Computational Methods and Function Theory
Saff, Edward; Salinas, Luis; Varga, Richard
1990-01-01
The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.
Theory-Based Lexicographical Methods in a Functional Perspective
DEFF Research Database (Denmark)
Tarp, Sven
2014-01-01
This contribution provides an overview of some of the methods used in relation to the function theory. It starts with a definition of the concept of method and the relation existing between theory and method. It establishes an initial distinction between artisanal and theory-based methods...... of various methods used in the different sub-phases of the overall dictionary compilation process, from the making of the concept to the preparation for publication on the chosen media, with focus on the Internet. Finally, it briefly discusses some of the methods used to create and test the function theory...
The Gaussian radial basis function method for plasma kinetic theory
Energy Technology Data Exchange (ETDEWEB)
Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)
2015-10-30
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.
Bootstrapping conformal field theories with the extremal functional method.
El-Showk, Sheer; Paulos, Miguel F
2013-12-13
The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.
Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory
Staszczak, A; Baran, A; Nazarewicz, W
2010-01-01
The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.
Density functional theory based generalized effective fragment potential method
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Kiet A., E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States); Pachter, Ruth, E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States)
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Functional methods underlying classical mechanics, relativity and quantum theory
Kryukov, Alexey A.
2013-01-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accou...
The Gaussian radial basis function method for plasma kinetic theory
Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.
2015-10-01
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.
PEXSI-$\\Sigma$: A Green's function embedding method for Kohn-Sham density functional theory
Li, Xiantao; Lu, Jianfeng
2016-01-01
As Kohn-Sham density functional theory (KSDFT) being applied to increasingly more complex materials, the periodic boundary condition associated with supercell approaches also becomes unsuitable for a number of important scenarios. Green's function embedding methods allow a more versatile treatment of complex boundary conditions, and hence provide an attractive alternative to describe complex systems that cannot be easily treated in supercell approaches. In this paper, we first revisit the literature of Green's function embedding methods from a numerical linear algebra perspective. We then propose a new Green's function embedding method called PEXSI-$\\Sigma$. The PEXSI-$\\Sigma$ method approximates the density matrix using a set of nearly optimally chosen Green's functions evaluated at complex frequencies. For each Green's function, the complex boundary conditions are described by a self energy matrix $\\Sigma$ constructed from a physical reference Green's function, which can be computed relatively easily. In th...
Functional methods underlying classical mechanics, relativity and quantum theory
Kryukov, A.
2013-04-01
The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.
Energy Technology Data Exchange (ETDEWEB)
McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: jmc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-05-01
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
Energy Technology Data Exchange (ETDEWEB)
Fattebert, J
2008-07-29
We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.
The Gaussian Radial Basis Function Method for Plasma Kinetic Theory
Hirvijoki, Eero; Belli, Emily; Embréus, Ola
2015-01-01
A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev., 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator involves friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, bilinear operator, and numerical discretization of the operator is far from trivial. In this letter, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also...
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
DEFF Research Database (Denmark)
Dohn, Asmus Ougaard; Møller, Klaus Braagaard; Sauer, Stephan P. A.
2013-01-01
The geometry of tetracyanoplatinate(II) (TCP) has been optimized with density functional theory (DFT) calculations in order to compare different computational strategies. Two approximate scalar relativistic methods, i.e. the scalar zeroth-order regular approximation (ZORA) and non-relativistic ca...
Computationally efficient double hybrid density functional theory using dual basis methods
Byrd, Jason N
2015-01-01
We examine the application of the recently developed dual basis methods of Head-Gordon and co-workers to double hybrid density functional computations. Using the B2-PLYP, B2GP-PLYP, DSD-BLYP and DSD-PBEP86 density functionals, we assess the performance of dual basis methods for the calculation of conformational energy changes in C$_4$-C$_7$ alkanes and for the S22 set of noncovalent interaction energies. The dual basis methods, combined with resolution-of-the-identity second-order M{\\o}ller-Plesset theory, are shown to give results in excellent agreement with conventional methods at a much reduced computational cost.
Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods.
Marconi, Umberto Marini Bettolo; Melchionna, Simone
2009-07-07
Using methods of kinetic theory and liquid state theory we propose a description of the nonequilibrium behavior of molecular fluids, which takes into account their microscopic structure and thermodynamic properties. The present work represents an alternative to the recent dynamic density functional theory, which can only deal with colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular fluid. The method is based on a suitable modification of the Boltzmann transport equation for the phase space distribution and provides a detailed description of the local structure of the fluid and its transport coefficients. Finally, we propose a practical scheme to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.
B-Theory of Runge-Kutta methods for stiff Volterra functional differential equations
Institute of Scientific and Technical Information of China (English)
LI; Shoufu(李寿佛)
2003-01-01
B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations (VFDEs) are established which provide unified theoretical foundation for the studyof Runge-Kutta methods when applied to nonlinear stiff initial value problems (IVPs) in ordinary differentialequations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs) and VFDEs ofother type which appear in practice.
Study on Interaction Between Two Parallel Plates with Iteration Method in Functional Theory
Institute of Scientific and Technical Information of China (English)
Ming Zhou; Zheng-wu Wang; Zu-min Xu
2008-01-01
By introducing the functional theory into the calculation of electric double layer (EDL) interaction,the interaction energies of two parallel plates were calculated respectively at low,moderate,and high potentials. Compared with the results of two existing methods,Debye-Hiickel and Langmuir methods,which are appli- cable just to the critical potentials and perform poorly in the intermediate potential,the functional approach not only has much simpler expression of the EDL interaction energy,but also performs well in the entire range of potentials.
Mazurek, A. P.; Sadlej-Sosnowska, N.
2000-11-01
A comparison of the ab initio quantum chemical methods: Hartree-Fock (HF) and hybrid density functional theory (DFT)/B3LYP for the treatment of tautomeric equilibria both in the gas phase and in the solution is made. The solvent effects were investigated in terms of the self-consistent reaction field (SCRF). Ionization potentials (IP), calculated by DFT/B3LYP, are also compared with those calculated previously within the HF frame.
DEFF Research Database (Denmark)
Paidarová, Ivana; Sauer, Stephan P. A.
2012-01-01
We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...
Orbital-free density functional theory implementation with the projector augmented-wave method
Energy Technology Data Exchange (ETDEWEB)
Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari; Lopez-Acevedo, Olga, E-mail: olga.lopez.acevedo@aalto.fi [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Caro, Miguel A. [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland)
2014-12-21
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Potential function methods for approximately solving linear programming problems theory and practice
Bienstock, Daniel
2002-01-01
Potential Function Methods For Approximately Solving Linear Programming Problems breaks new ground in linear programming theory. The book draws on the research developments in three broad areas: linear and integer programming, numerical analysis, and the computational architectures which enable speedy, high-level algorithm design. During the last ten years, a new body of research within the field of optimization research has emerged, which seeks to develop good approximation algorithms for classes of linear programming problems. This work both has roots in fundamental areas of mathematical programming and is also framed in the context of the modern theory of algorithms. The result of this work, in which Daniel Bienstock has been very much involved, has been a family of algorithms with solid theoretical foundations and with growing experimental success. This book will examine these algorithms, starting with some of the very earliest examples, and through the latest theoretical and computational developments.
Energy Technology Data Exchange (ETDEWEB)
Vereshchagin, D.A. [Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, Kaliningrad (Russian Federation); Leble, S.B. [Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, Kaliningrad (Russian Federation) and Theoretical Physics and Mathematical Methods Department, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk (Poland)]. E-mail: leble@mifgate.pg.gda.pl; Solovchuk, M.A. [Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, Kaliningrad (Russian Federation)]. E-mail: solovchuk@yandex.ru
2006-01-02
The system of hydrodynamic-type equations for a stratified gas in gravity field is derived from BGK equation by method of piecewise continuous distribution function. The obtained system of the equations generalizes the Navier-Stokes one at arbitrary Knudsen numbers. The problem of a wave disturbance propagation in a rarefied gas is explored. The verification of the model is made for a limiting case of a homogeneous medium. The phase velocity and attenuation coefficient values are in an agreement with former fluid mechanics theories; the attenuation behavior reproduces experiment and kinetics-based results at more wide range of the Knudsen numbers.
Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory
Energy Technology Data Exchange (ETDEWEB)
Lin, Lin; Shao, Sihong; E, Weinan
2012-11-06
We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Pt$_{2}$, Au$_{2}$, TlF, and Bi$_{2}$Se$_{3}$ indicate that the LOBPCG-F method is a robust and efficient method for investigating the relativistic effect in systems containing heavy elements.
Linear-scaling density functional theory using the projector augmented wave method
Hine, Nicholas D. M.
2017-01-01
Quantum mechanical simulation of realistic models of nanostructured systems, such as nanocrystals and crystalline interfaces, demands computational methods combining high-accuracy with low-order scaling with system size. Blöchl’s projector augmented wave (PAW) approach enables all-electron (AE) calculations with the efficiency and systematic accuracy of plane-wave pseudopotential calculations. Meanwhile, linear-scaling (LS) approaches to density functional theory (DFT) allow for simulation of thousands of atoms in feasible computational effort. This article describes an adaptation of PAW for use in the LS-DFT framework provided by the ONETEP LS-DFT package. ONETEP uses optimisation of the density matrix through in situ-optimised local orbitals rather than the direct calculation of eigenstates as in traditional PAW approaches. The method is shown to be comparably accurate to both PAW and AE approaches and to exhibit improved convergence properties compared to norm-conserving pseudopotential methods.
Energy Technology Data Exchange (ETDEWEB)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch [Laboratorium fur Physikalische Chemie, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich (Switzerland); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark); Olsen, Jógvan Magnus Haugaard [Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark); Knecht, Stefan [Laboratorium fur Physikalische Chemie, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich (Switzerland); Kongsted, Jacob, E-mail: kongsted@sdu.dk; Jensen, Hans Jørgen Aagaard, E-mail: hjj@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)
2015-03-21
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.
Orbital-Free Density Functional Theory Implementation with the Projector Augmented-Wave Method
Lehtomäki, J; Caro, M A; Lopez-Acevedo, O
2014-01-01
We present a novel orbital-free density functional theory (OFDFT) implementation using the projector augmented-wave method (PAW) that simultaneously preserves the linear scaling characteristic of OFDFT and provides access to all-electron values. The advantages of using the PAW method are two fold. First, PAW offers freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and grid methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10~meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. Because computed bulk modulus and lattice constant are extremely different from reported pseudopotential values, we conclude that in order to assess the performance of OFDFT functionals it is necessary to use al...
DGDFT: A massively parallel method for large scale density functional theory calculations
Energy Technology Data Exchange (ETDEWEB)
Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
Ruiz-Serrano, Álvaro; Skylaris, Chris-Kriton
2013-08-07
A new method for finite-temperature density functional theory calculations which significantly increases the number of atoms that can be simulated in metallic systems is presented. A self-consistent, direct minimization technique is used to obtain the Helmholtz free energy of the electronic system, described in terms of a set of non-orthogonal, localized functions which are optimized in situ using a periodic-sinc basis set, equivalent to plane waves. Most parts of the calculation, including the demanding operation of building the Hamiltonian matrix, have a computational cost that scales linearly with the number of atoms in the system. Also, this approach ensures that the Hamiltonian matrix has a minimal size, which reduces the computational overhead due to diagonalization, a cubic-scaling operation that is still required. Large basis set accuracy is retained via the optimization of the localized functions. This method allows accurate simulations of entire metallic nanostructures, demonstrated with calculations on a supercell of bulk copper with 500 atoms and on gold nanoparticles with up to 2057 atoms.
Quantal Density Functional Theory II
Sahni, Viraht
2009-01-01
Discusses approximation methods and applications of Quantal Density Functional Theory (QDFT), a local effective-potential-energy theory of electronic structure. This book describes approximations methods based on the incorporation of different electron correlations, as well as a many-body perturbation theory within the context of QDFT
Spectral Gauss quadrature method with subspace interpolation for Kohn-Sham Density functional theory
Wang, Xin
Algorithms with linear-scaling ( (N)) computational complexity for Kohn-Sham density functional theory (K-S DFT) is crucial for studying molecular systems beyond thousands of atoms. Of the (N) methods that use a polynomial-based approximation of the density matrix, the linear-scaling spectral Gauss quadrature (LSSGQ) method (Suryanarayana et al., JMPS, 2013) has been shown to exhibit the fastest convergence. The LSSGQ method requires a Lanczos procedure at every node in a real-space mesh, leading to a large computational pre-factor. We propose a new interpolation scheme specific to the LSSGQ method that lift the need to perform a Lanczos procedure at every node in the real-mesh. This interpolation will be referred to as subspace interpolation. The key idea behind subspace interpolation is that there is a large overlap in the Krylov-subspaces produced by the Lanczos procedures of nodes that are close in real-space. The subspace interpolation scheme takes advantage of the block-Lanczos procedure to group the Krylov-subspaces from a few representative nodes to approximate the density matrix over a large collection of nodes. Subspace interpolation outperforms cubic-spline interpolation by several orders of magnitude.
Xiong, Xiao-Gen; Yanai, Takeshi
2017-07-11
The Projector Augmented Wave (PAW) method developed by Blöchl is well recognized as an efficient, accurate pseudopotential approach in solid-state density functional theory (DFT) calculations with the plane-wave basis. Here we present an approach to incorporate the PAW method into the Gauss-type function (GTF) based DFT implementation, which is widely used for molecular quantum chemistry calculations. The nodal and high-exponent GTF components of valence molecular orbitals (MOs) are removed or pseudized by the ultrasoft PAW treatment, while there is elaborate transparency to construct an accurate and well-controlled pseudopotential from all-electron atomic description and to reconstruct an all-electron form of valence MOs from the pseudo MOs. The smoothness of the pseudo MOs should benefit the efficiency of GTF-based DFT calculations in terms of elimination of high-exponent primitive GTFs and reduction of grid points in the numerical quadrature. The processes of the PAW method are divided into basis-independent and -dependent parts. The former is carried out using the previously developed PAW libraries libpaw and atompaw. The present scheme is implemented by incorporating libpaw into the conventional GTF-based DFT solver. The details of the formulations and implementations of GTF-related PAW procedures are presented. The test calculations are shown for illustrating the performance. With the near-complete GTF basis at the cc-pVQZ level, the total energies obtained using our PAW method with suited frozen core treatments converge to those with the conventional all-electron GTF-based method with a rather small absolute error.
DGDFT: A Massively Parallel Method for Large Scale Density Functional Theory Calculations
Hu, Wei; Yang, Chao
2015-01-01
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) [J. Comput. Phys. 2012, 231, 2140] method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field (SCF) iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. It minimizes the number of degrees of freedom required to represent the solution to the Kohn-Sham problem for a desired level of accuracy. In particular, DGDFT can reach the planewave accuracy with far fewer numbers of degrees of freedom. By using the pole expansion and selected inversion (PEXSI) technique to compute electron density, energy and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both i...
Morgenstern Horing, Norman J
2017-01-01
This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...
APPLICATION OF WAVELET THEORY IN RESEARCH ON WEIGHT FUNCTION OF MESHLESS METHOD
Institute of Scientific and Technical Information of China (English)
ZHANG Hong; ZHANG Xuan-bing; GE Xiu-run
2005-01-01
Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis, so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions.Now, the useful new way to research weight function is found, and the numerical result is given.
Higher-Order Adaptive Finite-Element Methods for Kohn-Sham Density Functional Theory
2012-07-03
equation (25)). The constants c1 and c2 which correspond to the scaling and shifting are determined such that the unwanted eigen-spectrum is mapped into...U. Gross, A. Rubio, Octopus : A tool for the application of time- dependent density functional theory, Phys. Status Solidi B 243 (2006) 24652488. [12
Energy Technology Data Exchange (ETDEWEB)
Betzinger, Markus
2011-12-14
In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW
Andrievskii, Vladimir
2006-01-01
This is a survey of some recent results concerning polynomial inequalities and polynomial approximation of functions in the complex plane. The results are achieved by the application of methods and techniques of modern geometric function theory and potential theory.
On Functional and Holographic Renormalization Group Methods in Stochastic Theory of Turbulence
Ogarkov, S L
2016-01-01
A nonlocal quantum-field model is constructed for the system of hydrodynamic equations for incompressible viscous fluid (the stochastic Navier--Stokes (NS) equation and the continuity equation). This model is studied by the following two mutually parallel methods: the Wilson--Polchinski functional renormalization group method (FRG), which is based on the exact functional equation for the generating functional of amputated connected Green's functions (ACGF), and the Heemskerk--Polchinski holographic renormalization group method (HRG), which is based on the functional Hamilton--Jacobi (HJ) equation for the holographic boundary action. Both functional equations are equivalent to infinite hierarchies of integro-differential equations (coupled in the FRG case) for the corresponding families of Green's functions (GF). The RG-flow equations can be derived explicitly for two-particle functions. Because the HRG-flow equation is closed (contains only a two-particle GF), the explicit analytic solutions are obtained for ...
Nishii, Taiki; Komada, Satoshi; Yashiro, Daisuke; Hirai, Junji
2013-01-01
Conventional estimation methods distribute tension to muscles by solving optimization problems, because the system is redundant. The theory of functionally different effective muscle, based on 3 antagonistic pairs of muscle groups in limbs, has enabled to calculate the maximum joint torque of each pair, i.e. functionally different effective muscle force. Based on this theory, a method to estimate muscular tension has been proposed, where joint torque of each muscle group is derived by multiplying functionally different effective muscle force, the muscular activity of muscular activity pattern for direction of tip force, and ratio of tip force to maximum output force. The estimation of this method is as good as Crowninshield's method, moreover this method also reduce the computation time if the estimation concerns a selected muscle group.
Shankar, Sadasivan; Simka, Harsono; Haverty, Michael
2008-02-13
In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development.
Partition density functional theory
Nafziger, Jonathan
Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.
Ghosh, Soumen; Cramer, Christopher J; Truhlar, Donald G; Gagliardi, Laura
2017-04-01
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. We recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functional theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet-triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet-triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.
Quantal density functional theory
Sahni, Viraht
2016-01-01
This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...
DEFF Research Database (Denmark)
Verma, Ashok K.; Modak, P.; Sharma, Surinder M.;
2013-01-01
First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties...... spectrum at ambient pressure relate, for some parameter choices, well to peak positions in the calculated density of states function of Am-I....
Yilmazer, Nusret Duygu; Korth, Martin
2013-07-11
Correctly ranking protein-ligand interactions with respect to overall free energy of binding is a grand challenge for virtual drug design. Here we compare the performance of various quantum chemical approaches for tackling this so-called "scoring" problem. Relying on systematically generated benchmark sets of large protein/ligand model complexes based on the PDBbind database, we show that the performance depends first of all on the general level of theory. Comparing classical molecular mechanics (MM), semiempirical quantum mechanical (SQM), and density functional theory (DFT) based methods, we find that enhanced SQM approaches perform very similar to DFT methods and substantially different from MM potentials.
Knopp, Konrad
1996-01-01
This is a one-volume edition of Parts I and II of the classic five-volume set The Theory of Functions prepared by renowned mathematician Konrad Knopp. Concise, easy to follow, yet complete and rigorous, the work includes full demonstrations and detailed proofs.Part I stresses the general foundation of the theory of functions, providing the student with background for further books on a more advanced level.Part II places major emphasis on special functions and characteristic, important types of functions, selected from single-valued and multiple-valued classes.
Scivetti, Ivan; Persson, Mats
2013-01-01
A simplified density functional theory (DFT) method for charged adsorbates on an ultrathin, insulating film supported by a metal substrate is developed and presented. This new method is based on a previous DFT development that uses a perfect conductor (PC) model to approximate the electrostatic response of the metal substrate, while the film and the adsorbate are both treated fully within DFT [I. Scivetti and M. Persson, Journal of Physics: Condensed Matter 25, 355006 (2013)]. The missing int...
Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
Motamarri, Phani; Leiter, Kenneth; Knap, Jaroslaw; Gavini, Vikram
2012-01-01
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT).To this end, we develop an \\emph{a priori} mesh adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings---of the order of $1000-$fold---can be realized, for both all-electron and pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems stu...
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc.
Sarason, Donald
2007-01-01
Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Co
Car-Parrinello treatment for an approximate density-functional theory method.
Rapacioli, Mathias; Barthel, Robert; Heine, Thomas; Seifert, Gotthard
2007-03-28
The authors formulate a Car-Parrinello treatment for the density-functional-based tight-binding method with and without self-consistent charge corrections. This method avoids the numerical solution of the secular equations, the principal drawback for large systems if the linear combination of atomic orbital ansatz is used. The formalism is applicable to finite systems and for supercells using periodic boundary conditions within the Gamma-point approximation. They show that the methodology allows the application of modern computational techniques such as sparse matrix storage and massive parallelization in a straightforward way. All present bottlenecks concerning computer time and consumption of memory and memory bandwidth can be removed. They illustrate the performance of the method by direct comparison with Born-Oppenheimer molecular dynamics calculations. Water molecules, benzene, the C(60) fullerene, and liquid water have been selected as benchmark systems.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Energy Technology Data Exchange (ETDEWEB)
Motamarri, P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Nowak, M.R. [Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Leiter, K.; Knap, J. [U.S. Army Research Labs, Aberdeen Proving Ground, Aberdeen, MD 21001 (United States); Gavini, V., E-mail: vikramg@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Energy Technology Data Exchange (ETDEWEB)
Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)
2015-01-22
We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.
Sun, Feng
A new method is introduced for retrieving the particle size distribution function (PSDF) from optical measurements. Criteria are derived and demonstrated for assessing the validity of the multi-dimensional least-squares deconvolution results derived from experimental data. Using the covariance matrices C and the newly revealed B, stability of this deconvolution technique is discussed and compared with the linear inversion method. The relations of the variances of the PSDF parameters and the experimental errors have been derived and the effects and restrictions of the profiles for the PSDF have been discussed. All the theoretical predictions of this method are tested using Monte Carlo -simulated experimental data which consists of scattering and extinction measurements for water and soot particles, respectively. The results show that for water droplets of 1 μm mean diameter, the method is good for +/-25% random experiment error for scattering and +6% for extinction. The differences in the scattering and extinction results are explained using information content analysis. Experimental confirmation of this newly developed deconvolution technique was accomplished using multi-angle scattering measurements of a water droplet spray field. Sensitivity of the deconvolution to uncertainties in the index of refraction was determined using droplet compositions of water and laser-dye mixtures. The laser-dye concentration was varied to provide a variable and known imaginary term of the index of refraction. A range of discrete laser wavelengths was used for this study to span the wavelength range of the variations of the index of refraction. The application of this deconvolution method yield, in addition to the PSDF parameters, the real and imaginary terms of the index of refraction which agreed with the computed values. A method was developed and verified for the proper treatment of the variation with observation angle of the scattering volume of the experiment, and the results
Gao, Yi; Neuhauser, Daniel
2012-08-21
We develop an approach for dynamical (ω > 0) embedding of mixed quantum mechanical (QM)/classical (or more precisely QM/electrodynamics) systems with a quantum sub-region, described by time-dependent density functional theory (TDDFT), within a classical sub-region, modeled here by the recently proposed near-field (NF) method. Both sub-systems are propagated simultaneously and are coupled through a common Coulomb potential. As a first step we implement the method to study the plasmonic response of a metal film which is half jellium-like QM and half classical. The resulting response is in good agreement with both full-scale TDDFT and the purely classical NF method. The embedding method is able to describe the optical response of the whole system while capturing quantum mechanical effects, so it is a promising approach for studying electrodynamics in hybrid molecules-metals nanostructures.
van der Waals forces in density functional theory: a review of the vdW-DF method.
Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I
2015-06-01
A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.
Senjean, Bruno; Alam, Md Mehboob; Knecht, Stefan; Fromager, Emmanuel
2015-01-01
The combination of a recently proposed linear interpolation method (LIM) [Senjean et al., Phys. Rev. A 92, 012518 (2015)], which enables the calculation of weight-independent excitation energies in range-separated ensemble density-functional approximations, with the extrapolation scheme of Savin [J. Chem. Phys. 140, 18A509 (2014)] is presented in this work. It is shown that LIM excitation energies vary quadratically with the inverse of the range-separation parameter mu when the latter is large. As a result, the extrapolation scheme, which is usually applied to long-range interacting energies, can be adapted straightforwardly to LIM. This extrapolated LIM (ELIM) has been tested on a small test set consisting of He, Be, H2 and HeH+. Relatively accurate results have been obtained for the first singlet excitation energies with the typical mu=0.4 value. The improvement of LIM after extrapolation is remarkable, in particular for the doubly-excited 2^1Sigma+g state in the stretched H2 molecule. Three-state ensemble ...
Semiclassics in Density Functional Theory
Lee, Donghyung; Cangi, Attila; Elliott, Peter; Burke, Kieron
2009-03-01
Recently, we published an article [1] about the semiclassical origin of density functional theory. We showed that the density and the kinetic energy density of one dimensional finite systems with hard walls can be expressed in terms of the external potential using the semiclassical Green's function method. Here, we show a uniformization scheme for the semiclassical density and the kinetic energy density for turning-point problems.[1] P. Elliott, D. Lee, A. Cangi, and K. Burke, Phys. Rev. Lett. 100, 256406 (2008).
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Axler, Sheldon; Ramey, Wade
2013-01-01
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
Performance of density functional theory methods to describe intramolecular hydrogen shifts
Indian Academy of Sciences (India)
Nelly González-Rivas; Andrés Cedillo
2005-09-01
The performance of three exchange and correlation density functionals, LDA, BLYP and B3LYP, with four basis sets is tested in three intramolecular hydrogen shift reactions. The best reaction and activation energies come from the hybrid functional B3LYP with triple- basis sets, when they are compared with high-level post-Hartree-Fock results from the literature. For a fixed molecular geometry, the electrophilic Fukui function is computed from a finite difference approximation. Fukui function shows a small dependence with both the exchange and correlation functional and the basis set. Evolution of the Fukui function along the reaction path describes important changes in the basic sites of the corresponding molecules. These results are in agreement with the chemical behavior of those species.
Hirano, Toshiyuki; Sato, Fumitoshi
2014-07-28
We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.
Nishihara, S.; Otani, M.
2017-09-01
We present two hybrid solvation models for the calculation of the solvation structure with model 1 in a confined nanospace in bulk materials and model 2 at solid/liquid interfaces where an electrode is in contact with an electrolyte and a membrane is immersed into a solution. The hybrid theory is based on the reference interaction site method (RISM) for the solvent region. The electronic structure of a bulk material, an electrode, and a membrane is treated by density functional theory with the plane-wave basis and pseudopotentials technique. For model 1, we use the three-dimensional RISM (3D-RISM) by imposing a 3D periodic boundary condition on the system. However, for model 2, we reformulate the RISM by means of a two-dimensional boundary condition parallel to the surface and an open boundary condition normal to the surface. Four benchmark calculations are performed for the formaldehyde-water system, water packed into a zeolite framework, a NaCl solution in contact with an Al electrode, and an Al thin film immersed in a NaCl solution with different concentrations. The calculations are shown to be efficient and stable. Because of the flexibility of the RISM theory, the models are considered to be applicable to a wide range of solid/liquid interfaces.
DEFF Research Database (Denmark)
Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan;
2015-01-01
. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality...
Tautomerism methods and theories
Antonov, Liudmil
2013-01-01
Covering the gap between basic textbooks and over-specialized scientific publications, this is the first reference available to describe this interdisciplinary topic for PhD students and scientists starting in the field. The result is an introductory description providing suitable practical examples of the basic methods used to study tautomeric processes, as well as the theories describing the tautomerism and proton transfer phenomena. It also includes different spectroscopic methods for examining tautomerism, such as UV-VIs, time-resolved fluorescence spectroscopy, and NMR spectrosc
Goodpaster, Jason D; Manby, Frederick R; Miller, Thomas F
2012-01-01
Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and we develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential (OEP) calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in th...
Filatov, Michael; Liu, Fang; Kim, Kwang S.; Martínez, Todd J.
2016-12-01
The spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociation of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.
Goodpaster, Jason D; Barnes, Taylor A; Manby, Frederick R; Miller, Thomas F
2012-12-14
Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.
Zaffran, Jeremie; Caspary Toroker, Maytal
2016-08-09
NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.
Directory of Open Access Journals (Sweden)
Seiya Nishiyama
2009-01-01
Full Text Available The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of curvature unfamiliar in the conventional time-dependent (TD self-consistent field (SCF theory. Our basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe a collective coordinate-system. This manner enables us to take a one-form which is linearly composed of a TD SCF Hamiltonian and infinitesimal generators induced by collective variable differentials of a canonical transformation on a group. The integrability condition of the system read the curvature C = 0. Our method is constructed manifesting itself the structure of the group under consideration. To go beyond the maximaly-decoupled method, we have aimed to construct an SCF theory, i.e., υ (external parameter-dependent Hartree-Fock (HF theory. Toward such an ultimate goal, the υ-HF theory has been reconstructed on an affine Kac-Moody algebra along the soliton theory, using infinite-dimensional fermion. An infinite-dimensional fermion operator is introduced through a Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent potential with a Υ-periodicity. A bilinear equation for the υ-HF theory has been transcribed onto the corresponding τ-function using the regular representation for the group and the Schur-polynomials. The υ-HF SCF theory on an infinite-dimensional Fock space F∞ leads to a dynamics on an infinite-dimensional Grassmannian Gr∞ and may describe more precisely such a dynamics on the group manifold. A finite-dimensional Grassmannian is identified with a Gr
Mackie, Iain D; Dilabio, Gino A
2010-06-21
B971, PBE and PBE1 density functionals with 6-31G(d) basis sets are shown to accurately describe the binding in dispersion bound dimers. This is achieved through the use of dispersion-correcting potentials (DCPs) in conjunction with counterpoise corrections. DCPs resemble and are applied like conventional effective core potentials that can be used with most computational chemistry programs without code modification. Rather, DCPs are implemented by simple appendage to the input files for these types of programs. Binding energies are predicted to within ca. 11% and monomer separations to within ca. 0.06 A of high-level wavefunction data using B971/6-31G(d)-DCP. Similar results are obtained for PBE and PBE1 with the 6-31G(d) basis sets and DCPs. Although results found using the 3-21G(d) are not as impressive, they never-the-less show promise as a means of initial study for a wide variety of dimers, including those dominated by dispersion, hydrogen-bonding and a mixture of interactions. Notable improvement is found in comparison to M06-2X/6-31G(d) data, e.g., mean absolute deviations for the S22-set of dimers of ca. 13.6 and 16.5% for B971/6-31G(d)-DCP and M06-2X, respectively. However, it should be pointed out that the latter data were obtained using a larger integration grid size since a smaller grid results in different binding energies and geometries for simple dispersion-bound dimers such as methane and ethene.
Karasiev, V.; López-Boada, R.
1998-09-01
The line-integral method developed by van Leeuwen and Baerends [Phys. Rev. A 51, 170 (1995)] is applied to the calculation of the differences of correlation energy functional values ΔEDFTc=EDFTc[ρHF]- EDFTc[ρexact], where ρHF is the Hartree-Fock density and ρexact is the near-exact one (DFT is density-functional theory). From the Kohn-Sham wave functions yielding Hartree-Fock and the near-exact densities, the corresponding noninteracting kinetic energies and the exchange energies are calculated. An approximate relation between EDFTc[ρHF] and the conventional quantum chemistry correlation energy is presented, accurate to <=4μ hartree for the isoelectronic series of He, and Li, and for the Be atom.
Energy Technology Data Exchange (ETDEWEB)
Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Fedorov, Dmitri G., E-mail: d.g.fedorov@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zahariev, Federico; Schmidt, Michael W.; Gordon, Mark S. [Department of Chemistry and Ames Laboratory, US-DOE, Iowa State University, Ames, Iowa 50011 (United States); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2015-03-28
Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.
Cyclostationarity theory and methods
Leśkow, Jacek; Napolitano, Antonio; Sanchez-Ramirez, Andrea
2014-01-01
In the last decade the research in signal analysis was dominated by models that encompass nonstationarity as an important feature. This book presents the results of a workshop held in Grodek—Poland in February 2013 which was dedicated to the investigation of cyclostationary signals. Its main objective is to highlight the strong interactions between theory and applications of cyclostationary signals with the use of modern statistical tools. An important application of cyclostationary signals is the analysis of mechanical signals generated by a vibrating mechanism. Cyclostationary models are very important to perform basic operations on signals in both time and frequency domains. One of the fundamental problems in diagnosis of rotating machine is the identification of significant modulating frequencies that contribute to the cyclostationary nature of the signals. The book shows that there are modern tools available for analyzing cyclostationary signals without the assumption of gaussianity. Those methods are...
Escudero, Daniel; Thiel, Walter
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF6 complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO4(-), Cr(CO)6, [Fe(CN)6](4-), four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.
Jain, Anubhav
2017-04-01
Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.
Scaled density functional theory correlation functionals.
Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B
2007-10-18
We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.
Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud
2017-07-01
We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).
Scivetti, Ivan; Persson, Mats
2014-04-02
A simplified density functional theory (DFT) method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate is developed and presented. This new method is based on a previous DFT development that uses a perfect conductor (PC) model to approximate the electrostatic response of the metal substrate, while the film and the adsorbate are both treated fully within DFT (Scivetti and Persson 2013 J. Phys.: Condens. Matter 25 355006). The missing interactions between the metal substrate and the insulating film in the PC approximation are modelled by a simple force field (FF). The parameters of the PC model and the force field are obtained from DFT calculations of the film and the substrate, here shown explicitly for a NaCl bilayer supported by a Cu(100) surface. In order to obtain some of these parameters and the polarizability of the force field, we have to include an external, uniformly charged plane in the DFT calculations, which has required the development of a periodic DFT formalism to include such a charged plane in the presence of a metal substrate. This extension and implementation should be of more general interest and applicable to other challenging problems, for instance, in electrochemistry. As illustrated for the gold atom on the NaCl bilayer supported by a Cu(100) surface, our new DFT-PC-FF method allows us to handle different charge states of adsorbates in a controlled and accurate manner with a considerable reduction of the computational time. In addition, it is now possible to calculate vertical transition and reorganization energies for the charging and discharging of adsorbates that cannot be obtained by current DFT methodologies that include the metal substrate. We find that the computed vertical transition energy for charging of the gold adatom is in good agreement with experiments.
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Energy Technology Data Exchange (ETDEWEB)
Ji, Zhi [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos (Mexico); Contreras-Torres, Flavio F., E-mail: flavioc@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, DF (Mexico); Jalbout, Abraham F.; Ramírez-Treviño, Alberto [Instituto Tecnológico de Estudios Superiores de Cajeme, Ciudad Obregon, Sonora (Mexico)
2013-11-15
The adsorption of Li atom on graphene is examined using density functional theory methods. Three different adsorption sites are considered, including the on top of a carbon atom (OT), on top of a C-C bond (Bri), and on top of a hexagon (Hol), as well as Li adsorbed at different coverage. The Hol site is found to be the most stable, followed by the Bri and OT sites. The order of stabilization is independent of coverage. The localization of Li–graphene interaction at all sites has reverse order with stabilization. The localization will cause different repulsive interaction between Li atoms which is believed to take responsibility for the difference between the charge transfer order and adsorption energy order of Li adsorption at all possible sites. Repulsive interaction also causes the decreasing of adsorption energies of Li at Hol site with increasing coverage, but the corresponding influence is bigger at low coverage range (0.020–0.056 monolayers) than that at high coverage range (0.056–0.250 monolayers). The trend of charge transfer and dipole moment with increasing coverage is also in agreement with that of adsorption energy. It is also found that the distance of Li above graphene will increase with increasing coverage, but a so-called “zigzag” curve appears, which exhibits an oscillatory behavior as a function of increasing coverage. The diffusion of Li atom on graphene is also studied. Li atom migrates from a Hol site to a neighboring Hol site through the Bri site between them is found to be the minimum energy path. Within the studied coverage range, the diffusion barrier decreases with increasing coverage which can be ascribed to the phenomenon of different repulsion interactions when Li atom adsorbs at different sites. The increasing coverage amplified the phenomenon.
Ji, Zhi; Contreras-Torres, Flavio F.; Jalbout, Abraham F.; Ramírez-Treviño, Alberto
2013-11-01
The adsorption of Li atom on graphene is examined using density functional theory methods. Three different adsorption sites are considered, including the on top of a carbon atom (OT), on top of a CC bond (Bri), and on top of a hexagon (Hol), as well as Li adsorbed at different coverage. The Hol site is found to be the most stable, followed by the Bri and OT sites. The order of stabilization is independent of coverage. The localization of Li-graphene interaction at all sites has reverse order with stabilization. The localization will cause different repulsive interaction between Li atoms which is believed to take responsibility for the difference between the charge transfer order and adsorption energy order of Li adsorption at all possible sites. Repulsive interaction also causes the decreasing of adsorption energies of Li at Hol site with increasing coverage, but the corresponding influence is bigger at low coverage range (0.020-0.056 monolayers) than that at high coverage range (0.056-0.250 monolayers). The trend of charge transfer and dipole moment with increasing coverage is also in agreement with that of adsorption energy. It is also found that the distance of Li above graphene will increase with increasing coverage, but a so-called "zigzag" curve appears, which exhibits an oscillatory behavior as a function of increasing coverage. The diffusion of Li atom on graphene is also studied. Li atom migrates from a Hol site to a neighboring Hol site through the Bri site between them is found to be the minimum energy path. Within the studied coverage range, the diffusion barrier decreases with increasing coverage which can be ascribed to the phenomenon of different repulsion interactions when Li atom adsorbs at different sites. The increasing coverage amplified the phenomenon.
Heeger, David J
2017-02-21
Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.
Functional theories of thermoelectric phenomena
Eich, F. G.; Di Ventra, M.; Vignale, G.
2017-02-01
We review the progress that has been recently made in the application of time-dependent density functional theory to thermoelectric phenomena. As the field is very young, we emphasize open problems and fundamental issues. We begin by introducing the formal structure of thermal density functional theory, a density functional theory with two basic variables—the density and the energy density—and two conjugate fields—the ordinary scalar potential and Luttinger’s thermomechanical potential. The static version of this theory is contrasted with the familiar finite-temperature density functional theory, in which only the density is a variable. We then proceed to constructing the full time-dependent non equilibrium theory, including the practically important Kohn-Sham equations that go with it. The theory is shown to recover standard results of the Landauer theory for thermal transport in the steady state, while showing greater flexibility by allowing a description of fast thermal response, temperature oscillations and related phenomena. Several results are presented here for the first time, i.e. the proof of invertibility of the thermal response function in the linear regime, the full expression of the thermal currents in the presence of Luttinger’s thermomechanical potential, an explicit prescription for the evaluation of the Kohn-Sham potentials in the adiabatic local density approximation, a detailed discussion of the leading dissipative corrections to the adiabatic local density approximation and the thermal corrections to the resistivity that follow from it.
Grofe, Adam; Qu, Zexing; Truhlar, Donald G; Li, Hui; Gao, Jiali
2017-03-14
We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Energy Technology Data Exchange (ETDEWEB)
Valdes, Haydee; Pluhackova, Kristyna; Pitonak, Michal; Rezac, Jan; Hobza, Pavel
2008-03-13
A detailed quantum chemical study on five peptides (WG, WGG, FGG, GGF and GFA) containing the residues phenylalanyl (F), glycyl (G), tryptophyl (W) and alanyl (A)—where F and W are of aromatic character—is presented. When investigating isolated small peptides, the dispersion interaction is the dominant attractive force in the peptide backbone–aromatic side chain intramolecular interaction. Consequently, an accurate theoretical study of these systems requires the use of a methodology covering properly the London dispersion forces. For this reason we have assessed the performance of the MP2, SCS-MP2, MP3, TPSS-D, PBE-D, M06-2X, BH&H, TPSS, B3LYP, tight-binding DFT-D methods and ff99 empirical force field compared to CCSD(T)/complete basis set (CBS) limit benchmark data. All the DFT techniques with a ‘-D’ symbol have been augmented by empirical dispersion energy while the M06-2X functional was parameterized to cover the London dispersion energy. For the systems here studied we have concluded that the use of the ff99 force field is not recommended mainly due to problems concerning the assignment of reliable atomic charges. Tight-binding DFT-D is efficient as a screening tool providing reliable geometries. Among the DFT functionals, the M06-2X and TPSS-D show the best performance what is explained by the fact that both procedures cover the dispersion energy. The B3LYP and TPSS functionals—not covering this energy—fail systematically. Both, electronic energies and geometries obtained by means of the wave-function theory methods compare satisfactorily with the CCSD(T)/CBS benchmark data.
Function theory on symplectic manifolds
Polterovich, Leonid
2014-01-01
This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...
Triebel, Hans
1992-01-01
Theory of Function Spaces II deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as Hölder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. Theory of Function Spaces II is self-contained, although it may be considered an update of the author’s earlier book of the same title. The book’s 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds. ------ Reviews The first chapter deserves special attention. This chapter is both an outstanding historical survey of function spaces treated in the book and a remarkable survey of rather different techniques developed in the last 50 years. It is s...
Functional analysis theory and applications
Edwards, RE
2011-01-01
""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the
Van Long, Nguyen; Quoc, Tran Huu; Tu, Tran Minh
2016-12-01
In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite-element method. The theory based on full 12-unknown higher order shear deformation theory simultaneously satisfies zeros transverse stresses at top and bottom surfaces of FG plates. A four-node rectangular element with 16 degrees of freedom per node is used. Poisson's ratios, Young's moduli, and material densities vary continuously in thickness direction according to the volume fraction of constituents which is modeled as power-law functions. Results are verified with available results in the literature. Parametric studies are performed for different power-law indices, side-to-thickness ratios.
Andrade, Xavier
2013-01-01
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code OCTOPUS, can reach a sustained performance of up to 90 GFlops for a single GPU, representing an important speed-up when compared to the CPU version of the code. Moreover, for some systems our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
Andrade, Xavier; Aspuru-Guzik, Alán
2013-10-01
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
A nonlinear theory of generalized functions
1990-01-01
This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...
Tsuchimochi, Takashi; Kobayashi, Masato; Nakata, Ayako; Imamura, Yutaka; Nakai, Hiromi
2008-11-15
The Sakurai-Sugiura projection (SS) method was implemented and numerically assessed for diagonalization of the Hamiltonian in time-dependent density functional theory (TDDFT). Since the SS method can be used to specify the range in which the eigenvalues are computed, it may be an efficient tool for use with eigenvalues in a particular range. In this article, the SS method is applied to core excited calculations for which the eigenvalues are located within a particular range, since the eigenvalues are unique to atomic species in molecules. The numerical assessment of formaldehyde molecule by TDDFT with core-valence Becke's three-parameter exchange (B3) plus Lee-Yang-Parr (LYP) correlation (CV-B3LYP) functional demonstrates that the SS method can be used to selectively obtain highly accurate eigenvalues and eigenvectors. Thus, the SS method is a new and powerful alternative for calculating core-excitation energies without high computation costs.
Cao, Dapeng; Jiang, Tao; Wu, Jianzhong
2006-04-28
A hybrid method is proposed to investigate the microstructure of various polymeric fluids confined between two parallel surfaces. The hybrid method combines a single-chain Monte Carlo (MC) simulation for the ideal-gas part of the Helmholtz energy and a density functional theory (DFT) for the excess part that arises from nonbonded intersegment interactions. The latter consists of a modified fundamental measure theory for excluded-volume effect, the first-order thermodynamics perturbation theory for chain connectivity, and a mean-field approximation for the van der Waals attraction. In comparison with a conventional DFT, the hybrid method avoids calculation of the time-consuming recursive functions and is directly applicable to polymers with arbitrary molecular architecture. Its numerical performance has been validated by extensive comparisons with MC data for the density distributions of totally flexible, semiflexible, or rigid polymers and those with starlike architecture. Special attention is also given to the formation of a nematic monolayer by rigid molecules laying perpendicular to a planar surface. The hybrid method predicts the surface pressure versus surface coverage in good agreement with experiment.
Huang, Chen
2016-03-01
A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system's density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.
Noncovalent Interactions in Density-Functional Theory
DiLabio, Gino A
2014-01-01
Non-covalent interactions are essential in the description of soft matter, including materials of technological importance and biological molecules. In density-functional theory, common approaches fail to describe dispersion forces, an essential component in noncovalent binding interactions. In the last decade, great progress has been made in the development of accurate and computationally-efficient methods to describe noncovalently bound systems within the framework of density-functional theory. In this review, we give an account of the field from a chemical and didactic perspective, describing different approaches to the calculation of dispersion energies and comparing their accuracy, complexity, popularity, and general availability. This review should be useful to the newcomer who wants to learn more about noncovalent interactions and the different methods available at present to describe them using density-functional theory.
Giuliani, Mario
2016-01-01
We apply a recently developed variant of the Density of States (DoS) method, the so-called Functional Fit Approach (FFA) to two different models: the SU(3) spin model and SU(3) lattice gauge theory with static quarks. Both models can be derived from QCD and inherit the complex action problem at finite density. We discuss the implementation of DoS FFA in the two models and compute observables related to the particle density. For the SU(3) spin model we show that the results are in good agreement with the results from a Monte Carlo simulation in the dual formulation, which is free of the complex action problem. For the case of SU(3) lattice gauge theory with static quarks we present first results for the particle number as a function of the coupling for different values of the chemical potential.
Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory
DEFF Research Database (Denmark)
Hubert, Mickaël; Jensen, Hans Jørgen Aa; Hedegård, Erik D.
2016-01-01
Range-separated hybrid methods between wave function theory and density functional theory (DFT) can provide high-accuracy results, while correcting some of the inherent flaws of both the underlying wave function theory and DFT. We here assess the accuracy for excitation energies of the nucleobases...
Institute of Scientific and Technical Information of China (English)
Yu-wei Zhou; Igor Ying Zhang; Jian-ming Wu; An-an Wu; Xin Xu
2011-01-01
Benzene dimer (bz2) is the simplest prototype of the π-π interactions.Such interactions are ubiquitous in diverse areas of science and molecular engineering.In the present work,we have made assessment on some modern density functional methods including B97-D,BLYP-D3,M06-2X,XYG3,and force field models including CHARMM,AMBER,MM3,AMOEBA on six important interaction modes of bz2.Our results not only highlight the usefulness of these cost-effective methods,which can be used as economic substitutes of the expensive CCSD(T) for complex real-world systems,but also indicate their weakness in the description of the π-π interactions,which points to the future direction for further improvements.
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Reduced density-matrix functionals from many-particle theory
Schade, Robert; Kamil, Ebad; Blöchl, Peter
2017-07-01
In materials with strong electron correlation the proper treatment of local atomic physics described by orbital occupations is crucial. Reduced density-matrix functional theory is a natural extension of density functional theory for systems that are dominated by orbital physics. We review the current state of reduced density-matrix functional theory (RDMFT). For atomic structure relaxations or ab-initio molecular dynamics the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) possesses a number of disadvantages, like the cumbersome evaluation of forces. We therefore describe a method, DFT+RDMFT, that combines many-particle effects based on reduced density-matrix functional theory with a density functional-like framework. A recent development is the construction of density-matrix functionals directly from many-particle theory such as methods from quantum chemistry or many-particle Green's functions. We present the underlying exact theorems and describe current progress towards quantitative functionals.
Density functional theory: Fixing Jacob's ladder
Car, Roberto
2016-09-01
Density functional theory calculations can be carried out with different levels of accuracy, forming a hierarchy that is often represented by the rungs of a ladder. Now a new method has been developed that significantly improves the accuracy of the 'third rung' when calculating the properties of diversely bonded systems.
Informetrics theory, methods and applications
Qiu, Junping; Yang, Siluo; Dong, Ke
2017-01-01
This book provides an accessible introduction to the history, theory and techniques of informetrics. Divided into 14 chapters, it develops the content system of informetrics from the theory, methods and applications; systematically analyzes the six basic laws and the theory basis of informetrics and presents quantitative analysis methods such as citation analysis and computer-aided analysis. It also discusses applications in information resource management, information and library science, science of science, scientific evaluation and the forecast field. Lastly, it describes a new development in informetrics- webometrics. Providing a comprehensive overview of the complex issues in today's environment, this book is a valuable resource for all researchers, students and practitioners in library and information science.
Density functional theory: Foundations reviewed
Energy Technology Data Exchange (ETDEWEB)
Kryachko, Eugene S., E-mail: eugene.kryachko@ulg.ac.be [Bogolyubov Institute for Theoretical Physics, Kiev, 03680 (Ukraine); Ludeña, Eduardo V., E-mail: popluabe@yahoo.es [Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Prometheus Program, Senescyt (Ecuador); Grupo Ecuatoriano para el Estudio Experimental y Teórico de Nanosistemas, GETNano, USFQ, N104-E, Quito (Ecuador); Escuela Politécnica Superior del Litoral, ESPOL, Guayaquil (Ecuador)
2014-11-10
Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg–Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb’s comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn–Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn–Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn–Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Teaching Density Functional Theory Through Experiential Learning
Narasimhan, Shobhana
2015-09-01
Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon
2016-07-01
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF- molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Operator theory and numerical methods
Fujita, H; Suzuki, T
2001-01-01
In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.
Directory of Open Access Journals (Sweden)
Frances M. Yang
2011-12-01
Full Text Available Object naming tests are commonly included in neuropsychological test batteries. Differential item functioning (DIF in these tests due to cultural and language differences may compromise the validity of cognitive measures in diverse populations. We evaluated 26 object naming items for DIF due to Spanish and English language translations among Latinos (n=1,159, mean age of 70.5 years old (Standard Deviation (SD±7.2, using the following four item response theory-based ap-proaches: Mplus/Multiple Indicator, Multiple Causes (Mplus/MIMIC; Muthén & Muthén, 1998-2011, Item Response Theory Likelihood Ratio Differential Item Functioning (IRTLRDIF/MULTILOG; Thissen, 1991, 2001, difwithpar/Parscale (Crane, Gibbons, Jolley, & van Belle, 2006; Muraki & Bock, 2003, and Differential Functioning of Items and Tests/MULTILOG (DFIT/MULTILOG; Flowers, Oshima, & Raju, 1999; Thissen, 1991. Overall, there was moderate to near perfect agreement across methods. Fourteen items were found to exhibit DIF and 5 items observed consistently across all methods, which were more likely to be answered correctly by individuals tested in Spanish after controlling for overall ability.
Yang, Frances M; Heslin, Kevin C; Mehta, Kala M; Yang, Cheng-Wu; Ocepek-Welikson, Katja; Kleinman, Marjorie; Morales, Leo S; Hays, Ron D; Stewart, Anita L; Mungas, Dan; Jones, Richard N; Teresi, Jeanne A
2011-01-01
Object naming tests are commonly included in neuropsychological test batteries. Differential item functioning (DIF) in these tests due to cultural and language differences may compromise the validity of cognitive measures in diverse populations. We evaluated 26 object naming items for DIF due to Spanish and English language translations among Latinos (n=1,159), mean age of 70.5 years old (Standard Deviation (SD)±7.2), using the following four item response theory-based approaches: Mplus/Multiple Indicator, Multiple Causes (Mplus/MIMIC; Muthén & Muthén, 1998-2011), Item Response Theory Likelihood Ratio Differential Item Functioning (IRTLRDIF/MULTILOG; Thissen, 1991, 2001), difwithpar/Parscale (Crane, Gibbons, Jolley, & van Belle, 2006; Muraki & Bock, 2003), and Differential Functioning of Items and Tests/MULTILOG (DFIT/MULTILOG; Flowers, Oshima, & Raju, 1999; Thissen, 1991). Overall, there was moderate to near perfect agreement across methods. Fourteen items were found to exhibit DIF and 5 items observed consistently across all methods, which were more likely to be answered correctly by individuals tested in Spanish after controlling for overall ability.
Energy Technology Data Exchange (ETDEWEB)
Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fedorov, Dmitri G. [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yokojima, Satoshi [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Sakurai, Minoru [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2014-04-14
We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.
Smiga, Szymon; Mussard, Bastien; Buksztel, Adam; Grabowski, Ireneusz; Luppi, Eleonora; Toulouse, Julien
2016-01-01
We introduce an orbital-optimized double-hybrid (DH) scheme using the optimized-effective-potential (OEP) method. The orbitals are optimized using a local potential corresponding to the complete exchange-correlation energy expression including the second-order M{{\\o}}ller-Plesset (MP2) correlation contribution. We have implemented a one-parameter version of this OEP-based self-consistent DH scheme using the BLYP density-functional approximation and compared it to the corresponding non-self-consistent DH scheme for calculations on a few closed-shell atoms and molecules. While the OEP-based self-consistency does not provide any improvement for the calculations of ground-state total energies and ionization potentials, it does improve the accuracy of electron affinities and restores the meaning of the LUMO orbital energy as being connected to a neutral excitation energy. Moreover, the OEP-based self-consistent DH scheme provides reasonably accurate exchange-correlation potentials and correlated densities.
Dictionary criticism and lexicographical function theory
DEFF Research Database (Denmark)
Tarp, Sven
2017-01-01
This contribution discusses dictionary criticism in the light of the function theory. It starts analyzing the objective of dictionary criticism and lists eight of the most important purposes with which criticism has been made by supporters of the function theory. It then discusses the two main...... types of dictionary criticism, namely criticism of other authors’ dictionaries and self-criticism of one’s own dictionaries. Based on this discussion, it proceeds to a definition of the concept of dictionary criticism which is above all considered a theory-based activity, the outcome of which may...... be expressed in texts belonging to various genres or even kept indoors depending on the specific purpose of the criticism. Moreover, the contribution discusses the various types of knowledge required to make a comprehensive criticism, the issues which may be criticized, the overall method applied...
Directory of Open Access Journals (Sweden)
Đurović Igor B.
2015-01-01
Full Text Available Aromatic hydroxy acids, the compounds of large industrial importance, can be prepared in the Kolbe-Schmitt reaction, i.e. a carboxylation reaction of alkali metal phenoxides (MOPh and naphthoxides (MONaph. On the basis of the experimental results two contradictory reaction mechanisms have been proposed: the one of direct carboxylation, and the other involving initial formation of the MOPh-CO2 or MONaph-CO2 complex. Previous theoretical investigations of the carboxylation reaction of sodium 2-naphthoxide, performed by means of the B3LYP method, confirmed the initial formation of the NaONaph-CO2 complex, and showed that the carbon of the CO2 moiety performs an electrophilic attack at C1 of the ring, leading to the formation of sodium 2-hydroxy-1-naphthoate (E1. Surprisingly, transition states for possible electrophilic attacks at C3 and C6 were not revealed, and the formation of other two products (E3 and E6 was explained by a number of consecutive rearrangements. In addition, this mechanism includes a reaction step with rather high activation energy. Since more sophisticated functionals are today available, the aim of this work is to reinvestigate the mechanism of the Kolbe-Schmitt reaction of NaONaph in all three positions (1, 3, and 6. Our investigations with the M062X method demonstrated that CO2 and NaONaph can spontaneously build two complexes: B (the one previously reported and C. While B cannot be further transformed to yield the reaction products, the CO2 moiety in C takes perfect position for electrophilic attacks at all three sites of the ring. These attacks are realized via the transition states TS1, which lead to the formation of the new C-C bonds, and corresponding intermediates D. In the next, bimolecular reaction step two D intermediates exchange the protons adjacent to the CO2 groups. These intermolecular reaction steps require significantly lower activation energies in comparison to the intramolecular proton shift from C to O
Bosonic self-energy functional theory
Hügel, Dario; Werner, Philipp; Pollet, Lode; Strand, Hugo U. R.
2016-11-01
We derive the self-energy functional theory for bosonic lattice systems with broken U(1) symmetry by parametrizing the bosonic Baym-Kadanoff effective action in terms of one- and two-point self-energies. The formalism goes beyond other approximate methods such as the pseudoparticle variational cluster approximation, the cluster composite boson mapping, and the Bogoliubov+U theory. It simplifies to bosonic dynamical-mean-field theory when constraining to local fields, whereas when neglecting kinetic contributions of noncondensed bosons, it reduces to the static mean-field approximation. To benchmark the theory, we study the Bose-Hubbard model on the two- and three-dimensional cubic lattice, comparing with exact results from path integral quantum Monte Carlo. We also study the frustrated square lattice with next-nearest-neighbor hopping, which is beyond the reach of Monte Carlo simulations. A reference system comprising a single bosonic state, corresponding to three variational parameters, is sufficient to quantitatively describe phase boundaries and thermodynamical observables, while qualitatively capturing the spectral functions, as well as the enhancement of kinetic fluctuations in the frustrated case. On the basis of these findings, we propose self-energy functional theory as the omnibus framework for treating bosonic lattice models, in particular, in cases where path integral quantum Monte Carlo methods suffer from severe sign problems (e.g., in the presence of nontrivial gauge fields or frustration). Self-energy functional theory enables the construction of diagrammatically sound approximations that are quantitatively precise and controlled in the number of optimization parameters but nevertheless remain computable by modest means.
Local theory of extrapolation methods
Kulikov, Gennady
2010-03-01
In this paper we discuss the theory of one-step extrapolation methods applied both to ordinary differential equations and to index 1 semi-explicit differential-algebraic systems. The theoretical background of this numerical technique is the asymptotic global error expansion of numerical solutions obtained from general one-step methods. It was discovered independently by Henrici, Gragg and Stetter in 1962, 1964 and 1965, respectively. This expansion is also used in most global error estimation strategies as well. However, the asymptotic expansion of the global error of one-step methods is difficult to observe in practice. Therefore we give another substantiation of extrapolation technique that is based on the usual local error expansion in a Taylor series. We show that the Richardson extrapolation can be utilized successfully to explain how extrapolation methods perform. Additionally, we prove that the Aitken-Neville algorithm works for any one-step method of an arbitrary order s, under suitable smoothness.
Thermodynamic Green functions in theory of superconductivity
Directory of Open Access Journals (Sweden)
N.M.Plakida
2006-01-01
Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.
Extrapolation methods theory and practice
Brezinski, C
1991-01-01
This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat
Adiabatic density-functional perturbation theory
Gonze, Xavier
1995-08-01
The treatment of adiabatic perturbations within density-functional theory is examined, at arbitrary order of the perturbation expansion. Due to the extremal property of the energy functional, standard variation-perturbation theorems can be used. The different methods (Sternheimer equation, extremal principle, Green's function, and sum over state) for obtaining the perturbation expansion of the wave functions are presented. The invariance of the Hilbert space of occupied wave functions with respect to a unitary transformation leads to the definition of a ``parallel-transport-gauge'' and a ``diagonal-gauge'' perturbation expansion. Then, the general expressions are specialized for the second, third, and fourth derivative of the energy, with an example of application of the method up to third order.
Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y
2011-01-01
Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...
Hydrodynamic transport functions from quantum kinetic theory
Calzetta, E A; Ramsey, S
2000-01-01
Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with $\\lambda \\Phi ^{4}$ self-interaction we need to include 4 loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success...
Torres, Edmanuel; DiLabio, Gino A
2013-08-13
Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.
Directory of Open Access Journals (Sweden)
Margarita Clara Alvarez-Ros
2014-06-01
Full Text Available The five tautomers of the drug acyclovir (ACV were determined and optimised at the MP2 and B3LYP quantum chemical levels of theory. The stability of the tautomers was correlated with different parameters. On the most stable tautomer N1 was carried out a comprehensive conformational analysis, and the whole conformational parameters (R, β, Φ, φ1, φ2, φ3, φ4, φ5 were studied as well as the NBO Natural atomic charges. The calculations were carried out with full relaxation of all geometrical parameters. The search located at least 78 stable structures within 8.5 kcal/mol electronic energy range of the global minimum, and classified in two groups according to the positive or negative value of the torsional angle j1. In the nitrogen atoms and in the O2' and O5' oxygen atoms of the most stable conformer appear a higher reactivity than in the natural nucleoside deoxyguanosine. The solid state was simulated through a dimer and tetramer forms and the structural parameters were compared with the X-ray crystal data available. Several general conclusions were emphasized.
Biometrics Theory, Methods, and Applications
Boulgouris, N V; Micheli-Tzanakou, Evangelia
2009-01-01
An in-depth examination of the cutting edge of biometrics. This book fills a gap in the literature by detailing the recent advances and emerging theories, methods, and applications of biometric systems in a variety of infrastructures. Edited by a panel of experts, it provides comprehensive coverage of:. Multilinear discriminant analysis for biometric signal recognition;. Biometric identity authentication techniques based on neural networks;. Multimodal biometrics and design of classifiers for biometric fusion;. Feature selection and facial aging modeling for face recognition;. Geometrical and
Nonstandard Methods in Measure Theory
Directory of Open Access Journals (Sweden)
Grigore Ciurea
2014-01-01
to the study of the extension of vector measures. Applications of our results lead to simple new proofs for theorems of classical measure theory. The novelty lies in the use of the principle of extension by continuity (for which we give a nonstandard proof to obtain in an unified way some notable theorems which have been obtained by Fox, Brooks, Ohba, Diestel, and others. The methods of proof are quite different from those used by previous authors, and most of them are realized by means of nonstandard analysis.
Bayes linear statistics, theory & methods
Goldstein, Michael
2007-01-01
Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers:The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification...
Lu, K Q; Li, Z P; Yao, J M; Meng, J
2015-01-01
We report the first global study of dynamic correlation energies (DCEs) associated with rotational motion and quadrupole shape vibrational motion in a covariant energy density functional (CEDF) for 575 even-even nuclei with proton numbers ranging from $Z=8$ to $Z=108$ by solving a five-dimensional collective Hamiltonian, the collective parameters of which are determined from triaxial relativistic mean-field plus BCS calculation using the PC-PK1 force. After taking into account these beyond mean-field DCEs, the root-mean-square (rms) deviation with respect to nuclear masses is reduced significantly down to 1.14 MeV, which is smaller than those of other successful CEDFs: NL3* (2.96 MeV), DD-ME2 (2.39 MeV), DD-ME$\\delta$ (2.29 MeV) and DD-PC1 (2.01 MeV). Moreover, the rms deviation for two-nucleon separation energies is reduced by $\\sim34\\%$ in comparison with cranking prescription.
Handbook of functional equations stability theory
2014-01-01
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with...
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A density functional theory (DFT)-calculation scheme for constructing the modified embedded atom method (MEAM) potentials for face-centered cubic (fcc) metals is presented. The input quantities are carefully selected and a more reliable DFT approach for surface energy determination is introduced in the parameterization scheme, enabling MEAM to precisely predict the surface and nanoscale properties of metallic materials. Molecular dynamics simulations on Pt and Au crystals show that the parameterization employed leads to significantly improved accuracy of MEAM in calculating the surface and nanoscale properties, with the results agreeing well with both DFT calculations and experimental observations. The present study implies that rational DFT parameterization of MEAM may lead to a theoretical tool to bridge the gap between nanoscale theoretical simulations and DFT calculations.
DEFF Research Database (Denmark)
Andersen, O. Krogh
1975-01-01
and they specify the boundary conditions on a single MT or atomic sphere in the most convenient way. This method is very well suited for self-consistent calculations. The empty-lattice test is applied to the linear-MTO method and the free-electron energy bands are accurately reproduced. Finally, it is shown how......Two approximate methods for solving the band-structure problem in an efficient and physically transparent way are presented and discussed in detail. The variational principle for the one-electron Hamiltonian is used in both schemes, and the trial functions are linear combinations of energy......-independent augmented plane waves (APW) and muffin-tin orbitals (MTO), respectively. The secular equations are therefore eigenvalue equations, linear in energy. The trial functions are defined with respect to a muffin-tin (MT) potential and the energy bands depend on the potential in the spheres through potential...
Mathematical Methods of Game and Economic Theory
Aubin, J-P
1982-01-01
This book presents a unified treatment of optimization theory, game theory and a general equilibrium theory in economics in the framework of nonlinear functional analysis. It not only provides powerful and versatile tools for solving specific problems in economics and the social sciences but also serves as a unifying theme in the mathematical theory of these subjects as well as in pure mathematics itself.
Karton, Amir; Tarnopolsky, Alex; Martin, Jan M. L.
2009-01-01
The thermochemistry of the carbon clusters C$_n$ (n=2--10) has been revisited by means of W4 theory and W3.2lite theory. Particularly the larger clusters exhibit very pronounced post-CCSD(T) correlation effects. Despite this, our best calculated total atomization energies agree surprisingly well with 1991 estimates obtained from scaled CCD(ST)/6-31G* data. Accurately reproducing the small singlet-triplet splitting in C$_2$ requires inclusion of connected quintuple and sextuple excitations. Post-CCSD(T) correlation effects in C$_4$ stabilize the linear form. Linear/cyclic equilibria in C$_6$, C$_8$, and C$_{10}$ are not strongly affected by connected quadruples, but they are affected by higher-order triples, which favor polyacetylenic rings but disfavor cumulenic ones. Near the CCSD(T) basis set limit, C$_{10}$ does undergo bond angle alternation in the bottom-of-the-well structure, although it is expected to be absent in the vibrationally averaged structure. The thermochemistry of these systems, and particularly the longer linear chains, is a particularly difficult test for density functional methods. Particularly for the smaller chains and the rings, double-hybrid functionals clearly outperform convential DFT functionals for these systems. Among compound thermochemistry schemes, G4 clearly outperforms the other members of the G$n$ family. Our best estimates for total atomization energies at 0 K should be reliable to 1 kJ/mol up to C$_5$ inclusive, and to better than 1 kcal/mol up to C$_9$ inclusive.
Psychologic theories in functional neurologic disorders.
Carson, A; Ludwig, L; Welch, K
2017-01-01
In this chapter we review key psychologic theories that have been mooted as possible explanations for the etiology of functional neurologic symptoms, conversion disorder, and hysteria. We cover Freudian psychoanalysis and later object relations and attachment theories, social theories, illness behavior, classic and operant conditioning, social learning theory, self-regulation theory, cognitive-behavioral theories, and mindfulness. Dissociation and modern cognitive neuroscience theories are covered in other chapters in this series and, although of central importance, are omitted from this chapter. Our aim is an overview with the emphasis on breadth of coverage rather than depth.
Melnikov's method in String Theory
Asano, Yuhma; Yoshida, Kentaroh
2016-01-01
Melnikov's method is an analytical way to show the existence of classical chaos generated by a Smale horseshoe. It is a powerful technique, though its applicability is somewhat limited. In this paper, we present a solution of type IIB supergravity to which Melnikov's method is applicable. This is a brane-wave type deformation of the AdS$_5\\times$S$^5$ background. By employing two reduction ans\\"atze, we study two types of coupled pendulum-oscillator systems. Then the Melnikov function is computed for each of the systems by following the standard way of Holmes and Marsden and the existence of chaos is shown analytically.
An Abductive Theory of Scientific Method
Haig, Brian D.
2005-01-01
A broad theory of scientific method is sketched that has particular relevance for the behavioral sciences. This theory of method assembles a complex of specific strategies and methods that are used in the detection of empirical phenomena and the subsequent construction of explanatory theories. A characterization of the nature of phenomena is…
Spherical radial basis functions, theory and applications
Hubbert, Simon; Morton, Tanya M
2015-01-01
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...
Extended screened exchange functional derived from transcorrelated density functional theory
Umezawa, Naoto
2017-09-01
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, HTC, is introduced by a similarity transformation of a many-body Hamiltonian, H , with respect to a complex function F: HTC=1/F H F . It is proved that an expectation value of HTC for a normalized single Slater determinant, Dn, corresponds to the total energy: E [n ] = ⟨Ψn|H |Ψn ⟩ /⟨Ψn|Ψn ⟩ = ⟨Dn|HTC|Dn ⟩ under the two assumptions: (1) The electron density n (r ) associated with a trial wave function Ψn = DnF is v -representable and (2) Ψn and Dn give rise to the same electron density n (r ). This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H- ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Superconformal indices and partition functions for supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, I.B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Vartanov, G.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-12-15
Recently there was a substantial progress in understanding of supersymmetric theories (in particular, their BPS spectrum) in space-times of different dimensions due to the exact computation of superconformal indices and partition functions using localization method. Here we discuss a connection of 4d superconformal indices and 3d partition functions using a particular example of supersymmetric theories with matter in antisymmetric representation.
Chemistry by Way of Density Functional Theory
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.
El Grini, A.; Salmi, S.; Marzouk, A.; Benzakour, N.; Bouslykhane, K.; Hourmatallah, A.
2017-03-01
The magnetic properties of Mn-Cu ferrites MnxCu1-xFe2O4, have been studied using the many-body Green’s function theory (GFT) and high temperature series expansion theory (HTSE). The thermal magnetization and the magnetic susceptibility are given for different values of magnetic field and dilution x. The transition temperature TC is calculated as a function of Mn concentration. The obtained results are in good agreement with experimental results. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) have been deduced. The obtained values are comparable to those of 3D Heisenberg model.
Graph Zeta function and gauge theories
He, Yang-Hui
2011-03-01
Along the recently trodden path of studying certain number theoretic properties of gauge theories, especially supersymmetric theories whose vacuum manifolds are non-trivial, we investigate Ihara's Graph Zeta Function for large classes of quiver theories and periodic tilings by bi-partite graphs. In particular, we examine issues such as the spectra of the adjacency and whether the gauge theory satisfies the strong and weak versions of the graph theoretical analogue of the Riemann Hypothesis.
Computing dispersion interactions in density functional theory
Cooper, V. R.; Kong, L.; Langreth, D. C.
2010-02-01
In this article techniques for including dispersion interactions within density functional theory are examined. In particular comparisons are made between four popular methods: dispersion corrected DFT, pseudopotential correction schemes, symmetry adapted perturbation theory, and a non-local density functional - the so called Rutgers-Chalmers van der Waals density functional (vdW-DF). The S22 benchmark data set is used to evaluate the relative accuracy of these methods and factors such as scalability and transferability are also discussed. We demonstrate that vdW-DF presents an excellent compromise between computational speed and accuracy and lends most easily to full scale application in solid materials. This claim is supported through a brief discussion of a recent large scale application to H2 in a prototype metal organic framework material (MOF), Zn2BDC2TED. The vdW-DF shows overwhelming promise for first-principles studies of physisorbed molecules in porous extended systems; thereby having broad applicability for studies as diverse as molecular adsorption and storage, battery technology, catalysis and gas separations.
Basic methods of soliton theory
Cherednik, I
1996-01-01
In the 25 years of its existence Soliton Theory has drastically expanded our understanding of "integrability" and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local cons
Density functional theory in quantum chemistry
Tsuneda, Takao
2014-01-01
This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.
Liapunov Functions and Stability in Control Theory
Bacciotti, Andrea
2005-01-01
This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory. A Particular focus is on the problem of the existence of Liapunov functions (converse Liapunov theorems) and their regularity, whose interest is especially motivated by applications to automatic control. Many recent results in this area have been collected and presented in a systematic way. Some of them are given in extended, unified versions and with new, simpler proofs. In the 2nd edition of this successful book several new section
A Density Functional Theory Study
Lim, XiaoZhi
2011-12-11
Complexes with pincer ligand moieties have garnered much attention in the past few decades. They have been shown to be highly active catalysts in several known transition metal-catalyzed organic reactions as well as some unprecedented organic transformations. At the same time, the use of computational organometallic chemistry to aid in the understanding of the mechanisms in organometallic catalysis for the development of improved catalysts is on the rise. While it was common in earlier studies to reduce computational cost by truncating donor group substituents on complexes such as tertbutyl or isopropyl groups to hydrogen or methyl groups, recent advancements in the processing capabilities of computer clusters and codes have streamlined the time required for calculations. As the full modeling of complexes become increasingly popular, a commonly overlooked aspect, especially in the case of complexes bearing isopropyl substituents, is the conformational analysis of complexes. Isopropyl groups generate a different conformer with each 120 ° rotation (rotamer), and it has been found that each rotamer typically resides in its own potential energy well in density functional theory studies. As a result, it can be challenging to select the most appropriate structure for a theoretical study, as the adjustment of isopropyl substituents from a higher-energy rotamer to the lowest-energy rotamer usually does not occur during structure optimization. In this report, the influence of the arrangement of isopropyl substituents in pincer complexes on calculated complex structure energies as well as a case study on the mechanism of the isomerization of an iPrPCP-Fe complex is covered. It was found that as many as 324 rotamers can be generated for a single complex, as in the case of an iPrPCP-Ni formato complex, with the energy difference between the global minimum and the highest local minimum being as large as 16.5 kcalmol-1. In the isomerization of a iPrPCP-Fe complex, it was found
PE Metrics: Background, Testing Theory, and Methods
Zhu, Weimo; Rink, Judy; Placek, Judith H.; Graber, Kim C.; Fox, Connie; Fisette, Jennifer L.; Dyson, Ben; Park, Youngsik; Avery, Marybell; Franck, Marian; Raynes, De
2011-01-01
New testing theories, concepts, and psychometric methods (e.g., item response theory, test equating, and item bank) developed during the past several decades have many advantages over previous theories and methods. In spite of their introduction to the field, they have not been fully accepted by physical educators. Further, the manner in which…
Correlation functions in theories with Lifshitz scaling
Keranen, Ville; Szepietowski, Phillip; Thorlacius, Larus
2016-01-01
The 2+1 dimensional quantum Lifshitz model can be generalised to a class of higher dimensional free field theories that exhibit Lifshitz scaling. When the dynamical critical exponent equals the number of spatial dimensions, equal time correlation functions of scaling operators in the generalised quantum Lifshitz model are given by a d-dimensional higher-derivative conformal field theory. Autocorrelation functions in the generalised quantum Lifshitz model in any number of dimensions can on the other hand be expressed in terms of autocorrelation functions of a two-dimensional conformal field theory. This also holds for autocorrelation functions in a strongly coupled Lifshitz field theory with a holographic dual of Einstein-Maxwell-dilaton type. The map to a two-dimensional conformal field theory extends to autocorrelation functions in thermal states and out- of-equilbrium states preserving symmetry under spatial translations and rotations in both types of Lifshitz models. Furthermore, the spectrum of quasinorma...
GNSS remote sensing theory, methods and applications
Jin, Shuanggen; Xie, Feiqin
2014-01-01
This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.
Spheroidal Wave Functions in Electromagnetic Theory
Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng
2001-11-01
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
Yen, T W; Lai, S K
2015-02-28
In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster's total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster's lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C60 and C72 against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster's energy minimum, before employing it to investigate carbon clusters in the size range C3-C24
Yamada, Kenta; Kawashima, Yukio; Tachikawa, Masanori
2014-05-13
We performed ab initio path integral molecular dynamics (PIMD) simulations with a density functional theory (DFT) method to accurately predict hyperfine coupling constants (HFCCs) in the ethyl radical (CβH3-CαH2) and its Mu-substituted (muoniated) compound (CβH2Mu-CαH2). The substitution of a Mu atom, an ultralight isotope of the H atom, with larger nuclear quantum effect is expected to strongly affect the nature of the ethyl radical. The static conventional DFT calculations of CβH3-CαH2 find that the elongation of one Cβ-H bond causes a change in the shape of potential energy curve along the rotational angle via the imbalance of attractive and repulsive interactions between the methyl and methylene groups. Investigation of the methyl-group behavior including the nuclear quantum and thermal effects shows that an unbalanced CβH2Mu group with the elongated Cβ-Mu bond rotates around the Cβ-Cα bond in a muoniated ethyl radical, quite differently from the CβH3 group with the three equivalent Cβ-H bonds in the ethyl radical. These rotations couple with other molecular motions such as the methylene-group rocking motion (inversion), leading to difficulties in reproducing the corresponding barrier heights. Our PIMD simulations successfully predict the barrier heights to be close to the experimental values and provide a significant improvement in muon and proton HFCCs given by the static conventional DFT method. Further investigation reveals that the Cβ-Mu/H stretching motion, methyl-group rotation, methylene-group rocking motion, and HFCC values deeply intertwine with each other. Because these motions are different between the radicals, a proper description of the structural fluctuations reflecting the nuclear quantum and thermal effects is vital to evaluate HFCC values in theory to be comparable to the experimental ones. Accordingly, a fundamental difference in HFCC between the radicals arises from their intrinsic molecular motions at a finite temperature, in
Particle conservation in dynamical density functional theory.
de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias
2016-06-22
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.
Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie
2016-05-17
Single-excitation methods, namely, configuration interaction singles and time-dependent density functional theory (TDDFT), along with semiempirical versions thereof, represent the most computationally affordable electronic structure methods for describing electronically excited states, scaling as [Formula: see text] absent further approximations. This relatively low cost, combined with a treatment of electron correlation, has made TDDFT the most widely used excited-state quantum chemistry method over the past 20+ years. Nevertheless, certain inherent problems (beyond just the accuracy of this or that exchange-correlation functional) limit the utility of traditional TDDFT. For one, it affords potential energy surfaces whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is therefore suspect. Second, the [Formula: see text] cost can become prohibitive in large systems, especially those that involve multiple electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio quantum chemistry. This Account describes several new computational methods that address these problems. Topology around a CI can be rigorously corrected using a "spin-flip" version of TDDFT, which involves an α → β spin-flipping transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron correlation between ground and excited states. Spin contamination is problematic away from the
Basic Methods for Computing Special Functions
Gil, A.; Segura, J.; Temme, N.M.; Simos, T.E.
2011-01-01
This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequent
General degeneracy in density functional perturbation theory
Palenik, Mark C
2016-01-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. We develop the fully general degenerate perturbation theory for DFT without assuming that the degeneracy is required by symmetry. The resulting methodology is applied to the iron atom ground state in order to demonstrate the effects of degeneracy that appears both due to symmetry requirements and accidentally, between different representations of the symmetry group.
Applications of model theory to functional analysis
Iovino, Jose
2014-01-01
During the last two decades, methods that originated within mathematical logic have exhibited powerful applications to Banach space theory, particularly set theory and model theory. This volume constitutes the first self-contained introduction to techniques of model theory in Banach space theory. The area of research has grown rapidly since this monograph's first appearance, but much of this material is still not readily available elsewhere. For instance, this volume offers a unified presentation of Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces, with emphasis on the
Pohl, Gabor; Plumley, Joshua A; Dannenberg, J J
2013-06-28
We present density functional theory calculations designed to evaluate the importance of π-stacking interactions to the stability of in-register Phe residues within parallel β-sheets, such as amyloids. We have used a model of a parallel H-bonded tetramer of acetylPheNH2 as a model and both functionals that were specifically designed to incorporate dispersion effects (DFs), as well as, several traditional functionals which have not been so designed. None of the functionals finds a global minimum for the π-stacked conformation, although two of the DFs find this to be a local minimum. The stacked phenyls taken from the optimized geometries calculated for each functional have been evaluated using MP2 and CCSD(T) calculations for comparison. The results suggest that π-stacking does not make an important contribution to the stability of this system and (by implication) to amyloid formation.
Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Trout, Bernhardt L
2014-04-10
A high-level quantum chemistry investigation has been carried out for the addition and abstraction reactions by the radicals (•)OH and (•)OOH to and from the model alkenes 3-methylpyrrole and benzene. These models were chosen to reflect the functionalities contained in the side chain of the amino acid tryptophan. The W1BD procedure was used to calculate benchmark barriers and reaction energies for the smaller model system of (•)OOH addition to ethylene. It was found that the CBS-QB3 methodology compares best with the W1BD benchmark, demonstrating a mean absolute deviation (MAD) from W1BD of 3.9 kJ mol(-1). For the reactions involving the (•)OH radical and benzene or 3-methylpyrrole, addition is favored over abstraction in all cases. In particular the CBS-QB3 calculations suggest a barrierless addition reaction of the (•)OH radical to position two of 3-methylpyrrole. For the analogous addition and abstraction reactions involving the (•)OOH radical, the same order of reactivity was found, albeit with higher barriers. A number of other processes involving the addition of the (•)OOH radical were also investigated. The main findings of these studies determined that the initial (•)OOH barrier of stepwise addition to 3-methylpyrrole (+18.8 kJ mol(-1)) is significantly smaller than the concerted addition barrier (+71.5 kJ mol(-1)). This conclusion contrasts starkly with the situation for ethylene in which it is well established that the concerted process has the smaller barrier. A considerable variety of contemporary density functional theory procedures have been tested to examine their accuracy in predicting the CBS-QB3 results. It was found that the best overall performing method was UBMK with an MAD of 7.3 kJ mol(-1). A number of other functionals additionally performed well. They included UM06, RM06, UXYG3 and RXYG3, all of which have MADs of less than 8 kJ mol(-1).
Nevanlinna theory of meromorphic functions on annuli
Institute of Scientific and Technical Information of China (English)
LUND; Mark
2010-01-01
In this survey paper, we discuss the recent development of Nevanlinna theory of meromorphic functions on annuli, which extends results in Nevanlinna theory in the complex plane or in a disk. In particular, we show that the approach taken on annuli is a unified treatment of functions meromorphic in the complex plane, a disk and an annulus. It allows one to obtain many results in the complex plane and in a disk as corollaries of our results in annuli.
Quantal density functional theory. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Sahni, Viraht
2016-07-01
This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2{sup nd} edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.
Straussian Grounded-Theory Method: An Illustration
Thai, Mai Thi Thanh; Chong, Li Choy; Agrawal, Narendra M.
2012-01-01
This paper demonstrates the benefits and application of Straussian Grounded Theory method in conducting research in complex settings where parameters are poorly defined. It provides a detailed illustration on how this method can be used to build an internationalization theory. To be specific, this paper exposes readers to the behind-the-scene work…
English 450: Theories and Methods of Argument
Jones, Rebecca
2008-01-01
This article presents a course design of English 450: Theories and Methods of Argument. The course is an upper level course in the Writing concentration of B. A. in English and American Language and Literature at the University of Tennessee, Chattanooga, a metropolitan university in the South. At the 400 level, Theories and Methods of Argument is…
Design theory methods and organization for innovation
Le Masson, Pascal; Hatchuel, Armand
2017-01-01
This textbook presents the core of recent advances in design theory and its implications for design methods and design organization. Providing a unified perspective on different design methods and approaches, from the most classic (systematic design) to the most advanced (C-K theory), it offers a unique and integrated presentation of traditional and contemporary theories in the field. Examining the principles of each theory, this guide utilizes numerous real life industrial applications, with clear links to engineering design, industrial design, management, economics, psychology and creativity. Containing a section of exams with detailed answers, it is useful for courses in design theory, engineering design and advanced innovation management. "Students and professors, practitioners and researchers in diverse disciplines, interested in design, will find in this book a rich and vital source for studying fundamental design methods and tools as well as the most advanced design theories that work in practice". Pro...
Mathematical methods of electromagnetic theory
Friedrichs, Kurt O
2014-01-01
This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el
Function theory for a beltrami algebra
Directory of Open Access Journals (Sweden)
B. A. Case
1985-01-01
Full Text Available Complex functions are investigated which are solutions of an elliptic system of partial differential equations associated with a real parameter function. The functions f associated with a particualr parameter function g on a domain D form a Beltrami algebra denoted by the pair (D,g and a function theory is developed in this algebra. A strong conformality property holds for all functions in a (D,g algebra. For g≡|z|=r the algebra (D,r is that of the analytic functions.
An asymptotically exact theory of functionally graded piezoelectric shells
Le, Khanh Chau
2016-01-01
An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.
Magnetic fields and density functional theory
Energy Technology Data Exchange (ETDEWEB)
Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Basic Methods for Computing Special Functions
Gil, Amparo; Segura, Javier; Temme, Nico; Simos, T. E.
2011-01-01
This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other metho...
A multiconfigurational hybrid density-functional theory
DEFF Research Database (Denmark)
Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...
A multiconfigurational hybrid density-functional theory
DEFF Research Database (Denmark)
Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...
The Validity of Divergent Grounded Theory Method
Directory of Open Access Journals (Sweden)
Martin Nils Amsteus PhD
2014-02-01
Full Text Available The purpose of this article is to assess whether divergence of grounded theory method may be considered valid. A review of literature provides a basis for understanding and evaluating grounded theory. The principles and nature of grounded theory are synthesized along with theoretical and practical implications. It is deduced that for a theory to be truly grounded in empirical data, the method resulting in the theory should be the equivalent of pure induction. Therefore, detailed, specified, stepwise a priori procedures may be seen as unbidden or arbitrary. It is concluded that divergent grounded theory can be considered valid. The author argues that securing methodological transparency through the description of the actual principles and procedures employed, as well as tailoring them to the particular circumstances, is more important than adhering to predetermined stepwise procedures. A theoretical foundation is provided from which diverse theoretical developments and methodological procedures may be developed, judged, and refined based on their own merits.
Directory of Open Access Journals (Sweden)
Matteo Garofalo
Full Text Available Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs. First we tested these "connectivity methods" on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic and PPC (Positive Precision Curve, a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.
2007-01-01
Recently, time-dependent current-density functional theory has been extended to include the dynamical interaction of quantum systems with external environments [Phys. Rev. Lett. {\\bf 98}, 226403 (2007)]. Here we show that such a theory allows us to study a fundamentally important class of phenomena previously inaccessible by standard density-functional methods: the decay of excited systems. As an example we study the decay of an ensemble of excited He atoms, and discuss these results in the c...
Theory and methods in cultural neuroscience
Hariri, Ahmad R.; Harada, Tokiko; Mano, Yoko; Sadato, Norihiro; Parrish, Todd B.; Iidaka, Tetsuya
2010-01-01
Cultural neuroscience is an emerging research discipline that investigates cultural variation in psychological, neural and genomic processes as a means of articulating the bidirectional relationship of these processes and their emergent properties. Research in cultural neuroscience integrates theory and methods from anthropology, cultural psychology, neuroscience and neurogenetics. Here, we review a set of core theoretical and methodological challenges facing researchers when planning and conducting cultural neuroscience studies, and provide suggestions for overcoming these challenges. In particular, we focus on the problems of defining culture and culturally appropriate experimental tasks, comparing neuroimaging data acquired from different populations and scanner sites and identifying functional genetic polymorphisms relevant to culture. Implications of cultural neuroscience research for addressing current issues in population health disparities are discussed. PMID:20592044
Generalized functions, volume 6 representation theory and automorphic functions
Gel′fand, I M; Pyatetskii-Shapiro, I I
2016-01-01
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unif
The Role of the Basis Set: Assessing Density Functional Theory
Boese, A D; Handy, N C; Martin, Jan M. L.; Handy, Nicholas C.
2003-01-01
When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalised gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.
Lattice methods and effective field theory
Nicholson, Amy N
2016-01-01
Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.
On Quantum Field Theories in Operator and Functional Integral Formalisms
Teleki, A; Noga, Milan; Teleki, Aba
2006-01-01
Relations and isomorphisms between quantum field theories in operator and functional integral formalisms are analyzed from the viewpoint of inequivalent representations of commutator or anticommutator rings of field operators. A functional integral in quantum field theory cannot be regarded as a Newton-Lebesgue integral but rather as a formal object to which one associates distinct numerical values for different processes of its integration. By choosing an appropriate method for the integration of a given functional integral, one can select a single representation out of infinitely many inequivalent representations for an operator whose trace is expressed by the corresponding functional integral. These properties are demonstrated with two exactly solvable examples.
Spin in Density-Functional Theory
Jacob, Christoph R; 10.1002/qua.24309
2012-01-01
The accurate description of open-shell molecules, in particular of transition metal complexes and clusters, is still an important challenge for quantum chemistry. While density-functional theory (DFT) is widely applied in this area, the sometimes severe limitations of its currently available approximate realizations often preclude its application as a predictive theory. Here, we review the foundations of DFT applied to open-shell systems, both within the nonrelativistic and the relativistic framework. In particular, we provide an in-depth discussion of the exact theory, with a focus on the role of the spin density and possibilities for targeting specific spin states. It turns out that different options exist for setting up Kohn-Sham DFT schemes for open-shell systems, which imply different definitions of the exchange-correlation energy functional and lead to different exact conditions on this functional. Finally, we suggest some possible directions for future developments.
Energy Technology Data Exchange (ETDEWEB)
Kapil, V.; Ceriotti, M., E-mail: michele.ceriotti@epfl.ch [Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); VandeVondele, J., E-mail: joost.vandevondele@mat.ethz.ch [Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)
2016-02-07
The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.
Institute of Scientific and Technical Information of China (English)
陈鹏
2016-01-01
This paper is based on famous American translation theorist Eugene Nida’s Functional Equivalence Theory, aiming to analyze the necessity of Functional Equivalence Theory in the Chinese cuisine names translation and propose some translation methods.
Garofalo, Matteo; Nieus, Thierry; Massobrio, Paolo; Martinoia, Sergio
2009-01-01
Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings. PMID:19652720
Connection formula for thermal density functional theory
Pribram-Jones, Aurora
2015-01-01
The adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upwards from the system's physical temperature to infinite temperatures. Several formulas yield one component of the thermal correlation free energy in terms of another, many of which can be expressed either in terms of temperature- or coupling-constant integration. We illustrate with the uniform electron gas.
Hamiltonian methods in the theory of solitons
Fadeev, Ludwig
1987-01-01
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrodinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Invariant functionals in higher-spin theory
Vasiliev, M. A.
2017-03-01
A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Separable programming theory and methods
Stefanov, Stefan M
2001-01-01
In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered Convex separable programs subject to inequality equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well Audience Advanced undergraduate and graduate students, mathematical programming operations research specialists
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Energy Technology Data Exchange (ETDEWEB)
Bushong, Neil; Di Ventra, Massimiliano [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)], E-mail: diventra@physics.ucsd.edu
2008-10-01
Recently, time-dependent current-density-functional theory has been extended to include the dynamical interaction of quantum systems with external environments (Di Ventra and D'Agosta 2007 Phys. Rev. Lett. 98 226403). Here we show that such a theory allows us to study a fundamentally important class of phenomena previously inaccessible by standard density-functional methods: the decay of excited systems. As an example we study the decay of an ensemble of excited He atoms, and discuss these results in the context of quantum measurement theory.
Density-functional theory of thermoelectric phenomena.
Eich, F G; Di Ventra, M; Vignale, G
2014-05-16
We introduce a nonequilibrium density-functional theory of local temperature and associated local energy density that is suited for the study of thermoelectric phenomena. The theory rests on a local temperature field coupled to the energy-density operator. We identify the excess-energy density, in addition to the particle density, as the basic variable, which is reproduced by an effective noninteracting Kohn-Sham system. A novel Kohn-Sham equation emerges featuring a time-dependent and spatially varying mass which represents local temperature variations. The adiabatic contribution to the Kohn-Sham potentials is related to the entropy viewed as a functional of the particle and energy density. Dissipation can be taken into account by employing linear response theory and the thermoelectric transport coefficients of the electron gas.
Density functional theory studies of etoricoxib
Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.
2016-05-01
Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.
The functional theory of counterfactual thinking
Epstude, Kai; Roese, Neal J.
2008-01-01
Counterfactuals are thoughts about alternatives to past events, that is, thoughts of what might have been. This article provides an updated account of the functional theory of counterfactual thinking, suggesting that such thoughts are best explained in terms of their role in behavior regulation and
On Theories of Superalgebras of Differentiable Functions
Carchedi, D.J.; Roytenberg, D.
2013-01-01
This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be
Some Functional Equations Originating from Number Theory
Indian Academy of Sciences (India)
Soon-Mo Jung; Jae-Hyeong Bae
2003-05-01
We will introduce new functional equations (3) and (4) which are strongly related to well-known formulae (1) and (2) of number theory, and investigate the solutions of the equations. Moreover, we will also study some stability problems of those equations.
On Theories of Superalgebras of Differentiable Functions
Carchedi, D.J.; Roytenberg, D.
2013-01-01
This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be evaluat
Density functional theory on phase space
Blanchard, Philippe; Várilly, Joseph C
2010-01-01
Forty-five years after the point de d\\'epart [1] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the "divine" energy functional in terms of the electron density [2] still eludes us --and possibly will do so forever [3]. In what follows we examine a formulation in the same spirit with phase-space variables. The validity of Hohenberg-Kohn-Levy-type theorems on phase space is recalled. We study the representability problem for reduced Wigner functions, and proceed to analyze properties of the new functional. Along the way, new results on states in the phase-space formalism of quantum mechanics are established. Natural Wigner orbital theory is developed in depth, with the final aim of constructing accurate correlation-exchange functionals on phase space. A new proof of the overbinding property of the Mueller functional is given. This exact theory supplies its home at long last to that illustrious ancestor, the T...
Particle vibrational coupling in covariant density functional theory
Ring, P; 10.1134/S1063778809080055
2009-01-01
A consistent combination of covariant density functional theory (CDFT) and Landau-Migdal Theory of Finite Fermi Systems (TFFS) is presented. Both methods are in principle exact, but Landau-Migdal theory cannot describe ground state properties and density functional theory does not take into account the energy dependence of the self-energy and therefore fails to yield proper single-% particle spectra as well as the coupling to complex configurations in the width of giant resonances. Starting from an energy functional, phonons and their vertices are calculated without any further parameters. They form the basis of particle-vibrational coupling leading to an energy dependence of the self-energy and an induced energy-dependent interaction in the response equation. A subtraction procedure avoids double counting. Applications in doubly magic nuclei and in a chain of superfluid nuclei show excellent agreement with experimental data.
Monte Carlo studies of matrix theory correlation functions.
Hanada, Masanori; Nishimura, Jun; Sekino, Yasuhiro; Yoneya, Tamiaki
2010-04-16
We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) gauge theory, which represents the low-energy effective theory of D0-branes. In the large-N limit, the gauge-gravity duality predicts power-law behaviors in the infrared region for the two-point correlation functions of operators corresponding to supergravity modes. We evaluate such correlation functions on the gauge theory side by the Monte Carlo method. Clear power-law behaviors are observed at N=3, and the predicted exponents are confirmed consistently. Our results suggest that the agreement extends to the M-theory regime, where the supergravity analysis in 10 dimensions may not be justified a priori.
Formalization of Function Matrix Theory in HOL
Directory of Open Access Journals (Sweden)
Zhiping Shi
2014-01-01
Full Text Available Function matrices, in which elements are functions rather than numbers, are widely used in model analysis of dynamic systems such as control systems and robotics. In safety-critical applications, the dynamic systems are required to be analyzed formally and accurately to ensure their correctness and safeness. Higher-order logic (HOL theorem proving is a promise technique to match the requirement. This paper proposes a higher-order logic formalization of the function vector and the function matrix theories using the HOL theorem prover, including data types, operations, and their properties, and further presents formalization of the differential and integral of function vectors and function matrices. The formalization is implemented as a library in the HOL system. A case study, a formal analysis of differential of quadratic functions, is presented to show the usefulness of the proposed formalization.
Functional tolerance theory in incremental growth design
Institute of Scientific and Technical Information of China (English)
YANG Bo; YANG Tao; ZE Xiangbo
2007-01-01
The evolutionary tolerance design strategy and its characteristics are studied on the basis of automation technology in the product structure design.To guarantee a successful transformation from the functional requirement to geometry constraints between parts,and finally to dimension constraints,a functional tolerance design theory in the process of product growth design is put forward.A mathematical model with a correlated sensitivity function between cost and the tolerance is created,in which the design cost,the manufacturing cost,the usage cost,and the depreciation cost of the product are regarded as control constraints of the tolerance allocation.Considering these costs,a multifactor-cost function to express quality loss of the product is applied into the model.In the mathematical model,the minimum cost is used as the objective function; a reasonable process capability index,the assembly function,and assembly quality are taken as the constraints; and depreciation cost in the objective function is expressed as the discount rate-terminology in economics.Thus,allocation of the dimension tolerance as the function and cost over the whole lifetime of the product is realized.Finally,a design example is used to demonstrate the successful application of the proposed functional tolerance theory in the incremental growth design of the product.
Open-system Kohn-Sham density functional theory.
Zhou, Yongxi; Ernzerhof, Matthias
2012-03-07
A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics
A Cp-theory problem book compactness in function spaces
Tkachuk, Vladimir V
2015-01-01
This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level. The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained...
The Algebra Theory for PolynomialInterpolation Method
Institute of Scientific and Technical Information of China (English)
2015-01-01
In this paper, several usually used polynomial interpolation methods are explained in view of vector basis and dimension in linearalgebra theory. Using transition matrixes, general conversion formula between the basis function sets of these polynomialinterpolation methods are given. An example also shows the effectiveness of the results.
Basis convergence of range-separated density-functional theory
Franck, Odile; Luppi, Eleonora; Toulouse, Julien
2014-01-01
Range-separated density-functional theory is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components, and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whe...
Quantitative methods in classical perturbation theory.
Giorgilli, A.
Poincaré proved that the series commonly used in Celestial mechanics are typically non convergent, although their usefulness is generally evident. Recent work in perturbation theory has enlightened this conjecture of Poincaré, bringing into evidence that the series of perturbation theory, although non convergent in general, furnish nevertheless valuable approximations to the true orbits for a very large time, which in some practical cases could be comparable with the age of the universe. The aim of the author's paper is to introduce the quantitative methods of perturbation theory which allow to obtain such powerful results.
Density functional theory in the solid state.
Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J
2014-03-13
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.
Combining Molecular Dynamics and Density Functional Theory
Kaxiras, Efthimios
2015-03-01
The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction. In collaboration with: G. Kolesov, D. Vinichenko, G. Tritsaris, C.M. Friend, Departments of Physics and of Chemistry and Chemical Biology.
Introducing legal method when teaching stakeholder theory
DEFF Research Database (Denmark)
Buhmann, Karin
2015-01-01
: the Business & Human Rights regime from a UN Global Compact perspective; and mandatory CSR reporting. Supplying integrated teaching notes and generalising on the examples, we explain how legal method may help students of business ethics, organisation and management – future managers – in their analysis...... to the business ethics literature by explaining how legal method complements stakeholder theory for organisational practice....
Conformal field theory and functions of hypergeometric type
Energy Technology Data Exchange (ETDEWEB)
Isachenkov, Mikhail
2016-03-15
Conformal field theory provides a universal description of various phenomena in natural sciences. Its development, swift and successful, belongs to the major highlights of theoretical physics of the late XX century. In contrast, advances of the theory of hypergeometric functions always assumed a slower pace throughout the centuries of its existence. Functional identities studied by this mathematical discipline are fascinating both in their complexity and beauty. This thesis investigates the interrelation of two subjects through a direct analysis of three CFT problems: two-point functions of the 2d strange metal CFT, three-point functions of primaries of the non-rational Toda CFT and kinematical parts of Mellin amplitudes for scalar four-point functions in general dimensions. We flash out various generalizations of hypergeometric functions as a natural mathematical language for two of these problems. Several new methods inspired by extensions of classical results on hypergeometric functions, are presented.
Silva, Tânia B. E.; Pereira, Mariano A.; Malta, Valéria S.; Bento, Edson S.; San-Miguel, Miguel A.; Ziolli, Roberta L.; Martins, João B. L.; Sih, Andre; Taft, Carlton A.
A set of 30 cannabinoid metabolites has been investigated from a combination of electronic and chemometric methods. Density functional calculations have been carried out to obtain optimized geometries, energies, and selected molecular properties. These molecular descriptors take into account steric effects, electronic properties, and chemical reactivity. The use of statistical methods including principal component analysis (PCA), hierarchical cluster analysis (HCA) and nonhierarchical cluster analysis (K-means), nearest neighbor (KNN) and artificial neural networks (ANN) has enabled to classify the compounds into psychoactive, moderately psychoactive and psychoinactive groups in good agreement with experimental evidences.
Hazard function theory for nonstationary natural hazards
Read, Laura K.; Vogel, Richard M.
2016-04-01
Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.
General degeneracy in density functional perturbation theory
Palenik, Mark C.; Dunlap, Brett I.
2017-07-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.
Risk assessment theory, methods, and applications
Rausand, Marvin
2011-01-01
With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. * Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline...
Impact of Functionally Graded Cylinders: Theory
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)
2001-01-01
This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.
Density functional theory a practical introduction
Sholl, David
2009-01-01
Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to studen...
Dualities and Curved Space Partition Functions of Supersymmetric Theories
Agarwal, Prarit
In this dissertation we discuss some conjectured dualities in supersymmetric field theories and provide non-trivial checks for these conjectures. A quick review of supersymmetry and related topics is provided in chapter 1. In chapter 2, we develop a method to identify the so called BPS states in the Hilbert space of a supersymmetric field theory (that preserves at least two real supercharges) on a generic curved space. As an application we obtain the superconformal index (SCI) of 4d theories. The large N SCI of quiver gauge theories has been previously noticed to factorize over the set of extremal BPS mesonic operators. In chapter 3, we reformulate this factorization in terms of the zigzag paths in the dimer model associated to the quiver and extend the factorization theorem of the index to include theories obtained from D-branes probing orbifold singularities. In chapter 4, we consider the dualities in two classes of 3 dimensional theories. The first class consist of dualities of certain necklace type Chern-Simons (CS) quiver gauge theories. A non trivial check of these dualities is provided by matching their squashed sphere partition functions. The second class consists of theories whose duals are described by a collection of free fields. In such cases, due to mixing between the superconformal R-symmetry and accidental symmetries, the matching of electric and magnetic partition functions is not straightforward. We provide a prescription to rectify this mismatch. In chapter 5, we consider some the N = 1 4d theories with orthogonal and symplectic gauge groups, arising from N = 1 preserving reduction of 6d theories on a Riemann surface. This construction allows us to dual descriptions of 4d theories. Some of the dual frames have no known Lagrangian description. We check the dualities by computing the anomaly coefficients and the superconformal indices. We also give a prescription to write the index of the theory obtained by reduction of 6d theories on a three
Orbital-Free Density Functional Theory for Molecular Structure Calculations
Institute of Scientific and Technical Information of China (English)
Huajie Chen; Aihui Zhou
2008-01-01
We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.
Linear-response thermal time-dependent density functional theory
Pribram-Jones, Aurora; Burke, Kieron
2015-01-01
The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.
Behavior of a functional in learning theory
Institute of Scientific and Technical Information of China (English)
SUN Hongwei
2007-01-01
Let H be a Hilbert space, A ∈ L(H), y ∈ R(A), and y R(A). We study the behavior of the distance square between y and A(BT), defined as a functional F(T), as the radius T of the ball BT of H tends to ∞. This problem is important in estimating the approximation error in learning theory. Our main result is to estimate the asymptotic behavior of F(T) without the compactness assumption on the operator A. We also consider the Peetre K-functional and its convergence rates.
Accuracy verification methods theory and algorithms
Mali, Olli; Repin, Sergey
2014-01-01
The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a noticeable gap between mathematicians creating the theory and researchers developing applied algorithms that could be used in engineering and scientific computations for guaranteed and efficient error control. The goals of the book are to (1) give a transparent explanation of the underlying mathematical theory in a style accessible not only to advanced numerical analysts but also to engineers and students; (2) present detailed step-by-step algorithms that follow from a theory; (3) discuss their advantages and drawbacks, areas of applicability, give recommendations and examples.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Integer Discontinuity of Density Functional Theory
Mosquera, Martin A
2014-01-01
Density functional approximations to the exchange-correlation energy of Kohn-Sham theory, such as the local density approximation and generalized gradient approximations, lack the well-known integer discontinuity, a feature that is critical to describe molecular dissociation correctly. Moreover, standard approximations to the exchange-correlation energy also fail to yield the correct linear dependence of the ground-state energy on the number of electrons when this is a non-integer number obtained from the grand canonical ensemble statistics. We present a formal framework to restore the integer discontinuity of any density functional approximation. Our formalism derives from a formula for the exact energy functional and a new constrained search functional that recovers the linear dependence of the energy on the number of electrons.
A multiconfigurational hybrid density-functional theory
Sharkas, Kamal; Jensen, Hans Jørgen Aa; Toulouse, Julien; 10.1063/1.4733672
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension of the usual hybrid approximations by essentially adding a fraction \\lambda of exact static correlation in addition to the fraction \\lambda of exact exchange. Test calculations on the cycloaddition reactions of ozone with ethylene or acetylene and the dissociation of diatomic molecules with the Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) density functionals show that a good value of \\lambda is 0.25, as in the usual hybrid approximations. The results suggest that the proposed multiconfigurational hybrid approximations can improve over usual density-functional calculations for situations with strong static correlation effects.
Nitrogenase structure and function relationships by density functional theory.
Harris, Travis V; Szilagyi, Robert K
2011-01-01
Modern density functional theory has tremendous potential with matching popularity in metalloenzymology to reveal the unseen atomic and molecular details of structural data, spectroscopic measurements, and biochemical experiments by providing insights into unobservable structures and states, while also offering theoretical justifications for observed trends and differences. An often untapped potential of this theoretical approach is to bring together diverse experimental structural and reactivity information and allow for these to be critically evaluated at the same level. This is particularly applicable for the tantalizingly complex problem of the structure and molecular mechanism of biological nitrogen fixation. In this chapter we provide a review with extensive practical details of the compilation and evaluation of experimental data for an unbiased and systematic density functional theory analysis that can lead to remarkable new insights about the structure-function relationships of the iron-sulfur clusters of nitrogenase.
Razumikhin's method in the qualitative theory of processes with delay
Directory of Open Access Journals (Sweden)
Anatoly D. Myshkis
1995-01-01
Full Text Available B.S. Razumikhin's concept in the qualitative theory of systems delay is clarified and discussed. Various ways of improvements of stability conditions are considered. The author shows that the guiding role of Lyapunov functions and demonstrates Razumikhin's method as a practical case of continuous version of the mathematical induction. Several examples demonstrate the obtained results.
Molecular Density Functional Theory of Water
Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel; 10.1021/jz301956b
2013-01-01
Three dimensional implementations of liquid state theories offer an efficient alternative to computer simulations for the atomic-level description of aqueous solutions in complex environments. In this context, we present a (classical) molecular density functional theory (MDFT) of water that is derived from first principles and is based on two classical density fields, a scalar one, the particle density, and a vectorial one, the multipolar polarization density. Its implementation requires as input the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric constants. It has to be complemented by a solute-solvent three-body term that reinforces tetrahedral order at short range. The approach is shown to provide the correct three-dimensional microscopic solvation profile around various molecular solutes, possibly possessing H-bonding sites, at a computer cost two-three orders of magnitude lower tha...
Density Functional Theory An Advanced Course
Dreizler, Reiner M
2011-01-01
Density Functional Theory (DFT) has firmly established itself as the workhorse for the atomic-level simulation of condensed matter phases, pure or composite materials and quantum chemical systems. The present book is a rigorous and detailed introduction to the foundations up to and including such advanced topics as orbital-dependent functionals and both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, this text concentrates on the self-contained presentation of the basics of the most widely used DFT variants. This implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating strengths and weaknesses of a particular approach or functional. DFT for superconducting or nuclear and hadronic systems are not addressed in this work. The structure and material contain...
Benchmark density functional theory calculations for nanoscale conductance
DEFF Research Database (Denmark)
Strange, Mikkel; Bækgaard, Iben Sig Buur; Thygesen, Kristian Sommer;
2008-01-01
We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code...... in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k(parallel to) points in the surface plane. For all systems we find...
Theory of mind and neurocognitive functioning in schizophrenia
Rumyantseva E. E.
2016-01-01
The aim of this work was to study the problem of interrelation between theory of mind and neurocognitive functioning in schizophrenia. Tasks: analysis of the literature on the problem of interrelation of theory of mind and neurocognitive functioning in schizophrenia. Subject of research: interrelation of theory of mind and neurocognitive functioning. Research hypothesis: the state of the mental model correlated with neurocognitive functioning. Registered a decline in the functioning of theory...
Covariant density functional theory for nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Badarch, U.
2007-07-01
The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)
Multiphase lattice Boltzmann methods theory and application
Huang, Haibo; Lu, Xiyun
2015-01-01
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the
Oil monitoring methods based on information theory
Institute of Scientific and Technical Information of China (English)
XIA Yan-chun; HUO Hua
2009-01-01
To evaluate the Wear condition of machines accurately,oil spectrographic entropy,mutual information and ICA analysis methods based on information theory are presented.A full-scale diagnosis utilizing all channels of spectrographic analysis can be obtained.By measuring the complexity and correlativity,the characteristics of wear condition of machines can be shown clearly.The diagnostic quality is improved.The analysis processes of these monitoring methods are given through the explanation of examples.The availability of these methods is validated and further research fields are demonstrated.
The Adapted Ordering Method in Representation Theory
Gato-Rivera, Beatriz
2004-01-01
In 1998 the Adapted Ordering Method was developed for the representation theory of the superconformal algebras. This method, which proves to be very powerful, can be applied to most algebras and superalgebras, however. It allows: to determine maximal dimensions for a given type of singular vector space, to identify all singular vectors by only a few coefficients, to spot subsingular vectors and to set the basis for constructing embedding diagrams. We present this method for general algebras and superalgebras and review the results obtained for the Virasoro algebra and for the N=2 superconformal algebras.
Insight and progress in density functional theory
Yang, Weitao; Mori-Sanchez, Paula; Cohen, Aron J.
2012-12-01
Density functional theory of electronic structure is widely and successfully applied in simulations throughout engineering and sciences. However, there are spectacular failures for many predicted properties. The errors include underestimation of the barriers of chemical reactions, the band gaps of materials, the energies of dissociating molecular ions and charge transfer excitation energies. Typical DFT calculations also fail to describe degenerate or near degenerate systems, as arise in the breaking of chemical bonds, and strongly correlated materials. These errors can all be characterized and understood through the perspective of fractional charges and fractional spins introduced recently.
Function theory of several complex variables
Krantz, Steven G
2001-01-01
The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with th
Spin projection with double hybrid density functional theory.
Thompson, Lee M; Hratchian, Hrant P
2014-07-21
A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.
Semilocal density functional theory with correct surface asymptotics
Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio
2016-03-01
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.
Pressure Correction in Density Functional Theory Calculations
Lee, S H
2008-01-01
First-principles calculations based on density functional theory have been widely used in studies of the structural, thermoelastic, rheological, and electronic properties of earth-forming materials. The exchange-correlation term, however, is implemented based on various approximations, and this is believed to be the main reason for discrepancies between experiments and theoretical predictions. In this work, by using periclase MgO as a prototype system we examine the discrepancies in pressure and Kohn-Sham energy that are due to the choice of the exchange-correlation functional. For instance, we choose local density approximation and generalized gradient approximation. We perform extensive first-principles calculations at various temperatures and volumes and find that the exchange-correlation-based discrepancies in Kohn-Sham energy and pressure should be independent of temperature. This implies that the physical quantities, such as the equation of states, heat capacity, and the Gr\\"{u}neisen parameter, estimat...
An information theory framework for dynamic functional domain connectivity.
Vergara, Victor M; Miller, Robyn; Calhoun, Vince
2017-06-01
Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Reckase, Mark D.
2006-01-01
A conceptual framework is proposed for a psychometric theory of standard setting. The framework suggests that participants in a standard setting process (panelists) develop an internal, intended standard as a result of training and the participant's background. The goal of a standard setting process is to convert panelists' intended standards to…
Harmony Search Method: Theory and Applications
Directory of Open Access Journals (Sweden)
X. Z. Gao
2015-01-01
Full Text Available The Harmony Search (HS method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem.
Introducing legal method when teaching stakeholder theory
DEFF Research Database (Denmark)
Buhmann, Karin
2015-01-01
Governments are particularly salient stakeholders for business ethics. They act on societal needs and social expectations, and have the political and legal powers to restrict or expand the economic freedoms of business as well as the legitimacy and often urgency to do so. We draw on two examples......: the Business & Human Rights regime from a UN Global Compact perspective; and mandatory CSR reporting. Supplying integrated teaching notes and generalising on the examples, we explain how legal method may help students of business ethics, organisation and management – future managers – in their analysis...... to the business ethics literature by explaining how legal method complements stakeholder theory for organisational practice....
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
Cluster density functional theory for lattice models based on the theory of Möbius functions
Lafuente, Luis; Cuesta, José A.
2005-08-01
Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Möbius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Möbius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.
Cluster density functional theory for lattice models based on the theory of Moebius functions
Energy Technology Data Exchange (ETDEWEB)
Lafuente, Luis; Cuesta, Jose A [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes, Madrid (Spain)
2005-08-26
Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Moebius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Moebius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.
Functional methods in differential equations
Hokkanen, Veli-Matti
2002-01-01
In recent years, functional methods have become central to the study of theoretical and applied mathematical problems. As demonstrated in this Research Note, functional methods can not only provide more generality, but they can also unify results and techniques and lead to better results than those obtained by classical methods. Presenting entirely original results, the authors use functional methods to explore a broad range of elliptic, parabolic, and hyperbolic boundary value problems and various classes of abstract differential and integral equations. They show that while it is crucial to choose an appropriate functional framework, this approach can lead to mathematical models that better describe concrete physical phenomena. In particular, they reach a concordance between the physical sense and the mathematical sense for the solutions of some special models. Beyond its importance as a survey of the primary techniques used in the area, the results illuminated in this volume will prove valuable in a wealth ...
The Interpolation Theory of Radial Basis Functions
Baxter, Brad
2010-01-01
In this dissertation, it is first shown that, when the radial basis function is a $p$-norm and $1 2$. Specifically, for every $p > 2$, we construct a set of different points in some $\\Rd$ for which the interpolation matrix is singular. The greater part of this work investigates the sensitivity of radial basis function interpolants to changes in the function values at the interpolation points. Our early results show that it is possible to recast the work of Ball, Narcowich and Ward in the language of distributional Fourier transforms in an elegant way. We then use this language to study the interpolation matrices generated by subsets of regular grids. In particular, we are able to extend the classical theory of Toeplitz operators to calculate sharp bounds on the spectra of such matrices. Applying our understanding of these spectra, we construct preconditioners for the conjugate gradient solution of the interpolation equations. Our main result is that the number of steps required to achieve solution of the lin...
Introduction to measure theory and functional analysis
Cannarsa, Piermarco
2015-01-01
This book introduces readers to theories that play a crucial role in modern mathematics, such as integration and functional analysis, employing a unifying approach that views these two subjects as being deeply intertwined. This feature is particularly evident in the broad range of problems examined, the solutions of which are often supported by generous hints. If the material is split into two courses, it can be supplemented by additional topics from the third part of the book, such as functions of bounded variation, absolutely continuous functions, and signed measures. This textbook addresses the needs of graduate students in mathematics, who will find the basic material they will need in their future careers, as well as those of researchers, who will appreciate the self-contained exposition which requires no other preliminaries than basic calculus and linear algebra.
Flexible and generalized uncertainty optimization theory and methods
Lodwick, Weldon A
2017-01-01
This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. .
Paraxial Green's functions in Synchrotron Radiation theory
Geloni, G; Schneidmiller, E; Yurkov, M; Geloni, Gianluca; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail
2005-01-01
This work contains a systematic treatment of single particle Synchrotron Radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always granted and constitutes a separate assumption, whose applicability is discussed. Treating Synchrotron Radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point sourc...
Phases of Polonium via Density Functional Theory
Verstraete, Matthieu J.
2010-01-01
The thermodynamical properties of the main phases of metallic polonium are examined using density functional theory. The exceptional nature of the solid-solid phase transition of α to β Po is underlined: it induces a lowering in symmetry, from cubic to rhombohedral, with increasing temperature. This is explained as the result of a delicate balance between bonding and entropic effects. Overall agreement with existing experimental data is good by state-of-the-art standards. The phonons of Po present Kohn anomalies, and it is shown that the effect of spin-orbit interactions is the inverse of that in normal metals: due to the nonspherical nature of the Fermi Surface, spin-orbit effects reduce nesting and harden most phonon frequencies.
Physical Unclonable Functions in Theory and Practice
Böhm, Christoph
2013-01-01
In Physical Unclonable Functions in Theory and Practice, the authors present an in-depth overview of various topics concerning PUFs, providing theoretical background and application details. This book concentrates on the practical issues of PUF hardware design, focusing on dedicated microelectronic PUF circuits. Additionally, the authors discuss the whole process of circuit design, layout and chip verification. The book also offers coverage of: Different published approaches focusing on dedicated microelectronic PUF circuits Specification of PUF circuits and different error rate reducing pre-selection techniques General design issues and minimizing error rate from the circuit’s perspective Transistor modeling issues of Montecarlo mismatch simulation and solutions Examples of PUF circuits including an accurate description of the circuits and testing/measurement results This monograph gives insight into PUFs in general and provides knowledge in the field of PUF circuit design and implementation. It coul...
Wave-function and density functional theory studies of dihydrogen complexes
Fabiano, E; Della Sala, F
2014-01-01
We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave-function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of non-local exchange contributions.
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
Method of guiding functions in problems of nonlinear analysis
Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei
2013-01-01
This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.
Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi
2017-02-01
Analysis of the fragmentation pathways of molecules in mass spectrometry gives a fundamental insight into gas-phase ion chemistry. However, the conventional intrinsic reaction coordinates method requires knowledge of the transition states of ion structures in the fragmentation pathways. Herein, we use the nudged elastic band method, using only the initial and final state ion structures in the fragmentation pathways, and report the advantages and limitations of the method. We found a minimum energy path of p-benzoquinone ion fragmentation with two saddle points and one intermediate structure. The primary energy barrier, which corresponded to the cleavage of the C-C bond adjacent to the CO group, was calculated to be 1.50 eV. An additional energy barrier, which corresponded to the cleavage of the CO group, was calculated to be 0.68 eV. We also found an energy barrier of 3.00 eV, which was the rate determining step of the keto-enol tautomerization in CO elimination from the molecular ion of phenol. The nudged elastic band method allowed the determination of a minimum energy path using only the initial and final state ion structures in the fragmentation pathways, and it provided faster than the conventional intrinsic reaction coordinates method. In addition, this method was found to be effective in the analysis of the charge structures of the molecules during the fragmentation in mass spectrometry.
Multistate Density Functional Theory for Effective Diabatic Electronic Coupling.
Ren, Haisheng; Provorse, Makenzie R; Bao, Peng; Qu, Zexing; Gao, Jiali
2016-06-16
Multistate density functional theory (MSDFT) is presented to estimate the effective transfer integral associated with electron and hole transfer reactions. In this approach, the charge-localized diabatic states are defined by block localization of Kohn-Sham orbitals, which constrain the electron density for each diabatic state in orbital space. This differs from the procedure used in constrained density functional theory that partitions the density within specific spatial regions. For a series of model systems, the computed transfer integrals are consistent with experimental data and show the expected exponential attenuation with the donor-acceptor separation. The present method can be used to model charge transfer reactions including processes involving coupled electron and proton transfer.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Energy Technology Data Exchange (ETDEWEB)
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Multireference spin-adapted variant of density functional theory.
Khait, Yuriy G; Hoffmann, Mark R
2004-03-15
A new Kohn-Sham formalism is developed for studying the lowest molecular electronic states of given space and spin symmetry whose densities are represented by weighted sums of several reference configurations. Unlike standard spin-density functional theory, the new formalism uses total spin conserving spin-density operators and spin-invariant density matrices so that the method is fully spin-adapted and solves the so-called spin-symmetry dilemma. The formalism permits the use of an arbitrary set of reference (noninteracting) configurations with any number of open shells. It is shown that the requirement of degeneracy of the total noninteracting energies of the reference configurations (or configuration state functions) is equivalent to the stationary condition of the exact energy relative to the weights of the configurations (or configuration state functions). Consequently, at any molecular geometry, the weights can be determined by minimization of the energy, and, for given reference weights, the Kohn-Sham orbitals can be determined. From this viewpoint, the developed theory can be interpreted as an analog of the multiconfiguration self-consistent field approach within density functional theory.
2015-04-01
distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching...distribution is unlimited. 1 INTRODUCTION Two-dimensional (2D) material heterostructures offer novel and compelling electronic and optical...methods have undoubtedly been created for matching lattice constants of dissimilar nanomaterials , very few are actually covered explicitly in literature
Theory of the Trojan-Horse Method
Baur, G; Baur, Gerhard; Typel, Stefan
2004-01-01
The Trojan-Horse method is an indirect approach to determine the energy dependence of S factors of astrophysically relevant two-body reactions. This is accomplished by studying closely related three-body reactions under quasi-free scattering conditions. The basic theory of the Trojan-Horse method is developed starting from a post-form distorted wave Born approximation of the T-matrix element. In the surface approximation the cross section of the three-body reaction can be related to the S-matrix elements of the two-body reaction. The essential feature of the Trojan-Horse method is the effective suppression of the Coulomb barrier at low energies for the astrophysical reaction leading to finite cross sections at the threshold of the two-body reaction. In a modified plane wave approximation the relation between the two-body and three-body cross sections becomes very transparent. Applications of the Trojan Horse Method are discussed. It is of special interest that electron screening corrections are negligible due...
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Density functional theory and multiscale materials modeling
Indian Academy of Sciences (India)
Swapan K Ghosh
2003-01-01
One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. In the intermediate mesoscopic length scale, an appropriate picture of the equilibrium and dynamical processes has been obtained through the single particle number density of the constituent atoms or molecules. A wide class of problems involving nanomaterials, interfacial science and soft condensed matter has been addressed using the density based theoretical formalism as well as atomistic simulation in this regime. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related density functions has been found to be quite appropriate. A unique single unified theoretical framework that emerges through the density concept at these diverse length scales and is applicable to both quantum and classical systems is the so called density functional theory (DFT) which essentially provides a vehicle to project the many-particle picture to a single particle one. Thus, the central equation for quantum DFT is a one-particle Schrödinger-like Kohn–Sham equation, while the same for classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential. Selected illustrative applications of quantum DFT to microscopic modeling of intermolecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are presented.
Functional impulsivity and reinforcement sensitivity theory.
Smillie, Luke D; Jackson, Chris J
2006-02-01
In this article, we attempt to integrate Dickman's (1990) descriptive concept of Functional Impulsivity (FI) with Gray's (1970, 1991) Reinforcement Sensitivity Theory (RST). Specifically, we consider that FI bears great conceptual similarity to Gray's concept of reward-reactivity, which is thought to be caused by the combined effects of a Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS). In our first study, we examine the construct validity and structural correlates of FI. Results indicate that FI is related positively to measures of BAS and Extraversion, negatively to measures of BIS and Neuroticism, and is separate from Psychoticism and typical trait Impulsivity, which Dickman calls Dysfunctional Impulsivity (DI). In our second study, we use a go/no-go discrimination task to examine the relationship between FI and response bias under conditions of rewarding and punishing feedback. Results indicate that FI, along with two measures of BAS, predicted the development of a response bias for the rewarded alternative. In comparison, high DI appeared to reflect indifference toward either reward or punishment. We consider how these findings might reconcile the perspectives of Gray and Dickman and help clarify the broader understanding of Impulsivity.
Current Developments in Nuclear Density Functional Methods
Dobaczewski, J
2010-01-01
Density functional theory (DFT) became a universal approach to compute ground-state and excited configurations of many-electron systems held together by an external one-body potential in condensed-matter, atomic, and molecular physics. At present, the DFT strategy is also intensely studied and applied in the area of nuclear structure. The nuclear DFT, a natural extension of the self-consistent mean-field theory, is a tool of choice for computations of ground-state properties and low-lying excitations of medium-mass and heavy nuclei. Over the past thirty-odd years, a lot of experience was accumulated in implementing, adjusting, and using the density-functional methods in nuclei. This research direction is still extremely actively pursued. In particular, current developments concentrate on (i) attempts to improve the performance and precision delivered by the nuclear density-functional methods, (ii) derivations of density functionals from first principles rooted in the low-energy chromodynamics and effective th...
Institute of Scientific and Technical Information of China (English)
WEI Xiao-Yan; GE Zhi-Gang; WANG Zun-Yao; XU Jiao
2007-01-01
Optimization calculations of 209 polychlorinated biphenyls (PCBs) were carried out at the B3LYP/6-31G* level. It was found that there is significant correlation between the Cl substitution position and some structural parameters. Consequently, Cl substitution positions were taken as theoretical descriptors to establish a novel QSPR model for predicting -lgSw of all PCB congeners. The model achieved in this work contains four variables, of which r2 = 0.9527, q2 = 0.9490 and SD = 0.25 with large t values. In addition, the variation inflation factors (VIFs) of variables in this model are all less than 5.0, suggesting high accuracy of the -lgSw predicting model. And the results of cross-validation test and method validation also show that the model exhibits optimum stability and better predictive capability than that from the AM1 method.
New useful special function in quantum optics theory
Chen, Feng; Fan, Hong-Yi
2016-08-01
By virtue of the operator Hermite polynomial method [Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301] we find a new special function which is useful in quantum optics theory, whose expansion involves both power-series and Hermite polynomials, i.e., By virtue of the operator Hermite polynomial method and the technique of integration within ordered product of operators (IWOP) we derive its generating function. The circumstance in which this new special function appears and is applicable is considered. Project supported by the Natural Science Fund of Education Department of Anhui Province, China (Grant No. KJ2016A590), the Talent Foundation of Hefei University, China (Grant No. 15RC11), and the National Natural Science Foundation of China (Grant Nos. 11247009 and 11574295).
Kaye, Jason; Yang, Chao
2014-01-01
Kohn-Sham density functional theory is one of the most widely used electronic structure theories. The recently developed adaptive local basis functions form an accurate and systematically improvable basis set for solving Kohn-Sham density functional theory using discontinuous Galerkin methods, requiring a small number of basis functions per atom. In this paper we develop residual-based a posteriori error estimates for the adaptive local basis approach, which can be used to guide non-uniform basis refinement for highly inhomogeneous systems such as surfaces and large molecules. The adaptive local basis functions are non-polynomial basis functions, and standard a posteriori error estimates for $hp$-refinement using polynomial basis functions do not directly apply. We generalize the error estimates for $hp$-refinement to non-polynomial basis functions. We demonstrate the practical use of the a posteriori error estimator in performing three-dimensional Kohn-Sham density functional theory calculations for quasi-2D...
FMEA using uncertainty theories and MCDM methods
Liu, Hu-Chen
2016-01-01
This book offers a thorough and systematic introduction to the modified failure mode and effect analysis (FMEA) models based on uncertainty theories (e.g. fuzzy logic, intuitionistic fuzzy sets, D numbers and 2-tuple linguistic variables) and various multi-criteria decision making (MCDM) approaches such as distance-based MCDM, compromise ranking MCDM and hybrid MCDM, etc. As such, it provides essential FMEA methods and practical examples that can be considered in applying FMEA to enhance the reliability and safety of products and services. The book offers a valuable guide for practitioners and researchers working in the fields of quality management, decision making, information science, management science, engineering, etc. It can also be used as a textbook for postgraduate and senior undergraduate students.
Approximation methods in gravitational-radiation theory
Will, C. M.
1986-02-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913+16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. The author summarizes recent developments in two areas in which approximations are important: (1) the quadrupole approximation, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (2) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
Nested partitions method, theory and applications
Shi, Leyuan
2009-01-01
There is increasing need to solve large-scale complex optimization problems in a wide variety of science and engineering applications, including designing telecommunication networks for multimedia transmission, planning and scheduling problems in manufacturing and military operations, or designing nanoscale devices and systems. Advances in technology and information systems have made such optimization problems more and more complicated in terms of size and uncertainty. Nested Partitions Method, Theory and Applications provides a cutting-edge research tool to use for large-scale, complex systems optimization. The Nested Partitions (NP) framework is an innovative mix of traditional optimization methodology and probabilistic assumptions. An important feature of the NP framework is that it combines many well-known optimization techniques, including dynamic programming, mixed integer programming, genetic algorithms and tabu search, while also integrating many problem-specific local search heuristics. The book uses...
Kussmann, Jörg; Ochsenfeld, Christian
2007-11-28
A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.
Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava
Rassias, Michael
2014-01-01
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.
Time evolution of the autocorrelation function in dynamical replica theory
Sakata, A.
2013-04-01
Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.
Stephenson, Brian C; Stafford, Kate A; Beers, Kenneth J; Blankschtein, Daniel
2008-02-14
The widespread use of surfactant mixtures and surfactant/solubilizate mixtures in practical applications motivates the development of predictive theoretical approaches to improve fundamental understanding of the behavior of these complex self-assembling systems and to facilitate the design and optimization of new surfactant and surfactant/solubilizate mixtures. This paper is the first of two articles introducing a new computer simulation-free-energy/molecular thermodynamic (CS-FE/MT) model. The two articles explore the application of computer simulation free-energy methods to quantify the thermodynamics associated with mixed surfactant/cosurfactant and surfactant/solubilizate micelle formation in aqueous solution. In this paper (article 1 of the series), a theoretical approach is introduced to use computer simulation free-energy methods to compute the free-energy change associated with changing micelle composition (referred to as DeltaDeltaGi). In this approach, experimental critical micelle concentration (CMC) data, or a molecular thermodynamic model of micelle formation, is first used to evaluate the free energy associated with single (pure) surfactant micelle formation, g(form,single), in which the single surfactant micelle contains only surfactant A molecules. An iterative approach is proposed to combine the estimated value of gform,single with free-energy estimates of DeltaDeltaGi based on computer simulation to determine the optimal free energy of mixed micelle formation, the optimal micelle aggregation number and composition, and the optimal bulk solution composition. After introducing the CS-FE/MT modeling framework, a variety of free-energy methods are briefly reviewed, and the selection of the thermodynamic integration free-energy method is justified and selected to implement the CS-FE/MT model. An alchemical free-energy pathway is proposed to allow evaluation of the free-energy change associated with exchanging a surfactant A molecule with a surfactant
Theory of the Trojan-Horse Method
Typel, S
2003-01-01
The Trojan-Horse method is an indirect approach to determine the energy dependence of S-factors of astrophysically relevant two-body reactions. This is accomplished by studying closely related three-body reactions under quasi-free scattering conditions. The basic theory of the Trojan-Horse method is developed starting from a post-form distorted wave Born approximation of the T-matrix element. In the surface approximation the cross section of the three-body reaction can be related to the S-matrix elements of the two-body reaction. The essential feature of the Trojan-Horse method is the effective suppression of the Coulomb barrier at low energies for the astrophysical reaction leading to finite cross sections at the threshold of the two-body reaction. In a modified plane wave approximation the relation between the two-body and three-body cross sections becomes very transparent. The appearing Trojan-Horse integrals are studied in detail.
Developing Systemic Theories Requires Formal Methods
Gobet, Fernand
2012-01-01
Ziegler and Phillipson (Z&P) advance an interesting and ambitious proposal, whereby current analytical/mechanistic theories of gifted education are replaced by systemic theories. In this commentary, the author focuses on the pros and cons of using systemic theories. He argues that Z&P's proposal both goes too far and not far enough. The future of…
Stochastic Time-Dependent Current-Density Functional Theory
D'Agosta, Roberto
2008-03-01
Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.
Determination of plutonium temperature using the special trans functions theory
Directory of Open Access Journals (Sweden)
Perović Slavica M.
2010-01-01
Full Text Available The problem of estimating plutonium temperature by an iterative procedure based on the special trans functions theory has been studied in some detail. In theory, the differential linear plutonium temperature equation can be effectively reduced to a non-linear functional transcendental equation solvable by special trans functions theory. This approach is practically invariant under the starting plutonium temperature value. This is significant, because the said iterative special trans functions theory does not depend on the password data of the plutonium cargo. Obtained numerical results and graphical simulations confirm the applicability of such approach.
String theory and the scientific method
Dawid, Richard
2013-01-01
String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.
New methods in nuclear reaction theory
Energy Technology Data Exchange (ETDEWEB)
Redish, E. F.
1979-01-01
Standard nuclear reaction methods are limited to treating problems that generalize two-body scattering. These are problems with only one continuous (vector) degree of freedom (CDOF). The difficulty in extending these methods to cases with two or more CDOFs is not just the additional numerical complexity: the mathematical problem is usually not well-posed. It is hard to guarantee that the proper boundary conditions (BCs) are satisfied. Since this is not generally known, the discussion is begun by considering the physics of this problem in the context of coupled-channel calculations. In practice, the difficulties are usually swept under the rug by the use of a highly developed phenomenology (or worse, by the failure to test a calculation for convergence). This approach limits the kind of reactions that can be handled to ones occurring on the surface of where a second CDOF can be treated perturbatively. In the past twenty years, the work of Faddeev, the quantum three-body problem has been solved. Many techniques (and codes) are now available for solving problems with two CDOFs. A method for using these techniques in the nuclear N-body problem is presented. A set of well-posed (connected kernal) equations for physical scattering operators is taken. Then it is shown how approximation schemes can be developed for a wide range of reaction mechanisms. The resulting general framework for a reaction theory can be applied to a number of nuclear problems. One result is a rigorous treatment of multistep transfer reactions with the possibility of systematically generating corrections. The application of the method to resonance reactions and knock-out is discussed. 12 figures.
Mathematical methods of many-body quantum field theory
Lehmann, Detlef
2004-01-01
Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...
What Density Functional Theory could do for Quantum Information
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Electrostatic potential of several small molecules from density functional theory
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A number of density functional theory (DFT) methods were used to calculate the electrostatic potential for the series of molecules N2, F2, NH3, H2O, CHF3, CHCl3, C6H6, TiF4, CO(NH2)2 and C4H5N3O compared with QCISD (quadratic configuration interaction method including single and double substitutions) results. Comparisons were made between the DFT computed results and the QCISD ab initio ones and MP2 ab initio ones, compared with the root-mean-square deviation and electrostatic potential difference contours figures. It was found that the hybrid DFT method B3LYP, yields electrostatic potential in good agreement with the QCISD results. It is suggest this is a useful approach, especially for large molecules that are difficult to study by ab initio methods.
Shape theory categorical methods of approximation
Cordier, J M
2008-01-01
This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and
Grassmann phase space methods for fermions. II. Field theory
Energy Technology Data Exchange (ETDEWEB)
Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-02-15
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-05
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.
Solvation of complex surfaces via molecular density functional theory
Levesque, Maximilien; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel
2012-01-01
We show that classical molecular density functional theory (MDFT), here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular CLAYFF force field. Solvent energetics and structure are found to depend weakly upon ...
Elements of the theory of functions
Knopp, Konrad
2016-01-01
Well-known book provides a clear, concise review of complex numbers and their geometric representation; linear functions and circular transformations; sets, sequences, and power series; analytic functions and conformal mapping; and elementary functions. 1952 edition.
On the Nominalization from the Functional Grammar Theory Perspective
Institute of Scientific and Technical Information of China (English)
管梦迪
2014-01-01
this paper intends to explore the phenomena of nominalization from the perspective of Functional Grammar Theory. With the brief interpretation of the nominalization functioning in the text, it is hoped to make a bet er understanding about the nominalization.
Monte Carlo computation of the spectral density function in the interacting scalar field theory
Abbasi, Navid; Davody, Ali
2015-12-01
We study the ϕ4 field theory in d = 4. Using bold diagrammatic Monte Carlo method, we solve the Schwinger-Dyson equations and find the spectral density function of the theory beyond the weak coupling regime. We then compare our result with the one obtained from the perturbation theory. At the end, we utilize our Monte Carlo result to find the vertex function as the basis for the computation of the physical scattering amplitudes.
Application of Density Functional Theory to Systems Containing Metal Atoms
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
Cosmic Wave Functions with the Brans-Dicke Theory
Institute of Scientific and Technical Information of China (English)
ZHU Zong-Hong
2000-01-01
Using the standard Wentzel-Kramers-Brillouin method, the Wheeler-De Witt equation for the Brans-Dicke theory is solved under three kinds of boundary conditions (proposed by Hattie-Hawking, Vilenkin and Linde, respectively). It is found that, although the gravitational and cosmological"constants" are dynamical and timedependent in the classical models, they will acquire constant values when the universe comes from the quantum creation, and that in particular, the amplitude of the resulting wave function under Linde or Vilenkin boundary conditions reaches its maximum if the cosmological constant is the minimum.
Dynamical density functional theory with hydrodynamic interactions in confined geometries
Goddard, B. D.; Nold, A.; Kalliadasis, S.
2016-12-01
We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.
Multiphase aluminum equations of state via density functional theory
Sjostrom, Travis; Crockett, Scott; Rudin, Sven
2016-10-01
We have performed density functional theory (DFT) based calculations for aluminum in extreme conditions of both pressure and temperature, up to five times compressed ambient density, and over 1 000 000 K in temperature. In order to cover such a domain, DFT methods including phonon calculations, quantum molecular dynamics, and orbital-free DFT are employed. The results are then used to construct a SESAME equation of state for the aluminum 1100 alloy, encompassing the fcc, hcp, and bcc solid phases as well as the liquid regime. We provide extensive comparison with experiment, and based on this we also provide a slightly modified equation of state for the aluminum 6061 alloy.
Current functional theory for multi-electron configuration
DEFF Research Database (Denmark)
Bang, Jens N.; Bohr, Henrik
2010-01-01
The density functional theory (DFT) formalism is reformulated into a framework of currents so as to give the energy a parameter dependent behaviour, e.g., time. This “current” method is aimed at describing the transition of electrons from one orbital to another and especially from the ground state...... to an excited state and extended to the relativistic region in order to include magnetic fields which is relevant especially for heavy metallic compounds. The formalism leads to a set of coupled first order partial differential equations to describe the time evolution of atoms and molecules. The application...
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Ad Translation from the Perspective of Functional Theory
Institute of Scientific and Technical Information of China (English)
张海强
2015-01-01
Advertising translation,as a tool of promoting sales,plays an increasingly important part in the international arena.The objective of advertising translation is to persuade customers to make purchase or buy services.Therefore,functional theory is put forward to analyze advertising translation.Advertising translation is explored from the perspective of functional theory by reviewing Vermeer’s Skopos theory.Successful translation strategies such as structure-borrowing translation,Creative Translation and zero-translation are discussed through specific examples.It proves that advertising translation can be guided by functional theory.
Ad Translation from the Perspective of Functional Theory
Institute of Scientific and Technical Information of China (English)
张海强
2015-01-01
Advertising translation,as a tool of promoting sales,plays an increasingly important part in the international arena.The objective of advertising translation is to persuade customers to make purchase or buy services.Therefore,functional theory is put forward to analyze advertising translation. Advertising translation is explored from the perspective of functional theory by reviewing Vermeer’s Skopos theory. Successful translation strategies such as structure-borrowing translation,Creative Translation and zero-translation are discussed through specific examples.It proves that advertising translation can be guided by functional theory.
Density-functional perturbation theory goes time-dependent
Directory of Open Access Journals (Sweden)
Gebauer, Ralph
2008-05-01
Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.
Topological methods in Galois representation theory
Snaith, Victor P
2013-01-01
An advanced monograph on Galois representation theory by one of the world's leading algebraists, this volume is directed at mathematics students who have completed a graduate course in introductory algebraic topology. Topics include abelian and nonabelian cohomology of groups, characteristic classes of forms and algebras, explicit Brauer induction theory, and much more. 1989 edition.
Introduction to Classical Density Functional Theory by a Computational Experiment
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Mathematical methods in the theory of queuing
Khinchin, A Y; Quenouille, M H
2013-01-01
Written by a prominent Russian mathematician, this concise monograph examines aspects of queuing theory as an application of probability. The three-part treatment begins with a study of the stream of incoming demands (or ""calls,"" in the author's terminology). Subsequent sections explore systems with losses and systems allowing delay. Prerequisites include a familiarity with the theory of probability and mathematical analysis. A. Y. Khinchin made significant contributions to probability theory, statistical physics, and several other fields. His elegant, groundbreaking work will prove of subs
Reduced density matrix functional theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Baldsiefen, Tim
2012-10-15
Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to
Energy Technology Data Exchange (ETDEWEB)
Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); School of Advanced International Studies on Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: elio.conte@fastwebnet.it; Khrennikov, Andrei [International Center for Mathematical Modelling in Physics and Cognitive Sciences, M.S.I., University of Vaexjoe, S-35195 (Sweden); Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)
2009-09-15
We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.
THEORY AND METHOD FOR WETLAND BOUNDARY DELINEATION
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on the analysis of the subjectivity of wetland boundary criteria and their causes at present, this paper suggested that, under the condition that the mechanism of wetland formation process has not been understood,"black box" method of System Theory can be used to delineate wetland boundaries scientifically. After analyzing the difference of system construction among aquatic habitats, wetlands and uplands, the lower limit of rooted plants was chosen as the lower boundary criterion of wetlands. Because soil diagnostic horizon is the result of the long-term interaction among all environments, and it is less responsive than vegetation to short-term change, soil diagnostic horizon was chosen as the indicator to delineate wetland upper boundary, which lies at the thinning-out point of soil diagnostic horizon. Case study indicated that it was feasible using the lower limit of rooted plants and the thinning-out point of soil diagnostic horizon as criteria to delineate the lower and upper boundaries of wetland. In the study area, the thinning-out line of albic horizon was coincident with the 55.74m contour line, the maximum horizonerror was less than lm, and the maximum vertical error less than 0.04m. The problem on wetland definition always arises on the boundaries. Having delineated wetland boundaries, wetlands can be defined as follows: wetlands are the transitional zones between uplands and deepwater habitats, they are a kind of azonal complex that are inundated or saturated by surface or ground water, with the lower boundary lying at the lower limit of rooted plants, and the upper boundary at the thinning-out line of upland soil diagnostic horizon.
Energy Technology Data Exchange (ETDEWEB)
Filatov, Michael, E-mail: mike.filatov@gmail.com [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, D-53115 Bonn (Germany); Huix-Rotllant, Miquel, E-mail: miquel.huix@gmail.com [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main (Germany)
2014-07-14
Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.
Filatov, Michael; Huix-Rotllant, Miquel
2014-07-01
Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.
Filatov, Michael; Huix-Rotllant, Miquel
2014-07-14
Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.
Theory of mind and neurocognitive functioning in schizophrenia
Directory of Open Access Journals (Sweden)
Rumyantseva E.E.
2016-02-01
Full Text Available The aim of this work was to study the problem of interrelation between theory of mind and neurocognitive functioning in schizophrenia. Tasks: analysis of the literature on the problem of interrelation of theory of mind and neurocognitive functioning in schizophrenia. Subject of research: interrelation of theory of mind and neurocognitive functioning. Research hypothesis: the state of the mental model correlated with neurocognitive functioning. Registered a decline in the functioning of theory of mind in schizophrenia. It is known that hypofrontality in schizophrenia determines the reduction of social perception. A number of authors allocate structures in the brain, providing mental models: regions of the medial prefrontal cortex and posttemporal areas, including the temporo parietal region. Some studies found relationship between the theory of mind and memory, executive functions. However, there are studies, which has not been found the interrelation between theory of mind and neurocognitive functioning. Nonetheless, some studies concluded that currently there is no consensus about the influence of neurocognitive functioning on the theory of mind in schizophrenia.
Functional renormalization group methods in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Braun, J.
2006-12-18
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Density Functional Theory Studies of Magnetically Confined Fermi Gas
Institute of Scientific and Technical Information of China (English)
陈宇俊; 马红孺
2001-01-01
A theory is developed for magnetically confined Fermi gas at a low temperature based on the density functional theory. The theory is illustrated by the numerical calculation of the density distributions of Fermi atoms 40K with parameters according to DeMarco and Jin's experiment [Science, 285(1999)1703]. Our results are in close agreement with the experiment. To check the theory, we also performed calculations using our theory at a high temperature, which compared very well to the results of the classical limit.
Lectures on the functional renormalization group method
Polonyi, J
2001-01-01
These introductory notes are about functional renormalization group equations and some of their applications. It is emphasised that the applicability of this method extends well beyond critical systems, it actually provides us a general purpose algorithm to solve strongly coupled quantum field theories. The renormalization group equation of F. Wegner and A. Houghton is shown to resum the loop-expansion. Another version, due to J. Polchinski, is obtained by the method of collective coordinates and can be used for the resummation of the perturbation series. The genuinely non-perturbative evolution equation is obtained in a manner reminiscent of the Schwinger-Dyson equations. Two variants of this scheme are presented where the scale which determines the order of the successive elimination of the modes is extracted from external and internal spaces. The renormalization of composite operators is discussed briefly as an alternative way to arrive at the renormalization group equation. The scaling laws and fixed poin...
Seiberg Duality, Quiver Gauge Theories, and Ihara Zeta Function
Zhou, Da; He, Yang-Hui
2015-01-01
We study Ihara zeta function for graphs in the context of quivers arising from gauge theories, especially under Seiberg duality transformations. The distribution of poles is studied as we proceed along the duality tree, in light of the weak and strong graph versions of the Riemann Hypothesis. As a by-product, we find a refined version of Ihara zeta function to be the generating function for the generic superpotential of the gauge theory.
Excitations and benchmark ensemble density functional theory for two electrons
Pribram-Jones, Aurora; Trail, John R; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A
2014-01-01
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange (SEHX), is derived. Exact conditions that are proven include the signs of the correlation energy components, the virial theorem for both exchange and correlation, and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Excitations and benchmark ensemble density functional theory for two electrons
Energy Technology Data Exchange (ETDEWEB)
Pribram-Jones, Aurora; Burke, Kieron [Department of Chemistry, University of California-Irvine, Irvine, California 92697 (United States); Yang, Zeng-hui; Ullrich, Carsten A. [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States); Trail, John R.; Needs, Richard J. [Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)
2014-05-14
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Lecture notes: string theory and zeta-function
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: toppan@cbpf.br
2001-11-01
These lecture notes are based on a revised and LaTexed version of the Master thesis defended at ISAS. The research part being omitted, they included a review of the bosonic closed string a la Polyakov and of the one-loop background field method of quantisation defined through the zeta-function. In an appendix some basic features of the Riemann zeta-function are also reviewed. The pedagogical aspects of the material here presented are particularly emphasized. These notes are used, together with the Scherk's article in Rev. Mod. Phys. and the first volume of the Polchinski book, for the mini-course on String Theory (16-hours of lectures) held at CBPF. In this course the Green-Schwarz-Witten two-volumes book is also used for consultative purposes. (author)
Introduction to the functional RG and applications to gauge theories
Gies, H
2006-01-01
These lectures contain an introduction to modern renormalization group (RG) methods as well as functional RG approaches to gauge theories. In the first lecture, the functional renormalization group is introduced with a focus on the flow equation for the effective average action. The second lecture is devoted to a discussion of flow equations and symmetries in general, and flow equations and gauge symmetries in particular. The third lecture deals with the flow equation in the background formalism which is particularly convenient for analytical computations of truncated flows. The fourth lecture concentrates on the transition from microscopic to macroscopic degrees of freedom; even though this is discussed here in the language and the context of QCD, the developed formalism is much more general and will be useful also for other systems.
Universality principle and the development of classical density functional theory
Institute of Scientific and Technical Information of China (English)
周世琦; 张晓琪
2002-01-01
The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.
Application of semiclassical methods to reaction rate theory
Energy Technology Data Exchange (ETDEWEB)
Hernandez, R.
1993-11-01
This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.
Digital functions and data reconstruction digital-discrete methods
Chen, Li M
2012-01-01
Digital Functions and Data Reconstruction: Digital-Discrete Methods provides a solid foundation to the theory of digital functions and its applications to image data analysis, digital object deformation, and data reconstruction. This new method has a unique feature in that it is mainly built on discrete mathematics with connections to classical methods in mathematics and computer sciences. Digitally continuous functions and gradually varied functions were developed in the late 1980s. A. Rosenfeld (1986) proposed digitally continuous functions for digital image analysis, especially to describe
Elemental methods in ergodic Ramsey theory
McCutcheon, Randall
1999-01-01
This book, suitable for graduate students and professional mathematicians alike, didactically introduces methodologies due to Furstenberg and others for attacking problems in chromatic and density Ramsey theory via recurrence in topological dynamics and ergodic theory, respectively. Many standard results are proved, including the classical theorems of van der Waerden, Hindman, and Szemerédi. More importantly, the presentation strives to reflect the extent to which the field has been streamlined since breaking onto the scene around twenty years ago. Potential readers who were previously intrigued by the subject matter but found it daunting may want to give a second look.
Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G
2007-12-28
A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.
Introduction to Classical Density Functional Theory by Computational Experiment
Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...
Current functional theory for multi-electron configuration
DEFF Research Database (Denmark)
Bang, Jens N.; Bohr, Henrik
2010-01-01
The density functional theory (DFT) formalism is reformulated into a framework of currents so as to give the energy a parameter dependent behaviour, e.g., time. This “current” method is aimed at describing the transition of electrons from one orbital to another and especially from the ground state...... to an excited state and extended to the relativistic region in order to include magnetic fields which is relevant especially for heavy metallic compounds. The formalism leads to a set of coupled first order partial differential equations to describe the time evolution of atoms and molecules. The application...... of the method to ZnO and H2O to calculate the occupation probabilities of the orbitals lead to the results that compare favorably with those obtained from DFT. Furthermore, evolution equations for electrons in both atoms and molecules can be derived. Applications to specific examples of small molecules (being...
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Some insights in the structure of correlation functions in Liouville and Toda field theories
Dutta, Parikshit
2014-01-01
We discuss some aspects of Liouville field theory, starting from operator equation of motion in presence of two screening charges and re-derive the dual zero mode Schwinger Dyson equations for the two screening charges from the path integral. Using functional methods we show the familiar pole structure of Liouville correlation function using the partition function. Next we discuss a generalized structure of the correlation functions obtained from the zero mode functional equations. From this structure we infer the use of the Barnes double Gamma functions to construct a part of the denominator of the correlators and also use Weyl symmetry of the theory to deduce more information about the rest. We similarly extend these arguments in the case of Toda field theories where we make a general statement about the denominator of the three point function and Sine-Liouvile field theory where we only obtain an infinite product structure.
Perspective: Fundamental aspects of time-dependent density functional theory
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Exact partition functions for gauge theories on Rλ3
Wallet, Jean-Christophe
2016-11-01
The noncommutative space R,SUB>λ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of R&x03bb;3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Conformal invariants topics in geometric function theory
Ahlfors, Lars V
2010-01-01
Most conformal invariants can be described in terms of extremal properties. Conformal invariants and extremal problems are therefore intimately linked and form together the central theme of this classic book which is primarily intended for students with approximately a year's background in complex variable theory. The book emphasizes the geometric approach as well as classical and semi-classical results which Lars Ahlfors felt every student of complex analysis should know before embarking on independent research. At the time of the book's original appearance, much of this material had never ap
Methods from Differential Geometry in Polytope Theory
Adiprasito, Karim Alexander
2014-01-01
The purpose of this thesis is to study classical combinatorial objects, such as polytopes, polytopal complexes, and subspace arrangements, using tools that have been developed in combinatorial topology, especially those tools developed in connection with (discrete) differential geometry, geometric group theory and low-dimensional topology.
A molecular density functional theory to study solvation in water
Jeanmairet, Guillaume
2014-01-01
A classical density functional theory is applied to study solvation of solutes in water. An approx- imate form of the excess functional is proposed for water. This functional requires the knowledge of pure solvent direct correlation functions. Those functions can be computed by using molecular simulations such as molecular dynamic or Monte Carlo. It is also possible to use functions that have been determined experimentally. The functional minimization gives access to the solvation free energy and to the equilibrium solvent density. Some correction to the functional are also proposed to get the proper tetrahedral order of solvent molecules around a charged solute and to reproduce the correct long range hydrophobic behavior of big apolar solutes. To proceed the numerical minimization of the functional, the theory has been discretized on two tridimensional grids, one for the space coordinates, the other for the angular coordinates, in a functional minimization code written in modern Fortran, mdft. This program i...
Institute of Scientific and Technical Information of China (English)
杜利敏; 曾宏; 卢思满; 方柏山
2011-01-01
In this paper, the glycerol and 3 - hydroxypropionaldehyde structures is modeled by using density function theory (DFT) method at the level of ( GGA) - VWNBP and the DND basis set. Then their geometrical structures, electronic structures, Fukui frontier orbital and thermodynamics properties have been computed providing theoretical basis for the study of the structure and activity relationship of these compounds.%采用密度泛函理论(DFT)广义梯度近似(GGA)-VWNBP水平和DND基组研究了甘油和3-羟基丙醛的全优化几何构型、电子结构、福井前线轨道和热力学性质,为研究该类化合物的结构与性质关系提供理论依据,为甘油脱水酶结构改造和分子设计提供配体数据.
Adult neurogenesis: integrating theories and separating functions
2010-01-01
The continuous incorporation of new neurons in the dentate gyrus of the adult hippocampus raises exciting questions about memory and learning, and has inspired new computational models to understand the function of adult neurogenesis. These theoretical approaches suggest distinct roles for new neurons as they slowly integrate into the existing dentate gyrus network: immature adult-born neurons appear to function as pattern integrators of temporally adjacent events, thereby enhancing pattern s...
Hybrid density functional theory band structure engineering in hematite.
Pozun, Zachary D; Henkelman, Graeme
2011-06-14
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe(2)O(3), hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe(2)O(3) crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
Universality of the Distribution Functions of Random Matrix Theory. II
Tracy, Craig A.; Widom, Harold
1999-01-01
This paper is a brief review of recent developments in random matrix theory. Two aspects are emphasized: the underlying role of integrable systems and the occurrence of the distribution functions of random matrix theory in diverse areas of mathematics and physics.
The Analysis of Nida’s Functional Equivalence Theory
Institute of Scientific and Technical Information of China (English)
杨雪; 任培红
2014-01-01
Eugene A. Nida is an influential translation theoretician with great research achievements. The functional equivalence theory which is the core of his translation theories lays a solid foundation for the modern translation. However, there also exist some limitations in it. It should be dialectically analyzed to find its contributions and limitations.
Multicomponent density-functional theory for time-dependent systems
Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.
2007-01-01
We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou
Two-loop beta functions for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jack, I. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1984-11-15
The two-loop ..beta.. functions in the dimensional regularisation framework for a general gauge theory coupled to scalar and spinor fields are presented and by means of a finite transformation of the couplings are converted into a form which vanishes for special cases corresponding to supersymmetric gauge theories.
beta-functions in higher dimensional field theories
Gracey, J A
2016-01-01
We review recent activity in the construction of the renormalization group functions for O(N) scalar and gauge theories in six and higher dimensions. The theories lie in their respective universality classes at the Wilson-Fisher fixed point. The critical exponents at this fixed point in the various dimensions are all in agreement with the known exponents determined in the large Nexpansion.
Schwinger-Dyson functional in Chern-Simons theory
Guadagnini, Enore
2016-01-01
In perturbative SU(N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.
Schwinger-Dyson functional in Chern-Simons theory
Guadagnini, E.
2016-11-01
In perturbative SU (N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.
Schwinger–Dyson functional in Chern–Simons theory
Directory of Open Access Journals (Sweden)
E. Guadagnini
2016-11-01
Full Text Available In perturbative SU(N Chern–Simons gauge theory, it is shown that the Schwinger–Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger–Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of 2d string theory
Dijkgraaf, R; Plesser, R
1993-01-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
Cognitive Adequacy in Structural-Functional Theories of Language
Butler, Christopher S.
2008-01-01
This paper discusses the role played by cognition in three linguistic theories which may be labelled as "structural-functional": Functional (Discourse) Grammar, Role and Reference Grammar and Systemic Functional Grammar. It argues that if we are to achieve true cognitive adequacy, we must go well beyond the grammar itself to include the processes…
On Painleve Related Functions Arising in Random Matrix Theory
Choup, Leonard N
2011-01-01
In deriving large n probability distribution function of the rightmost eigenvalue from the classical Random Matrix Theory Ensembles, one is faced with que question of ?finding large n asymptotic of certain coupled set of functions. This paper presents some of these functions in a new light.
Whitenack, Daniel L; Wasserman, Adam
2012-04-28
Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.
Study on Theory and Methods of Telecommunication Tariff
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The pricing of telecommunication services is quite important aswell as complicated. This paper strengthens the research of theories and implementation of telecommunication tariff in China. It is helpful for the government authorities and enterprises to unify and standardize the regulatory methods, to guide the deciding of the structure and level of telecommunication tariff by implementing scientific theories, to further develop and optimize the tariff system. This paper conducts a systematic, in-depth and creative research on some of the most popular and most difficult problems in the area of telecommunication tariff research, such as the regulation of telecommunication tariff, the theories of telecommunication tariff, the systematic pricing theory, the interconnection charge, the model cost evaluation theory, the long-run incremental cost theory, and the international telecommunication tariff. After studying the foreign methods on telecommunication tariff regulation, basing on the current situation of China's tariff regulation, the scope and methods for China's telecommunication tariff regulation are suggested. Aimed at the weakness of pricing theory for enterprises to set up telecommunication tariffs, an overall frame work of telecommunication tariff theories is proposed. The systematic pricing theory and model cost evaluation theory of telecommunication services are put forward from a brand new perspective. A front topic, the LRIC theory, is probed. In addition, the pricing practices of network interconnection charge and international telecommunication tariff, which are currently very attractive to the theorists, are discussed. Basing on these studies, this paper improves the structure of telecommunication tariff theory. It provides the Chinese government authorities with practical methods and helpful supports to regulate the telecommunication tariffs; in the mean time, it also provides the enterprises with scientific pricing theories and methods to set up
Introduction to modern methods of quantum many-body theory and their applications
Fantoni, Stefano; Krotscheck, Eckhard S
2002-01-01
This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking l
Causal Rate Distortion Function and Relations to Filtering Theory
Charalambous, Charalambos D; Kourtellaris, Christos K
2011-01-01
A causal rate distortion function is defined, its solution is described, and its relation to filtering theory is discusssed. The relation to filtering is obtained via a causal constraint imposed on the reconstruction kernel to be realizable.
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-07
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
Adult neurogenesis: integrating theories and separating functions.
Aimone, James B; Deng, Wei; Gage, Fred H
2010-07-01
The continuous incorporation of new neurons in the dentate gyrus of the adult hippocampus raises exciting questions about memory and learning, and has inspired new computational models to understand the function of adult neurogenesis. These theoretical approaches suggest distinct roles for new neurons as they slowly integrate into the existing dentate gyrus network: immature adult-born neurons seem to function as pattern integrators of temporally adjacent events, thereby enhancing pattern separation for events separated in time; whereas maturing adult-born neurons possibly contribute to pattern separation by being more amenable to learning new information, leading to dedicated groups of granule cells that respond to experienced environments. We review these hypothesized functions and supporting empirical research and point to new directions for future theoretical efforts.
Universal fermionic spectral functions from string theory.
Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel
2011-12-09
We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.
Algebras of holomorphic functions and control theory
Sasane, Amol
2009-01-01
This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co
Density Functional Theory with Dissipation: Transport through Single Molecules
Energy Technology Data Exchange (ETDEWEB)
Kieron Burke
2012-04-30
A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.
Density functional theory predictions of isotropic hyperfine coupling constants.
Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C
2005-02-17
The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.
Non-perturbative Nekrasov partition function from string theory
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I., E-mail: ignatios.antoniadis@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Florakis, I., E-mail: florakis@mppmu.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Hohenegger, S., E-mail: stefan.hohenegger@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Narain, K.S., E-mail: narain@ictp.trieste.it [High Energy Section, The Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11-34014 Trieste (Italy); Zein Assi, A., E-mail: zeinassi@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Centre de Physique Théorique (UMR CNRS 7644), Ecole Polytechnique, 91128 Palaiseau (France)
2014-03-15
We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3×T{sup 2} and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general Ω-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the Ω-background.
Simulation Methods for Functional Materials
Institute of Scientific and Technical Information of China (English)
Youqi Yang
2004-01-01
@@ Functional materials embrace a broad area, ranging from functional information materials to special polymers, from special chemicals for printing to materials used in making paints. Inasmuch as most functional materials are particulate, the present contribution is considered pertinent to the present FORUM.
Grounded Theory in Practice: Is It Inherently a Mixed Method?
Johnson, R. B.; McGowan, M. W.; Turner, L. A.
2010-01-01
We address 2 key points of contention in this article. First, we engage the debate concerning whether particular methods are necessarily linked to particular research paradigms. Second, we briefly describe a mixed methods version of grounded theory (MM-GT). Grounded theory can be tailored to work well in any of the 3 major forms of mixed methods…
Dynamical Functional Theory for Compressed Sensing
DEFF Research Database (Denmark)
Cakmak, Burak; Opper, Manfred; Winther, Ole
2017-01-01
the Thouless Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way...
Density functional theory with quantum nuclei
Requist, Ryan
2016-01-01
It is proved that the ground state energy of an electron-nuclear system is a variational functional of the conditional electronic density n_R(r), the nuclear wavefunction \\chi(R) and the quantum geometric tensor of the conditional electronic wavefunction $T_{\\mu\
Theory of mind and social functioning in first episode psychosis.
Sullivan, Sarah; Herzig, Daniela; Mohr, Christine; Lewis, Glyn; Corcoran, Rhiannon; Drake, Richard; Evans, Jonathan
2013-05-01
There is evidence of associations between social functioning and theory of mind performance and between social functioning and negative symptoms in chronic psychosis. This study investigates these associations in those with first episode psychosis who are unaffected by factors related to long-term mental illness. Our first hypothesis states that there is an association between theory of mind and social functioning. The second hypothesis states that there is no association between symptoms of psychosis and social functioning. Fifty-two individuals with first episode psychosis were assessed for social functioning, theory of mind ability (using the Hinting test with verbal stimuli and the Visual Cartoon test with pictorial stimuli), and symptoms of psychosis. Multivariable logistic regression was used to examine associations. Social functioning and theory of mind were associated when measured by the Hinting test (OR 1.70, 95% CI 1.08, 2.66), but not with the Visual Cartoon test (ToM jokes OR 0.61, 95% CI 0.15, 2.53). There was no association between social functioning and symptoms (psychotic symptoms; OR 0.95, 95% CI 0.81, 1.12; selected negative symptoms; OR 1.33, 95% CI 0.78, 2.25). Theory of mind assessed by verbal stimuli is associated with social functioning in a population with first episode psychosis. These findings may be related to language disorders in psychosis.
Exploring biomedical ontology mappings with graph theory methods
National Research Council Canada - National Science Library
Simon Kocbek; Jin-Dong Kim
2017-01-01
.... Methods We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points...
Quantization conditions and functional equations in ABJ(M) theories
Energy Technology Data Exchange (ETDEWEB)
Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-12-15
The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.
Generalized functions, volume 5 integral geometry and representation theory
Gel′fand, I M; Vilenkin, N Ya; Vilenkin, N Ya
2016-01-01
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unif
Generalized functions, volume 3 theory of differential equations
Gel′fand, I M
2016-01-01
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. In Volum
A Cp-theory problem book functional equivalencies
Tkachuk, Vladimir V
2016-01-01
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical re...
Simple preconditioning for time-dependent density functional perturbation theory
Lehtovaara, Lauri; Marques, Miguel A. L.
2011-07-01
By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states — such as the Sternheimer method — as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.
Generating Functionals for Quantum Field Theories with Random Potentials
Jain, Mudit
2015-01-01
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of the string theory landscape (e.g. cosmic inflation). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out ...
A New CAC Method Using Queuing Theory
Directory of Open Access Journals (Sweden)
P. Kvackaj
2008-12-01
Full Text Available The CAC (Connection Admission Control method plays an important role in the ATM (Asynchronous Transfer Mode network environment. The CAC is the first step in the prevention of congested states in the network topology, and conducts to the optimal network resources utilization. The paper is aimed to propose an enhancement for a convolution method that is one of the statistical CAC methods used in ATM. The convolution method uses a buffer-less assumption in the estimation of the cell loss. Using formulas for the G/M/1 queuing system, the cell loss can be estimated as the buffer overflow probability. In this paper, the proposed CAC method is compared with other three statistical CAC methods, and conclusions regarding the exploitation of the CAC method are presented.
Revisiting the Fermi Surface in Density Functional Theory
Das, Mukunda P.; Green, Frederick
2016-06-01
The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.
Oxygen adsorption on pyrite (100) surface by density functional theory
Institute of Scientific and Technical Information of China (English)
孙伟; 胡岳华; 邱冠周; 覃文庆
2004-01-01
Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference.The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-01-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-02-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
Scalable Nuclear Density Functional Theory with Sky3D
Afibuzzaman, Md; Aktulga, Hasan Metin
2016-01-01
In nuclear astro-physics, the quantum simulation of large inhomogenous dense systems as present in the crusts of neutron stars presents big challenges. The feasible number of particles in a simulation box with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe the techniques used to parallelize Sky3D, a nuclear density functional theory code that operates on an equidistant grid, and optimize its performance on distributed memory architectures. We also describe cache blocking techniques to accelerate the compute-intensive matrix calculation part in Sky3D. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on Edison, a Cray XC30 supercomputer.
Zarei, Mohammad Hossein
2016-01-01
Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...
Monte Carlo Computation of Spectral Density Function in Real-Time Scalar Field Theory
Abbasi, Navid
2014-01-01
Non-perturbative study of "real-time" field theories is difficult due to the sign problem. We use Bold Schwinger-Dyson (SD) equations to study the real-time $\\phi^4$ theory in $d=4$ beyond the perturbative regime. Combining SD equations in a particular way, we derive a non-linear integral equation for the two-point function. Then we introduce a new method by which one can analytically perform the momentum part of loop integrals in this equation. The price we must pay for such simplification is to numerically solve a non-linear integral equation for the spectral density function. Using Bold diagrammatic Monte Carlo method we find non-perturbative spectral function of theory and compare it with the one obtained from perturbation theory. At the end we utilize our Monte Carlo result to find the full vertex function as the basis for the computation of real-time scattering amplitudes.
Dynamics of inequalities in geometric function theory
Directory of Open Access Journals (Sweden)
Reich Simeon
2001-01-01
Full Text Available A domain in the complex plane which is star-like with respect to a boundary point can be approximated by domains which are star-like with respect to interior points. This approximation process can be viewed dynamically as an evolution of the null points of the underlying holomorphic functions from the interior of the open unit disk towards a boundary point. We trace these dynamics analytically in terms of the Alexander–Nevanlinna and Robertson inequalities by using the framework of complex dynamical systems and hyperbolic monotonicity.
Orbital functionals in density-matrix- and current-density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Helbig, N.
2006-05-15
Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized
Exact observability, square functions and spectral theory
Haak, Bernhard Hermann
2011-01-01
In the first part of this article we introduce the notion of a backward-forward conditioning (BFC) system that generalises the notion of zero-class admissibiliy introduced in [Xu,Liu,Yung]. We can show that unless the spectum contains a halfplane, the BFC property occurs only in siutations where the underlying semigroup extends to a group. In a second part we present a sufficient condition for exact observability in Banach spaces that is designed for infinite-dimensional output spaces and general strongly continuous semigroups. To obtain this we make use of certain weighted square function estimates. Specialising to the Hilbert space situation we obtain a result for contraction semigroups without an analyticity condition on the semigroup.
Effective potential in density matrix functional theory.
Nagy, A; Amovilli, C
2004-10-01
In the previous paper it was shown that in the ground state the diagonal of the spin independent second-order density matrix n can be determined by solving a single auxiliary equation of a two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a two-particle problem. The effective potential of the two-particle equation contains a term v(p) of completely kinetic origin. Virial theorem and hierarchy of equations are derived for v(p) and simple approximations are proposed. A relationship between the effective potential u(p) of the shape function equation and the potential v(p) is established.
Density Functional Theory Embedding for Correlated Wavefunctions
2014-01-01
Van Barel, J. Comput. Appl. Math. 213, 268 (2008). [52] M. Gu and S. C. Eisenstat, SIAM J. Matrix Anal. Appl. 16, 172 (1995). [53] M. Schutz, R. Lindh ...Analysis and Methods , (Dover Pub- lishing, 2003). 93 [56] H.-J. Werner, P. J. Knowles, R. Lindh , F. R. Manby, M. Schütz et al. Molpro, ver- sion...43] T. M. Henderson, J. Chem. Phys. 125, 014105 (2006). [44] B. Swerts, L. F. Chibotaru, R. Lindh , L. Seijo, Z. Barandiaran, S. Clima, K. Pier- loot
Solvation of complex surfaces via molecular density functional theory.
Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel
2012-12-14
We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Correlation functions in conformal Toda field theory II
Fateev, V A
2009-01-01
This is the second part of the paper 0709.3806v2. Here we show that three-point correlation function with one semi-degenerate field in Toda field theory as well as four-point correlation function with one completely degenerate and one semi-degenerate field can be represented by the finite dimensional integrals.
Complex analysis a modern first course in function theory
Muir, Jerry R
2015-01-01
A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic fun
Density-functional perturbation theory goes time-dependent
Gebauer, Ralph; Rocca, Dario; Baroni, Stefano
2009-01-01
The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...
Testing and building theories: mixed methods synthesis
2008-01-01
Presentation on use of mixed methods in diverse study types, which combines the findings of ‘qualitative’ and ‘quantitative’ studies within a single systematic review, in order to address the same, overlapping or complementary review questions.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
Developments and retrospectives in Lie theory algebraic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research. Mos...
Developments and retrospectives in Lie theory geometric and analytic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Geometric and Analytic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current re...
Cost benefit theory and optimal design of gene regulation functions
Kalisky, Tomer; Dekel, Erez; Alon, Uri
2007-12-01
Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.
Density functional theory in materials science.
Neugebauer, Jörg; Hickel, Tilmann
2013-09-01
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
An experimental method for validating compressor valve vibration theory
Habing, R.A.; Peters, M.C.A.M.
2006-01-01
This paper presents an experimental method for validating traditional compressor valve theory for unsteady flow conditions. Traditional valve theory considers the flow force acting on the plate and the flow rate as quasi-steady variables. These variables are related via semi-empirical coefficients
Using grounded theory as a method for rigorously reviewing literature
Wolfswinkel, J.; Furtmueller, E.; Wilderom, C.P.M.
2013-01-01
This paper offers guidance to conducting a rigorous literature review. We present this in the form of a five-stage process in which we use Grounded Theory as a method. We first probe the guidelines explicated by Webster and Watson, and then we show the added value of Grounded Theory for rigorously a
An experimental method for validating compressor valve vibration theory
Habing, R.A.; Peters, M.C.A.M.
2006-01-01
This paper presents an experimental method for validating traditional compressor valve theory for unsteady flow conditions. Traditional valve theory considers the flow force acting on the plate and the flow rate as quasi-steady variables. These variables are related via semi-empirical coefficients w
Olbrich, Sebastian; Mueller, Benjamin; Niederman, Fred
2011-01-01
Where IS research aims at theory building and testing, the vast bulk of theory is borrowed from reference disciplines. While this provides some momentum for research output, it also tends to shift the focus of research away from direct observation of central, core IS issues. The purpose of this pape
A numerical method based on probability theory
Institute of Scientific and Technical Information of China (English)
唐立; 邹捷中; 杨文胜
2003-01-01
By using the connections between Brownian family with drift and elliptic differential equations, an efficient probabilistic computing method is given. This method is applied to a wide-range Diriehlet problem. Detail analysis and deduction of solving the problem are offered. The stochastic representation of the solution to the problem makes a 3-dimensional problem turned into a 2-dimensional problem. And an auxiliary ball is constructed. The strong Markov property and the joint distributions of the time and place of hitting spheres for Brownian family with drift are employed. Finally, good convergence of the numerical solution to the problem over domain with arbitrary boundary is obtained.
Diffusion method in random matrix theory
Grela, Jacek
2016-01-01
We introduce a calculational tool useful in computing ratios and products of characteristic polynomials averaged over Gaussian measures with an external source. The method is based on Dyson’s Brownian motion and Grassmann/complex integration formulas for determinants. The resulting formulas are exact for finite matrix size N and form integral representations convenient for large N asymptotics. Quantities obtained by the method are interpreted as averages over standard matrix models. We provide several explicit and novel calculations with special emphasis on the β =2 Girko-Ginibre ensembles.
The implicit function theorem history, theory, and applications
Krantz, Steven G
2003-01-01
The implicit function theorem is part of the bedrock of mathematics analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash-Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex store, and intimately bound up with the development of fundamental ideas in a...
Review of Test Theory and Methods.
1981-01-01
their roots in work in the 1940s by Mosier, Guttman, and Lazarsfeld , among others. Although the basic ideas were known about 40 years ago, the methods...St. Paul , MN: Minnesota Department of Personnel Selection Research Unit Feldt, L. S. 1975. Estimation of the reliability of a test divided into two
The benchmark of gutzwiller density functional theory in hydrogen systems
Energy Technology Data Exchange (ETDEWEB)
Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming
2012-02-23
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.
The Benchmark of Gutzwiller Density Functional Theory in Hydrogen Systems
Energy Technology Data Exchange (ETDEWEB)
Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming
2011-01-13
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Numerical stochastic perturbation theory in the Schroedinger functional
Energy Technology Data Exchange (ETDEWEB)
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-11-15
The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Numerical Stochastic Perturbation Theory in the Schr\\"odinger Functional
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Sint, Stefan
2013-01-01
The Schr\\"odinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Integrability: mathematical methods for studying solitary waves theory
Wazwaz, Abdul-Majid
2014-03-01
In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the
Faita, Daniel
1977-01-01
A sketch of the development of functionalism in relation to other linguistic theories and a brief analysis of the present state of the research. Topics covered are: form versus function; the impasse between distributional and transformational grammar; and transformational grammar according to Harris. (Text is in French.) (AMH)
Guiasu, Silviu
1979-01-01
Coalition and Connection in Games: Problems of Modern Game Theory using Methods Belonging to Systems Theory and Information Theory focuses on coalition formation and on connections occurring in games, noting the use of mathematical models in the evaluation of processes involved in games. The book first takes a look at the process of strategy in playing games in which the conditional choices of players are noted. The sequence of decisions during the playing of games and observance of the rules are emphasized. The text also ponders on the mathematical tool of game theory in which the differences
Informing saccharide structural NMR studies with density functional theory calculations.
Klepach, Thomas; Zhao, Hongqiu; Hu, Xiaosong; Zhang, Wenhui; Stenutz, Roland; Hadad, Matthew J; Carmichael, Ian; Serianni, Anthony S
2015-01-01
Density functional theory (DFT) is a powerful computational tool to enable structural interpretations of NMR spin-spin coupling constants ( J-couplings) in saccharides, including the abundant (1)H-(1)H ( JHH), (13)C-(1)H ( JCH), and (13)C-(13)C ( JCC) values that exist for coupling pathways comprised of 1-4 bonds. The multiple hydroxyl groups in saccharides, with their attendant lone-pair orbitals, exert significant effects on J-couplings that can be difficult to decipher and quantify without input from theory. Oxygen substituent effects are configurational and conformational in origin (e.g., axial/equatorial orientation of an OH group in an aldopyranosyl ring; C-O bond conformation involving an exocyclic OH group). DFT studies shed light on these effects, and if conducted properly, yield quantitative relationships between a specific J-coupling and one or more conformational elements in the target molecule. These relationships assist studies of saccharide structure and conformation in solution, which are often challenged by the presence of conformational averaging. Redundant J-couplings, defined as an ensemble of J-couplings sensitive to the same conformational element, are particularly helpful when the element is flexible in solution (i.e., samples multiple conformational states on the NMR time scale), provided that algorithms are available to convert redundant J-values into meaningful conformational models. If the latter conversion is achievable, the data can serve as a means of testing, validating, and refining theoretical methods like molecular dynamics (MD) simulations, which are currently relied upon heavily to assign conformational models of saccharides in solution despite a paucity of experimental data needed to independently validate the method.
Einstein gravity 3-point functions from conformal field theory
Afkhami-Jeddi, Nima; Kundu, Sandipan; Tajdini, Amirhossein
2016-01-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large $N$ and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions $\\langle TTT\\rangle$, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular...
King's theory of goal attainment: exploring functional status.
Caceres, Billy A
2015-04-01
Imogene King's Theory of Goal Attainment provides a schema for nurses interested in functional status. However, the lack of a uniform definition for functional status has hindered development of a concise understanding of this phenomenon. Functional status is particularly important to nurses who are concerned with the safety and wellbeing of clients. With healthcare's increased focus on client-family-centered care it is important to develop innovative approaches for evaluating functional status that incorporate the client-family perspective. King's focus on mutual decision-making is an underutilized resource that can provide great insight into the study and understanding of functional status.
The Monte Carlo method in quantum field theory
Morningstar, C
2007-01-01
This series of six lectures is an introduction to using the Monte Carlo method to carry out nonperturbative studies in quantum field theories. Path integrals in quantum field theory are reviewed, and their evaluation by the Monte Carlo method with Markov-chain based importance sampling is presented. Properties of Markov chains are discussed in detail and several proofs are presented, culminating in the fundamental limit theorem for irreducible Markov chains. The example of a real scalar field theory is used to illustrate the Metropolis-Hastings method and to demonstrate the effectiveness of an action-preserving (microcanonical) local updating algorithm in reducing autocorrelations. The goal of these lectures is to provide the beginner with the basic skills needed to start carrying out Monte Carlo studies in quantum field theories, as well as to present the underlying theoretical foundations of the method.
Methods of quantum field theory in statistical physics
Abrikosov, A A; Gorkov, L P; Silverman, Richard A
1975-01-01
This comprehensive introduction to the many-body theory was written by three renowned physicists and acclaimed by American Scientist as ""a classic text on field theoretic methods in statistical physics."
Restricted Kalman Filtering Theory, Methods, and Application
Pizzinga, Adrian
2012-01-01
In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th
Introducing Legal Method When Teaching Stakeholder Theory
DEFF Research Database (Denmark)
Buhmann, Karin
2015-01-01
Governments are particularly salient stakeholders for business ethics. They act on societal needs and social expectations, and have the political and legal powers to restrict or expand the economic freedoms of business as well as the legitimacy and often urgency to do so. We draw on two examples......: the Business & Human Rights regime from a UN Global Compact perspective; and mandatory CSR reporting. Supplying integrated teaching notes and generalising on the examples, we explain how legal method may help students of business ethics, organisation and management – future managers – in their analysis...
Introducing legal method when teaching stakeholder theory
DEFF Research Database (Denmark)
Buhmann, Karin
2015-01-01
Governments are particularly salient stakeholders for business ethics. They act on societal needs and social expectations, and have the political and legal powers to restrict or expand the economic freedoms of business as well as the legitimacy and often urgency to do so. We draw on two examples......: the Business & Human Rights regime from a UN Global Compact perspective; and mandatory CSR reporting. Supplying integrated teaching notes and generalising on the examples, we explain how legal method may help students of business ethics, organisation and management – future managers – in their analysis...
Liouville theory Ward identities for generating functional and modular geometry
Takhtajan, L A
1994-01-01
We continue the study of quantum Liouville theory through Polyakov's functional integral \\cite{Pol1,Pol2}, started in \\cite{T1}. We derive the perturbation expansion for Schwinger's generating functional for connected multi-point correlation functions involving stress-energy tensor, give the "dynamical" proof of the Virasoro symmetry of the theory and compute the value of the central charge, confirming previous calculation in \\cite{T1}. We show that conformal Ward identities for these correlation functions contain such basic facts from Kähler geometry of moduli spaces of Riemann surfaces, as relation between accessory parameters for the Fuchsian uniformization, Liouville action and Eichler integrals, Kähler potential for the Weil-Petersson metric, and local index theorem. These results affirm the fundamental role, that universal Ward identities for the generating functional play in Friedan-Shenker modular geometry \\cite{FS}.
Functionalism as a philosophical theory of the cognitive sciences.
Polger, Thomas W
2012-05-01
Functionalism is a philosophical theory (or family of theories) concerning the nature of mental states. According to functionalism psychological/cognitive states are essentially functional states of whole systems. Functionalism characterizes psychological states essentially according to what they do, by their relations to stimulus inputs and behavioral outputs as well as their relations to other psychological and nonpsychological internal states of a system. The central constructive relation for functionalism is the so-called realization relation. Realization is a proposal for how psychological states can be real, physical, and causally efficacious while at the same time preserving the autonomy of cognitive explanations and avoiding reduction or elimination. WIREs Cogn Sci 2012, 3:337-348. doi: 10.1002/wcs.1170 For further resources related to this article, please visit the WIREs website.
Functional renormalisation group equations for supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Synatschke-Czerwonka, Franziska
2011-01-11
This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Quantum power functional theory for many-body dynamics
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Matthias, E-mail: Matthias.Schmidt@uni-bayreuth.de [Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth (Germany)
2015-11-07
We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.
The Riemann zeta-function theory and applications
Ivic, Aleksandar
2003-01-01
""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim
The finite section method and problems in frame theory
DEFF Research Database (Denmark)
Christensen, Ole; Strohmer, T.
2005-01-01
solves related computational problems in frame theory. In the case of a frame which is localized w.r.t. an orthonormal basis we are able to estimate the rate of approximation. The results are applied to the reproducing kernel frame appearing in the theory for shift-invariant spaces generated by a Riesz......The finite section method is a convenient tool for approximation of the inverse of certain operators using finite-dimensional matrix techniques. In this paper we demonstrate that the method is very useful in frame theory: it leads to an efficient approximation of the inverse frame operator and also...
Grassmann phase space methods for fermions. I. Mode theory
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2016-07-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic
Sundararaman, Ravishankar
2014-01-01
Classical density-functional theory provides an efficient alternative to molecular dynamics simulations for understanding the equilibrium properties of inhomogeneous fluids. However, application of density-functional theory to multi-site molecular fluids has so far been limited by complications due to the implicit molecular geometry constraints on the site densities, whose resolution typically requires expensive Monte Carlo methods. Here, we present a general scheme of circumventing this so-called inversion problem: compressed representations of the orientation density. This approach allows us to combine the superior iterative convergence properties of multipole representations of the fluid configuration with the improved accuracy of site-density functionals. Next, from a computational perspective, we show how to extend the DFT++ algebraic formulation of electronic density-functional theory to the classical fluid case and present a basis-independent discretization of our formulation for molecular classical de...
Configurational study of amino-functionalized silica surfaces: A density functional theory modeling.
Hozhabr Araghi, Samira; Entezari, Mohammad H; Sadeghi Googheri, Mohammad Sadegh
2015-06-01
Despite extensive studies of the amino-functionalized silica surfaces, a comprehensive investigation of the effects of configuration and hydrolysis of 3-aminopropyltriethoxysilan (APTES) molecules attached on silica has not been studied yet. Therefore, the methods of quantum mechanics were used for the study of configuration and hydrolysis forms of APTES molecules attached on the surface. For this purpose, five different categories based on the number of hydrolyzed ethoxy groups including 16 configurations were designed and analyzed by the density functional theory (DFT) method. The steric hindrance as an effective factor on the stability order was extracted from structural analysis. Other impressive parameters such as the effects of hydrogen bond and electron delocalization energy were obtained by using the atoms in molecules (AIM) and natural bond orbitals (NBO) theories. Consequently, it was found that the stability of configurations was attributed to steric effects, hydrogen bond numbers and electron delocalization energy. The maximum stability was achieved when at least two of these parameters cooperate with each other.
Bushnell, Eric A C; Gauld, James W
2013-01-15
The performance of a range density functional theory functionals combined in a quantum mechanical (QM)/molecular mechanical (MM) approach was investigated in their ability to reliably provide geometries, electronic distributions, and relative energies of a multicentered open-shell mechanistic intermediate in the mechanism 8R-Lipoxygenase. With the use of large QM/MM active site chemical models, the smallest average differences in geometries between the catalytically relevant quartet and sextet complexes were obtained with the B3LYP(*) functional. Moreover, in the case of the relative energies between (4) II and (6) II, the use of the B3LYP(*) functional provided a difference of 0.0 kcal mol(-1). However, B3LYP(±) and B3LYP also predicted differences in energies of less than 1 kcal mol(-1). In the case of describing the electronic distribution (i.e., spin density), the B3LYP(*), B3LYP, or M06-L functionals appeared to be the most suitable. Overall, the results obtained suggest that for systems with multiple centers having unpaired electrons, the B3LYP(*) appears most well rounded to provide reliable geometries, electronic structures, and relative energies. Copyright © 2012 Wiley Periodicals, Inc.
Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine
DEFF Research Database (Denmark)
Vazquez, Hector; Jelinek, P.; Brandbyge, Mads;
2009-01-01
A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange and co...
Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano
2013-01-01
The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.
Functional approach to coherent states in non commutative theories
Lubo, M
2003-01-01
In many high dimensional noncommutative theories, no state saturates simultaneously all the non trivial Heisenberg uncertainty relations. This differs from the usual theory where the squeezed states possess this property. The important role played by these states when recovering classical mechanics as a limit of quantum theory makes necessary the investigation of the possible generalizations in the noncommutative context. We propose an extension based on a variational principle. The action considered is the sum of the squares of the terms associated to the non trivial Heisenberg uncertainty relations. We first verify that our proposal works in the usual theory: we find the known gaussian functions and, besides them, other states which can be expressed as products of gaussians with specific hypergeometrics. We illustrate our construction in three models defined on a four dimensional phase space: two models endowed with a minimal length uncertainty and the popular case in which the commutators of the positions ...
A unified convergence theory of a numerical method,and applications to the replenishment policies
Institute of Scientific and Technical Information of China (English)
MI Xiang-jiang(宓湘江); WANG Xing-hua(王兴华)
2004-01-01
In determining the replenishment policy for an inventory system, some researchers advocated that the iterative method of Newton could be applied to the derivative of the total cost function in order to get the optimal solution. But this approach requires calculation of the second derivative of the function. Avoiding this complex computation we use another iterative method presented by the second author. One of the goals of this paper is to present a unified convergence theory of this method. Then we give a numerical example to show the application of our theory.
A unified convergence theory of a numerical method, and applications to the replenishment policies
Institute of Scientific and Technical Information of China (English)
宓湘江; 王兴华
2004-01-01
In determining the replenishment policy for an inventory system, some researchers advocated that the iterative method of Newton could be applied to the derivative of the total cost function in order to get the optimal solution. But this approach requires calculation of the second derivative of the function. Avoiding this complex computation we use another iterative method presented by the second author. One of the goals of this paper is to present a unified convergence theory of this method. Then we give a numerical example to show the application of our theory.
A unified convergence theory of a numerical method, and applications to the replenishment policies.
Mi, Xiang-jiang; Wang, Xing-hua
2004-01-01
In determining the replenishment policy for an inventory system, some researchers advocated that the iterative method of Newton could be applied to the derivative of the total cost function in order to get the optimal solution. But this approach requires calculation of the second derivative of the function. Avoiding this complex computation we use another iterative method presented by the second author. One of the goals of this paper is to present a unified convergence theory of this method. Then we give a numerical example to show the application of our theory.
Magnetic circular dichroism in real-time time-dependent density functional theory
Lee, K -M; Bertsch, G F
2010-01-01
We apply the adiabatic time-dependent density functional theory to magnetic ci the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find the real time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and interpreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C-60 using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.
On skew tau-functions in higher spin theory
Melnikov, D; Morozov, A
2016-01-01
Recent studies of higher spin theory in three dimensions concentrate on Wilson loops in Chern-Simons theory, which in the classical limit reduce to peculiar corner matrix elements between the highest and lowest weight states in a given representation of SL(N). Despite these "skew" tau-functions can seem very different from conventional ones, which are the matrix elements between the two highest weight states, they also satisfy the Toda recursion between different fundamental representations. Moreover, in the most popular examples they possess simple representations in terms of matrix models and Schur functions. We provide a brief introduction to this new interesting field, which, after quantization, can serve as an additional bridge between knot and integrability theories.
Reflection-asymmetric nuclear deformations within the Density Functional Theory
Olsen, E; Nazarewicz, W; Stoitsov, M; 10.1088/1742-6596/402/1/012034
2013-01-01
Within the nuclear density functional theory (DFT) we study the effect of reflection-asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver AxialHFB that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even-even isotopes of radium and thorium.
New Hypothesis and Theory about Functions of Sleep and Dreams
Directory of Open Access Journals (Sweden)
Nikola N. Ilanković
2014-03-01
Conclusion: IEP-P1 could be a new biological marker to distinction of sleep organization in different psychotic states and other states of altered consciousness. The developed statistical models could be the basis for new hypothesis and theories about functions of sleep and dreams.
Effective Maxwell Equations from Time-dependent Density Functional Theory
Institute of Scientific and Technical Information of China (English)
Weinan E; Jianfeng LU; Xu YANG
2011-01-01
The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.
Theory of Mind and Executive Function in Chinese Preschool Children
Duh, Shinchieh; Paik, Jae H.; Miller, Patricia H.; Gluck, Stephanie C.; Li, Hui; Himelfarb, Igor
2016-01-01
Cross-cultural research on children's theory of mind (ToM) understanding has raised questions about its developmental sequence and relationship with executive function (EF). The current study examined how ToM develops (using the tasks from Wellman & Liu, 2004) in relation to 2 EF skills (conflict inhibition, working memory) in 997 Chinese…
Density functional theory in surface science and heterogeneous catalysis
DEFF Research Database (Denmark)
Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.
2006-01-01
amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...
Charge and spin fluctuations in the density functional theory
Energy Technology Data Exchange (ETDEWEB)
Gyoerffy, B.L.; Barbieri, A. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Staunton, J.B. (Warwick Univ., Coventry (UK). Dept. of Physics); Shelton, W.A.; Stocks, G.M. (Oak Ridge National Lab., TN (USA))
1990-01-01
We introduce a conceptual framework which allow us to treat charge and spin fluctuations about the Local density Approximation (LDA) to the Density Functional Theory (DFT). We illustrate the approach by explicit study of the Disordered Local Moment (DLM) state in Fe above the Curie Temperature {Tc} and the Mott insulating state in MnO. 27 refs., 6 figs.
A Tryst With Density: Walter Kohn and Density Functional Theory
Indian Academy of Sciences (India)
Shobhana Narasimhan
2017-08-01
Walter Kohn transformed theoretical chemistry and solid statephysics with his development of density functional theory, forwhich he was awarded the Nobel Prize. This article tries toexplain, in simple terms, why this was an important advancein the field, and to describe precisely what it was that he (togetherwith his collaborators Pierre Hohenberg and Lu JeuSham) achieved.
Theory of Mind and Executive Function in Chinese Preschool Children
Duh, Shinchieh; Paik, Jae H.; Miller, Patricia H.; Gluck, Stephanie C.; Li, Hui; Himelfarb, Igor
2016-01-01
Cross-cultural research on children's theory of mind (ToM) understanding has raised questions about its developmental sequence and relationship with executive function (EF). The current study examined how ToM develops (using the tasks from Wellman & Liu, 2004) in relation to 2 EF skills (conflict inhibition, working memory) in 997 Chinese…
Replicating Small Group Research Using the Functional Theory.
Cragan, John F.; Wright, David W.
A replication study tested functional theory utilizing untrained full-fledged groups. One hundred forty undergraduate students who were enrolled in a small group communication course at a large midwestern university participated in small group discussions analyzing a plagiarism case used in an original study by R. Y. Hirokawa. Results indicated…
Exact ensemble density-functional theory for excited states
Yang, Zeng-hui; Pribram-Jones, Aurora; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A
2014-01-01
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) of excited states from the ground and excited states of helium. The exchange-correlation potential is compared with current approximations, which miss prominent features. The ensemble derivative discontinuity is tested, and the virial theorem is proven and illustrated.
Reproducibility in density functional theory calculations of solids
DEFF Research Database (Denmark)
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn
2016-01-01
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We r...
Full canonical information from grand-potential density-functional theory.
de Las Heras, Daniel; Schmidt, Matthias
2014-12-05
We present a general and formally exact method to obtain the canonical one-body density distribution and the canonical free energy from direct decomposition of classical density functional results in the grand ensemble. We test the method for confined one-dimensional hard-core particles for which the exact grand potential density functional is explicitly known. The results agree to within high accuracy with those from exact methods and our Monte Carlo many-body simulations. The method is relevant for treating finite systems and for dynamical density functional theory.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Adjustable entropy function method for support vector machine
Institute of Scientific and Technical Information of China (English)
Wu Qing; Liu Sanyang; Zhang Leyou
2008-01-01
Based on KKT complementary condition in optimization theory,an unconstrained non-differential optimization model for support vector machine is proposed.An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution.The proposed method can find an optimal solution with a relatively small parameter p,which avoids the numerical overflow in the traditional entropy function methods.It is a new approach to solve support vector machine.The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.
Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.
2008-01-01
The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.
Quasiaverages, symmetry breaking and irreducible Green functions method
Directory of Open Access Journals (Sweden)
A.L.Kuzemsky
2010-01-01
Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.
Analysis of the segmented contraction of basis functions using density matrix theory.
Custodio, Rogério; Gomes, André Severo Pereira; Sensato, Fabrício Ronil; Trevas, Júlio Murilo Dos Santos
2006-11-30
A particular formulation based on density matrix (DM) theory at the Hartree-Fock level of theory and the description of the atomic orbitals as integral transforms is introduced. This formulation leads to a continuous representation of the density matrices as functions of a generator coordinate and to the possibility of plotting either the continuous or discrete density matrices as functions of the exponents of primitive Gaussian basis functions. The analysis of these diagrams provides useful information allowing: (a) the determination of the most important primitives for a given orbital, (b) the core-valence separation, and (c) support for the development of contracted basis sets by the segmented method.
Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory
Energy Technology Data Exchange (ETDEWEB)
Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M
2006-10-06
We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.
BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION
Institute of Scientific and Technical Information of China (English)
Li Junyue; Li Zhiyong; Li Huan; Xue Haitao
2004-01-01
Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.
The Functional Methods of Discourse Analysis
Institute of Scientific and Technical Information of China (English)
覃卓敏
2008-01-01
From the macroscopic angle of function, methods of discourse analysis are clarified to find out two important methods in pragmatics and through which will better used in the understanding of discourse.
Multigrid methods for propagators in lattice gauge theories
Kalkreuter, T
1994-01-01
Multigrid methods were invented for the solution of discretized partial differential equations in ordered systems. The slowness of traditional algorithms is overcome by updates on various length scales. In this article we discuss generalizations of multigrid methods for disordered systems, in particular for propagators in lattice gauge theories. A discretized nonabelian gauge theory can be formulated as a system of statistical mechanics where the gauge field degrees of freedom are SU(N) matrices on the links of the lattice. These SU(N) matrices appear as random coefficients in Dirac equations. We aim at finding an efficient method by which one can solve Dirac equations without critical slowing down. If this could be achieved, Monte Carlo simulations of Quantum Chromodynamics (the theory of the strong interaction) would be accelerated considerably. In principle, however, the methods discussed can be used in arbitrary space-time dimension and for arbitrary gauge group. Moreover, there are applications in multig...
Hybrid density functional theory LCAO calculations on phonons in Ba (Ti,Zr,Hf) O3
Evaestov, Robert A
2010-01-01
Phonon frequencies at {\\Gamma},X,M,R-points of Brilloin zone in cubic phase of Ba(Ti,Zr,Hf)O3 were first time calculated by frozen phonon method using density functional theory (DFT) with hybrid exchange correlation functional PBE0. The calculations use linear combination of atomic orbitals (LCAO) basis functions as implemented in CRYSTAL09 computer code. The Powell algorithm was applied for basis set optimization. In agreement with the experimental observations the structural instability via...
Proceedings First Workshop on Quantitative Formal Methods: Theory and Applications
Andova, Suzana; D'Argenio, Pedro; Cuijpers, Pieter; Markovski, Jasen; Morgan, Caroll; Núñez, Manuel; 10.4204/EPTCS.13
2009-01-01
This volume contains the papers presented at the 1st workshop on Quantitative Formal Methods: Theory and Applications, which was held in Eindhoven on 3 November 2009 as part of the International Symposium on Formal Methods 2009. This volume contains the final versions of all contributions accepted for presentation at the workshop.
A Method for Dispersion Compensation Based on GLM Theory
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A method used to design the waveguide gratings for dispersion compensation employing GLM theory is briefly described. By using this method a reflective grating is designed, which has both a flat amplitude and a quadratic phase response over the transfer bandwidth.
Density functional theory study of phase IV of solid hydrogen
Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.
2012-06-01
We have studied solid hydrogen up to pressures of 300 GPa and temperatures of 350 K using density functional theory methods and have found “mixed structures” that are more stable than those predicted earlier. Mixed structures consist of alternate layers of strongly bonded molecules and weakly bonded graphene-like sheets. Quasiharmonic vibrational calculations show that mixed structures are the most stable at room temperature over the pressure range 250-295 GPa. These structures are stabilized with respect to strongly bonded molecular phases at room temperature by the presence of lower frequency vibrational modes arising from the graphene-like sheets. Our results for the mixed structures are consistent with the experimental Raman data [M. I. Eremets and I. A. Troyan, Nat. Mater.1476-112210.1038/nmat3175 10, 927 (2011) and R. T. Howie , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.125501 108, 125501 (2012)]. We find that mixed phases are reasonable structural models for phase IV of hydrogen.
Green's function relativistic mean field theory for Λ hypernuclei
Ren, S.-H.; Sun, T.-T.; Zhang, W.
2017-05-01
The relativistic mean field theory with the Green's function method is extended to study Λ hypernuclei. Taking the hypernucleus Ca61Λ as an example, the single-particle resonant states for Λ hyperons are investigated by analyzing the density of states, and the corresponding energies and widths are given. Different behaviors are observed for the resonant states, i.e., the distributions of the very narrow 1 f5 /2 and 1 f7 /2 states are very similar to bound states while those of the wide 1 g7 /2 and 1 g9 /2 states are like scattering states. Besides, the impurity effect of Λ hyperons on the single-neutron resonant states is investigated. For most of the resonant states, both the energies and widths decrease with adding more Λ hyperons due to the attractive Λ N interaction. Finally, the energy level structure of Λ hyperons in the Ca hypernucleus isotopes with mass number A =53 -73 are studied; obvious shell structure and small spin-orbit splitting are found for the single-Λ spectrum.
Correlation theory-based signal processing method for CMF signals
Shen, Yan-lin; Tu, Ya-qing
2016-06-01
Signal processing precision of Coriolis mass flowmeter (CMF) signals affects measurement accuracy of Coriolis mass flowmeters directly. To improve the measurement accuracy of CMFs, a correlation theory-based signal processing method for CMF signals is proposed, which is comprised of the correlation theory-based frequency estimation method and phase difference estimation method. Theoretical analysis shows that the proposed method eliminates the effect of non-integral period sampling signals on frequency and phase difference estimation. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of frequency and phase difference estimation and has better estimation performance than the adaptive notch filter, discrete Fourier transform and autocorrelation methods in terms of frequency estimation and the data extension-based correlation, Hilbert transform, quadrature delay estimator and discrete Fourier transform methods in terms of phase difference estimation, which contributes to improving the measurement accuracy of Coriolis mass flowmeters.
Building a functional multiple intelligences theory to advance educational neuroscience.
Cerruti, Carlo
2013-01-01
A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.
Systemic Functional Theory: A Pickax of Textual Investigation
Directory of Open Access Journals (Sweden)
Taofeek Dalamu
2017-03-01
Full Text Available The study examines Systemic Functional Theory (SFT as a tool of examining text, and perhaps, text of any dimension as long as it falls within the grammatical organs of the clause. The author provides explanations for the theory from its relevant source(s. The chronological appreciation involves the efforts of Saussure, Firth, Malinowski, Hjelmslev, etc. However, Halliday’s insight seems prominent and upon which Systemic Functional Theory receives a global status that it has assumed today. Halliday constructs numerous concepts e.g. lexicogrammar, processes, cohesion, coherence, system, system network with background from traditional grammar and sociological tokens. In addition to that, the three metafunctions are characterized as its core operational concepts. Out of these, the mood system serves as the instrument of analysis of Psalm one utilized in this endeavor as a case study. Although the clauses fall within the profile of the indicative and imperative, the study reveals that some of the structures are inverted in order to propagate the intended messages. To that end, there are inverted indicative clauses expressed as inverted declarative statements, inverted imperative questions and inverted negativized polarity. In sum, Systemic Functional Theory is a facility for explaining different shapes of texts.
Correlation functions in a c=1 boundary conformal field theory
Kristjansson, K R; Kristjansson, Kristjan R.; Thorlacius, Larus
2005-01-01
We obtain exact results for correlation functions of primary operators in the two-dimensional conformal field theory of a scalar field interacting with a critical periodic boundary potential. Amplitudes involving arbitrary bulk discrete primary fields are given in terms of SU(2) rotation coefficients while boundary amplitudes involving discrete boundary fields are independent of the boundary interaction. Mixed amplitudes involving both bulk and boundary discrete fields can also be obtained explicitly. Two- and three-point boundary amplitudes involving fields at generic momentum are determined, up to multiplicative constants, by the band spectrum in the open-string sector of the theory.
Energy Continuity in Degenerate Density Functional Perturbation Theory
Palenik, Mark C
2016-01-01
Fractional occupation numbers can produce open-shell degeneracy in density functional theory. We develop the corresponding perturbation theory by requiring that a differentiable map connects the initial and perturbed states. The degenerate state connects to a single perturbed state which extremizes, but does not necessarily minimize or maximize, the energy with respect to occupation numbers. Using a system of three electrons in a harmonic oscillator potential, we relate the counterintuitive sign of first-order occupation numbers to eigenvalues of the electron-electron interaction Hessian.
Estimation and Inference of Directionally Differentiable Functions: Theory and Applications
Fang, Zheng
This dissertation addresses a large class of irregular models in economics and statistics -- settings in which the parameters of interest take the form φ(theta 0), where φ is a known directionally differentiable function and theta 0 is estimated by thetan. Chapter 1 provides a tractable framework for conducting inference, Chapter 2 focuses on optimality of estimation, and Chapter 3 applies the developed theory to construct a test whether a Hilbert space valued parameter belongs to a convex set and to derive the uniform weak convergence of the Grenander distribution function -- i.e. the least concave majorant of the empirical distribution function -- under minimal assumptions.
An introduction to the theory of local zeta functions
Igusa, Jun-ichi
2007-01-01
This book is an introductory presentation to the theory of local zeta functions. Viewed as distributions, and mostly in the archimedean case, local zeta functions are also called complex powers. The volume contains major results on analytic and algebraic properties of complex powers by Atiyah, Bernstein, I. M. Gelfand, S. I. Gelfand, and Sato. Chapters devoted to p-adic local zeta functions present Serre's structure theorem, a rationality theorem, and many examples found by the author. The presentation concludes with theorems by Denef and Meuser.
Methods of Approximation Theory in Complex Analysis and Mathematical Physics
Saff, Edward
1993-01-01
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...
Mechanical system reliability analysis using a combination of graph theory and Boolean function
Energy Technology Data Exchange (ETDEWEB)
Tang, J
2001-04-01
A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis.
Between the theory and method: the interpretation of the theory of Emilia Ferreiro for literacy
Directory of Open Access Journals (Sweden)
Fernanda Cargnin Gonçalves
2008-12-01
Full Text Available This article aims to show the difficulty of understanding the theory of Emilia Ferreiro by teachers from first grade at a school of public municipal city of Florianopolis / SC. It presents the theory of real Ferreiro described in his book "Psicogênese of Language Writing," co-authored with Teberosky, and interpretation of literacy observed in their practices of teaching. There are also options for work to teaching a child to escape the labeling of students in the literacy phases, which are based on essays, showing what is possible without turning theory into teaching method.
Global and local curvature in density functional theory
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Compositions and methods for hydrocarbon functionalization
Energy Technology Data Exchange (ETDEWEB)
Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.; Groves, John T.
2017-03-28
Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.
Theory, Method and Practice of Neuroscientific Findings in Science Education
Liu, Chia-Ju; Chiang, Wen-Wei
2014-01-01
This report provides an overview of neuroscience research that is applicable for science educators. It first offers a brief analysis of empirical studies in educational neuroscience literature, followed by six science concept learning constructs based on the whole brain theory: gaining an understanding of brain function; pattern recognition and…
Mean Spherical Approximation-Based Partitioned Density Functional Theory
Institute of Scientific and Technical Information of China (English)
ZHOU Shi-Qi
2003-01-01
Previous literature claims that the density functional theory for non-uniform non-hard sphere interaction potential fluid can be improved on by treating the tail part by the third order functional perturbation expansion approximation (FPEA) with the symmetrical and intuitive consideration-based simple function C0(3)(r1, r2, r3) =ζ∫ dr4a(r4 - r1)a(r4 - r2)a(r4 - r3) as the uniform third order direct correlation function (DCF) for the tail part,here kernel function a(r) = (6/πσ3)Heaviside(σ/2 - r). The present contribution concludes that for the mean spherical approximation-based second order DCF, the terms higher than second order in the FPEA of the tail part of the non-uniform first order DCF are exactly zero. The reason for the partial success of the previous a kernel function-based third order FPEA for the tail part is due to the adjustable parameter ζ and the short range of the a kernel function.Improvement over the previous theories is proposed and tested.
Mean Spherical Approximation-Based Partitioned Density Functional Theory
Institute of Scientific and Technical Information of China (English)
ZHOUShi-Qi
2003-01-01
Previous literature claims that the density functional theory for non-uniform non-hard sphere interaction potential fluid can be improved on by treating the tail part by the third order functional perturbation expansion approximation (FPEA) with the symmetrical and intuitive consideration-based simple function C0(3)(r1, r2, r3) =(∫dr4a(r4-r1)a(r4-r2)a(r4-r3) as the uniform third order direct correlation function (DCF) for the tail part,here kernel function a(r) = (6/πσ3)Heaviside(σ/2 - r). The present contribution concludes that for the mean spherical approximation-based second order DCF, the terms higher than second order in the FPEA of the tail part of the non-uniform first order DCF are exactly zero. The reason for the partial success of the previous a kernel function-based third order FPEA for the tail part is due to the adjustable parameter ξ and the short range of the a kernel function.Improvement over the previous theories is proposed and tested.
Charge transfer in time-dependent density functional theory
Maitra, Neepa T.
2017-10-01
Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.
Numerical methods for the sign problem in Lattice Field Theory
Bongiovanni, Lorenzo
2016-01-01
The great majority of algorithms employed in the study of lattice field theory are based on Monte Carlo's importance sampling method, i.e. on probability interpretation of the Boltzmann weight. Unfortunately in many theories of interest one cannot associated a real and positive weight to every configuration, that is because their action is explicitly complex or because the weight is multiplied by some non positive term. In this cases one says that the theory on the lattice is affected by the sign problem. An outstanding example of sign problem preventing a quantum field theory to be studied, is QCD at finite chemical potential. Whenever the sign problem is present, standard Monte Carlo methods are problematic to apply and, in general, new approaches are needed to explore the phase diagram of the complex theory. Here we will review three of the main candidate methods to deal with the sign problem, namely complex Langevin dynamics, Lefschetz thimbles and density of states method. We will first study complex Lan...
Functional approach to squeezed states in non commutative theories
Lubo, M
2004-01-01
We review some noncommutative theories in which no state saturates simultaneously all the non trivial Heisenberg uncertainty relations. We show how the difference of structure between the Poisson brackets and the commutators in these theories generically leads to a harmonic oscillator whose position mean value is not strictly equal to the one predicted by classical mechanics. This raises the question of the nature of quasi classical states in these models. We propose an extension based on a variational principle. The action considered is the sum of the squares of the terms associated to the non trivial Heisenberg uncertainty relations. We first verify that our proposal works in the usual theory: we recover the known gaussian functions and, besides them, other states which can be expressed as products of gaussians with specific hypergeometrics. We illustrate our construction in three models defined on a four dimensional phase space: two models endowed with a minimal length uncertainty and the non commutative p...
Differentiable but exact formulation of density-functional theory.
Kvaal, Simen; Ekström, Ulf; Teale, Andrew M; Helgaker, Trygve
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density-in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg-Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ((ε)E, (ε)F) that converge to (E, F) pointwise everywhere as ε → 0(+), and such that (ε)F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau-Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy (ε)E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ((ε)E, (ε)F). The Moreau-Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of (ε)F, a rigorous formulation of Kohn-Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn-Sham theory.
Differentiable but exact formulation of density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Kvaal, Simen, E-mail: simen.kvaal@kjemi.uio.no; Ekström, Ulf; Helgaker, Trygve [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, Andrew M. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ({sup ε}E, {sup ε}F) that converge to (E, F) pointwise everywhere as ε → 0{sup +}, and such that {sup ε}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ε}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ε}E, {sup ε}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ε}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.
A density gradient theory based method for surface tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...
Newton’s method an updated approach of Kantorovich’s theory
Ezquerro Fernández, José Antonio
2017-01-01
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book i...
Method and Theory in the Study of Religion
DEFF Research Database (Denmark)
Geertz, Armin W
2007-01-01
An introduction to debates on method and theory in the study of religion as a prelude to papers read at a panel on the subject during the XIXth World Congress of the International Association for the History of Religions, March 24-30, 2005 in Tokyo.......An introduction to debates on method and theory in the study of religion as a prelude to papers read at a panel on the subject during the XIXth World Congress of the International Association for the History of Religions, March 24-30, 2005 in Tokyo....
Theory and design methods of special space orbits
Zhang, Yasheng; Zhou, Haijun
2017-01-01
This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.
Decision Support with Belief Functions Theory for Seabed Characterization
Martin, Arnaud
2008-01-01
The seabed characterization from sonar images is a very hard task because of the produced data and the unknown environment, even for an human expert. In this work we propose an original approach in order to combine binary classifiers arising from different kinds of strategies such as one-versus-one or one-versus-rest, usually used in the SVM-classification. The decision functions coming from these binary classifiers are interpreted in terms of belief functions in order to combine these functions with one of the numerous operators of the belief functions theory. Moreover, this interpretation of the decision function allows us to propose a process of decisions by taking into account the rejected observations too far removed from the learning data, and the imprecise decisions given in unions of classes. This new approach is illustrated and evaluated with a SVM in order to classify the different kinds of sediment on image sonar.
Inclusion of Dispersion Effects in Density Functional Theory
DEFF Research Database (Denmark)
Møgelhøj, Andreas
In this thesis, applications and development will be presented within the field of van der Waals interactions in density functional theory. The thesis is based on the three projects: i) van der Waals interactions effect on the structure of liquid water at ambient conditions, ii) development...... and benchmarking of a new van der Waals density functional, and iii) the application of the newly developed functional to CO desorption from Ru(0001). The effect of van der Waals interactions in water was studied by performing ab initio molecular dynamics simulations using PBE and the two recent van der Waals...... density functionals optPBE-vdW and vdW-DF2 with identical computational setup. The two van der Waals functionals have been found to give excellent descriptions of the constituents of water (e.g., water dimers and hexamers). Including van der Waals interactions gives a softer water structure as seen from...
External Source Method for Kubo-Transformed Quantum Correlation Functions
Horikoshi, Atsushi
2014-01-01
We revisit the external source method for Kubo-transformed quantum correlation functions recently proposed by Krishna and Voth. We derive an exact formula and show that the Krishna-Voth formula can be derived as an approximation of our formula. Some properties of this approximation are clarified through a model calculation of the position autocorrelation function for a one-dimensional harmonic oscillator. A key observation is that the Krishna-Voth correlation function has a term which behaves as the secular term in perturbation theory.
The combinatorics of Green's functions in planar field theories
Ebrahimi-Fard, Kurusch; Patras, Frédéric
2016-12-01
The aim of this exposition is to provide a detailed description of the use of combinatorial algebra in quantum field theory in the planar setting. Particular emphasis is placed on the relations between different types of planar Green's functions. The primary object is a Hopf algebra that is naturally defined on variables representing non-commuting sources, and whose coproduct splits into two half-coproducts. The latter give rise to the notion of an unshuffle bialgebra. This setting allows a description of the relation between full and connected planar Green's functions to be given by solving a simple linear fixed point equation. We also include a brief outline of the consequences of our approach in the framework of ordinary quantum field theory.
Relativistic density functional theory for finite nuclei and neutron stars
Piekarewicz, J
2015-01-01
The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.