancers, where it is required for disease maintenance. In contrast to the hematopoietic system, colorectal cancers can express both Msi family members, MSI1 and MSI2. Here, we demonstrate that, in the intestinal epithelium, Msi1 and Msi2 have analogous oncogenic effects. Further, comparison of Msi1/2-induced gene expression programs and transcriptome-wide analyses of Msi1/2-RNA-binding targets reveal significant functional overlap, including induction of the PDK-Akt-mTORC1 axis. Ultimately, we demonstrate that concomitant loss of function of both MSI family members is sufficient to abrogate the growth of human colorectal cancer cells, and Msi gene deletion inhibits tumorigenesis in several mouse models of intestinal cancer. Our findings demonstrate that MSI1 and MSI2 act as functionally redundant oncoproteins required for the ontogeny of intestinal cancers.

  16. Identification and functional analysis of novel phosphorylation sites in the RNA surveillance protein Upf1.

    Science.gov (United States)

    Lasalde, Clarivel; Rivera, Andrea V; León, Alfredo J; González-Feliciano, José A; Estrella, Luis A; Rodríguez-Cruz, Eva N; Correa, María E; Cajigas, Iván J; Bracho, Dina P; Vega, Irving E; Wilkinson, Miles F; González, Carlos I

    2014-02-01

    One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.

  17. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration.

    Science.gov (United States)

    Ghibaudi, M; Boido, M; Vercelli, A

    2017-11-01

    New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions

    Science.gov (United States)

    Lee, Daniel Y.; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y.; Li, Minhui; Du, William W.; Shatseva, Tatiana; Yang, Burton B.

    2010-01-01

    Background Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3′UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Methods and Findings Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3′UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3′UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3′UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3′UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3′UTR formed smaller tumors compared with cells transfected with a control vector. Conclusion Our results demonstrated that a 3′UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3′UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities. PMID:21049042

  19. Expression of versican 3'-untranslated region modulates endogenous microRNA functions.

    Science.gov (United States)

    Lee, Daniel Y; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y; Li, Minhui; Du, William W; Shatseva, Tatiana; Yang, Burton B

    2010-10-25

    Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.

  20. Expression of versican 3'-untranslated region modulates endogenous microRNA functions.

    Directory of Open Access Journals (Sweden)

    Daniel Y Lee

    Full Text Available BACKGROUND: Mature microRNAs (miRNAs are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. METHODS AND FINDINGS: Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. CONCLUSION: Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.

  1. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape

    Directory of Open Access Journals (Sweden)

    Jakub Dolata

    2018-06-01

    Full Text Available MicroRNAs are small molecules (∼21 nucleotides long that are key regulators of gene expression. They originate from long stem–loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1, the zinc finger protein Serrate (SE, and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1. Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2 and phosphatases (CPL1 and PP4. Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3 that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed.

  2. Comparative responsiveness of measures of pain and function after total hip replacement

    DEFF Research Database (Denmark)

    Nilsdotter, A K; Roos, Ewa M.; Westerlund, J P

    2001-01-01

    To compare the responsiveness of the Functional Assessment System (FAS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Medical Outcomes Study 36-item Short Form (SF-36) in patients with osteoarthritis (OA) scheduled for total hip replacement....

  3. Evaluation of the Function and Quality of Life after Total Hip Arthroplasty by Different Approaches

    Directory of Open Access Journals (Sweden)

    Paulo Araújo

    2017-09-01

    Conclusion: After 24 months post total hip arthroplasty there are no differences between the two approaches with regard to function or quality of life. However, the patients operated by the anterolateral approach had greater muscle strength deficits and higher percentage of positive Trendelenburg test.

  4. Lower Limbs Function and Pain Relationships after Unilateral Total Knee Arthroplasty

    Science.gov (United States)

    Tali, Maie; Maaroos, Jaak

    2010-01-01

    The aim of the study was to evaluate gait characteristics, lower limbs joint function, and pain relationships associated with knee osteoarthritis of female patients before and 3 months after total knee arthroplasty at an outpatient clinic rehabilitation department. Gait parameters were registered, the active range of lower extremity joints was…

  5. Orbital and total atomic momentum expectation values with Roothaan-Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    De La Vega, J.M.G.; Miguel, B.

    1993-01-01

    Orbital and total momentum expectation values are computed using the Roothaan-Hartree-Fock wave functions of Clementi and Roetti. These values are calculated analytically and may be used to study the quality of basis sets. Tabulations for ground and excited states of atoms from Z = 2 to Z = 54 are presented. 23 refs., 1 tab

  6. Quality of Life after Total Laryngectomy: Functioning, Psychological Well-Being and Self-Efficacy

    Science.gov (United States)

    Perry, Alison; Casey, Erica; Cotton, Sue

    2015-01-01

    Background: Quality of life (QoL) is an important construct when assessing treatment outcomes. Aims: To examine the relative contributions of functioning, psychological well-being and self-efficacy on self-perceived QoL with a sample of total laryngectomy patients in Australia who had surgery for advanced laryngeal cancer. Methods &…

  7. Multi-Product Total Cost of Function for Higher Education: A Case of Bible Colleges.

    Science.gov (United States)

    Koshal, Rajindar K.; Koshal, Manjulika; Gupta, Ashok

    2001-01-01

    This study empirically estimates a multiproduct total cost function and output relationship for comprehensive U.S. universities. Statistical results for 184 Bible colleges suggest that there are both economies of scale and of scope in higher education. Additionally, product-specific economies of scope exist for all output levels and activities.…

  8. Functional exercise after total hip replacement (FEATHER): a randomised control trial.

    LENUS (Irish Health Repository)

    Monaghan, Brenda

    2012-11-01

    Prolonged physical impairments in range of movement, postural stability and walking speed are commonly reported following total hip replacement (THR). It is unclear from the current body of evidence what kind of exercises should be performed to maximize patient function and quality of life.

  9. KPII: Cauchy-Jost function, Darboux transformations and totally nonnegative matrices

    Science.gov (United States)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2017-07-01

    Direct definition of the Cauchy-Jost (known also as Cauchy-Baker-Akhiezer) function is given in the case of a pure solitonic solution. Properties of this function are discussed in detail using the Kadomtsev-Petviashvili II equation as an example. This enables formulation of the Darboux transformations in terms of the Cauchy-Jost function and classification of these transformations. Action of Darboux transformations on Grassmanians—i.e. on the space of soliton parameters—is derived and the relation of the Darboux transformations with the property of total nonnegativity of elements of corresponding Grassmanians is discussed. To the memory of our friend and colleague Peter P Kulish

  10. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The clinical significance and biological function of lncRNA RGMB-AS1 in hepatocellular carcinoma.

    Science.gov (United States)

    Sheng, Nan; Li, Yannan; Qian, Ruikun; Li, Yichun

    2018-02-01

    LncRNA RGMB-AS1 has been suggested to play significant roles in lung cancer progression. However, it remains unknown whether lncRNA RGMB-AS1 is involved in the development and progression of hepatocellular carcinoma. In our results, lncRNA RGMB-AS1 was low-expressed in hepatocellular carcinoma tissues and cell lines, and associated with clinical stage, tumor size and metastasis. Survival analysis indicated that lncRNA RGMB-AS1 high was an independent favorable prognostic factor for hepatocellular carcinoma patients. Gain-of-function studies showed up-regulated lncRNA RGMB-AS1 expression suppressed hepatocellular carcinoma cells proliferation, migration and invasion, and promoted cells apoptosis. There was a positively association between lncRNA RGMB-AS1 and RGMB in hepatocellular carcinoma tissues, and up-regulated lncRNA RGMB-AS1 expression increased RGMB mRNA and protein expressions in hepatocellular carcinoma cells. In conclusion, lncRNA RGMB-AS1 serves an anti-oncogenic role in hepatocellular carcinoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex

    Directory of Open Access Journals (Sweden)

    Nancy F. Ramia

    2014-12-01

    Full Text Available Summary: The Cmr complex is the multisubunit effector complex of the type III-B clustered regularly interspaced short palindromic repeats (CRISPR-Cas immune system. The Cmr complex recognizes a target RNA through base pairing with the integral CRISPR RNA (crRNA and cleaves the target at multiple regularly spaced locations within the complementary region. To understand the molecular basis of the function of this complex, we have assembled information from electron microscopic and X-ray crystallographic structural studies and mutagenesis of a complete Pyrococcus furiosus Cmr complex. Our findings reveal that four helically packed Cmr4 subunits, which make up the backbone of the Cmr complex, act as a platform to support crRNA binding and target RNA cleavage. Interestingly, we found a hook-like structural feature associated with Cmr4 that is likely the site of target RNA binding and cleavage. Our results also elucidate analogies in the mechanisms of crRNA and target molecule binding by the distinct Cmr type III-A and Cascade type I-E complexes. : Ramia et al. show that the helical core of the type III-B Cmr CRISPR-Cas effector complex, made up of multiple Cmr4 subunits, forms the platform for a corresponding number of cleavages of the target RNA. Comparison with the type I-E Cascade structure reveals strikingly similar mechanisms of crRNA and target binding.

  13. IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity.

    Science.gov (United States)

    Cheng, Liang; Shi, Hongbo; Wang, Zhenzhen; Hu, Yang; Yang, Haixiu; Zhou, Chen; Sun, Jie; Zhou, Meng

    2016-07-26

    Increasing evidence indicated that long non-coding RNAs (lncRNAs) were involved in various biological processes and complex diseases by communicating with mRNAs/miRNAs each other. Exploiting interactions between lncRNAs and mRNA/miRNAs to lncRNA functional similarity (LFS) is an effective method to explore function of lncRNAs and predict novel lncRNA-disease associations. In this article, we proposed an integrative framework, IntNetLncSim, to infer LFS by modeling the information flow in an integrated network that comprises both lncRNA-related transcriptional and post-transcriptional information. The performance of IntNetLncSim was evaluated by investigating the relationship of LFS with the similarity of lncRNA-related mRNA sets (LmRSets) and miRNA sets (LmiRSets). As a result, LFS by IntNetLncSim was significant positively correlated with the LmRSet (Pearson correlation γ2=0.8424) and LmiRSet (Pearson correlation γ2=0.2601). Particularly, the performance of IntNetLncSim is superior to several previous methods. In the case of applying the LFS to identify novel lncRNA-disease relationships, we achieved an area under the ROC curve (0.7300) in experimentally verified lncRNA-disease associations based on leave-one-out cross-validation. Furthermore, highly-ranked lncRNA-disease associations confirmed by literature mining demonstrated the excellent performance of IntNetLncSim. Finally, a web-accessible system was provided for querying LFS and potential lncRNA-disease relationships: http://www.bio-bigdata.com/IntNetLncSim.

  14. Developmental and functional expression of miRNA-stability related genes in the nervous system.

    Directory of Open Access Journals (Sweden)

    Érica de Sousa

    Full Text Available In the nervous system, control of gene expression by microRNAs (miRNAs has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We first detected two genes in the retina that have been associated to miRNA stability, XRN2 and PAPD4. These genes are highly expressed during retinal development, however with distinct subcellular localization. We investigated whether these proteins are regulated during specific phases of the cell cycle. Combined analyses of nuclei position in neuroblastic layer and labeling using anti-cyclin D1 revealed that both proteins do not accumulate in S or M phases of the cell cycle, being poorly expressed in progenitor cells. Indeed, XRN2 and PAPD4 were observed mainly after neuronal differentiation, since low expression was also observed in astrocytes, endothelial and microglial cells. XRN2 and PAPD4 are expressed in a wide variety of neurons, including horizontal, amacrine and ganglion cells. To evaluate the functional role of both genes, we carried out experiments addressed to the retinal adaptation in response to different ambient light conditions. PAPD4 is upregulated after 3 and 24 hours of dark- adaptation, revealing that accumulation of this protein is governed by ambient light levels. Indeed, the fast and functional regulation of PAPD4 was not related to changes in gene expression, disclosing that control of protein levels occurs by post-transcriptional mechanisms. Furthermore, we were able to quantify changes in PAPD4 in specific amacrine cells after dark -adaptation, suggesting for circuitry-related roles in visual perception. In summary, in this study we

  15. A viral microRNA functions as an ortholog of cellular miR-155

    Science.gov (United States)

    Gottwein, Eva; Mukherjee, Neelanjan; Sachse, Christoph; Frenzel, Corina; Majoros, William H.; Chi, Jen-Tsan A.; Braich, Ravi; Manoharan, Muthiah; Soutschek, Jürgen; Ohler, Uwe; Cullen, Bryan R.

    2008-01-01

    All metazoan eukaryotes express microRNAs (miRNAs), ∼22 nt regulatory RNAs that can repress the expression of mRNAs bearing complementary sequences1. Several DNA viruses also express miRNAs in infected cells, suggesting a role in viral replication and pathogenesis2. While specific viral miRNAs have been shown to autoregulate viral mRNAs3,4 or downregulate cellular mRNAs5,6, the function of the majority of viral miRNAs remains unknown. Here, we report that the miR-K12−11 miRNA encoded by Kaposi's Sarcoma Associated Herpesvirus (KSHV) shows significant homology to cellular miR-155, including the entire miRNA “seed” region7. Using a range of assays, we demonstrate that expression of physiological levels of miR-K12−11 or miR-155 results in the downregulation of an extensive set of common mRNA targets, including genes with known roles in cell growth regulation. Our findings indicate that viral miR-K12−11 functions as an ortholog of cellular miR-155 and has likely evolved to exploit a pre-existing gene regulatory pathway in B-cells. Moreover, the known etiological role of miR-155 in B-cell transformation8-10 suggests that miR-K12−11 may contribute to the induction of KSHV-positive B-cell tumors in infected patients. PMID:18075594

  16. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    Directory of Open Access Journals (Sweden)

    Philippa M Beard

    Full Text Available Vaccinia virus (VACV is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  17. Long noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function.

    Science.gov (United States)

    Josipovic, Ivana; Pflüger, Beatrice; Fork, Christian; Vasconez, Andrea E; Oo, James A; Hitzel, Juliane; Seredinski, Sandra; Gamen, Elisabetta; Heringdorf, Dagmar Meyer Zu; Chen, Wei; Looso, Mario; Pullamsetti, Soni Savai; Brandes, Ralf P; Leisegang, Matthias S

    2018-03-01

    Sphingosine-1-Phosphate (S1P) is a potent signaling lipid. The effects of S1P are mediated by the five S1P receptors (S1PR). In the endothelium S1PR1 is the predominant receptor and thus S1PR1 abundance limits S1P signaling. Recently, lncRNAs were identified as a novel class of molecules regulating gene expression. Interestingly, the lncRNA NONHSAT004848 (LISPR1, Long intergenic noncoding RNA antisense to S1PR1), is closely positioned to the S1P1 receptors gene and in part shares its promoter region. We hypothesize that LISPR1 controls endothelial S1PR1 expression and thus S1P-induced signaling in endothelial cells. In vitro transcription and translation as well as coding potential assessment showed that LISPR1 is indeed noncoding. LISPR1 was localized in both cytoplasm and nucleus and harbored a PolyA tail at the 3'end. In human umbilical vein endothelial cells, as well as human lung tissue, qRT-PCR and RNA-Seq revealed high expression of LISPR1. S1PR1 and LISPR1 were downregulated in human pulmonary diseases such as COPD. LISPR1 but also S1PR1 were induced by inflammation, shear stress and statins. Knockdown of LISPR1 attenuated endothelial S1P-induced migration and spheroid outgrowth of endothelial cells. LISPR1 knockdown decreased S1PR1 expression, which was paralleled by an increase of the binding of the transcriptional repressor ZNF354C to the S1PR1 promoter and a reduction of the recruitment of RNA Polymerase II to the S1PR1 5'end. This resulted in attenuated S1PR1 expression and attenuated S1P downstream signaling. Collectively, the disease relevant lncRNA LISPR1 acts as a novel regulatory unit important for S1PR1 expression and endothelial cell function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hemorrhagic iliopsoas bursitis complicating well-functioning ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim

    2009-08-01

    Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.

  19. Early patient-reported outcomes versus objective function after total hip and knee arthroplasty

    DEFF Research Database (Denmark)

    Luna, I E; Kehlet, H; Peterson, B

    2017-01-01

    AIMS: The purpose of this study was to assess early physical function after total hip or knee arthroplasty (THA/TKA), and the correlation between patient-reported outcome measures, physical performance and actual physical activity (measured by actigraphy). PATIENTS AND METHODS: A total of 80...... patients aged 55 to 80 years undergoing THA or TKA for osteoarthritis were included in this prospective cohort study. The main outcome measure was change in patient reported hip or knee injury and osteoarthritis outcome score (HOOS/KOOS) from pre-operatively until post-operative day 13 (THA) or 20 (TKA...

  20. Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase.

    Science.gov (United States)

    Naum-Onganía, Gabriela; Gago-Zachert, Selma; Peña, Eduardo; Grau, Oscar; Garcia, Maria Laura

    2003-10-01

    Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5'-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.

  1. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression

    OpenAIRE

    Nilsson, Emil K.; Bostr?m, Adrian E.; Mwinyi, Jessica; Schi?th, Helgi B.

    2016-01-01

    Abstract Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applyin...

  2. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

    Science.gov (United States)

    Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B

    2016-06-01

    Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.

  3. Chronological changes in functional cup position at 10 years after total hip arthroplasty.

    Science.gov (United States)

    Okanoue, Yusuke; Ikeuchi, Masahiko; Takaya, Shogo; Izumi, Masashi; Aso, Koji; Kawakami, Teruhiko

    2017-09-19

    This study aims to clarify the chronological changes in functional cup position at a minimum follow-up of 10 years after total hip arthroplasty (THA), and to identify the risk factors influencing a significant difference in functional cup position during the postoperative follow-up period. We evaluated the chronological changes in functional cup position at a minimum follow-up of 10 years after THA in 58 patients with unilateral hip osteoarthritis. Radiographic cup position was measured on anteroposterior pelvic radiographs with the patient in the supine position, whereas functional cup position was recorded in the standing position. Radiographs were obtained before, 3 weeks after, and every 1 year after surgery. Functional cup anteversion (F-Ant) increased over time, and was found to have significantly increased at final follow-up compared to that at 3 weeks after surgery (p10° anteriorly. Preoperative posterior pelvic tilt in the standing position and vertebral fractures after THA were significant predictors of increasing functional cup anteversion. Although chronological changes in functional cup position do occur after THA, their magnitude is relatively low. However, posterior impingement is likely to occur, which may cause edge loading, wear of the polyethylene liner, and anterior dislocation of the hip. We believe that, for the combined anteversion technique, the safe zone should probably be 5°-10° narrower in patients predicted to show considerable changes in functional cup position compared with standard cases.

  4. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...... in reasonable agreement with smoothed experimental data. The proposed method for obtaining correlation function integrals is shown to perform at least as well as or better than two previously published approaches....

  5. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.

    Science.gov (United States)

    Zhang, Zijun; Xing, Yi

    2017-09-19

    Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein-RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  7. Patient-oriented functional results of total femoral endoprosthetic reconstruction following oncologic resection.

    Science.gov (United States)

    Jones, Kevin B; Griffin, Anthony M; Chandrasekar, Coonoor R; Biau, David; Babinet, Antoine; Deheshi, Benjamin; Bell, Robert S; Grimer, Robert J; Wunder, Jay S; Ferguson, Peter C

    2011-11-01

    Functional outcomes following oncologic total femoral endoprosthetic reconstruction (TFR) are lacking. We compared patient-oriented functional results of TFRs to proximal femur and distal femur reconstructions (PFR and DFR). We also compared function and complications with regard to knee and hip componentry. Fifty-four TFR patients were identified from three institutional prospective databases. Forty-one had fixed- and 13 had rotating-hinge knees, 37 hemiarthroplasty and 17 total hip arthroplasty componentry. Toronto Extremity Salvage Scores (TESS) for n = 27 were compared between groups and to cohorts of PFR (n = 31) and DFR (n = 85) patients using the Mann-Whitney U-test. Follow-up averaged 4 years. Mechanical complications included five hip dislocations and one femoral malrotation. Four dislocations were in fixed-hinge implants, all in those lacking abductor reattachment. TESS averaged 69.3 ± 17.8, statistically decreased from DFR (P = 0.002) and PFR patients (P = 0.036). No significant differences were detected between patients in the fixed-hinge (n = 18) and rotating-hinge (n = 9) groups (P = 0.944), or total hip (n = 8) and hemiarthroplasty (n = 19) groups (P = 0.633). TFR is reserved for extreme cases of limb salvage, portending a poor prognosis overall. Function reflects additive impairments from PFR and DFR. TFR outcomes differ little with rotating- or fixed-hinge, total hip or hemiarthroplasty implants. Copyright © 2011 Wiley Periodicals, Inc.

  8. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    Science.gov (United States)

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  9. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Ahmad M Khalil

    2008-01-01

    Full Text Available Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1-2% of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5' UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders.

  10. The function of the inner nuclear envelope protein SUN1 in mRNA export is regulated by phosphorylation.

    Science.gov (United States)

    Li, Ping; Stumpf, Maria; Müller, Rolf; Eichinger, Ludwig; Glöckner, Gernot; Noegel, Angelika A

    2017-08-22

    SUN1, a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, functions in mammalian mRNA export through the NXF1-dependent pathway. It associates with mRNP complexes by direct interaction with NXF1. It also binds to the NPC through association with the nuclear pore component Nup153, which is involved in mRNA export. The SUN1-NXF1 association is at least partly regulated by a protein kinase C (PKC) which phosphorylates serine 113 (S113) in the N-terminal domain leading to reduced interaction. The phosphorylation appears to be important for the SUN1 function in nuclear mRNA export since GFP-SUN1 carrying a S113A mutation was less efficient in restoring mRNA export after SUN1 knockdown as compared to the wild type protein. By contrast, GFP-SUN1-S113D resembling the phosphorylated state allowed very efficient export of poly(A)+RNA. Furthermore, probing a possible role of the LINC complex component Nesprin-2 in this process we observed impaired mRNA export in Nesprin-2 knockdown cells. This effect might be independent of SUN1 as expression of a GFP tagged SUN-domain deficient SUN1, which no longer can interact with Nesprin-2, did not affect mRNA export.

  11. Olfactory function and quality of life after olfaction rehabilitation in total laryngectomees.

    Science.gov (United States)

    Santos, Christiane Gouvêa Dos; Bergmann, Anke; Coça, Kaliani Lima; Garcia, Angela Albuquerque; Valente, Tânia Cristina de Oliveira

    2016-01-01

    To evaluate the effects of olfaction rehabilitation in the olfactory function and quality of life of total laryngectomized patients. Pre-post intervention clinical study conducted with total laryngectomees submitted to olfaction rehabilitation by means of the Nasal Airflow-Inducing Maneuver (NAIM) using the University of Pennsylvania Smell Identification Test (UPSIT), Olfactory Acuity Questionnaires, a Monitoring Questionnaire, and the University of Washington Quality of Life Questionnaire (UW-QOL). Participants were 45 total laryngectomees. Before olfaction rehabilitation, 48.9% of the participants had their olfactic abilities classified as anosmia, 46.8% as microsmia, and 4.4% were considered within the normal range. After olfaction rehabilitation, 4.4% of the participants were classified as anosmia and 31.1% were within the normal range. In the Smell Identification Test, the mean score after rehabilitation showed statistically significant improvement. Reponses to the Olfactory Acuity Questionnaires after rehabilitation showed improvement in the frequency of perception regarding smell, taste, and the ability to smell perfume, food, leaking gas, and smoke, after learning the maneuver. Although the scores in the Quality of Life Questionnaire already indicated good quality of life before the surgery, post-intervention values were statistically significant. Olfaction rehabilitation improves olfactory function and has a positive impact on the activities of daily living and quality of life of total laryngectomized patients.

  12. Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation

    International Nuclear Information System (INIS)

    Sanders, J.E.; Buckner, C.D.; Leonard, J.M.; Sullivan, K.M.; Witherspoon, R.P.; Deeg, H.J.; Storb, R.; Thomas, E.D.

    1983-01-01

    One hundred thirty-seven patients had gonadal function evaluated 1-11 years after marrow transplantation. All 15 women less than age 26 and three of nine older than age 26 who were treated with 200 mg/kg cyclophosphamide recovered normal gonadotropin levels and menstruation. Five have had five pregnancies resulting in three live births, one spontaneous abortion, and one elective abortion. Three of 38 women who were prepared with 120 mg/kg cyclophosphamide and 920-1200 rad total-body irradiation had normal gonadotropin levels and menstruation. Two had pregnancies resulting in one spontaneous and one elective abortion. Of 31 men prepared with 200 mg/kg cyclophosphamide, 30 had normal luteinizing hormone levels, 20 had normal follicle-stimulating hormone levels, and 10 of 15 had spermatogenesis. Four have fathered five normal children. Thirty-six of 41 men prepared with 120 mg/kg cyclophosphamide and 920-1750 rad total-body irradiation had normal luteinizing hormone levels, ten had normal follicle-stimulating hormone levels, and 2 of 32 studied had spermatogenesis. One has fathered two normal children. It was concluded that cyclophosphamide does not prevent return of normal gonadal function in younger women and in most men. Total-body irradiation prevents return of normal gonadal function in the majority of patients

  13. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    International Nuclear Information System (INIS)

    Garfinkel, S.; Thompson, J.A.; Cohen, R.B.; Brendler, T.; Safer, B.

    1987-01-01

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific 32 P-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect

  14. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis

    Science.gov (United States)

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B.

    2011-01-01

    The non-coding 3′-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3′-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3′-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3′-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3′-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3′-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed. PMID:21149267

  15. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis.

    Science.gov (United States)

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B

    2011-04-01

    The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.

  16. Evaluation of the hepatobiliary function with 99mTc-EHIDA imaging during total parenteral nutrition

    International Nuclear Information System (INIS)

    Zhou Qian; Jiang Zhouming; Yang Meifang

    1988-01-01

    14 surgical patients with non-hepatobiliary diseases were studied with 99m Tc-EHIDA imaging to evaluate the effect of total parenteral nutrition (TPN) on the hepatobiliary function. Duration of TPN ranged from 6-56 days, 10 of the 14 patients Beijing within 10 days. The results showed that: (1) 11 of 14 patients had abnormal scintigraphic features. The most prominet findings were delayed liver excretion and prolonged blood clearance time. This fact suggests that not only the rate of excretion of the bile from the liver is decreased but the uptake ability of the hepatorcyte is also impaired. (2) The effect of TPN on liver function is reversible. It was concluded that in order to prevent irreversible damage of hepatobiliary function caused by TPN, the duration of TPN should not be too long and oral intake of nutrients should be resumed as soon as possible

  17. Personality, function and satisfaction in patients undergoing total hip or knee replacement.

    Science.gov (United States)

    Ramaesh, Rishikesan; Jenkins, Paul; Lane, Judith V; Knight, Sara; Macdonald, Deborah; Howie, Colin

    2014-03-01

    The aim of this study was to investigate the relationships between personality and joint-specific function, general physical and general mental health in patients undergoing total hip (THA) and knee arthroplasty (TKA). One hundred and eighty-four patients undergoing THA and 205 undergoing TKA were assessed using the Eysneck Personality Questionnaire, brief version (EPQ-BV). General physical and mental health was measured using the Short-Form 12 (SF-12) questionnaire and the EuroQol (EQ-5D). Joint-specific function was measured using the Oxford hip or knee score. The "unstable introvert" personality type was associated with poorer pre-operative function and health in patients with hip arthrosis. In patients with knee arthrosis, there was poorer general health in those with "stable extrovert" and "unstable introvert" types. Personality was not an independent predictor of outcome following TKA or THA. The main predictor was pre-operative function and health. Comorbidity was an important covariate of both pre-operative and postoperative function. Personality may play a role in the interaction of these disease processes with function and health perception. It may also affect the response and interpretation of psychometric and patient-reported outcome measures. It may be important to characterise and identify these traits in potential arthroplasty patients as it may help deliver targeted education and management to improve outcomes in certain groups.

  18. Prospective evaluation of quality of life and sexual functioning after laparoscopic total mesorectal excision.

    Science.gov (United States)

    Breukink, S O; van der Zaag-Loonen, H J; Bouma, E M C; Pierie, J P E N; Hoff, C; Wiggers, T; Meijerink, W J H J

    2007-02-01

    This study was designed to investigate how the quality of life of patients with rectal cancer changes with time after laparoscopic total mesorectal excision. Patients completed the Medical Outcomes Study Short Form 36 and the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire and a colorectal-specific European Organisation for Research and Treatment of Cancer quality of life questionnaire before laparoscopic total mesorectal excision, on discharge from the hospital and at 3, 6, and 12 months postoperatively. Patients were treated by laparoscopic low anterior resection or laparoscopic abdominoperineal resection. Fifty-one patients (mean age, 64 years; 29 males (57 percent)) participated in this study, of whom 38 (75 percent) underwent laparoscopic low anterior resection and 13 (25 percent) laparoscopic abdominoperineal resection. Compared with preoperative scores on the Medical Outcomes Study Short Form 36, patients reported a deterioration in physical functioning (74 vs. 80; P = 0.009), and improved mental functioning (76 vs. 70; P = 0.007) at three months. Improvement in emotional well-being was reported both on the Medical Outcomes Study Short Form 36 (78 vs. 53; P = 0.006) and the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (84 vs. 69; P < 0.001). At one year, improvements in global quality of life (82 vs. 68; P = 0.001) and symptoms, such as fatigue (18 vs. 32; P < 0.001), pain (5 vs. 12; P = 0.009), and appetite loss (3 vs. 13; P = 0.01), were reported. Sexual functioning was worse from three months onward until one year after surgery (47 vs. 66; P = 0.004). Patients who underwent low anterior resection experienced less sexual dysfunction than patients after abdominoperineal resection (21 vs. 56; P = 0.004). One year after laparoscopic total mesorectal excision for rectal cancer, patients reported improvement in some important quality of life outcomes, including global quality

  19. Functional exercise after total hip replacement (FEATHER a randomised control trial

    Directory of Open Access Journals (Sweden)

    Monaghan Brenda

    2012-11-01

    Full Text Available Abstract Background Prolonged physical impairments in range of movement, postural stability and walking speed are commonly reported following total hip replacement (THR. It is unclear from the current body of evidence what kind of exercises should be performed to maximize patient function and quality of life. Methods/design This will be a single blind multi centre randomized control trial with two arms. Seventy subjects post primary total hip arthroplasty will be randomized into either an experimental group (n=35, or to a control group (n=35. The experimental group will attend a functional exercise class twice weekly for a six week period from week 12 to week 18 post surgery. The functional exercise group will follow a circuit based functional exercise class supervised by a chartered Physiotherapist. The control group will receive usual care. The principal investigator (BM will perform blinded outcome assessments on all patients using validated measures for pain, stiffness, and function using the Western Ontario and Mc Master Universities Osteoarthritis index (WOMAC. This is the primary outcome measurement tool. Secondary outcome measurements include Quality of life (SF-36, 6 min walk test, Visual Analogue Scale, and the Berg Balance score. The WOMAC score will be collated on day five post surgery and repeated at week twelve and week eighteen. All other measurements will be taken at week 12 and repeated at week eighteen. In addition a blinded radiologist will measure gluteus medius cross sectional area using real time ultrasound for all subjects at week 12 and at week 18 to determine if the functional exercise programme has any effect on muscle size. Discussion This randomised controlled trial will add to the body of evidence on the relationship between muscle size, functional ability, balance, quality of life and time post surgery in patients following total hip arthroplasty. The CONSORT guidelines will be followed to throughout. Ethical

  20. Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics

    Directory of Open Access Journals (Sweden)

    Ester Sesmero

    2015-07-01

    Full Text Available Viral polymerases replicate and transcribe the genomes of several viruses of global health concern such as Hepatitis C virus (HCV, human immunodeficiency virus (HIV and Ebola virus. For this reason they are key targets for therapies to treat viral infections. Although there is little sequence similarity across the different types of viral polymerases, all of them present a right-hand shape and certain structural motifs that are highly conserved. These features allow their functional properties to be compared, with the goal of broadly applying the knowledge acquired from studying specific viral polymerases to other viral polymerases about which less is known. Here we review the structural and functional properties of the HCV RNA-dependent RNA polymerase (NS5B in order to understand the fundamental processes underlying the replication of viral genomes. We discuss recent insights into the process by which RNA replication occurs in NS5B as well as the role that conformational changes play in this process.

  1. An ecological function and services approach to total maximum daily load (TMDL) prioritization.

    Science.gov (United States)

    Hall, Robert K; Guiliano, David; Swanson, Sherman; Philbin, Michael J; Lin, John; Aron, Joan L; Schafer, Robin J; Heggem, Daniel T

    2014-04-01

    Prioritizing total maximum daily load (TMDL) development starts by considering the scope and severity of water pollution and risks to public health and aquatic life. Methodology using quantitative assessments of in-stream water quality is appropriate and effective for point source (PS) dominated discharge, but less so in watersheds with mostly nonpoint source (NPS) related impairments. For NPSs, prioritization in TMDL development and implementation of associated best management practices should focus on restoration of ecosystem physical functions, including how restoration effectiveness depends on design, maintenance and placement within the watershed. To refine the approach to TMDL development, regulators and stakeholders must first ask if the watershed, or ecosystem, is at risk of losing riparian or other ecologically based physical attributes and processes. If so, the next step is an assessment of the spatial arrangement of functionality with a focus on the at-risk areas that could be lost, or could, with some help, regain functions. Evaluating stream and wetland riparian function has advantages over the traditional means of water quality and biological assessments for NPS TMDL development. Understanding how an ecosystem functions enables stakeholders and regulators to determine the severity of problem(s), identify source(s) of impairment, and predict and avoid a decline in water quality. The Upper Reese River, Nevada, provides an example of water quality impairment caused by NPS pollution. In this river basin, stream and wetland riparian proper functioning condition (PFC) protocol, water quality data, and remote sensing imagery were used to identify sediment sources, transport, distribution, and its impact on water quality and aquatic resources. This study found that assessments of ecological function could be used to generate leading (early) indicators of water quality degradation for targeting pollution control measures, while traditional in-stream water

  2. Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; Hong, L Elliot; Stine, O Colin; Mitchell, Braxton D; Elliott, Amie; Roberts, Rosalinda C; Conley, Robert R; McMahon, Robert P; Thaker, Gunvant K

    2009-03-05

    Smooth pursuit eye movement (SPEM) deficit is an established schizophrenia endophenotype with a similar neurocognitive construct to working memory. Frontal eye field (FEF) neurons controlling SPEM maintain firing when visual sensory information is removed, and their firing rates directly correlate with SPEM velocity. We previously demonstrated a paradoxical association between a functional polymorphism of dopamine signaling (COMT gene) and SPEM. Recent evidence implicates the dopamine transporter gene (DAT1) in modulating cortical dopamine and associated neurocognitive functions. We hypothesized that DAT1 10/10 genotype, which reduces dopamine transporter expression and increases extracellular dopamine, would affect SPEM. We examined the effects of DAT1 genotype on: Clinical diagnosis in the study sample (n = 418; 190 with schizophrenia), SPEM measures in a subgroup with completed oculomotor measures (n = 200; 87 schizophrenia), and DAT1 gene expression in FEF tissue obtained from postmortem brain samples (n = 32; 16 schizophrenia). DAT1 genotype was not associated with schizophrenia. DAT1 10/10 genotype was associated with better SPEM in healthy controls, intermediate SPEM in unaffected first-degree relatives of schizophrenia subjects, and worse SPEM in schizophrenia subjects. In the gene expression study, DAT1 10/10 genotype was associated with significantly reduced DAT1 mRNA transcript in FEF tissue from healthy control donors (P < 0.05), but higher expression in schizophrenia donors. Findings suggest regulatory effects of another gene(s) or etiological factor in schizophrenia, which modulate DAT1 gene function. 2008 Wiley-Liss, Inc.

  3. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  4. Psychological factors as risk factors for poor hip function after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Benditz A

    2017-02-01

    Full Text Available Achim Benditz,1 Petra Jansen,2 Jan Schaible,1 Christina Roll,1 Joachim Grifka,1 Jürgen Götz1 1Department of Orthopedics, University Medical Center Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, 2Department of Sport Science, University of Regensburg, Regensburg, Germany Abstract: Recovery after total hip arthroplasty (THA is influenced by several psychological aspects, such as depression, anxiety, resilience, and personality traits. We hypothesized that preoperative depression impedes early functional outcome after THA (primary outcome measure. Additional objectives were perioperative changes in the psychological status and their influence on perioperative outcome. This observational study analyzed depression, anxiety, resilience, and personality traits in 50 patients after primary unilateral THA. Hip functionality was measured by means of the Harris Hip Score. Depression, state anxiety, and resilience were evaluated preoperatively as well as 1 and 5 weeks postoperatively. Trait anxiety and personality traits were measured once preoperatively. Patients with low depression and anxiety levels had significantly better outcomes with respect to early hip functionality. Resilience and personality traits did not relate to hip functionality. Depression and state anxiety levels significantly decreased within the 5-week stay in the acute and rehabilitation clinic, whereas resilience remained at the same level. Our study suggests that low depression and anxiety levels are positively related to early functionality after THA. Therefore, perioperative measurements of these factors seem to be useful to provide the best support for patients with risk factors. Keywords: total hip arthroplasty, psychological factors, depression, state anxiety, trait anxiety, resilience, personality traits

  5. The power of cross-functional teams in driving total quality

    Science.gov (United States)

    Mcclung, Tim M.; Mcmaster, Tom J.

    1992-01-01

    Garrett Canada, a Division of Allied-Signal Aerospace Canada, has been a member of the Canadian aerospace industry for 40 years. Although Garrett Canada has always been a profitable division with a solid market share, the changing and turbulent business environment and globalization of the aerospace industry has created new demands and challenges. The marketplace is demanding faster introduction of new products, as well as shorter leadtimes for repairs and spares. It was recognized that reducing cycle times for new products and for ongoing production would not only satisfy our customers, it would also enhance our business performance through reduced inventories, lower past due, and more responsiveness to change. It was evident that drastic function changes were required if we were to maintain our position as a premier aerospace supplier. The challenge was to convert a stable, somewhat slow-paced work environment with strong functional boundaries into a boundaryless world class team functioning in a total quality environment and focused on customer satisfaction. Complete and uncompromised customer satisfaction has become our driving force, with Total Quality being our engine to continuously improve our processes and increase our speed. The way in which this transition has been brought about is the subject of this presentation.

  6. A function space framework for structural total variation regularization with applications in inverse problems

    Science.gov (United States)

    Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas

    2018-06-01

    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.

  7. Effects of total glucosides of peony on AQP-5 and its mRNA expression in submandibular glands of NOD mice with Sjogren's syndrome.

    Science.gov (United States)

    Wu, G-L; Pu, X-H; Yu, G-Y; Li, T-Y

    2015-01-01

    The aim of this study was to observe the effects of total glucosides of peony (TGP) on pathological change, Aquaporin-5 (AQP-5) and its mRNA expression in submandibular glands of non-obese diabetic (NOD) mice with Sjogren's Syndrome, to investigate its regulation on secretion of salivary glands. 40 NOD mice were randomly divided into model group, TGP group, hydroxychloroquine group, combination group (n = 10). For TGP group, the mice were intragastrically administrated with 0.4 ml TGP dilution per day in accordance with 300 g/kg dose; for hydroxychloroquine group, the mice were intragastrically administrated with 0.4 ml hydroxychloroquine per day in accordance with 60 mg/kg dose; for the combination group, the mice were intragastrically administrated with 0.4 ml TGP dilution and 0.4 ml hydroxychloroquine. 8 weeks later, the mice were sacrificed, and submandibular glands were collected by anatomy. Pathological changes of submandibular gland were observed under a light microscope; AQP-5 protein in submandibular glands was detected by immunohistochemical staining; and AQP-5 mRNA expression in submandibular glands was detected by RT-PCR. The lymphocytic infiltration score of model mice was significantly higher than that of other groups. The pathological morphology and score of NOD mice were significantly improved after administration, and the combination group was superior to the hydroxychloroquine group and TGP group (p TGP group and the combination group were higher than the hydroxychloroquine group (p TGP may improve pathological damage of submandibular glands of NOD mouse with Sjogren's syndrome by upregulating AQP-5 and its mRNA expression in submandibular glands.

  8. The RNA Exosome Adaptor ZFC3H1 Functionally Competes with Nuclear Export Activity to Retain Target Transcripts

    DEFF Research Database (Denmark)

    Silla, Toomas; Karadoulama, Evdoxia; Mąkosa, Dawid

    2018-01-01

    , containing polyadenylated (pA+) RNA secluded from nucleocytoplasmic export. We asked whether exosome co-factors could serve such nuclear retention. Co-localization studies revealed the enrichment of pA+ RNA foci with "pA-tail exosome targeting (PAXT) connection" components MTR4, ZFC3H1, and PABPN1......Mammalian genomes are promiscuously transcribed, yielding protein-coding and non-coding products. Many transcripts are short lived due to their nuclear degradation by the ribonucleolytic RNA exosome. Here, we show that abolished nuclear exosome function causes the formation of distinct nuclear foci...... but no overlap with known nuclear structures such as Cajal bodies, speckles, paraspeckles, or nucleoli. Interestingly, ZFC3H1 is required for foci formation, and in its absence, selected pA+ RNAs, including coding and non-coding transcripts, are exported to the cytoplasm in a process dependent on the mRNA export...

  9. Right ventricular function late after total repair of tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Straten, Alexander van; Roos, Albert de [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Vliegen, Hubert W. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Hazekamp, Mark G. [Leiden University Medical Center, Department of Cardiothoracic Surgery, Leiden (Netherlands)

    2005-04-01

    Over the past decades, life expectancy in patients with congenital heart disease has increased dramatically. However, serious complications may develop late after total repair in infancy. These complications are usually the result of longstanding pulmonary regurgitation, which leads to dilatation of the right ventricle and an increased risk for severe arrhythmias. Therefore lifelong follow-up in these patients is required. Cardiac magnetic resonance imaging is the current imaging tool of choice because it offers superior imaging quality and enables accurate quantification of functional parameters such as flow volumes and systolic and diastolic performance. (orig.)

  10. Right ventricular function late after total repair of tetralogy of Fallot

    International Nuclear Information System (INIS)

    Straten, Alexander van; Roos, Albert de; Vliegen, Hubert W.; Hazekamp, Mark G.

    2005-01-01

    Over the past decades, life expectancy in patients with congenital heart disease has increased dramatically. However, serious complications may develop late after total repair in infancy. These complications are usually the result of longstanding pulmonary regurgitation, which leads to dilatation of the right ventricle and an increased risk for severe arrhythmias. Therefore lifelong follow-up in these patients is required. Cardiac magnetic resonance imaging is the current imaging tool of choice because it offers superior imaging quality and enables accurate quantification of functional parameters such as flow volumes and systolic and diastolic performance. (orig.)

  11. Time-dependent density functional theory description of total photoabsorption cross sections

    Science.gov (United States)

    Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga

    2018-02-01

    The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.

  12. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation

    Science.gov (United States)

    Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.

    2018-01-01

    The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.

  13. Knee awareness and functionality after simultaneous bilateral vs unilateral total knee arthroplasty

    DEFF Research Database (Denmark)

    Latifi, Roshan; Thomsen, Morten Grove; Kallemose, Thomas

    2016-01-01

    AIM: To investigate knee awareness and functional outcomes in patients treated with simultaneous bilateral vs unilateral total knee arthroplasty (TKA). METHODS: Through a database search, we identified 210 patients who had undergone unilateral TKA (UTKA) and 65 patients who had undergone......-surgical treatments were failed, thus preoperatively the patients had poor functionality. All patients were asked to complete Forgotten Joint Score (FJS) and Oxford Knee Score (OKS) questionnaires. The patients were matched according to age, gender, year of surgery, Kellgren-Lawrence score and pre- and postoperative...... overall knee alignment. The FJS and OKS questionnaire results of the two groups were then compared. RESULTS: A mixed-effects model was used to analyze differences between SBTKA and UTKA. OKS: The mean difference in the OKS between the patients who had undergone SBTKA and those who had undergone UTKA was 1...

  14. Predictors of pain and physical function at 3 and 12 months after total hip arthroplasty

    DEFF Research Database (Denmark)

    Plews, Sarah; Løvlund Nielsen, Randi; Overgaard, Søren

    Background: Few studies have combined preoperative patient-reported and objective outcome measures to predict outcomes after total hip arthroplasty (THA). Purpose / Aim of Study: to identify predictors of outcome 3 and 12 months after THA Materials and Methods: A cohort of 107 consecutive patients...... with primary hip osteoarthritis responded to Hip dysfunction and Osteoarthritis Outcome Score (HOOS) questionnaires prior to and 3 and 12 months after THA. Preoperative pain intensity; joint space width (JSW), age, gender, and body mass index (BMI) were used to predict changes in pain and physical function....... Conclusions: Preoperative pain predicted changes in pain and physical function up to one year after THA. Such knowledge should be taken into consideration, when assessing OA patients prior to surgery. This study provides useful insight for clinicians, regarding the overall improvement patients can expect...

  15. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    Full Text Available MicroRNAs (miRNAs are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

  16. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    Directory of Open Access Journals (Sweden)

    St-Laurent Georges

    2006-11-01

    Full Text Available Abstract Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.

  17. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Siegel, Gabriele; Obernosterer, Gregor; Fiore, Roberto

    2009-01-01

    of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (Galpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Galpha(13) both...... suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Galpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized...

  18. Impact of gastro-oesophageal reflux on microRNA expression, location and function.

    Science.gov (United States)

    Smith, Cameron M; Michael, Michael Z; Watson, David I; Tan, Grace; Astill, David St J; Hummel, Richard; Hussey, Damian J

    2013-01-08

    Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett's oesophagus. Barrett's oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett's oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett's oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A). miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These mi

  19. Impact of gastro-oesophageal reflux on microRNA expression, location and function

    Directory of Open Access Journals (Sweden)

    Smith Cameron M

    2013-01-01

    Full Text Available Abstract Background Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett’s oesophagus. Barrett’s oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett’s oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett’s oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Methods Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A. Results miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Conclusions Elevated miR-143, miR-145 and miR-205 expression was observed in

  20. Preoperative physiotherapy and short-term functional outcomes of primary total knee arthroplasty.

    Science.gov (United States)

    Mat Eil Ismail, Mohd Shukry; Sharifudin, Mohd Ariff; Shokri, Amran Ahmed; Ab Rahman, Shaifuzain

    2016-03-01

    Physiotherapy is an important part of rehabilitation following arthroplasty, but the impact of preoperative physiotherapy on functional outcomes is still being studied. This randomised controlled trial evaluated the effect of preoperative physiotherapy on the short-term functional outcomes of primary total knee arthroplasty (TKA). 50 patients with primary knee osteoarthritis who underwent unilateral primary TKA were randomised into two groups: the physiotherapy group (n = 24), whose patients performed physical exercises for six weeks immediately prior to surgery, and the nonphysiotherapy group (n = 26). All patients went through a similar physiotherapy regime in the postoperative rehabilitation period. Functional outcome assessment using the algofunctional Knee Injury and Osteoarthritis Outcome Score (KOOS) scale and range of motion (ROM) evaluation was performed preoperatively, and postoperatively at six weeks and three months. Both groups showed a significant difference in all algofunctional KOOS subscales (p 0.05). Significant differences were observed in the time-versus-treatment analysis between groups for the symptoms (p = 0.003) and activities of daily living (p = 0.025) subscales. No significant difference in ROM was found when comparing preoperative measurements and those at three months following surgery, as well as in time-versus-treatment analysis (p = 0.928). Six-week preoperative physiotherapy showed no significant impact on short-term functional outcomes (KOOS subscales) and ROM of the knee following primary TKA. Copyright: © Singapore Medical Association.

  1. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    Directory of Open Access Journals (Sweden)

    Eric R. Gamache

    2017-04-01

    Full Text Available The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT. To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1, a 1-nucleotide interhelical loop and an 8-bp stem (S2 that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  2. Male sexual function and lower urinary tract symptoms after laparoscopic total mesorectal excision.

    Science.gov (United States)

    Breukink, S O; van Driel, M F; Pierie, J P E N; Dobbins, C; Wiggers, T; Meijerink, W J H J

    2008-12-01

    The aim of this study was to investigate sexual function and the presence of lower urinary tract symptoms (LUTS) in male patients with rectal cancer following short-term radiotherapy and laparoscopic total mesorectal excision (LTME) by physical and psychological measurements. Sexual function and LUTS were assessed by the use of questionnaires [International Index of Erectile Function (IIEF), International Prostate Symptom Score]. Sexual function was further assessed by the use of pharmaco duplex ultrasonography of the cavernous arterial blood flow and nocturnal penile tumescence and rigidity monitoring (NPTR). All investigations were performed prior to the start of preoperative radiotherapy and 15 months after surgery. Nine patients (mean age 60 years) participated. Erectile function was maintained in 71% and ejaculation function in 89%. Compared with pre-operative scores on the IIEF, a significant deterioration in intercourse satisfaction was seen following radiotherapy and LTME (7.9 vs 10.3, p = 0.042), but overall satisfaction remained unchanged (8.0 vs 7.0, p = 0.246). NPTR parameters (duration of erectile episodes, duration of tip rigidity > or =60%) decreased following radiotherapy and LTME. Patients reported a deterioration in micturition frequency (2.0 vs 1.0, p = 0.034) and quality of life due to urinary symptoms (8.0 vs 1.8, p = 0.018). Based on these first preliminary findings, data suggest that 15 months after short-term radiotherapy and LTME in men with rectal cancer, objectively assessed sexual dysfunction was considerable, but overall sexual satisfaction had not changed.

  3. MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor

    Directory of Open Access Journals (Sweden)

    Zhibo Chen

    2018-04-01

    Full Text Available Background/Aims: Increasing evidence links microRNAs to the pathogenesis of peripheral vascular disease. We recently found microRNA-125b (miR-125b to be one of the most significantly down‑regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO of the lower extremities. However, its function in the process of ASO remains unclear. This study aimed to investigate the expression, regulatory mechanisms, and functions of miR-125b in the process of ASO. Methods: Using the tissue explants adherent method, vascular smooth muscle cells (VSMCs were prepared for this study. A rat carotid artery balloon injury model was constructed to simulate the development of vascular neointima, and a lentiviral transduction system was used to overexpress serum response factor (SRF or miR-125b. Quantitative real‑time PCR (qRT‑PCR was used to detect the expression levels of miR‑125b and SRF mRNA. Western blotting was performed to determine the expression levels of SRF and Ki67. In situ hybridization analysis was used to analyze the location and expression levels of miR-125b. CCK-8 and EdU assays were used to assess cell proliferation, and transwell and wound closure assays were performed to measure cell migration. Flow cytometry was used to evaluate cell apoptosis, and a dual-luciferase reporter assay was conducted to examine the effects of miR‑125b on SRF. Immunohistochemistry and immunofluorescence analyses were performed to analyze the location and expression levels of SRF and Ki67. Results: miR-125b expression was decreased in ASO arteries and platelet-derived growth factor (PDGF-BB-stimulated VSMCs. miR-125b suppressed VSMC proliferation and migration but promoted VSMC apoptosis. SRF was determined to be a direct target of miR-125b. Exogenous miR-125b expression modulated SRF expression and inhibited vascular neointimal formation in balloon-injured rat carotid arteries. Conclusions: These findings demonstrate a specific role of the mi

  4. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Directory of Open Access Journals (Sweden)

    Ganesh Ambigapathy

    Full Text Available Brain-derived neurotrophic factor (BDNF has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  5. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  6. Tranexamic acid increases early perioperative functional outcomes after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Matthew J. Grosso, MD

    2018-03-01

    Full Text Available Background: The purpose of this study was to investigate the influence of tranexamic acid (TXA on functional outcomes in the immediate postoperative period after total knee arthroplasty (TKA. We hypothesized that the known benefits of TXA would confer measurable clinical improvements in physical therapy (PT performance, decrease pain, and decrease hospital length of stay (LOS. Methods: We retrospectively analyzed 560 TKA patients, including 280 consecutive patients whose surgery was performed before the initiation of a standardized TXA protocol and the first 280 patients who received TXA after protocol initiation. Outcome measurements included postoperative changes in hemoglobin and hematocrit, LOS, pain scores, destination of discharge, and steps ambulated with PT over 5 sessions. Results: TXA administration resulted in less overall drops in hemoglobin (P < .001 and hematocrit levels (P < .001. Moreover, patients administered TXA ambulated more than their counterparts during every PT session, which was statistically significant during the second (P = .010, third (P = .011, and fourth (P = .024 sessions. On average, the TXA cohort ambulated 20% more per PT session than patients who did not receive TXA (P < .001. TXA administration did not influence pain levels during PT, hospital LOS, or discharge destination in this investigation. Conclusions: It is well known that TXA reduces postoperative anemia, but this study also demonstrates that it confers early perioperative functional benefits for TKA patients. Potential mechanisms for this benefit include reduced rates of postoperative anemia and reduced rates of hemarthroses. Keywords: Tranexamic acid, Total knee arthroplasty, Blood loss, Physical therapy

  7. Assessment of different anesthesia depth under total intravenous anesthesia on postoperative cognitive function in laparoscopic patients

    Directory of Open Access Journals (Sweden)

    Delin Zhang

    2016-01-01

    Full Text Available Background: This study aimed to compare the effects of different depths of sedation during total intravenous anesthesia (TIVA with remifentanil and propofol given by target-controlled infusion (TCI on postoperative cognitive function in young and middle-aged patients undergoing gynecological laparoscopic surgery. Materials and Methods: A total of 150 American Society of Anesthesiologists physical Status I/II patients scheduled for gynecological laparoscopic operation were randomly divided into three groups. Anesthesia was maintained with intravenous infusion of TCI propofol and remifentanil, intermittent injected intravenously with rocuronium. The infusion concentration of propofol and remifentanil was adjusted to maintain bispectral index (BIS at 30 24 sores on the day before anesthesia and the day after surgery in all three groups. However, the first group had the significantly higher MMSE scores than the other two groups after surgery (P < 0.05. Compared with that before anesthesia, TMT completion time was shorter on the day after surgery in the first group, while prolonged in the third group (P < 0.05. The first group had the significantly lower TMT completion time than the other two groups (P < 0.05. Conclusion: The depth of sedation, 30 < BIS value ≤ 40, under TIVA with remifentanil and propofol given by TCI had the minimal influence on postoperative cognitive function.

  8. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  9. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    International Nuclear Information System (INIS)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro

  10. Circuit training enhances function in patients undergoing total knee arthroplasty: a retrospective cohort study.

    Science.gov (United States)

    Hsu, Wei-Hsiu; Hsu, Wei-Bin; Shen, Wun-Jer; Lin, Zin-Rong; Chang, Shr-Hsin; Hsu, Robert Wen-Wei

    2017-10-19

    The number of patients receiving total knee arthroplasty (TKA) has been rising every year due to the aging population and the obesity epidemic. Post-operative rehabilitation is important for the outcome of TKA. A series of 34 patients who underwent primary unilateral TKA was retrospectively collected and divided into either exercise group (n = 16) and control group (n = 18). The exercise group underwent a 24-week course of circuit training beginning 3 months after total knee arthroplasty (TKA). The effect of circuit training on TKA patients in terms of motion analysis, muscle strength testing, Knee injury and Osteoarthritis Outcomes Score (KOOS) questionnaire and patient-reported outcome measurement Short-Form Health Survey (SF-36) at the pre-operation, pre-exercise, mid-exercise, and post-exercise. Motion analysis revealed the stride length, step velocity, and excursion of active knee range of motion significantly improved in the exercise group when compared to those in the control group. KOOS questionnaire showed a greater improvement in pain, ADL, and total scores in the exercise group. The SF-36 questionnaire revealed a significant improvement in general health, bodily pain, social function, and physical components score in the exercise group. The post-operative circuit training intervention can facilitate recovery of knee function and decrease the degree of pain in the TKA and might be considered a useful adjunct rehabilitative modality. The ultimate influence of circuit training on TKA needs further a prospective randomized clinical trial study and long-term investigation. NCT02928562.

  11. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them.

    Science.gov (United States)

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2018-03-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

  12. Functional results of robotic total intersphincteric resection with hand-sewn coloanal anastomosis.

    Science.gov (United States)

    Luca, F; Valvo, M; Guerra-Cogorno, M; Simo, D; Blesa-Sierra, E; Biffi, R; Garberoglio, C

    2016-06-01

    In recent decades there has been an increasing trend toward sphincter-preserving procedures for the treatment of low rectal cancer. Robotic surgery is considered to be particularly beneficial when operating in the deep pelvis, where laparoscopy presents technical limitations. The aim of this study was to prospectively evaluate the functional outcomes in patients affected by rectal cancer after robotic total intersphincteric resection (ISR) with hand-sewn coloanal anastomosis. From March 2008 to October 2012, 23 consecutive patients affected by distal rectal adenocarcinoma underwent robotic ISR. Operative, clinical, pathological and functional data regarding continence or presence of a low anterior resection syndrome (LARS) were prospectively collected in a database. Twenty-three consecutive patients were included in the study: 8 men and 15 women. The mean age was 60.2 years (range 28-73). Eighteen (78.3%) had neoadjuvant radiochemotherapy. Conversion rate was nil. The mean operative time was 296.01 min and the mean postoperative hospital stay was 7.43 ± 1.73 days. According to Kirwan's incontinence score, good fecal continence was shown in 85.7% of patients (Grade 1 and 2) and none required a colostomy (Grade 4). Concerning LARS score, the results were as follows: 57.1% patients had no LARS; 19% minor LARS and 23.8% major LARS. Robotic total ISR for low rectal cancer is an acceptable alternative to traditional procedures. Extensive discussion with the patient about the risk of poor functional outcomes or LARS syndrome is mandatory when considering an ISR for treatment of low rectal cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Total hip arthroplasty outcomes assessment using functional and radiographic scores to compare canine systems.

    Science.gov (United States)

    Iwata, D; Broun, H C; Black, A P; Preston, C A; Anderson, G I

    2008-01-01

    A retrospective multi-centre study was carried out in order to compare outcomes between cemented and uncemented total hip arthoplasties (THA). A quantitative orthopaedic outcome assessment scoring system was devised in order to relate functional outcome to a numerical score, to allow comparison between treatments and amongst centres. The system combined a radiographic score and a clinical score. Lower scores reflect better outcomes than higher scores. Consecutive cases of THA were included from two specialist practices between July 2002 and December 2005. The study included 46 THA patients (22 uncemented THA followed for 8.3 +/- 4.7M and 24 cemented THA for 26.0 +/- 15.7M) with a mean age of 4.4 +/- 3.3 years at surgery. Multi-variable linear and logistical regression analyses were performed with adjustments for age at surgery, surgeon, follow-up time, uni- versus bilateral disease, gender and body weight. The differences between treatment groups in terms of functional scores or total scores were not significant (p > 0.05). Radiographic scores were different between treatment groups. However, these scores were usually assessed within two months of surgery and proved unreliable predictors of functional outcome (p > 0.05). The findings reflect relatively short-term follow-up, especially for the uncemented group, and do not include clinician-derived measures, such as goniometry and thigh circumference. Longer-term follow-up for the radiographic assessments is essential. A prospective study including the clinician-derived outcomes needs to be performed in order to validate the outcome instrument in its modified form.

  14. Clinical and laboratory evaluation of thyroid function following total laryngectomy in laryngeal cancer

    Directory of Open Access Journals (Sweden)

    Motasaddi Zarandy M

    2007-07-01

    Full Text Available Background: Hypothyroidism is a well-documented complication after treatment of laryngeal cancer and is particularly significant among patients undergoing laryngectomy. We investigated the frequency of hypothyroidism in patients treated with total laryngectomy for laryngeal cancer. We also evaluated the effect of neck radiotherapy on thyroid function after total laryngectomy for laryngeal cancer. Methods: In a cross-sectional study, we evaluated 31 patients with laryngeal squamous cell carcinoma (mean age 53.6 years. Among these patients, 14 were treated with surgery only and 17 were treated with surgery plus radiotherapy. Laboratory evaluation included levels of thyroid stimulating hormone (TSH, free T4, free T3, and antithyroid antibodies both preoperatively and postoperatively at the first day, as well as one and six months after surgery. Results: All patients had normal thyroid function before treatment; however, after 6 months, five patients (16.1% were hypothyroid. Of these, three patients (9.6% had subclinical symptoms, including elevated thyroid-stimulating hormone with normal free T4, and two patients (6.5% showed clinical symptoms of hypothyroidism. Radiotherapy and neck dissection were significantly associated with higher incidences of hypothyroidism. Conclusion: Our data suggest that hypothyroidism occurs in a substantial proportion of patients undergoing surgery for laryngeal cancer. The results indicate that thyroid function studies should be routinely performed in the follow-up care of laryngeal cancer patients, especially if radiotherapy and neck dissection were part of the treatment. We suggest that this approach will improve the patient's quality of life and diminish the co-morbidity associated with this kind of surgery.

  15. Functions of the nonsense-mediated mRNA decay pathway in Drosophila development.

    Directory of Open Access Journals (Sweden)

    Mark M Metzstein

    2006-12-01

    Full Text Available Nonsense-mediated mRNA decay (NMD is a cellular surveillance mechanism that degrades transcripts containing premature translation termination codons, and it also influences expression of certain wild-type transcripts. Although the biochemical mechanisms of NMD have been studied intensively, its developmental functions and importance are less clear. Here, we describe the isolation and characterization of Drosophila "photoshop" mutations, which increase expression of green fluorescent protein and other transgenes. Mapping and molecular analyses show that photoshop mutations are loss-of-function mutations in the Drosophila homologs of NMD genes Upf1, Upf2, and Smg1. We find that Upf1 and Upf2 are broadly active during development, and they are required for NMD as well as for proper expression of dozens of wild-type genes during development and for larval viability. Genetic mosaic analysis shows that Upf1 and Upf2 are required for growth and/or survival of imaginal cell clones, but this defect can be overcome if surrounding wild-type cells are eliminated. By contrast, we find that the PI3K-related kinase Smg1 potentiates but is not required for NMD or for viability, implying that the Upf1 phosphorylation cycle that is required for mammalian and Caenorhabditis elegans NMD has a more limited role during Drosophila development. Finally, we show that the SV40 3' UTR, present in many Drosophila transgenes, targets the transgenes for regulation by the NMD pathway. The results establish that the Drosophila NMD pathway is broadly active and essential for development, and one critical function of the pathway is to endow proliferating imaginal cells with a competitive growth advantage that prevents them from being overtaken by other proliferating cells.

  16. Functional Outcomes and Predictors of Failure After Rotator Cuff Repair During Total Shoulder Arthroplasty.

    Science.gov (United States)

    Livesey, Michael; Horneff, John G; Sholder, Daniel; Lazarus, Mark; Williams, Gerald; Namdari, Surena

    2018-05-01

    A well-functioning rotator cuff is necessary for successful anatomic total shoulder arthroplasty (TSA). This study evaluated patients who underwent concomitant TSA and rotator cuff repair (RCR) for functional outcomes, revision rates, and predictors of poor results. Retrospective chart review was conducted to identify patients who underwent TSA and RCR. Demographic data, rotator cuff tear and RCR characteristics, range of motion, and radiographs were recorded. Minimum 2-year functional outcomes were obtained. Predictors of reoperation and/or poor clinical results were determined. Forty-five patients met inclusion criteria (22 high-grade partial-thickness and 23 full-thickness tears). Fourteen (31%) patients were labeled as having a poor result; 8 (18%) patients required reoperation. There was a significant difference between the acromiohumeral interval preoperatively and immediately postoperatively (P=.013). However, at maximum radiographic follow-up, the acromiohumeral interval was not significantly different from preoperative values (P=.86). Patients with a preoperative acromiohumeral interval of less than 8 mm had an increased rate of cuff-related reoperation (P=.003). Although concomitant TSA and RCR is a reasonable consideration, 31% of patients had a poor clinical result. An acromiohumeral interval of less than 8 mm was a predictor of cuff-related reoperation and may be an indication to consider reverse arthroplasty in the setting of joint arthrosis with a rotator cuff tear. [Orthopedics. 2018; 41(3):e334-e339.]. Copyright 2018, SLACK Incorporated.

  17. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  18. Bicruciate-retaining Total Knee Replacement Provides Satisfactory Function and Implant Survivorship at 23 Years.

    Science.gov (United States)

    Pritchett, James W

    2015-07-01

    One of the goals of a TKA is to approximate the function of a normal knee. Preserving the natural ligaments might provide a method of restoring close to normal function. Sacrifice of the ACL is common and practical during a TKA. However, this ligament is functional in more than 60% of patients undergoing a TKA and kinematic studies support the concept of bicruciate-retaining (that is, ACL-preserving) TKA; however, relatively few studies have evaluated patients treated with bicruciate-retaining TKA implants. I asked: (1) what is the long-term (minimum 20-year) survivorship, (2) what are the functional results, and (3) what are the reasons for revision of bicruciate-retaining knee arthroplasty prostheses? From January 1989 to September 1992, I performed 639 total knee replacements in 537 patients. Of these, 489 were performed in 390 patients using a bicruciate-retaining, minimally constrained device. During the period in question, this knee prosthesis was used for all patients observed intraoperatively to have an intact, functional ACL with between 15° varus and 15° valgus joint deformity. There were 234 women and 156 men with a mean age at surgery of 65 years (range, 42-84 years) and a primary diagnosis of osteoarthritis in 89%. The patella was resurfaced in all knees. The mean followup was 23 years (range, 20-24 years). At the time of this review, 199 (51%) patients had died and 31 (8%) patients were lost to followup, leaving 160 (41%) patients (214 knees) available for review. Component survivorship was determined by competing-risks analysis and Kaplan Meier survivorship analysis with revision for any reason as the primary endpoint. Patients were evaluated every 2 years to assess ROM, joint laxity, knee stability, and to determine American Knee Society scores. The Kaplan-Meier survivorship was 89% (95% CI, 82%-93%) at 23 years with revision for any reason as the endpoint. Competing-risks survivorship was 94% (95% CI, 91%%-96 %) at 23 years. At followup, the mean

  19. STUDY OF FUNCTIONAL RESULTS OF CEMENTED TOTAL HIP REPLACEMENT BY MOORE’S APPROACH

    Directory of Open Access Journals (Sweden)

    Arunim

    2016-02-01

    Full Text Available INTRODUCTION The total hip replacement (THR has probably become the surgical procedure of choice for vide variety of hip joint disabling diseases. The prosthesis used for THR is often grouped into cemented, cement-less and hybrid ones. There has been increasing trends in use of cement-less components citing more number of complications namely loosening, increased infection rate etc. however with additional cost factors as well. We conducted this study to ascertain whether in a developing country like ours should we really switch over to un-cemented hip replacements dreading such complications or can we still use cemented prosthesis with equally good if not better results. METHODS A study of functional results of cemented total hip replacement was done in patients with varied age groups ranging from 40 years to 75 years with the average age being 54.8 years. 20 patients with 21 diseased hips were treated with cemented total hip replacement by Moore’s posterior approach at NSCB Subharti medical college, Meerut, UP from December 2010 to December 2013 and reviewed thereafter with an average follow-up period of 4.2 years. Average surgical time required was one and half hour. Patients were asked to come for follow up on 1st month, 3rd month and 6th month and then every 6 months and were assessed as per modified Harris Hip Score. RESULTS All the patients were evaluated according to the Modified Harris Hip Scoring system. The results showed 14(67% hips with excellent results, 4(19% with good results, and 3(14% hips with fair results. No poor outcome was noted in this study. 2 cases of dislocation (10% were noted one on the 5th post-operative day and the other occurred after the patient was discharged from the institution. CONCLUSIONS The management of diseased and destroyed hips with chronic pain with cemented total hip replacement is effective and gives stable, mobile and painless hip joint to the patient. Functional results are excellent and

  20. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet. Copyright © 2016. Published by Elsevier Ltd.

  1. Waiting for total knee replacement surgery: factors associated with pain, stiffness, function and quality of life

    Directory of Open Access Journals (Sweden)

    Dionne Clermont E

    2009-05-01

    Full Text Available Abstract Background Recent evidences show that education and rehabilitation while waiting for knee replacement have positive effects on the patients' health status. Identification of factors associated with worse pain, function and health-related quality of life (HRQoL while waiting for surgery could help develop pre-surgery rehabilitation interventions that target specifically these factors and prioritize patients that may benefit the most from them. The objectives of this study were to measure pain, stiffness, function and HRQoL in patients at enrolment on waiting lists for knee replacement and to identify demographic, clinical, socioeconomic and psychosocial characteristics associated with these outcomes. Methods This study is part of a broader study measuring the effects of pre-surgery wait in patients scheduled for knee replacement. From 02/2006 to 09/2007, 197 patients newly scheduled for total knee replacement were recruited from the waiting lists of three university hospitals in Quebec City, Canada. Pain, stiffness and function were measured with the Western Ontario and McMaster Osteoarthritis Index (WOMAC and HRQoL was measured with the SF-36 Health Survey. Stepwise multiple regression analysis was used to assess the strength of the associations between the independent variables and the WOMAC and SF-36 scores. Results The scores of all eight HRQoL physical and mental domains of the SF-36 were significantly lower than aged matched Canadian normative data (p Conclusion Patients waiting for knee replacement have poor function and HRQoL. Characteristics that were found to be associated with these outcomes could help develop pre-surgery rehabilitation program and prioritize patients that may benefit the most from them. Such programs could include interventions to reduce psychological distress, therapeutic exercises targeting both knees and weight loss management.

  2. Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction

    International Nuclear Information System (INIS)

    Hintermüller, Michael; Rautenberg, Carlos N; Hahn, Jooyoung

    2014-01-01

    Variable splitting schemes for the function space version of the image reconstruction problem with total variation regularization (TV-problem) in its primal and pre-dual formulations are considered. For the primal splitting formulation, while existence of a solution cannot be guaranteed, it is shown that quasi-minimizers of the penalized problem are asymptotically related to the solution of the original TV-problem. On the other hand, for the pre-dual formulation, a family of parametrized problems is introduced and a parameter dependent contraction of an associated fixed point iteration is established. Moreover, the theory is validated by numerical tests. Additionally, the augmented Lagrangian approach is studied, details on an implementation on a staggered grid are provided and numerical tests are shown. (paper)

  3. Loss of P53 Function in Colon Cancer Cells Results in Increased Phosphocholine and Total Choline

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2004-10-01

    Full Text Available Mutations in the p53 gene are the most frequently observed genetic lesions in human cancers. Human cancers that contain a p53 mutation are more aggressive, more apt to metastasize, and more often fatal. p53 controls numerous downstream targets that can influence various outcomes such as apoptosis, growth arrest, and DNA repair. Based on previous observations using 1H magnetic resonance spectroscopy (MRS, we have identified choline phospholipid metabolite intensities typical of increased malignancy. Here we have used 1H MRS to characterize the choline phospholipid metabolite levels of p53+/+ and p53−/– cells, and demonstrated that loss of p53 function results in increased phosphocholine and total choline. These data suggest that the increased malignancy of cancer cells resulting from loss of p53 may be mediated, in part, through the choline phospholipid pathway.

  4. Functional specialization of the small interfering RNA pathway in response to virus infection.

    Directory of Open Access Journals (Sweden)

    Joao Trindade Marques

    Full Text Available In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA is processed into small interfering RNAs (siRNAs by Dicer-2 (Dcr-2 in association with a dsRNA-binding protein (dsRBP cofactor called Loquacious (Loqs-PD. siRNAs are then loaded onto Argonaute-2 (Ago2 by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response.

  5. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    Science.gov (United States)

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  6. The influence of obesity on functional outcome and quality of life after total knee arthroplasty.

    Science.gov (United States)

    Xu, S; Chen, J Y; Lo, N N; Chia, S L; Tay, D K J; Pang, H N; Hao, Y; Yeo, S J

    2018-05-01

    Aims This study investigated the influence of body mass index (BMI) on patients' function and quality of life ten years after total knee arthroplasty (TKA). Patients and Methods A total of 126 patients who underwent unilateral TKA in 2006 were prospectively included in this retrospective study. They were categorized into two groups based on BMI: Quality of life was assessed using the Physical (PCS) and Mental Component Scores (MCS) of the 36-Item Short-Form Health Survey. Results Patients in the obese group underwent TKA at a younger age (mean, 63.0 years, sd 8.0) compared with the control group (mean, 65.6 years, sd 7.6; p = 0.03). Preoperatively, both groups had comparable functional and quality-of-life scores. Ten years postoperatively, the control group had significantly higher OKS and MCS compared with the obese group (OKS, mean 18 (sd 5) vs mean 22 (sd 10), p = 0.03; MCS, mean 56 (sd 10) vs mean 50 (sd 11), p = 0.01). After applying multiple linear regression with the various outcomes scores as dependent variables and age, gender, and Charlson Comorbidity Index as independent variables, there was a clear association between obesity and poorer outcome in KSFS, OKS, and MCS at ten years postoperatively (p quality of life postoperatively, obese patients tend to have smaller improvements in the OKS and MCS ten years postoperatively. It is important to counsel patients on the importance of weight management to achieve a more sustained outcome after TKA. Cite this article: Bone Joint J 2018;100-B:579-83.

  7. Functional brain imaging of a complex navigation task following one night of total sleep deprivation

    Science.gov (United States)

    Strangman, Gary; Thompson, John H.; Strauss, Monica M.; Marshburn, Thomas H.; Sutton, Jeffrey P.

    2006-01-01

    Study Objectives: To assess the cerebral effects associated with sleep deprivation in a simulation of a complex, real-world, high-risk task. Design and Interventions: A two-week, repeated measures, cross-over experimental protocol, with counterbalanced orders of normal sleep (NS) and total sleep deprivation (TSD). Setting: Each subject underwent functional magnetic resonance imaging (fMRI) while performing a dual-joystick, 3D sensorimotor navigation task (simulated orbital docking). Scanning was performed twice per subject, once following a night of normal sleep (NS), and once following a single night of total sleep deprivation (TSD). Five runs (eight 24s docking trials each) were performed during each scanning session. Participants: Six healthy, young, right-handed volunteers (2 women; mean age 20) participated. Measurements and Results: Behavioral performance on multiple measures was comparable in the two sleep conditions. Neuroimaging results within sleep conditions revealed similar locations of peak activity for NS and TSD, including left sensorimotor cortex, left precuneus (BA 7), and right visual areas (BA 18/19). However, cerebral activation following TSD was substantially larger and exhibited higher amplitude modulations from baseline. When directly comparing NS and TSD, most regions exhibited TSD>NS activity, including multiple prefrontal cortical areas (BA 8/9,44/45,47), lateral parieto-occipital areas (BA 19/39, 40), superior temporal cortex (BA 22), and bilateral thalamus and amygdala. Only left parietal cortex (BA 7) demonstrated NS>TSD activity. Conclusions: The large network of cerebral differences between the two conditions, even with comparable behavioral performance, suggests the possibility of detecting TSD-induced stress via functional brain imaging techniques on complex tasks before stress-induced failures.

  8. Bilateral Total Hip Arthroplasty in Femoral Head Avascular Necrosis: Functional Outcomes and Complications

    Directory of Open Access Journals (Sweden)

    Afshin Taheriazam

    2016-06-01

    Full Text Available Total hip arthroplasty (THA is one of the successful and cost-benefit surgical treatments. One-stage bilateral THA (BTHA offers many benefits. However, there are concerns about the safety of the procedure and higher complications. We aimed to evaluate the complications and outcomes of one-stage BTHA with Hardinge approach for femoral head avascular necrosis patients. A total of 60 patients from April 2009 and May 2013, were underwent one-stage bilateral total hip arthroplasty (BTHA in Milad and Erfan hospitals, Tehran, Iran. A prospective analysis of the functional outcomes and complications of one-stage BTHA through Hardinge approach in patients with femoral head avascular necrosis (AVN performed. We evaluated all patients clinically and radiologically with serial follow-ups. A clinical hip score based upon the modified Harris Hip Score (MHHS was performed preoperatively and again postoperatively. During period of study 44 men (73.3% and 16 women (26.6% with a mean age of 31.40±4.08 years (range 25 to 36 years at the time of presentation were entered. The mean surgical time was 2.6±0.38 hrs. The mean hospital stay was 3 .50±0.72 days. Hemoglobin level decreased significa ntly after operation (P= 0.046. There was no reported patient with perioperative death, deep venous thrombosis, pulmonary embolism, infection, dislocation, periprosthetic fracture or heterotrophic ossification. The mean preoperative MHHS score was 47.93±7.33 in patients. MHHS score i mproved to 95.06±3.47 in the last follow-up (P=0.0001.Our results recommend the use of one-stage BTHA through Hardinge approach in femoral head avascular necrosis patients.

  9. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer.

    Science.gov (United States)

    Zhang, Gang; Li, Shuwei; Lu, Jiafei; Ge, Yuqiu; Wang, Qiaoyan; Ma, Gaoxiang; Zhao, Qinghong; Wu, Dongdong; Gong, Weida; Du, Mulong; Chu, Haiyan; Wang, Meilin; Zhang, Aihua; Zhang, Zhengdong

    2018-05-02

    Emerging evidence has shown that dysregulation function of long non-coding RNAs (lncRNAs) implicated in gastric cancer (GC). However, the role of the differentially expressed lncRNAs in GC has not fully explained. LncRNA expression profiles were determined by lncRNA microarray in five pairs of normal and GC tissues, further validated in another 75 paired tissues by quantitative real-time PCR (qRT-PCR). Overexpression of lncRNA MT1JP was conducted to assess the effect of MT1JP in vitro and in vivo. The biological functions were demonstrated by luciferase reporter assay, western blotting and rescue experiments. LncRNA MT1JP was significantly lower in GC tissues than adjacent normal tissues, and higher MT1JP was remarkably related to lymph node metastasis and advance stage. Besides, GC patients with higher MT1JP expression had a well survival. Functionally, overexpression of lncRNA MT1JP inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro, and inhibited tumor growth and metastasis in vivo. Functional analysis showed that lncRNA MT1JP regulated FBXW7 expression by competitively binding to miR-92a-3p. MiR-92a-3p and down-regulated FBXW7 reversed cell phenotypes caused by lncRNA MT1JP by rescue analysis. MT1JP, a down-regulated lncRNA in GC, was associated with malignant tumor phenotypes and survival of GC. MT1JP regulated the progression of GC by functioning as a competing endogenous RNA (ceRNA) to competitively bind to miR-92a-3p and regulate FBXW7 expression. Our study provided new insight into the post-transcriptional regulation mechanism of lncRNA MT1JP, and suggested that MT1JP may act as a potential therapeutic target and prognosis biomarker for GC.

  10. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  11. [Evaluation of the Function and Quality of Life after Total Hip Arthroplasty by Different Approaches].

    Science.gov (United States)

    Araújo, Paulo; Machado, Luís; Cadavez, Duarte; Mónaco, Lisete; Januário, Filipa; Luís, Lisete; Bártolo, Mafalda

    2017-09-29

    To assess the function and quality of life in patients undergoing total hip arthroplasty distinguishing two surgical approaches (posterior / anterolateral) used by the Orthopedics department of Centro Hospitalar de Leiria. Retrospective study of 94 patients subject to unilateral hip replacement surgery, using the 'Hip Osteoarthritis Outcome Score' (HOOS LK 2.0) questionnaire, the Trendelenburg test and evaluation of muscle strength of the hip abductor muscles with dynamometer. Patients were evaluated at six months, 12 months, 18 months and 24 months after surgery. The study revealed that 97.9% patients completed the rehabilitation program. The postoperative evolution (six to 24 months) does not appear to have any differences in results when comparing both approaches. At six months the patient operated by the anterolateral approach showed worse results when compared with the posterior approach, in particular in Hip Osteoarthritis Outcome Score pain, in Hip Osteoarthritis Outcome Score symptoms and Hip Osteoarthritis Outcome Score activities of daily living. After 24 months, no differences between the two surgical approaches were found. Of the 94 patients evaluated, the Trendelenburg test was positive in 31% of patients of which 81.9% corresponds to patients operated by the anterolateral approach. Muscle strength of the abductors of the operated hip was clearly lower in the anterolateral approach at six months, 12 months, and 24 months. This study showed that, in the first six months after total hip arthroplasty, the patients operated by the posterior approach were, according to the HOOS questionnaire, less symptomatic, and presented with better quality of life and less impact on activities of daily living and in sport and leisure when compared with the patients operated by the anterolateral approach. However, these differences were matched over the 24 months. Moreover, the results of muscle strength of the abductor muscles of the hip were clearly superior in

  12. Analysis of in vitro and in vivo function of total knee replacements using dynamic contact models

    Science.gov (United States)

    Zhao, Dong

    Despite the high incidence of osteoarthritis in human knee joint, its causes remain unknown. Total knee replacement (TKR) has been shown clinically to be effective in restoring the knee function. However, wear of ultra-high molecular weight polyethylene has limited the longevity of TKRs. To address these important issues, it is necessary to investigate the in vitro and in vivo function of total knee replacements using dynamic contact models. A multibody dynamic model of an AMTI knee simulator was developed. Incorporating a wear prediction model into the contact model based on elastic foundation theory enables the contact surface to take into account creep and wear during the dynamic simulation. Comparisons of the predicted damage depth, area, and volume lost with worn retrievals from a physical machine were made to validate the model. In vivo tibial force distributions during dynamic and high flexion activities were investigated using the dynamic contact model. In vivo medial and lateral contact forces experienced by a well-aligned instrumented knee implant, as well as upper and lower bounds on contact pressures for a variety of activities were studied. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. For this patient, the load split during the mid-stance phase of gait and during stair is more equal than anticipated. The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. In vivo data collected from a subject with an instrumented knee implant were analyzed to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe out) while instrumented implant, video motion, and ground reaction data were simultaneously collected. The high correlation coefficient

  13. Quality of life and functionality after non-cemented total hiparthroplasty

    International Nuclear Information System (INIS)

    Shah, Z.A.; Arif, U.; Aslam, M.N.; Bilal, A.; Khan, M.N.B.

    2013-01-01

    Objectives: To evaluate the functional outcome of non-cemented total hip arthroplasty in terms of pain relief, functional capacity, range of motion and absence of deformity using Harris hip score. Study Design: Descriptive study. Place and Duration of Study: From January 2012 to December 2012, at Nawaz Sharif Social Security Teaching Hospital, Lahore (University College Medicine and Dentistry). Subject and Methods: Thirty patients meeting the inclusion criteria were admitted through orthopedics outpatient department of Nawaz Sharif social security hospital Lahore. Pre operative Harris scoring was done and was compared with the post operative score to find the improvement. Results: Mean age of patients was 52.53 +- 18.21 years, and 17 were males and 13 females. Average pre operative Harris Hip score was 23.77 +- 9.50 and post-operative score 87.90 +- 10.42. Conclusion: It was concluded that THR is a safe surgical procedure with promising results in relieving pain, improving movements and upgrading the quality of life. (author)

  14. PASSPORT-seq: A Novel High-Throughput Bioassay to Functionally Test Polymorphisms in Micro-RNA Target Sites

    Directory of Open Access Journals (Sweden)

    Joseph Ipe

    2018-06-01

    Full Text Available Next-generation sequencing (NGS studies have identified large numbers of genetic variants that are predicted to alter miRNA–mRNA interactions. We developed a novel high-throughput bioassay, PASSPORT-seq, that can functionally test in parallel 100s of these variants in miRNA binding sites (mirSNPs. The results are highly reproducible across both technical and biological replicates. The utility of the bioassay was demonstrated by testing 100 mirSNPs in HEK293, HepG2, and HeLa cells. The results of several of the variants were validated in all three cell lines using traditional individual luciferase assays. Fifty-five mirSNPs were functional in at least one of three cell lines (FDR ≤ 0.05; 11, 36, and 27 of them were functional in HEK293, HepG2, and HeLa cells, respectively. Only four of the variants were functional in all three cell lines, which demonstrates the cell-type specific effects of mirSNPs and the importance of testing the mirSNPs in multiple cell lines. Using PASSPORT-seq, we functionally tested 111 variants in the 3′ UTR of 17 pharmacogenes that are predicted to alter miRNA regulation. Thirty-three of the variants tested were functional in at least one cell line.

  15. INFLUENCE OF RESIDUAL VARUS DEFORMITY ON CLINICAL, FUNCTIONAL, RADIOLOGICAL AND DYNAMOMETRIC OUTCOMES OF TOTAL KNEE ARTHROPLASTY

    Directory of Open Access Journals (Sweden)

    M. P. Zinoviev

    2017-01-01

    Full Text Available Purpose of the study – to evaluate the influence of residual varus deformity of the lower leg on clinical, functional and dynamometric outcomes of TKR.Material and methods. In the period from September 2014 till May 2015 951 total knee replacement surgeries were performed in Ural clinical and rehabilitation center in 933 patients with initial varus deformity of lower limb. However, in 52 cases (5.5% residual varus deformity of >3° persisted. The main group included 36 patients with mean residual varus deformity of lower leg of 3.9°±0.74° (from 3.1° to 5.6°, the control group included 34 patients with neutral mechanic axis of the lower leg. Evaluation of treatment outcomes was performed on average 14.2±1.8 months after the procedure using functional assessment of the patients according to KSS (Knee Society Score, subjective assessment of life quality (SF36, as well as evaluation of the static-dynamic function of the lower leg on diagnostic and treatment complex Biodex Systems 4 Quick Set and assessment of stability of components fixation by F.C. Ewald scale in modification of O.A. Kudinov et al.Results. Functional assessment of the patients according to KSS (Knee Society Score for the main group was 84.0±4.6, in control group – 82.2±4.1 points (p>0.05. Subjective assessment of life quality (SF36 in the main group was 162.6±6.4 points, in control group – 164.3±8.1 points (p>0.05. In terms of flexion and extension of lower leg there were no significant differences between two groups when assessing static and dynamic function by treatment and diagnostic complex «Biodex Systems 4 Quick Set» on average in 14.2±1.8 months after procedure: neither isometric nor isokinetic parameters in both groups demonstrated statistically significant differences (p>0.05. Based on X-rays evaluation there were no abnormalities in components fixation in both groups. There were no statistically significant differences identified in KSS and SF36 scales

  16. The influence of heterotopic ossification on functional status of hip joint following total hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, F.; Seufert, J.; Flentje, M.; Koelbl, O. [Wuerzburg Univ. (Germany). Dept. of Radiotherapy; Tauscher, A.; Springorum, H.W. [Caritas Krankenhaus Bad Mergentheim (Germany). Orthopedic Clinic; Lehmann, H. [Caritas Krankenhaus Bad Mergentheim (Germany). Inst. of Radiology

    2005-08-01

    Purpose: The functional failure induced by heterotopic ossification (HO) following total hip arthroplasty (THA) was analyzed and correlated to the radiologic failure. Patients and methods: From July 1997 to July 2001, 315 patients (345 hips) received THA indicated by a hypertrophic osteoarthritis of higher degree (Kellgren grade III, IV). All patients were irradiated prophylactically for prevention of HO on the evening before surgery with a 7-Gy single fraction. The patients' median age was 66.3 years. Radiologic failure was assessed by comparison of pre- and postoperative hip X-rays (immediately and 6 months after surgery). Analysis of radiographs was performed according to the Brooker Score. Clinical failure was appraised by measurement of passive range of motion (ROM) of the hip joint with a standard goniometer. The t-test was used for statistical analysis. Results: 281 patients (81.5%) did not develop HO. HO of Brooker grade I or II was found in 58 patients (16.8%). Six patients (1.7%) developed HO Brooker grade III or IV. There was a significant negative correlation between the degree of radiologic and clinical failure. ROM differed significantly between patients with HO Brooker grade 0, I, II and patients with HO Brooker grade III, IV. Comparing the pre- and postoperative ROM, all patients with Brooker grade 0, I and II showed a significant improvement of flexion, internal and external rotation, abduction and adduction movement. Patients with HO Brooker grade III and IV showed no improvement of ROM in the postoperative follow-up. Conclusion: The development of HO following THA influences the physical function of the hip joint dependent on the degree of ossification. HO of lower degree (Brooker I, II) does not influence the clinical outcome, whereas HO of higher degree (Brooker III, IV) reduces the function of hip arthroplasty. Therefore, the purpose of a prophylactic therapy must be to reduce HO of higher degree. (orig.)

  17. MENCIPTAKAN KEPUASAN TOTAL PELANGGAN MELALUI PENGGUNAAN QUALITY FUNCTION DEPLOYMENT PADA AGRIBISNIS SAYURAN [Creating Total Customer Satisfaction by Using Quality Function Deployment in Vegetables Agribusiness

    Directory of Open Access Journals (Sweden)

    Abidin 1

    2001-08-01

    Full Text Available In the product design and development processes, Quality Function Deployment (QFD provides a comprehensive, systematic approach to ensure that the products meet or exceed customer expectations. This paper reports the results of vegetables customers survey in Jakarta. Analytical Hierarchy Process (AHP method was used for weighing the result of survey, and the customer expectation were translated using QFD. To meet the biggest customer expectation, i.e. vegetables freshness, Just In Time (JIT concept was utilized.

  18. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    Science.gov (United States)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated

  19. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.

    Science.gov (United States)

    Cavanagh, Amy T; Wassarman, Karen M

    2013-05-01

    We have discovered that 6S-1 RNA (encoded by bsrA) is important for appropriate timing of sporulation in Bacillus subtilis in that cells lacking 6S-1 RNA sporulate earlier than wild-type cells. The time to generate a mature spore once the decision to sporulate has been made is unaffected by 6S-1 RNA, and, therefore, we propose that it is the timing of onset of sporulation that is altered. Interestingly, the presence of cells lacking 6S-1 RNA in coculture leads to all cell types exhibiting an early-sporulation phenotype. We propose that cells lacking 6S-1 RNA modify their environment in a manner that promotes early sporulation. In support of this model, resuspension of wild-type cells in conditioned medium from ΔbsrA cultures also resulted in early sporulation. Use of Escherichia coli growth as a reporter of the nutritional status of conditioned media suggested that B. subtilis cells lacking 6S-1 RNA reduce the nutrient content of their environment earlier than wild-type cells. Several pathways known to impact the timing of sporulation, such as the skf- and sdp-dependent cannibalism pathways, were eliminated as potential targets of 6S-1 RNA-mediated changes, suggesting that 6S-1 RNA activity defines a novel mechanism for altering the timing of onset of sporulation. In addition, 6S-2 RNA does not influence the timing of sporulation, providing further evidence of the independent influences of these two related RNAs on cell physiology.

  20. The human cap-binding complex is functionally connected to the nuclear RNA exosome

    DEFF Research Database (Denmark)

    Andersen, Peter Refsing; Domanski, Michal; Kristiansen, Maiken Søndergaard

    2013-01-01

    Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we report a physical link between the human exosome...... and the cap-binding complex (CBC). The CBC associates with the ARS2 protein to form CBC-ARS2 (CBCA) and then further connects, together with the ZC3H18 protein, to the nuclear exosome targeting (NEXT) complex, thus forming CBC-NEXT (CBCN). RNA immunoprecipitation using CBCN factors as well as the analysis...

  1. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  2. ELFN1-AS1: A Novel Primate Gene with Possible MicroRNA Function Expressed Predominantly in Human Tumors

    Directory of Open Access Journals (Sweden)

    Dmitrii E. Polev

    2014-01-01

    Full Text Available Human gene LOC100505644 uncharacterized LOC100505644 [Homo sapiens] (Entrez Gene ID 100505644 is abundantly expressed in tumors but weakly expressed in few normal tissues. Till now the function of this gene remains unknown. Here we identified the chromosomal borders of the transcribed region and the major splice form of the LOC100505644-specific transcript. We characterised the major regulatory motifs of the gene and its splice sites. Analysis of the secondary structure of the major transcript variant revealed a hairpin-like structure characteristic for precursor microRNAs. Comparative genomic analysis of the locus showed that it originated in primates de novo. Taken together, our data indicate that human gene LOC100505644 encodes some non-protein coding RNA, likely a microRNA. It was assigned a gene symbol ELFN1-AS1 (ELFN1 antisense RNA 1 (non-protein coding. This gene combines features of evolutionary novelty and predominant expression in tumors.

  3. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle...... and adipose tissue, and their influence on in vivo glucose and fat metabolism. Research Design and Methods. The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years......) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was low, and FTO...

  4. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    Directory of Open Access Journals (Sweden)

    Dylan eFlather

    2015-06-01

    Full Text Available The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.

  5. The human nucleolar protein FTSJ3 associates with NIP7 and functions in pre-rRNA processing.

    Directory of Open Access Journals (Sweden)

    Luis G Morello

    Full Text Available NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A' to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells.

  6. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  7. Analysis and prediction of translation rate based on sequence and functional features of the mRNA.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1 integrating various sequence-derived and functional features, (2 applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3 being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5'UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale.

  8. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.

    Directory of Open Access Journals (Sweden)

    Louise Ford

    Full Text Available Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1 and cathepsin Z (Ce-cpz-1 has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting.RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages.Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.

  9. Developmental and Functional Expression of miRNA-Stability Related Genes in the Nervous System

    OpenAIRE

    de Sousa, ?rica; Walter, Lais Takata; Higa, Guilherme Shigueto Vilar; Casado, Ot?vio Augusto Nocera; Kihara, Alexandre Hiroaki

    2013-01-01

    In the nervous system, control of gene expression by microRNAs (miRNAs) has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We fi...

  10. RNA interference reveals allatotropin functioning in larvae and adults of Spodoptera frugiperda (Lepidoptera, Noctuidae

    Directory of Open Access Journals (Sweden)

    I.T.E. Hassanien

    2014-05-01

    Full Text Available The allatotropin of S. frugiperda (Spofr-AT and its cDNA sequence were characterized 10 years ago, but no functional analyses of the peptide are available. Here we used the RNA interference technique to study the effects of Spofr-AT gene suppression on juvenile hormone (JH and ecdysteroid titers in the hemolymph of larvae, virgin and mated females, and of males. Spofr-AT gene silencing in last instar larvae resulted in an increase in the amount of JH III and 20-hydroxyecdysone in the hemolymph of the animals, corresponding to an acceleration of the prepupal commitment and transformation to the pupa. Mated females showed much higher JH titers in their hemolymph than virgins and laid almost twice the number of eggs. Spofr-AT gene silencing in freshly ecdysed females led to a further increase in egg production and oviposition, but had only a minor effect on the hemoylmph JH titer. Mated females contain considerable amounts of JH I and JH II in their hemoylmph, which are thought to be received from males during copulation. To confirm this hypothesis, we measured the amount of JH homologs in the male accessory reproductive glands (MARG before mating and in the bursa copulatrix (BC of the female after mating. MARG contained high amounts of JH I and JH II, which are transferred to the BC during copulation. One day after mating, JH disappeared from the BC and was then found in the hemolymph of the females. In conclusion, Spofr-AT acts as a true allatotropin in larvae and adults of both sexes of the armyworm.

  11. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy

    Directory of Open Access Journals (Sweden)

    Xia Y

    2017-12-01

    Full Text Available Yu Xia, Tiantian Xu, Changbing Wang, Yinghua Li, Zhengfang Lin, Mingqi Zhao, Bing Zhu Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China Abstract: Human homeobox protein (Nanog is highly expressed in most cancer cells and has gradually emerged as an excellent target in cancer therapy, owing to its regulation of cancer cell proliferation, metastasis and apoptosis. In this study, we prepared tumor-targeting functionalized selenium nanoparticles (RGDfC-SeNPs to load chemotherapeutic doxorubicin (DOX and Nanog siRNA. Herein, RGDfC peptide was used as a tumor-targeting moiety which could specifically bind to αvβ3 integrins overexpressed on various cancer cells. The sizes of RGDfC-SeNPs@DOX nanoparticles (~12 nm were confirmed by both dynamic light scattering and transmission electron microscopy. The chemical structure of RGDfC-SeNPs@DOX was characterized via Fourier-transform infrared spectroscopy. The RGDfC-SeNPs@DOX was compacted with siRNA (anti-Nanog by electrostatic interaction to fabricate the RGDfC-SeNPs@DOX/siRNA complex. The RGDfC-SeNPs@DOX/siRNA complex nanoparticles could efficiently enter into HepG2 cells via clathrin-associated endocytosis, and showed high gene transfection efficiency that resulted in enhanced gene silencing. The in vivo biodistribution experiment indicated that RGDfC-SeNPs@DOX/siRNA nanoparticles were capable of specifically accumulating in the tumor site. Furthermore, treatment with RGDfC-SeNPs@DOX/siRNA resulted in a more significant anticancer activity than the free DOX, RGDfC-SeNPs@DOX or RGDfC-SeNPs/siRNA in vitro and in vivo. In summary, this study shows a novel type of DOX and siRNA co-delivery system, thereby providing an alternative route for cancer treatment. Keywords: nanoparticles, tumor targeting, drug delivery, doxorubicin, Nanog siRNA

  12. A Universal Aptamer Chimera for the Delivery of Functional microRNA-126.

    Science.gov (United States)

    Rohde, Jan-H; Weigand, Julia E; Suess, Beatrix; Dimmeler, Stefanie

    2015-06-01

    microRNAs (miRs) regulate vascular diseases such as atherosclerosis and cancer. miR-126 is important for endothelial cell signaling and promotes angiogenesis, protects against atherosclerosis, and reduces breast cancer cell growth and metastasis. The overexpression of miR-126, therefore, may be an attractive therapeutic strategy for the treatment of cardiovascular disease or cancer. Here we report a novel strategy to deliver miR-126 to endothelial and breast cancer cells. We tested three different strategies to deliver miR-126 by linking the miR to an aptamer for the ubiquitously expressed transferrin receptor (transferrin receptor aptamer, TRA). Linking the precursor of miR-126 (pre-miR-126) to the TRA by annealing of a complementary stick led to efficient uptake and processing of miR-126, resulting in the delivery of 1.6×10(6)±0.3×10(6) copies miR-126-3p per ng RNA in human endothelial cells and 7.4×10(5)±2×10(5) copies miR-126-3p per ng in MCF7 breast cancer cells. The functionality of the active TRA-miR-126 chimera was further demonstrated by showing that the chimera represses the known miR-126 target VCAM-1 and improved endothelial cell sprouting in a spheroid assay. Moreover, the TRA-miR-126 chimera reduced proliferation and paracrine endothelial cell recruitment of breast cancer cells to a similar extent as miR-126-3p mimics introduced by conventional liposome-based transfection. Together, this data demonstrates that pre-miR-126 can be delivered by a non-specific aptamer to exert biological functions in two different cell models. The use of the TRA-miR-126 chimera or the combination of the delivery strategy with other endothelial or tumor specific aptamers may provide an interesting therapeutic option to treat vascular disease or cancers.

  13. MicroRNA-373 functions as an oncogene and targets YOD1 gene in cervical cancer

    International Nuclear Information System (INIS)

    Wang, Luo-Qiao; Zhang, Yue; Yan, Huan; Liu, Kai-Jiang; Zhang, Shu

    2015-01-01

    miR-373 was reported to be elevated in several tumors; however, the role of miR-373 in cervical cancer has not been investigated. In this study we aimed to investigate the role of miR-373 in tumorigenicity of cervical cancer cells in vivo and in vitro. The expression of miR-373 was investigated using real-time reverse transcription-polymerase chain reaction assay in 45 cervical specimens and cervical cancer cell lines. The role of miR-373 in tumorigenicity of cervical cancer cells was assessed by cell proliferation, colony formation in vitro as well as tumor growth assays in vivo with the overexpression of miR-373 or gene silencing. The functional target gene of miR-373 in cervical cancer cells was identified using integrated bioinformatics analysis, gene expression arrays, and luciferase assay. We founded that the expression of miR-373 is upregulated in human cervical cancer tissues and cervical carcinoma cell lines when compared to the corresponding noncancerous tissues. Ectopic overexpression of miR-373 in human cervical cancer cells promoted cell growth in vitro and tumorigenicity in vivo, whereas silencing the expression of miR-373 decreased the rate of cell growth. YOD1 was identified as a direct and functional target of miR-373 in cervical cancer cells. Expression levels of miR-373 were inversely correlated with YOD1 levels in human cervical cancer tissues. RNAi-mediated knockdown of YOD1 phenocopied the proliferation-promoting effect of miR-373. Moreover, overexpression of YOD1 abrogated miR-373-induced proliferation of cervical cancer cells. These results demonstrate that miR-373 increases proliferation by directly targeting YOD1, a new potential therapeutic target in cervical cancer. - Highlights: • The expression of miR-373 is upregulated in human cervical cancer tissues. • miR-373 effects as oncogenic miRNA in cervical cancer in vitro and in vivo. • miR-373 increases proliferation of cervical cancer cells by directly targeting YOD1

  14. MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression.

    Directory of Open Access Journals (Sweden)

    Victor Chatterjee

    Full Text Available A disintegrin and metalloproteinase15 (ADAM15 has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS. An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3' UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.

  15. A Convenient In Vivo Model Using Small Interfering RNA Silencing to Rapidly Assess Skeletal Gene Function.

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    Full Text Available It is difficult to study bone in vitro because it contains various cell types that engage in cross-talk. Bone biologically links various organs, and it has thus become increasingly evident that skeletal physiology must be studied in an integrative manner in an intact animal. We developed a model using local intraosseous small interfering RNA (siRNA injection to rapidly assess the effects of a target gene on the local skeletal environment. In this model, 160-g male Sprague-Dawley rats were treated for 1-2 weeks. The left tibia received intraosseous injection of a parathyroid hormone 1 receptor (Pth1r or insulin-like growth factor 1 receptor (Igf-1r siRNA transfection complex loaded in poloxamer 407 hydrogel, and the right tibia received the same volume of control siRNA. All the tibias received an intraosseous injection of recombinant human parathyroid hormone (1-34 (rhPTH (1-34 or insulin-like growth factor-1 (IGF-1. Calcein green and alizarin red were injected 6 and 2 days before euthanasia, respectively. IGF-1R and PTH1R expression levels were detected via RT-PCR assays and immunohistochemistry. Bone mineral density (BMD, microstructure, mineral apposition rates (MARs, and strength were determined by dual-energy X-ray absorptiometry, micro-CT, histology and biomechanical tests. The RT-PCR and immunohistochemistry results revealed that IGF-1R and PTH1R expression levels were dramatically diminished in the siRNA-treated left tibias compared to the right tibias (both p<0.05. Using poloxamer 407 hydrogel as a controlled-release system prolonged the silencing effect of a single dose of siRNA; the mRNA expression levels of IGF-1R were lower at two weeks than at one week (p<0.01. The BMD, bone microstructure parameters, MAR and bone strength were significantly decreased in the left tibias compared to the right tibias (all p<0.05. This simple and convenient local intraosseous siRNA injection model achieved gene silencing with very small quantities of

  16. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    Science.gov (United States)

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (Ppathways may lead to new targeted therapies for non-small cell lung cancer.

  17. Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA.

    Science.gov (United States)

    Moscardini, Mila; Pistello, Mauro; Bendinelli, M; Ficheux, Damien; Miller, Jennifer T; Gabus, Caroline; Le Grice, Stuart F J; Surewicz, Witold K; Darlix, Jean-Luc

    2002-04-19

    All lentiviruses and oncoretroviruses examined so far encode a major nucleic-acid binding protein (nucleocapsid or NC* protein), approximately 2500 molecules of which coat the dimeric RNA genome. Studies on HIV-1 and MoMuLV using in vitro model systems and in vivo have shown that NC protein is required to chaperone viral RNA dimerization and packaging during virus assembly, and proviral DNA synthesis by reverse transcriptase (RT) during infection. The human cellular prion protein (PrP), thought to be the major component of the agent causing transmissible spongiform encephalopathies (TSE), was recently found to possess a strong affinity for nucleic acids and to exhibit chaperone properties very similar to HIV-1 NC protein in the HIV-1 context in vitro. Tight binding of PrP to nucleic acids is proposed to participate directly in the prion disease process. To extend our understanding of lentiviruses and of the unexpected nucleic acid chaperone properties of the human prion protein, we set up an in vitro system to investigate replication of the feline immunodeficiency virus (FIV), which is functionally and phylogenetically distant from HIV-1. The results show that in the FIV model system, NC protein chaperones viral RNA dimerization, primer tRNA(Lys,3) annealing to the genomic primer-binding site (PBS) and minus strand DNA synthesis by the homologous FIV RT. FIV NC protein is able to trigger specific viral DNA synthesis by inhibiting self-priming of reverse transcription. The human prion protein was found to mimic the properties of FIV NC with respect to primer tRNA annealing to the viral RNA and chaperoning minus strand DNA synthesis. Copyright 2002 Elsevier Science Ltd.

  18. Increasing comorbidity is associated with worsening physical function and pain after primary total knee arthroplasty.

    Science.gov (United States)

    Hilton, Maren E; Gioe, Terence; Noorbaloochi, Siamak; Singh, Jasvinder A

    2016-10-07

    Previous studies suggested that pre-operative comorbidity was a risk factor for worse outcomes after TKA. To our knowledge, studies have not examined whether postoperative changes in comorbidity impact pain and function outcomes longitudinally. Our objective was to examine if increasing comorbidity postoperatively is associated with worsening physical function and pain after primary total knee arthroplasty (TKA). We performed a retrospective chart review of veterans who had completed Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Short Form-36 (SF36) surveys at regular intervals after primary TKA. Comorbidity was assessed using a variety of scales: validated Charlson comorbidity index score, and a novel Arthroplasty Comorbidity Severity Index score (Including medical index, local musculoskeletal index [including lower extremity and spine] and TKA-related index subscales; higher scores are worse ), at multiple time-points post-TKA. We used mixed model linear regression to examine the association of worsening comorbidity post-TKA with change in WOMAC and SF-36 scores in the subsequent follow-up periods, controlling for age, length of follow-up, and repeated observations. The study cohort consisted of 124 patients with a mean age of 71.7 years (range 58.6-89.2, standard deviation (SD) 6.9) followed for a mean of 4.9 years post-operatively (range 1.3-11.4; SD 2.8). We found that post-operative worsening of the Charlson Index score was significantly associated with worsening SF-36 Physical Function (PF) (beta coefficient (ß) = -0.07; p < 0.0001), SF-36 Bodily Pain (BP) (ß = -0.06; p = 0.002), and WOMAC PF subscale (ß = 0.08; p < 0.001; higher scores are worse) scores, in the subsequent periods. Worsening novel medical index subscale scores were significantly associated with worsening SF-36 PF scores (ß = -0.03; p = 0.002), SF-36 BP (ß = -0.04; p < 0.001) and showed a non-significant trend

  19. No effect of fibrin sealant on drain output or functional recovery following simultaneous bilateral total knee arthroplasty

    DEFF Research Database (Denmark)

    Skovgaard, Christian; Holm, Bente; Troelsen, Anders

    2013-01-01

    Background and purpose Blood loss after total knee arthroplasty (TKA) may lead to anemia, blood transfusions, and increased total costs. Also, bleeding into the periarticular tissue may cause swelling and a reduction in quadriceps strength, thus impairing early functional recovery. In this random...... in TKA showed no benefit in reducing drain output or in facilitating early functional recovery when used with a tourniquet, tranexamic acid, and a femoral bone plug....

  20. The impact of total sleep deprivation upon cognitive functioning in firefighters

    Directory of Open Access Journals (Sweden)

    Kujawski S

    2018-05-01

    Full Text Available Sławomir Kujawski,1 Joanna Słomko,1 Małgorzata Tafil-Klawe,2 Monika Zawadka-Kunikowska,1 Justyna Szrajda,1 Julia L Newton,3 Paweł Zalewski,1 Jacek J Klawe1 1Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, Toruń, Poland; 2Department of Human Physiology, Nicolaus Copernicus University, Toruń, Poland; 3Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, UK Introduction: Firefighters as a profession are required to maintain high levels of attention for prolonged periods. However, total sleep deprivation (TSD could influence negatively upon performance, particularly when the task is prolonged and repetitive. Purpose: The aim of this study is to examine the influence of TSD on cognitive functioning in a group of firefighters. Subjects and methods: Sixty volunteers who were active male fire brigade officers were examined with a computerized battery test that consisted of simple reaction time (SRT (repeated three times, choice reaction time, visual attention test, and delayed matching to sample. Six series of measurements were undertaken over a period of TSD. Results: Performance in the second attempt in SRT test was significantly worse in terms of increased number of errors and, consequently, decreased number of correct responses during TSD. In contrast, the choice reaction time number of correct responses as well as the visual attention test reaction time for all and correct responses significantly improved compared to initial time points. Conclusion: The study has confirmed that subjects committed significantly more errors and, consequently, noted a smaller number of correct responses in the second attempt of SRT test. However, the remaining results showed reversed direction of TSD influence. TSD potentially leads to worse performance in a relatively easy task in a group of firefighters. Errors during repetitive tasks in firefighting

  1. Evaluation of total renal function from 99mTc-MAG3 scintigraphy in children

    International Nuclear Information System (INIS)

    Andersson, L.G.; Bratteby, L.E.; Takalo, R.; Svensson, L.

    2002-01-01

    Aim: The aim of the present study was to evaluate the usefulness of dynamic scintigraphy in the assessment of total renal function in children. The Patlak slope of 99m Tc-MAG3 renography curves were compared to the plasma clearance values of 51Cr-EDTA. Material and methods: The study sample consisted of 53 boys and 33 girls with various nephrologic disorders, referred for routine clinical reasons. The median age of the subjects was 5.1 years (range 0.3 - 14.1 years). Imaging procedure. In supine position, the patient received a bolus injection of 1 MBq/kg, (minimum 10 MBq) 99m Tc-MAG3 and a posterior dynamic gamma camera registration was performed for 21 min using 1 frame per second during the first minute and thereafter 10 seconds frames. Data analysis. Time-activity curves were generated from manually drawn heart and renal regions of interest. The MAG3 uptake was calculated from the Patlak-Rutland plot of each kidney by linear curve fitting until the beginning of the excretory phase. A sum of the slope values was used as a measure of total renal MAG3 uptake. Cr-EDTA clearance. Glomerular filtration rate (GFR) was measured from the plasma clearance of 51 Cr-EDTA using single injection, multiple-sample technique. After intravenous injection of 51 Cr-EDTA (74 kBq/kg for children up to 7 years, 37 kBq/kg for children older than 7 years), blood samples were drawn at 5, 10, 15, 45, 60, 120 and 180 min for radioactivity measurement. The GFR was calculated according to Broechner-Mortensen and expressed in ml/min. Results: The absolute 51 Cr-EDTA clearance varied from 9 to 143 ml/min. There was a close linear relationship between 51 Cr-EDTA clearance and MAG3 uptake (Fig). The correlation coefficient was 0.90 and the regression equation (y=43.5 x + 664). Conclusions: In the present study, there was a good correlation between plasma clearance of 51 Cr-EDTA and the sum of the Patlak slopes. The regression equation can be utilised to transform the 99m Tc-MAG3 uptake to an

  2. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  3. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  4. Total sequence decomposition distinguishes functional modules, "molegos" in apurinic/apyrimidinic endonucleases

    Directory of Open Access Journals (Sweden)

    Braun Werner

    2002-11-01

    Full Text Available Abstract Background Total sequence decomposition, using the web-based MASIA tool, identifies areas of conservation in aligned protein sequences. By structurally annotating these motifs, the sequence can be parsed into individual building blocks, molecular legos ("molegos", that can eventually be related to function. Here, the approach is applied to the apurinic/apyrimidinic endonuclease (APE DNA repair proteins, essential enzymes that have been highly conserved throughout evolution. The APEs, DNase-1 and inositol 5'-polyphosphate phosphatases (IPP form a superfamily that catalyze metal ion based phosphorolysis, but recognize different substrates. Results MASIA decomposition of APE yielded 12 sequence motifs, 10 of which are also structurally conserved within the family and are designated as molegos. The 12 motifs include all the residues known to be essential for DNA cleavage by APE. Five of these molegos are sequentially and structurally conserved in DNase-1 and the IPP family. Correcting the sequence alignment to match the residues at the ends of two of the molegos that are absolutely conserved in each of the three families greatly improved the local structural alignment of APEs, DNase-1 and synaptojanin. Comparing substrate/product binding of molegos common to DNase-1 showed that those distinctive for APEs are not directly involved in cleavage, but establish protein-DNA interactions 3' to the abasic site. These additional bonds enhance both specific binding to damaged DNA and the processivity of APE1. Conclusion A modular approach can improve structurally predictive alignments of homologous proteins with low sequence identity and reveal residues peripheral to the traditional "active site" that control the specificity of enzymatic activity.

  5. Pseudoknot in domain II of 23 S rRNA is essential for ribosome function

    DEFF Research Database (Denmark)

    Rosendahl, G; Hansen, L H; Douthwaite, S

    1995-01-01

    The structure of domain II in all 23 S (and 23 S-like) rRNAs is constrained by a pseudoknot formed between nucleotides 1005 and 1138, and between 1006 and 1137 (Escherichia coli numbering). These nucleotides are exclusively conserved as 1005C.1138G and 1006C.1137G pairs in all Bacteria, Archaea...... increased accessibility in the rRNA structure close to the sites of the mutations. The degree to which the mutations increase rRNA accessibility correlates with the severity of their phenotypic effects. Nucleotide 1131G is extremely reactive to dimethyl sulphate modification in wild-type subunits...

  6. Characterization of Steroid Receptor RNA Activator Protein Function in Modulating the Estrogen Signaling Pathway

    Science.gov (United States)

    2008-03-01

    two opposite directions. Material and methods Alignment of SRAP sequences: Putative SRAP sequence from Homo sapiens , Bos Taurus, Mus musculus...0.5 1 1.5 2 control IP IP +V5 competition R el at iv e H D A C a ct iv ity IP IP + V5 * MCF-7cont MCF-7 SRAP-V5 High.A cells Fig 7 Appendix 5...1 0 1 2 3 PRO WT NONE RNA UT D el ta C T ** A B C Figure 4: SRAP down regulates the ERbeta expression in mRNA level. A) Four plenti-SRA constructs

  7. RNA Polymerase Structure, Function, Regulation, Dynamics, Fidelity, and Roles in GENE EXPRESSION | Center for Cancer Research

    Science.gov (United States)

    Multi-subunit RNA polymerases (RNAP) are ornate molecular machines that translocate on a DNA template as they generate a complementary RNA chain. RNAPs are highly conserved in evolution among eukarya, eubacteria, archaea, and some viruses. As such, multi-subunit RNAPs appear to be an irreplaceable advance in the evolution of complex life on earth. Because of their stepwise movement on DNA, RNAPs are considered to be molecular motors, and because RNAPs catalyze a templated polymerization reaction, they are central to biological information flow.

  8. BIOLOGICAL FUNCTION OF TOMBUSVIRUS-ENCODED SUPPRESSOR OF RNA SILENCING IN PLANTS

    Directory of Open Access Journals (Sweden)

    Omarov R.T.

    2012-08-01

    Full Text Available RNA interference (RNAi plays multiple biological roles in eukaryotic organisms to regulate gene expression. RNAi also operates as a conserved adaptive molecular immune mechanism against invading viruses. The antiviral RNAi pathway is initiated with the generation of virus-derived short-interfering RNAs (siRNAs that are used for subsequent sequence-specific recognition and degradation of the cognate viral RNA molecules. As an efficient counter-defensive strategy, most plant viruses evolved the ability to encode specific proteins capable of interfering with RNAi, and this process is commonly known as RNA silencing suppression. Virus-encoded suppressors of RNAi (VSRs operate at different steps in the RNAi pathway and display distinct biochemical properties that enable these proteins to efficiently interfere with the host-defense system. Tombusvirus-encoded P19 is an important pathogenicity factor, required for symptom development and elicitation of a hypersensitive response in a host-dependent manner. Protein plays a crucial role of TBSV P19 in protecting viral RNA during systemic infection on Nicotiana benthamiana. The X-ray crystallographic studies conducted by two independent groups revealed the existence of a P19-siRNA complex; a conformation whereby caliper tryptophan residues on two subunits of P19 dimers measure and bind 21-nt siRNA duplexes. These structural studies provided the first details on the possible molecular mechanism of any viral suppressor to block RNAi. The association between P19 and siRNAs was also shown to occur in infected plants These and related studies revealed that in general the ability of P19 to efficiently sequester siRNAs influences symptom severity, however this is not a strict correlation in all hosts.The current working model is that during TBSV infection of plants, P19 appropriates abundantly circulating Tombusvirus-derived siRNAs thereby rendering these unavailable to program RISC, to prevent degradation of

  9. Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis

    Directory of Open Access Journals (Sweden)

    Olga Villamizar

    2016-06-01

    Full Text Available This paper describes data related to a research article titled, “Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death” [1]. Long noncoding RNAs (lncRNAs are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis. Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf described in the research article. Also included are 5′ untranslated sequences (UTR for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34+ cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34+ cells transduced using mock conditions or with lentivirus particles encoding for Saf.

  10. Extraction of Total DNA and RNA from Marine Filter Samples and Generation of a cDNA as Universal Template for Marker Gene Studies.

    Science.gov (United States)

    Schneider, Dominik; Wemheuer, Franziska; Pfeiffer, Birgit; Wemheuer, Bernd

    2017-01-01

    Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has been increased in the last few years, the vast majority of marine diversity is rather unexplored. Moreover, most studies focused on the entire bacterial community and thus disregarded active microbial community players. Here, we describe a detailed protocol for the simultaneous extraction of DNA and RNA from marine water samples and for the generation of cDNA from the isolated RNA which can be used as a universal template in various marker gene studies.

  11. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  12. Functional characterization of the proteolytic activity of the tomato black ring nepovirus RNA-1-encoded polyprotein.

    Science.gov (United States)

    Hemmer, O; Greif, C; Dufourcq, P; Reinbolt, J; Fritsch, C

    1995-01-10

    Translation of tomato black ring virus (TBRV) RNA-1 in a rabbit reticulocyte lysate leads to the synthesis of a 250K polyprotein which cleaves itself into smaller proteins of 50, 60, 120, and 190K. Polypeptides synthesized from synthetic transcripts corresponding to different regions of TBRV RNA-1 are processed only when they encode the 23K protein delimited earlier by sequence homology with the cowpea mosaic virus 24K protease. The proteolytic activity of this protein is completely lost by mutating residues C170 (to I) or L188 (to H), residues which align with conserved residues of the viral serine-like proteases. The 120K protein is generated by cleavage of the dipeptide K/A localized in front of the VPg but is not further cleaved in vitro at the K/S site (at the C terminus of the VPg) or between the protease and polymerase domains. However, both the protein VPgProPol (120K) and the protein ProPol (117K) produced in vitro from synthetic transcripts can cleave in trans the RNA-2-encoded 150K polyprotein, but they cannot cleave in trans polypeptides containing a cleavage site expressed from RNA-1 transcripts in which the protease cistron is absent or modified.

  13. Functional and oncologic outcomes after excision of the total femur in primary bone tumors: Results with a low cost total femur prosthesis

    Directory of Open Access Journals (Sweden)

    Ajay Puri

    2012-01-01

    Full Text Available Background: The extent of tumor may necessitate resection of the complete femur rarely to achieve adequate oncologic clearance in bone sarcomas. We present our experience with reconstruction in such cases using an indigenously manufactured, low-cost, total femoral prosthesis (TFP. We assessed the complications of the procedure, the oncologic and functional outcomes, and implant survival. Materials and Methods: Eight patients (four males and four females with a mean age of 32 years, operated between December 2003 and June 2009, had a TFP implanted. The diagnosis included osteogenic sarcoma (5, Ewing′s sarcoma (1, and chondrosarcoma (2. Mean followup was 33 months (9-72 months for all and 40 months (24-72 months in survivors. They were evaluated by Musculoskeletal Tumor Society score, implant survival as well as patient survival. Results: There was one local recurrence and five of seven patients are currently alive at the time of last followup. The Musculoskeletal Tumor Society score for patients ranged from 21 to 25 with a mean of 24 (80%. The implant survival was 88% at 5 years with only one TFP needing removal because of infection. Conclusions: A TFP in appropriately indicated patients with malignant bone tumors is oncologically safe. A locally manufactured, cost-effective implant provided consistent and predictable results after excision of the total femur with good functional outcomes.

  14. Local functional derivative of the total energy and the shell structure in atoms and molecules

    NARCIS (Netherlands)

    Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.

    2003-01-01

    The full and local Thomas–Fermi–Dirac energy functional derivatives are evaluated at Hartree–Fock densities for several atoms and molecules. These functions are interpreted as local chemical potentials and related mainly to kinetic energy functional derivatives. They are able to reveal the shell

  15. Mobile-bearing total ankle arthroplasty : a fundamental assessment of the clinical, radiographic and functional outcomes

    NARCIS (Netherlands)

    Doets, Hendrik Cornelis

    2009-01-01

    Ankle arthritis often leads to significant impairments for the patient. As total ankle arthroplasty (TAA) with use of fixed-bearing (2-component) total ankle prostheses has a high rate of early failures, fusion of the ankle joint is, until today, considered to be the standard surgical treatment for

  16. Unraveling the hidden heterogeneities of breast cancer based on functional miRNA cluster.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available It has become increasingly clear that the current taxonomy of clinical phenotypes is mixed with molecular heterogeneity, which potentially affects the treatment effect for involved patients. Defining the hidden molecular-distinct diseases using modern large-scale genomic approaches is therefore useful for refining clinical practice and improving intervention strategies. Given that microRNA expression profiling has provided a powerful way to dissect hidden genetic heterogeneity for complex diseases, the aim of the study was to develop a bioinformatics approach that identifies microRNA features leading to the hidden subtyping of complex clinical phenotypes. The basic strategy of the proposed method was to identify optimal miRNA clusters by iteratively partitioning the sample and feature space using the two-ways super-paramagnetic clustering technique. We evaluated the obtained optimal miRNA cluster by determining the consistency of co-expression and the chromosome location among the within-cluster microRNAs, and concluded that the optimal miRNA cluster could lead to a natural partition of disease samples. We applied the proposed method to a publicly available microarray dataset of breast cancer patients that have notoriously heterogeneous phenotypes. We obtained a feature subset of 13 microRNAs that could classify the 71 breast cancer patients into five subtypes with significantly different five-year overall survival rates (45%, 82.4%, 70.6%, 100% and 60% respectively; p = 0.008. By building a multivariate Cox proportional-hazards prediction model for the feature subset, we identified has-miR-146b as one of the most significant predictor (p = 0.045; hazard ratios = 0.39. The proposed algorithm is a promising computational strategy for dissecting hidden genetic heterogeneity for complex diseases, and will be of value for improving cancer diagnosis and treatment.

  17. Long Noncoding RNA uc001pwg.1 Is Downregulated in Neointima in Arteriovenous Fistulas and Mediates the Function of Endothelial Cells Derived from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Lei Lv

    2017-01-01

    Full Text Available Recent studies indicate important roles for long noncoding RNAs (lncRNAs as essential regulators of gene expression. However, the specific roles of lncRNAs in stenotic lesions of arteriovenous fistula (AVF failure are still largely unknown. We first analyzed the expression profiles of lncRNAs in human stenosed and nonstenotic uremic veins using RNA-sequencing methodology. A total of 19 lncRNAs were found to be differentially expressed in stenotic lesions. Among these, uc001pwg.1 was one of the most significantly downregulated lncRNAs and enriched in both control vein segments and human umbilical vein endothelial cells (HUVECs. Further studies revealed that uc001pwg.1 overexpression could increase nitric oxide synthase (eNOS phosphorylation and nitric oxide (NO production in endothelial cells (ECs derived from human-induced pluripotent stem cells (HiPSCs. Mechanistically, uc001pwg.1 improves endothelial function via mediating MCAM expression. This study represents the first effort of identifying a novel candidate lncRNA for modulating the function of iPSC-ECs, which may facilitate the improvement of stem cell-based therapies for AVF failure.

  18. Pancreatic endocrine and exocrine function in children following near-total pancreatectomy for diffuse congenital hyperinsulinism.

    Science.gov (United States)

    Arya, Ved Bhushan; Senniappan, Senthil; Demirbilek, Huseyin; Alam, Syeda; Flanagan, Sarah E; Ellard, Sian; Hussain, Khalid

    2014-01-01

    Congenital hyperinsulinism (CHI), the commonest cause of persistent hypoglycaemia, has two main histological subtypes: diffuse and focal. Diffuse CHI, if medically unresponsive, is managed with near-total pancreatectomy. Post-pancreatectomy, in addition to persistent hypoglycaemia, there is a very high risk of diabetes mellitus and pancreatic exocrine insufficiency. International referral centre for the management of CHI. Medically unresponsive diffuse CHI patients managed with near-total pancreatectomy between 1994 and 2012. Near-total pancreatectomy. Persistent hypoglycaemia post near-total pancreatectomy, insulin-dependent diabetes mellitus, clinical and biochemical (faecal elastase 1) pancreatic exocrine insufficiency. Of more than 300 patients with CHI managed during this time period, 45 children had medically unresponsive diffuse disease and were managed with near-total pancreatectomy. After near-total pancreatectomy, 60% of children had persistent hypoglycaemia requiring medical interventions. The incidence of insulin dependent diabetes mellitus was 96% at 11 years after surgery. Thirty-two patients (72%) had biochemical evidence of severe pancreatic exocrine insufficiency (Faecal elastase 1insufficiency was observed in 22 (49%) patients. No statistically significant difference in weight and height standard deviation score (SDS) was found between untreated subclinical pancreatic exocrine insufficiency patients and treated clinical pancreatic exocrine insufficiency patients. The outcome of diffuse CHI patients after near-total pancreatectomy is very unsatisfactory. The incidence of persistent hypoglycaemia and insulin-dependent diabetes mellitus is very high. The presence of clinical rather than biochemical pancreatic exocrine insufficiency should inform decisions about pancreatic enzyme supplementation.

  19. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Samandari, Nasim; Mirza, Aashiq H; Nielsen, Lotte B

    2017-01-01

    AIMS/HYPOTHESIS: We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS: Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children......RNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION: The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes...... from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control...

  20. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    2008-07-01

    Full Text Available The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite-host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC. We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP, and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth

  1. Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption

    OpenAIRE

    Kenichiro Hida; Shin-Ichi Kuribayashi

    2016-01-01

    In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions...

  2. Pancreatic Endocrine and Exocrine Function in Children following Near-Total Pancreatectomy for Diffuse Congenital Hyperinsulinism

    Science.gov (United States)

    Arya, Ved Bhushan; Senniappan, Senthil; Demirbilek, Huseyin; Alam, Syeda; Flanagan, Sarah E.; Ellard, Sian; Hussain, Khalid

    2014-01-01

    Context Congenital hyperinsulinism (CHI), the commonest cause of persistent hypoglycaemia, has two main histological subtypes: diffuse and focal. Diffuse CHI, if medically unresponsive, is managed with near-total pancreatectomy. Post-pancreatectomy, in addition to persistent hypoglycaemia, there is a very high risk of diabetes mellitus and pancreatic exocrine insufficiency. Setting International referral centre for the management of CHI. Patients Medically unresponsive diffuse CHI patients managed with near-total pancreatectomy between 1994 and 2012. Intervention Near-total pancreatectomy. Main Outcome Measures Persistent hypoglycaemia post near-total pancreatectomy, insulin-dependent diabetes mellitus, clinical and biochemical (faecal elastase 1) pancreatic exocrine insufficiency. Results Of more than 300 patients with CHI managed during this time period, 45 children had medically unresponsive diffuse disease and were managed with near-total pancreatectomy. After near-total pancreatectomy, 60% of children had persistent hypoglycaemia requiring medical interventions. The incidence of insulin dependent diabetes mellitus was 96% at 11 years after surgery. Thirty-two patients (72%) had biochemical evidence of severe pancreatic exocrine insufficiency (Faecal elastase 1pancreatectomy is very unsatisfactory. The incidence of persistent hypoglycaemia and insulin-dependent diabetes mellitus is very high. The presence of clinical rather than biochemical pancreatic exocrine insufficiency should inform decisions about pancreatic enzyme supplementation. PMID:24840042

  3. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier

    DEFF Research Database (Denmark)

    Gomes, Maria João; Kennedy, Patrick J; Martins, Susana

    2017-01-01

    AIM: Explore the use of transferrin-receptor peptide-functionalized nanoparticles (NPs) targeting blood-brain barrier (BBB) as siRNA carriers to silence P-glycoprotein (P-gp). MATERIALS & METHODS: Permeability experiments were assessed through a developed BBB cell-based model; P-gp mRNA expression...

  4. Effect of halophilic conditions in stabilisation of RNA structure and function at high temperature under radiations.

    Science.gov (United States)

    Maurel, M.-C.

    We have already shown the structural integrity of tRNA at high temperature - 82C for 30h - in high salt concentrations (Tehei et al, 2002). Stability were also performed by measuring the residual specific tRNA charge capacity after heat treatment for 30 h at 82C. RNA molecules are selected (in vitro selection) at high temperature at high salt concentration. We are undergoing studies of such molecules submitted to several stressful conditions, in particular high radiations. These studies provide support for the importance of salt to protect macromolecules against severe cosmic conditions. These could be useful for searching traces of life in planetary objects and space exploration. References : ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine adsorption onto and release from meteorite specimens assessed by Surface Enhanced Raman Spectroscopy ''. Journal of Raman Spectroscopy (2004) in press. Meli, M., Vergne, J. and Maurel, M-C. "In vitro selection of adenine-dependent hairpin ribozymes" J. Biol. Chem., (2003), 278, 11, 9835-9842. ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine in mineral samples : development of a methodology based on Surface Enhanced Raman Spectroscopy (SERS) for picomole detections ''. Spectrochimica Acta, A, 59, 2645-2654. Tehei, M., Franzetti, B., Maurel, M-C., Vergne, J., Hountondji, C. , Zaccai, G. ``Salt and the Search for Traces of Life '', Extremophiles, (2002), 6 : 427-430. Meli, M., Vergne, J., Décout, J.L., and Maurel, M-C. ``Adenine-Aptamer Complexes. A bipartite RNA site which binds the adenine nucleic base '', J. Biol. Chem., (2002), 277, 3, 2104-2111.

  5. Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation

    Science.gov (United States)

    Hu, Wenchao; Liu, Yuting; Yan, Jun

    2014-01-01

    Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240

  6. Pancreatic endocrine and exocrine function in children following near-total pancreatectomy for diffuse congenital hyperinsulinism.

    Directory of Open Access Journals (Sweden)

    Ved Bhushan Arya

    Full Text Available Congenital hyperinsulinism (CHI, the commonest cause of persistent hypoglycaemia, has two main histological subtypes: diffuse and focal. Diffuse CHI, if medically unresponsive, is managed with near-total pancreatectomy. Post-pancreatectomy, in addition to persistent hypoglycaemia, there is a very high risk of diabetes mellitus and pancreatic exocrine insufficiency.International referral centre for the management of CHI.Medically unresponsive diffuse CHI patients managed with near-total pancreatectomy between 1994 and 2012.Near-total pancreatectomy.Persistent hypoglycaemia post near-total pancreatectomy, insulin-dependent diabetes mellitus, clinical and biochemical (faecal elastase 1 pancreatic exocrine insufficiency.Of more than 300 patients with CHI managed during this time period, 45 children had medically unresponsive diffuse disease and were managed with near-total pancreatectomy. After near-total pancreatectomy, 60% of children had persistent hypoglycaemia requiring medical interventions. The incidence of insulin dependent diabetes mellitus was 96% at 11 years after surgery. Thirty-two patients (72% had biochemical evidence of severe pancreatic exocrine insufficiency (Faecal elastase 1<100 µg/g. Clinical exocrine insufficiency was observed in 22 (49% patients. No statistically significant difference in weight and height standard deviation score (SDS was found between untreated subclinical pancreatic exocrine insufficiency patients and treated clinical pancreatic exocrine insufficiency patients.The outcome of diffuse CHI patients after near-total pancreatectomy is very unsatisfactory. The incidence of persistent hypoglycaemia and insulin-dependent diabetes mellitus is very high. The presence of clinical rather than biochemical pancreatic exocrine insufficiency should inform decisions about pancreatic enzyme supplementation.

  7. B Cell Receptor Activation Predominantly Regulates AKT-mTORC1/2 Substrates Functionally Related to RNA Processing.

    Directory of Open Access Journals (Sweden)

    Dara K Mohammad

    Full Text Available Protein kinase B (AKT phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206 dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins.

  8. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.

    Science.gov (United States)

    Saraiya, Ashesh A; Lamichhane, Tek N; Chow, Christine S; SantaLucia, John; Cunningham, Philip R

    2008-02-22

    The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.

  9. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    International Nuclear Information System (INIS)

    Grzybowska, Ewa A.

    2012-01-01

    Highlights: ► Functional characteristics of intronless genes (IGs). ► Diseases associated with IGs. ► Origin and evolution of IGs. ► mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  10. Value of a simple technique for the measurement of total renal function and each kidney functions without requiring blood or urine samples

    International Nuclear Information System (INIS)

    Meyers, A.; Chachati, A.; Godon, J.P.; Rigo, P.

    1985-01-01

    The determination of renal uptake of 99m Tc DTPA and of 131 I Hippuran (as a percentage of the administred dose) at a time interval 1-3 minutes after tracer injection, is a rapid, accurate method for the measurement of total renal function and each kidney functions. Its clinical validity has been confirmed [fr

  11. The Human dsRNA binding protein PACT is unable to functionally substitute for the Drosophila dsRNA binding protein R2D2 [v1; ref status: indexed, http://f1000r.es/201

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    2013-10-01

    Full Text Available The primary function of the dsRNA binding protein (dsRBP PACT/RAX is to activate the dsRNA dependent protein kinase PKR in response to stress signals.  Additionally, it has been identified as a component of the small RNA processing pathway.  A role for PACT/RAX in this pathway represents an important interplay between two modes of post-transcriptional gene regulation.  The function of PACT/RAX in this context is poorly understood.  Thus, additional models are required to clarify the mechanism by which PACT/RAX functions.  In this study, Drosophila melanogaster was employed to identify functionally orthologous dsRNA-binding proteins.  Transgenic Drosophila expressing human PACT were generated to determine whether PACT is capable of functionally substituting for the Drosophila dsRBP R2D2, which has a well-defined role in small RNA biogenesis.  Results presented here indicate that PACT is unable to substitute for R2D2 at the whole organism level.

  12. Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Cui Jiang-Wei; Zhou Hang; Yu De-Zhao; Yu Xue-Feng; Lu Wu; Guo Qi; Ren Di-Yuan

    2015-01-01

    Functional failure mode of commercial deep sub-micron static random access memory (SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result. (paper)

  13. Topical Anti-Nuclear Factor-Kappa B Small Interfering RNA with Functional Peptides Containing Sericin-Based Hydrogel for Atopic Dermatitis

    Directory of Open Access Journals (Sweden)

    Takanori Kanazawa

    2015-09-01

    Full Text Available The small interfering RNA (siRNA is suggested to offer a novel means of treating atopic dermatitis (AD because it allows the specific silencing of genes related to AD pathogenesis. In our previous study, we found that siRNA targeted against RelA, an important nuclear factor-kappa B (NF-κB subdomain, with functional peptides, showed therapeutic effects in a mouse model of AD. In the present study, to develop a topical skin application against AD, we prepared a hydrogel containing anti-RelA siRNA and functional peptides and determined the intradermal permeation and the anti-AD effects in an AD mouse model. We selected the silk protein, sericin (SC, which is a versatile biocompatible biomaterial to prepare hydrogel as an aqueous gel base. We found that the siRNA was more widely delivered to the site of application in AD-induced ear skin of mice after topical application via the hydrogel containing functional peptides than via the preparation without functional peptides. In addition, the ear thickness and clinical skin severity of the AD-induced mice treated with hydrogel containing anti-RelA siRNA with functional peptides improved more than that of mice treated with the preparation formulated with negative siRNA.

  14. Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model

    Directory of Open Access Journals (Sweden)

    Nikolay M. Bogoliubov

    2009-04-01

    Full Text Available The basic model of the non-equilibrium low dimensional physics the so-called totally asymmetric exclusion process is related to the 'crystalline limit' (q → ∞ of the SU_q(2 quantum algebra. Using the quantum inverse scattering method we obtain the exact expression for the time-dependent stationary correlation function of the totally asymmetric simple exclusion process on a one dimensional lattice with the periodic boundary conditions.

  15. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization

  16. Total hip arthroplasty in patients with ankylosing spondylitis: Midterm radiologic and functional results

    Directory of Open Access Journals (Sweden)

    Yavuz Saglam

    2016-08-01

    Conclusion: Revision incidence was similar in between ankylosed and non-ankylosed hips. While complication rates are high, significant functional improvement can be achieved after THA in patients with AS.

  17. Total average diastolic longitudinal displacement by colour tissue doppler imaging as an assessment of diastolic function

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sørensen, Tor; Søgaard, Peter

    2016-01-01

    BACKGROUND: The current method for a non-invasive assessment of diastolic dysfunction is complex with the use of algorithms of many different echocardiographic parameters. Total average diastolic longitudinal displacement (LD), determined by colour tissue Doppler imaging (TDI) via the measurement...

  18. Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    2016-01-01

    Full Text Available Small interfering RNA (siRNA is effective in silencing critical molecular pathways in cancer. The use of this tool as a treatment modality is limited by lack of an intelligent carrier system to enhance the preferential delivery of this molecule to specific targets in vivo. In the present study, the in vivo behavior of novel anti-NTSR1-mAb-functionalized antimutant K-ras siRNA-loaded hybrid nanoparticles, delivered by i.p. injection to non-small-cell lung cancer in mice models, was investigated and compared to that of a naked siRNA formulation. The siRNA in anti-NTSR1-mAb-functionalized hybrid nanoparticles was preferentially accumulated in tumor-bearing lungs and metastasized tumor for at least 48 hours while the naked siRNA formulation showed lack of preferential accumulation in all of the organs monitored. The plasma terminal half-life of nanoparticle-delivered siRNA was 11 times higher (17–1.5 hours than that of the naked siRNA formulation. The mean residence time and AUClast were 3.4 and 33 times higher than the corresponding naked siRNA formulation, respectively. High-performance liquid chromatography analysis showed that the hybrid nanoparticle carrier system protected the encapsulated siRNA against degradation in vivo. Our novel anti-NTSR1-mAb-functionalized hybrid nanoparticles provide a useful platform for in vivo targeting of siRNA for both experimental and clinical purposes.

  19. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism.

    Science.gov (United States)

    Hodroj, Dana; Recolin, Bénédicte; Serhal, Kamar; Martinez, Susan; Tsanov, Nikolay; Abou Merhi, Raghida; Maiorano, Domenico

    2017-05-02

    Coordination between transcription and replication is crucial in the maintenance of genome integrity. Disturbance of these processes leads to accumulation of aberrant DNA:RNA hybrids (R-loops) that, if unresolved, generate DNA damage and genomic instability. Here we report a novel, unexpected role for the nucleopore-associated mRNA export factor Ddx19 in removing nuclear R-loops formed upon replication stress or DNA damage. We show, in live cells, that Ddx19 transiently relocalizes from the nucleopore to the nucleus upon DNA damage, in an ATR/Chk1-dependent manner, and that Ddx19 nuclear relocalization is required to clear R-loops. Ddx19 depletion induces R-loop accumulation, proliferation-dependent DNA damage and defects in replication fork progression. Further, we show that Ddx19 resolves R-loops in vitro via its helicase activity. Furthermore, mutation of a residue phosphorylated by Chk1 in Ddx19 disrupts its interaction with Nup214 and allows its nuclear relocalization. Finally, we show that Ddx19 operates in resolving R-loops independently of the RNA helicase senataxin. Altogether these observations put forward a novel, ATR-dependent function for Ddx19 in R-loop metabolism to preserve genome integrity in mammalian cells. © 2017 The Authors.

  20. Functional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Non-coding small RNAs (sRNAs are found in practically all bacterial genomes and play important roles in regulating gene expression to impact bacterial metabolism, growth, and virulence. We performed transcriptomics analysis to identify sRNAs that are differentially expressed in Yersinia pestis that invaded the human macrophage cell line THP-1, compared to pathogens that remained extracellular in the presence of host. Using ultra high-throughput sequencing, we identified 37 novel and 143 previously known sRNAs in Y. pestis. In particular, the sRNA Ysr170 was highly expressed in intracellular Yersinia and exhibited a log2 fold change ~3.6 higher levels compared to extracellular bacteria. We found that knock-down of Ysr170 expression attenuated infection efficiency in cell culture and growth rate in response to different stressors. In addition, we applied selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE analysis to determine the secondary structure of Ysr170 and observed structural changes resulting from interactions with the aminoglycoside antibiotic gentamycin and the RNA chaperone Hfq. Interestingly, gentamicin stabilized helix 4 of Ysr170, which structurally resembles the native gentamicin 16S ribosomal binding site. Finally, we modeled the tertiary structure of Ysr170 binding to gentamycin using RNA motif modeling. Integration of these experimental and structural methods can provide further insight into the design of small molecules that can inhibit function of sRNAs required for pathogen virulence.

  1. Functional interaction between Smad, CREB binding protein, and p68 RNA helicase

    International Nuclear Information System (INIS)

    Warner, Dennis R.; Bhattacherjee, Vasker; Yin, Xiaolong; Singh, Saurabh; Mukhopadhyay, Partha; Pisano, M. Michele; Greene, Robert M.

    2004-01-01

    The transforming growth factors β control a diversity of biological processes including cellular proliferation, differentiation, apoptosis, and extracellular matrix production, and are critical effectors of embryonic patterning and development, including that of the orofacial region. TGFβ superfamily members signal through specific cell surface receptors that phosphorylate the cytoplasmic Smad proteins, resulting in their translocation to the nucleus and interaction with promoters of TGFβ-responsive genes. Subsequent alterations in transcription are cell type-specific and dependent on recruitment to the Smad/transcription factor complex of coactivators, such as CBP and p300, or corepressors, such as c-ski and SnoN. Since the affinity of Smads for DNA is generally low, additional accessory proteins that facilitate Smad/DNA binding are required, and are often cell- and tissue-specific. In order to identify novel Smad 3 binding proteins in developing orofacial tissue, a yeast two hybrid assay was employed in which the MH2 domain of Smad 3 was used to screen an expression library derived from mouse embryonic orofacial tissue. The RNA helicase, p68, was identified as a unique Smad binding protein, and the specificity of the interaction was confirmed through various in vitro and in vivo assays. Co-expression of Smad 3 and a CBP-Gal4 DNA binding domain fusion protein in a Gal4-luciferase reporter assay resulted in increased TGFβ-stimulated reporter gene transcription. Moreover, co-expression of p68 RNA helicase along with Smad 3 and CBP-Gal4 resulted in synergistic activation of Gal4-luciferase reporter expression. Collectively, these data indicate that the RNA helicase, p68, can directly interact with Smad 3 resulting in formation of a transcriptionally active ternary complex containing Smad 3, p68, and CBP. This offers a means of enhancing TGFβ-mediated cellular responses in developing orofacial tissue

  2. Avoiding microRNA Function Through Alternative Polyandenylation in Prostate Cancer

    Science.gov (United States)

    2012-10-01

    Transposase Homeodomain PHD ZNF MYND RuBisCo NSD1 NSD2 NSD3 MES-4 SETD2 ASH1L SETMAR SMYD2 SETD3 AWSa b Post-SET SET PWWP domain (Pro‑ Trp ‑ Trp ‑Pro domain ). A...discs 1; ASH1L, ASH1- like ; H, histone; NSD, nuclear receptor SET domain -containing; me1, monomethylated; me2, dimethylated; me3, trimethylated; SETD...mRNA86,87. FGFR2 contains two mutually exclusive exons (IIIb and IIIc) that encode a region within the extracellular immunoglobulin- like domain and

  3. Application of TALE-Based Approach for Dissecting Functional MicroRNA-302/367 in Cellular Reprogramming.

    Science.gov (United States)

    Zhang, Zhonghui; Wu, Wen-Shu

    2018-01-01

    MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.

  4. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  5. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  6. Total radiative width (Γγ) as a function of mass number A

    International Nuclear Information System (INIS)

    Huynh, V.D.; Barros, S. De; Chevillon, P.L.; Julien, J.; Poittevin, G. Le; Morgenstern, J.; Samour, C.

    1967-01-01

    The total radiative width Γ γ was measured accurately for a large number of nuclei. These values, which are important for reactor calculations, are difficult to determine. The fluctuations in Γ γ from resonance to resonance in the same nucleus are discussed in terms of level parity and the de-excitation scheme. The authors compare the experimental values with those predicted by theory. (author) [fr

  7. OPTIMAL IMPROVEMENT IN FUNCTION AFTER TOTAL HIP AND KNEE REPLACEMENT: HOW DEEP DO YOU KNOW YOUR PATIENT’S MIND?

    Science.gov (United States)

    De Caro, M F; Vicenti, G; Abate, A; Picca, G; Leoncini, V; Lomuscio, M; Casalino, A; Solarino, G; Moretti, B

    2015-01-01

    Osteoarthritis (OA) of the hip and knee causes pain and loss of joint mobility, leading to limitations in physical function. When conservative treatment fails total hip and knee replacement is a cost-effective surgical option. Patients have high expectations regarding functional outcome after these procedures. If such expectations are not met, they may still be dissatisfied with the outcome of a technically successful procedure. Recently, numerous studies reported that psychological factors can influence the outcome of total knee replacement (tkr) and total hip artrhoplasty with total hip replacement (thr). We conducted a prospective study on a consecutive sample of 280 patients affected by hip or knee OA who underwent total joint replacement. At patients’ admission, Harris Hip Score (HHS) and Knee Society Score (KSS) were used to assess pain and function. Furthermore, SF-36, Mini-Mental Status Examination (MMSE), Symptom Checklist-90-R (SCL-90-R), Coping Orientation to Problems Experienced (BRIEF-COPE) and the Amsterdam Preoperative Anxiety and Information Scale (APAIS) were administered. Patients had clinical and radio graphical follow up at 1, 3 and 6 months post-operatively. The HHS and KSS values before surgery showed a linear correlation with both SCL-90-R and MMSE. None of the investigated variables influenced post-operative HHS and KSS scores; however, the improvement of functional scores resulted conditioned by SCL-90-R values, VAS score, schooling and MMSE. Psychological factors and mental status in primary total hip and knee replacement can affect outcome and patient satisfaction. Strategies focused on identification and facing of these conditions must be considered to improve outcome of total replacement.

  8. A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1.

    Science.gov (United States)

    Wang, Yuru; Havel, Jocelyn; Beal, Peter A

    2015-11-20

    Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. ADAR1 and ADAR2 are two members of the family that have been shown to be catalytically active. Earlier, we reported a phenotypic screen for the study of human ADAR2 using budding yeast S. cerevisiae as the host system. While this screen has been successfully applied to the study of ADAR2, it failed with ADAR1. Here, we report a new reporter that uses a novel editing substrate and is suitable for the study of ADAR1. We screened plasmid libraries with randomized codons for two important residues in human ADAR1 (G1007 and E1008). The screening results combined with in vitro deamination assays led to the identification of mutants that are more active than the wild type protein. Furthermore, a screen of the ADAR1 E1008X library with a reporter construct bearing an A•G mismatch at the editing site suggests one role for the residue at position 1008 is to sense the identity of the base pairing partner for the editing site adenosine. This work has provided a starting point for future in vitro evolution studies of ADAR1 and led to new insight into ADAR's editing site selectivity.

  9. MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing.

    Science.gov (United States)

    Yan, Biao; Wang, Zhen-Hua; Zhu, Chang-Dong; Guo, Jin-Tao; Zhao, Jin-Liang

    2014-08-01

    The Nile tilapia (Oreochromis niloticus; Cichlidae) is an economically important species in aquaculture and occupies a prominent position in the aquaculture industry. MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression involved in diverse biological and metabolic processes. To increase the repertoire of miRNAs characterized in tilapia, we used the Illumina/Solexa sequencing technology to sequence a small RNA library using pooled RNA sample isolated from the different developmental stages of tilapia. Bioinformatic analyses suggest that 197 conserved and 27 novel miRNAs are expressed in tilapia. Sequence alignments indicate that all tested miRNAs and miRNAs* are highly conserved across many species. In addition, we characterized the tissue expression patterns of five miRNAs using real-time quantitative PCR. We found that miR-1/206, miR-7/9, and miR-122 is abundantly expressed in muscle, brain, and liver, respectively, implying a potential role in the regulation of tissue differentiation or the maintenance of tissue identity. Overall, our results expand the number of tilapia miRNAs, and the discovery of miRNAs in tilapia genome contributes to a better understanding the role of miRNAs in regulating diverse biological processes.

  10. The Effects of Total Sleep Deprivation and Recovery Sleep on Cognitive Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2004-01-01

    .... Even less is known about the cerebral effects of recovery sleep. The overarching objective of this study is to investigate the effects of 2 full nights of sleep loss and 2 full nights of recovery sleep on cognitive performance and brain function...

  11. The Effects of Total Sleep Deprivation and Recovery Sleep on Cognitive Performance and Brain Function

    National Research Council Canada - National Science Library

    Gillin, J

    2003-01-01

    ..... Even less is known about the cerebral effects of recovery sleep. The objective of this study is to investigate the effects of 2 full nights of sleep loss and 2 full nights of recovery sleep on cognitive performance and brain function...

  12. Towards Total Quality Management in Universities: Quality Function Deployment Paradigm and Beyond

    Science.gov (United States)

    Al-Fuqaha, Isam Najib

    2014-01-01

    This paper is an endeavor to develop a customised and computerized matrix of Quality Function Deployment paradigm (QFD) that has been applied in industry, with the aim of probing quality assurance and enhancement in Universities. Results of testing the new matrix proved that, it is efficient and time-saving while compared with a detailed field…

  13. Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study.

    LENUS (Irish Health Repository)

    Walls, Raymond J

    2010-01-01

    Supervised preoperative muscle strengthening programmes (prehabilitation) can improve recovery after total joint arthroplasty but are considered resource intensive. Neuromuscular electrical stimulation (NMES) has been shown to improve quadriceps femoris muscle (QFM) strength and clinical function in subjects with knee osteoarthritis (OA) however it has not been previously investigated as a prehabilitation modality.

  14. Effect of preoperative neuromuscular training (NEMEX-TJR) on functional outcome after total knee replacement

    DEFF Research Database (Denmark)

    Huber, Erika O; Roos, Ewa M.; Meichtry, André

    2015-01-01

    baseline to 3 months after Total Knee Replacement (TKR) following a neuromuscular exercise programme (NEMEX-TJR) plus a knee school educational package (KS) or KS alone. METHODS: 45 patients (55-83 years, 53% male, waiting for TKR) were randomized to receive a minimum of 8 sessions of NEMEXTJR plus 3...... and after the intervention, and at 6 weeks, 3 months and 12 months after surgery by a physiotherapist, blinded to group allocation. RESULTS: After intervention before surgery we observed a small improvement for primary and secondary endpoints in both groups, which did not differ significantly between groups...

  15. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Cébron, Aurélie; Murrell, J Colin

    2007-11-01

    Active methanotrophs in a landfill soil were revealed by detecting the 16S rRNA of methanotrophs and the mRNA transcripts of key genes involved in methane oxidation. New 16S rRNA primers targeting type I and type II methanotrophs were designed and optimized for analysis by denaturing gradient gel electrophoresis. Direct extraction of RNA from soil enabled the analysis of the expression of the functional genes: mmoX, pmoA and mxaF, which encode subunits of soluble methane monooxygenase, particulate methane monooxygenase and methanol dehydrogenase respectively. The 16S rRNA polymerase chain reaction (PCR) primers for type I methanotrophs detected Methylomonas, Methylosarcina and Methylobacter sequences from both soil DNA and cDNA which was generated from RNA extracted directly from the landfill cover soil. The 16S rRNA primers for type II methanotrophs detected primarily Methylocella and some Methylocystis 16S rRNA genes. Phylogenetic analysis of mRNA recovered from the soil indicated that Methylobacter, Methylosarcina, Methylomonas, Methylocystis and Methylocella were actively expressing genes involved in methane and methanol oxidation. Transcripts of pmoA but not mmoX were readily detected by reverse transcription polymerase chain reaction (RT-PCR), indicating that particulate methane monooxygenase may be largely responsible for methane oxidation in situ.

  16. Can computer assistance improve the clinical and functional scores in total knee arthroplasty?

    Science.gov (United States)

    Hernández-Vaquero, Daniel; Suarez-Vazquez, Abelardo; Iglesias-Fernandez, Susana

    2011-12-01

    Surgical navigation in TKA facilitates better alignment; however, it is unclear whether improved alignment alters clinical evolution and midterm and long-term complication rates. We determined the alignment differences between patients with standard, manual, jig-based TKAs and patients with navigation-based TKAs, and whether any differences would modify function, implant survival, and/or complications. We retrospectively reviewed 97 patients (100 TKAs) undergoing TKAs for minimal preoperative deformities. Fifty TKAs were performed with an image-free surgical navigation system and the other 50 with a standard technique. We compared femoral angle (FA), tibial angle (TA), and femorotibial angle (FTA) and determined whether any differences altered clinical or functional scores, as measured by the Knee Society Score (KSS), or complications. Seventy-three patients (75 TKAs) had a minimum followup of 8 years (mean, 8.3 years; range, 8-9.1 years). All patients included in the surgical navigation group had a FTA between 177° and 182º. We found no differences in the KSS or implant survival between the two groups and no differences in complication rates, although more complications occurred in the standard technique group (seven compared with two in the surgical navigation group). In the midterm, we found no difference in functional and clinical scores or implant survival between TKAs performed with and without the assistance of a navigation system. Level II, therapeutic study. See the Guidelines online for a complete description of levels of evidence.

  17. MicroRNA-466 (miR-466) functions as a tumor suppressor and prognostic factor in colorectal cancer (CRC).

    Science.gov (United States)

    Tong, Feng; Ying, Youhua; Pan, Haihua; Zhao, Wei; Li, Hongchen; Zhan, Xiaoli

    2018-01-17

    MicroRNAs (miRNAs) have an important role in the regulation of tumor development and metastasis. In this study, we investigated the clinical and prognostic value as well as biological function of miR-466 in colorectal cancer (CRC). Tumor and adjacent healthy tissues were obtained from 100 patients diagnosed with CRC. miR-466 expression was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). mRNA and protein levels of cyclin D1, apoptosis regulator BAX (BAX), and matrix metalloproteinase-2 (MMP-2) were analyzed by qRT-PCR and Western blot, respectively, in SW-620 CRC cells transfected with miR-466 mimics or negative control miRNA. Effects of miR-466 on SW-620 cell proliferation, cell cycle and apoptosis, and invasion were investigated using CCK-8 assay, flow cytometry and Transwell assay, respectively. miR-466 expression was significantly downregulated in tumor tissues compared to matched adjacent non-tumor tissues. Low expression of miR-466 was significantly correlated with the tumor size, Tumor Node Metastasis stage, lymph node metastasis, and distant metastasis. The overall survival of CRC patients with low miR-466 expression was significantly shorter compared to high-miR-466 expression group (log-rank test: p = 0.0103). Multivariate analysis revealed that low miR-466 expression was associated with poor prognosis in CRC patients. The ectopic expression of miR-466 suppressed cell proliferation and migration/invasion, as well as induced G0/G1 arrest and apoptosis in SW-620 cells. Moreover, the ectopic expression of miR-466 decreased the expression of cyclin D1 and MMP-2, but increased BAX expression in SW-620 cells. In conclusion, our findings demonstrated that miR-466 functions as a suppressor miRNA in CRC and may be used as a prognostic factor in these patients.

  18. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  19. Functional conservation of RNA polymerase II in fission and budding yeasts.

    Science.gov (United States)

    Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P

    2000-02-04

    The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.

  20. RNA-seq analyses reveal insights into the function of respiratory nitrate reductase of the diazotroph Herbaspirillum seropedicae.

    Science.gov (United States)

    Bonato, Paloma; Batista, Marcelo B; Camilios-Neto, Doumit; Pankievicz, Vânia C S; Tadra-Sfeir, Michelle Z; Monteiro, Rose Adele; Pedrosa, Fabio O; Souza, Emanuel M; Chubatsu, Leda S; Wassem, Roseli; Rigo, Liu Un

    2016-09-01

    Herbaspirillum seropedicae is a nitrogen-fixing β-proteobacterium that associates with roots of gramineous plants. In silico analyses revealed that H. seropedicae genome has genes encoding a putative respiratory (NAR) and an assimilatory nitrate reductase (NAS). To date, little is known about nitrate metabolism in H. seropedicae, and, as this bacterium cannot respire nitrate, the function of NAR remains unknown. This study aimed to investigate the function of NAR in H. seropedicae and how it metabolizes nitrate in a low aerated-condition. RNA-seq transcriptional profiling in the presence of nitrate allowed us to pinpoint genes important for nitrate metabolism in H. seropedicae, including nitrate transporters and regulatory proteins. Additionally, both RNA-seq data and physiological characterization of a mutant in the catalytic subunit of NAR (narG mutant) showed that NAR is not required for nitrate assimilation but is required for: (i) production of high levels of nitrite, (ii) production of NO and (iii) dissipation of redox power, which in turn lead to an increase in carbon consumption. In addition, wheat plants showed an increase in shoot dry weight only when inoculated with H. seropedicae wild type, but not with the narG mutant, suggesting that NAR is important to H. seropedicae-wheat interaction. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans

    OpenAIRE

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-01-01

    Left–right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has b...

  2. Applications of Total Scattering & Pair Distribution Function Analysis in Metal-Organic Framework Materials

    DEFF Research Database (Denmark)

    Xu, Hui; Birgisson, Steinar; Sommer, Sanna

    structure. At the same time, there is an ongoing debate on whether the SBU is present prior, or during MOF crystallization in MOF chemistry. However, little is known about MOFs formation mechanism. Currently techniques to study the in situ MOF formation process mainly focused on after......-crystallization process, for example in situ XRD and SAXS/WAXS study on MOF formation. However, the pre-crystallization process in the early stage of MOF formation is still unexplored. In this project, total scattering and PDF study will be carried out to explore the MOF formation process in early stage. This includes......Metal-Organic Frameworks (MOFs) is constructed by metal-oxide nodes and organic ligands. The formation of different structures of metal-oxide nodes (also called secondary building units, SBU) is crucial for MOF final structures, because the connectivity of SBU greatly influence the final MOF...

  3. Total average diastolic longitudinal displacement by colour tissue doppler imaging as an assessment of diastolic function

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sørensen, Tor; Søgaard, Peter

    2016-01-01

    of LD during early diastole and atrial contraction, can potentially be used as a simple and reliable alternative. METHODS: In 206 patients, using GE Healthcare Vivid E7 and 9 and Echopac BT11 software, we determined both diastolic LD, measured in the septal and lateral walls in the apical 4-chamber view...... by TDI, and the degree of diastolic dysfunction, based on current guidelines. Of these 206 patients, 157 had cardiac anomalies that could potentially affect diastolic LD such as severe systolic heart failure (n = 45), LV hypertrophy (n = 49), left ventricular (LV) dilation (n = 30), and mitral...... for the general discrimination of patients with or without diastolic dysfunction. Using linear regression, total average diastolic LD was estimated to fall by 2.4 mm for every increase in graded severity of diastolic dysfunction (β = -0.61, p-value

  4. Chromium 51 EDTA/technetium 99m MDP plasma ratio to measure total skeletal function

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, A.P.; Edwards, S.; Lazarus, C.R.; Malamitsi, J.; Maisey, M.N.; Mashiter, G.D.; Winn, P.J. (Guy' s Hospital, London (UK))

    1984-08-01

    A method is described for the quantitation of total skeletal activity during bone scans. The method requires a single plasma sample only, taken at the time of imaging. The ratio of % injected dose of /sup 51/Cr EDTA to that of /sup 99/Tcsup(m) MDP is calculated from this sample following combined injection of the two radiopharmaceuticals. The /sup 51/Cr EDTA level corrects for the glomerular filtration of /sup 99/Tcsup(m) MDP. Using this method, which only requires a gamma counter, significant differences from normal controls have been shown in patients with osteomalacia, renal osteodystrophy, Paget's disease and hypercalcaemia. The method provides routine quantitative data to add to the imaging information in the bone scan.

  5. Comparison of Free Total Amino Acid Compositions and Their Functional Classifications in 13 Wild Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Liping Sun

    2017-02-01

    Full Text Available Thirteen popular wild edible mushroom species in Yunnan Province, Boletus bicolor, Boletus speciosus, Boletus sinicus, Boletus craspedius, Boletus griseus, Boletus ornatipes, Xerocomus, Suillus placidus, Boletinus pinetorus, Tricholoma terreum, Tricholomopsis lividipileata, Termitomyces microcarpus, and Amanita hemibapha, were analyzed for their free amino acid compositions by online pre-column derivazation reversed phase high-performance liquid chromatography (RP-HPLC analysis. Twenty free amino acids, aspartic acid, glutamic acid, serine, glycine, alanine, praline, cysteine, valine, methionine, phenylalanine, isoleucine, leucine, lysine, histidine, threonine, asparagines, glutamine, arginine, tyrosine, and tryptophan, were determined. The total free amino acid (TAA contents ranged from 1462.6 mg/100 g in B. craspedius to 13,106.2 mg/100 g in T. microcarpus. The different species showed distinct free amino acid profiles. The ratio of total essential amino acids (EAA to TAA was 0.13–0.41. All of the analyzed species showed high contents of hydrophobic amino acids, at 33%–54% of TAA. Alanine, cysteine, glutamine, and glutamic acid were among the most abundant amino acids present in all species. The results showed that the analyzed mushrooms possessed significant free amino acid contents, which may be important compounds contributing to the typical mushroom taste, nutritional value, and potent antioxidant properties of these wild edible mushrooms. Furthermore, the principal component analysis (PCA showed that the accumulative variance contribution rate of the first four principal components reached 94.39%. Cluster analysis revealed EAA composition and content might be an important parameter to separate the mushroom species, and T. microcarpus and A. hemibapha showed remarkable EAA content among the 13 species.

  6. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.

    Science.gov (United States)

    Wittmann-Liebold, B; Uhlein, M; Urlaub, H; Müller, E C; Otto, A; Bischof, O

    1995-01-01

    Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.

  7. Early self-managed focal sensorimotor rehabilitative training enhances functional mobility and sensorimotor function in patients following total knee replacement: a controlled clinical trial.

    Science.gov (United States)

    Moutzouri, Maria; Gleeson, Nigel; Coutts, Fiona; Tsepis, Elias; John, Gliatis

    2018-02-01

    To assess the effects of early self-managed focal sensorimotor training compared to functional exercise training after total knee replacement on functional mobility and sensorimotor function. A single-blind controlled clinical trial. University Hospital of Rion, Greece. A total of 52 participants following total knee replacement. The primary outcome was the Timed Up and Go Test and the secondary outcomes were balance, joint position error, the Knee Outcome Survey Activities of Daily Living Scale, and pain. Patients were assessed on three separate occasions (presurgery, 8 weeks post surgery, and 14 weeks post surgery). Participants were randomized to either focal sensorimotor exercise training (experimental group) or functional exercise training (control group). Both groups received a 12-week home-based programme prescribed for 3-5 sessions/week (35-45 minutes). Consistently greater improvements ( F 2,98  = 4.3 to 24.8; P effect size range of 1.3-6.5. Overall, the magnitude of improvements in functional mobility and sensorimotor function endorses using focal sensorimotor training as an effective mode of rehabilitation following knee replacement.

  8. Similar range of motion and function after resurfacing large-head or standard total hip arthroplasty

    DEFF Research Database (Denmark)

    Penny, Jeannette Østergaard; Ovesen, Ole; Varmarken, Jens-Erik

    2013-01-01

    BACKGROUND AND PURPOSE: Large-size hip articulations may improve range of motion (ROM) and function compared to a 28-mm THA, and the low risk of dislocation allows the patients more activity postoperatively. On the other hand, the greater extent of surgery for resurfacing hip arthroplasty (RHA......° (35), 232° (36), and 225° (30) respectively, but the differences were not statistically significant. The 3 groups were similar regarding Harris hip score, UCLA activity score, step rate, and sick leave. INTERPRETATION: Head size had no influence on range of motion. The lack of restriction allowed...... for large articulations did not improve the clinical and patient-perceived outcomes. The more extensive surgical procedure of RHA did not impair the rehabilitation. This project is registered at ClinicalTrials.gov under # NCT01113762....

  9. Total Cerebral Small Vessel Disease MRI Score Is Associated With Cognitive Decline In Executive Function In Patients With Hypertension

    Directory of Open Access Journals (Sweden)

    Renske Uiterwijk

    2016-12-01

    Full Text Available Objectives: Hypertension is a major risk factor for white matter hyperintensities, lacunes, cerebral microbleeds and perivascular spaces, which are MRI markers of cerebral small vessel disease (SVD. Studies have shown associations between these individual MRI markers and cognitive functioning and decline. Recently, a total SVD score was proposed in which the different MRI markers were combined into one measure of SVD, to capture total SVD-related brain damage. We investigated if this SVD score was associated with cognitive decline over 4 years in patients with hypertension. Methods: In this longitudinal cohort study, 130 hypertensive patients (91 patients with uncomplicated hypertension and 39 hypertensive patients with a lacunar stroke were included. They underwent a neuropsychological assessment at baseline and after 4 years. The presence of white matter hyperintensities, lacunes, cerebral microbleeds, and perivascular spaces were rated on baseline MRI. Presence of each individual marker was added to calculate the total SVD score (range 0-4 in each patient. Results: Uncorrected linear regression analyses showed associations between SVD score and decline in overall cognition (p=0.017, executive functioning (p<0.001 and information processing speed (p=0.037, but not with memory (p=0.911. The association between SVD score and decline in overall cognition and executive function remained significant after adjustment for age, sex, education, anxiety and depression score, potential vascular risk factors, patient group and baseline cognitive performance.Conclusions: Our study shows that a total SVD score can predict cognitive decline, specifically in executive function, over 4 years in hypertensive patients. This emphasizes the importance of considering total brain damage due to SVD.

  10. Dissection of functional lncRNAs in Alzheimer's disease by construction and analysis of lncRNA-mRNA networks based on competitive endogenous RNAs.

    Science.gov (United States)

    Wang, Lian-Kun; Chen, Xiao-Feng; He, Dan-Dan; Li, You; Fu, Jin

    2017-04-08

    Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly, and intracellular neurofibrillary tangles (NFTs) are one of the pathological features of AD. Recent studies have suggested long noncoding RNAs (lncRNAs) play important roles in AD. Competing endogenous RNAs (ceRNAs) is a mechanism that has recently been proposed, in which lncRNAs compete for common miRNA-binding sites with mRNAs. However, the roles of lncRNAs and ceRNA in AD NFTs is limited. In this study, we constructed a global triple network based on ceRNA theory, then an AD NFT lncRNA-mRNA network (NFTLMN) was generated. By analyzing the NFTLMN, three lncRNAs (AP000265.1, KB-1460A1.5 and RP11-145M9.4), which are highly related with AD NFTs were identified. To further explore the cross-talk between mRNAs and lncRNAs, a clustering module analysis was performed on the NFTLMN and two AD NFT related modules were identified. Our study provides a better understanding of the molecular basis of AD NFTs and may offer novel treatment strategies for AD. Copyright © 2016. Published by Elsevier Inc.

  11. Absolute total and one and two electron transfer cross sections for Ar8+ on Ar as a function of energy

    International Nuclear Information System (INIS)

    Vancura, J.; Kostroun, V.O.

    1992-01-01

    The absolute total and one and two electron transfer cross sections for Ar 8+ on Ar were measured as a function of projectile laboratory energy from 0.090 to 0.550 keV/amu. The effective one electron transfer cross section dominates above 0.32 keV/amu, while below this energy, the effective two electron transfer starts to become appreciable. The total cross section varies by a factor over the energy range explored. The overall error in the cross section measurement is estimated to be ± 15%

  12. Functional clonal deletion versus active suppression in transplantation tolerance induced by total-lymphoid irradiation

    International Nuclear Information System (INIS)

    Morecki, S.; Leshem, B.; Weigensberg, M.; Bar, S.; Slavin, S.

    1985-01-01

    Transplantation tolerance and stable chimerism were established in adult mice conditioned with a short course of total-lymphoid irradiation (TLI) followed by infusion of 30 X 10(6) allogeneic bone marrow cells. Spleen cells of tolerant mice could not exert a proliferative or cytotoxic response against host-type cells in vitro and were unable to induce graft-versus-host reaction in secondary host-type recipients. The degree of suppression assessed by coculturing tolerant splenocytes in vitro in the one-way mixed lymphocyte reaction was quite variable--and, in some cases, was not at all demonstrable, although tolerance was clearly maintained. Suppression, when apparent, could not be ascribed to T lymphocytes. Suppressor cells were found to bind soybean agglutinin and could be separated from the nonsuppressive cells by means of this lectin. Dissociation of the suppressive population (SBA+ cells) from that which is normally alloreactive (SBA- cells) resulted in a suppressor cell-depleted fraction that was still unable to respond to host-type cells but regained reactivity to unrelated cells. Limiting dilution analysis of chimeric splenocytes revealed markedly reduced frequencies of cytotoxic T lymphocyte precursors (CTL-P) directed against host-type cells, as compared with normal splenocytes reacting against the same target cells. This difference was accentuated when these cells were sensitized to host-type target cells prior to plating in limiting dilution cultures. In 1:1 mixing experiments of normal and chimeric splenocytes, there was no evidence of any in vitro suppressive activity to account for hyporeactivity of chimeric cells against host-type cells. Thus, maintenance of TLI-induced tolerance seemed not to be mediated primarily through an active suppressor cell mechanism

  13. Patient-Reported Esthetic and Functional Outcomes of Primary Total Laparoscopic Intestinal Vaginoplasty in Transgender Women With Penoscrotal Hypoplasia.

    Science.gov (United States)

    Bouman, Mark-Bram; van der Sluis, Wouter B; van Woudenberg Hamstra, Leonora E; Buncamper, Marlon E; Kreukels, Baudewijntje P C; Meijerink, Wilhelmus J H J; Mullender, Margriet G

    2016-09-01

    Puberty-suppressing hormonal treatment may result in penoscrotal hypoplasia in transgender women, making standard penile inversion vaginoplasty not feasible. For these patients, intestinal vaginoplasty is a surgical alternative, but knowledge on patient-reported postoperative outcomes and quality of life is lacking. To assess patient-reported functional and esthetic outcomes, quality of life, satisfaction, and sexual well-being after primary total laparoscopic intestinal vaginoplasty in transgender women. A survey study was performed on transgender women who underwent primary total laparoscopic intestinal vaginoplasty with at least 1 year of clinical follow-up. Thirty-one transgender women completed the questionnaires (median age at time of surgery = 19.1 years, range = 18.3-45.0) after a median clinical follow-up of 2.2 years (range = 0.8-7.5). Consenting women were asked to complete a combined questionnaire of the Subjective Happiness Scale, the Satisfaction With Life Scale, Cantril's Ladder of Life Scale, the Female Sexual Function Index, the Female Genital Self-Imaging Scale, the Amsterdam Hyperactive Pelvic Floor Scale-Women, and a questionnaire addressing postoperative satisfaction. Patient-reported functional and esthetic outcomes and postoperative quality of life. Patients graded their life satisfaction a median of 8.0 (range = 4.0-10.0) on Cantril's Ladder of Life Scale. Patients scored a mean total score of 27.7 ± 5.8 on the Satisfaction With Life Scale, which indicated high satisfaction with life, and a mean total score of 5.6 ± 1.4 on the Subjective Happiness Scale. Functionality was graded a median score of 8.0 of 10 (range = 1.0-10.0) and esthetics a score of 8.0 out of 10 (range = 3.0-10.0). The mean Female Sexual Function Index total score of sexually active transgender women was 26.0 ± 6.8. This group of relatively young transgender women reported satisfactory functional and esthetic results of the neovagina and a good quality of life

  14. RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network

    Directory of Open Access Journals (Sweden)

    Babenko Vladimir N.

    2017-09-01

    Full Text Available ApoE expression status was proved to be a highly specific marker of energy metabolism rate in the brain. Along with its neighbor, Translocase of Outer Mitochondrial Membrane 40 kDa (TOMM40 which is involved in mitochondrial metabolism, the corresponding genomic region constitutes the neuroenergetic hotspot. Using RNA-Seq data from a murine model of chronic stress a significant positive expression coordination of seven neighboring genes in ApoE locus in five brain regions was observed. ApoE maintains one of the highest absolute expression values genome-wide, implying that ApoE can be the driver of the neighboring gene expression alteration observed under stressful loads. Notably, we revealed the highly statistically significant increase of ApoE expression in the hypothalamus of chronically aggressive (FDR < 0.007 and defeated (FDR < 0.001 mice compared to the control. Correlation analysis revealed a close association of ApoE and proopiomelanocortin (Pomc gene expression profiles implying the putative neuroendocrine stress response background of ApoE expression elevation therein.

  15. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    Science.gov (United States)

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  16. Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data.

    Science.gov (United States)

    Wang, Peng; Guo, Qiuyan; Gao, Yue; Zhi, Hui; Zhang, Yan; Liu, Yue; Zhang, Jizhou; Yue, Ming; Guo, Maoni; Ning, Shangwei; Zhang, Guangmei; Li, Xia

    2017-01-17

    Although several computational models that predict disease-associated lncRNAs (long non-coding RNAs) exist, only a limited number of disease-associated lncRNAs are known. In this study, we mapped lncRNAs to their functional genomics context using competing endogenous RNAs (ceRNAs) theory. Based on the criteria that similar lncRNAs are likely involved in similar diseases, we proposed a disease lncRNA prioritization method, DisLncPri, to identify novel disease-lncRNA associations. Using a leave-one-out cross validation (LOOCV) strategy, DisLncPri achieved reliable area under curve (AUC) values of 0.89 and 0.87 for the LncRNADisease and Lnc2Cancer datasets that further improved to 0.90 and 0.89 by integrating a multiple rank fusion strategy. We found that DisLncPri had the highest rank enrichment score and AUC value in comparison to several other methods for case studies of alzheimer's disease, ovarian cancer, pancreatic cancer and gastric cancer. Several novel lncRNAs in the top ranks of these diseases were found to be newly verified by relevant databases or reported in recent studies. Prioritization of lncRNAs from a microarray (GSE53622) of oesophageal cancer patients highlighted ENSG00000226029 (top 2), a previously unidentified lncRNA as a potential prognostic biomarker. Our analysis thus indicates that DisLncPri is an excellent tool for identifying lncRNAs that could be novel biomarkers and therapeutic targets in a variety of human diseases.

  17. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    Science.gov (United States)

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  18. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  19. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein.

    Directory of Open Access Journals (Sweden)

    Marie-Lise Blondot

    Full Text Available Respiratory syncytial virus (RSV protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.

  20. Preoperative prediction of inpatient recovery of function after total hip arthroplasty using performance-based tests: a prospective cohort study.

    Science.gov (United States)

    Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U

    2016-01-01

    The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.

  1. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-09-23

    Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  2. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans

    Directory of Open Access Journals (Sweden)

    Amel eAlqadah

    2013-09-01

    Full Text Available Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  3. Study of the Effects of Total Modulation Transfer Function Changes on Observer Performance Using Clinical Mammograms.

    Science.gov (United States)

    Bencomo, Jose Antonio Fagundez

    The main goal of this study was to relate physical changes in image quality measured by Modulation Transfer Function (MTF) to diagnostic accuracy. One Hundred and Fifty Kodak Min-R screen/film combination conventional craniocaudal mammograms obtained with the Pfizer Microfocus Mammographic system were selected from the files of the Department of Radiology, at M.D. Anderson Hospital and Tumor Institute. The mammograms included 88 cases with a variety of benign diagnosis and 62 cases with a variety of malignant biopsy diagnosis. The average age of the patient population was 55 years old. 70 cases presented calcifications with 30 cases having calcifications smaller than 0.5mm. 46 cases presented irregular bordered masses larger than 1 cm. 30 cases presented smooth bordered masses with 20 larger than 1 cm. Four separated copies of the original images were made each having a different change in the MTF using a defocusing technique whereby copies of the original were obtained by light exposure through different thicknesses (spacing) of transparent film base. The mammograms were randomized, and evaluated by three experienced mammographers for the degree of visibility of various anatomical breast structures and pathological lesions (masses and calicifications), subjective image quality, and mammographic interpretation. 3,000 separate evaluations were anayzed by several statistical techniques including Receiver Operating Characteristic curve analysis, McNemar test for differences between proportions and the Landis et al. method of agreement weighted kappa for ordinal categorical data. Results from the statistical analysis show: (1) There were no statistical significant differences in the diagnostic accuracy of the observers when diagnosing from mammograms with the same MTF. (2) There were no statistically significant differences in diagnostic accuracy for each observer when diagnosing from mammograms with the different MTF's used in the study. (3) There statistical

  4. High-Level Accumulation of Exogenous Small RNAs Not Affecting Endogenous Small RNA Biogenesis and Function in Plants

    Institute of Scientific and Technical Information of China (English)

    SHEN Wan-xia; Neil A Smith; ZHOU Chang-yong; WANG Ming-bo

    2014-01-01

    RNA silencing is a fundamental plant defence and gene control mechanism in plants that are directed by 20-24 nucleotide (nt) small interfering RNA (siRNA) and microRNA (miRNA). Infection of plants with viral pathogens or transformation of plants with RNA interference (RNAi) constructs is usually associated with high levels of exogenous siRNAs, but it is unclear if these siRNAs interfere with endogenous small RNA pathways and hence affect plant development. Here we provide evidence that viral satellite RNA (satRNA) infection does not affect siRNA and miRNA biogenesis or plant growth despite the extremely high level of satRNA-derived siRNAs. We generated transgenic Nicotiana benthamiana plants that no longer develop the speciifc yellowing symptoms generally associated with infection by Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat). We then used these plants to show that CMV Y-Sat infection did not cause any visible phenotypic changes in comparison to uninfected plants, despite the presence of high-level Y-Sat siRNAs. Furthermore, we showed that the accumulation of hairpin RNA (hpRNA)-derived siRNAs or miRNAs, and the level of siRNA-directed transgene silencing, are not signiifcantly affected by CMV Y-Sat infection. Taken together, our results suggest that the high levels of exogenous siRNAs associated with viral infection or RNAi-inducing transgenes do not saturate the endogenous RNA silencing machineries and have no signiifcant impact on normal plant development.

  5. The functional role of long non-coding RNA in digestive system carcinomas.

    Science.gov (United States)

    Wang, Guang-Yu; Zhu, Yuan-Yuan; Zhang, Yan-Qiao

    2014-09-01

    In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.

  6. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  7. Influences of continuous femoral nerve block on knee function and quality of life in patients following total knee arthroplasty.

    Science.gov (United States)

    Wang, Fen; Zhou, Yingjie; Sun, Jiajun; Yang, Chunxi

    2015-01-01

    Continuous femoral nerve block (CFNB), guided by ultrasound combined nerve stimulations, offers advantages for both sides and provides effective postoperative analgesia after total knee arthroplasty (TKA). The objective of this study was to evaluate the medium-term impact of continuous femoral nerve block on knee function and quality of life in patients following TKA. This was a follow-up study. Total 168 adult patients scheduled for elective TKA were randomly allocated to receive postoperative continuous femoral nerve block guided by ultrasound combined nerve stimulator (group CFNB, n = 82) or patient-controlled epidural analgesia (group PCEA, n = 86). Quality of life, knee function, patient satisfaction, pain medication and associated adverse effects were compared at 1, 3, 6, and 12 months postoperatively. Quality of life was assessed using the Medical Outcomes Study Short Form-36 Health Survey (MOS SF-36), and clinical results were assessed using the Hospital for Special Surgery (HSS) Knee Scoring System. Patient satisfaction scores were divided into four categories. A total of 162 patients completed the 12-month follow-up. The CFNB group patients had significantly improved SF-36 scores and physical function at 1 month postoperatively (P quality of life in patients at one month postoperatively. Continuous femoral nerve block is a good choice for postoperative analgesia after TKA.

  8. MicroRNA-126 deficiency enhanced the activation and function of CD4+ T cells by elevating IRS-1 pathway.

    Science.gov (United States)

    Chu, F; Hu, Y; Zhou, Y; Guo, M; Lu, J; Zheng, W; Xu, H; Zhao, J; Xu, L

    2018-02-01

    Recent evidence has shown that microRNA-126 (miR-126) has been involved in the development and function of immune cells, which contributed to the pathogenesis of related clinical diseases. However, the potential role of miR-126 in the development and function of CD4 + T cells remains largely unknown. Here we first found that the activation and proliferation, as well as the expression of interferon (IFN)-γ, of CD4 + T cells from miR-126 knock-down (KD) mice using the miRNA-sponge technique were enhanced significantly in vitro, compared with those in CD4 + T cells from wild-type (WT) mice. To monitor further the possible effect of miR-126 deficiency on the function of CD4 + T cells in vivo, we used dextran sulphate sodium (DSS)-induced murine model of acute autoimmune colitis and found that miR-126 deficiency could elevate the pathology of colitis. Importantly, the proportion of CD4 + T cells in splenocytes increased significantly in miR-126KD mice. Moreover, the expression levels of CD69 and CD44 on CD4 + T cells increased significantly and the expression level of CD62L decreased significantly. Of note, adoptive cell transfer assay showed that the pathology of colitis was more serious in carboxyfluorescein succinimidyl ester (CFSE)-labelled miR-126KD CD4 + T cell-transferred group, compared with that in the CFSE-labelled WT CD4 + T cells transferred group. Consistently, the expression levels of CD69 and CD44 on CFSE + cells increased significantly. Furthermore, both the proliferation and IFN-γ secretion of CFSE + cells also increased significantly in the CFSE-labelled miR-126KD CD4 + T cell-transferred group. Mechanistic evidence showed that the expression of insulin receptor substrate 1 (IRS-1), as a functional target of miR-126, was elevated in CD4 + T cells from miR-126KD mice, accompanied by altered transduction of the extracellular regulated kinase, protein B (AKT) and nuclear factor kappa B (NF-κB) pathway. Our data revealed a novel role in which miR-126

  9. Towards RNAi based therapy of liver diseases : diversity and complexity of shRNA and miRNA processing and functions

    NARCIS (Netherlands)

    Maczuga, Piotr

    2013-01-01

    Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of low density lipoprotein cholesterol (LDL-C) and increasing the risk of cardio vascular diseases. FH and many other liver diseases can possibly be treated with RNA interference (RNAi). RNAi is a natural process

  10. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Ouyang, Haoxu

    2010-01-01

    MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting mi...

  11. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...

  12. Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Assenholt, Jannie; Mouaikel, John; Saguez, Cyril

    2011-01-01

    RNPs are exported to the cytoplasm. The Ccr4-Not complex, which constitutes the major S. cerevisiae cytoplasmic deadenylase, has recently been implied in nuclear exosome–related processes. Consistent with a possible nuclear function of the complex, the deletion or mutation of Ccr4-Not factors also elicits...

  13. Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing.

    Science.gov (United States)

    Foda, Bardees M; Downey, Kurtis M; Fisk, John C; Read, Laurie K

    2012-09-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.

  14. Development of an Innovative Intradermal siRNA Delivery System Using a Combination of a Functional Stearylated Cytoplasm-Responsive Peptide and a Tight Junction-Opening Peptide

    Directory of Open Access Journals (Sweden)

    Hisako Ibaraki

    2016-09-01

    Full Text Available As a new category of therapeutics for skin diseases including atopic dermatitis (AD, nucleic acids are gaining importance in the clinical setting. Intradermal administration is noninvasive and improves patients′ quality of life. However, intradermal small interfering RNA (siRNA delivery is difficult because of two barriers encountered in the skin: intercellular lipids in the stratum corneum and tight junctions in the stratum granulosum. Tight junctions are the major barrier in AD; therefore, we focused on functional peptides to devise an intradermal siRNA delivery system for topical skin application. In this study, we examined intradermal siRNA permeability in the tape-stripped (20 times back skin of mice or AD-like skin of auricles treated with 6-carboxyfluorescein-aminohexyl phosphoramidite (FAM-labeled siRNA, the tight junction modulator AT1002, and the functional cytoplasm-responsive stearylated peptide STR-CH2R4H2C by using confocal laser microscopy. We found that strong fluorescence was observed deep and wide in the epidermis and dermis of back skin and AD-like ears after siRNA with STR-CH2R4H2C and AT1002 treatment. After 10 h from administration, brightness of FAM-siRNA was significantly higher for STR-CH2R4H2C + AT1002, compared to other groups. In addition, we confirmed the nontoxicity of STR-CH2R4H2C as a siRNA carrier using PAM212 cells. Thus, our results demonstrate the applicability of the combination of STR-CH2R4H2C and AT1002 for effective intradermal siRNA delivery.

  15. [LincRNA-ROR functions as a ceRNA to regulate Oct4, Sox2, and Nanog expression by sponging miR-145 and its effect on biologic characteristics of colonic cancer stem cells].

    Science.gov (United States)

    Yan, Z Y; Sun, X C

    2018-04-08

    Objective: To investigate the impact of lincRNA-ROR, a ceRNA by binding miR-145 on the expression of the downstream genes Oct4, Sox2 and Nanog, and related biological characteristics of colon cancer stem cells, and to elucidate the clinical significance of this molecular regulatory network. Methods: Fifty-two cases of colorectal cancer tissue and adjacent tissue were collected at Nanyang City Central Hospital and Nanyang Second Hospital, Henan Province, from 2014 to 2016. Real-time quantitative polymerase chain reaction (qPCR) was used to detect the expression of lincRNA-ROR and miR-145 in colorectal cancer tissue and isolated colon cancer cells. The correlation between the expression of lincRNA-ROR, miR-145 and the clinicopathologic features of colon cancer was performed. CD44(-)CD133(-) and CD44(+) CD133(+) cells were isolated from SW1116 by using flow cytometry. The expression of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR and miR-145 in cells were detected by qPCR. The relationship between lincRNA-ROR, miR-145, Oct4, Sox2 and Nanog was analyzed by bioinformatics, dual luciferase reporter assay, qPCR and Western blot. The effects of silencing lincRNA-ROR on the proliferation and chemosensitivity of colon cancer stem cells were detected by MTT, colony formation. Results: LincRNA-ROR was frequently up-regulated and inversely correlated with miR-145 down-regulation in the colon cancer specimens( P cells were successfully isolated from SW1116 by flow cytometry. The levels of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR in CD44(+) CD133(+) cells were significantly increased, while miR-145 was decreased compared with CD44(-)CD133(-)cells( P cells were significantly reduced upon cell adherence, while miR-145 was significantly increased( P cancer stem cells proliferation and increased the sensitivity to chemotherapy. Conclusions: Linc-ROR functions as a key ceRNA to prevent core TFs, e. g., Oct4, Sox2, Nanog, from miR-145-mediated suppression in colon cancer stem cells

  16. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions

    Directory of Open Access Journals (Sweden)

    Andrea Cipriano

    2018-03-01

    Full Text Available The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs, which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years.

  17. Extraction of total nucleic acid based on silica-coated magnetic particles for RT-qPCR detection of plant RNA virus/viroid.

    Science.gov (United States)

    Sun, Ning; Deng, Congliang; Zhao, Xiaoli; Zhou, Qi; Ge, Guanglu; Liu, Yi; Yan, Wenlong; Xia, Qiang

    2014-02-01

    In this study, a nucleic acid extraction method based on silica-coated magnetic particles (SMPs) and RT-qPCR assay was developed to detect Arabis mosaic virus (ArMV), Lily symptomless virus (LSV), Hop stunt viroid (HSVd) and grape yellow speckle viroid 1 (GYSVd-1). The amplification sequences of RT-qPCR were reversely transcribed in vitro as RNA standard templates. The standard curves covered six or seven orders of magnitude with a detection limit of 100 copies per each assay. Extraction efficiency of the SMPs method was evaluated by recovering spiked ssRNAs from plant samples and compared to two commercial kits (TRIzol and RNeasy Plant mini kit). Results showed that the recovery rate of SMPs method was comparable to the commercial kits when spiked ssRNAs were extracted from lily leaves, whereas it was two or three times higher than commercial kits when spiked ssRNAs were extracted from grapevine leaves. SMPs method was also used to extract viral nucleic acid from15 ArMV-positive lily leaf samples and 15 LSV-positive lily leaf samples. SMPs method did not show statistically significant difference from other methods on detecting ArMV, but LSV. The SMPs method has the same level of virus load as the TRIzol, and its mean virus load of was 0.5log10 lower than the RNeasy Plant mini kit. Nucleic acid was extracted from 19 grapevine-leaf samples with SMPs and the two commercial kits and subsequently screened for HSVd and GYSVd-1 by RT-qPCR. Regardless of HSVd or GYSVd-1, SMPs method outperforms other methods on both positive rate and the viroid load. In conclusion, SMPs method was able to efficiently extract the nucleic acid of RNA viruses or viroids, especially grapevine viroids, from lily-leaf or grapevine-leaf samples for RT-qPCR detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    Science.gov (United States)

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Functional Diets Modulate lncRNA-Coding RNAs and Gene Interactions in the Intestine of Rainbow Trout Oncorhynchus mykiss.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Détrée, Camille; Gallardo-Escárate, Cristian; Gonçalves, Ana Teresa

    2017-06-01

    The advent of functional genomics has sparked the interest in inferring the function of non-coding regions from the transcriptome in non-model species. However, numerous biological processes remain understudied from this perspective, including intestinal immunity in farmed fish. The aim of this study was to infer long non-coding RNA (lncRNAs) expression profiles in rainbow trout (Oncorhynchus mykiss) fed for 30 days with functional diets based on pre- and probiotics. For this, whole transcriptome sequencing was conducted through Illumina technology, and lncRNAs were mined to evaluate transcriptional activity in conjunction with known protein sequences. To detect differentially expressed transcripts, 880 novels and 9067 previously described O. mykiss lncRNAs were used. Expression levels and genome co-localization correlations with coding genes were also analyzed. Significant differences in gene expression were primarily found in the probiotic diet, which had a twofold downregulation of lncRNAs compared to other treatments. Notable differences by diet were also evidenced between the coding genes of distinct metabolic processes. In contrast, genome co-localization of lncRNAs with coding genes was similar for all diets. This study contributes novel knowledge regarding lncRNAs in fish, suggesting key roles in salmons fed with in-feed additives with the capacity to modulate the intestinal homeostasis and host health.

  20. Effect of single base changes and the absence of modified bases in 16S RNA on the reconstitution and function of Escherichia coli 30S ribosomes

    International Nuclear Information System (INIS)

    Denman, R.; Krzyzosiak, W.; Nurse, K.; Ofengand, J.

    1987-01-01

    The gene coding for E. coli 16S rRNA was placed in pUC19 under the control of the strong class III T7 promoter, phi 10, by ligation of the 1490 bp BclI/BstEII fragment of the rrnB operon with appropriate synthetic oligodeoxynucleotides. Such constructs allowed efficient in vitro synthesis of full-length transcripts (up to 900 mol RNA/mol template) free of modified bases. The synthetic RNA could be assembled into 30S subunits upon addition of E. coli 30S ribosomal proteins. The particles co-sedimented with authentic 30S particles and were electron microscopically indistinguishable from them. Upon addition of 50S subunits, codon-dependent P-site binding of tRNA and codon-dependent polypeptide synthesis were >80% of 30S reconstituted from natural 16S RNA and >50% of isolated 30S. UV-induced crosslinking of P-site bound AcVal-tRNA to residue C 1400 was preserved. Changing C 1400 to A had little effect on reconstitution, P-site binding, or polypeptide synthesis. However, the substitution of C 1499 by G markedly inhibited assembly. The effect on P-site binding and polypeptide synthesis is under study. These results show (1) none of the modified bases of 16S RNA are essential for protein synthesis, (2) substitution of A for C 1400 has little functional effect, and (3) position 1400 may be important for ribosome assembly

  1. Novel Functions of MicroRNA-17-92 Cluster in the Endocrine System.

    Science.gov (United States)

    Wan, Shan; Chen, Xiang; He, Yuedong; Yu, Xijie

    2018-01-01

    MiR-17-92 cluster is coded by MIR17HG in chromosome 13, which is highly conserved in vertebrates. Published literatures have proved that miR-17-92 cluster critically regulates tumorigenesis and metastasis. Recent researches showed that the miR-17-92 cluster also plays novel functions in the endocrine system. To summarize recent findings on the physiological and pathological roles of miR-17-92 cluster in bone, lipid and glucose metabolisms. MiR-17-92 cluster plays significant regulatory roles in bone development and metabolism through regulating the differentiation and function of osteoblasts and osteoclasts. In addition, miR-17- 92 cluster is nearly involved in every aspect of lipid metabolism. Last but not the least, the miR-17-92 cluster is closely bound up with pancreatic beta cell function, development of type 1 diabetes and insulin resistance. However, whether miR-17-92 cluster is involved in the communication among bone, fat and glucose metabolisms remains unknown. Growing evidence indicates that miR-17-92 cluster plays significant roles in bone, lipid and glucose metabolisms through a variety of signaling pathways. Fully understanding its modulating mechanisms may necessarily facilitate to comprehend the clinical and molecule features of some metabolic disorders such as osteoporosis, arthrosclerosis and diabetes mellitus. It may provide new drug targets to prevent and cure these disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The Crystal Structure of the RNA-Dependent RNA Polymerase from Human Rhinovirus: A Dual Function Target for Common Cold Antiviral Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Love, Robert A.; Maegley, Karen A.; Yu, Xiu; Ferre, RoseAnn; Lingardo, Laura K.; Diehl, Wade; Parge, Hans E.; Dragovich, Peter S.; Fuhrman, Shella A. (Pfizer)

    2010-11-16

    Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3D{sup pol}, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3D{sup pol} have been determined. The three structures are very similar to one another, and to the closely related poliovirus (PV) 3D{sup pol} enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3D{sup pol} provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3D{sup pol} also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.

  3. On the normalization of total wave function of the system of an atom and a colliding electron

    International Nuclear Information System (INIS)

    Nashlenas, Eh.P.; Trinkunas, G.P.

    1976-01-01

    The scattering of an electron by an atom is considered which causes an excitation of fine structure levels. For this purpose the wave function of a system consisting of an atom and an uncoupled electron is constructed. Boundary conditions formulated in the form of an asymptotic expression are taken into account for such a function by means of scattering amplitudes. To determine scattering amplitudes it is suggested to make use of the condition of wave function normalization into the Dirac delta function. After certain mathematical transformations the unknown relations between the scattering amplitudes are obtained. The special cases of the relations obtained are discussed. When quantum numbers of the wave functions coincide, the resulting relations express the equality of fluxes of converging and diverging waves for a certain value of the total angular momentum. In the limiting case when there are no electrons in an atom (it corresponds to elastic scattering of an electron on a potential) the relations obtained express the unitarity conditions of the scattering matrix

  4. Quantification of thymidine kinase (TK1) mRNA in normal and leukemic cells and investigation of structure-function relatiosnhip of recombinant TK1enzyme

    DEFF Research Database (Denmark)

    Kristensen, Tina

    Thymidine kinase (TK) catalyses the ATP-dependent phosphorylation of thymidine to thymidine monophosphate, which is subsequency phosphorylated to thymidine triphosphate and utilized for DNA synthesis. Human cytosolic TK (TKI) is cell cycle regulated, e.g. the TK1 activity increases sharply at the G...... patients with chronic lymphatic leukemia (CLL). 2: Structure-function relationship of recombinant TKI. In the first part a sensitive method (competitive PCR) for quantification of TKI mRNA was established. The TKI mRNA level was quantified in quiescent lymphocytes from control donors (n = 6...... are characterized as being quiescent, the TK activity was in the same range as in quiescent lymphocytes from control donors. However, quantification of the TKI mRNA level shows that all five CLL patients had a very high level (6 to 22 x IO6 copies mg-’ protein) of TKI mRNA, corresponding to the level in dividing...

  5. Effects of preoperative walking ability and patient's surgical education on quality of life and functional outcomes after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Sunil K. Dash

    Full Text Available ABSTRACT OBJECTIVE: Prospectively analyze the effect of preoperative walking status and the patient's surgical education on functional outcomes and the three dimensions of quality of life (QoL (pain, physical function, and mental health after elective total knee arthroplasty (TKA. METHODS: A comparative analysis on the QoL and functional outcomes in patients who underwent total knee arthroplasty between January 2014 and June 2015. To compare effects of the patient's walking status and knowledge of the surgical procedure on QoL and functional outcomes following TKA by means of SF-36 questionnaire, CES D10, VAS, KSS, KSFS, WOMAC, as well as Friedmann and Wyman scores, 10MWT, and 30-second timed chair test, assessed before the operation and one, three, and six months after the operation. RESULTS: There were 168 knees in 154 patients: 46.75% men and 53.24% women. 52.38% of knees had grade-III OA and 40.47% of knees had grade-IV OA. Preoperatively, SF-36 PCS was 33.2 and MCS was 35.4. Mean KSS and KSFS in females was 37.3 (16.2 and 31.5 (13.8; in males it was 49.2 (18.4 and 42.5 (15.7, respectively. Mean WOMAC scores were 64.2 in females and 56.5 in males. Mean VAS and CES D10 scores were 8.8 and 8.2 in females, and 6.9 and 6.4 in males, respectively. Post operatively at the first, third, and sixth month, significant improvements in QoL and mean SF-36, CES D10, VAS, KSS, KSFS, WOMAC, and Friedmann and Wyman scores were observed, as well as in the 10MWT and 30 s timed chair test scores. Patients with better preoperative functional activity and satisfactory understanding of TKA presented a better functional performance and achieved a good quality life (p< 0.01. DISCUSSION: Surgeons educate TKA candidates regarding the surgical procedure, the nature of implants, and how the procedure would affect their lifestyle and what their expectations from TKA should be. These crucial considerations should boost their confidence, enhancing their involvement and

  6. The use of clinical analysis of movements in evaluation of motor functional status of patients after total hip replacement

    Directory of Open Access Journals (Sweden)

    Romakina N.A.

    2016-06-01

    Full Text Available Aim: to estimate functional status of coxarthrosis in patients requiring total hip replacement of the two hip joints. Material and methods. The biomechanical examination of 94 patients with bilateral primary coxarthrosis before and after total hip replacement was performed using clinical stabilometric software complex. The ability to perceive the mechanical load during standing and walking was evaluated at different stages of the treatment. The difference between the samples was estimated with the use of Mann — Whitney U-test. The rank correlation of biomechanical parameters was measured by Spearman coefficient. Results. It was revealed that the most responsive indicators are the transfer period, the first and second periods of double support and the deviation of the center of pressure relative to the average position in the frontal plane. Conclusion. After surgical treatment there was observed some improvement: the-left-and-right-step asymmetry decrease, rhythm rate increase, improved ability to maintain body balance, jog reactions increase.

  7. Probing Amorphous Components in High Temperature TE Materials by in situ Total Scattering and the Pair Distribution Function (PDF) Method

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    -I clathrate Ba8Ga16Ge30. This suggests that local structure reorientations in the cage are likely to be the root cause of the degradation of the structure. This deepens our understanding of disordered clathrates, and provides evidence that the PDF technique is an effective method for probing local structure.......e., by measuring both the Bragg and diffuse scattering from a sample. This method has rarely been exploited by the non-oxide thermoelectrics community. , , Treating total scattering data by the Pair Distribution Function method is a logical approach to understanding defects, disorder and amorphous components...... to heating cycles, then we are closer to distinguishing how we may generate materials that do not undergo specific structure reorientation processes, and/or how we may mitigate them before they occur. Here, we will present a total scattering and PDF study that probes the local structure of the Type...

  8. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    Science.gov (United States)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  9. New method to determine the total carbonyl functional group content in extractable particulate organic matter by tandem mass spectrometry.

    Science.gov (United States)

    Dron, J; Zheng, W; Marchand, N; Wortham, H

    2008-08-01

    A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  10. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2012-01-01

    Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.

  11. A convergent approach to the total synthesis of telmisartan via a Suzuki cross-coupling reaction between two functionalized benzimidazoles.

    Science.gov (United States)

    Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank

    2015-02-06

    A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.

  12. MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function.

    Science.gov (United States)

    Zitzer, Nina C; Snyder, Katiri; Meng, Xiamoei; Taylor, Patricia A; Efebera, Yvonne A; Devine, Steven M; Blazar, Bruce R; Garzon, Ramiro; Ranganathan, Parvathi

    2018-06-15

    MicroRNA-155 (miR-155) is a small noncoding RNA critical for the regulation of inflammation as well as innate and adaptive immune responses. MiR-155 has been shown to be dysregulated in both donor and recipient immune cells during acute graft-versus-host disease (aGVHD). We previously reported that miR-155 is upregulated in donor T cells of mice and humans with aGVHD and that mice receiving miR-155-deficient (miR155 -/- ) splenocytes had markedly reduced aGVHD. However, molecular mechanisms by which miR-155 modulates T cell function in aGVHD have not been fully investigated. We identify that miR-155 expression in both donor CD8 + T cells and conventional CD4 + CD25 - T cells is pivotal for aGVHD pathogenesis. Using murine aGVHD transplant experiments, we show that miR-155 strongly impacts alloreactive T cell expansion through multiple distinct mechanisms, modulating proliferation in CD8 + donor T cells and promoting exhaustion in donor CD4 + T cells in both the spleen and colon. Additionally, miR-155 drives a proinflammatory Th1 phenotype in donor T cells in these two sites, and miR-155 -/- donor T cells are polarized toward an IL-4-producing Th2 phenotype. We further demonstrate that miR-155 expression in donor T cells regulates CCR5 and CXCR4 chemokine-dependent migration. Notably, we show that miR-155 expression is crucial for donor T cell infiltration into multiple target organs. These findings provide further understanding of the role of miR-155 in modulating aGVHD through T cell expansion, effector cytokine production, and migration. Copyright © 2018 by The American Association of Immunologists, Inc.

  13. Methods for RNA Analysis

    DEFF Research Database (Denmark)

    Olivarius, Signe

    of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...

  14. Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD.

    Science.gov (United States)

    Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming

    2017-11-02

    Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.

  15. Possible effects of mobilisation on acute post-operative pain and nociceptive function after total knee arthroplasty

    DEFF Research Database (Denmark)

    Lunn, T H; Kristensen, B B; Gaarn-Larsen, L

    2012-01-01

    anaesthesia and analgesia underwent an exercise (mobilisation) strategy on the first post-operative morning consisting of 25-m walking twice, with a 20-min interval. Pain was assessed at rest and during passive hip and knee flexion before, and 5 and 20 min after walk, as well as during walk. Nociceptive......BACKGROUND: Experimental studies in animals, healthy volunteers, and patients with chronic pain suggest exercise to provide analgesia in several types of pain conditions and after various nociceptive stimuli. To our knowledge, there is no data on the effects of exercise on pain and nociceptive...... function in surgical patients despite early mobilisation being an important factor to enhance recovery. We therefore investigated possible effects of mobilisation on post-operative pain and nociceptive function after total knee arthroplasty (TKA). METHODS: Thirty patients undergoing TKA under standardised...

  16. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  17. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  18. Gait Parameters and Functional Outcomes After Total Knee Arthroplasty Using Persona Knee System With Cruciate Retaining and Ultracongruent Knee Inserts.

    Science.gov (United States)

    Rajgopal, Ashok; Aggarwal, Kalpana; Khurana, Anshika; Rao, Arun; Vasdev, Attique; Pandit, Hemant

    2017-01-01

    Total knee arthroplasty is a well-established treatment for managing end-stage symptomatic knee osteoarthritis. Currently, different designs of prostheses are available with majority ensuring similar clinical outcomes. Altered surface geometry is introduced to strive toward gaining superior outcomes. We aimed to investigate any differences in functional outcomes between 2 different polyethylene designs namely the Persona CR (cruciate retaining) and Persona UC (ultracongruent) tibial inserts (Zimmer-Biomet, Warsaw, IN). This prospective single blind, single-surgeon randomized controlled trial reports on 105 patients, (66 female and 39 male), who underwent simultaneous bilateral total knee arthroplasty using the Persona knee system (Zimmer-Biomet) UC inserts in one side and CR inserts in the contralateral side. By a blind assessor, at regular time intervals patients were assessed in terms of function and gait. The functional knee scoring scales used were the Western Ontario and McMaster Universities Osteoarthritis Index and Modified Knee Society Score. The gait parameters evaluated were foot pressure and step length. During the study period, no patient was lost to follow-up or underwent revision surgery for any cause. Western Ontario and McMaster Universities Osteoarthritis Index scores, Modified Knee Society Score, and knee range of motion of all 105 patients assessed preoperatively and postoperatively at 6 months, 1 year, and 2 years showed statistically better results (P < .05) for UC inserts. Gait analysis measuring foot pressures and step length, however, did not show any statistically significant differences at 2-year follow-up. Ultracongruent tibial inserts show significantly better functional outcomes as compared to CR inserts during a 2-year follow-up period. However, in this study these findings were not shown to be attributed to differences in gait parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The microRNA Expression Profile in Donation after Cardiac Death (DCD Livers and Its Ability to Identify Primary Non Function.

    Directory of Open Access Journals (Sweden)

    Shirin Elizabeth Khorsandi

    Full Text Available Donation after cardiac death (DCD livers are marginal organs for transplant and their use is associated with a higher risk of primary non function (PNF or early graft dysfunction (EGD. The aim was to determine if microRNA (miRNA was able to discriminate between DCD livers of varying clinical outcome. DCD groups were categorized as PNF retransplanted within a week (n=7, good functional outcome (n=7 peak aspartate transaminase (AST ≤ 1000 IU/L and EGD (n=9 peak AST ≥ 2500 IU/L. miRNA was extracted from archival formalin fixed post-perfusion tru-cut liver biopsies. High throughput expression analysis was performed using miRNA arrays. Bioinformatics for expression data analysis was performed and validated with real time quantitative PCR (RT-qPCR. The function of miRNA of interest was investigated using computational biology prediction algorithms. From the array analysis 16 miRNAs were identified as significantly different (p<0.05. On RT-qPCR miR-155 and miR-940 had the highest expression across all three DCD clinical groups. Only one miRNA, miR-22, was validated with marginal significance, to have differential expression between the three groups (p=0.049. From computational biology miR-22 was predicted to affect signalling pathways that impact protein turnover, metabolism and apoptosis/cell cycle. In conclusion, microRNA expression patterns have a low diagnostic potential clinically in discriminating DCD liver quality and outcome.

  20. Increased Range of Motion Is Important for Functional Outcome and Satisfaction After Total Knee Arthroplasty in Asian Patients.

    Science.gov (United States)

    Ha, Chul-Won; Park, Yong-Beom; Song, Young-Suk; Kim, Jun-Ho; Park, Yong-Geun

    2016-06-01

    Although range of motion (ROM) is considered as an important factor for good outcome after total knee arthroplasty (TKA), the association of the degree of ROM with functional outcome and patient satisfaction is debated. We, therefore, investigated whether increased ROM would affect functional outcome and patient satisfaction after TKA in Asian patients. We reviewed 630 patients who underwent primary TKA with minimum 2-year follow-up. Clinical outcomes were evaluated by Knee Society (KS) score, Western Ontario and McMaster Universities osteoarthritis index, and high-flexion knee score. Patient satisfaction was evaluated using a validated questionnaire. The association of ROM and change in ROM (cROM) with clinical outcomes and satisfaction were analyzed using partial correlation analysis and multiple median regression analysis. All functional scores showed significant correlation with postoperative ROM (r = 0.129, P = .001 in Knee Society score; r = -0.101, P = .012 in Western Ontario and McMaster Universities osteoarthritis index; r = 0.183, P satisfaction (r = 0.192, P = .005). Postoperative ROM and cROM were revealed as predisposing factors affecting function outcome using multivariable regression analysis. cROM was found as a predisposing factor affecting satisfaction. Based on the results of this study, ROM positively associated with functional outcome and cROM positively associated with patient satisfaction after TKA. These findings suggest that increased ROM after TKA is an important factor for functional outcome and satisfaction in Asian patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them

    Science.gov (United States)

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2017-01-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5′ untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5′ UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms. PMID:29165424

  2. Function and structure in phage Qbeta RNA replicase. Association of EF-Tu-Ts with the other enzyme subunits

    DEFF Research Database (Denmark)

    Blumenthal, T; Young, R A; Brown, S

    1976-01-01

    alters its quaternary structure: the EF-Tu-Ts cannot be covalently attached to the other enzyme subunits with bifunctional cross-linking reagents in the presence of RNA. This conformational change is not influenced by ionic strength. The addition of Qbeta RNA to the enzyme, does not result in the release...... for one another increases with increasing ionic strength. The enzyme is capable of initiation of RNA synthesis with synthetic templates only when in the low ionic strength conformation. Elongation of initiated polynucleotide chains is not affectedby ionic strength. Addition of Qbeta RNA to the enzyme also...... of EF-Tu-Ts from the other enzyme subunits: whereas free EF-Tu-Ts binds GDP independently of salt concentration, this binding by Qbeta replicase is sensitive to high ionic strength and remains so in the presence of Qbeta RNA. Furthermore, RNA does not allow the release of EF-Ts from EF-Tu by GTP...

  3. Thigh and knee circumference, knee-extension strength, and functional performance after fast-track total hip arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Kristensen, Morten Tange; Husted, Henrik

    2011-01-01

    OBJECTIVE: To (1) quantify changes in knee-extension strength and functional-performance at discharge after fast-track total hip arthroplasty (THA) and (2) investigate whether these changes correlate to changes in thigh and knee circumference (ie, swelling) or pain. DESIGN: A prospective, descrip......OBJECTIVE: To (1) quantify changes in knee-extension strength and functional-performance at discharge after fast-track total hip arthroplasty (THA) and (2) investigate whether these changes correlate to changes in thigh and knee circumference (ie, swelling) or pain. DESIGN: A prospective......, descriptive, hypothesis-generating study. SETTING: A special unit for fast-track hip and knee arthroplasty operations at a university hospital. PARTICIPANTS: Twenty-four patients (20 women and 4 men; ages 69 ± 6.1 years) scheduled for primary unilateral THA. METHODS: All patients were evaluated before surgery......, except for hip pain. The average loss in knee-extension strength after surgery (32%, P = .01) did not correlate with increased thigh circumference (6%, P

  4. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

    International Nuclear Information System (INIS)

    Struis, Rudolf P.W.J.; Ludwig, Christian; Barrelet, Timothee; Kraehenbuehl, Urs; Rennenberg, Heinz

    2008-01-01

    Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (< 100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry

  5. Fasting decreases apolipoprotein B mRNA editing and the secretion of small molecular weight apoB by rat hepatocytes: Evidence that the total amount of apoB secreted is regulated post-transcriptionally

    International Nuclear Information System (INIS)

    Leighton, J.K.; Joyner, J.; Zamarripa, J.; Deines, M.; Davis, R.A.

    1990-01-01

    Two different molecular weight forms of apoB are produced from a common initial transcript via editing of a Gln codon (CAA) to a stop codon (UAA), leading to a truncated translation product (apo BS) that consists of the amino terminal half of the larger form (apoBL). Previous studies have shown that fasting coordinately decreases lipogenesis and the secretion of very low density lipoprotein (VLDL) lipids and apoBS. Secretion of the apoBL is unaffected by fasting. We studied whether editing of apoB RNA is repressed by fasting, thus accounting for the selective decreased secretion of apoBS. Column chromatography of [35S]methionine-labeled lipoproteins secreted by hepatocytes from fed rats showed that essentially all of apoBL is secreted in the VLDL fraction, whereas a significant amount (15%) of apoBS is secreted associated as lipoproteins eluting in the HDL fractions. Fasting decreased the relative amount of apoBS that eluted in the VLDL fractions and increased the amount secreted in the HDL fractions. Consistent with previous results, hepatocytes from fasted rats show a selective twofold decrease in apoBS secretion. Fasting did not affect the relative abundance of apoB RNA, determined by slot blot hybridization assays using two different 32P-labeled cDNA probes coding either for both molecular weight forms or for only the large molecular weight form. However, quantitative of the editing of apoB RNA showed that fasting caused a 60% decrease in the amount of apoB RNA possessing the stop codon. These data show that the editing of apoB RNA is sensitive to metabolic state (i.e., fasting) resulting in a selective decrease in the secretion of apoBS. However, since the total secretion of apoB was decreased by fasting, while apoB mRNA levels remained constant, additional (post-transcriptional) mechanisms play a role in regulating apoB secretion

  6. Pulmonary function in relation to total dust exposure at a bauxite refinery and alumina-based chemical products plant.

    Science.gov (United States)

    Townsend, M C; Enterline, P E; Sussman, N B; Bonney, T B; Rippey, L L

    1985-12-01

    A cross-sectional study of 1,142 male employees at the Arkansas Operations of a large aluminum production company examined the effect on pulmonary function of chronic exposure to total dust produced in the mining and refining of bauxite and the production of alumina chemicals. Never smokers, ex-smokers, and current smokers were analyzed separately. Among never smokers, a pattern of decreasing FEV1 was observed in relation to increasing duration and cumulative total dust exposure. Among never smokers with cumulative total dust exposures of greater than or equal to 100 mg/m3 yr and greater than or equal to 20 yr of exposure, there was a mean reduction from the predicted FEV1 of 0.29 to 0.39 L, in addition to a 3- to 4-fold excess of observed/expected numbers of subjects with FEV1 less than 80% of predicted. These results were observed relative to an external and an internal comparison group. Among current smokers, the deviations from predicted and the excess numbers of subjects with FEV1 less than 80% of predicted were larger in all exposure groups than for the never smokers. However, the quality of the smoking data was inadequate to allow separation of the effects of smoking and dust exposure.

  7. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.

    Directory of Open Access Journals (Sweden)

    Sara Torre

    Full Text Available Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences.

  8. Negative emotions affect postoperative scores for evaluating functional knee recovery and quality of life after total knee replacement

    Directory of Open Access Journals (Sweden)

    A. Qi

    2016-01-01

    Full Text Available This study aimed to determine whether psychological factors affect health-related quality of life (HRQL and recovery of knee function in total knee replacement (TKR patients. A total of 119 TKR patients (male: 38; female: 81 completed the Beck Anxiety Inventory (BAI, Beck Depression Inventory (BDI, State Trait Anxiety Inventory (STAI, Eysenck Personality Questionnaire-revised (EPQR-S, Knee Society Score (KSS, and HRQL (SF-36. At 1 and 6 months after surgery, anxiety, depression, and KSS scores in TKR patients were significantly better compared with those preoperatively (P<0.05. SF-36 scores at the sixth month after surgery were significantly improved compared with preoperative scores (P<0.001. Preoperative Physical Component Summary Scale (PCS and Mental Component Summary Scale (MCS scores were negatively associated with extraversion (E score (B=-0.986 and -0.967, respectively, both P<0.05. Postoperative PCS and State Anxiety Inventory (SAI scores were negatively associated with neuroticism (N score; B=-0.137 and -0.991, respectively, both P<0.05. Postoperative MCS, SAI, Trait Anxiety Inventory (TAI, and BAI scores were also negatively associated with the N score (B=-0.367, -0.107, -0.281, and -0.851, respectively, all P<0.05. The KSS function score at the sixth month after surgery was negatively associated with TAI and N scores (B=-0.315 and -0.532, respectively, both P<0.05, but positively associated with the E score (B=0.215, P<0.05. The postoperative KSS joint score was positively associated with postoperative PCS (B=0.356, P<0.05. In conclusion, for TKR patients, the scores used for evaluating recovery of knee function and HRQL after 6 months are inversely associated with the presence of negative emotions.

  9. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth

    Science.gov (United States)

    Chen, Biao; Xu, Jiguo; He, Xiaomei; Xu, Haiping; Li, Guihuan; Du, Hongli; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P chickens with normal body weight (P chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth. PMID:26366565

  10. Functional annotation and pathway analysis of genes differentially expressed in different stages of Plasmodium falciparum using RNA-Seq Data

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2017-12-01

    Full Text Available Plasmodium falciparum, the deadly protozoan parasite, causes malaria. Malaria remains one of the deadliest infectious diseases in the world. The RNA-Seq data sets were downloaded from NCBI Short Read Archive under accession number SRP009370 for our analysis. Differentially expressed genes (DEGs between Ring (R and early trophozoite (ET, late trophozoite (LT, schizont (Sc, gametocyte stages (GII, gametocyte stages (GV, ookinete (Oo stages are 2442, 2796, 2935, 2807, 2180, 2895 respectively. There are total 4594 unique DEGs in the samples. DAVID was used to categorize enriched biological themes in the list of DEGs. It can be seen that main functions related to GO term ‘Biological Process’ are antigenic variation, pathogenesis, single organismal cell-cell adhesion, GO term ‘Cellular Component’ are host cell plasma membrane, infected host cell surface knob and GO term ‘Molecular Function’ are cell adhesion molecule binding, ATP-dependent RNA helicase activity. We found that PF3D7_1000400, PF3D7_1000600, PF3D7_0900500, PF3D7_0901500, PF3D7_0937400 were most up regulated and PF3D7_0632800, PF3D7_0711700, PF3D7_0712400, PF3D7_0712600, PF3D7_0712900, PF3D7_0808600 and PF3D7_0808700 were most down regulated genes involved in antigenic variation. Also PF3D7_0930300 was most up-regulated in Sc, LT and Oo stages and PF3D7_0936500 was most up-regulated in GV stage and PF3D7_0632800, PF3D7_0711700, PF3D7_0712400, PF3D7_0712600, PF3D7_0712900, PF3D7_0808600, PF3D7_0808700 were most down regulated genes involved in pathogenesis. A total of 300 pathways were predicted using KAAS server. Majority of the DEGs were found to be associated with important biological pathways such as metabolic pathways, biosynthesis of secondary metabolites, ribosome, spliceosome, biosynthesis of antibiotics, purine metabolism.

  11. Supraspliceosomes at Defined Functional States Portray the Pre-Assembled Nature of the Pre-mRNA Processing Machine in the Cell Nucleus

    Directory of Open Access Journals (Sweden)

    Hani Kotzer-Nevo

    2014-06-01

    Full Text Available When isolated from mammalian cell nuclei, all nuclear pre-mRNAs are packaged in multi-subunit large ribonucleoprotein complexes—supraspliceosomes—composed of four native spliceosomes interconnected by the pre-mRNA. Supraspliceosomes contain all five spliceosomal U snRNPs, together with other splicing factors, and are functional in splicing. Supraspliceosomes studied thus far represent the steady-state population of nuclear pre-mRNAs that were isolated at different stages of the splicing reaction. To analyze specific splicing complexes, here, we affinity purified Pseudomonas aeruginosa phage 7 (PP7-tagge