WorldWideScience

Sample records for functional theoretical studies

  1. Theoretical study for the interlamellar aminoalcohol functionalization of kaolinite

    International Nuclear Information System (INIS)

    Hou, Xin-Juan; Li, Huiquan; Liu, Qinfu; Cheng, Hongfei; He, Peng; Li, Shaopeng

    2015-01-01

    Graphical abstract: - Highlights: • The results indicated that aminoalcohols exist with a mixing of intercalation and grafting. • Aminoalcohols can form strong hydrogen bonds with Al octahedral sheet. • The interaction between aminoalcohols and Si tetrahedral sheet are mainly attributed by vdW force. • Aminoalcohols grafting or intercalating on kaolinite have strong reactivity as electron donors. - Abstract: Fundamental problems related to aminoalcohols intercalating on kaolinite were investigated by using density functional theory method. This study examines the adsorption modes of diethanolamine and triethanolamine on kaolinite, the role of hydrogen bonds and van der Waals (vdW) forces between aminoalcohols and interlayer of kaolinite, and the change of molecular orbital occupancies of functionalized kaolinite. Results show that functionalized kaolinite is physically intercalated and covalently grafted by aminoalcohols. Non-covalent interaction analysis provides a visualized description that intercalated aminoalcohols form strong hydrogen bonds with Al octahedral sheet, and the interaction between aminoalcohols and Si tetrahedral sheet is mainly attributed to weak vdW force. The analysis of molecular orbital occupancies for kaolinite complex showed that the functionalized kaolinite has strong chemical reactivity as electron donors on the sites of grafted or intercalated aminoalcohols for further chemical reaction with other materials

  2. Exchange coupling interactions in a Fe6 complex: A theoretical study using density functional theory

    International Nuclear Information System (INIS)

    Cauchy, Thomas; Ruiz, Eliseo; Alvarez, Santiago

    2006-01-01

    Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in an Fe 6 complex. The calculated exchange coupling constants are consistent with an S=5 ground state and agree well with those reported previously for other Fe III polynuclear complexes. Ferromagnetic interactions may appear through exchange pathways formed by two bridging hydroxo or oxo ligands

  3. Theoretical and Experimental Studies of Functionalized Carbon Nanotubes for Improved Thermal Conductivity

    Science.gov (United States)

    Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul

    The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.

  4. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  5. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    International Nuclear Information System (INIS)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao; Jiang, Hong

    2015-01-01

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between the top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties

  6. Theoretical and conceptual density functional theory (DFT) study on selectivity of 4-hydroxyquinazoline electrophilic aromatic nitration

    Science.gov (United States)

    Makhloufi, A.; Belhadad, O.; Ghemit, R.; Baitiche, M.; Merbah, M.; Benachour, DJ.

    2018-01-01

    In common with other aza-heterocycles, 4-hydroxyquinazoline and their derivatives are important pharmacophores and versatile lead molecule used in several specific biological activities. The potency of these compounds depends on the nature and/or position of their substituents. In this paper, we report a theoretical study of the most probable nitration reaction centers of 4-hydroxyquinazoline for electrophilic attack, the mono and di-nitration was also discussed. In parallel, a computational study has been performed in gas by using the B3LYP/6311 G(d) level. The stability of the four nitro isomers is rationalized by means of the global index and local reactivity indices. Their molecular electrostatic potential (MEP) and Milliken charge were explored. Molecular geometries and NMR H spectra was examined. In addition, stationary points of reactant, transition state and intermediate were optimized in water condensed phase at the same level. The relative energies of the regioisomeric δ-complexes confirm that the substitution at C6 (6-nitro σ-complexes) is favored in these conditions, what was in agreement with our others calculating results (in gas).

  7. A theoretical study of lithium-doped gallium clusters by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sentuerk, Suekrue; Ekincioglu, Yavuz [Dumlupinar Univ., Kutahya (Turkey). Dept. of Physics

    2012-05-15

    The geometrical structures, stabilities, and electronic properties of Ga{sub n}Li (n = 1-13) clusters were investigated within the density functional theory (DFT). The impurity lithium atom enhances the stability of Ga{sub n}Li (n = 1-13) clusters, especially Ga{sub n}Li (n = 9-13) compared to Ga{sub n} (n = 9-14), that is at either apex position or side position. The dissociation energy, second-order energy differences, and the energy gaps between highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) indicate that the Ga{sub 7}Li, Ga{sub 9}Li, and Ga{sub 11}Li clusters are more stable within the studied cluster range. Moreover, the variation of the average bond length of Ga - Li is due to the surface effect, and the binding strength increases resulting from the increase of charge amount. (orig.)

  8. Theoretical study on the mechanics of the conjunct gnatoprothetic devices in the context of occlusive function rehabilitation.

    Science.gov (United States)

    Popescu, M R; Trană, F; Manolea, H; Rauten, Ane-Marie; Șurlin, Petra; Dragomir, L P

    2014-01-01

    The partially intercalated edentation offers the practitioner the possibility of the functional rehabilitation of the dental arcades through conjunct gnato-prosthetic devices. The functions of the dento-maxilar device, disturbed by the presence of edentation, require a treatment approach so that, without pre-planning or estimating, the result can lead most of the times to failure in terms of functionality. Clinical evaluation associated with pre- and proprosthetic treatment can also impose, in some situations the evaluation of the dental units involved in prosthetic rehabilitation. The association and implementation of the prosthetic construction in the occlusive-articular ensemble, as well as the counterbalancing of the mastication forces per dental unit and whole interarch system, linked to the distribution of the forces at the level of the pillar teeth and prosthetic construction, represent the goal of this theoretical study.

  9. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Science.gov (United States)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  10. A theoretical study of the c and b fragmentation function in e+e- annihilation

    International Nuclear Information System (INIS)

    Colangelo, G.

    1992-01-01

    We present an analysis of the c and b fragmentation functions which includes in a consistent fashion leading and next-to-leading perturbative contributions, effects due to soft gluon emission and a parametrization of effects of non-perturbative origin. We show that the data on D meson production at intermediate energy constrain the parametrization of the effects of non-perturbative nature. We can therefore make a prediction for the B fragmentation function. Results for the B, D and D * fragmentation functions at LEP energy are given, and compared with existing data. (orig.)

  11. Theoretical study for a digital transfer function analyser; Etude theorique pour un transferometre digital

    Energy Technology Data Exchange (ETDEWEB)

    Freycenon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    This study deals with the harmonic analysis of the instantaneous counting rate of a pulse train. This arises from using a fission chamber for reactivity to power transfer function measurements by oscillation methods in reactors. The systematical errors due to the sampling process are computed. The integration carried out when sampling the signal modifies the formulae of the Nyquist theorem on spectrum folding. The statistical errors due to the noise are analysed: it is shown that the bandwidth of the spectral window applied to the noise frequency spectrum is equal to the inverse of the time duration of the experiment. A dead time of 25 per cent of the sampling time does not increase appreciably the bandwidth. A new method is proposed afterwards yielding very approximate results of the Fourier analysis during the experiment. The systematical errors arising from the measuring process are determined, and it is shown that the bandwidth of the corresponding spectral window is still given by the inverse of the time duration of the experiment. (author) [French] Cette etude se rapporte a l'analyse harmonique de la valeur instantanee du taux de comptage d'une suite d'impulsions. On rencontre ce probleme dans l'utilisation de chambres a fission pour les mesures de fonction de transfert reactivite-puissance par la methode d'oscillation dans les piles. On calcule l'erreur systematique due au processus d'echantillonnage ou l'integration operee modifie les formules classiques de recouvrement du spectre. On analyse ensuite les erreurs statistiques dues au bruit de fond. On montre que la largeur de bande de la fenetre spectrale appliquee au spectre de puissance du bruit est donnee par l'inverse du temps de mesure. Un temps mort de 25 pour cent du temps de prelevement n'accroit pas sensiblement cette largeur de bande. On propose ensuite un procede simple qui permet d'obtenir, en cours d'experience, des resultats tres approches de l'analyse de Fourier. On determine les erreurs

  12. Hash functions and information theoretic security

    DEFF Research Database (Denmark)

    Bagheri, Nasoor; Knudsen, Lars Ramkilde; Naderi, Majid

    2009-01-01

    Information theoretic security is an important security notion in cryptography as it provides a true lower bound for attack complexities. However, in practice attacks often have a higher cost than the information theoretic bound. In this paper we study the relationship between information theoretic...

  13. The functions of atrial strands interdigitating with and penetrating into sinoatrial node: a theoretical study of the problem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available The sinoatrial node (SAN-atrium system is closely involved with the activity of heart beating. The impulse propagation and phase-locking behaviors of this system are of theoretical interest. Some experiments have revealed that atrial strands (ASs interdigitate with and penetrate into the SAN, whereby the SAN-atrium system works as a complex network. In this study, the functions of ASs are numerically investigated using realistic cardiac models. The results indicate that the ASs penetrating into the central region of the SAN play a major role in propagating excitation into the atrium. This is because the threshold SAN-AS coupling for an AS to function as an alternative path for propagation is lower at the center than at the periphery. However, ASs penetrating into the peripheral region have a great effect in terms of enlarging the 1:1 entrainment range of the SAN because the automaticity of the SAN is evidently reduced by ASs. Moreover, an analytical formula for approximating the enlargement of the 1:1 range is derived.

  14. Theoretical analysis of polarized structure functions

    International Nuclear Information System (INIS)

    Altarelli, G.; ); Ball, R.D.; Forte, S.; Ridolfi, G.

    1998-01-01

    We review the analysis of polarized structure function data using perturbative QCD and NLO We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involving in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature. (author)

  15. Theoretical Analysis of Polarized Structure Functions

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Ridolfi, G

    1998-01-01

    We review the analysis of polarized structure function data using perturbative QCD at next-to-leading order. We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involved in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature.

  16. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  17. Theoretical Study of 1,3-Dipolar Cycloadditions Regioselectivity of Benzyl Azide with Glycosyl-O Acetylene Using Density Functional Theory (DFT

    Directory of Open Access Journals (Sweden)

    Adib Ghaleb

    2017-12-01

    Full Text Available A theoretical study of 1,3-cycloaddition has been carried out using density functional theory (DFT methods at the B3LYP/6-31G* level. The regioselectivity of the reaction have been clarified through different theoretical approaches: Case of a Two-Center Process (Domingo approach, HSAB principle (Gazquez and Mendez approach, and the activation energy calculations. The analysis of results shows that the reaction takes place along concerted asynchronous mechanism and the isomer meta is favored, in agreement with the experiment results. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1017 

  18. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  19. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    Science.gov (United States)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  20. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.

    Science.gov (United States)

    Moradi, M; Divsalar, A; Saboury, A A; Ghalandari, B; Harifi, A R

    2015-01-01

    Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV-visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. KI value was calculated 39 nM according to the Lineweaver-Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 10(7) and 3 × 10(7) M(-1), respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV-vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading

  1. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    Science.gov (United States)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  2. THEORETICAL ASPECTS OF FILMMUSIC STUDY

    Directory of Open Access Journals (Sweden)

    Egorova Tatiana K.

    2014-04-01

    Full Text Available In this article, author analyzes the theoretical aspects of the film music study taking into account with modern realities in the development of world film-process and attempts to its scientific understanding. Need for innovation in this area is long overdue, because the existing on this topic nonfiction no longer meets the new aesthetic and art-practical achievements and innovations in the film music development at the XXI century. Related to the phenomenon of music in screen arts a number of new terms and concepts require a certain adjustment as well. Their range of action is not yet fully defined. Author of the article offered her version of their content-semantic interpretation (largely experimental designed to promote new research methods for the film music study.

  3. Redox Chemistry of Bis(pyrrolyl)pyridine Chromium and Molybdenum Complexes: An Experimental and Density Functional Theoretical Study.

    Science.gov (United States)

    Gowda, Anitha S; Petersen, Jeffrey L; Milsmann, Carsten

    2018-02-19

    The three- and four-membered redox series [Cr( Me PDP) 2 ] z (z = 1-, 2-, 3-) and [Mo( Me PDP) 2 ] z (z = 0, 1-, 2-, 3-) were synthesized to study the redox properties of the pincer ligand Me PDP 2- (H 2 Me PDP = 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine). The monoanionic complexes were characterized by X-ray crystallography, UV/vis/NIR spectroscopy, and magnetic susceptibility measurements. Experimental and density functional theory (DFT) studies are consistent with closed-shell Me PDP 2- ligands and +III oxidation states (d 3 , S = 3/2) for the central metal ions. Cyclic voltammetry established multiple reversible redox processes for [M( Me PDP) 2 ] 1- (M = Cr, Mo), which were further investigated via chemical oxidation and reduction. For molybdenum, one-electron oxidation yielded Mo( Me PDP) 2 which was characterized by X-ray crystallography, UV/vis/NIR, and magnetic susceptibility measurements. The experimental and computational data indicate metal-centered oxidation to a Mo IV complex (d 2 , S = 1) with two Me PDP 2- ligands. In contrast, one- and two-electron reductions were found to be ligand centered resulting in the formation of Me PDP •3- radicals, in which the unpaired electron is predominantly located on the central pyridine ring of the ligand. The presence of ligand radicals was established experimentally by observation of ligand-to-ligand intervalence charge transfer (LLIVCT) bands in the UV/vis/NIR spectra of the dianionic and trianionic complexes and further supported by broken-symmetry DFT calculations. X-ray crystallographic analyses of the one-electron-reduced species [M( Me PDP) 2 ] 2- (S = 1, M = Cr, Mo) established structural indicators for pincer reduction and showed localization of the radical on one of the two pincer ligands. The two-electron-reduced, trianionic complexes (S = 1/2) were characterized by UV/vis/NIR spectroscopy, magnetic susceptibility measurements, and EPR spectroscopy. The electronic structures of the reduced

  4. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  5. Theoretical and experimental study of the electron distribution function in the plasma of an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Girard, A.; Perret, C.; Bourg, F.; Khodja, H.; Melin, G.; Lecot, C.

    1997-01-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are mirror machines which can deliver important fluxes of Highly Charged Ions (HCI). These performances are strongly correlated with hot electrons sustained by an RF wave. This paper presents an analysis of the EDF in an ECR source. In the first part of the paper a one-dimensional Fokker-Planck code for the Electron Distribution Function is presented: this code includes a quasilinear diffusion operator for the RF wave, a collision term and a source term due to electron impact ionization. The present status of this code is presented. In the second part of the paper experiments related to the measurement of the EDF are presented: electron density, diamagnetism, electron endloss current have been measured at the Quadrumafios ECRIS. With these results it is possible to give a precise description of the EDF. (author)

  6. Density functional theoretical study on the C-F and C-O oxidative addition reaction at an AI center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seong [Dept. of Science Education, Kyungnam University, Masan (Korea, Republic of); Cho, Hyun; Hwang, Sungu [Dept. of Nanomechatronics Engineering, Pusan National University, Miryang (Korea, Republic of)

    2017-02-15

    In this study, B3LYP/LACVP** level calculations were chosen because the level of theory was applied successfully to calculations of the thermodynamic and kinetic features of the oxidative addition reactions of alkyl and aryl halides to pincer-type complexes. This study examined the effects of the substituents on the phenyl rings of the Al(I) center. Isopropyl side chains in the phenyl rings attached to N atoms of the pincer ligand were replaced with a methyl (Me) (2) or tertiary butyl ( t Bu) group. The oxidative addition of C[BOND]F and C[BOND]O bonds to an Al (I) center was investigated computationally by DFT calculations. The geometries, thermodynamic, and kinetic features were in good agreement with the experimental data, as in previous studies on the transition metal complexes. The computational results showed that the DFT calculations could provide qualitative insight into the reactivity and thermodynamics of the oxidative addition reactions of C[BOND]F bonds.

  7. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    Science.gov (United States)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.

  8. Game theoretic aspect of production process transfer functions ...

    African Journals Online (AJOL)

    Game theoretic aspect of production process transfer functions. ... On the final analysis, it was shown that relating transfer function to Bayesian games and mechanism design would lead to optimal bids, optimal ... AJOL African Journals Online.

  9. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  10. Theoretical numerical analysis a functional analysis framework

    CERN Document Server

    Atkinson, Kendall

    2005-01-01

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu

  11. Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4

    International Nuclear Information System (INIS)

    Ching, W. Y.; Rulis, Paul; Aryal, Sitaram; Ouyang, Lizhi; Misra, Anil

    2010-01-01

    Microstructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si 3 N 4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533 A x 15.225 A x 47.420 A . The IGF layer is perpendicular to the z axis, 16.4 A wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si 3 N 4 . We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si 3 N 4 . These results are very different from those of a previously studied basal plane model [J. Chen et al., Phys. Rev. Lett. 95, 256103 (2005)] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed.

  12. Special functions group theoretical aspects and applications

    CERN Document Server

    Schempp, Walter; Askey, Richard A

    1984-01-01

    Approach your problems from It isn't that they can't see the right end and begin with the solution. the answers. Then one day, It is that they can't see the perhaps you will find the problem. final question. G.K. Chesterton. The Scandal 'The Hermit Clad in Crane of Father Brown 'The Point of Feathers' in R. van Gulik's a Pin'. The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the ...

  13. Studies in theoretical particle physics

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1991-01-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter -- which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal

  14. Cyclotron tubes - a theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Mourier, G

    1980-12-01

    The introduction presents a general discussion of electron cyclotron masers (ECM): resonance, relativistic effects, elementary quantum aspects, the classical relativistic bunching and the optimum value of the electric field. The practical structure - in particular that of the gyrotron - is specified only insofar as it is useful for understanding the following chapters. The main parameters are discussed. Section 2 develops a nonlinear adiabatic or orbital theory of electron motion which alleviates calculations considerably while keeping numerical errors low enough for many practical cases. Its results are compared to a rigorous integration in one case. Other cases show the importance of the electric field profile inside the resonant cavity. Section 3 is devoted to space charge phenomena, and, for the most part, to a linear theory with space charge. In its limited range of validity (low-energy electrons), the theory indicates a strong impact of space charge for low a.c. fields and exhibits a pure beam instability. Section 4 is devoted to circuit equations with emphasis on the special features of cavities consisting of a long waveguide near cutoff. The conclusion indicates some trends of gyrotron development and corresponding theoretical problems.

  15. Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory

    International Nuclear Information System (INIS)

    Han, Deming; Zhang, Gang; Cai, Hongxing; Zhang, Xihe; Zhao, Lihui

    2013-01-01

    We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine] 2 (picolinate), where X=–CH 3 (1), –H (2), –CN (3), –NO 2 (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ hole/electron ) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs

  16. Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Han, Deming [International Joint Research Center for Nanophotonics and Biophotonics, School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Cai, Hongxing; Zhang, Xihe [International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Zhao, Lihui, E-mail: zhaolihui@yahoo.com [International Joint Research Center for Nanophotonics and Biophotonics, School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-06-15

    We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine]{sub 2}(picolinate), where X=–CH{sub 3} (1), –H (2), –CN (3), –NO{sub 2} (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ{sub hole/electron}) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs.

  17. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1991-01-01

    This report discusses research in nuclear theory in the following areas: Isospin effects and charge exchange; inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; and antiproton studies. 14 refs

  18. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1990-01-01

    This report discusses: microscopic imaginary optical potential; isospin effects and charge exchange; multistep inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; antiproton studies; antikaons-nucleon interactions; and quantum mechanics. 11 refs

  19. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  20. The chirally rotated Schroedinger functional. Theoretical expectations and perturbative tests

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia

    2016-03-01

    The chirally rotated Schroedinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schroedinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  1. Theoretical studies in nuclear structure

    International Nuclear Information System (INIS)

    Marshalek, E.R.

    1991-11-01

    In this period, the work has centered on two topics. The first is the study of a novel type of collective rotation in which an atomic nucleus with an inversion-symmetric shape rotates uniformly about an axis that is not a principal axis of the quadrupole tensor of the density distribution. This mode is referred to as tilted rotation. By using the cranking model together with higher-order corrections, it was shown that tilted rotation is indeed possible, not only within a microscopic framework, but also within the framework of collective models such as the IBM. The maximum tilt angle of π/4 is realized for a certain class of states in the U(5) limit. The second topic, which actually was suggested during the course of the first investigation, is concerned with a new way of representing collective harmonic-oscillator algebras using boson-mapping techniques. In this approach, the many-phonon eigenvectors of a 2λ+1-dimensional oscillator having good angular momentum are represented by simple products of boson operators acting on a vacuum. This representation may simplify the calculation of reduced matrix elements of arbitrary operators in collective models, but more work needs to be done

  2. The Function of Religiosity in Personal Development: Some Theoretical Remarks

    Directory of Open Access Journals (Sweden)

    Tatjana Folieva

    2014-12-01

    Full Text Available Dwelling on a number of theoretical considerations bearing on the problem of the function of religiosity in personal development, the author specifi es the disciplines related to the study of the problem and formulates working defi nitions of the concepts of development, religiosity and norm. The situation in Russian science today gives priority to psychology of development and religion studies, as the former possesses a serious methodological and methodical basis while the latter, disposing of a unique mass of empiric material, provides broader context for studying religiosity and secures the link between its psychological study and its historical, sociological, henomenological etc. analysis. This approach will also be productive for theology, since psychology can occupy a special place within the system of ecclesiastical sciences as an applied discipline; however, its confessional” character should then fi nd expression not in the search for a religious basis, but in the study of phenomena belonging to the religious milieu. It is also suggested that religiosity should be considered as a ynamic, non-linear process which can be observed here and now and whose direction and specifi c character in the future can be prognosticated, albeit with a certain amount of reservation. Religiosity and development are two interconnected processes in which the person chooses the elements needed in his personal life for the self-regulation of the cognitive, aff ective and behavioral components. For this reason it seems rather diffi cult to determine the function of religiosity in the development of a personality.

  3. Graph theoretical analysis of EEG functional connectivity during music perception.

    Science.gov (United States)

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Thermodynamics, core-level spectroscopy, morphology, and work function study of different TiCl3 crystalline phases: A theoretical approach

    International Nuclear Information System (INIS)

    Guo, Lei; Li, Wenpo; Feng, Wenjiang; Zhang, Zhipeng; Zhang, Shengtao

    2014-01-01

    Highlights: • Three TiCl 3 polymorphs materials were systematically investigated. • Structural results agree well with experimental and available theoretical data. • Morphological and thermodynamic properties were computed and analyzed. • Core-level spectroscopy and work function were obtained. - Abstract: Computer simulation has been widely applied in many research fields owing to its superiority in revealing an insight understanding of the phenomena. In this work, the thermodynamics, core-level spectroscopy, morphology, and work function of TiCl 3 with three different crystalline phases (α, β, and γ) have been comprehensively computed employing the Materials Studio package. Our computational DFT-D approach gives a structural description of the TiCl 3 phases in good agreement with experiment. The core-level spectroscopy confirmed that α, β, and γ modifications for TiCl 3 have lightly affected on the valences of the constitutional elements. A series of possible growth faces (h k l) were deduced using the classic Bravais–Friedel–Donnay–Harker (BFDH) model. We conclude that the sequence of work function for (0 0 1) surface was α > β ≈ γ

  5. Theoretical and experimental study of thermoacoustic engines

    Science.gov (United States)

    Raspet, Richard; Bass, Henry E.; Arnott, W. P.

    1992-12-01

    A three year study of thermoacoustic engines operating as prime movers and refrigerators was completed. The major thrust of this effort was the use and theoretical description of ceramic honeycomb structures as the active element in thermoacoustic engines. An air-filled demonstration prime mover was constructed and demonstrated at Acoustical Society of America and IEE meetings. A helium-filled test prime mover was designed and built an is being employed in studies of the threshold of oscillation as a function of temperature difference and pressure. In addition, acoustically based theories of the thermoacoustic engine have been developed and tested for a parallel plate stack at the Naval Postgraduate School and for a honeycomb stack at the University of Mississippi. Most of this work is described in detail in the attached publications. In this report we will give an overview of the research completed to date and its relationship to work performed at the Naval Postgraduate School and to future work at the University of Mississippi.

  6. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  7. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  8. Surfactants, interfaces and pores : a theoretical study

    NARCIS (Netherlands)

    Huinink, H.

    1998-01-01

    The aim of this study was to investigate the behavior of surfactants in porous media by theoretical means. The influence of curvature of a surface on the adsorption has been studied with a mean field lattice (MFL) model, as developed by Scheutjens and Fleer. An analytical theory has been

  9. Theoretical Foundations of Study of Cartography

    Science.gov (United States)

    Talhofer, Václav; Hošková-Mayerová, Šárka

    2018-05-01

    Cartography and geoinformatics are technical-based fields which deal with modelling and visualization of landscape in the form of a map. The theoretical foundation is necessary to obtain during study of cartography and geoinformatics based mainly on mathematics. For the given subjects, mathematics is necessary for understanding of many procedures that are connected to modelling of the Earth as a celestial body, to ways of its projection into a plane, to methods and procedures of modelling of landscape and phenomena in society and visualization of these models in the form of electronic as well as classic paper maps. Not only general mathematics, but also its extension of differential geometry of curves and surfaces, ways of approximation of lines and surfaces of functional surfaces, mathematical statistics and multi-criterial analyses seem to be suitable and necessary. Underestimation of the significance of mathematical education in cartography and geoinformatics is inappropriate and lowers competence of cartographers and professionals in geographic information science and technology to solve problems.

  10. EXPERIMENT AL AND THEORETICAL STUDY OF PRECAST ...

    African Journals Online (AJOL)

    EXPERIMENT AL AND THEORETICAL STUDY OF PRECAST BEAM-SLAB. CONSTRUCTION. Girma Zerayohannes and Adil Zekaria. Department of Civil Engineering. Addis Ababa University. ABSTRACT. The use of partially precast beam elements ivith shear connectors in slab construction relieves the requirement of ...

  11. A combined experimental and theoretical study

    Indian Academy of Sciences (India)

    A combined theoretical and experimental study was also performed, which demonstrated that the clus- ters 1–3 with ... silica gel TLC plates (MERCK TLC Plates). The NMR .... tronic μ3-Se and maintains the same number of clus- ter valance ...

  12. Theoretical and simulation studies of seeding methods

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Claudio [Univ. of California, Los Angeles, CA (United States)

    2017-12-11

    We report the theoretical and experimental studies done with the support of DOE-Grant DE-SC0009983 to increase an X-ray FEL peak power from the present level of 20 to 40 GW to one or more TW by seeding, undulator tapering and using the new concept of the Double Bunch FEL.

  13. Studies in theoretical high energy particle physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  14. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  15. Are trinuclear superhalogens promising candidates for building blocks of novel magnetic materials? A theoretical prospect from combined broken-symmetry density functional theory and ab initio study.

    Science.gov (United States)

    Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2013-08-07

    The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.

  16. Theoretical investigation of CO interaction with copper sites in zeolites: Periodic DFT and hybrid quantum mechanical/interatomic potential function study

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Šilhan, Martin; Nachtigall, Petr; Bucko, T.; Benco, L.; Hafner, J.

    2005-01-01

    Roč. 109, - (2005), s. 9631-9638 ISSN 1089-5647 R&D Projects: GA MŠk(CZ) LC512 Grant - others:Austrian Science Funds(AT) Pl 7020 Institutional research plan: CEZ:AV0Z4055905 Keywords : Cu-exchanged zeolites * carbon-monoxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  17. Doping effects in InN/GaN short-period quantum well structures-Theoretical studies based on density functional methods

    Science.gov (United States)

    Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2014-09-01

    Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.

  18. Theoretical stellar luminosity functions and globular cluster ages and compositions

    International Nuclear Information System (INIS)

    Ratcliff, S.J.

    1985-01-01

    The ages and chemical compositions of the stars in globular clusters are of great interest, particularly because age estimates from the well-known exercise of fitting observed color-magnitude diagrams to theoretical predictions tend to yield ages in excess of the Hubble time (an estimate to the age of the Universe) in standard cosmological models, for currently proposed high values of Hubble's constant (VandenBerg 1983). Relatively little use has been made of stellar luminosity functions of the globular clusters, for which reliable observations are now becoming available, to constrain the ages or compositions. The comparison of observed luminosity functions to theoretical ones allows one to take advantage of information not usually used, and has the advantage of being relatively insensitive to our lack of knowledge of the detailed structure of stellar envelopes and atmospheres. A computer program was developed to apply standard stellar evolutionary theory, using the most recently available input physics (opacities, nuclear reaction rates), to the calculation of the evolution of low-mass Population II stars. An algorithm for computing luminosity functions from the evolutionary tracks was applied to sets of tracks covering a broad range of chemical compositions and ages, such as may be expected for globular clusters

  19. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    Directory of Open Access Journals (Sweden)

    Lindsay eRutter

    2013-07-01

    Full Text Available Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.

  20. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems

    International Nuclear Information System (INIS)

    Kikkinides, E. S.; Monson, P. A.

    2015-01-01

    Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times

  1. Theoretical pluralism in psychoanalytic case studies.

    Science.gov (United States)

    Willemsen, Jochem; Cornelis, Shana; Geerardyn, Filip M; Desmet, Mattias; Meganck, Reitske; Inslegers, Ruth; Cauwe, Joachim M B D

    2015-01-01

    The aim of this study is to provide an overview of the scientific activity of different psychoanalytic schools of thought in terms of the content and production of case studies published on ISI Web of Knowledge. Between March 2013 and November 2013, we contacted all case study authors included in the online archive of psychoanalytic and psychodynamic case studies (www.singlecasearchive.com) to inquire about their psychoanalytic orientation during their work with the patient. The response rate for this study was 45%. It appears that the two oldest psychoanalytic schools, Object-relations psychoanalysis and Ego psychology or "Classical psychoanalysis" dominate the literature of published case studies. However, most authors stated that they feel attached to two or more psychoanalytic schools of thought. This confirms that the theoretical pluralism in psychoanalysis stretches to the field of single case studies. The single case studies of each psychoanalytic school are described separately in terms of methodology, patient, therapist, or treatment features. We conclude that published case studies features are fairly similar across different psychoanalytic schools. The results of this study are not representative of all psychoanalytic schools, as some do not publish their work in ISI ranked journals.

  2. Theoretical pluralism in psychoanalytic case studies

    Science.gov (United States)

    Willemsen, Jochem; Cornelis, Shana; Geerardyn, Filip M.; Desmet, Mattias; Meganck, Reitske; Inslegers, Ruth; Cauwe, Joachim M. B. D.

    2015-01-01

    The aim of this study is to provide an overview of the scientific activity of different psychoanalytic schools of thought in terms of the content and production of case studies published on ISI Web of Knowledge. Between March 2013 and November 2013, we contacted all case study authors included in the online archive of psychoanalytic and psychodynamic case studies (www.singlecasearchive.com) to inquire about their psychoanalytic orientation during their work with the patient. The response rate for this study was 45%. It appears that the two oldest psychoanalytic schools, Object-relations psychoanalysis and Ego psychology or “Classical psychoanalysis” dominate the literature of published case studies. However, most authors stated that they feel attached to two or more psychoanalytic schools of thought. This confirms that the theoretical pluralism in psychoanalysis stretches to the field of single case studies. The single case studies of each psychoanalytic school are described separately in terms of methodology, patient, therapist, or treatment features. We conclude that published case studies features are fairly similar across different psychoanalytic schools. The results of this study are not representative of all psychoanalytic schools, as some do not publish their work in ISI ranked journals. PMID:26483725

  3. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Sun Weiguo; Cheng Yansong

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  4. Theoretical study of rock mass investigation efficiency

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Outters, Nils

    2002-05-01

    The study concerns a mathematical modelling of a fractured rock mass and its investigations by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency (precision) of such investigations and determine the amount of investigations necessary to obtain reliable estimations of the structural-geological parameters of the studied rock mass. The study is not about estimating suitable sample sizes to be used in site investigations.The purpose of the study is to analyse the amount of information necessary for deriving estimates of the geological parameters studied, within defined confidence intervals and confidence level In other words, how the confidence in models of the rock mass (considering a selected number of parameters) will change with amount of information collected form boreholes and surfaces. The study is limited to a selected number of geometrical structural-geological parameters: Fracture orientation: mean direction and dispersion (Fisher Kappa and SRI). Different measures of fracture density (P10, P21 and P32). Fracture trace-length and strike distributions as seen on horizontal windows. A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock mass. The DFN-model was primarily based on the properties of an actual fracture network investigated at the Aespoe Hard Rock Laboratory. The rock mass studied (DFN-model) contained three different fracture sets with different orientations and fracture densities. The rock unit studied was statistically homogeneous. The study includes a limited sensitivity analysis of the properties of the DFN-model. The study is a theoretical and computer-based comparison between samples of fracture properties of a theoretical rock unit and the known true properties of the same unit. The samples are derived from numerically generated boreholes and surfaces that intersect the DFN-network. Two different boreholes are analysed; a vertical borehole and a borehole that is

  5. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  6. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use

    1998-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  7. Beneficial effects of amino acid-functionalized graphene nanosheets incorporated in the photoanode material of dye-sensitized solar cells: A practical and theoretical study

    International Nuclear Information System (INIS)

    Taki, Mahmood; Rezaei, Behzad; Fani, Najmeh; Borandeh, Sedigheh; Abdolmaleki, Amir; Ensafi, Ali A.

    2017-01-01

    Highlights: • Electrochemical properties of GO was improved with incorporated amino acids. • Functionalized amino acids could act as a reducing agent for GO. • Aromatic amino acids-GO had improved photovoltaic properties over aliphatic ones. • Aromatic ring of tyrosine was aligned in parallel to the GO sheet. • A bang gap for GO was emerged with functionalizing with amino acids. - Abstract: In this research, covalently functionalized graphene oxide (GO) with some biocompatible amino acids were incorporated to the TiO_2 film and employed as the photoanodes of dye-sensitized solar cells (DSSCs). Electrochemical analysis of the amino acids-functionalized graphene oxide (AFGs) confirmed that the attached amino acids could be acted as a reducing agent of the GO. The photovoltaic performance of the assembled DSSCs under illumination of simulated AM 1.5 sunlight (100 mW cm"−"2) showed an enhancement of about 4.1 and 1.8 fold for the solar cell assembled with the tyrosine-functionalized GO in relation to the control solar cells constructed with GO-TiO_2 composite and blank TiO_2 film, respectively. These results were in accordance with electron life time and transport time resulted from the open circuit voltage decay (OCVD), electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent spectroscopy (IMPS) analysis. The density functional theory (DFT) calculations exhibited a proper spacial arrangement for the tyrosine-GO structure that could improve electron transfer between the adjucent GO sheets. Density of electronic states (DOS) exhibited a gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels for the simulated AFG structures. This effect could facilitate the light adsorption process in near-IR region.

  8. Beneficial effects of amino acid-functionalized graphene nanosheets incorporated in the photoanode material of dye-sensitized solar cells: A practical and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Rezaei, Behzad, E-mail: rezaei@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Fani, Najmeh [Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran (Iran, Islamic Republic of); Borandeh, Sedigheh [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Science, Shiraz 71345, Islamic Republic of Iran (Iran, Islamic Republic of); Abdolmaleki, Amir; Ensafi, Ali A. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-05-01

    Highlights: • Electrochemical properties of GO was improved with incorporated amino acids. • Functionalized amino acids could act as a reducing agent for GO. • Aromatic amino acids-GO had improved photovoltaic properties over aliphatic ones. • Aromatic ring of tyrosine was aligned in parallel to the GO sheet. • A bang gap for GO was emerged with functionalizing with amino acids. - Abstract: In this research, covalently functionalized graphene oxide (GO) with some biocompatible amino acids were incorporated to the TiO{sub 2} film and employed as the photoanodes of dye-sensitized solar cells (DSSCs). Electrochemical analysis of the amino acids-functionalized graphene oxide (AFGs) confirmed that the attached amino acids could be acted as a reducing agent of the GO. The photovoltaic performance of the assembled DSSCs under illumination of simulated AM 1.5 sunlight (100 mW cm{sup −2}) showed an enhancement of about 4.1 and 1.8 fold for the solar cell assembled with the tyrosine-functionalized GO in relation to the control solar cells constructed with GO-TiO{sub 2} composite and blank TiO{sub 2} film, respectively. These results were in accordance with electron life time and transport time resulted from the open circuit voltage decay (OCVD), electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent spectroscopy (IMPS) analysis. The density functional theory (DFT) calculations exhibited a proper spacial arrangement for the tyrosine-GO structure that could improve electron transfer between the adjucent GO sheets. Density of electronic states (DOS) exhibited a gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels for the simulated AFG structures. This effect could facilitate the light adsorption process in near-IR region.

  9. Theoretical study of defect properties in metals

    International Nuclear Information System (INIS)

    Sindzingre, P.

    1987-01-01

    Several characteristic properties (formation and migration enthalpies and volumes, dipole tensors, effects on shear elastic constants) of several point defects (vacancy, divacancy, interstitial, di-interstitial) in different metals: f.c.c. metals (Al, Cu, Ag, Au), h.c.p. metals (Be, Mg, Zn, Cd, Na, Co, Ti, Zr), b.c.c. metals (Li, Na, K, Rb, Cs) have been calculated. The calculated properties are evaluated from static computations performed with pair potentials derived from pseudo-potential theory (for simple or noble metals) or deduced empirically. Results are compared with available experimental data with previous theoretical works. The first part of this work where we have studied point defects properties in f.c.c. metals lead us to suggest a more convincing interpretation of X-ray scattering and elastic relation measurements concerning interstitials in Al and Cu, and a new interpretation for X-ray scattering measurements concerning di-interstitials in Al. In the second part, devoted to h.c.p. metals we are brought to propose for each studied metal the interstitial configurations which yield the best agreement with experimental results. The third part, devoted to the study of point defects in alkalin b.c.c. metals lead us to interpret self-diffusion in these metals with the assumption of a simultaneous contribution of monovacancies, divacancies and interstitials [fr

  10. Theoretical and experimental studies of elementary physics

    International Nuclear Information System (INIS)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.; Orr, L.

    1993-01-01

    The various components of the high-energy physics research program at the University of Rochester are presented. (I)Fixed-target experimentation at FNAL includes studies of direct photon production by p and π on H, Be, and Cu, and hybrid mesons and other physics issues in Coulomb excitation at high energies. (II)The status of the GEM (Gammas, Electrons, and Muons) Experiment at the SSC is given. (III)The D-Zero experiment at FNAL is reviewed. (IV)Deep inelastic lepton--nucleon scattering experiments are summarized: electron scattering experiments at SLAC, FNAL neutrino quad triplet runs, FNAL neutrino sign selected experiments, and SDC cosmic ray test and test beam calibration. (V)Studies of nonlinear QED at SLAC concentrated on a study of QED at critical field strength in intense laser--high-energy electron collisions. (VI)Development work on the Collider Detector at Fermilab (CDF) emphasized the CDF silicon vertex detector, the end plug calorimeter, and the SDC tile/fiber calorimetry. (VII)The theoretical physics effort is sketched

  11. Theoretical and observational studies of stellar activity

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.

    1984-01-01

    In the theoretical part of this thesis, doubly-diffusive MHD instabilities are studied as a means of breaking up a diffuse magnetic field at the bottom of the solar convection zone. The analysis is linear and local, and assumes short meridional wavelengths; the effects of rotation and diffusion of vorticity, magnetic fields and heat are included. Results show that the instability depends sensitively on the temperature stratification, but rather insensitively on the assumed magnetic field configuration; instability time scales considerably less than the solar cycle period can be easily obtained. In the observational part of the thesis, results are reported of a survey of the x-ray emission of stars with shallow connection zones to study the onset of convection and dynamo activity along the main sequence. Complications arising from stellar multiplicity are discussed extensively; it is demonstrated that binaries have statistically higher x-ray luminosities; and it is shown that physical parameters can only be deduced from single stars. It is further shown that the x-ray luminosities of stars with spectral type in the color range 0.1 less than or equal to B. V less than or equal to 0.5 increase rapidly, whereas stars with B. V approx. 0.0 appear to have no intrinsic x-ray emission at presently detectable levels

  12. Fragmentation of atomic clusters: A theoretical study

    International Nuclear Information System (INIS)

    Lopez, M.J.; Jellinek, J.

    1994-01-01

    Collisionless fragmentation of nonrotating model n-atom metal clusters (n=12, 13, and 14) is studied using isoergic molecular-dynamics simulations. Minimum-energy paths for fragmentation are mapped out as functions of the distance between the centers of mass of the fragments. These paths provide information on the fragmentation energies for the different fragmentation channels. Fragmentation patterns (distributions of the fragmentation channel probabilities) and global and channel-specific fragmentation rate constants are computed and analyzed as functions of the internal energy and of the size of the clusters. The trends derived from the dynamics are compared with those obtained using the RRK and TST statistical approaches. The dynamics of the fragmentation process is analyzed in terms of characteristic quantities such as the distance between the centers of mass of the fragments, their relative translational energy, and their interaction energy, all considered as functions of time

  13. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  14. Theoretical study on keto-enol tautomerisation of glutarimide for exploration of the isomerisation reaction pathway of glutamic acid in proteins using density functional theory

    Science.gov (United States)

    Fukuyoshi, Shuichi; Nakayoshi, Tomoki; Takahashi, Ohgi; Oda, Akifumi

    2017-03-01

    In order to elucidate the reason why glutamic acid residues have lesser racemisation reactivity than asparaginic acid, we investigated the racemisation energy barrier of piperidinedione, which is the presumed intermediate of the isomerisation reaction of L-Glu to D-Glu, by density functional theory calculations. In two-water-molecule-assisted racemisation, the activation barrier for keto-enol isomerisation was 28.1 kcal/mol. The result showed that the activation barrier for the racemisation of glutamic acid residues was not different from that for the racemisation of aspartic acid residues. Thus, glutamic acid residues can possibly cause the racemisation reaction if the cyclic intermediate stably exists.

  15. Theoretical and Methodological Functions Media Influence on Adolescents

    Directory of Open Access Journals (Sweden)

    Jelena Maksimović

    2014-05-01

    Full Text Available The study of the media and their relationship to changes in educational trends is very important and popular phenomenon. Today's youth live and grow up with the media as an integral part of their own socialization. The subject of the research is to study the theoretical and methodological influence of the media on adolescents. The research results confirmed the hypothesis that most adolescents use television and the Internet, to develop social media behaviors of adolescents and certain forms of antisocial behavior (violence, aggression, that young people want to look up to celebrities who are promoted by the media, that the physical inactivity of children increased due to greater exposure to the media, and social network (Facebook has a negative role in the young (p <0,01.

  16. Sibutramine characterization and solubility, a theoretical study

    Science.gov (United States)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  17. Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of Bisphenol A in a high voltage plasma reactor

    International Nuclear Information System (INIS)

    Dai, Fei; Fan, Xiangru; Stratton, Gunnar R.; Bellona, Christopher L.; Holsen, Thomas M.; Crimmins, Bernard S.; Xia, Xiaoyan; Mededovic Thagard, Selma

    2016-01-01

    Highlights: • Combining the Fenton reaction with the plasma treatment reduces Bisphenol A concentration below the detection limit within 30 min. • Carbon steel electrode in the plasma reactor can be used as a source of iron ions. • OH radical attack on Bisphenol A is the primary pathway for byproduct formation. - Abstract: A novel electrical discharge plasma reactor configuration with and without iron ions was evaluated for the degradation of 0.02 mM Bisphenol A (BPA). The pseudo-first-order reaction rate constant calculated for the plasma treatment of BPA with a stainless steel electrode in the presence of dissolved ferrous ion (Fe"2"+) salts (termed plasma/Fenton treatment) was higher than in the plasma treatment in the absence of iron salts. At the optimal ferrous ion concentration, longer plasma treatment times resulted in higher BPA degradation rates, likely due to increased hydroxyl (OH) radical concentration formed through the decomposition of H_2O_2. Replacing the stainless steel with a carbon steel grounded electrode resulted in the release of iron ions from the carbon steel thereby increasing the rate of BPA removal and eliminating the need for iron salts. After the plasma/Fenton treatment, >97% of the residual iron salts were removed by coagulation/flocculation/sedimentation. Byproduct identification coupled with density functional theory (DFT) calculations confirmed that OH radical attack on BPA’s hydroxyl group is the primary pathway for byproduct formation.

  18. Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of Bisphenol A in a high voltage plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Fei, E-mail: daif@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Fan, Xiangru, E-mail: fanx@clarkson.edu [Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Stratton, Gunnar R., E-mail: strattgr@clarkson.edu [Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Bellona, Christopher L., E-mail: cbellona@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Department of Civil and Environmental Engineering, 1500 Illinois St., Colorado School of Mines, Golden, 80401 CO (United States); Holsen, Thomas M., E-mail: tholsen@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Crimmins, Bernard S., E-mail: bcrimmin@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Xia, Xiaoyan, E-mail: xiax@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Mededovic Thagard, Selma, E-mail: smededov@clarkson.edu [Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States)

    2016-05-05

    Highlights: • Combining the Fenton reaction with the plasma treatment reduces Bisphenol A concentration below the detection limit within 30 min. • Carbon steel electrode in the plasma reactor can be used as a source of iron ions. • OH radical attack on Bisphenol A is the primary pathway for byproduct formation. - Abstract: A novel electrical discharge plasma reactor configuration with and without iron ions was evaluated for the degradation of 0.02 mM Bisphenol A (BPA). The pseudo-first-order reaction rate constant calculated for the plasma treatment of BPA with a stainless steel electrode in the presence of dissolved ferrous ion (Fe{sup 2+}) salts (termed plasma/Fenton treatment) was higher than in the plasma treatment in the absence of iron salts. At the optimal ferrous ion concentration, longer plasma treatment times resulted in higher BPA degradation rates, likely due to increased hydroxyl (OH) radical concentration formed through the decomposition of H{sub 2}O{sub 2}. Replacing the stainless steel with a carbon steel grounded electrode resulted in the release of iron ions from the carbon steel thereby increasing the rate of BPA removal and eliminating the need for iron salts. After the plasma/Fenton treatment, >97% of the residual iron salts were removed by coagulation/flocculation/sedimentation. Byproduct identification coupled with density functional theory (DFT) calculations confirmed that OH radical attack on BPA’s hydroxyl group is the primary pathway for byproduct formation.

  19. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  20. Computational and theoretical studies of globular proteins

    Science.gov (United States)

    Pagan, Daniel L.

    Protein crystallization is often achieved in experiment through a trial and error approach. To date, there exists a dearth of theoretical understanding of the initial conditions necessary to promote crystallization. While a better understanding of crystallization will help to create good crystals suitable for structure analysis, it will also allow us to prevent the onset of certain diseases. The core of this thesis is to model and, ultimately, understand the phase behavior of protein particles in solution. Toward this goal, we calculate the fluid-fluid coexistence curve in the vicinity of the metastable critical point of the modified Lennard-Jones potential, where it has been shown that nucleation is increased by many orders of magnitude. We use finite-size scaling techniques and grand canonical Monte Carlo simulation methods. This has allowed us to pinpoint the critical point and subcritical region with high accuracy in spite of the critical fluctuations that hinder sampling using other Monte Carlo techniques. We also attempt to model the phase behavior of the gamma-crystallins, mutations of which have been linked to genetic cataracts. The complete phase behavior of the square well potential at the ranges of attraction lambda = 1.15 and lambda = 1.25 is calculated and compared with that of the gammaII-crystallin. The role of solvent is also important in the crystallization process and affects the phase behavior of proteins in solution. We study a model that accounts for the contribution of the solvent free-energy to the free-energy of globular proteins. This model allows us to model phase behavior that includes solvent.

  1. Theoretical Studies of Nanoclusters (Briefing Charts)

    Science.gov (United States)

    2015-07-23

    nanoclusters. However, scanning transmission electron microscopy ( STEM ) measures show cluster inversion occurred to produce MgyCux(!) a) copper atoms b...methane (née CLL -1) as a potential explosive ingredient: a theoretical study”, Propellants, Explosives, Pyrotechnics 38, 9-13 (2013). Jesus Paulo L

  2. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  3. The pressure distribution for biharmonic transmitting array: theoretical study

    Science.gov (United States)

    Baranowska, A.

    2005-03-01

    The aim of the paper is theoretical analysis of the finite amplitude waves interaction problem for the biharmonic transmitting array. We assume that the array consists of 16 circular pistons of the same dimensions that regrouped in two sections. Two different arrangements of radiating elements were considered. In this situation the radiating surface is non-continuous without axial symmetry. The mathematical model was built on the basis of the Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation. To solve the problem the finite-difference method was applied. On-axis pressure amplitude for different frequency waves as a function of distance from the source, transverse pressure distribution of these waves at fixed distances from the source and pressure amplitude distribution for them at fixed planes were examined. Especially changes of normalized pressure amplitude for difference frequency were studied. The paper presents mathematical model and some results of theoretical investigations obtained for different values of source parameters.

  4. Key issues in theoretical and functional pneumatic design

    Science.gov (United States)

    Xu, Z. G.; Yang, D. Y.; Liu, W. M.; Liu, T. T.

    2017-10-01

    This paper studies the energy release of the pneumatic engine in different thermodynamic processes, the isothermal process is the highest power output process, while adiabatic process is the lowest energy output process, and the energy release of the pneumatic engine is a multi-state thermodynamic process between them. Therefore heat exchanging should be increased between the pneumatic engine and the outer space, the gas expansion process in the cylinder should be as close as possible to the isothermal process. Heat exchange should be increased between the cylinder and the external spaces. Secondly, the fin structure is studied to increase the heat exchanging between the cylinder body and the outside space. The upper part has fin structures and the lower cylinder has no fin structure, this structure improved the working efficiency of pneumatic engine. Finally the cam and the hydraulic bottle of pneumatic engines are designed. Simulation and theoretical calculation are used to the analysis of the whole structure, which lay the foundation for the manufacturing and design of the pneumatic engines.

  5. Theoretical study of fission dynamics with muons

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Bottcher, C.; Strayer, M.R.; Maruhn, J.A.; Frankfurt Univ.

    1992-01-01

    Following muon capture by actinide atoms, some of the inner shell muonic transitions proceed by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. In particular, the muonic E2:(3d→1s) transition energy is close to the peak of the isoscalar giant quadrupole resonance in actinide nuclei which exhibits a large fission width. Prompt fission in the presence of a bound muon allows us to study the dynamics of large-amplitude collective motion. We solve the time-dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  6. Theoretical Study of the Diastereofacial Isomers of Aldrin and Dieldrin

    Directory of Open Access Journals (Sweden)

    Zoran Zdravkovski

    2006-02-01

    Full Text Available The Diels-Alder reaction of hexachlorocyclopentadiene with norbornadiene givesaldrin but theoretically three other diastereofacial isomers are possible. On oxidation theseisomers can generate eight adducts one of which is known as dieldrin. All these, as well asthe corresponding reactions with hexafluorocyclopenadiene were studied by semiempirical(AM1 and PM3 and hybrid density functional (B3LYP methods. Besides the energy levels,the transition states were calculated for the reactions leading to the diastereofacial isomers ofaldrin, which indicate that aldrin is the favored product of the reaction both fromthermodynamic and kinetic point of view.

  7. Theoretical study on perylene derivatives as fluorescent sensors for amines

    Science.gov (United States)

    Lathiotakis, Nektarios N.; Kerkines, Ioannis S. K.; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2018-01-01

    A theoretical study is presented on perylene diimide (PDI) and perylene monoimide (PMI) and their action as sensors of amines in solution. Density functional theory (DFT) and Time dependent DFT (TDDFT) calculations are carried out on complexes of PDI and PMI with aniline in THF solution. The optimized geometries for the complexes have aniline lying parallel above the perylene at 3.15 Å and with binding energy of 0.53 eV in the ground state. The results on the excited states are consistent with a photoinduced electron transfer (PET) mechanism. The effective aniline-perylene distance resulting from a Mulliken's approach is 3.61 Å.

  8. Theoretical studies in elementary particle physics

    International Nuclear Information System (INIS)

    Collins, J.

    1994-01-01

    This is a report on research conducted at Penn State University under grant number DE-FG02-90ER-40577, from November 1992 to present. The author is a member of the CTEQ collaboration (Coordinated Theoretical and Experimental Project on Quantitative QCD). Some of the work in CTEQ is described in this report. Topics which the authors work has touched include: polarized hard scattering; hard diffraction; small x and perturbative pomeron physics; gauge-invariant operators; fundamental QCD; heavy quarks; instantons and deep inelastic scattering; non-perturbative corrections to τ decay

  9. Theoretical and experimental study of fenofibrate and simvastatin

    Science.gov (United States)

    Nicolás Vázquez, Inés; Rodríguez-Núñez, Jesús Rubén; Peña-Caballero, Vicente; Ruvalcaba, Rene Miranda; Aceves-Hernandez, Juan Manuel

    2017-12-01

    Fenofibrate, an oral fibrate lipid lowering agent, and simvastatin, which reduces plasma levels of low-density lipoprotein cholesterol, are active pharmaceutical ingredients (APIs), currently in the market. We characterized these APIs by thermal analysis and conducted X-ray powder diffraction techniques. Studies should be carried out in the formulation stage before the final composition of a polypill may be established. Thus, it was found in thermochemical studies that both compounds present no chemical interactions in an equimolar mixture of solid samples at room temperature. Theoretical studies were employed to determine possible interactions between fenofibrate and simvastatin. A very weak intramolecular hydrogen bond is formed between the hydroxyl group (O5H5) of the simvastatin with chlorine and carbonyl group (C11O4, C1O2) of the fenofibrate molecule. These weak energy hydrogen bonds have no effect on the chemical stability of the compounds studied. The results were obtained using Density Functional Theory methods; particularly the BPE1BPE and B3LYP functional and 6-31++G** basis set. The values of energy show good approximation when are compared with similar calculations previously reported. Infrared spectra of monomers and dimers were obtained via theoretical calculations.

  10. Signatures of Coulomb fission: a theoretical study

    International Nuclear Information System (INIS)

    Oberacker, V.; Kruse, H.; Pinkston, W.T.; Greiner, W.

    1979-01-01

    Evidence for Coulomb fission (CF) is noted first. Then the Hamiltonian is set down and explained, and an expression for the CF probability of CF is obtained. Results are summarized. Figures show the CF probability of 238 U as a function of projectile charge number and the excitation functions for CF of 238 U by 184 W and 136 Xe. 3 figures

  11. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Science.gov (United States)

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  12. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  13. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region.

  14. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  15. Exploring theoretical functions of corpus data in teaching translation

    Directory of Open Access Journals (Sweden)

    Éric Poirier

    2016-04-01

    Full Text Available http://dx.doi.org/10.5007/2175-7968.2016v36nesp1p177 As language referential data banks, corpora are instrumental in the exploration of translation solutions in bilingual parallel texts or conventional usages of source or target language in monolingual general or specialized texts. These roles are firmly rooted in translation processes, from analysis and interpretation of source text to searching for an acceptable equivalent and integrating it into the production of the target text. Provided the creative and not the conservative way be taken, validation or adaptation of target text in accordance with conventional usages in the target language also benefits from corpora. Translation teaching is not exploiting this way of translating that is common practice in the professional translation markets around the world. Instead of showing what corpus tools can do to translation teaching, we start our analysis with a common issue within translation teaching and show how corpus data can help to resolve it in learning activities in translation courses. We suggest a corpus-driven model for the interpretation of ‘business’ as a term and as an item in complex terms based on source text pattern analysis. This methodology will make it possible for teachers to explain and justify interpretation rules that have been defined theoretically from corpus data. It will also help teachers to conceive and non-subjectively assess practical activities designed for learners of translation. Corpus data selected for the examples of rule-based interpretations provided in this paper have been compiled in a corpus-driven study (Poirier, 2015 on the translation of the noun ‘business’ in the field of specialized translation in business, economics, and finance from English to French. The corpus methodology and rule-based interpretation of senses can be generalized and applied in the definition of interpretation rules for other language pairs and other specialized simple and

  16. Exploring theoretical functions of corpus data in teaching translation

    Directory of Open Access Journals (Sweden)

    Éric Poirier

    2016-06-01

    Full Text Available As language referential data banks, corpora are instrumental in the exploration of translation solutions in bilingual parallel texts or conventional usages of source or target language in monolingual general or specialized texts. These roles are firmly rooted in translation processes, from analysis and interpretation of source text to searching for an acceptable equivalent and integrating it into the production of the target text. Provided the creative and not the conservative way be taken, validation or adaptation of target text in accordance with conventional usages in the target language also benefits from corpora. Translation teaching is not exploiting this way of translating that is common practice in the professional translation markets around the world. Instead of showing what corpus tools can do to translation teaching, we start our analysis with a common issue within translation teaching and show how corpus data can help to resolve it in learning activities in translation courses. We suggest a corpus-driven model for the interpretation of ‘business’ as a term and as an item in complex terms based on source text pattern analysis. This methodology will make it possible for teachers to explain and justify interpretation rules that have been defined theoretically from corpus data. It will also help teachers to conceive and non-subjectively assess practical activities designed for learners of translation. Corpus data selected for the examples of rule-based interpretations provided in this paper have been compiled in a corpus-driven study (Poirier, 2015 on the translation of the noun ‘business’ in the field of specialized translation in business, economics, and finance from English to French. The corpus methodology and rule-based interpretation of senses can be generalized and applied in the definition of interpretation rules for other language pairs and other specialized simple and complex terms. These works will encourage the

  17. Strong correlation effects in theoretical STM studies of magnetic adatoms

    Science.gov (United States)

    Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir

    2016-03-01

    We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.

  18. Solar pond conception - experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Huseyin [Zonguldak Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey); Halici, Fethi [Sakarya Univ., Mechanical Engineering Dept., Adapazari (Turkey); Binark, A. Korhan [Marmara Univ., Technical Education Faculty, Istanbul (Turkey)

    2000-07-01

    A one dimensional transient mathematical model for predicting the thermal performance of the salt gradient solar pond is developed and presented. In this paper, the natural solar ponds and different artificial solar pond systems found in the literature are introduced. Necessary modifications are made on the experimental stand located in Istanbul Technical University, the experimental stand is introduced and natural phenomena produced in the pond by the different solar pond variations under natural conditions are observed. In the theoretical work based on a one dimensional unsteady state heat conduction model with internal heat generation, the energy and mass balance equations for the upper convective zone, the non-convective zone and the lower convective zone, all of which form the solar pond, are written in terms of differential equations. These equations are solved analytically and numerically. The results obtained from the analysis are compared with the experimental results. The temperature and the concentration profiles are separately presented in the figures. (Author)

  19. Studies in Theoretical and Applied Statistics

    CERN Document Server

    Pratesi, Monica; Ruiz-Gazen, Anne

    2018-01-01

    This book includes a wide selection of the papers presented at the 48th Scientific Meeting of the Italian Statistical Society (SIS2016), held in Salerno on 8-10 June 2016. Covering a wide variety of topics ranging from modern data sources and survey design issues to measuring sustainable development, it provides a comprehensive overview of the current Italian scientific research in the fields of open data and big data in public administration and official statistics, survey sampling, ordinal and symbolic data, statistical models and methods for network data, time series forecasting, spatial analysis, environmental statistics, economic and financial data analysis, statistics in the education system, and sustainable development. Intended for researchers interested in theoretical and empirical issues, this volume provides interesting starting points for further research.

  20. Theoretical Semi-Empirical AM1 studies of Schiff Bases

    International Nuclear Information System (INIS)

    Arora, K.; Burman, K.

    2005-01-01

    The present communication reports the theoretical semi-empirical studies of schiff bases of 2-amino pyridine along with their comparison with their parent compounds. Theoretical studies reveal that it is the azomethine group, in the schiff bases under study, that acts as site for coordination to metals as it is reported by many coordination chemists. (author)

  1. Theoretical study on optical model potential

    International Nuclear Information System (INIS)

    Lim Hung Gi.

    1984-08-01

    The optical model potential of non-local effect on the rounded edge of the potential is derived. On the basis of this potential the functional form of the optical model potential, the energy dependence and relationship of its parameters, and the dependency of the values of the parameters on energy change are shown in this paper. (author)

  2. Theoretical method for determining particle distribution functions of classical systems

    International Nuclear Information System (INIS)

    Johnson, E.

    1980-01-01

    An equation which involves the triplet distribution function and the three-particle direct correlation function is obtained. This equation was derived using an analogue of the Ornstein--Zernike equation. The new equation is used to develop a variational method for obtaining the triplet distribution function of uniform one-component atomic fluids from the pair distribution function. The variational method may be used with the first and second equations in the YBG hierarchy to obtain pair and triplet distribution functions. It should be easy to generalize the results to the n-particle distribution function

  3. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    Science.gov (United States)

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with

  4. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  5. Theoretical & Experimental Studies of Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Kevin [Univ. of Rochester, NY (United States)

    2012-10-04

    Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities

  6. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  7. Theoretical derivation of wind power probability distribution function and applications

    International Nuclear Information System (INIS)

    Altunkaynak, Abdüsselam; Erdik, Tarkan; Dabanlı, İsmail; Şen, Zekai

    2012-01-01

    Highlights: ► Derivation of wind power stochastic characteristics are standard deviation and the dimensionless skewness. ► The perturbation is expressions for the wind power statistics from Weibull probability distribution function (PDF). ► Comparisons with the corresponding characteristics of wind speed PDF abides by the Weibull PDF. ► The wind power abides with the Weibull-PDF. -- Abstract: The instantaneous wind power contained in the air current is directly proportional with the cube of the wind speed. In practice, there is a record of wind speeds in the form of a time series. It is, therefore, necessary to develop a formulation that takes into consideration the statistical parameters of such a time series. The purpose of this paper is to derive the general wind power formulation in terms of the statistical parameters by using the perturbation theory, which leads to a general formulation of the wind power expectation and other statistical parameter expressions such as the standard deviation and the coefficient of variation. The formulation is very general and can be applied specifically for any wind speed probability distribution function. Its application to two-parameter Weibull probability distribution of wind speeds is presented in full detail. It is concluded that provided wind speed is distributed according to a Weibull distribution, the wind power could be derived based on wind speed data. It is possible to determine wind power at any desired risk level, however, in practical studies most often 5% or 10% risk levels are preferred and the necessary simple procedure is presented for this purpose in this paper.

  8. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  9. Theoretical studies of controlled fusion. Final report

    International Nuclear Information System (INIS)

    Krall, N.A.

    1986-01-01

    Transport in FRC was studied analytically and numerically. The physics considered included lower-hybrid-drift turbulence, rapid convection along closed magnetic field lines, nonadiabaticity, and large particle orbits. The study also extended conventional modeling procedures by developing nonlocal models of stability and transport and determined the relation between such models and the more widely used local models

  10. Novel Pyranopyrazoles: Synthesis and Theoretical Studies

    Directory of Open Access Journals (Sweden)

    Abdul Amir H. Kadhum

    2012-08-01

    Full Text Available A series of pyranopyrazoles, namely, 7-(2-aminoethyl-3,4-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6(7H-one (2, (Z-3,4-dimethyl-1-(4-((4-nitrobenzylideneaminophenylpyrano[2,3-c]pyrazol-6(1H-one (5, 1-(4-(3,4-dimethyl-6-oxopyrano[2,3-c]pyrazol-1(6H-ylphenyl-3-(naphthalen-1-ylurea (6, (Z-ethyl 4-((3,4-dimethyl-6-oxo-1,6-dihydropyrano[2,3-c]pyrazol-5-yldiazenylbenzoate (8 and 3,4-dimethyl-N-(naphthalen-1-yl-6-oxopyrano[2,3-c]pyrazole-1(6H-carboxamide (9 were synthesized and characterized by means of their UV-VIS, FT-IR, 1H-NMR and 13C-NMR spectral data. Density Functional Theory calculations of the synthesized pyranopyrazoles were performed using molecular structures with optimized geometries. Molecular orbital calculations have provided detail description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.

  11. Theoretical studies of controlled fusion: Final report

    International Nuclear Information System (INIS)

    Krall, N.A.

    1987-01-01

    This report summarizes the results of a study of low frequency stability in the Field Reversed Configuration (FRC), with emphasis on the transport resulting from this stability behavior. 11 refs., 5 figs., 2 tabs

  12. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    Science.gov (United States)

    2016-01-06

    SECURITY CLASSIFICATION OF: This is a comprehensive theoretical research program to investigate the fundamental principles of small-system thermodynamics ...a.k.a. nanothermodynamics). The proposed work is motivated by our desire to better understand the fundamental dynamics and thermodynamics of...for Public Release; Distribution Unlimited Final Report: Theoretical Studies of Small-System Thermodynamics in Energetic Materials The views, opinions

  13. Role of A-site Ca and B-site Zr substitution in BaTiO3 lead-free compounds: Combined experimental and first principles density functional theoretical studies

    Science.gov (United States)

    Keswani, Bhavna C.; Saraf, Deepashri; Patil, S. I.; Kshirsagar, Anjali; James, A. R.; Kolekar, Y. D.; Ramana, C. V.

    2018-05-01

    We report on the combined experimental and theoretical simulation results of lead-free ferroelectrics, Ba(1-x)CaxTiO3 (x = 0.0-0.3) and BaTi(1-y)ZryO3 (y = 0.0-0.2), synthesized by standard solid state reaction method. First principles density functional calculations are used to investigate the electronic structure, dynamical charges, and spontaneous polarization of these compounds. In addition, the structural, ferroelectric, piezoelectric, and dielectric properties are studied using extensive experiments. The X-ray diffraction and temperature dependent Raman spectroscopy studies indicate that the calcium (Ca) substituted compositions exhibit a single phase crystal structure, while zirconium (Zr) substituted compositions are biphasic. The scanning electron micrographs reveal the uniform and highly dense microstructure. The presence of polarization-electric field and strain-electric field hysteresis loops confirms the ferroelectric and piezoelectric nature of all the compositions. Our results demonstrate higher values for polarization, percentage strain, piezoelectric coefficients, and electrostrictive coefficient compared to those existing in the literature. For smaller substitutions of Ca and Zr in BaTiO3, a direct piezoelectric coefficient (d33) is enhanced, while the highest d33 value (˜300 pC/N) is observed for BaTi0.96Zr0.04O3 due to the biphasic ferroelectric behavior. Calculation of Born effective charges indicates that doping with Ca or Zr increases the dynamical charges on Ti as well as on O and decreases the dynamical charge on Ba. An increase in the dynamical charges on Ti and O is ascribed to the increase in covalency of Ti-O bond that reduces the polarizability of the crystal. A broader range of temperatures is demonstrated to realize the stable phase in the Ca substituted compounds. The results indicate enhancement in the temperature range of applicability of these compounds for device applications. The combined theoretical and experimental study is

  14. Global Leadership Study: A Theoretical Framework

    Science.gov (United States)

    Perkins, Anne W.

    2009-01-01

    Traditional leadership theory and research courses do not adequately prepare students for cross-cultural leadership. This article notes six premises of Western theories and demonstrates the limitations of these premises in non-Western settings. A framework for the study of cross-cultural leadership, The Global Leadership-Learning Pyramid, is…

  15. Theoretical and experimental studies of elementary particles

    International Nuclear Information System (INIS)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.L.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

    1991-01-01

    This report discusses: Fixed target experimentation at Fermilab; the D-zero collider experiment at Fermilab; deep inelastic lepton nucleon scattering; non-accelerator experiments and non-linear QED; the AMY experiment at TRISTAN and other activities at KEK; the collider detector at Fermilab; laser switched linac; preparations for experiments at the SSC; search for massive stable particles; and the Advanced Study Institute on techniques and concepts of high energy physics

  16. Theoretical Studies of Strongly Interacting Fine Particle Systems

    Science.gov (United States)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  17. Electrochemistry of chlorogenic acid: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Namazian, Mansoor [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)]. E-mail: namazian@yazduni.ac.ir; Zare, Hamid R. [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2005-08-10

    Cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as well as quantum chemical methods, are used for electrochemical study of chlorogenic acid, as an important biological molecule. The standard formal potential, diffusion coefficient, and heterogeneous electron transfer rate constant of chlorogenic acid in aqueous solution are investigated. Acidic dissociation constant of chlorogenic acid is also obtained. Quantum mechanical calculations on oxidation of chlorogenic acid in aqueous solution, using density functional theory are presented. The change of Gibbs free energy and entropy of oxidation of chlorogenic acid are calculated using thermochemistry calculations. The calculations in aqueous solution are carried out with the use of polarizable continuum solvation method. Theoretical standard electrode potential of chlorogenic acid is achieved to be 0.580 V versus standard calomel electrode (SCE) which is in agreement with the experimental value of 0.617 V obtained experimentally in this work. The difference is consistent with the values we previously reported for other quinone derivatives.

  18. Theoretical study of asymmetric super-rotors: Alignment and orientation

    Science.gov (United States)

    Omiste, Juan J.

    2018-02-01

    We report a theoretical study of the optical centrifuge acceleration of an asymmetric top molecule interacting with an electric static field by solving the time-dependent Schrödinger equation in the rigid rotor approximation. A detailed analysis of the mixing of the angular momentum in both the molecular and the laboratory fixed frames allows us to deepen the understanding of the main features of the acceleration process, for instance, the effective angular frequency of the molecule at the end of the pulse. For the case of the SO2 molecular super-rotor, we show numerically that it rotates around one internal axis and that its dynamics is confined to the plane defined by the polarization axis of the laser, in agreement with experimental findings. Furthermore, we consider the orientation patterns induced by the dc field, showing the characteristics of their structure as a function of the strength of the static field and the initial configuration of the fields.

  19. A theoretical study of hydrodynamic cavitation.

    Science.gov (United States)

    Arrojo, S; Benito, Y

    2008-03-01

    The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.

  20. Prompt radiation activation analysis, (1) Theoretical study

    International Nuclear Information System (INIS)

    EL Barouni, A. M.; Araddad, S. Y.; Mosbah, D. S.; Elfakhri, S. M.; Rateb, J. M.; Benghzail, M. A.

    2004-01-01

    The measurement of the prompt γ following neutron capture in the reaction has been extensively developed. In this method the gamma-ray intensity is depended only upon the radiative capture cross-section and not upon the half-life of the product nucleus. The prompt gamma-ray activation analysis method stems from the radiative capture process which results in the decay of the compound nucleus by the emission of characteristic gamma radiation, either as a single photon with kinetic energy equal to the excitation energy less the recoil energy or, more likely, by a cascade of two or more photons with the same energy. The equations and the computer program required to calculate the yield, the intensity and the K χ emission probability per disintegration, are given in this study.(author)

  1. Theoretical studies of controlled fusion: Final report

    International Nuclear Information System (INIS)

    Krall, N.A.

    1987-01-01

    This report summarizes the results of a study of low frequency stability in the Field Reversed Configuration (FRC), with emphasis on the transport resulting from this stability behavior. Anomalous transport plays an obvious role in the confinement physics of the Field Reversed Configuration. Other anomalies are also observed, including an apparent absence of MHD instability and, in some cases, of lower-hybrid-drift instability. In current FRC experiments at LANL and Spectra Technology, particle, energy, and magnetic flux loss are observed to differ from classical prediction, both in size and in scaling. Early models proposed to explain that transport properties were based on anomalous radial loss of plasma particles in the vicinity of the separatrix between closed and open field lines produced by lower-hybrid instabilities. Our present work has shown that low frequency drift waves were also unstable in FRC, and produce energy and flux loss consistent with observation. 11 refs., 5 figs., 2 tabs

  2. Experimental and theoretical study of reflux condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, Knut

    1997-12-31

    This thesis studies the separation of gas mixtures in a reflux condenser. also called a dephlegmator. Reflux condensation is separation of a gas mixture, in reflux flow with condensing liquid, under continuous heat removal. A numerical model of a dephlegmator for binary mixtures was developed. The model may readily be extended to multi-component mixtures, as the solution method is based on a matrix solver. Separation of a binary mixture in a reflux condenser test rig is demonstrated. The test facility contains a single-tube test section that was designed and built as part of the project. Test mixtures of propane and n-butane were used, and a total of 15 experiments are reported. Limited degree of separation was achieved due to limited heat transfer area and narrow boiling point range of the test mixture. The numerical model reproduces the experimental data within reasonable accuracy. Deviation between calculated and measured properties is less than 6% of the measured temperature and less than 5% of the measured flow rate. The model is based on mechanistic models of physical processes and is not calibrated or tuned to fit the experimental data. The numerical model is applied to a number of separation processes. These case studies show that the required heat transfer area increases rapidly with increments in top product composition (light component). Flooding limits the amount of reflux liquid. The dephlegmator is suitable for separation of feed mixtures that are rich in light components. The gliding temperature in the dephlegmation process enables utilization of top product as refrigerant, with subsequent energy saving as a result. 61 refs., 50 figs., 34 tabs.

  3. Theoretical study of cisplatin adsorption on silica

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Company, A. Diaz; Brizuela, G.; Juan, A. [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2011-11-15

    The adsorption of cisplatin and its complexes, cis-[PtCl(NH{sub 3}){sub 2}]{sup +} and cis-[Pt(NH{sub 3}){sub 2}]{sup 2+}, on a SiO{sub 2}(1 1 1) hydrated surface has been studied by the Atom Superposition and Electron Delocalization method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule-surface interactions are formed at expenses of the OH surface bonds. The more important interactions are the Cl-H bond for cis-[PtCl{sub 2}(NH{sub 3}){sub 2}] and cis-[PtCl(NH{sub 3}){sub 2}]{sup +} adsorptions, and the Pt-O interaction for cis-[Pt(NH{sub 3}){sub 2}]{sup 2+} adsorption. The Cl p orbitals and Pt s, p y d orbitals of the molecule and its complexes, and the s H orbital and, the s and p orbitals of the O atoms of the hydrated surface are the main contribution to the surface bonds.

  4. GLOBAL SOURCING: A THEORETICAL STUDY ON TURKEY

    Directory of Open Access Journals (Sweden)

    Aytac GOKMEN

    2010-07-01

    Full Text Available Global sourcing is to source from the global market for goods and services across national boundaries in order to take advantage of the global efficiencies in the delivery of a product or service. Such efficiencies are consists of low cost skilled labor, low cost raw materials and other economic factors like tax breaks and deductions as well as low trade tariffs. When we assess the case regarding to Turkey, global sourcing is an effective device for some firms. The domestic firms in Turkey at various industries are inclined to global source finished or intermediate goods from the world markets, finish the production process in Turkey and export. Eventually, on the one hand the export volume of Turkey increases, but on the other hand the import of a considerable volume of finished or intermediate goods bring about a negative trade balance and loss of jobs in Turkey. Therefore, the objective of this study is to assess the concept of global sourcing transactions on Turkey resting on comprehensive publications.

  5. Theoretical studies of solar pumped lasers

    Science.gov (United States)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  6. Theoretical studies of Anderson impurity models

    International Nuclear Information System (INIS)

    Glossop, M.T.

    2000-01-01

    A Local Moment Approach (LMA) is developed for single-particle excitations of a symmetric single impurity Anderson model (SIAM) with a soft-gap hybridization vanishing at the Fermi level, Δ I ∝ vertical bar W vertical bar r with r > 0, and for the generic asymmetric case of the 'normal' (r = 0) SIAM. In all cases we work within a two-self-energy description with local moments introduced explicitly from the outset, and in which single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. For the soft-gap symmetric SIAM, the resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime where it is perturbatively exact for those r-domains in which perturbation theory in U is non-singular. While the primary emphasis is on single-particle dynamics, the quantum phase transition between strong coupling (SC) and local moment (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained, notably for the behaviour of the critical U c (r) separating SC/LM states and the Kondo scale w m (r) characteristic of the SC phase. Results for both single-particle spectra and SG/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies; and a number of further testable predictions are made. Single-particle spectra are examined systematically for both SC and LM states; in particular, for all 0 ≤ r 0 SC phase which, in agreement with conclusions drawn from recent NRG work, may be viewed as a non-trivial but natural generalization of Fermi liquid physics. We also reinvestigate the problem via the NRG in light of the predictions arising from the LMA: all are borne out and excellent agreement is found. For the asymmetric single impurity Anderson model (ASIAM) we establish general conditions which must be satisfied

  7. Chronic job burnout and daily functioning: A theoretical analysis

    NARCIS (Netherlands)

    A.B. Bakker (Arnold); P.L. Costa (Patrícia Lopes)

    2014-01-01

    textabstractIn this article, we discuss the individual employee's role in the development of his/her job burnout. We review the antecedents and consequences of burnout, and propose a model with chronic burnout as a moderator of daily functioning in the workplace. Specifically, we argue that chronic

  8. Theoretical and Experimental Studies in Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, James [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy

    2017-03-08

    . We note also that PBPL graduates remain as close elaborators for the program after leaving UCLA. The UCLA PBPL program is a foremost developer of on-campus facilities, such as the Neptune and Pegasus Laboratories, providing a uniquely strong environment for student-based research. In addition, the PBPL is a strong user of off-campus national lab facilities, such as SLAC FACET and NLCTA, and the BNL ATF. UCLA has also vigorously participated in the development of these facilities. The dual emphases on off- and on-campus opportunities permit the PBPL to address in an agile way a wide selection of cutting-edge research topics. The topics embraced by this proposal illustrate this program aspect well. These include: GV/m dielectric wakefield acceleration/coherent Cerenkov radiation experiments at FACET (E-201) and the ATF; synergistic laser-excited dielectric accelerator and light source development; plasma wakefield (PWFA) experiments on “Trojan horse” ionization injection (FACET E-210), quasi-nonlinear PWFA at BNL and the production at Neptune high transformer ratio plasma wakes; the inauguration of a new type of RF photoinjector termed “hybrid” at UCLA, and application to PWFA; space-charge dominated beam and cathode/near cathode physics; the study of advanced IFEL systems, for very high energy gain and utilization of novel OAM modes; the physcis of inverse Compton scattering (ICS), with applications to e+ production and γγ colliders; electron diffraction; and advanced beam diagnostics using coherent imaging techniques. These subjects are addressed under the leadership of PBPL director Prof. James Rosenzweig in Task A, and Prof. Pietro Musumeci in Task J, which was initiated following his OHEP Outstanding Junior Investigator award.

  9. A theoretical study for thorium monocarbide (ThC)

    International Nuclear Information System (INIS)

    Aydin, S.; Tatar, A.; Ciftci, Y.O.

    2012-01-01

    Highlights: ► We focused on high pressure behavior of ThC. ► ThC is metallic, and mechanically stable. ► The obtained results agree with the other available values. ► ThC is hard material, and hardness increases properly with pressure. - Abstract: The structural, mechanical, electronic and thermodynamic properties of thorium monocarbide (ThC) with NaCl-type structure have been investigated by using first-principles plane wave density functional calculations with GGA, LDA and LDA + U functionals. It is shown that calculated equilibrium structural parameters of ThC are in agreement with the experimental results. It is seen from calculated single-crystal elastic constants that ThC with NaCl-type structure is mechanically stable. And from calculated density of states and band structure, it is observed that ThC is metallic. After the properties at 0 GPa are clarified, pressure dependency of the structural parameters, the elastic properties and related mechanical properties, density of states (DOS) and hardness are studied. Furthermore, the thermodynamic properties of ThC are obtained from the quasi-harmonic Debye model (QHM) over high pressure and temperature ranges for three functionals. The results are compared to each other, and the available experimental and theoretical data.

  10. A theoretical study for thorium monocarbide (ThC)

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, S.; Tatar, A. [Gazi University, Department of Physics, Teknikokullar 06500, Ankara (Turkey); Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr [Gazi University, Department of Physics, Teknikokullar 06500, Ankara (Turkey)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We focused on high pressure behavior of ThC. Black-Right-Pointing-Pointer ThC is metallic, and mechanically stable. Black-Right-Pointing-Pointer The obtained results agree with the other available values. Black-Right-Pointing-Pointer ThC is hard material, and hardness increases properly with pressure. - Abstract: The structural, mechanical, electronic and thermodynamic properties of thorium monocarbide (ThC) with NaCl-type structure have been investigated by using first-principles plane wave density functional calculations with GGA, LDA and LDA + U functionals. It is shown that calculated equilibrium structural parameters of ThC are in agreement with the experimental results. It is seen from calculated single-crystal elastic constants that ThC with NaCl-type structure is mechanically stable. And from calculated density of states and band structure, it is observed that ThC is metallic. After the properties at 0 GPa are clarified, pressure dependency of the structural parameters, the elastic properties and related mechanical properties, density of states (DOS) and hardness are studied. Furthermore, the thermodynamic properties of ThC are obtained from the quasi-harmonic Debye model (QHM) over high pressure and temperature ranges for three functionals. The results are compared to each other, and the available experimental and theoretical data.

  11. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [University of Georgia, Department of Chemistry and Center for Computational Quantum Chemistry; Schaefer, Henry F. [University of Georgia, Center for Computational Quantum Chemistry

    2018-04-08

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O2. Numerous ROO and QOOH intermediates in these R + O2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts

  12. Experimental and theoretical studies of bombardment induced surface morphology changes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Williams, J.S.

    1980-01-01

    In this review results of experimental and theoretical studies of solid surface morphology changes due to ion bombardment are discussed. An attempt is undertaken to classify the observed specific features of a structure, generated by ion bombardment [ru

  13. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry; Schaefer, III, Henry F. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  14. Chronic job burnout and daily functioning: A theoretical analysis

    Directory of Open Access Journals (Sweden)

    Arnold B. Bakker

    2014-12-01

    Full Text Available In this article, we discuss the individual employee's role in the development of his/her job burnout. We review the antecedents and consequences of burnout, and propose a model with chronic burnout as a moderator of daily functioning in the workplace. Specifically, we argue that chronic burnout strengthens the loss cycle of daily job demands, daily exhaustion, and daily self-undermining. Additionally, we argue that chronic burnout weakens the gain cycle of daily job resources, daily work engagement, and daily job crafting. We conclude that employees with high levels of burnout need help in structurally changing their working conditions and health status.

  15. Theoretical characterization of electron energy distribution function in RF plasmas

    International Nuclear Information System (INIS)

    Capitelli, M.; Capriati, G.; Dilonardo, M.; Gorse, C.; Longo, S.

    1993-01-01

    Different methods for the modeling of low-temperature plasmas of both technological and fundamental interest are discussed. The main concept of all these models is the electron energy distribution function (eedf) which is necessary to calculate the rate coefficients for any chemical reaction involving electrons. Results of eedf calculations in homogeneous SF 6 and SiH 4 plasmas are discussed based on solution of the time-dependent Boltzmann equation. The space-dependent eedf in an RF discharge in He is calculated taking into account the sheath oscillations by a Monte Carlo model assuming the plasma heating mechanism and the electric field determined by using a fluid model. The need to take into account the ambipolar diffusion of electrons in RF discharge modeling is stressed. A self-consistent model based on coupling the equations of the fluid model and the chemical kinetics ones is presented. (orig.)

  16. Theoretical study on the photoionization of metanal and fluoromethane

    International Nuclear Information System (INIS)

    Tanaka, Helder Kenji; Silveira, Tiago Rodrigues; Nascimento, Edmar Moraes do

    2011-01-01

    Full text. The photoionization study of biological interest molecules has increased last few years due to the basic interest in the fundamental nature of electronic structures and scattering molecular processes. It was considered to this study hypothesis in that simple molecules would give birth to more complex molecules through photochemical reactions induced by interstellar radiation. This paper shows a theoretical study over photoionization of the valence shells of some biological interest molecules. Cross sections and parameters of asymmetry are set due to ab initio, using the continued fractions method to determine the scattering matrix and wave functions of the continuum. Results will be presented to the valence shell photoionization of formaldehyde (CH 2 O) and fluoromethane (CH 3 F). This work is part of a larger project to study of biological interest molecules, motivated by the hypothesis that based on these simple molecules, physicochemical processes may have given origin to more complex molecules responsible for the production of terrestrial life. The formamide, for example, has been subject of interest between researchers as a possible material from which can be created RNA bases. In this case has been studied the production of guanine from the formamide heated while irradiated by ultraviolet radiation

  17. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  18. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  19. Preparation of theoretical scanning tunneling microscope images of adsorbed molecules: a theoretical study of benzene on the Cu(110) surface

    International Nuclear Information System (INIS)

    Shapter, J.G.; Rogers, B.L.; Ford, M.J.

    2003-01-01

    Full text: Since its development in 1982, the Scanning Tunneling Microscope (STM) has developed into a powerful tool for the study of surfaces and adsorbates. However, the utility of the technique can be further enhanced through the development of techniques for generating theoretical STM images. This is particularly true when studying molecules adsorbed on a substrate, as the results are often interpreted superficially due to an inadequate understanding of the orbital overlap probed in the experiment. A method of preparing theoretical scanning tunneling microscope (STM) images using comparatively inexpensive desktop computers and the commercially available CRYSTAL98 package is presented through a study of benzene adsorbed on the Cu(110) surface. Density Functional Theory (DFT) and Hartree-Fock (HF) methods are used to model clean Cu(110) slabs of various thicknesses and to simulate the adsorption of benzene onto these slabs. Eight possible orientations of benzene on the Cu(110) surface are proposed, and the optimum orientation according to the calculations is presented. Theoretical STM images of the Cu(110) surface and benzene adsorbed on the Cu(110) surface are compared with experimental STM images of the system from a published study. Significant differences are observed and are examined in detail

  20. Thermochemistry of sarcosine and sarcosine anhydride: Theoretical and experimental studies

    International Nuclear Information System (INIS)

    Amaral, Luísa M.P.F.; Santos, Ana Filipa L.O.M.; Ribeiro da Silva, Maria das Dores M.C.; Notario, Rafael

    2013-01-01

    Highlights: ► Study on the Energetics of the sarcosine and sarcosine anhydride. ► Experimental and computational thermochemistry of sarcosine and its anhydride. ► Ab initio calculations for two amino acid derivatives by G3(MP2)//B3LYP method. -- Abstract: The standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of sarcosine, −(388.0 ± 1.0) kJ · mol −1 , and sarcosine anhydride, −(334.5 ± 1.6) kJ · mol −1 , were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, derived from measurements of the standard massic energies of combustion by static bomb combustion calorimetry, and from measurements of vapour pressures by the Knudsen mass-loss effusion method, respectively. The standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs functions of sublimation, at T = 298.15 K, were also calculated. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared with the experimental ones

  1. DERIVATIVE OF SET MEASURE FUNCTIONS AND ITS APPLICATION (THEORETICAL BASES OF INVESTMENT OBJECTIVES

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2014-04-01

    Full Text Available Purpose. It is necessary to develop the theoretical fundamentals for solving the investment objectives presented in the form of set function as vector optimization tasks or tasks of constrained extremum. Methodology. Set functions and their derivatives of measure are used as research of investment objectives. Necessary condition of set function minimum is proved. In the tasks for constrained extremum the method of Lagrange is used. It is shown that this method can also be used for the set function. It is used the measure for proof, which generalizes the Lebesgue measure, and the concept of set sequence limit is introduced. It is noted that the introduced limit over a measure coincides with the classical Borel limit and can be used in order to prove the existence of derivative from set function over a measure on convergent of sets sequence. Findings. An algorithm of solving the investment objective for constrained extremum in relation to investment objectives was offered. Originality. Scientific novelty lies in the fact that in multivariate objects for constrained extremum one can refuse from immediate enumeration. One can use the proposed algorithm of constructing (selection of options that allow building a convex linear envelope of Pareto solutions. This envelope will let the person who makes a decision (DM, select those options that are "better" from a position of DM, and consider some of the criteria, the formalization of which are difficult or can not be described in mathematical terms. Practical value. Results of the study provide the necessary theoretical substantiation of decision-making in investment objectives, when there is a significant number of an investment objects and immediate enumeration of options is very difficult on time costs even for modern computing techniques.

  2. The chirally rotated Schrödinger functional: theoretical expectations and perturbative tests

    International Nuclear Information System (INIS)

    Brida, Mattia Dalla; Sint, Stefan; Vilaseca, Pol

    2016-01-01

    The chirally rotated Schrödinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schrödinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  3. An Activity Theoretical Approach to Social Interaction during Study Abroad

    Science.gov (United States)

    Shively, Rachel L.

    2016-01-01

    This case study examines how one study abroad student oriented to social interaction during a semester in Spain. Using an activity theoretical approach, the findings indicate that the student not only viewed social interaction with his Spanish host family and an expert-Spanish-speaking age peer as an opportunity for second language (L2) learning,…

  4. Diffusion in liquids a theoretical and experimental study

    CERN Document Server

    Tyrrell, H J V

    1984-01-01

    Diffusion in Liquids: A Theoretical and Experimental Study aims to discuss the principles, applications, and advances in the field of diffusion, thermal diffusion, and thermal conduction in liquid systems. The book covers topics such as the principles of non-equilibrium thermodynamics; diffusion in binary and multicompetent systems; and experimental methods of studying diffusion processes in liquids. Also covered in the book are topics such as the theoretical interpretations of diffusion coefficients; hydrodynamic and kinetic theories; and diffusion in electrolyte systems. The text is recommen

  5. Theoretical and Methodological Perspectives on Designing Video Studies of Interaction

    Directory of Open Access Journals (Sweden)

    Anna-Lena Rostvall

    2005-12-01

    Full Text Available In this article the authors discuss the theoretical basis for the methodological decisions made during the course of a Swedish research project on interaction and learning. The purpose is to discuss how different theories are applied at separate levels of the study. The study is structured on three levels, with separate sets of research questions and theoretical concepts. The levels reflect a close-up description, a systematic analysis, and an interpretation of how teachers and students act and interact. The data consist of 12 hours of video-recorded and transcribed music lessons from high school and college. Through a multidisciplinary theoretical framework, the general understanding of teaching and learning in terms of interaction can be widened. The authors also present a software tool developed to facilitate the processes of transcription and analysis of the video data.

  6. Experimental and theoretical studies of cylindrical Hall thrusters

    International Nuclear Information System (INIS)

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  7. Theoretical foundations of functional data analysis, with an introduction to linear operators

    CERN Document Server

    Hsing, Tailen

    2015-01-01

    Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).The self-contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self-adjoint and non self-adjoint operators. The probabilistic foundation for FDA is described from the

  8. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1991-01-01

    This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections

  9. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  10. A theoretical study of absorption equilibria in silicon CVD

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; Giling, L.J.; de Jong, F.; van der Eerden, J.P.

    1990-01-01

    As part of a theoretical study of adsorption processes in the chemical vapour deposition of silicon, thermochemical data are derived for the adsorption of Si-H species on the Si(111) and the dimer-reconstructed Si(001)-(2 x 1) surfaces. Essential contributions to the heats of adsorption appear to be

  11. Theoretical studies of transition metal complexes with nitriles and isocyanides

    International Nuclear Information System (INIS)

    Kuznetsov, Maksim L

    2002-01-01

    Theoretical studies of transition metal complexes with nitriles and isocyanides are reviewed. The electronic structures and the nature of coordination bonds in these complexes are discussed. The correlation between the electronic structures of transition metal complexes with nitriles and isocyanides and their structural properties, spectroscopic characteristics, and reactivities are considered. The bibliography includes 121 references.

  12. A theoretical study on interaction of proline with gold cluster

    Indian Academy of Sciences (India)

    with Au3 (Pakiari and Jamshidi 2007) and interaction of. ∗. Author for correspondence (harjinder.singh@iiit.ac.in) small gold clusters with xDNA base pairs (Sharma et al. 2009) have motivated us to carry out a theoretical study on interaction of proline with gold nanoparticles. Proline is unique among the natural amino acids ...

  13. Theoretical study of catalytic hydrogenation of oxirane and its methyl ...

    African Journals Online (AJOL)

    C3H6O) is its methyl derivative. Theoretical studies on catalytic hydrogenation of both compounds, in presence of aluminium chloride (AlCl3) catalyst, are carried out. The products of reactions are ethanol and propan-1-ol from oxirane and ...

  14. Spectroscopic Analysis of Neurotransmitters: A Theoretical and Experimental Raman Study

    Science.gov (United States)

    Alonzo, Matthew

    Surface-enhanced Raman spectroscopy (SERS) was applied to investigate the feasibility in the detection and monitoring of the dopamine (DA) neurotransmitter adsorbed onto silver nanoparticles (Ag NPs) at 10-11 molar, a concentration far below physiological levels. In addition, density functional theory (DFT) calculations were obtained with the Gaussian-09 analytical suite software to generate the theoretical molecular configuration of DA in its neutral, cationic, anionic, and dopaminequinone states for the conversion of computer-simulated Raman spectra. Comparison of theoretical and experimental results show good agreement and imply the presence of dopamine in all of its molecular forms in the experimental setting. The dominant dopamine Raman bands at 750 cm-1 and 795 cm-1 suggest the adsorption of dopaminequinone onto the silver nanoparticle surface. The results of this experiment give good insight into the applicability of using Raman spectroscopy for the biodetection of neurotransmitters.

  15. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    Science.gov (United States)

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  16. Abnormalities of Functional Brain Networks in Pathological Gambling: A Graph-Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Melanie eTschernegg

    2013-09-01

    Full Text Available Functional neuroimaging studies of pathological gambling demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in pathological gambling. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional MRI data in pathological gambling. We compared 19 patients with pathological gambling to 19 healthy controls using the Graph Analysis Toolbox (GAT. None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (SMA, reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients.These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that pathological gambling is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in pathological gambling cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders.

  17. Theoretical study of incoherent φ photoproduction on a deuteron target

    International Nuclear Information System (INIS)

    Sekihara, T.; Martinez Torres, A.; Jido, D.; Oset, E.

    2012-01-01

    We study the photoproduction of φ mesons in deuteron, paying attention to the modification of the cross-section from bound protons to the free ones. For this purpose we take into account Fermi motion in single scattering and rescattering of φ to account for φ absorption on a second nucleon as well as the rescattering of the proton on the neutron. We find that the contribution of the double scattering for φ is much smaller than the typical cross-section of γp→φp in free space, which implies a very small screening of the φ production in deuteron. The contribution from the proton rescattering, on the other hand, is found to be not negligible compared to the cross-section of γp→φp in free space, and leads to a moderate reduction of the φ photoproduction cross-section on a deuteron at forward angles if the LEPS set-up is taken into account. The Fermi motion allows contribution of the single scattering in regions forbidden by phase-space in the free case. In particular, we find that for momentum transfer squared close to the maximum value, the Fermi motion changes drastically the shape of dσ/dt, to the point that the ratio of this cross-section to the free one becomes very sensitive to the precise value of t chosen, or the size of the bin used in an experimental analysis. Hence, this particular region of t does not seem to be the most indicated to find effects of a possible φ absorption in the deuteron. This reaction is studied theoretically as a function of t and the results are contrasted with recent experiments at LEPS and Jefferson Lab. The effect of the experimental angular cuts at LEPS is also discussed, providing guidelines for future experimental analyses of the reaction. (orig.)

  18. Theoretical studies on sRNA-mediated regulation in bacteria

    Science.gov (United States)

    Chang, Xiao-Xue; Xu, Liu-Fang; Shi, Hua-Lin

    2015-12-01

    Small RNA(sRNA)-mediated post-transcriptional regulation differs from protein-mediated regulation. Through base-pairing, sRNA can regulate the target mRNA in a catalytic or stoichiometric manner. Some theoretical models were built for comparison of the protein-mediated and sRNA-mediated modes in the steady-state behaviors and noise properties. Many experiments demonstrated that a single sRNA can regulate several mRNAs, which causes crosstalk between the targets. Here, we focus on some models in which two target mRNAs are silenced by the same sRNA to discuss their crosstalk features. Additionally, the sequence-function relationship of sRNA and its role in the kinetic process of base-pairing have been highlighted in model building. Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), the National Natural Science Foundation of China (Grant Nos. 11121403 and 11274320), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y4KF171CJ1), the National Natural Science Foundation for Young Scholar of China (Grant No. 11304115), and the China Postdoctoral Science Foundation (Grant No. 2013M541282).

  19. a Theoretical Study of Coherent Structures in Nonneutral Plasma Columns

    Science.gov (United States)

    Lund, Steven M.

    A ubiquitous feature of experimental and computer simulation studies of magnetically confined pure electron plasmas in cylindrical confinement devices is the formation of nonaxisymmetric (partial/partial theta ne 0) rotating equilibria. In this dissertation, nonaxisymmetric rotating equilibria are investigated theoretically for strongly magnetized, low-density (omega_sp{pe} {2}/omega_sp{ce}{2 } guiding-center model in the cold-fluid limit (the continuity and Poisson equations) that treats the electrons as a massless fluid (m_{e} to 0) with E times B flow velocity V _{e} = -(c/B_0)nablaphi times {bf e}_{z}. Within this model, general rotating equilibria with electron density (n_{e} equiv n_{R}(r,theta-omega _{r}t) and electrostatic potential phi equiv phi_{R }(r,theta-omega_{r}t) have the property that the electron density is functionally related to the streamfunction psi _{R} = -ephi_{R} + omega_{r}(eB_0/2c)r^2 by n_{R} = n_{R }(psi_{R}). The streamfunction psi_{R} satisfies the nonlinear equilibrium equation nabla ^2psi_{R} = -4pi e^2n _{R}(psi_{R}) + 2omega_{r}eB_0/c with psi_{R} = omega _{r}(eB_0/2c)r_sp{w }{2} equiv psi_{w } = const. on the cylindrical wall at r = r_{w}. A general methodology for the solution of this equilibrium system is presented and several properties of rotating equilibria are analyzed. Following this analysis, two classes of nonaxisymmetric equilibria are investigated. These two classes of equilibria can have large amplitude (strongly nonaxisymmetric). First, a class of vortex-like rotating equilibria is analyzed that is characterized by a structured density profile that fills a confinement geometry with an inner conducting cylinder at radius r = r_{I} Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  20. Theoretical and spectroscopic studies of a tricyclic antidepressant, imipramine hydrochloride

    Science.gov (United States)

    Sagdinc, S. G.; Azkeskin, Caner; Eşme, A.

    2018-06-01

    Imipramine hydrochloride ([H-IMI]Cl), C19H24N2.HCl, is the prototypic tricyclic antidepressant (TCA) inhibitor of norepinephrine and serotonin neuronal reuptake. The molecular structure, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis, linear and non-linear optical (NLO) properties of [H-IMI]Cl have been investigated using the density functional theory (DFT) calculations with the B3LYP level at the 6‒311++G(d,p) basis set. The UV-Vis spectra for [H-IMI]Cl were experimentally studied in water and methanol. TD‒DFT calculations in water and methanol were employed to investigate the absorption wavelengths (λ), excitation energies (E), and oscillator strengths (f) for the UV-Vis analysis and the major contributions to the electronic transitions. From NBO analysis, the orbitals with the stabilization energy E(2) of 192.15 kcal/mol are π*(C5sbnd C18) as donor NBO and π*(C19sbnd C20) as acceptor NBO. The FT‒IR (4000‒400 cm-1) and FT‒Raman (3500-50 cm-1) spectra have been measured and analyzed. The assignment of bands observed vibrational spectra have been made by comparison of its calculated theoretical vibrational frequencies obtained using the DFT/B3LYP/6‒311++G(d,p) method. The detailed vibrational assignments were performed with the DFT calculation, and the potential energy distribution (PED) of [H-IMI]Cl was obtained by the Vibrational Energy Distribution Analysis 4 (VEDA4) program. The scaled frequencies resulted in good agreement with the observed spectral patterns.

  1. The functional-cognitive meta-theoretical framework: Reflections, possible clarifications and how to move forward.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Hussey, Ian

    2016-02-01

    The functional-cognitive meta-theoretical framework has been offered as a conceptual basis for facilitating greater communication and cooperation between the functional/behavioural and cognitive traditions within psychology, thus leading to benefits for both scientific communities. The current article is written from the perspective of two functional researchers, who are also proponents of the functional-cognitive framework, and attended the "Building Bridges between the Functional and Cognitive Traditions" meeting at Ghent University in the summer of 2014. The article commences with a brief summary of the functional approach to theory, followed by our reflections upon the functional-cognitive framework in light of that meeting. In doing so, we offer three ways in which the framework could be clarified: (a) effective communication between the two traditions is likely to be found at the level of behavioural observations rather than effects or theory, (b) not all behavioural observations will be deemed to be of mutual interest to both traditions, and (c) observations of mutual interest will be those that serve to elaborate and extend existing theorising in the functional and/or cognitive traditions. The article concludes with a summary of what we perceive to be the strengths and weaknesses of the framework, and a suggestion that there is a need to determine if the framework is meta-theoretical or is in fact a third theoretical approach to doing psychological science. © 2015 International Union of Psychological Science.

  2. Modeling goals and functions of control and safety systems - theoretical foundations and extensions of MFM

    International Nuclear Information System (INIS)

    Lind, M.

    2005-10-01

    Multilevel Flow Modeling (MFM) has proven to be an effective modeling tool for reasoning about plant failure and control strategies and is currently exploited for operator support in diagnosis and on-line alarm analysis. Previous MFM research was focussed on representing goals and functions of process plants which generate, transform and distribute mass and energy. However, only a limited consideration has been given to the problems of modeling the control systems. Control functions are indispensable for operating any industrial plant. But modeling of control system functions has proven to be a more challenging problem than modeling functions of energy and mass processes. The problems were discussed by Lind and tentative solutions has been proposed but have not been investigated in depth until recently, partly due to the lack of an appropriate theoretical foundation. The purposes of the present report are to show that such a theoretical foundation for modeling goals and functions of control systems can be built from concepts and theories of action developed by Von Wright and to show how the theoretical foundation can be used to extend MFM with concepts for modeling control systems. The theoretical foundations has been presented in detail elsewhere by the present author without the particular focus on modeling control actions and MFM adopted here. (au)

  3. Modeling goals and functions of control and safety systems -theoretical foundations and extensions of MFM

    Energy Technology Data Exchange (ETDEWEB)

    Lind, M. [Oersted - DTU, Kgs. Lyngby (Denmark)

    2005-10-01

    Multilevel Flow Modeling (MFM) has proven to be an effective modeling tool for reasoning about plant failure and control strategies and is currently exploited for operator support in diagnosis and on-line alarm analysis. Previous MFM research was focussed on representing goals and functions of process plants which generate, transform and distribute mass and energy. However, only a limited consideration has been given to the problems of modeling the control systems. Control functions are indispensable for operating any industrial plant. But modeling of control system functions has proven to be a more challenging problem than modeling functions of energy and mass processes. The problems were discussed by Lind and tentative solutions has been proposed but have not been investigated in depth until recently, partly due to the lack of an appropriate theoretical foundation. The purposes of the present report are to show that such a theoretical foundation for modeling goals and functions of control systems can be built from concepts and theories of action developed by Von Wright and to show how the theoretical foundation can be used to extend MFM with concepts for modeling control systems. The theoretical foundations has been presented in detail elsewhere by the present author without the particular focus on modeling control actions and MFM adopted here. (au)

  4. Charging/discharging processes in nanocrystaline MOS structures - Theoretical study

    International Nuclear Information System (INIS)

    Tanous, D; Mazurak, A; Majkusiak, B

    2016-01-01

    We present the study of impact of some parameters of the metal-insulator-semiconductor structure with nanocrystals embedded in the insulator layer on the current-voltage and capacitance-voltage characteristics with the bias voltage ramp rate as a parameter. The developed model is used as a tool for theoretical understanding the physics behind charging and discharging processes in the considered structures. (paper)

  5. Theoretical studies of fusion physics. Volume I. Summary. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    Theoretical studies were performed on each of the following topics: (1) absorption of waves near the cyclotron frequency by relativistic electrons in EBT, (2) power balance in a stable, adiabatic hot electron annulus, (3) whistler instability in a relativistic electron annulus, (4) adiabatic limits on electron temperature in the EBT annulus, and (5) summary of a model of the EBT ring heating/loss process

  6. A theoretical and experimental study of microshield circuits

    Science.gov (United States)

    Dib, Nihad I.; Drayton, Rhonda F.; Katehi, Linda P. B.

    1993-05-01

    The novel type of monolithic planar transmission line presently studied theoretically and experimentally operates without via-holes or ground-equalizing air bridges; it also radiates less than conventional coplanar waveguides and furnishes a wide range of impedances in virtue of its many design parameters. The space-domain integral equation method is used to analyze several discontinuities of the proposed line. It is shown that the proposed line discontinuities radiate less than the corresponding coplanar waveguide cases.

  7. Theoretical study on the first kind of density wave instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zuying, Gao; Jincai, Li; Baocheng, Xu; Zuoyi, Zhang; Cheng, Gao [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The present paper summarizes the theoretical studies carried out by INET (Institute of Nuclear Energy Technology) of Tsinghua University on the first kind of density wave instabilities (DWIs) of natural circulation systems. The analysis methods of DWI and mathematical models of drift flux are presented. Based on the general excess entropy production criterion of non-equilibrium thermodynamics, an energy principle of DWI is established. (author). 10 refs, 16 figs.

  8. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring.

    Directory of Open Access Journals (Sweden)

    Jun Lv

    Full Text Available Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG and functional magnetic resonance imaging (fMRI time series.In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep.In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.

  9. Substituent effif ects on hydrogen bonding in Watson-Crick base pairs. A theoretical study

    NARCIS (Netherlands)

    Fonseca Guerra, C.; van der Wijst, T.; Bickelhaupt, F.M.

    2005-01-01

    We have theoretically analyzed Watson-Crick AT and GC base pairs in which purine C8 and/or pyrimidine C6 positions carry a substituent X = H, F, Cl or Br, using the generalized gradient approximation (GGA) of density functional theory at BP86/TZ2P. The purpose is to study the effects on structure

  10. THEORETICAL AND EXPERIMENTAL STUDY OF STRUCTURES SUBJECTED TO EARTHQUAKES

    Energy Technology Data Exchange (ETDEWEB)

    Soubirou, A.

    1967-12-31

    The object of the study was the investigation of the behaviour of structures subject to earthquakes. After .describing and analysing seismic movements, useful concepts for earthquake-proofing structures are lintroduced. Then, the dynamic behaviour of systems with n degrees of freedom was studied in order to evolve the theoretical computation of seismic behaviour, a typical application being reticulated structures. The next stage was showing the computational procedure for seismic spectra and the natural frequencies of buildings, an attempt being made to define earthquake-proofing criteria for a special type of reinforced-concrete construction. . The last matter dealt with is elastoplastic behaviour of structures, a study of increasingly growing importance.

  11. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    Science.gov (United States)

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  12. Theoretical studies on core-level spectra of solids

    International Nuclear Information System (INIS)

    Kotani, Akio

    1995-01-01

    I present a review on theoretical studies of core-level spectra (CLS) in solids. In CLS, the dynamical response of outer electrons to a core hole is reflected through the screening of core hole potential. Impurity Anderson model (IAM) or cluster model is successfully applied to the analysis of X-ray photoemission spectra (XPS) and X-ray absorption spectra (XAS) in f and d electron systems, where the f and d electron states are hybridized with the other valence or conduction electron states. The effect of the core-hole potential in the final state of XPS and XAS plays an important role, as well as the solid state hybridization and intra-atomic multiplet coupling effects. As typical examples, the calculated results for XPS of rare-earth compounds and transition metal compounds are shown, and some discussions are given. As a subject of remarkable progress with high brightness synchrotron radiation sources, I discuss some theoretical aspects of X-ray emission spectra (XES) and their resonant enhancement at the X-ray absorption threshold. Some experimental data and their theoretical analysis are also given. (author)

  13. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  14. Micro sociological study of family relationships: heuristic potential theoretical principles

    Directory of Open Access Journals (Sweden)

    O. P. Zolotnyik

    2015-03-01

    Full Text Available This article is devoted to demonstrate the heuristic potential of theoretical principles by microsoсiological analysis of one of the indicators of family – family relations. Theoretical analysis of the interaction experience is quite large, but there is the question about it’s possibility to describe the specifics of that relationship that arise in family interaction. The study of family relationships requires an integrated approach to the comprehension of many related components: system of spouses value orientations, family life cycle, socio­economic living conditions of couple. However, the accentuation exactly on action­behavioral aspect allows to make assumptions about correlations between: success of family interaction and microclimate in the family; satisfaction level of interpersonal interaction and overall satisfaction with marriage, familiarity of family interaction and density of childbearing, and so on. The presentation of microsoсiological theoretical achievements will be carried out of sociological schools, orientations and their members that are the most popular references in this area. this paper will presents the theory of exchange, supporters of symbolic interactionism, dramatic and etnometodological approach and family systems theory.

  15. Theoretical Neuroanatomy:Analyzing the Structure, Dynamics,and Function of Neuronal Networks

    Science.gov (United States)

    Seth, Anil K.; Edelman, Gerald M.

    The mammalian brain is an extraordinary object: its networks give rise to our conscious experiences as well as to the generation of adaptive behavior for the organism within its environment. Progress in understanding the structure, dynamics and function of the brain faces many challenges. Biological neural networks change over time, their detailed structure is difficult to elucidate, and they are highly heterogeneous both in their neuronal units and synaptic connections. In facing these challenges, graph-theoretic and information-theoretic approaches have yielded a number of useful insights and promise many more.

  16. Experimental studies of caesium iodide aerosol condensation: theoretical interpretation

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Horton, K.D.; Buckle, E.R.

    1990-07-01

    Caesium iodide is predicted to be a significant source of fission product aerosols during the course of a severe accident in a pressurised water reactor (PWR). The nucleation and growth of caesium iodide aerosols have been studied using a plume chamber and the results compared with theoretical values calculated using the approach developed by Buckle for aerosol nucleation. The morphology of the particles was studied using scanning electron microscopy (SEM) and transmission optical microscopy (TOM), whilst the particle size distributions were determined from differential mobility (DMPS) and aerodynamic (APS) measurements. (author)

  17. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  18. Crystal growth, characterization and theoretical studies of 4-aminopyridinium picrate

    Science.gov (United States)

    Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P.

    2015-01-01

    Single crystals of 4-aminopyridinium picrate (APP) were grown by slow evaporation of a mixed solvent system methanol-acetone (1:1, v/v) containing equimolar quantities of 4-aminopyridine and picric acid. Structure is elucidated by single crystal XRD analysis and the crystal belongs to monoclinic system with four molecules in the unit cell (space group P21/c) and the cell parameter values are, a = 8.513 Å (±0.015), b = 11.33 Å (±0.02), c = 14.33 Å (±0.03) and β = 104.15° (±0.019), V = 1340 A3 (±6) with refined R factors R1 = 0.0053 and wR2 = 0.0126. The electron density mapping is interpreted to find coordinates for each atom in the crystallized molecules. The various functional groups present in the molecule are confirmed by FT-IR analysis. UV-visible spectral analysis was used to determine the band gap energy of 4-aminopyridinium picrate. Powder X-ray diffraction pattern reveals the crystallinity of the as-grown crystal and it closely resembles the simulated XRD from the single crystal XRD analysis. Scanning electron microscopy reveals the surface morphology of the grown crystal. Optimized geometry is derived by Hartree-Fock theory calculations and the first-order molecular hyperpolarizability (β), theoretically calculated bond length, bond angles and excited state energy from theoretical UV-vis spectrum were estimated.

  19. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  20. Experimental and theoretical studies of manganite and magnetite compounds

    International Nuclear Information System (INIS)

    Srinitiwarawong, Chatchai

    2002-01-01

    In the recent years interest in the transition oxide compounds has renewed among researchers in the field of condensed matter physics. This thesis presents the studies of the two families of the transition oxides, the manganite and magnetite compounds. Manganite has regained the interest since the discovery of the large magnetoresistance around its Curie temperature in 1990s. Magnetite on the other hand is the oldest magnetic material known to man however some of its physical properties are still controversial. The experimental works address some basic properties of these compounds when fabricated in the form of thin films. These include the resistivity measurements and magnetic measurements as well as the Hall effect. The various models of transport mechanism have been compared. The magnetic field and the temperature dependence of magnetoresistance have also been studied. Simple devices such as an artificial grain boundary and bilayers thin film have been investigated. The second part of this thesis concentrates on the theoretical aspects of the fundamental physics behind these two compounds. The problem of electrons tunnelling between the magnetite electrodes has been addressed taking into account the surface effect with distortion. The last chapter presents a theoretical study of the spinless-Hubbard model which is the simplest approximation of the conduction electrons in magnetite and manganite. The results are obtained from the Hartree-Fock and the Hubbard-I approximations as well as the exact diagonalisation method. (author)

  1. Theoretical study of near-threshold electron-molecule scattering

    International Nuclear Information System (INIS)

    Morrison, M.A.

    1989-01-01

    We have been engaged in carrying out a foundation study on problems pertaining to near-threshold nuclear excitations in e-H 2 scattering. The primary goals of this study are: to investigate the severity and nature of the anticipated breakdown of the adiabatic-nuclei (AN) approximation, first for rotation only (in the rigid-rotator approximation), and then for vibration; to determine a data base of accurate ab initio cross sections for this important system; to implement and test accurate, computationally-tractable model potentials for exchange and polarization effects; and to begin the exploration of alternative scattering theories for near-threshold collisions. This study has provided a well-defined theoretical context for our future investigations. Second, it has enabled us to identify and quantify several serious problems in the theory of near-threshold electron-molecule scattering that demand attention. And finally, it has led to the development of some of the theoretical and computational apparatus that will form the foundation of future work. In this report, we shall review our progress to date, emphasizing work completed during the current contract year. 17 refs., 5 figs., 1 tab

  2. Platinum and palladium on carbon nanotubes : Experimental and theoretical studies

    NARCIS (Netherlands)

    Adjizian, J. J.; De Marco, P.; Suarez-Martinez, I.; El Mel, A. A.; Snyders, R.; Gengler, R. Y. N.; Rudolf, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Ewels, C. P.

    2013-01-01

    Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the CNT surface. Oxygen functional groups grafted by the plasma functionalization

  3. Graph theoretical analysis of functional network for comprehension of sign language.

    Science.gov (United States)

    Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng

    2017-09-15

    Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Theoretical study of the ionization of B2H5

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Pople, J.A.

    1989-01-01

    Ab initio molecular orbital calculations at the G1 level of theory have been carried out on neutral B 2 H 5 radical, doubly bridged B 2 H + 5 cation, and the first triplet excited state of B 2 H + 5 . Singly bridged B 2 H 5 is 4.0 kcal/mol (without zero-point energies) more stable than doubly bridged B 2 H 5 . Based on this work and previous theoretical work on triply bridged B 2 H + 5 , ionization potentials (vertical and adiabatic) are determined for B 2 H 5 . The adiabatic ionization potentials of the two B 2 H 5 structures are 6.94 eV (singly bridged) and 7.53 eV (doubly bridged). A very large difference is found between the vertical and adiabatic ionization potentials (3.37 eV) of the singly bridged B 2 H 5 structure. The first triplet state of B 2 H + 5 is found to be 4.55 eV higher in energy than the lowest energy B 2 H + 5 cation (triply bridged). The results of this theoretical study support the interpretation of Ruscic, Schwarz, and Berkowitz of their recent photoionization measurements on B 2 H 5

  5. THEORETICAL ANALYSIS STUDY OF FORMATION OF FUTURE LEGAL LAWYERS

    Directory of Open Access Journals (Sweden)

    Eugene Stepanovich Shevlakov

    2015-09-01

    Full Text Available The article deals with topical issues of formation of legal consciousness of future lawyers in high school. Obtained kinds of legal consciousness of future lawyers, determined its structure. Dedicated components of justice are mutually reinforcing, and provide an opportunity for further development of the personality of the future specialist, their personal growth.The purpose: to carry out theoretical analysis of the problem of formation of legal consciousness of future lawyers.The novelty is based. On the analysis of theoretical appro-aches of pedagogy, psychology, law, the notion of «lawfulness of the future of the law student», which is regarded as a form of social consciousness, which is a set of legal views and feelings, expressing the attitude to the law and legal phenomena that have regulatory in character and which includes know-ledge of legal phenomena and their evaluation from the point of view of fairness and justice, formed in the process of studying in the University.Results: this article analyzes different approaches to understanding the content and essence of the concept of legal consciousness of the legal profession. Define the types and structure of legal consciousness of future lawyers.

  6. The theoretical study of the optical klystron free electron laser

    International Nuclear Information System (INIS)

    Yang Zhenhua

    2001-01-01

    The work of the theoretical study and numerical simulation of optical klystron free electron laser is supported by National 863 Research Development Program and National Science Foundation of China. The object of studying UV band free electron laser (FEL) is to understand the physical law of optical klystron FEL and to gain experience for design. A three-dimensional code OPFEL are made and it is approved that the code is correct completely. The magnetic field of the optical klystron, the energy modulation of the electron beam, the density modulation of the electron beam, spontaneous emission of the electron beam in optical klystron, the harmonic super-radiation of the electron beam, and the effects of the undulator magnetic field error on modulation of the electron beam energy are simulated. These results are useful for the future experiments

  7. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    Science.gov (United States)

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  8. Optical and theoretical studies of giant clouds in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1980-01-01

    An optical study of four spiral galaxies, combined with radiative transfer models for transmitted and scattered light, has led to a determination of the opacities and masses of numerous dark patches and dust lanes that outline spiral structure. The observed compression factors for the spiral-like dust lanes are in accord with expectations from the theory of gas flow in spiral density waves. Several low density (10 2 cm -3 ) clouds containing 10 6 to 10 7 solar masses were also studied. These results are discussed in terms of recent theoretical models of cloud and star formation in spiral galaxies. The long-term evolution of giant molecular clouds is shown to have important consequences for the positions and ages of star formation sites in spiral arms. (Auth.)

  9. Bovine serum albumin adsorption onto functionalized polystyrene lattices: A theoretical modeling approach and error analysis

    Science.gov (United States)

    Beragoui, Manel; Aguir, Chadlia; Khalfaoui, Mohamed; Enciso, Eduardo; Torralvo, Maria José; Duclaux, Laurent; Reinert, Laurence; Vayer, Marylène; Ben Lamine, Abdelmottaleb

    2015-03-01

    The present work involves the study of bovine serum albumin adsorption onto five functionalized polystyrene lattices. The adsorption measurements have been carried out using a quartz crystal microbalance. Poly(styrene-co-itaconic acid) was found to be an effective adsorbent for bovine serum albumin molecule adsorption. The experimental isotherm data were analyzed using theoretical models based on a statistical physics approach, namely monolayer, double layer with two successive energy levels, finite multilayer, and modified Brunauer-Emmet-Teller. The equilibrium data were then analyzed using five different non-linear error analysis methods and it was found that the finite multilayer model best describes the protein adsorption data. Surface characteristics, i.e., surface charge density and number density of surface carboxyl groups, were used to investigate their effect on the adsorption capacity. The combination of the results obtained from the number of adsorbed layers, the number of adsorbed molecules per site, and the thickness of the adsorbed bovine serum albumin layer allows us to predict that the adsorption of this protein molecule can also be distinguished by monolayer or multilayer adsorption with end-on, side-on, and overlap conformations. The magnitudes of the calculated adsorption energy indicate that bovine serum albumin molecules are physisorbed onto the adsorbent lattices.

  10. Theoretical study of excitonic complexes in semiconductors quantum wells

    International Nuclear Information System (INIS)

    Dacal, Luis Carlos Ogando

    2001-08-01

    A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al 0.3 Ga 0.7 As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)

  11. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Laitinen, Riikka; Grohganz, Holger

    2013-01-01

    . In this study, the co-amorphous drug mixture containing naproxen (NAP) and indomethacin (IND) was investigated using infrared spectroscopy (IR) and quantum mechanical calculations. The structures of both drugs were optimized as monomer, homodimer and heterodimer using density functional theory and used...... for the calculation of IR spectra. Conformational analysis confirmed that the optimized structures were suitable for the theoretical prediction of the spectra. Vibrational modes from the calculation could be matched with experimentally observed spectra for crystalline and amorphous NAP and IND, and it could be shown...... that both drugs exist as homodimers in their respective individual amorphous form. With the results from the experimental single amorphous drugs and theoretical homodimers, a detailed analysis of the experimental co-amorphous and theoretical heterodimer spectra was performed and evaluated. It is suggested...

  12. A Theoretical Study of Microwave Beam Absorption by a Rectenna

    Science.gov (United States)

    Ott, J. H.; Rice, J. S.; Thorn, D. C.

    1981-01-01

    The theoretical operational parameters for the workable satellite power system were examined. The system requirements for efficient transmission and reception of an environmentally benign microwave beam were determined.

  13. Mechanical properties of jennite: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, Stony Brook University, NY 11794 (United States); Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  14. Theoretical and Experimental Study of Plasmonic Polymer Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Adam, Jost; Madsen, Morten

    The organic bulk hetero-junction solar cell has remarkable advantages such as low cost, mechanical flexibility and simple process techniques. Recently, low-band gap photoactive materials have obtained a significant attention due to their potential to absorb a wider range of the solar spectrum...... to attain higher power conversion efficiencies. Many low-band gap photoactive materials, however, still show a relatively low external quantum efficiency of less than 60% [1]. One possible approach to improve the device performance is to increase the light absorption in the active layer. This may, amongst...... other approaches, be achieved by using nano- or micro-structures that trap light at specific wavelengths [2], or by using the localized surface plasmon resonance effect of metal nanoparticles in the devices. In this work, we theoretically studied planar polymer solar cell based on finite-difference time...

  15. A theoretical-experimental study of backup bearings

    DEFF Research Database (Denmark)

    Lampe Linhares da Fonseca, Cesar Augusto

    of two types of backup bearings, which are investigated experimentally and theoretically. The first type is a conventional ball bearing commonly used in industrial applications. The second is an unconventional bearing that, which contains pins inside the clearance for the rotor to impact on. The main...... both types of bearings for further investigation. Also, a full failure of the control and a rotor drop on the ball bearing as backup bearing is investigated by removing the magnetic forces. The nonlinear features of the dynamics of the rotor are assessed for different levels of unbalance. It has been...... radial forces. Remaining in this condition, it may lead to permanent damage or total failure of the machine. This is why the backup bearing design has to be carefully planned and investigated as to whether it helps to protect the integrity of the machine. This PhD thesis provides a comprehensive study...

  16. Theoretical Study of Irradiation Effects in Close Binaries

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2009-06-01

    Full Text Available The effect of irradiation is studied in a close binary systemassuming that the secondary component is a point source, moving in a circularorbit. The irradiation effects are calculatedon the atmosphere of the primary component in a 3-dimensional Cartesiancoordinate geometry. In treating the reflection effect theoretically, the totalradiation $(S_mathrm{T}$ is obtained as the sum of the radiation of 1 the effect ofirradiation on the primary component which is calculated by using onedimensional rod model $(S_mathrm{r}$ and 2 the self radiation of the primarycomponent which is calculated by using the solution of radiative transferequation in spherical symmetry $(S_mathrm{s}$. The radiation field is estimated alongthe line of sight of the observer at infinity. It is shown how the radiationfield changes depending on the position of the secondary component.

  17. Experimental and theoretical studies of buoyant-thermo capillary flow

    International Nuclear Information System (INIS)

    Favre, E.; Blumenfeld, L.; Soubbaramayer

    1996-01-01

    In the AVLIS process, uranium metal is evaporated using a high power electron gun. We have prior discussed the power balance equation in the electron beam evaporation process and pointed out, among the loss terms, the importance of the power loss due to the convective flow in the molten pool driven by buoyancy and thermo capillarity. An empirical formula has been derived from model experiments with cerium, to estimate the latter power loss and that formula can be used practically in engineering calculations. In order to complete the empirical approach, a more fundamental research program of theoretical and experimental studies have been carried out in Cea-France, with the objective of understanding the basic phenomena (heat transport, flow instabilities, turbulence, etc.) occurring in a convective flow in a liquid layer locally heated on its free surface

  18. Theoretical and experimental study of a thruster discharging a weight

    Science.gov (United States)

    Michaels, Dan; Gany, Alon

    2014-06-01

    An innovative concept for a rocket type thruster that can be beneficial for spacecraft trajectory corrections and station keeping was investigated both experimentally and theoretically. It may also be useful for divert and attitude control systems (DACS). The thruster is based on a combustion chamber discharging a weight through an exhaust tube. Calculations with granular double-base propellant and a solid ejected weight reveal that a specific impulse based on the propellant mass of well above 400 s can be obtained. An experimental thruster was built in order to demonstrate the new idea and validate the model. The thruster impulse was measured both directly with a load cell and indirectly by using a pressure transducer and high speed photography of the weight as it exits the tube, with both ways producing very similar total impulse measurement. The good correspondence between the computations and the measured data validates the model as a useful tool for studying and designing such a thruster.

  19. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  20. Phosphonic drugs: Experimental and theoretical spectroscopic studies of fosfomycin

    Science.gov (United States)

    Chruszcz-Lipska, Katarzyna; Zborowski, Krzysztof K.; Podstawka-Proniewicz, Edyta; Liu, Shaoxuan; Xu, Yizhuang; Proniewicz, Leonard M.

    2011-02-01

    pH and time-dependant changes of fosfomycin molecular structure in an aqueous solution are studied by Raman, NMR, and generalized 2D correlation spectroscopies. Interpretation of the experimental spectra is based on the assumption of formation of different species running on applied physicochemical conditions. Geometries of all possible structures were entirely optimized with the 6-311++G(2df,p) basis set at the B3LYP theoretical level using procedures implemented in the Gaussian '03 set of programs. Harmonic frequency calculations verified the nature of the studied structures and allowed to simulate obtained Raman spectra. The theoretical NMR shielding was calculated using the GIAO method at the same computational level. In addition, in some cases PCM model was used to monitor the influence of water molecules on the NMR spectra. It is shown that in the pH range of 1-2 of fosfomycin aqueous solution oxirane ring is open sequent to nucleophilic attack and forms 1,2-dihydroxyphosphonic acid with small content of its monodeprotonated species. On the other hand, in pH 7 and higher it appears either as 1,2-epoxypropylphosphonic or 1,2-dihydroxyphosphonic dianion depending upon whether hydrolysis took place or not. It is also discussed that Raman marker bands originating from the individual species of fosfomycin can be used to detect and/or to monitor this antibiotic in an aqueous medium (for example urine samples). Hence, depending upon the structure found in urine one can tell about metabolic processes of this antibiotic in the body.

  1. A study of brain networks associated with swallowing using graph-theoretical approaches.

    Directory of Open Access Journals (Sweden)

    Bo Luan

    Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

  2. Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies

    Science.gov (United States)

    Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S

    2012-01-01

    G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor

  3. Theoretical Studies of TE-Wave Propagation as a Diagnostic for Electron Cloud

    International Nuclear Information System (INIS)

    Penn, Gregory E.; Vay, Jean-Luc

    2010-01-01

    The propagation of TE waves is sensitive to the presence of an electron cloud primarily through phase shifts generated by the altered dielectric function, but can also lead to polarization changes and other effects, especially in the presence of magnetic fields. These effects are studied theoretically and also through simulations using WARP. Examples are shown related to CesrTA parameters, and used to observe different regimes of operation as well as to validate estimates of the phase shift.

  4. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  5. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor...

  6. The Formation of Instruments of Management of Industrial Enterprises According to the Theoretical and Functional Approaches

    Directory of Open Access Journals (Sweden)

    Raiko Diana V.

    2018-03-01

    Full Text Available The article is aimed at the substantiation based on the analysis of the company theories of the basic theoretical provisions on the formation of industrial enterprise management instruments. The article determines that the subject of research in theories is enterprise, the object is the process of management of potential according to the forms of business organization and technology of partnership relations, the goal is high financial results, stabilization of the activity, and social responsibility. The publication carries out an analysis of enterprise theories on the determining of its essence as a socio-economic system in the following directions: technical preparation of production, economic theory and law, theory of systems, marketing-management. As a result of the research, the general set of functions has been identified – the socio-economic functions of enterprise by groups: information-legal, production, marketing-management, social responsibility. When building management instruments, it is suggested to take into consideration the direct and inverse relationships of enterprise at all levels of management – micro, meso and macro. On this ground, the authors have developed provisions on formation of instruments of management of industrial enterprises according to two approaches – theoretical and functional.

  7. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  8. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  9. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation

    Science.gov (United States)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2007-04-01

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  10. Status of the theoretical study of microwave heating in EBT

    International Nuclear Information System (INIS)

    Batchelor, D.B.

    1978-09-01

    The basic strategy of the theoretical study of microwave heating in the ELMO Bumpy Torus (EBT) is outlined and the current status of the various aspects of the study is described. There are four broad areas which are being investigated: (1) heating and wave damping mechanisms, (2) the geometrical optics of microwave propagation in EBT, (3) reflection and mode conversion effects at regions such as cutoff and resonances where the geometrical optics approximation breaks down, and (4) nonlinear effects such as ponderamotive effects and parametric decay. Details are given of the geometrical optics code which has been developed to do ray tracing in arbitrary three dimensional (3-D) plasma equilibria. Examples are given for plasma parameters characteristic of EBT-I and EBT-II. Details are also given of the stochastic heating model currently in use with the 1-D transport code and of the linear wave damping model used in the ray tracing code. The most pressing problems of physics yet to be addressed and the directions for future work are indicated

  11. Theoretical and experimental study of non-monotonous effects

    International Nuclear Information System (INIS)

    Delforge, J.

    1977-01-01

    In recent years, the study of the effects of low dose rates has expanded considerably, especially in connection with current problems concerning the environment and health physics. After having made a precise definition of the different types of non-monotonous effect which may be encountered, for each the main experimental results known are indicated, as well as the principal consequences which may be expected. One example is the case of radiotherapy, where there is a chance of finding irradiation conditions such that the ratio of destructive action on malignant cells to healthy cells is significantly improved. In the second part of the report, the appearance of these phenomena, especially at low dose rates are explained. For this purpose, the theory of transformation systems of P. Delattre is used as a theoretical framework. With the help of a specific example, it is shown that non-monotonous effects are frequently encountered, especially when the overall effect observed is actually the sum of several different elementary effects (e.g. in survival curves, where death may be due to several different causes), or when the objects studied possess inherent kinetics not limited to restoration phenomena alone (e.g. cellular cycle) [fr

  12. Theoretical and computational studies of excitons in conjugated polymers

    Science.gov (United States)

    Barford, William; Bursill, Robert J.; Smith, Richard W.

    2002-09-01

    We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-binding model of π-conjugated electrons, with 1/r interactions for large r. In both the weak-coupling limit (defined by W>>U) and the strong-coupling limit (defined by Wparticle models. We compare these to density matrix renormalization group (DMRG) calculations, and find good agreement in the extreme limits. We use these analytical results to interpret the DMRG calculations in the intermediate-coupling regime (defined by W~U), most applicable to conjugated polymers. We make the following conclusions. (1) In the weak-coupling limit the bound states are Mott-Wannier excitons, i.e., conduction-band electrons bound to valence-band holes. Singlet and triplet excitons whose relative wave functions are odd under a reflection of the relative coordinate are degenerate. Thus, the 2 1A+g and 1 3A-g states are degenerate in this limit. (2) In the strong-coupling limit the bound states are Mott-Hubbard excitons, i.e., particles in the upper Hubbard band bound to holes in the lower Hubbard band. These bound states occur in doublets of even and odd parity excitons. Triplet excitons are magnons bound to the singlet excitons, and hence are degenerate with their singlet counterparts. (3) In the intermediate-coupling regime Mott-Wannier excitons are the more appropriate description for large dimerization, while for the undimerized chain Mott-Hubbard excitons are the correct description. For dimerizations relevant to polyacetylene and polydiacetylene both Mott-Hubbard and Mott-Wannier excitons are present. (4) For all coupling strengths an infinite number of bound states exist for 1/r interactions for an infinite polymer. As a result of the discreteness of the lattice and the restrictions on the exciton wave functions in one dimension, the progression of states does not follow the Rydberg series. In practice, excitons whose particle-hole separation exceeds the length of the polymer

  13. Experimental and theoretical studies on a novel helical architecture ...

    Indian Academy of Sciences (India)

    aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory ... bInstitute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing ... mental and theoretical points of view is still largely.

  14. Theoretical Study of the Compound Parabolic Trough Solar Collector

    OpenAIRE

    Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen

    2012-01-01

    Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  15. Theoretical Study of Triatomic Systems Involving Helium Atoms

    International Nuclear Information System (INIS)

    Suno, H.; Hiyama, E.; Kamimura, M.

    2013-01-01

    The triatomic 4 He system and its isotopic species 4 He 2 3 He are theoretically investigated. By adopting the best empirical helium interaction potentials, we calculate the bound state energy levels as well as the rates for the three-body recombination processes: 4 He + 4 He + 4 He → 4 He 2 + 4 He and 4 He + 4 He + 3 He → 4 He 2 + 3 He. We consider not only zero total angular momentum J = 0 states, but also J > 0 states. We also extend our study to mixed helium-alkali triatomic systems, that is 4 He 2 X with X = 7 Li, 23 Na, 39 K, 85 Rb, and 133 Cs. The energy levels of all the J ≥ 0 bound states for these species are calculated as well as the rates for three-body recombination processes such as 4 He + 4 He + 7 Li → 4 He 2 + 7 Li and 4 He + 4 He + 7 Li → 4 He 7 Li + 4 He. In our calculations, the adiabatic hyperspherical representation is employed but we also obtain preliminary results using the Gaussian expansion method. (author)

  16. A theoretical and spectroscopic study of conformational structures of piroxicam

    Science.gov (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  17. Experimental and theoretical study of Co sorption in clay montmorillonites

    Science.gov (United States)

    Gil Rebaza, A. V.; Montes, M. L.; Taylor, M. A.; Errico, L. A.; Alonso, R. E.

    2018-03-01

    Montmorillonite (MMT) clays are 2:1 layered structures which in natural state may allocate different hydrated cations such as M-nH2O (M = Na, Ca, Fe, etc) in its interlayer space. Depending on the capability for ion sorption, these materials are interesting for environmental remediation. In this work we experimentally study the Co sorption in a natural Na-MMT using UV-visible spectrometry and XRD on semi-oriented samples, and then analyze the sorption ability of this clay by means of ab initio calculation performed on pristine MMT. The structural properties of Na-MMT and Co-adsorbed MMT, and the hyperfine parameters at different atomic sites were analyzed and compared with the experimental ones for the first, and for the case of the hyperfine parameters, presented for the first time for the last. The theoretical predictions based on total energy considerations confirm that Co incorporation replacing Na is energetically favorable. Also, the basal spacing d001 experimentally obtained is well reproduced.

  18. Strategic Step for Environmental Rescue: A Theoretical Legal Studies

    Directory of Open Access Journals (Sweden)

    Bambang Sutrisno

    2014-01-01

    Full Text Available Indonesia is among the developing countries that are struggling to develop in the field of industrial development. The logical consequence of any development process, especially industrial development is the emergence of associated impacts that greatly affect the durability and sustainability of the environment. Developing the equitable industry in order to create public welfare is important. However, maintaining the security and preservation of the environment is also very important, because it is only with the availability of a good environment and healthy living that human beings can perform daily living. The availability of good and healthy environment is the constitutional responsibility of the government, as well as part of the human rights of all citizens which must be given by the State. Efforts to create a good environment and healthy living will be effective if controlled by State government and institutions who understand the objective conditions on the ground. In this regard, the granting of the authority on environmental control to regional government autonomously is the right, very smart policy choice. How To Cite: Sutrisno, B. (2016. Strategic Step for Environmental Rescue: A Theoretical Legal Studies. Rechtsidee, 1(1, 27-58. doi:http://dx.doi.org/10.21070/jihr.v1i1.98

  19. Optical activity in planar chiral metamaterials: Theoretical study

    International Nuclear Information System (INIS)

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-01-01

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems

  20. Theoretical studies of the reactions of HCN with atomic hydrogen

    International Nuclear Information System (INIS)

    Bair, R.A.; Dunning, T.H. Jr.

    1985-01-01

    A comprehensive theoretical study has been made of the energetics of the important pathways involved in the reaction of hydrogen atoms with hydrogen cyanide. For each reaction ab initio GVB-CI calculations were carried out to determine the structures and vibrational frequencies of the reactants, transition states, and products; then POL-CI calculations were carried out to more accurately estimate the electronic contribution to the energetics of the reactions. The hydrogen abstraction reaction is calculated to be endoergic by 24 kcal/mol [expt. ΔH (0 K) = 16--19 kcal/mol] with a barrier of 31 kcal/mol in the forward direction and 6 kcal/mol in the reverse direction. For the hydrogen addition reactions, addition to the carbon atom is calculated to be exoergic by 19 kcal/mol with a barrier of 11 kcal/mol, while addition to the nitrogen center is essentially thermoneutral with a barrier of 17 kcal/mol. Calculations were also carried out on the isomerization reactions of the addition products. The cis→trans isomerization of HCNH has a barrier of only 10 kcal/mol with the trans isomer being more stable by 5 kcal/mol. The (1,2)-hydrogen migration reaction, converting H 2 CN to trans-HCNH, is endoergic by only 14 kcal/mol, but the calculated barrier for the transfer is 52 kcal/mol. The energy of the migration pathway thus lies above that of the dissociation--recombination pathway

  1. Exploring the brains of Baduk (Go experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis

    Directory of Open Access Journals (Sweden)

    Wi Hoon eJung

    2013-10-01

    Full Text Available One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry and FC analyses in Baduk experts to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis to explore the topological organization of whole-brain functional networks. Compared to novices, Baduk experts exhibited decreased and increased gray matter volume in the amygdala and nucleus accumbens, respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex and decreased FC between the nucleus accumbens and medial prefrontal cortex. Further graph theoretical analysis revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in Baduk experts. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.

  2. Experimental, theoretical, and numerical studies of small scale combustion

    Science.gov (United States)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number

  3. Studies of the tautomeric equilibrium of 1,3-thiazolidine-2-thione: Theoretical and experimental approaches

    Energy Technology Data Exchange (ETDEWEB)

    Abbehausen, Camilla; Paiva, Raphael E.F. de [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Formiga, Andre L.B., E-mail: formiga@iqm.unicamp.br [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Corbi, Pedro P. [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Tautomeric equilibrium in solution. Black-Right-Pointing-Pointer Spectroscopic and theoretical studies. Black-Right-Pointing-Pointer UV-Vis theoretical and experimental spectra. Black-Right-Pointing-Pointer {sup 1}H NMR theoretical and experimental spectra. -- Abstract: The tautomeric equilibrium of the thione/thiol forms of 1,3-thiazolidine-2-thione was studied by nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopies. Density functional theory was used to support the experimental data and indicates the predominance of the thione tautomer in the solid state, being in agreement with previously reported crystallographic data. In solution, the tautomeric equilibrium was evaluated using {sup 1}H NMR at different temperatures in four deuterated solvents acetonitrile, dimethylsulfoxide, chloroform and methanol. The equilibrium constants, K = (thiol)/(thione), and free Gibbs energies were obtained by integration of N bonded hydrogen signals at each temperature for each solvent, excluding methanol. The endothermic tautomerization is entropy-driven and the combined effect of solvent and temperature can be used to achieve almost 50% thiol concentrations in solution. The nature of the electronic transitions was investigated theoretically and the assignment of the bands was made using time-dependent DFT as well as the influence of solvent on the energy of the most important bands of the spectra.

  4. Theoretical studies of field-reversed configurations (FRC) and experimental study of the FRC during translation

    International Nuclear Information System (INIS)

    Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.

    1985-01-01

    Theoretical studies of FRC stability and transport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in two-dimensional hybrid code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower hybrid drift instability in parameter regimes relevant to experiments show good agreement with a non-local theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a DC solenoid and trapped by magnetic mirrors, has been studied in the FRX-C/T experiment. Efficient transfer of particles, energy and internal magnetic flux are observed with no enhancement of loss processes over in-situ FRC experiments. The axial velocity of the FRC can be estimated reasonably well with a simple model based on conservation of energy. Internal magnetic field probing during translation shows the expected structure of poloidal field and a complex distribution of generally weak toroidal fields. Measurements of radiated power indicate that radiation is a small fraction of the total plasma power loss (typically 8%). Translation has facilitated scaling studies of confinement over a wider range of parameters than were achieved by in-situ FRX-C experiments. For example, the variable xsub(s), the ratio of the separatrix radius to the metal wall radius, has been increased to about 0.7 by allowing the FRC to expand during translation. In all cases, particle confinement times agree within a factor of two with predictions by models that assume a lower hybrid drift resistivity. However, for the conditions studied there are indications that the experimental

  5. Theoretical Studies Of Nucleation Kinetics And Nanodroplet Microstructure

    International Nuclear Information System (INIS)

    Wilemski, Gerald

    2009-01-01

    The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.

  6. Theoretical study of the elastic properties of titanium nitride

    Institute of Scientific and Technical Information of China (English)

    Jingdong CHEN; Yinglu ZHAO; Benhai YU; Chunlei WANG; Deheng SHI

    2009-01-01

    The equilibrium lattice parameter, relative volume V/Vo, elastic constants Cij, and bulk modulus of titanium nitride are successfully obtained using the ab initio plane-wave pseudopotential (PW-PP) method within the framework of density functional theory. The quasi-harmonic Debye model, using a set of total energy vs molar volume obtained with the PW-PP method, is applied to the study of the elastic properties and vibrational effects. We analyze the relationship between the bulk modulus and temperature up to 2000 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonously with increasing pressure and decreases with increasing temperature. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs func-tions.

  7. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  8. Theoretical study on device efficiency of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Gao Chuanchang; Lu Hongqi; Wang Shicheng; Cheng Mingchuan

    2001-01-01

    The influence of the main factors on device efficiency of pulsed liquid jet pump with gas-liquid piston is analysed, the theoretical equation and its time-averaged solution of pulsed liquid jet pump device efficiency are derived. The theoretical and experimental results show that the efficiency of transmission of energy and mass to use pulsed jet is greatly raised, compared with steady jet, in the same device of liquid jet pump. The calculating results of time-averaged efficiency of pulsed liquid jet pump are approximately in agreement with the experimental results in our and foreign countries

  9. Study of cognitive sphere in children and adolescents with congenital myopathy (theoretical review

    Directory of Open Access Journals (Sweden)

    V. A. Erokhina

    2013-08-01

    Full Text Available This paper presents an analysis of current approaches to the study of states of higher mental functions in children and adolescents suffering from various forms of hereditary myopathies. The aim of this work is to study the theoretical rationale and the possibility of specific disorders of mental function in children and adolescents with congenital myopathies. To achieve this objective during the study it was necessary to solve the following problems: give a description of the various groups and forms of congenital myopathies, their clinical characteristics; justify the possibility of considering the hereditary myopathies as a factor in the formation of changes in visual-spatial activities and thinking; evaluate the possibility to use complex neuropsychological psycho-diagnostic techniques for investigating the state of the higher mental functions of children with congenital myopathies. The possibility of neuropsychological correction for this category of patients is discussed also.

  10. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus.

    Science.gov (United States)

    Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M

    2008-12-01

    Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction

  11. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  12. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus.

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    Full Text Available The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA, our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks and older (GA≥31 weeks fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed.

  13. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    International Nuclear Information System (INIS)

    Leung, M; Ching, W H; Leung, D Y C; Lam, G C K

    2005-01-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others

  14. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    Science.gov (United States)

    Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.

    2005-02-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.

  15. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  16. A Theoretical Framework for Studying Adolescent Contraceptive Use.

    Science.gov (United States)

    Urberg, Kathryn A.

    1982-01-01

    Presents a theoretical framework for viewing adolescent contraceptive usage. The problem-solving process is used for developmentally examining the competencies that must be present for effective contraceptive use, including: problem recognition, motivation, generation of alternatives, decision making and implementation. Each aspect is discussed…

  17. Experimental and theoretical study of magnetohydrodynamic ship models.

    Directory of Open Access Journals (Sweden)

    David Cébron

    Full Text Available Magnetohydrodynamic (MHD ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  18. Experimental and theoretical study of magnetohydrodynamic ship models.

    Science.gov (United States)

    Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  19. Coordination to transition metal surfaces : a theoretical study

    NARCIS (Netherlands)

    Santen, van R.A.

    1985-01-01

    A theoretical framework is developed that describes the chemisorption of CO to transition metal surfaces analogous to the HOMO-LUMO concept of MO theory. An explanation is given for the exptl. observation that CO adsorbs on top at the (111), face of Pt, but bridge at the (111) face of Ni. One is due

  20. Theoretical study of diaquamalonatozinc(II) single crystal for ...

    Indian Academy of Sciences (India)

    MITESH CHAKRABORTY

    2017-11-28

    Nov 28, 2017 ... 2Laser and Spectroscopy Laboratory, Department of Applied Physics, Indian Institute of ... The aim of the present paper is to employ theoretical methods to investigate the zero field splitting .... using quantum chemistry computational models has ..... The authors are grateful to the Science and Engineer-.

  1. Thyroid function study

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    A short revision of thyroid physiology is done. The radioisotopes of common use in thyroid investigation and the choice of the most appropriated ones are discussed. A table showing radioisotopes frequently used in this study, with their main characteristics is presented. Among several isotopic assays in thyroid propaedeutics, those that refer to the function study, topographic studies and tests 'in vitro' are pointed out. Exploration methods 'in vivo' are treated, such as: thyroid uptake; urinary excretion; thyroid scintigraphy, with scintigraphic imagings; stimulation test by TSH; suppression test; pbi; clearance test with perchlorate; iodine deficiency test and thyroid study with technetium. 'In vitro' proofs like triiodothyronine (T 3 ) and thyroxine (T 4 ) assays, as well as free thyroxine index, are treated. At last, the therapeutics by Iodine 131 is commented and emphasis is given to its application on the treatment of hyperthyroidism and thyroid carcinoma [pt

  2. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  3. Systemic Functional Linguistics (SFL as Sociolinguistic and Sociological Conception: Possibilities and Limits of Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Mariia Rubtcova

    2016-05-01

    Full Text Available The paper aims at examining possibilities and limits of Systemic functional linguistics theoretical framework. Ideologically SFL concept was associated with the ideas of social justice and equality, the building of the society of equal opportunities through the educational system. The most interesting ideas arose when the SFL representatives thought about the development of English as a native language and were connected with the overcoming of class distinctions. The current version - genre-based approach – has serious limits. The desire of a genre-based approach to the systematization of genres carries a risk of cultural contradictions and conflict of cultures. However, the basic theoretical SFL principles are still in the stage of formation, as SFL researchers seek to avoid some rigidity of the classical institutional (genre approach, which is in contradiction with the principles of diversity. The founder M. Halliday offered ideas for the organization of a flexible approach based on International English that may become World Englishes, developing in order to adapt to the meanings of other cultures.  Therefore, an SFL approach still needs some alterations to spread outside the Western world and conform to the new culture for it. Besides, we can think about proposals of Halliday’s supporters to develop the own version of English for non-Western countries, considering its culture and mentality.

  4. Quantifying multi-dimensional functional trait spaces of trees: empirical versus theoretical approaches

    Science.gov (United States)

    Ogle, K.; Fell, M.; Barber, J. J.

    2016-12-01

    Empirical, field studies of plant functional traits have revealed important trade-offs among pairs or triplets of traits, such as the leaf (LES) and wood (WES) economics spectra. Trade-offs include correlations between leaf longevity (LL) vs specific leaf area (SLA), LL vs mass-specific leaf respiration rate (RmL), SLA vs RmL, and resistance to breakage vs wood density. Ordination analyses (e.g., PCA) show groupings of traits that tend to align with different life-history strategies or taxonomic groups. It is unclear, however, what underlies such trade-offs and emergent spectra. Do they arise from inherent physiological constraints on growth, or are they more reflective of environmental filtering? The relative importance of these mechanisms has implications for predicting biogeochemical cycling, which is influenced by trait distributions of the plant community. We address this question using an individual-based model of tree growth (ACGCA) to quantify the theoretical trait space of trees that emerges from physiological constraints. ACGCA's inputs include 32 physiological, anatomical, and allometric traits, many of which are related to the LES and WES. We fit ACGCA to 1.6 million USFS FIA observations of tree diameters and heights to obtain vectors of trait values that produce realistic growth, and we explored the structure of this trait space. No notable correlations emerged among the 496 trait pairs, but stepwise regressions revealed complicated multi-variate structure: e.g., relationships between pairs of traits (e.g., RmL and SLA) are governed by other traits (e.g., LL, radiation-use efficiency [RUE]). We also simulated growth under various canopy gap scenarios that impose varying degrees of environmental filtering to explore the multi-dimensional trait space (hypervolume) of trees that died vs survived. The centroid and volume of the hypervolumes differed among dead and live trees, especially under gap conditions leading to low mortality. Traits most predictive

  5. Cognitive models of executive functions development: methodological limitations and theoretical challenges

    Directory of Open Access Journals (Sweden)

    Florencia Stelzer

    2014-01-01

    Full Text Available Executive functions (EF have been defined as a series of higher-order cognitive processes which allow the control of thought, behavior and affection according to the achievement of a goal. Such processes present a lengthy postnatal development which matures completely by the end of adolescence. In this article we make a review of some of the main models of EF development during childhood. The aim of this work is to describe the state of the art related to the topic, identifying the main theoretical difficulties and methodological limitations associated with the different proposed paradigms. Finally, some suggestions are given to cope with such difficulties, emphasizing that the development of an ontology of EF could be a viable alternative to counter them. We believe that futture researches should guide their efforts toward the development of that ontology.

  6. Theoretical modelling of photoactive molecular systems: insights using the Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ciofini, I.; Adamo, C. [Ecole Nationale Superieure de Chimie de Paris, Lab. d' Electrochimie et Chimie Analytique, CNRS UMR 7575, 75 - Paris (France); Laine, Ph.P. [Universite Rene-Descartes, Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, 75 - Paris (France); Bedioui, F. [Ecole Nationale Superieure de Chimie de Paris, Lab. de Pharmacologie Chimique et Genetique, CNRS FRE 2463 and INSERM U 640, 75 - Paris (France); Daul, C.A. [Fribourg Univ., Dept. de Chimie (Switzerland)

    2006-02-15

    An account of the performance of a modern and efficient approach to Density Functional Theory (DFT) for the prediction of the photophysical behavior of a series of Ru(II) and Os(II) complexes is given. The time-dependent-DFT method was used to interpret their electronic spectra. Two different types of compounds have been analyzed: (1) a complex undergoing a light induced isomerization of one of its coordination bonds; (2) an inorganic dyads expected to undergo intramolecular photoinduced electron transfer to form a charge separated (CS) sate. Besides the noticeable quantitative agreement between computed and experimental absorption spectra, our results allow to clarify, by first principles, both the nature of the excited states and the photochemical behavior of these complex systems, thus underlying the predictive character of the theoretical approach. (authors)

  7. Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xue, Yongqiang

    2012-01-01

    Highlights: ► There is an obvious influence of the size on thermodynamic properties for the reaction referring nano-reactants. ► Gibbs function, enthalpy, entropy and equilibrium constant are dependent on the reactant size. ► There is an approximate linear relation between them. - Abstract: The theoretical relations of thermodynamic properties, the equilibrium constant and reactant size in nanosystem are described. The effects of size on thermodynamic properties and the equilibrium constant were studied using nanosize zinc oxide and sodium bisulfate solution as a reaction system. The experimental results indicated that the molar Gibbs free energy, the molar enthalpy and the molar entropy of the reaction decrease, but the equilibrium constant increases with decreasing reactant size. Linear trends were observed between the reciprocal of size for nano-reactant and thermodynamic variable, which are consistent with the theoretical relations.

  8. Study of network resource allocation based on market and game theoretic mechanism

    Science.gov (United States)

    Liu, Yingmei; Wang, Hongwei; Wang, Gang

    2004-04-01

    We work on the network resource allocation issue concerning network management system function based on market-oriented mechanism. The scheme is to model the telecommunication network resources as trading goods in which the various network components could be owned by different competitive, real-world entities. This is a multidisciplinary framework concentrating on the similarity between resource allocation in network environment and the market mechanism in economic theory. By taking an economic (market-based and game theoretic) approach in routing of communication network, we study the dynamic behavior under game-theoretic framework in allocating network resources. Based on the prior work of Gibney and Jennings, we apply concepts of utility and fitness to the market mechanism with an intention to close the gap between experiment environment and real world situation.

  9. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    Science.gov (United States)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  10. Theoretical study of reaction dynamics in radiation chemistry

    International Nuclear Information System (INIS)

    Tachiya, Masanori

    2008-01-01

    The period from late 1950's to early 1970's was golden age of radiation chemistry. During this period the hydrated electron was discovered, various new phenomena were found in ionic processes in liquid hydrocarbons, and the trapped electron and electron tunneling were discovered in organic glasses. In those days radiation chemistry was a vast treasure-house of theoretical problems. We could find not only problems special to radiation chemistry but also many problems interesting as general physical chemistry. In this review I explain how some theoretical problems discovered in the field of radiation chemistry have evolved into those of general physical chemistry, with special emphasis on my own work. (author)

  11. An Experimental and Theoretical Study on Cavitating Propellers.

    Science.gov (United States)

    1982-10-01

    34 And Identfyp eV &to" nMeeJ cascade flow theoretical supercavitating flow performance prediction method partially cavitating flow supercavitating ...the present work was to develop an analytical tool for predicting the off-design performance of supercavitating propellers over a wide range of...operating conditions. Due to the complex nature of the flow phenomena, a lifting line theory sirply combined with the two-dimensional supercavitating

  12. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-01-21

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  13. Thermochemical study of cyanopyrazines: Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Morais, Victor M.F.; Matos, M. Agostinha R.

    2006-01-01

    The standard (p - bar =0.1MPa) molar energy of combustion, at T=298.15K, of crystalline 2,3-dicyanopyrazine was measured by static bomb calorimetry, in oxygen atmosphere. The standard molar enthalpy of sublimation, at T=298.15K, was obtained by Calvet Microcalorimetry, allowing the calculation of the standard molar enthalpy of formation of the compound, in the gas phase, at T=298.15K: Δ f H m - bar (g)=(518.7+/-3.4)kJ.mol -1 . In addition, the geometries of all cyanopyrazines were obtained using density functional theory with the B3LYP functional and two basis sets: 6-31G* and 6-311G**. These calculations were then used for a better understanding of the relation between structure and energetics of the cyanopyrazine systems. These calculations also reproduce measured standard molar enthalpies of formation with some accuracy and do provide estimates of this thermochemical parameter for those compounds that could not be studied experimentally, namely the tri- and tetracyanopyrazines: the strong electron withdrawing cyano group on the pyrazine ring makes cyanopyrazines highly destabilized compounds

  14. Theoretical study of bismuth-doped cadmium telluride

    Science.gov (United States)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  15. On flaw tolerance of nacre: a theoretical study

    Science.gov (United States)

    Shao, Yue; Zhao, Hong-Ping; Feng, Xi-Qiao

    2014-01-01

    As a natural composite, nacre has an elegant staggered ‘brick-and-mortar’ microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites. PMID:24402917

  16. Cardiac function studies

    International Nuclear Information System (INIS)

    Horn, H.J.

    1986-01-01

    A total of 27 patients were subjected tointramyocardial sequential scintiscanning (first pass) using 99m-Tc human serum albumin. A refined method is described that is suitable to analyse clinically relevant parameters like blood volume, cardiac output, ejection fraction, stroke volume, enddiastolic and endsystolic volumes as well as pulmonal transition time and uses a complete camaracomputer system adapted to the requirements of a routine procedure. Unless there is special hardware available, the method does not yet appear mature enough to be put into general practice. Its importance recently appeared in a new light due to the advent of particularly shortlived isotopes. For the time being, however, ECG-triggered equilibrium studies are to be preferred for cardiac function tests. (TRV) [de

  17. Theoretical study of a melting curve for tin

    International Nuclear Information System (INIS)

    Feng, Xi; Ling-Cang, Cai

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)

  18. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    Science.gov (United States)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  19. Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics

    International Nuclear Information System (INIS)

    Guo Shi-Bei; Zhong Kai; Wang Mao-Rong; Liu Chu; Xu De-Gang; Yao Jian-Quan; Xiao Yong; Wang Wen-Peng

    2017-01-01

    Broadband terahertz (THz) atmospheric transmission characteristics from 0 to 8 THz are theoretically simulated based on a standard Van Vleck–Weisskopf line shape, considering 1696 water absorption lines and 298 oxygen absorption lines. The influences of humidity, temperature, and pressure on the THz atmospheric absorption are analyzed and experimentally verified with a Fourier transform infrared spectrometer (FTIR) system, showing good consistency. The investigation and evaluation on high-frequency atmospheric windows are good supplements to existing data in the low-frequency range and lay the foundation for aircraft-based high-altitude applications of THz communication and radar. (paper)

  20. Theoretical study of Cherenkov radiation emission in anisotropic uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Delbart, A; Derre, J

    1996-04-01

    A theoretical review of the Cherenkov radiation emission in uniaxial crystals is presented. The formalism of C. Muzicar in terms of energetic properties of the emitted waves are corrected. This formalism is used to simulate the Cherenkov radiation emission in a strongly birefringent sodium nitrate crystal (NaNO{sub 3}) and to investigate the consequences of the slight anisotropy of sapphire (Al{sub 2}O{sub 3}) on the design of the Optical Trigger. (author). 12 refs. Submitted to Physical Review, D (US).

  1. Experimental and theoretical study of cascade solar stills in Iran

    International Nuclear Information System (INIS)

    Tabrizi, F.F.; Sharak, A.Z.

    2009-01-01

    Due to low annual rainfall, most of Iran is dominated by arid and semi-arid areas. The solar radiation intensity is extremely high in most of the country. The need to produce fresh water from brackish water is considerably high, especially in dry regions. Desalination of brackish water may become a competitive potential water resource to meet potable water demand, and as the price of oil goes higher, using solar energy for water desalinisation becomes more economical. This paper presented a study that involved mathematical modeling of the first solar still in Iran. The cumulative fresh water production and water temperature were calculated as a function of time. The obtained results were verified by one month daily-based experimental data. The paper also provided background information on the Koshk village, situated in the south part of Iran near Badar Abbas city. Various investigations regarding meteorological conditions, economical considerations, and technical and operational appropriateness demonstrated that the cascade solar still is suitable for desalination of brackish water. 100 solar stills were installed at the site to provide potable water for a nearby village. It was concluded that the model could be used to simulate and optimize the effective design parameters in future studies. 6 refs., 7 figs

  2. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    International Nuclear Information System (INIS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-01-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4–47.2 kJ mol −1 ) are low and also the Gibbs free energies have high negative values ((−27.4) to (−5.9) kJ mol −1 ). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate. - Highlights: • Attack of • OH to aniline, phenol, fenuron, monuron, diuron was studied by DFT. • Ortho-para directing is suggested with –NH 2 , –OH and –NHCON(CH 3 ) 2 groups. • • OH addition to the ring gives hydroxycyclohexadienyl radical. • Attack at C-Cl leads to • OH/Cl substitution without cyclohexadienyl intermediate.

  3. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  4. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  5. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  6. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    Science.gov (United States)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  7. Theoretical study on β-aminoacroleine; Density functional theory ...

    Indian Academy of Sciences (India)

    3, May 2012, pp. 731–739. c Indian Academy ..... −39.45. 0.171. 18. 1.241. 1.436. 1.375. 1.353. 1.028. 1.883. 2.733. 137.7. −36.75. 0.173. 19 ... 788. 90. 5. 0.0344. 0.0993. 0.0150. 0.1010. 3390. 807. 66. 6. 0.0379. 0.1094. 0.0158. 0.1059. 3326.

  8. Protonation of caffeine: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Hamed [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tabrizchi, Mahmoud, E-mail: m-tabriz@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Farrokhpour, Hossein [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-03-29

    Highlights: ► Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources. ► Experimental and theoretical evidence was collected to assign the observed peaks to caffeine related ionic species. ► A new concept of “internal proton affinity”, the protonation tendency for each atom in a molecule, was defined. - Abstract: Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M{sup +} ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of “internal proton affinity” (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  9. Protonation of caffeine: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein

    2013-01-01

    Highlights: ► Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources. ► Experimental and theoretical evidence was collected to assign the observed peaks to caffeine related ionic species. ► A new concept of “internal proton affinity”, the protonation tendency for each atom in a molecule, was defined. - Abstract: Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M + ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of “internal proton affinity” (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule

  10. Computational principles of syntax in the regions specialized for language: integrating theoretical linguistics and functional neuroimaging.

    Science.gov (United States)

    Ohta, Shinri; Fukui, Naoki; Sakai, Kuniyoshi L

    2013-01-01

    The nature of computational principles of syntax remains to be elucidated. One promising approach to this problem would be to construct formal and abstract linguistic models that parametrically predict the activation modulations in the regions specialized for linguistic processes. In this article, we review recent advances in theoretical linguistics and functional neuroimaging in the following respects. First, we introduce the two fundamental linguistic operations: Merge (which combines two words or phrases to form a larger structure) and Search (which searches and establishes a syntactic relation of two words or phrases). We also illustrate certain universal properties of human language, and present hypotheses regarding how sentence structures are processed in the brain. Hypothesis I is that the Degree of Merger (DoM), i.e., the maximum depth of merged subtrees within a given domain, is a key computational concept to properly measure the complexity of tree structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic expression is determined essentially by functional elements, which trigger Merge and Search. We then present our recent functional magnetic resonance imaging experiment, demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective activations in the left inferior frontal gyrus and supramarginal gyrus. Hypothesis III is that the DoM domain changes dynamically in accordance with iterative Merge applications, the Search distances, and/or task requirements. We confirm that the DoM accounts for activations in various sentence types. Hypothesis III successfully explains activation differences between object- and subject-relative clauses, as well as activations during explicit syntactic judgment tasks. A future research on the computational principles of syntax will further deepen our understanding of uniquely human mental faculties.

  11. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  12. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  13. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  14. Theoretical study of the properties of BH3NH3

    International Nuclear Information System (INIS)

    Binkley, J.S.; Thorne, L.R.

    1983-01-01

    Borane monoammoniate (BH 3 NH 3 ) has been studied using several ab initio electronic structure methods and Gaussian basis sets. Equilibrium geometries have been computed at the Hartree--Fock level and, using the electron-correlated Moller--Plesset perturbation method, carried out to third order (MP3) with double-zeta polarized quality basis sets. The computed MP3 geometry is in close agreement with recent microwave data; electron correlation is found to be necessary for a proper description of the B--N distance. Hartree--Fock dipole moments and harmonic vibrational frequencies are presented and discussed. Moller--Plesset perturbation theory carried out to fourth order with triple-zeta plus polarization basis sets is used to compute a B--N dissociation energy of 34.7 kcal mol -1 and a (Hartree--Fock zero-point corrected) rotational barrier of 2.065 kcal mol -1 , which is in excellent agreement with the experimental value. Analysis of the dissociation energy as a function of perturbation order indicates that terms involving triple and quadruple substitutions are required in the dissociation energy

  15. Experimental and theoretical study of solid solution stability under irradiation

    International Nuclear Information System (INIS)

    Cauvin, Richard.

    1981-08-01

    The behavior of dilute alloys (Al-Zn, Al-Ag, Al-Si, Al-Ge and Al-Mg) under 1 MeV electron irradiation has been studied in a high voltage electron microscope. A phenomenon of homogeneous precipitation induced by irradiation in undersaturated solid solutions (Al-Zn, Al-Ag and Al-Si) has been discovered; the observed precipitates are either coherent or incoherent, but never associated with point defect sinks. The solubility limit is a function of irradiation temperature and flux; but, under irradiation, it does not behave as a true thermal solubility limit (without irradiation). The existing theories (kinetic or strictly thermodynamic) do not account for this phenomenon. It is shown that the irreversibility of the mutual recombination between trapped vacancies and mixed interstitials is the driving force of this homogeneous precipitation. Using a dilute solid solution model, we show that, under irradiation, the homogeneous stationary state, stable from a strictly thermodynamic point of view, can be unstable when the recombination reaction is taken into account. The solubility limit under irradiation is calculated with a nucleation-growth model taking account for this effect; it is proportional to the thermal solubility limit without irradiation. This model explains all the experimental observations [fr

  16. Theoretical Study of Spin Crossover in 30 Iron Complexes.

    Science.gov (United States)

    Kepp, Kasper P

    2016-03-21

    Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.

  17. Theoretical Advanced Study Institute in Elementary Particle Physics

    CERN Document Server

    2017-01-01

    The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2017. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.

  18. Supplement to final report for ''Theoretical studies in tokamaks''

    International Nuclear Information System (INIS)

    McBride, J.B.

    1992-07-01

    In a previous report we summarized the results obtained for Task I of Contract Number AC03-88ER53270 for the two-year period of performance of the work supported by the contract. That report constituted the final report for Task 1. Since then, the contract was extended and the funding for Task I was incremented with $35K of new funds. The purpose for incrementing the contract was to begin a collaboration with the PBX-M group at Princeton Plasma Physics Laboratory (PPPL) in the area of ion Bernstein wave (IBW) effects in the PBX-M experiment. This report summarizes the initial results of that collaboration obtained under the incremental continuation funding. In the intervening period, experimental and theoretical program directions changed so that no further funds were committed to Task 1

  19. Excitons in van der Waals Heterostructures: A theoretical study

    DEFF Research Database (Denmark)

    Latini, Simone

    )electronics devices, e.g. light emitting diodes, solar cells, ultra-fast photodetectors, transistors etc., have been successfully fabricated. It is well established that for isolated 2D semiconductors and vdWHs the optical response is governed by excitonic effects. While it is understood that the reduced amount...... of electronic screening in freestanding 2D materials is the main origin of extraordinarily strongly bound excitons, a theoretical understanding of excitonic effects and of how the electronic screening is affected for the more complex case of multi-layer structures is still lacking due to the computational...... in a generalized hydrogenic model to compute exciton binding energies in isolated, supported, or encapsulated 2D semiconductors. The non-locality of the dielectric screening is inherently included in our method and we can successfully describe the non-hydrogenic Rydberg series of low-dimensional systems...

  20. A theoretical study on a convergence problem of nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Shaohong, Z.; Ziyong, L. [Shanghai Jiao Tong Univ., 1954 Hua Shan Road, Shanghai, 200030 (China); Chao, Y. A. [Westinghouse Electric Company, P. O. Box 355, Pittsburgh, PA 15230-0355 (United States)

    2006-07-01

    The effectiveness of modern nodal methods is largely due to its use of the information from the analytical flux solution inside a homogeneous node. As a result, the nodal coupling coefficients depend explicitly or implicitly on the evolving Eigen-value of a problem during its solution iteration process. This poses an inherently non-linear matrix Eigen-value iteration problem. This paper points out analytically that, whenever the half wave length of an evolving node interior analytic solution becomes smaller than the size of that node, this non-linear iteration problem can become inherently unstable and theoretically can always be non-convergent or converge to higher order harmonics. This phenomenon is confirmed, demonstrated and analyzed via the simplest 1-D problem solved by the simplest analytic nodal method, the Analytic Coarse Mesh Finite Difference (ACMFD, [1]) method. (authors)

  1. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    International Nuclear Information System (INIS)

    Pratico, Filippo Giammaria

    2008-01-01

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle-road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events

  2. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  3. Theoretical study about L-arginine complexes formation with thiotriazolin

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-02-01

    Full Text Available Brain vascular diseases are one of the leading causes of morbidity, mortality and disability of population in the industrialized countries of the world. An important element of this problem’s solution is the creation of new highly effective and safe drugs, which would lead to mortality reduction, to increase in life expectancy and quality of life. Therefore it is interesting to create a new combined drug based on L-arginine and thiotriazolin. Purpose of the study: to consider the possible structure and energy characteristics of complexes formed by L-arginine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Calculation method. The initial approximation to the complex geometry was obtained using molecular docking with the help of AutoDock Vina program. The obtained ternary complexes were pre-optimized by semi-empirical PM7 method with modeling the impact of the environment by COSMO method. The calculations were carried out using MOPAC2012 program. Then they were optimized by B97-D3/SVP + COSMO (Water dispersion-corrected DFT-D with geometrical spreading correction on insufficiency of gCP basis set. A more accurate calculation of the solvation energy was conducted by SMD. The calculations by density functional method were carried out using the ORCA 3.0.3 software. Energy complex formation in solution was calculated as the difference of the Gibbs free energy of the solvated complex and its individual components. Results. Quantum chemical calculations show, that thiotriazolin and L-arginine are able to form ternary complexes, where molecules are linked by multiple hydrogen bonds. The calculation data suggest, that studied complexes are thermodynamically unstable in solution. The energies of them are positive, but rather low despite charge gain of a number of intermolecular hydrogen bonds. Finding. Based on the results of the conducted quantum-chemical study of a three components system (MTTA, morpholine, and L-arginine it is possible

  4. EXPERIMENTAL AND THEORETICAL NMR STUDY OF 4-(1 ...

    African Journals Online (AJOL)

    Preferred Customer

    density functional theory (GIAO/DFT) approach is widely used for various types of compounds [12-. 20]. DFT calculations are hardly expensive and provide accurate results for chemical shifts and coupling constant on systems such as large organic ...

  5. Correction: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Directory of Open Access Journals (Sweden)

    Kleinstreuer Clement

    2011-01-01

    Full Text Available Abstract Correction to Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters 2011, 6:229.

  6. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory.

    Science.gov (United States)

    Cao, Xiaofang; Rong, Chunying; Zhong, Aiguo; Lu, Tian; Liu, Shubin

    2018-01-15

    Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. We need theoretical physics approaches to study living systems

    Science.gov (United States)

    Blagoev, Krastan B.; Shukla, Kamal; affil="3" >Herbert Levine,

    2013-08-01

    Living systems, as created initially by the transition from assemblies of large molecules to self-reproducing information-rich cells, have for centuries been studied via the empirical toolkit of biology. This has been a highly successful enterprise, bringing us from the vague non-scientific notions of vitalism to the modern appreciation of the biophysical and biochemical bases of life. Yet, the truly mind-boggling complexity of even the simplest self-sufficient cells, let alone the emergence of multicellular organisms, of brain and consciousness, and to ecological communities and human civilizations, calls out for a complementary approach. In this editorial, we propose that theoretical physics can play an essential role in making sense of living matter. When faced with a highly complex system, a physicist builds simplified models. Quoting Philip W Anderson's Nobel prize address, 'the art of model-building is the exclusion of real but irrelevant parts of the problem and entails hazards for the builder and the reader. The builder may leave out something genuinely relevant and the reader, armed with too sophisticated an experimental probe, may take literally a schematized model. Very often such a simplified model throws more light on the real working of nature....' In his formulation, the job of a theorist is to get at the crux of the system by ignoring details and yet to find a testable consequence of the resulting simple picture. This is rather different than the predilection of the applied mathematician who wants to include all the known details in the hope of a quantitative simulacrum of reality. These efforts may be practically useful, but do not usually lead to increased understanding. To illustrate how this works, we can look at a non-living example of complex behavior that was afforded by spatiotemporal patterning in the Belousov-Zhabotinsky reaction [1]. Physicists who worked on this system did not attempt to determine all the relevant chemical intermediates

  8. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Siddheshwar, E-mail: schopra1@amity.edu

    2017-01-15

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  9. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    International Nuclear Information System (INIS)

    Chopra, Siddheshwar

    2017-01-01

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  10. [Theoretical elementary particle studies.] Final report, September 1983-July 1985

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    The work done during the period September 1983 to July 1985 covers several areas of the theory of the strong interactions of elementary particles, mostly in the area characterized as 'perturbative QCD'. The specific topics are: the proof of factorization for hard processes, such as the Drell-Yan process; calculation of transverse-mementum distributions for these processes; investigation of the small-x region; demonstration of the applicability of perturbative QCD (quantum chromodynamics) to the production of heavy quarks; and improved methods of calculation of the effects of heavy quarks in hard processes, and in particular of their distribution functions in hadrons ('structure functions'). 31 refs

  11. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  12. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  13. Experimental and theoretical studies of 3-benzyloxy-2-nitropyridine

    Science.gov (United States)

    Sun, Wenting; Cui, Yu; Liu, Huimin; Zhao, Haitao; Zhang, Wenqin

    2012-10-01

    The structure of 3-benzyloxy-2-nitropyridine has been investigated both experimentally and theoretically. The X-ray crystallography results show that the nitro group is tilted out of the pyridine ring plane by 66.4(4)°, which is mainly attributed to the electron-electron repulsions of the lone pairs in O atom of the 3-benzyloxy moiety with O atom in nitro group. An interesting centrosymmetric π-stacking molecular pair has been found in the crystalline state, which results in the approximate coplanarity of the pyridine ring with the benzene ring. The calculated results show that the dihedral angle between the nitro group and pyridine ring from the X3LYP method is much closer to the experimental data than that from the M06-2X one. The existing two conformational isomers of 3-benzyloxy-2-nitropyridine with equal energy explain well the disorder of the nitro group at room temperature. In addition, the vibrational frequencies are also calculated by the X3LYP and M06-2X methods and compared with the experimental results. The prediction from the X3LYP method coincides with the locations of the experimental frequencies well.

  14. Dissociation of the Phenylarsane Molecular Ion: A Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Choe, Joong Chul [Dongguk University, Seoul (Korea, Republic of)

    2010-09-15

    The potential energy surfaces (PESs) for the primary and secondary dissociations of the phenylarsane molecular ion (1a) were determined from the quantum chemical calculations using the G3(MP2)//B3LYP method. Several pathways for the loss of H· were determined and occurred though rearrangements as well as through direct bond cleavages. The kinetic analysis based on the PES for the primary dissociation showed that the loss of H{sub 2} was more favored than the loss of H·, but the H· loss competed with the H{sub 2} loss at high energies. The bicyclic isomer, 7-arsa-norcaradiene radical cation, was formed through the 1,2 shift of an α-H of 1a and played an important role as an intermediate for the further rearrangements in the loss of H· and the losses of As· and AsH. The reaction pathways for the formation of the major products in the secondary dissociations of [M-H]{sup +} and [M-H{sub 2}]{sup +·} were examined. The theoretical prediction explained the previous experimental results for the dissociation at high energies but not the dissociation at low energies.

  15. Heat conduction in graphene: experimental study and theoretical interpretation

    International Nuclear Information System (INIS)

    Ghosh, S; Nika, D L; Pokatilov, E P; Balandin, A A

    2009-01-01

    We review the results of our experimental investigation of heat conduction in suspended graphene and offer a theoretical interpretation of its extremely high thermal conductivity. The direct measurements of the thermal conductivity of graphene were performed using a non-contact optical technique and special calibration procedure with bulk graphite. The measured values were in the range of ∼3000-5300 W mK -1 near room temperature and depended on the lateral dimensions of graphene flakes. We explain the enhanced thermal conductivity of graphene as compared to that of bulk graphite basal planes by the two-dimensional nature of heat conduction in graphene over the whole range of phonon frequencies. Our calculations show that the intrinsic Umklapp-limited thermal conductivity of graphene grows with the increasing dimensions of graphene flakes and can exceed that of bulk graphite when the flake size is on the order of a few micrometers. The detailed theory, which includes the phonon-mode-dependent Gruneisen parameter and takes into account phonon scattering on graphene edges and point defects, gives numerical results that are in excellent agreement with the measurements for suspended graphene. Superior thermal properties of graphene are beneficial for all proposed graphene device applications.

  16. Optical gain coefficients of silicon: a theoretical study

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model is presented and an explicit formula is derived for calculating the optical gain coefficients of indirect band-gap semiconductors. This model is based on the second-order time-dependent perturbation theory of quantum mechanics by incorporating all the eight processes of photon/phonon emission and absorption between the band edges of the conduction and valence bands. Numerical calculation results are given for Si. The calculated absorption coefficients agree well with the existing fitting formula of experiment data with two modes of phonons: optical phonons with energy of 57.73 meV and acoustic phonons with energy of 18.27 meV near (but not exactly at) the zone edge of the X-point in the dispersion relation of phonons. These closely match with existing data of 57.5 meV transverse optical (TO) phonons at the X4-point and 18.6 meV transverse acoustic (TA) phonons at the X3-point of the zone edge. The calculated results show that the material optical gain of Si will overcome free-carrier absorption if the energy separation of quasi-Fermi levels between electrons and holes exceeds 1.15 eV.

  17. Transactive System: Part I: Theoretical Underpinnings of Payoff Functions, Control Decisions, Information Privacy, and Solution Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widergren, Steven E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-17

    new transactive energy system design with demonstrable guarantees on stability and performance. Specifically, the goals are to (1) establish a theoretical basis for evaluating the performance of different transactive systems, (2) devise tools to address canonical problems that exemplify challenges and scenarios of transactive systems, and (3) provide guidelines for design of future transactive systems. This report, Part 1 of a two part series, advances the above-listed research objectives by reviewing existing transactive systems and identifying a theoretical foundation that integrates payoff functions, control decisions, information privacy, and mathematical solution concepts.

  18. A theoretical study on 2-amino-5-nitroprydinium trifluoroaceta

    Energy Technology Data Exchange (ETDEWEB)

    Arioğlu, Çağla, E-mail: caglaarioglu@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Başoğlu, Adil, E-mail: abasoglu@sakarya.edu.tr; Avci, Davut, E-mail: davci@sakarya.edu.tr; Atalay, Yusuf, E-mail: yatalay@sakarya.edu.tr [Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya (Turkey)

    2016-03-25

    The geometry optimization of 2-amino-5-nitroprydinium trifluoroacetate molecule was carried out by using Becke’s three-parameter exchange functional in conjunction with the Lee-Yang-Parr correlation functional (B3LYP) level of density functional theory (DFT) and 6-311++G(d,p) basis set at GAUSSIAN 09 program. The vibration spectrum of the title compound was simulated to predict the presence of functional groups and their vibrational modes. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were calculated at the same level, and the obtained small energy gap shows that charge transfer occurs in the title compound. The molecular dipole moment, polarizability and hyperpolarizability parameters were determined to evaluate nonlinear optical efficiency of the title compound. Finally, the {sup 13}C and {sup 1}H Nuclear Magnetic Resonance (NMR) chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method. All of the calculations were carried out by using GAUSSIAN 09 program.

  19. Spectrophotometric and theoretical studies on the determination of ...

    African Journals Online (AJOL)

    ... which a basic analytical laboratory can afford. No interference was observed from common pharmaceutical excipients and additives. ETMO ion pair has a larger interaction energy (higher stability) than ET-BCG ion pair as inferred from their interaction energies. Keywords: Density functional theory, Etilefrine hydrochloride, ...

  20. Experimental and theoretical studies on a novel helical architecture ...

    Indian Academy of Sciences (India)

    A novel two-dimensional (2D), layered, helical supramolecular architecture constructed via cooperative hydrogen bond and halogen bonds was synthesized and characterized: [(BMBA)₂(TPB)]n (1) [BMBA= 3-bromo-2-methylbenzoic acid, TPB = 1,2,3,4-tetra-(4-pyridyl)-butane]. Density functional theory (DFT) calculations ...

  1. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs

    International Nuclear Information System (INIS)

    Shukla, P.K.; Ganapathy, Vinay; Mishra, P.C.

    2011-01-01

    Graphical abstract: Reactions of methyldiazonium ion at the different sites of the DNA bases in the Watson-Crick GC and AT base pairs were investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Display Omitted Highlights: → Methylation of the DNA bases is important as it can cause mutation and cancer. → Methylation reactions of the GC and AT base pairs with CH 3 N 2 + were not studied earlier theoretically. → Experimental observations have been explained using theoretical methods. - Abstract: Methylation of the DNA bases in the Watson-Crick GC and AT base pairs by the methyldiazonium ion was investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Methylation at the N3, N7 and O6 sites of guanine, N1, N3 and N7 sites of adenine, O2 and N3 sites of cytosine and the O2 and O4 sites of thymine were considered. The computed reactivities for methylation follow the order N7(guanine) > N3(adenine) > O6(guanine) which is in agreement with experiment. The base pairing in DNA is found to play a significant role with regard to reactivities of the different sites.

  2. THEORETICAL AND METHODOLOGICAL BASIS OF THE STUDY OF ENVIRONMENTAL AUDIT IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    V. Berezuyuk

    2014-12-01

    Full Text Available Practical problems of modern economic development of the country are associated with unresolved major theoretical issues in the field of auditing. One of them, in our opinion, is to determine the status of the audit as a form of scientific knowledge. This, in turn, requires a clear definition of the subject of audit, missing not only in domestic but also foreign economic literature. Theoretical study of the content and scope of the audit showed that there are different interpretations of this concept in the countries with developed market economies (US, UK and the Kazakhstan legislation. Analysis of multiple interpretations and definitions revealed a narrow view of the audit activities in Kazakhstan legislation. In order to improve the efficiency of the audit work is recommended management of large and medium-sized organizations use simulation methods, structural analysis and design based on the Conditional Split of the company business processes, sub-processes, procedures, functions, etc., which, ultimately, will allow Sort already performed the action and determine the need for the implementation of new procedures or functions aimed at improving the quality of the audit. Each audit organization yourself looking for ways to improve the quality of solutions using a variety of techniques, using the experience and creating in-house auditing standards, in particular, for the effective planning of the audit.

  3. A Theoretical and Experimental Study of DNA Self-assembly

    Science.gov (United States)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  4. Theoretical determination of gamma spectrometry systems efficiency based on probability functions. Application to self-attenuation correction factors

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Manuel, E-mail: manuel.barrera@uca.es [Escuela Superior de Ingeniería, University of Cadiz, Avda, Universidad de Cadiz 10, 11519 Puerto Real, Cadiz (Spain); Suarez-Llorens, Alfonso [Facultad de Ciencias, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Casas-Ruiz, Melquiades; Alonso, José J.; Vidal, Juan [CEIMAR, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cádiz (Spain)

    2017-05-11

    A generic theoretical methodology for the calculation of the efficiency of gamma spectrometry systems is introduced in this work. The procedure is valid for any type of source and detector and can be applied to determine the full energy peak and the total efficiency of any source-detector system. The methodology is based on the idea of underlying probability of detection, which describes the physical model for the detection of the gamma radiation at the particular studied situation. This probability depends explicitly on the direction of the gamma radiation, allowing the use of this dependence the development of more realistic and complex models than the traditional models based on the point source integration. The probability function that has to be employed in practice must reproduce the relevant characteristics of the detection process occurring at the particular studied situation. Once the probability is defined, the efficiency calculations can be performed in general by using numerical methods. Monte Carlo integration procedure is especially useful to perform the calculations when complex probability functions are used. The methodology can be used for the direct determination of the efficiency and also for the calculation of corrections that require this determination of the efficiency, as it is the case of coincidence summing, geometric or self-attenuation corrections. In particular, we have applied the procedure to obtain some of the classical self-attenuation correction factors usually employed to correct for the sample attenuation of cylindrical geometry sources. The methodology clarifies the theoretical basis and approximations associated to each factor, by making explicit the probability which is generally hidden and implicit to each model. It has been shown that most of these self-attenuation correction factors can be derived by using a common underlying probability, having this probability a growing level of complexity as it reproduces more precisely

  5. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes

    International Nuclear Information System (INIS)

    Barros, N.

    2007-06-01

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  6. A New Theoretical Approach to Single-Molecule Fluorescence Optical Studies of RNA Dynamics

    International Nuclear Information System (INIS)

    Zhao Xinghai; Shan Guangcun; Bao Shuying

    2011-01-01

    Single-molecule fluorescence spectroscopy in condensed phases has many important chemical and biological applications. The single-molecule fluorescence measurements contain information about conformational dynamics on a vast range of time scales. Based on the data analysis protocols methodology proposed by X. Sunney Xie, the theoretical study here mainly focuses on the single-molecule studies of single RNA with interconversions among different conformational states, to with a single FRET pair attached. We obtain analytical expressions for fluorescence lifetime correlation functions that relate changes in fluorescence lifetime to the distance-dependent FRET mechanism within the context of the Smoluchowski diffusion model. The present work establishes useful guideline for the single-molecule studies of biomolecules to reveal the complicated folding dynamics of single RNA molecules at nanometer scale.

  7. Experimental and theoretical studies of a pyrazole-thiazolidin-2,4-di-one hybrid

    Science.gov (United States)

    Mushtaque, Md.; Avecilla, Fernando; Haque, Ashanul; Perwez, Ahmad; Khan, Md. Shahzad; Rizvi, M. Moshahid Alam

    2017-08-01

    The present work describes synthesis, characterization and biological evaluations of a hybrid compound 10 composed of two intriguing scaffolds pyrazole and thiazolidin-2,4-di-one. The title compound was obtained via multi-step reaction and characterized by a number of techniques (viz. IR, UV-Visible, 1H-NMR, 13C-NMR and MS) including X-ray crystallography. The structural and photophysical data of compound 10 were well supported by theoretical calculations performed at density functional (DFT) level. In-vitro anticancer studies on different human cancer cell lines indicated moderate to low activity of the compounds. The molecular target of the compound was predicted through in-silico studies. Finding of the studies are presented herein.

  8. Decreased functional connectivity in schizophrenia: The relationship between social functioning, social cognition and graph theoretical network measures.

    Science.gov (United States)

    Erdeniz, Burak; Serin, Emin; İbadi, Yelda; Taş, Cumhur

    2017-12-30

    Schizophrenia is a complex disorder in which abnormalities in brain connectivity and social functioning play a central role. The aim of this study is to explore small-world network properties, and understand their relationship with social functioning and social cognition in the context of schizophrenia, by testing functional connectivity differences in network properties and its relation to clinical behavioral measures. Resting-state fMRI time series data were acquired from 23 patients diagnosed with schizophrenia and 23 healthy volunteers. The results revealed that patients with schizophrenia show significantly decreased connectivity between a range of brain regions, particularly involving connections among the right orbitofrontal cortex, bilateral putamen and left amygdala. Furthermore, topological properties of functional brain networks in patients with schizophrenia were characterized by reduced path length compared to healthy controls; however, no significant difference was found for clustering coefficient, local efficiency or global efficiency. Additionally, we found that nodal efficiency of the amygdala and the putamen were significantly correlated with the independence-performance subscale of social functioning scale (SFC), and Reading the Mind in the Eyes test; however, the correlations do not survive correction for multiple comparison. The current results help to clarify the relationship between social functioning deficits and topological brain measures in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Recovery coefficients for the quantification of the arterial input function from dynamic pet measurements: experimental and theoretical determination

    International Nuclear Information System (INIS)

    Brix, G.; Bellemann, M.E.; Hauser, H.; Doll, J.

    2002-01-01

    Aim: For kinetic modelling of dynamic PET data, the arterial input function can be determined directly from the PET scans if a large artery is visualized on the images. It was the purpose of this study to experimentally and theoretically determine recovery coefficients for cylinders as a function of the diameter and level of background activity. Methods: The measurements were performed using a phantom with seven cylinder inserts (φ = 5-46 mm). The cylinders were filled with an aqueous 68 Ga solution while the main chamber was filled with a 18 F solution in order to obtain a varying concentration ratio between the cylinders and the background due to the different isotope half lives. After iterative image reconstruction, the activity concentrations were measured in the center of the cylinders and the recovery coefficients were calculated as a function of the diameter and the background activity. Based on the imaging properties of the PET system, we also developed a model for the quantitative assessment of recovery coefficients. Results: The functional dependence of the measured recovery data from the cylinder diameter and the concentration ratio is well described by our model. For dynamic PET measurements, the recovery correction must take into account the decreasing concentration ratio between the blood vessel and the surrounding tissue. Under the realized measurement and data analysis conditions, a recovery correction is required for vessels with a diameter of up to 25 mm. Conclusions: Based on the experimentally verified model, the activity concentration in large arteries can be calculated from the measured activity concentration in the blood vessel and the background activity. The presented approach offers the possibility to determine the arterial input function for pharmacokinetic PET studies non-invasively from large arteries (especially the aorta). (orig.) [de

  10. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    Science.gov (United States)

    Ma, Q.

    2015-12-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and

  11. A theoretical study of carbohydrates as corrosion inhibitors of iron

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Salim M.; Ali, Nozha M. [Libyan Academy for Graduate Studies, Tripoli (Libyan Arab Jamahiriya). Chemistry Dept.; Ali-Shattle, Elbashir E. [Tripoli Univ. (Libyan Arab Jamahiriya). Chemistry Dept.

    2013-08-15

    The inhibitive effect of fructose, glucose, lactose, maltose, and sucrose against the iron corrosion is investigated using density functional theory at the B3LYP/6-31 G level (d) to search the relation between the molecular structure and corrosion inhibition. The electronic properties such as the energy of the highest occupied molecular orbital (HOMO), the energy of lowest unoccupied orbital (LUMO), the energy gap (LUMO-HOMO), quantum chemical parameters such as hardness, softness, the fraction of the electron transferred, and the electrophilicity index are reported. The inhibition efficiency of the investigated carbohydrates follows the trend: maltose < sucrose < lactose < fructose < glucose. (orig.)

  12. The Theoretical Foundations of the Organizational-Economic Mechanism for the Functioning and Development of the Internal Labor Market

    Directory of Open Access Journals (Sweden)

    Chakalova Kseniia O.

    2017-10-01

    Full Text Available The article is aimed at studying the theoretical foundations of the organizational-economic mechanism for the functioning and development of the internal labor market. The essence of the organizational-economic mechanism for the functioning and development of the internal labor market is highlighted. The main structural elements of the suggested mechanism have been characterized, including actors and facilities, factors and resources, regulation methods and institutions of the internal labor market, the main processes of staff management in the internal labor market (planning, promotion, development, and motivation of staff, as well as the nature of interactions with the external labor market and the features of the diagnostics of efficiency of the mechanism. The political, economic, social, and organizational groups of factors, influencing the internal labor market, have been provided. The regulation methods used by each actor in the internal labor market have been presented. Indicators for evaluating efficiency of the organizational-economic mechanism for the functioning and development of the internal labor market have been defined.

  13. Theoretical and experimental study of actinide complexes with monoamides and organophosphorus ligands in solution

    International Nuclear Information System (INIS)

    Ribokaite, Kristina

    2013-01-01

    Monoamides and organophosphate are of great interest for the nuclear fuel cycle. Such ligands can selectively extract actinides in liquid-liquid extraction processes. The structure of the extractant (its functional group and its alkyl substituents) has a predominant role in the selective separation of actinides. This thesis concerns the theoretical and experimental studies of model systems in the aim of better understanding of the effect on molecular structures of the complexes. Structures of actinides complexes formed with model ligands in simple media (water or methanol in the presence of nitrate ions) have been characterized. At first, the complexation of uranyl by monoamide and phosphine oxide was studied in water and methanol. Molecular Dynamics simulations and DFT calculations were used to quantify the stability of uranyl complexes with those ligands, and to determine their structural properties. The theoretical results were then compared with experimental results obtained by UV-visible, infrared, Raman and EXAFS on the same chemical systems. The results were used to highlight the greater stability of uranyl complexes with phosphine oxide and monoamides. Further spectroscopic measurements combined with molecular modeling were used to gain a better understanding of the coordination mode of nitrate ion around the uranyl in both water and methanol. Finally, DFT calculations were used to study the influence of the structure of the monoamide or organophosphorus ligand and their interaction with the actinides (IV, VI) including steric effects in the first coordination sphere. (author) [fr

  14. A Correlational Study of Students' Theoretical and Practical

    African Journals Online (AJOL)

    Galadanci & Mukhtar

    Science World Journal Vol 12(No 2) 2017 ... Scores in Computer Applications Courses in Bayero University Kano. A CORRELATIONAL STUDY OF STUDENTS ... Physics, Chemistry and Biology, where the course of study has a substantial ...

  15. Adhesion at WC/diamond interfaces - A theoretical study

    International Nuclear Information System (INIS)

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-01-01

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m −2 and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface

  16. Adhesion at WC/diamond interfaces - A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Haricharan [Department of Engineering Design, Indian Institute of Technology Madras, Chennai – 600036 (India); Rao, M. S. Ramachandra [Department of Physics and Nano-Functional Materials Technology Centre, Indian Institute of Technology Madras, Chennai – 600036 (India); Nanda, B. R. K., E-mail: nandab@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai – 600036 (India)

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  17. Theoretical Study of Some Nitrososulfamide Compounds with Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Madi Fatiha

    2004-09-01

    Full Text Available The lowest-energy conformations of four 2-chloroethylnitrososulfamides were determined using the MM+ molecular mechanics method as implemented in Hyperchem 6.0. Some of the calculated structural parameters, angles and bonds lengths were compared with the crystal structure data of N-nitroso-N-(2-chloroethyl-N’-sulfamoyl- proline. Using MM+, AM1 and PM3 the anti conformation was predicted to be more stable than the syn conformation in each of these compounds. With these methods we found that the relative energy of the transition state (TS was considerably higher, but with the ab initio method using RHF with minimal basic function STO-3G we found that the syn conformation is predicted to be slightly more stable. The determination of some atomic charges of a selection of atoms on the syn, anti and TS structures of the various compounds provided some details about the nature of the transition state.

  18. Holistic study of an aquatic microcosm: theoretical and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    Heath, R.T.

    1979-01-01

    The behavior of any system cannot by understood fully unless it is investigated as an intact unit over a range of states. The main task of holistic investigation is to determine the patterns of the set of responses and state transitions of a system and to examine the state space for trends, phases, and thresholds. Small laboratory ecosystems are ideal tools for holistic investigation of ecosystem function, because they are replicable and state settable. A small aquatic microcosm was characterized holistically as an example of this approach. Comparison of the nominal behavior of this system with its behavior under various degrees of cadmium stress (1, 10, 100 ppM Cd) indicated that holistic investigation of such systems is a sensitive and rapid means of assessing stress at the community level of organization.

  19. Fe dimers: a theoretical study of the hyperfine interactions

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.

    1981-01-01

    The electronic structures of diatomic molecules Fe 2 and FeM, where M = Mn, Co, Ni and Cu, are investigated by molecular orbitals calculations using a discrete variational method and a local approximation for the exchange interaction. The one-electron wave functions obtained are used to calculate electric field gradients, electronic charge and spin densities at the Fe nucleus and spin-dipolar hyperfine fields, which are related to measured hyperfine parameters reported from experiments in solid inert-gas matrices. Molecular orbitals energy schemes and population analysis are presented. These and other aspects of the electronic structure of the FeM molecules are used in a qualitative interpretation of the hyperfine data; in some cases, are given suggestions for the ground-state configuration. (Author) [pt

  20. Quantum theoretical study of hydrogen under high pressure

    International Nuclear Information System (INIS)

    Biermann, S.

    2001-12-01

    In the first chapter we will review our knowledge of the phase diagram of hydrogen. Chapter 2 is dedicated to a summary of the standard density functional and molecular dynamics methods and shows how these are combined in the Car-Parrinello method. Here the nuclei are still treated as classical particles obeying Newtonian mechanics. In chapter 3 we drop this approximation. The path integral description of quantum statistics is added on top of the classical Car-Parrinello method and yields a formalism that includes quantum effects due to the finite de Broglie wavelength of the nuclei. Some technical aspects, namely the parallel implementation of the Path Integral Car-Parrinello (PICP) method, are discussed in chapter 4. In chapter 5 we present the results of our PICP calculations and compare them with prior calculations using the classical Car-Parrinello method as described in chapter 2. (orig.)

  1. Theoretical and Experimental Studies of New Polymer-Metal High-Dielectric Constant Nanocomposites

    Science.gov (United States)

    Ginzburg, Valeriy; Elwell, Michael; Myers, Kyle; Cieslinski, Robert; Malowinski, Sarah; Bernius, Mark

    2006-03-01

    High-dielectric-constant (high-K) gate materials are important for the needs of electronics industry. Most polymers have dielectric constant in the range 2 materials with K > 10 it is necessary to combine polymers with ceramic or metal nanoparticles. Several formulations based on functionalized Au-nanoparticles (R ˜ 5 -— 10 nm) and PMMA matrix polymer are prepared. Nanocomposite films are subsequently cast from solution. We study the morphology of those nanocomposites using theoretical (Self-Consistent Mean-Field Theory [SCMFT]) and experimental (Transmission Electron Microscopy [TEM]) techniques. Good qualitative agreement between theory and experiment is found. The study validates the utility of SCMFT as screening tool for the preparation of stable (or at least metastable) polymer/nanoparticle mixtures.

  2. A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids

    Science.gov (United States)

    Cardozo, Karina H. M.; Vessecchi, Ricardo; Carvalho, Valdemir M.; Pinto, Ernani; Gates, Paul J.; Colepicolo, Pio; Galembeck, Sérgio E.; Lopes, Norberto P.

    2008-06-01

    In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the OC bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms.

  3. Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.

    Science.gov (United States)

    Jennings, Paul C; Pollet, Bruno G; Johnston, Roy L

    2012-03-07

    A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.

  4. Heavy leptons: theoretical study of the implications of their existence

    International Nuclear Information System (INIS)

    Ragiadakos, C.

    1978-01-01

    The following points are studied: the possibility of an internal structure of heavy leptons and its manifestation; a study of the production of neutral heavy leptons in e + -e - collisions; consequences of the lumaton (heavy lepton having strong interactions) hypothesis; the introduction of a muon number violating mechanism in gauge theories. A gauge model characterized by the symmetries: left-right and quarks-leptons is also studied. A general review of the heavy leptons is given [fr

  5. Theoretical studies of Elmo Bumpy Torus. Annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The work was divided into four basic areas. Studies of the effect of waves on stability and transport considered the possibility of using radio frequency waves to stabilize interchange modes, as well as the general problem of influencing plasma transport by wave absorption. Studies related to wave heating of plasmas considered nonlinear effects such as mode conversion and parametric absorption, along with studies of the structure of ion cyclotron waves in a strongly bumpy geometry. Ring physics studies added nonadiabaticity and whistler instabilities to the model, producing a fairly realistic picture of energy balance, power requirements, and scaling for hot electron rings. Finally, studies analyzing EBT transport data were performed, with emphasis on testing various hypotheses for apparent anomalies in the EBT

  6. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium

    International Nuclear Information System (INIS)

    Guo, Lei; Zhu, Shanhong; Zhang, Shengtao; He, Qiao; Li, Weihua

    2014-01-01

    Highlights: • Three triazole derivatives as corrosion inhibitors were theoretically investigated. • Quantum chemical calculations and Monte Carlo simulations were performed. • Quantitative structure activity relationship (QSAR) approach has been used. • Theoretical conclusions are validated by the consistency with experimental findings. - Abstract: Corrosion inhibitive performance of 4-chloro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (CATM), 4-fluoro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (FATM), and 3,4-dichloro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (DATM) during the acidic corrosion of mild steel surface was investigated using density functional theory (DFT). Quantum chemical parameters such as the highest occupied molecular orbital energy (E HOMO ), the lowest unoccupied molecular orbital energy (E LUMO ), energy gap (ΔE), Mulliken charges, hardness (ξ), dipole moment (μ), and the fraction of electrons transferred (ΔN), were calculated. Quantitative structure activity relationship (QSAR) approach has been used, and a composite index of above-mentioned descriptors was performed to characterize the inhibition performance of the studied molecules. Furthermore, Monte Carlo simulation studies were applied to search for the best configurational space of iron/triazole derivative system

  7. Freezing of bentonite. Experimental studies and theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    During its lifetime, a KBS-3 repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg C. From a safety assessment perspective, it is therefore essential to understand the behavior of compacted bentonite below 0 deg C. A theoretical framework for predicting the pressure response in compacted water saturated bentonite due to temperature changes has been developed based on thermodynamics and a single pore-type. This model predicts an approximately linear temperature dependence of swelling pressure P{sub s}(w,DELTAT) = P{sub s}(w,0 deg C) + DELTAs(w)DELTAT/nu{sub clay}(w) where DELTAT denotes a temperature difference from 0 deg C, DELTAs(w) is the difference in partial molar entropy between clay water and bulk water, nu{sub clay} (w) is the partial molar volume of the clay water and w denotes the water/solid mass ratio of the clay. As bulk water changes phase at 0 deg C, DELTAs(w) has a different value dependent on whether DELTAT is negative or positive. Above 0 deg C DELTAs(w) is a small value for all relevant densities which means that the pressure response due to temperature changes is small. A further consequence of this fact is that DELTAs(w) is a large positive number below 0 deg C when the external water phase is transformed to ice. Consequently, the model predicts a large drop of swelling pressure with temperature below 0 deg C, in the order of 1.2 MPa/deg C. Specifically, the swelling pressure is zero at a certain (negative) temperature T{sub C}. T{sub C} also quantifies the freezing point of the bentonite sample under consideration, as ice formation in the bentonite does not occur until swelling pressure is lost. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg C to +25 deg C. The swelling pressure response has been

  8. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    International Nuclear Information System (INIS)

    Lau, Yue Ying; Gilgenbach, Ronald

    2013-01-01

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed

  9. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)

    2013-07-07

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

  10. Theoretical study of some aspects of the nucleo-bases reactivity: definition of new theoretical tools for the study of chemical reactivity

    International Nuclear Information System (INIS)

    Labet, V.

    2009-09-01

    In this work, three kinds of nucleo-base damages were studied from a theoretical point of view with quantum chemistry methods based on the density-functional theory: the spontaneous deamination of cytosine and its derivatives, the formation of tandem lesion induced by hydroxyl radicals in anaerobic medium and the formation of pyrimidic dimers under exposition to an UV radiation. The complementary use of quantitative static methods allowing the exploration of the potential energy surface of a chemical reaction, and of 'conceptual DFT' principles, leads to information concerning the mechanisms involved and to the rationalization of the differences in the nucleo-bases reactivity towards the formation of a same kind of damage. At the same time, a reflexion was undertaken on the asynchronous concerted mechanism concept, in terms of physical meaning of the transition state, respect of the Maximum Hardness Principle, and determination of the number of primitive processes involved. Finally, a new local reactivity index was developed, relevant to understand the reactivity of a molecular system in an excited state. (author)

  11. Theoretical study of H- stripping with a wiggler magnet

    International Nuclear Information System (INIS)

    Hutson, R.L.

    1991-01-01

    The first step for injecting protons into the LAMPF Proton Storage Ring (PSR) at LANL is to strip a beam of 800-MeV H - ions to H 0 with a 1.8-T dipole magnet. Because of the finite lifetime of energetic H - ions in the magnetic field, their trajectories bend before stripping causing the angular spread of the beam, and therefore its emittance, to grow during the stripping process. In the case of the PSR, the horizontal beam emittance grows by a factor of roughly three during injection. As a consequence, beam losses in the ring are significantly greater than they would be if there were not emittance growth. A speculative technique is proposed in which the beam divergence growth and resulting emittance growth is reduced by stripping the H - in a wiggler magnet whose transverse field alternates in direction as a function of position along the beam axis. The wiggler field configuration is adjusted so that the angular beam spread introduced during passage through one unidirectional-field increment of path is relatively small and so that 99.99% of the beam is stripped after passing through the whole magnet. With careful field design the net added angular beam spread is reduced because the incremental angular spreads are painted back and forth over the same small range. In the hypothetical case described, the calculated emittance growth and beam loss increase are significantly smaller than those calculated for a conventional stripper magnet. 3 refs., 3 figs

  12. Theoretical study of cathode surfaces and high-temperature superconductors

    Science.gov (United States)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  13. Spectroscopic and theoretical studies of dalbergin and Methyldalbergin

    Science.gov (United States)

    Shweta; Khan, Eram; Tandon, Poonam; Bharti, Purnima; Kumar, Padam; Maurya, Rakesh

    2018-03-01

    Molecular structure and vibrational analysis of methyldalbergin (MDLBG) and dalbergin (DLBG) are presented using vibrational spectroscopy (infrared and Raman) and quantum chemical calculations. Difference in the Osbnd H stretching vibration wavenumber of two conformers of DLBG was observed as in one conformer this bond is making an intramolecular H-bond while in other it is free. The spectral calculations, ground state geometry and electronic structure calculations were performed based on the density functional theory (DFT) using the standard B3LYP/6-311++G(d,p) methodology. FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. The UV-visible absorption spectrum was examined in DMSO solvent and compared with one calculated in gas phase as well as in solvent environment using TD-DFT/6-311G++(d,p) basis set. HOMO-LUMO energy gap results show chemical reactivity of conformers of DLBG and MDLBG.

  14. Theoretical study on thermodynamic and detonation properties of polynitrocubanes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xue-Hai [Department of Chemistry, Nanjing University of Science and Technology, Nanjing (China); Wang, Zun-Yao [School of Biological and Chemical Engineering, Jiaxing University, Zhejiang Jiaxing (China)

    2009-04-15

    We investigated the heat of formation ({delta}{sub f}H) of polynitrocubanes using density functional theory B3LYP and HF methods with 6-31G{sup *}, 6-311+G{sup **}, and cc-pVDZ basis sets. The results indicate that {delta}{sub f}H firstly decreases (nitro number m=0-2) and then increases (m=4-8) with each additional nitro group being introduced to the cubane skeleton. {delta}{sub f}H of octanitrocubane is predicted to be 808.08 kJ mol{sup -1} at the B3LYP/6-311+G{sup **} level. The Gibbs free energy of formation ({delta}{sub f}G) increases by about 40-60 kJ mol{sup -1} with each nitro group being added to the cubane when the substituent number is fewer than 4, then {delta}{sub f}G increases by about 100-110 kJ mol{sup -1} with each additional group being attached to the cubic skeleton. Both the detonation velocity and the pressure for polynitrocubanes increase as the number of substituents increases. Detonation velocity and pressure of octanitrocubane are substantially larger than the famous widely used explosive cyclotetramethylenetetranitramine (HMX). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  16. Theoretical study of the mechanism of proton transfer in tautomeric ...

    Indian Academy of Sciences (India)

    Semiempirical SCF-MO studies of tautomerism in alloxan preclude the ... However, in aqueous solution, the activation barrier reduces appreciably, not ... which stabilize the transition state to a greater extent due to its higher dipole moment.

  17. A combined electrochemical and theoretical study of pyridine-based ...

    Indian Academy of Sciences (India)

    PARUL DOHARE

    2018-02-01

    Feb 1, 2018 ... diamine (DAP-3) were synthesized, characterized, and their corrosion inhibition performance was studied on ... inhibition efficiencies of various organic compounds on ...... 5 alkyl 1,3,4 thiadiazole compounds on the corrosion ...

  18. Generalised analysis of the potential of an enterprise as a function of environmental parameters (theoretical approach

    Directory of Open Access Journals (Sweden)

    Karapeychik Igor M.

    2013-03-01

    Full Text Available Within the frameworks of the author’s concept of the potential of an enterprise as the ability to conduct its immanently appropriate activity and also the idea of presentation of the size of the potential in the form of potential function from parameters of the state of an enterprise and foreign economic environment the article develops a scientific and methodical approach to construction and analysis of the potential function of an enterprise. The offered approach envisages building an economic and mathematical model of an enterprise of the optimisation type with consideration of environmental factors, determination of the size of economic potential as a maximum possible (optimal with the set condition of an enterprise and external environment of net income, statistical test of the model with possible values of external parameters (formation of statistical sampling of the graph of the potential function of an enterprise and application of statistical methods including methods of correlation, factor and regression analysis, for the study of its properties. Operability of this approach is shown on the example of the study of properties of the potential function of a model enterprise. In the course of approbation the article demonstrates its ability to reveal specific features of impact of external factors on economic potential of an enterprise; establishes, as a common regularity, differential influence of various environmental factors, caused not only by the nature of these factors, but also production and economic specific features and specific state of an enterprise. The article shows that the quantitative values of the force of influence of the said factors upon the value of economic potential, obtained during statistical analysis of the potential function of an enterprise, could serve as an instrument of ranking these factors by the priority level in the goal setting tasks at the stage of formation of the strategy of enterprise development

  19. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy.

    Science.gov (United States)

    Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang

    2014-09-01

    Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Triphenylamine-based fluorescent NLO phores with ICT characteristics: Solvatochromic and theoretical study

    Science.gov (United States)

    Katariya, Santosh B.; Patil, Dinesh; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2017-12-01

    The static first and second hyperpolarizability and their related properties were calculated for triphenylamine-based "push-pull" dyes using the B3LYP, CAM-B3LYP and BHHLYP functionals in conjunction with the 6-311+G(d,p) basis set. The electronic coupling for the electron transfer reaction of the dyes were calculated with the generalized Mulliken-Hush method. The results obtained were correlated with the polarizability parameter αCT , first hyperpolarizability parameter βCT, and the solvatochromic descriptor of 〈 γ〉 SD obtained by the solvatochromic method. The dyes studied show a high total first order hyperpolarizability (70-238 times) and second order hyperpolarizability (412-778 times) compared to urea. Among the three functionals, the CAM-B3LYP and BHHLYP functionals show hyperpolarizability values closer to experimental values. Experimental absorption and emission wavelengths measured for all the synthesized dyes are in good agreement with those predicted using the time-dependent density functional theory. The theoretical examination on non-linear optical properties was performed on the key parameters of polarizability and hyperpolarizability. A remarkable increase in non-linear optical response is observed on insertion of benzothiazole unit compared to benzimidazole unit.

  1. Joint Experimental and Theoretical Study on Vibrational Excitation Cross Sections for Electron Collisions with Diacetylene

    Czech Academy of Sciences Publication Activity Database

    Čurík, Roman; Paidarová, Ivana; Allan, M.; Čársky, Petr

    2014-01-01

    Roč. 118, č. 41 (2014), s. 9734-9744 ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0452; GA MŠk LD14088 Institutional support: RVO:61388955 Keywords : diacetylenes * electron collision * theoretical study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014

  2. Experimental and theoretical study of heterogeneous iron precipitation in silicon

    OpenAIRE

    Haarahiltunen, Antti; Väinölä, Hele; Anttila, O.; Yli-Koski, Marko

    2007-01-01

    Heterogeneous iron precipitation in silicon was studied experimentally by measuring the gettering efficiency of oxide precipitate density of 1×10exp10cm−3. The wafers were contaminated with varying iron concentrations, and the gettering efficiency was studied using isothermal annealing in the temperature range from 300 to 780°C. It was found that iron precipitation obeys the so called s-curve behavior: if iron precipitation occurs, nearly all iron is gettered. For example, after 30 min anneal...

  3. A theoretical study on the reaction of diazocompounds with C{sub 70} fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Zahra, E-mail: zahrarostami.pnu@gmail.com [Department of Chemistry, Payame Noor University (PNU), P. O. Box, 19395-3697 Tehran (Iran, Islamic Republic of); Hosseini, Javad [Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan (Iran, Islamic Republic of); Panahyab, Ataollah [Young Researchers and Elites Club, Central Tehran Branch, Islamic Azad University, Tahran (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Functionalization of a C{sub 70} with diazocompounds was studied by DFT. • Stability [5,6]-fulleroids shows the same trend to that observed experimentally. • The reaction energy is in the range of −23.3 to −37.7 kcal/mol. • Orbital analysis explains the experimentally observed UV–vis spectrums. • Theoretical {sup 1}H NMR results are in excellent agreement with the experimental. - Abstract: Using density functional theory calculations, we investigated the chemical functionalization of a C{sub 70} fullerene with diazocompounds which has been reported experimentally. The results indicate that the [5,6]-bond of the apex of C{sub 70} is more reactive than the equatorial bonds toward the cycloaddition of the diazocompounds. The energetic stability of phenyl C{sub 71} butyric acid methyl ester (PCBM)-type [5,6]-fulleroids (products) shows the same trend (1 > 2 > 3 > 4) to that observed experimentally. The reaction energy for different isomers of [5,6]-fulleroids is in the range of −23.3 to −37.7 kcal/mol. Our frontier molecular orbital analysis explains the experimentally observed UV–vis spectrums and confirmed the formation of [5,6]-fulleroids rather than [6,6]-methanofullerenes. The electron–hole pair binding energy for C{sub 70} is calculated to be about 0.6 to 0.9 eV. Theoretical {sup 1}H-nuclear magnetic resonance (NMR), in good agreement with the corresponding experimental data, was used to more investigate the structure of the most stable complex.

  4. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis

    Directory of Open Access Journals (Sweden)

    Matej Žabka

    2015-08-01

    Full Text Available Chiral thioureas and squaramides are among the most prominent hydrogen-bond bifunctional organocatalysts now extensively used for various transformations, including aldol, Michael, Mannich and Diels-Alder reactions. More importantly, the experimental and computational study of the mode of activation has begun to attract considerable attention. Various experimental, spectroscopic and calculation methods are now frequently used, often as an integrated approach, to establish the reaction mechanism, the mode of activation or explain the stereochemical outcome of the reaction. This article comprises several case studies, sorted according to the method used in their study. The aim of this review is to give the investigators an overview of the methods currently utilized for mechanistic investigations in hydrogen-bonding organocatalysis.

  5. Theoretical provisions for the discharge at TJ-1 (Preliminary study)

    International Nuclear Information System (INIS)

    Guasp, J.

    1981-01-01

    Using the transport code PLASMATOR a numerical study about the TJ-1 discharge (a Tokamak close to be installed at JEN) has been made, observing the behaviour under huge variations on the transport coefficients as well as on density and current. Noteworthy a scaling law of the kind τ E ∼n θ has been contested at not too high density, The model insensibility upon the initial values has been confirmed and the effects of variations on the recycling coefficient and the rate rise of current studied too. Finally comparisons with alternative models have been accomplished. (Author) 29 refs

  6. Theoretical and experimental study of mixed solvent electrolytes

    International Nuclear Information System (INIS)

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals

  7. Effect of object functions on tomographic reconstruction a numerical study

    International Nuclear Information System (INIS)

    Babu Rao, C.; Baldev Raj; Ravichandran, V.S.; Munshi, P.

    1996-01-01

    Convolution back projection is the most widely used algorithm of computed tomography (CT). Theoretical studies show that under ideal conditions, the error in the reconstruction can be correlated with the second fourier space derivative of filter function and with the Laplacian of the object function. This paper looks into the second aspect of the error function. In this paper a systematic numerical study is presented on the effect to object functions on global and local errors. (author)

  8. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Fazleev, N. G. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States) and Institute of Physics, Kazan Federal University, Kremlevskaya18, Kazan 420008 (Russian Federation); Weiss, A. H. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States)

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  9. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    A three-dimensional variable-density groundwater flow model, the SEAWAT model, was used to assess the influence of subsurface drain spacing, evapotranspiration and irrigation water quality on salt concentration at the base of the root zone, leaching and drainage in salt affected irrigated land. The study was carried out ...

  10. Theoretical Studies in Chemical Kinetics - Annual Report, 1970.

    Science.gov (United States)

    Karplus, Martin

    1970-10-01

    The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M?X?) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.

  11. Connecting theoretical and empirical studies of trait-mediated interactions

    Czech Academy of Sciences Publication Activity Database

    Bolker, B.; Holyoak, M.; Křivan, Vlastimil; Rowe, L.; Schmitz, O.

    2003-01-01

    Roč. 84, č. 5 (2003), s. 1101-1114 ISSN 0012-9658 Institutional research plan: CEZ:AV0Z5007907 Keywords : community models * competition * empirical study Subject RIV: EH - Ecology, Behaviour Impact factor: 3.701, year: 2003

  12. Theoretical study of bone sialoprotein in bone biomineralization

    CSIR Research Space (South Africa)

    Yang, Y

    2011-05-01

    Full Text Available , highly conserved across several vertebrates, are the proposed active sites. We selected one of these sites, i.e. (Sp) 2 E 8 , where Sp represents a phosphoserine as a model peptide to study the role of BSP. We used molecular dynamics simulations...

  13. A theoretical parametric study of Water Flooding | Ohirhian | Journal ...

    African Journals Online (AJOL)

    A multidimensional mathematical model derived by combining equation of continuity and Darcy's law and solved using the strongly implicit procedure (SIP) has been used to study the effects of permeability distribution, shape of the relative permeability and capillary pressure curves, ratio of water to oil viscosity, and amount ...

  14. THEORETICAL STUDY (AB INITIO AND DFT METHODS) ON ...

    African Journals Online (AJOL)

    ng reaction mechanisms that involve hydrogen atom transfer/proton-coupled. 5]. For these ... f theory have been extensively employed to the study of acidities and the compared with the .... evidence for the second deprotonation of XO. Also, as ...

  15. A Density Functional Theory Study

    KAUST Repository

    Lim, XiaoZhi

    2011-12-11

    Complexes with pincer ligand moieties have garnered much attention in the past few decades. They have been shown to be highly active catalysts in several known transition metal-catalyzed organic reactions as well as some unprecedented organic transformations. At the same time, the use of computational organometallic chemistry to aid in the understanding of the mechanisms in organometallic catalysis for the development of improved catalysts is on the rise. While it was common in earlier studies to reduce computational cost by truncating donor group substituents on complexes such as tertbutyl or isopropyl groups to hydrogen or methyl groups, recent advancements in the processing capabilities of computer clusters and codes have streamlined the time required for calculations. As the full modeling of complexes become increasingly popular, a commonly overlooked aspect, especially in the case of complexes bearing isopropyl substituents, is the conformational analysis of complexes. Isopropyl groups generate a different conformer with each 120 ° rotation (rotamer), and it has been found that each rotamer typically resides in its own potential energy well in density functional theory studies. As a result, it can be challenging to select the most appropriate structure for a theoretical study, as the adjustment of isopropyl substituents from a higher-energy rotamer to the lowest-energy rotamer usually does not occur during structure optimization. In this report, the influence of the arrangement of isopropyl substituents in pincer complexes on calculated complex structure energies as well as a case study on the mechanism of the isomerization of an iPrPCP-Fe complex is covered. It was found that as many as 324 rotamers can be generated for a single complex, as in the case of an iPrPCP-Ni formato complex, with the energy difference between the global minimum and the highest local minimum being as large as 16.5 kcalmol-1. In the isomerization of a iPrPCP-Fe complex, it was found

  16. Theoretical approach on microscopic bases of stochastic functional self-organization: quantitative measures of the organizational degree of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Oprisan, Sorinel Adrian [Department of Psychology, University of New Orleans, New Orleans, LA (United States)]. E-mail: soprisan@uno.edu

    2001-11-30

    There has been increased theoretical and experimental research interest in autonomous mobile robots exhibiting cooperative behaviour. This paper provides consistent quantitative measures of organizational degree of a two-dimensional environment. We proved, by the way of numerical simulations, that the theoretically derived values of the feature are reliable measures of aggregation degree. The slope of the feature's dependence on memory radius leads to an optimization criterion for stochastic functional self-organization. We also described the intellectual heritages that have guided our research, as well as possible future developments. (author)

  17. Theoretical studies of the electronic structure of the ions KCs+ and RbCs+

    International Nuclear Information System (INIS)

    Abdul Al, Saleh Nabhan

    2000-01-01

    by Perturbation of multiconfiguration wave functions Selected Iteratively) algorithm of the Laboratoire de Physique Quantique (Toulouse, France). The variation of the potential energy with the internuclear distance has been estimated for lowest molecular states of the ions KCs + and RbCs + . Extensive tables of energy values versus internuclear distance are tabulated. These extensive tables of energy values are also being displayed at the following address: http://hplasim2.univ-lyon1.fr/allouche. Then, we are able to derive the molecular spectroscopic constants for the bound states with regular shape of the two ions. It is possible to dissociate in teh wave function, the effect of rotation from the pure vibration wave function by using the canonical approach. Whence, we can find the energy eigenvalues of some vibrational levels and deduce the corresponding rotational and centrifugal distortion constants (CDC). To the best of our knowledge, neither theoretical nor experimental studies are available in the literature for molecular ions KCs + and RbCs +

  18. Theoretical studies on rapid fluctuations in solar flares

    International Nuclear Information System (INIS)

    Vlahos, L.

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins, e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed

  19. Theoretical studies on rapid fluctuations in solar flares

    Science.gov (United States)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  20. Theoretical study of adsorption of lithium atom on carbon nanotube

    OpenAIRE

    Senami, Masato; Ikeda, Yuji; Fukushima, Akinori; Tachibana, Akitomo

    2011-01-01

    We investigate the adsorption of lithium atoms on the surface of the (12, 0) single wall carbon nanotube (SWCNT) by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsiv...

  1. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response.

    Science.gov (United States)

    1992-06-30

    suggest experimental tests and provide direction for physiological studies. 14 SU~la TIPO ~IS- NIJUMS Of PAGIS 17. @1d-ftA ITY CLASSIPtCATICON...mancte suditioned inhibition of the rabbit’s nictitating membrane response, CI tasks require the active suppression of CRs in the Bull . Psychon. Soc., 20... Bull ., 84 (1977) encephalon and mesencephalon26. 690-711. Several lines of evidence suggest that the septal and 8 Evans,J.A.C. and Thornton, E.W

  2. Dynamic behavior of hybrid sodium bearings. Theoretical and experimental studies

    International Nuclear Information System (INIS)

    Guidez, J.; Juignet, N.; Queval, M.

    1981-08-01

    The primary sodium pump shaft lower section of a fast breeder reactor is guided by a hydrostatic sodium bearing. This recess type bearing is supplied via orifices restrictors. Sodium is sampled at hight pressure at the diffuser outlet and is then centrifuged towards the orifices restrictors. Bearing stiffness and damping data is essential for the study of rotor dynamic behavior. Two points in particular may then be studied: - calculation of rotor instability ranges and critical speeds, - dynamic behavior of the rotor in the event of an earthquake. As regards the bearing design, the problem is to obtain the pressure fields in the liquid film. The integration of these pressure fields will then give the stiffness coefficients. The damping coefficients can then be obtained by the same calculation after slight displacement. The Reynolds equation can be used to study the liquid film (under any conditions for the turbulent and inertia effects). Then the computer code DELPAL is explained that solves the modified Reynolds equation using a finite element method. The presentation of tests conducted in 1981 on the Super-Phenix 1 full scall bearing (diameter 850 mm) in water is made. In conclusion this paper describes a method for calculating the stiffness and damping matrices of a hydrostatic bearing using the DELPAL calculation code and shows the loop of behavior tests on a bearing with sinusoidal excitation. The results, obtained by calculation and by testing, are indispensable when calculating the dynamic behavior of the shaft line

  3. Experimental and theoretical studies on the high pressure vessel

    International Nuclear Information System (INIS)

    So, Dong Sup

    1992-02-01

    A High Pressure Melt Ejection (HPME) is one of the most important phenomena relevant to Direct Containment Heating(DCH) which could lead to an early containment failure in a several accident of PWRs. Dispersal of core debris following a postulated high pressure failure of PWR reactor vessel has been investigated by experimental works and one-dimensional computer modeling to find the relation between the fraction of melt simulant retained in the cavity and the reactor vessel initial conditions as well as to examine the hydrodynamic processes in a reactor cavity geometry. Simulated HPME experiments have been performed with two small-scale (1/25-th and 1/41-st) transparent reactor cavity models of the Young-Gwang unit 1 and 2. Wood's metal and water have been used as melt sumulants while high pressure nitrogen and carbon dioxide have been used as driver gases to simulate the blowdown steam and gas from the breach of the reactor pressure vessel. The high speed movies of the transient tests showed that no fraction of the melt simulant exits the cavity model via the vertical cavity tunnel under its own momentum, and that the discharged simulant from the pressure vessel exits the reactor cavity model during the gas blowdown. The principal removal mechanism seemed to be a combined mechanism of film entrainment and particle levitation due to the driving force of the blowdown gas. Experimental data for the fraction of melt simulant retained in the cavity model (Y f ) during a postulated scenario of the HPME from PWR pressure vessels have been obtained as a function of various test parameters. These data have been used to develop a correlation for Y f that fits all the data (a total of 313 data points) within the standard deviation of 0.054 by means of dimensional analysis and nonlinear least squares optimization technique. The basic effects of important parameters used to describe the HPME accident sequence on the Y f are determined based on the correlation obtained here and

  4. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    Science.gov (United States)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  5. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xin; Zhou Wei-Man; Liu Wei-Hua; Wang Xiao-Li

    2015-01-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. (paper)

  6. Fluoride Anion Recognition by a Multifunctional Urea Derivative: An Experimental and Theoretical Study

    Directory of Open Access Journals (Sweden)

    Jana Schiller

    2016-05-01

    Full Text Available In this work we demonstrate the ability of a multifaceted N,N′-disubstituted urea to selectively recognize fluoride anion (F− among other halides. This additional function is now added to its already reported organocatalytic and organogelator properties. The signaling mechanism relies on the formation of a charge-transfer (CT complex between the urea-based sensor and F¯ in the ground state with a high association constant as demonstrated by absorption and fluorescence spectroscopy. The nature of the hydrogen bonding interaction between the sensor and F¯ was established by 1H-NMR studies and theoretical calculations. Moreover, the recovery of the sensor was achieved by addition of methanol.

  7. Spectroscopic and theoretical study of the o-vanillin hydrazone of the mycobactericidal drug isoniazid

    Science.gov (United States)

    González-Baró, Ana C.; Pis-Diez, Reinaldo; Parajón-Costa, Beatriz S.; Rey, Nicolás A.

    2012-01-01

    A complete and detailed study of the hydrazone obtained from condensation of antituberculous isoniazid (hydrazide of the isonicotinic acid, INH) and o-vanillin (2-hydroxy-3-methoxybenzaldehyde, o-HVa) is performed. It includes structural and spectroscopic analyses, comparing experimental and theoretical results. The compound was obtained as a chloride of the pyridinic salt (INHOVA +Cl -) but it will be referred as INHOVA for the sake of simplicity. The conformational space was searched and optimized geometries were determined both in gas phase and including solvent effects. Vibrational (IR and Raman), electronic and NMR spectra were registered and assigned with the help of computational methods based on the Density Functional Theory. Isoniazid hydrazones are good candidates for therapeutic agents against tuberculosis with conserved efficiency and lower toxicity and resistance than parent INH.

  8. Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Khadom, Anees A. [Univ. of Daiyla, Baquba (Iran, Islamic Republic of); Yaro, Aprael S. [Univ. of Baghdad, Aljadreaa (Iran, Islamic Republic of); Musa, Ahmed Y.; Mohamad, Abu Bakar; Kadhum, Abdul Amir H. [UniversitiKebangsaan Malaysia, Bangi (Malaysia)

    2012-08-15

    The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at 35 .deg. C and 0.2 M inhibitor concentration EDA, while the lower value was 4% at 35 .deg. C and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

  9. Theoretical and experimental study of Gaussian beam and mode propagation in over-dimensioned circular guides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1984-06-01

    A theoretical study of modes in circular hollow over-dimensioned waveguides is developed; it shows the interest of dielectric or weakly conducting wall guide use. An optical model computing the transmitted power of gaussian beams through these guides, for different types of walls, is established. The formulas obtained allow to optimize the guide and to adapt the beam. Applied to the EH 11 mode this optical model leads to new results. Systematical measurements of gaussian beam propagation in over-dimensioned guides are realised; they are concerned with beam power transmission, polarization, its structure and its radiation at the guide exit in function of the different characteristics of the beam and the guide [fr

  10. A theoretical quantum chemical study of alanine formation in interstellar medium

    Science.gov (United States)

    Shivani; Pandey, Parmanad; Misra, Alka; Tandon, Poonam

    2017-08-01

    The interstellar medium, the vast space between the stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as amino acids, nucleobases, and other organic species. Radical-radical and radical-neutral interaction schemes are very important for the formation of comparatively complex molecules in low temperature chemistry. An attempt has been made to explore the possibility of formation of complex organic molecules in interstellar medium, through detected interstellar molecules like CH3CN and HCOOH. The gas phase reactions are theoretically studied using quantum chemical techniques. We used the density functional theory (DFT) at the B3LYP/6-311G( d, p) level. The reaction energies, potential barrier and optimized structures of all the geometries, involved in the reaction path, has been discussed. We report the potential energy surfaces for the reactions considered in this work.

  11. Theoretical study of adsorption of lithium atom on carbon nanotube

    Directory of Open Access Journals (Sweden)

    Masato Senami

    2011-12-01

    Full Text Available We investigate the adsorption of lithium atoms on the surface of the (12,0 single wall carbon nanotube (SWCNT by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive force between lithium atoms destabilizes a system for the large number of lithium atoms.

  12. A theoretical study on free monopolar spacial change

    International Nuclear Information System (INIS)

    Camargo, P.C. de.

    1975-01-01

    Assuming planar symmetry and an arbitrary charge distribution that spreads through the sample, the one-carrier free-space-charge motion is studied in insulators solids. Using the method of characteristics we can reduce the problem to the resolution of a system of two ordinary first order differential equations. Results are applied to linear, exponential and S.C.L. current charge distributions, under short-circuit conditions. The charge distribution for several times and the discharge currents are presented. The results are compared with those from an approximated method, based on variational principles. (author) [pt

  13. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Theoretical study of reactions at the electrode-electrolyte interface

    International Nuclear Information System (INIS)

    Halley, J.W.

    1994-01-01

    Electron transfer rates are predicted by numerical methods, in collaboration with ANL. Emphasis is on electron transfer involving ions known to be important in enhancing stress corrosion cracking in light water reactors and on electron transfer at oxide surfaces. We have completed studies of the ferrous-ferric electron transfer rate in which effects of electric field, entropic effects in the free energy and quantum effects are included for the first time in the calculation of the rate of an electrochemical (heterogeneous) reaction rate. These new results confirm assumptions made in earlier calculations. The ferric ion has been modelled in a dissociable polarizable model showing the six-fold coordination of this ion in aqueous solution is stabilized by the three body interactions arising from the polarizability of water. In our studies of oxides, we have completed a Hartree self consistent calculation of the electronic structure of fayalite. The calculation utilizes a new method which takes phenomenological account of local electron correlations which have plagued electronic structure calculations of oxides for a long time. No electronic structure calculation of fayalite has been previously reported to our knowledge. Similar methods have been used to calculate the electronic structure of a vacancy in rutile (TiO 2 ). Results show that the screening donor electrons are anisotropically distributed around the vacancy

  15. A Initio Theoretical Studies of Surfaces of Semiconductors

    Science.gov (United States)

    Wang, Jing

    1993-01-01

    The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We

  16. Theoretical Study of Watershed Eco-Compensation Standards

    Science.gov (United States)

    Yan, Dandan; Fu, Yicheng; Liu, Biu; Sha, Jinxia

    2018-01-01

    Watershed eco-compensation is an effective way to solve conflicts over water allocation and ecological destruction problems in the exploitation of water resources. Despite an increasing interest in the topic, the researches has neglected the effect of water quality and lacked systematic calculation method. In this study we reviewed and analyzed the current literature and proposedatheoretical framework to improve the calculation of co-compensation standard.Considering the perspectives of the river ecosystems, forest ecosystems and wetland ecosystems, the benefit compensation standard was determined by the input-output corresponding relationship. Based on the opportunity costs related to limiting development and water conservation loss, the eco-compensation standard was calculated.In order to eliminate the defects of eco-compensation implementation, the improvement suggestions were proposed for the compensation standard calculation and implementation.

  17. 1,2-Propanediol. Comprehensive experimental and theoretical study

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Nell, Gernot

    2009-01-01

    The standard (p 0 =0.1MPa) molar enthalpy of formation at the temperature 298.15 K of the liquid 1,2-propanediol was measured using combustion calorimetry. Molar enthalpies of vaporization of isomeric 1,2-propanediols were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Thermochemical investigations of 1,2-ethanediol and 1,2-propanediol available in the literature were collected and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available sublimation enthalpies data and to recommend consistent and reliable set of vaporization and formation enthalpies for both diols under study. Ab initio calculations of gaseous molar enthalpy of formation of 1,2-ethanediol and 1,2-propanediol have been performed using the G3MP2 method and results are in excellent agreement with the selected experimental data.

  18. Theoretical study of short pile effect in tunnel excavation

    Science.gov (United States)

    Tian, Xiao-yan; Liu, Jing; Gao, Xiao-mei; Li, Yuan

    2017-09-01

    The Misaki Sato Go ideal elastoplastic model is adopted and the two stage analysis theory is used to study the effect of tunnel excavation on short pile effect in this paper. In the first stage, the free field vertical displacement of the soil at the corresponding pile location is obtained by using empirical formula. In the second stage, the displacement is applied to the corresponding pile location. The equilibrium condition of micro physical differential equation settlement of piles. Then through logical deduction and the boundary condition expressions of the settlement calculation, obtain the pile side friction resistance and axial force of the week. Finally, an engineering example is used to analyze the influence of the change of main parameters on their effects.

  19. Theoretical and computational studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Elster, C.

    1993-08-01

    The research includes applications of many-body scattering theory to nuclear systems and studies of few-body systems described by effective hadronic field theories. Progress was made in bringing all first-order effects into the nonrelativistic elastic nucleon-nucleus scattering in a consistent fashion. This work is directed towards completely and reliably calculating the first-order term in a Watson expansion including a modification through the nulear medium. The research effort in few-body physics was concentrated on nucleon-nucleon (NN) scattering below pion production threshold, where recent measurements indicated that the backward-angle neutron-proton (np) differential cross section may show sensitivity to the size of the pion-nucleon coupling constant

  20. Theoretical study of lithium clusters by electronic stress tensor

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Nozaki, Hiroo; Komazawa, Naoya; Tachibana, Akitomo

    2012-01-01

    We study the electronic structure of small lithium clusters Li_n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.

  1. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  2. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1992-01-01

    Research in three principal areas is summarized: (1) Work in elementary hadron structure seeks to further the understanding of hadron structure within the framework of quantum chromodynamics (QCD) and QCD-based models. A comparative study of meson properties employed three relativistic models: an extended Dziembowski model, a generalized light-front approach, and a completely covariant null plane approach. (2) Work on the electromagnetic production of strangeness addressed systems involving the strange quark (hyperons) and hyperon electromagnetic production and radiative capture processes. (3) In the work on medium-energy photonuclear reactions, a large-scale continuum shell-model calculation was performed for (γ,N) and (N,γ) reactions at low and medium energies spanning the Δ isobar region

  3. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  4. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  5. Theoretical and experimental studies for optimization of PCRV top closures

    International Nuclear Information System (INIS)

    Ottosen, N.S.; Andersen, S.I.

    1975-01-01

    The results from the remaining part of the parameter study and the preparations for the verification of an optimized design are presented. Three models have been made in the same scale and with the same depth to span ratio α as the low LM-3 model from the first investigation, i.e. α=0.35. The model LM-5 was provided with reinforcement in the tensile zone, the upper part of the closure. This reinforcement did not influence the stresses and strains in the load carrying concrete, and the dome failed at the same pressure as in the unreinforced model LM-3. However, the closure did not disintegrate, but failed due to large overall deformations causing seal leakage. In the model LM-6, the inverted dome, which is formed at higher loads as demonstrated in LM-3, was reinforced perpendicular to the supposed middle surface. This reinforcement proved to be effective, giving the dome a higher ultimate load capacity. The LM-6 test stopped due to a circumferential crack in the flange. Finally, the unreinforced LM-7 closure was tested to failure. Apart from minor changes in the flange, LM-7 was identical to LM-3 except for the excavated upper part of the concrete, which in LM-3 formed the heavily cracked tensile zone. The ultimate load and the failure mode observed for this closure were the same as for the LM-3. The experimental results are compared to finite element calculations, in which plasticity and cracking of the concrete are taken into account, and the influence of different material models for the concrete is investigated. A unique failure criterion, which includes failure of the concrete for both tensile and compressive stresses in the same mathematical expression, is proposed. Based on the results obtained from the parameter study, a new closure design is proposed, which is optimized with respect to the requirements at service conditions and ultimate load

  6. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia

    International Nuclear Information System (INIS)

    Lin, W.-L.; Fan, W.-C.; Yen, J.-Y.; Chen, Y.-Y.; Shieh, M.-J.

    2000-01-01

    Purpose: The purpose of this paper was to examine the heating patterns and penetration depth when a cylindrical ultrasound transducer is employed for intracavitary hyperthermia treatments. Methods and Materials: The present study employs a simulation program based on a simplified power deposition model for infinitely long cylindrical ultrasound transducers. The ultrasound power in the tissue is assumed to be exponentially attenuated according to the penetration depth of the ultrasound beam, and a uniform attenuation for the entire treatment region is also assumed. The distribution of specific absorption rate (SAR) ratio (the ratio of SAR for a point within the tissue to that for a specific point on the cavity surface) is used to determine the heating pattern for a set of given parameters. The parameters considered are the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity. Results: Simulation results show that the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity are the most influential parameters for the distribution of SAR ratio. A low frequency transducer located in a large cavity can produce a much better penetration. The cavity size is the major parameter affecting the penetration depth for a small cavity size, such as interstitial hyperthermia. The heating pattern can also be dramatically changed by the transducer eccentricity and radiating sector. In addition, for a finite length of cylindrical transducer, lower SAR ratio appears in the regions near the applicator's edges. Conclusion: The distribution of SAR ratio indicates the relationship between the treatable region and the parameters if an appropriate threshold of SAR ratio is taken. The findings of the present study comprehend whether or not a tumor is treatable, as well as select the optimal driving frequency, the appropriate cavity size, and the eccentricity of a cylindrical transducer for a specific treatment

  7. Theoretical study of hydrogen-bridged beryllium compounds

    International Nuclear Information System (INIS)

    Hashimoto, Kenro; Osamura, Yoshihiro; Iwata, Suehiro

    1986-01-01

    Ab initio closed-shell SCF method, combined with the energy gradient technique, was applied to study the molecular structures and the stability of (i) beryllium dihydride and its polymers (BeH 2 ) n (n = 1 to 5), and of (ii) monosubstituted beryllium hydrides HBeX (X = BH 2 , CH 3 , NH 2 , OH, F and Cl). Basis set dependence on the geometries and the force constants of BeH 2 and (BeH 2 ) 2 was carefully examined. The minimal basis set gives us a qualitative picture for chemical bonding of beryllium, though at least the split-valence type basis set is needed to obtain quantitative results. The effect of the electron correlation on the dimerization energy of BeH 2 was studied with SDCI and MP3 methods and was not so important as on the dimerization energy of Be atom. The dimer formation of BeH 2 results from the strong orbital interaction between a σ orbital (HOMO) of one of BeH 2 and a vacant 2p π orbital (LUMO) of the other. The energy gain from (BeH 2 ) n to (BeH 2 ) n+1 was almost constant for n = 2, 3, and 4 (about 120 kJ/mol) and it is larger than that from BeH 2 to (BeH 2 ) 2 (about 80 kJ/mol). This result means that in the chemical bonding of Be atom the sp 3 hybridization is more favorable than the sp 2 hybridization, and the sp 2 is more than the sp hybridization. With STO-3G and 3 - 21G basis sets the molecular structures of a series of monosubstituted beryllium hydrides and their dimers were determined, and the vibrational frequencies were evaluated for them. Bond lengths between a Be atom and a neighboring atom become shorter as the electronegativity of the neighboring atom increases. In particular, the bonding with oxygen is found to be very strong. These hydrides tends to dimerize, and the dimerization energy is about 60 ∼ 100 kJ/mol, when the bridged atoms are hydrogen atoms, irrespective of the terminal substituents. (author)

  8. Theoretical study on onset of cubic distortion product otoacoustic emissions

    Science.gov (United States)

    Vencovský, Václav; Vetešník, Aleš

    2018-05-01

    The distortion product otoacoustic emissions (DPOAEs) are generated when the cochlea is stimulated by two pure tones with different frequencies f1 and f2. Onset of the DPOAE amplitude may have a nonmonotonic complex shape when the f2 is pulsed during a stationary f1 input. Observed complexities have been explained as (1) due to the secondary source of the DPOAE at the distortion product (DP) characteristic site, and (2) due to the spatial distribution of DP sources with different phases. There is also a third possibility that the complexities are due to the suppression of the f1 basilar membrane (BM) response during the f2 onset. In this study, a hydrodynamic cochlea model is used to examine influence of f1 suppression on the time course of DPOAE onset. In particular, a set of simulations was performed for frequency ratio f2/f1 = 1.26 and various levels of the primary tones (L1 and L2=30-70 dB SPL) to determine the relationship between time dependencies of the DPOAE onset and the suppression of the f1 BM response. The model predicts that suppression of the f1 BM response can cause suppression of DPOAE amplitude during the onset period.

  9. Theoretical studies of superconductivity in doped BaCoSO

    Science.gov (United States)

    Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping

    2018-06-01

    We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

  10. Canister displacement in KBS-3V. A theoretical study

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2006-02-01

    The vertical displacement of the canister in the KBS-3V concept has been studied in a number of consolidation and creep calculations using the FE-program ABAQUS. The creep model used for the calculations is based on Singh-Mitchell's creep theory, which has been adapted to and verified for the buffer material MX-80 in earlier tests. A porous elastic model with Drucker-Prager plasticity has been used for the consolidation calculations. For simplicity the buffer has been assumed to be water saturated from start. In one set of calculations only the consolidation and creep in the buffer without considering the interaction with the backfill was studied. In the other set of calculations the interaction with the backfill was included for a backfill consisting of an in situ compacted mixture of 30% bentonite and 70% crushed rock. The motivation to also study the behaviour of the buffer alone was that the final choice of backfill material and backfilling technique is not made yet so that set of calculations simulates a backfill that has identical properties with the buffer. The two cases represent two extreme cases, one with a backfill that has a low stiffness and the lowest allowable swelling pressure and one that has the highest possible swelling pressure and stiffness. The base cases in the calculations correspond to the final average density at saturation of 2,000 kg/m 3 with the expected swelling pressure of 7 MPa in a buffer. In order to study the sensitivity of the system to loss in bentonite mass and swelling pressure seven additional calculations were done with reduced swelling pressure down to 80 kPa corresponding to a density at water saturation of about 1,500 kg/m 3 . The calculations included two stages, where the first stage models the swelling and consolidation that takes place in order for the buffer to reach force equilibrium. This stage takes place during the saturation phase and the subsequent consolidation/swelling phase. The second stage models the

  11. Canister displacement in KBS-3V. A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [FEMTech AB, Vaesteraas (Sweden)

    2006-02-15

    The vertical displacement of the canister in the KBS-3V concept has been studied in a number of consolidation and creep calculations using the FE-program ABAQUS. The creep model used for the calculations is based on Singh-Mitchell's creep theory, which has been adapted to and verified for the buffer material MX-80 in earlier tests. A porous elastic model with Drucker-Prager plasticity has been used for the consolidation calculations. For simplicity the buffer has been assumed to be water saturated from start. In one set of calculations only the consolidation and creep in the buffer without considering the interaction with the backfill was studied. In the other set of calculations the interaction with the backfill was included for a backfill consisting of an in situ compacted mixture of 30% bentonite and 70% crushed rock. The motivation to also study the behaviour of the buffer alone was that the final choice of backfill material and backfilling technique is not made yet so that set of calculations simulates a backfill that has identical properties with the buffer. The two cases represent two extreme cases, one with a backfill that has a low stiffness and the lowest allowable swelling pressure and one that has the highest possible swelling pressure and stiffness. The base cases in the calculations correspond to the final average density at saturation of 2,000 kg/m{sup 3} with the expected swelling pressure of 7 MPa in a buffer. In order to study the sensitivity of the system to loss in bentonite mass and swelling pressure seven additional calculations were done with reduced swelling pressure down to 80 kPa corresponding to a density at water saturation of about 1,500 kg/m{sup 3}. The calculations included two stages, where the first stage models the swelling and consolidation that takes place in order for the buffer to reach force equilibrium. This stage takes place during the saturation phase and the subsequent consolidation/swelling phase. The second stage

  12. Theoretical and experimental studies of a magnetically actuated valveless micropump

    International Nuclear Information System (INIS)

    Ashouri, Majid; Shafii, Mohammad Behshad; Moosavi, Ali

    2017-01-01

    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µ l min −1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s −1 . The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability. (paper)

  13. Theoretical and numerical study of heat transfer deterioration in HPLWR

    International Nuclear Information System (INIS)

    Palko, D.; Anglart, H.

    2007-01-01

    A numerical investigation of the Heat Transfer Deterioration (HTD) phenomena is performed using the low-Re k - ω turbulence model. Steady state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable to simulate the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates. (author)

  14. Theoretical study of impurity effects in iron-based superconductors

    Science.gov (United States)

    Navarro Gastiasoro, Maria; Hirschfeld, Peter; Andersen, Brian

    2013-03-01

    Several open questions remain unanswered for the iron-based superconductors (FeSC), including the importance of electronic correlations and the symmetry of the superconducting order parameter. Motivated by recent STM experiments which show a fascinating variety of resonant defect states in FeSC, we adopt a realistic five-band model including electronic Coulomb correlations to study local effects of disorder in the FeSC. In order to minimize the number of free parameters, we use the pairing interactions obtained from spin-fluctuation exchange to determine the homogeneous superconducting state. The ability of local impurity potentials to induce resonant states depends on their scattering strength Vimp; in addition, for appropriate Vimp, such states are associated with local orbital- and magnetic order. We investigate the density of states near such impurities and show how tunneling experiments may be used to probe local induced order. In the SDW phase, we show how C2 symmetry-breaking dimers are naturally formed around impurities which also form cigar-like (pi,pi) structures embedded in the (pi,0) magnetic bulk phase. Such electronic dimers have been shown to be candidates for explaining the so-called nematogens observed previously by QPI in Co-doped CaFe2As2.

  15. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.

    Science.gov (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen

    2017-10-18

    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  16. Benchmark thermodynamic properties of methylanisoles: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Emel’yanenko, Vladimir N.; Zaitseva, Ksenia V.; Agapito, Filipe; Martinho Simões, José A.; Verevkin, Sergey P.

    2015-01-01

    Highlights: • Thermochemistry of 2-, 3-, and 4-methylanisoles was studied. • Liquid state enthalpies of formation were measured by calorimetry. • Vaporisation enthalpies were derived from by transpiration method. • Ab initio enthalpies of formation are in excellent agreement with experiment. • A new paradigm for obtaining thermochemistry of liquid compounds was suggested. - Abstract: Accurate standard molar enthalpy of formation values in the liquid phase can be obtained by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporisation. The procedure is illustrated for 2-, 3-, and 4-methyl-anisoles. Using the W1-F12 and G4 quantum-chemical methods, the gas-phase enthalpies of formation of these compounds at T = 298.15 K were computed. Molar enthalpies of vaporisation for these isomers were measured by the transpiration method. Combining the experimental and the high-level ab initio values, the standard molar enthalpies of formation in the liquid phase for all three isomers were derived and compared with those determined for 2- and 4-methyl-anisoles by using combustion calorimetry

  17. Experimental and theoretical studies of metal vapor atoms

    International Nuclear Information System (INIS)

    Whitfield, S.B.; Wehlitz, Ralf; Martins, Michael

    2004-01-01

    Employing electron spectrometry in conjunction with tuneable synchrotron radiation, we will present a detailed examination of the photoionization dynamics of selected metal vapor atoms. In particular, this paper will focus on the relative partial cross sections of the atomic Li K-shell main and satellite (ionization with excitation) photoelectron lines in the region of the strong 1snln'l' autoionizing transitions, the atomic Sc 3d, 4s main and satellite photoelectron lines in the region of the 3p→3d giant resonance, and also the atomic Fe 3d, 4s main and satellite photoelectron lines in the same resonance region. Our experimental data for Sc and Fe will be compared to our state-of-the-art calculations based on the superposition of configuration method developed by Cowan (The Theory of Atomic Structure and Spectra. University of California Berkeley Press, Berkeley and Los Angeles, 1981). Our partial cross section measurements for Li and Sc will be complemented with measurements of the angular distribution parameter, β. In addition, our Li data will also be compared with recent R-matrix calculations (Phys. Rev. 57 (1998) 1045). In the case of Fe, we will also address the term dependent behavior of the partial cross sections on resonance. These results will highlight what can be achieved with today's technology and point the way towards future endeavors in the study of the photoionization dynamics of open-shell metal vapor atoms

  18. Theoretical design study of the MSFC wind-wheel turbine

    Science.gov (United States)

    Frost, W.; Kessel, P. A.

    1982-01-01

    A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.

  19. Disclosure of minor mental health problems: an exploratory theoretical study.

    Science.gov (United States)

    Williams, B; Healy, D

    2001-07-01

    The aim of this study was to explore people's experiences, concerns and beliefs about disclosing minor mental health problems by focusing on the ways in which such disclosures are interpreted. Approximately half of people with mental health problems do not seek help. The decision to consult represents just one aspect of the process of revealing one's illness to others. People with mental health problems are known to be reluctant to reveal the existence of those problems through fear of how others might then view them. A qualitative approach was employed. In-depth interviews were carried out with 47 users and nonusers of community mental health services. Interviews were tape-recorded, transcribed and analysed. The data suggest that when people reveal minor mental health problems others interpret these in relation to a number of perceived contextual factors. These include perceptions of the severity and duration of any possible causes, the inner 'strength' of the person, the expected ability of the person to either solve or suppress the experience, and the form and context of the expression itself. The data presented included individuals who were seeking help for relatively 'minor' mental health problems (primarily depression and anxiety) and individuals who had no current mental health problems but routinely managed expressions of their own emotions. Throughout the data there appeared to be no distinct difference between these two groups other than one of the severity of psychological experience. The key elements involved in the interpretation of people's expressions of sadness were essentially the same as those involved in the interpretation of expressions of depression. An appreciation of these contextual factors influencing the interpretation and disclosure of minor mental health problems may aid the development of more person-centred mental health services and inform the content of health education in the mental health field.

  20. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  1. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  2. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  3. Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2015-01-01

    Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.

  4. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  5. Theoretical and experimental studies on emissions from wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Skreiberg, Oeyvind

    1997-12-31

    This thesis discusses experiments on emissions from wood log combustion and single wood particle combustion, both caused by incomplete combustion and emissions of nitric and nitrous oxide, together with empirical and kinetic NO{sub x} modelling. Experiments were performed in three different wood stoves: a traditional stove, a staged air stove and a stove equipped with a catalytic afterburner. Ideally, biomass fuel does not give a net contribution to the greenhouse effect. However, incomplete combustion was found to result in significant greenhouse gas emissions. Empirical modelling showed the excess air ratio and the combustion chamber temperature to be the most important input variables controlling the total fuel-N to NO{sub x} conversion factor. As the result of an international round robin test of a wood stove equipped with a catalytic afterburner, particle emission measurements were found to be the best method to evaluate the environmental acceptability of the tested stove, since the particle emission level was least dependent of the national standards, test procedures and calculation procedures used. In batch single wood particle combustion experiments on an electrically heated small-scale fixed bed reactor the fuel-N to NO conversion factor varied between 0.11-0.86 depending on wood species and operating conditions. A parameter study and homogeneous kinetic modelling on a plug flow reactor showed that, depending on the combustion compliance in question, there is an optimum combination of primary excess air ratio, temperature and residence time that gives a maximum conversion of fuel-N to N{sub 2}. 70 refs., 100 figs., 26 tabs.

  6. Experimental and theoretical studies of d-dot

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Fujii, Masaki; Abe, Taiji; Yamamoto, Masuo; Miki, Shigehito; Kawamata, Shuichi; Satoh, Kazuo; Yotsuya, Tsutomu; Kato, Masaru; Machida, Masahiko; Koyama, Tomio; Terashima, Takahito; Tsukui, Shigeki; Adachi, Motoaki

    2006-01-01

    We propose the idea of d-dot, where a d-wave superconducting dot is embedded in s-wave matrix. Spontaneous half vortices should appear in the four corners of the d-dot [M. Kato, M. Ako, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 352; M. Ako, M. Kato, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 544; M. Fujii, T. Abe, H. Yoshikawa, S. Miki, S. Kawamata, K. Satoh, T. Yotsuya, M. Kato, M. Machida, T. Koyama, T. Terashima, S. Tsukui, M. Adachi, T. Ishida, Physica C 426-431 (2005) 104]. Symmetric geometry and the fourfold symmetry of the d-dot would be suitable as a building block for constructing the novel physical systems. The phase dynamics of a closed 0-π junction, which can be realized in a small d x 2 -y 2 -dot, is mapped on a quantum two-level system when the system size is small enough. Using two-component Ginzburg-Landau equation, we study the physical properties of d-dots systematically. We prepare epitaxial YBa 2 Cu 3 O 7 (YBCO) films of thickness 100nm on SrTiO 3 substrates using a laser ablation apparatus. The d-dot is fabricated by a photolithography, electron beam lithography EB and an electron cyclotron resonance (ECR) etching, a focused ion beam microscope, and a lift-off technique. Local vortex profile is investigated using a SQUID microscope when d-dot is cooled in zero field

  7. Experimental and theoretical study of radon levels in a house

    International Nuclear Information System (INIS)

    Ameon, R.; Dupuis, M.; Marie, L.; Diez, O.; LionS, J.; Tymen, G.

    2006-01-01

    Full text of publication follows: Radon being a radioactive gas of natural origin is omnipresent everywhere at the surface of earth. It is created by the radium decay issued from the uranium contained in the earth crust and more specifically in granitic and volcanic subsoils. Because of the dilution due to air masses, its concentration in open air is low. On the other hand, radon may accumulate in the confined atmosphere of buildings and achieve high concentration levels. Across France, it has been estimated that 300 000 individual dwellings present concentration higher than the French reference level of 400 Bq.m -3 and that 60 000 other ones would exhibit concentration above 1 000 Bq.m -3 , the French warning threshold. Indoor radon concentration may vary significantly for various reasons, including design of buildings, radium content and texture of the soil in contact with the building's slab and walls, the under pressure value between the inside and outside and the fresh air supply rate. These considerations have led the I.R.S.N. to develop a code called R.A.D.O.N. 2 for conducting simple and methodical studies of indoor radon concentrations, to take into account the above-mentioned factors. But, the achievement of an effective diagnosis and risk management -aiding tool requires to first check its validity on the phenomenological model at the origin of the code. A 3-year experimental follow-up was, thus, conducted within an unoccupied house built on an uranium-bearing geological formation. After characterization of the subsoil, the instrumentation was implemented on site to continuously monitor the following parameters: - the radon source term in the building (exhalation rate of 222 Rn at the ground/building interface and at soil surface, radon concentration at the soil and in outdoor air), - the radon penetration by advection (differential pressure in the house basement), - the driving mechanisms for natural ventilation in the house (weather conditions, indoor

  8. Experimental and theoretical study of radon levels in a house

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Dupuis, M.; Marie, L.; Diez, O.; LionS, J. [Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-roses (France); Tymen, G. [LARAAH, Universite de Bretagne Occidentale, Brest (France)

    2006-07-01

    Full text of publication follows: Radon being a radioactive gas of natural origin is omnipresent everywhere at the surface of earth. It is created by the radium decay issued from the uranium contained in the earth crust and more specifically in granitic and volcanic subsoils. Because of the dilution due to air masses, its concentration in open air is low. On the other hand, radon may accumulate in the confined atmosphere of buildings and achieve high concentration levels. Across France, it has been estimated that 300 000 individual dwellings present concentration higher than the French reference level of 400 Bq.m{sup -3} and that 60 000 other ones would exhibit concentration above 1 000 Bq.m{sup -3}, the French warning threshold. Indoor radon concentration may vary significantly for various reasons, including design of buildings, radium content and texture of the soil in contact with the building's slab and walls, the under pressure value between the inside and outside and the fresh air supply rate. These considerations have led the I.R.S.N. to develop a code called R.A.D.O.N. 2 for conducting simple and methodical studies of indoor radon concentrations, to take into account the above-mentioned factors. But, the achievement of an effective diagnosis and risk management -aiding tool requires to first check its validity on the phenomenological model at the origin of the code. A 3-year experimental follow-up was, thus, conducted within an unoccupied house built on an uranium-bearing geological formation. After characterization of the subsoil, the instrumentation was implemented on site to continuously monitor the following parameters: - the radon source term in the building (exhalation rate of {sup 222}Rn at the ground/building interface and at soil surface, radon concentration at the soil and in outdoor air), - the radon penetration by advection (differential pressure in the house basement), - the driving mechanisms for natural ventilation in the house (weather

  9. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  10. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  11. Experimental and Theoretical Study of Microturbine-Based BCHP System

    International Nuclear Information System (INIS)

    Fairchild, P.D.

    2001-01-01

    On-site and near-site distributed power generation (DG), as part of a Buildings Cooling, Heating and Power (BCHP) system, brings both electricity and waste heat from the DG sources closer to the end user's electric and thermal loads. Consequently, the waste heat can be used as input power for heat-activated air conditioners, chillers, and desiccant dehumidification systems; to generate steam for space heating; or to provide hot water for laundry, kitchen, cleaning services and/or rest rooms. By making use of what is normally waste heat, BCHP systems meet a building's electrical and thermal loads with a lower input of fossil fuel, yielding resource efficiencies of 40 to 70% or more. To ensure the success of BCHP systems, interactions of a DG system-such as a microturbine and thermal heat recovery units under steady-state modes of operation with various exhaust back pressures-must be considered. This article studies the performance and emissions of a 30-kW microturbine over a range of design and off-design conditions in steady-state operating mode with various back pressures. In parallel with the experimental part of the project, a BCHP mathematical model was developed describing basic thermodynamic and hydraulic processes in the system, heat and material balances, and the relationship of the balances. to the system configuration. The model can determine the efficiency of energy conversion both for an individual microturbine unit and for the entire BCHP system for various system configurations and external loads. Based on actual data Tom a 30-kW microturbine, linear analysis was used to obtain an analytical relationship between the changes in the thermodynamic and hydraulic parameters of the system. The actual data show that, when the backpressure at the microturbine exhaust outlet is increased to the maximum of 7 in. WC (0.017 atm), the microturbine's useful power output decreases by from 3.5% at a full power setting of 30 kW to 5.5% at a one-third power setting (10

  12. For a new dialogue between theoretical and empirical studies in evo-devo

    Directory of Open Access Journals (Sweden)

    Giuseppe eFusco

    2015-08-01

    Full Text Available Despite its potentially broad scope, current evo-devo research is largely dominated by empirical developmental studies, whereas comparably little role is played by theoretical research. I argue that this represents an obstacle to a wider appreciation of evo-devo and its integration within a more comprehensive evolutionary theory, and that this situation is causally linked to a limited exchange between theoretical and experimental studies in evo-devo. I discuss some features of current theoretical work in evo-devo, highlighting some possibly concurring impediments to an effective dialogue with experimental studies. Finally, I advance two suggestions for enhancing fruitful cross-fertilization between theoretical and empirical studies in evo-devo: i to broaden the scope of evo-devo beyond its current conceptualization, teaming up with other variational approaches to the study of evolution, and ii to develop more effective forms of scientific interaction and communication.

  13. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    International Nuclear Information System (INIS)

    Raj, B.K.; Panda, S.K.; Rout, G.C.

    2013-01-01

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T C systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ c ± Δ s ). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy

  14. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B. K. [Dept. of Physics, Govt. Autonomous College, Angul, Orissa (India); Panda, S. K. [KD Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India)

    2013-09-15

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T{sub C} systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ{sub c} ± Δ{sub s}). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy.

  15. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  16. Game-theoretic methods for functional response and optimal foraging behavior

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil; Brown, J. S.; Garay, J.

    2014-01-01

    Roč. 9, č. 2 (2014), e88773 E-ISSN 1932-6203 Grant - others:Hungarian National Research Fund(HU) K62000; Hungarian National Research Fund(HU) K67961 Institutional support: RVO:60077344 Keywords : game-theoretic methods Subject RIV: EH - Ecology, Behaviour Impact factor: 3.234, year: 2014 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088773

  17. Convexity of Energy-Like Functions: Theoretical Results and Applications to Power System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Dvijotham, Krishnamurthy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Low, Steven [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-12

    Power systems are undergoing unprecedented transformations with increased adoption of renewables and distributed generation, as well as the adoption of demand response programs. All of these changes, while making the grid more responsive and potentially more efficient, pose significant challenges for power systems operators. Conventional operational paradigms are no longer sufficient as the power system may no longer have big dispatchable generators with sufficient positive and negative reserves. This increases the need for tools and algorithms that can efficiently predict safe regions of operation of the power system. In this paper, we study energy functions as a tool to design algorithms for various operational problems in power systems. These have a long history in power systems and have been primarily applied to transient stability problems. In this paper, we take a new look at power systems, focusing on an aspect that has previously received little attention: Convexity. We characterize the domain of voltage magnitudes and phases within which the energy function is convex in these variables. We show that this corresponds naturally with standard operational constraints imposed in power systems. We show that power of equations can be solved using this approach, as long as the solution lies within the convexity domain. We outline various desirable properties of solutions in the convexity domain and present simple numerical illustrations supporting our results.

  18. Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption

    Science.gov (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Jin, Cui; Huang, Baibiao

    2018-03-01

    The photocatalytic properties of graphene oxide (GO) with single Au atom adsorption are studied via the first-principles calculations based on the density functional theory. The present study addresses the origin of enhancement in photocatalytic efficiency of GO derived from single Au atom depositing. Compared with the clean one, the work function of the single Au atom adsorbed GO is lowered due to the charge transfer from Au to GO, indicating enhanced surface activity. The Au atom plays as an electron trapping center and a mediating role in charge transfer from photon excited GO to target species. The photogenerated electron-hole pairs can be separated effectively. For the GO configuration with atomic Au dispersion, there are some states introduced in the band gap, which are predominantly composed of Au 6s states. Through the in-gap state, the photo-generated electron transfer from the valence band of clean GO to the conductive band more easily. In addition, the reduction of the gap in the system is also presented in the current work, which indicates that the single Au atom adsorption improves light absorption for the GO based photocatalyst. These theoretical results are valuable for the future applications of GO materials as photocatalyst for water splitting.

  19. Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla Univ. Daejeon (Korea, Republic of)

    2017-10-15

    In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the 1st - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

  20. Comprehensive Characterization of Palygorskite from Torrejon el Rubio (Spain) Based on Experimental Techniques and Theoretical DFT Studies

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Timon, V.; Cubero, J. J.; Sanchez-Ledesma, D. M.; Gutierrez-Nebot, L.; Martinez, J. J.; Romero, C.; Labajo, M.; Melon, A.; Barrios, I.

    2013-01-01

    New data about the physico-chemical, microstructural and crystal-chemical properties of the mineral paligorskite from Torrejon el Rubio (Caceres, Spain) were obtained by a combination of experimental techniques (XRD, FRX, FTIR, TG-DSC, SEM and chemical analyses), as well as geometry optimization by means of the Density Functional Theory (DFT). This study demonstrates the applicability of the mixed theoretical-experimental work to characterize and understand the properties of clay minerals used in technological applications and environmental remediation. (Author)

  1. Comprehensive Characterization of Palygorskite from Torrejon el Rubio (Spain) Based on Experimental Techniques and Theoretical DFT Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.M.; Timon, V.; Cubero, J. J.; Sanchez-Ledesma, D. M.; Gutierrez-Nebot, L.; Martinez, J. J.; Romero, C.; Labajo, M.; Melon, A.; Barrios, I.

    2013-10-01

    New data about the physico-chemical, microstructural and crystal-chemical properties of the mineral paligorskite from Torrejon el Rubio (Caceres, Spain) were obtained by a combination of experimental techniques (XRD, FRX, FTIR, TG-DSC, SEM and chemical analyses), as well as geometry optimization by means of the Density Functional Theory (DFT). This study demonstrates the applicability of the mixed theoretical-experimental work to characterize and understand the properties of clay minerals used in technological applications and environmental remediation. (Author)

  2. An in-depth analysis of theoretical frameworks for the study of care coordination

    Directory of Open Access Journals (Sweden)

    Sabine Van Houdt

    2013-06-01

    Full Text Available Introduction: Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods: We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination.Results: Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(interorganizational outcome’.Conclusion: These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive.

  3. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies

    Science.gov (United States)

    Valente, Marco A. G.; Teixeira, Deiver A.; Azevedo, David L.; Feliciano, Gustavo T.; Benedetti, Assis V.; Fugivara, Cecílio S.

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor. PMID:28620602

  4. Theoretical study of the electronic structure of f-element complexes by quantum chemical methods

    International Nuclear Information System (INIS)

    Vetere, V.

    2002-09-01

    This thesis is related to comparative studies of the chemical properties of molecular complexes containing lanthanide or actinide trivalent cations, in the context of the nuclear waste disposal. More precisely, our aim was a quantum chemical analysis of the metal-ligand bonding in such species. Various theoretical approaches were compared, for the inclusion of correlation (density functional theory, multiconfigurational methods) and of relativistic effects (relativistic scalar and 2-component Hamiltonians, relativistic pseudopotentials). The performance of these methods were checked by comparing computed structural properties to published experimental data, on small model systems: lanthanide and actinide tri-halides and on X 3 M-L species (X=F, Cl; M=La, Nd, U; L = NH 3 , acetonitrile, CO). We have thus shown the good performance of density functionals combined with a quasi-relativistic method, as well as of gradient-corrected functionals associated with relativistic pseudopotentials. In contrast, functionals including some part of exact exchange are less reliable to reproduce experimental trends, and we have given a possible explanation for this result . Then, a detailed analysis of the bonding has allowed us to interpret the discrepancies observed in the structural properties of uranium and lanthanides complexes, based on a covalent contribution to the bonding, in the case of uranium(III), which does not exist in the lanthanide(III) homologues. Finally, we have examined more sizeable systems, closer to experimental species, to analyse the influence of the coordination number, of the counter-ions and of the oxidation state of uranium, on the metal-ligand bonding. (author)

  5. Theoretical and experimental studies on electric field and confinement in helical systems

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Todoroki, J.; Ida, K.; Idei, H.; Iguchi, H.; Yamada, H.

    1994-06-01

    The present study consists of two parts. The first part is oriented to a theoretical model of selfconsistent analysis to determine simultaneously the electric field and loss cone boundary in heliotron/torsatron configurations under the influence of nonclassical particle losses. The second part is referred to the analysis on NBI heated and ECH plasmas in Compact Helical System (CHS) device. A comparison is made between theoretical results and experimental observations. (author)

  6. Risk-Sensitive Multiagent Decision-Theoretic Planning Based on MDP and One-Switch Utility Functions

    Directory of Open Access Journals (Sweden)

    Wei Zeng

    2014-01-01

    Full Text Available In high stakes situations decision-makers are often risk-averse and decision-making processes often take place in group settings. This paper studies multiagent decision-theoretic planning under Markov decision processes (MDPs framework with considering the change of agent’s risk attitude as his wealth level varies. Based on one-switch utility function that describes agent’s risk attitude change with his wealth level, we give the additive and multiplicative aggregation models of group utility and adopt maximizing expected group utility as planning objective. When the wealth level approaches infinity, the characteristics of optimal policy are analyzed for the additive and multiplicative aggregation model, respectively. Then a backward-induction method is proposed to divide the wealth level interval from negative infinity to initial wealth level into subintervals and determine the optimal policy in states and subintervals. The proposed method is illustrated by numerical examples and the influences of agent’s risk aversion parameters and weights on group decision-making are also analyzed.

  7. Toward a Theoretical Framework for Studying Climate Change Policies: Insights from the Case Study of Singapore

    Directory of Open Access Journals (Sweden)

    Ai Sian Ng

    2017-07-01

    Full Text Available The world decided in December 2015 to take actions to reduce global warming. To contribute toward this goal, this research examines possible policy levers for inclusion in the climate change ratification plan. A case study of the measures taken by the Republic of Singapore, a low-lying 719.2 km2 island without natural resources in Asia, is conducted. Being vulnerable to climate change impact and yet having to balance her people’s needs and economic progress with limited resources, the measures taken by this small country could offer policy insights for small states and states without access to alternative energy sources. This research analyzes the online policy documents posted by eleven organizations to answer the main research question of identifying policy levers as theoretical constructs to form a framework that can be used to study climate change policies. A qualitative data analysis software, QSR NVivo 10, is used to classify the proposed nodes developed by the researchers using a system perspective integrating the insights from the key international climate change frameworks with the theoretical concepts from the model of pro-environmental behavior. The findings can offer insights toward developing a new contextual influence framework, which can help strengthen policy development and outcome measurement.

  8. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  9. Experimental and theoretical study of plasma-water interaction in electrothermal guns

    International Nuclear Information System (INIS)

    Arensburg, Alex.

    1993-05-01

    This thesis comprises an experimental and theoretical study of the plasma- jet-water interaction in electrothermal guns. In the present work the plasma jet was produced by high current pulsed discharge in a plasma injector consisting of polyethylene capillary, closed at one end by a metallic anode and supported at the other end with a hollow cathode. A thin aluminium fuse placed inside the capillary and connecting both electrodes, provided an initial conducting element. A pulse forming network delivering a high current pulse through the fuse, exploded it and produced an aluminium plasma. Subsequently, ablation of the capillary wall begun as a result of its exposure to radiation from the fuse plasma. The ablation products were heated by the pulse current until ionized, replacing the fuse plasma by a polyethylene plasma thus sustaining the ablation process. The experimental investigation reported here used x-ray shadowgraphy to observe the plasma-working fluid interaction process. The working fluid was an aqueous solution of 92% water and 8% lead acetate gelatinized with agar. The penetration of the plasma jet into the working fluid was exposed on films at successive time intervals by means of x-ray shadowgraphy. When the water interacts with the plasma it also ablated. This ablation rate was estimated from energy conservation considerations. Peak pressures up to 3.5*10 8 Pa were measured during the process. At such pressure water does not undergo phase transformation when heated. Thus the mass density at the plasma water interface should be regarded as a continuous function of temperature. The determination of the temperature profile at the interface between the capillary plasma and the water requires the solution of the heat transfer and radiative transfer equations under ablation conditions. This constituted the main theoretical part of the present work. 36 refs., 4 tabs., 29 figs

  10. Experimental and theoretical study on the structure and vibrational spectra of β-2-aminopyridinium dihydrogenphosphate

    Science.gov (United States)

    Çırak, Çağrı; Demir, Selçuk; Ucun, Fatih; Çubuk, Osman

    2011-08-01

    Experimental and theoretical vibrational spectra of β-2-aminopyridinium dihydrogenphosphate (β-2APDP) have been investigated. The FT-IR spectrum of β-2APDP was recorded in the region 4000-400 cm -1. The optimized molecular structure and theoretical vibrational frequencies of β-2APDP have been investigated using ab initio Hartree-Fock (HF) and density functional B3LYP method with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) and theoretical frequencies have been compared with the corresponding experimental data and it is found that they agree well with each other. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Furthermore, the used scale factors were obtained from the ratio of the frequency values of the strongest peaks in the experimental and theoretical IR spectra. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies.

  11. Theoretical study of electronic and dynamic properties of simple metal clusters in jellium model

    International Nuclear Information System (INIS)

    El-Amine Madjet, M.

    1994-01-01

    We have studied the electronic properties of alkali-metal clusters in various theoretical approximations and in the framework of the spherical jellium model. We have investigated the ground state properties of alkali clusters both in the LDA (local density approximation) and in HF (Hartree-Fock) theory. We have compared the LDA predictions of the ground state properties to predictions obtained within the HF theory. Such a comparison permitted us to check the validity of the local density functional theory in describing the ground state of a finite fermion system. For the study of collective dipolar excitations in clusters, we have considered an electromagnetic excitation. We have investigated the collective modes in the following approximations: random phase approximation (RPA), time-dependent local-density approximation (TDLDA) and the sum-rules approach. An assessment of the approximation for the continuum state within the RPA is made by comparing with TDLDA calculations for the static and dynamic electronic properties. The comparative study that we have done on the exchange-correlation effects on the electronic and optical properties have shown that the discrepancies with measured data are due mostly to the jellium approximation for the ionic background. (author). 69 refs., 30 figs., 18 tabs

  12. Theoretical studies of field-reversed configurations (FRCs) and experimental study of the FRC during translation

    Energy Technology Data Exchange (ETDEWEB)

    Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.; Sgro, A.; Sherwood, E.G.

    1984-08-01

    Theoretical studies of FRC stability and tranport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in 2-dimensional hybrid-code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower-hybrid-drift instability in parameter regimes relevant to experiments show good agreement with a nonlocal theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a dc solenoid, and trapped by magnetic mirrors has been studied in the FRX-C/T experiment.

  13. Theoretical studies of field-reversed configurations (FRCs) and experimental study of the FRC during translation

    International Nuclear Information System (INIS)

    Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.

    1984-08-01

    Theoretical studies of FRC stability and tranport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in 2-dimensional hybrid-code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower-hybrid-drift instability in parameter regimes relevant to experiments show good agreement with a nonlocal theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a dc solenoid, and trapped by magnetic mirrors has been studied in the FRX-C/T experiment

  14. Theoretical studies of growth processes and electronic properties of nanostructures on surfaces

    Science.gov (United States)

    Mo, Yina

    Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development

  15. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    Science.gov (United States)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  16. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  17. Theoretical calculation of shakeup intensities using Xa--SW wave functions

    International Nuclear Information System (INIS)

    Tse, J.S.; Loubriel, G.

    1981-01-01

    The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment

  18. Performance analysis of demodulation with diversity -- A combinatorial approach I: Symmetric function theoretical methods

    Directory of Open Access Journals (Sweden)

    Jean-Louis Dornstetter

    2002-12-01

    Full Text Available This paper is devoted to the presentation of a combinatorial approach, based on the theory of symmetric functions, for analyzing the performance of a family of demodulation methods used in mobile telecommunications.

  19. Performance analysis of demodulation with diversity -- A combinatorial approach I: Symmetric function theoretical methods

    OpenAIRE

    Jean-Louis Dornstetter; Daniel Krob; Jean-Yves Thibon; Ekaterina A. Vassilieva

    2002-01-01

    This paper is devoted to the presentation of a combinatorial approach, based on the theory of symmetric functions, for analyzing the performance of a family of demodulation methods used in mobile telecommunications.

  20. Couples coping with cancer: exploration of theoretical frameworks from dyadic studies.

    Science.gov (United States)

    Regan, Tim W; Lambert, Sylvie D; Kelly, Brian; Falconier, Mariana; Kissane, David; Levesque, Janelle V

    2015-12-01

    A diagnosis of cancer and subsequent treatment are distressing not only for the person directly affected, but also for their intimate partner. The aim of this review is to (a) identify the main theoretical frameworks underpinning research addressing dyadic coping among couples affected by cancer, (b) summarise the evidence supporting the concepts described in these theoretical frameworks, and (c) examine the similarities and differences between these theoretical perspectives. A literature search was undertaken to identify descriptive studies published between 1990 and 2013 (English and French) that examined the interdependence of patients' and partners' coping, and the impact of coping on psychosocial outcomes. Data were extracted using a standardised form and reviewed by three of the authors. Twenty-three peer-reviewed manuscripts were identified, from which seven theoretical perspectives were derived: Relationship-Focused Coping, Transactional Model of Stress and Coping, Systemic-Transactional Model (STM) of dyadic coping, Collaborative Coping, Relationship Intimacy model, Communication models, and Coping Congruence. Although these theoretical perspectives emphasised different aspects of coping, a number of conceptual commonalities were noted. This review identified key theoretical frameworks of dyadic coping used in cancer. Evidence indicates that responses within the couple that inhibit open communication between partner and patient are likely to have an adverse impact on psychosocial outcomes. Models that incorporate the interdependence of emotional responses and coping behaviours within couples have an emerging evidence base in psycho-oncology and may have greatest validity and clinical utility in this setting. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Theoretical study for ICRF sustained LHD type p-11B reactor

    International Nuclear Information System (INIS)

    Watanabe, Tsuguhiro

    2003-04-01

    This is a summary of the workshop on 'Theoretical Study for ICRF Sustained LHD Type p- 11 B Reactor' held in National Institute for Fusion Science (NIFS) on July 25, 2002. In the workshop, study of LHD type D- 3 He reactor is also reported. A review concerning the advanced nuclear fusion fuels is also attached. This review was reported at the workshop of last year. The development of the p- 11 B reactor research which uses the LHD magnetic field configuration has been briefly summarized in section 1. In section 2, an integrated report on advanced nuclear fusion fuels is given. Ignition conditions in a D- 3 He helical reactor are summarized in section 3. 0-dimensional particle and power balance equations are solved numerically assuming the ISS95 confinement law including a confinement factor (γ HH ). It is shown that high average beta plasma confinement, a large confinement factor (γ HH > 3) and the hot ion mode (T i /T e > 1.4) are necessary to achieve the ignition of the D- 3 He helical reactor. Characteristics of ICRF sustained p- 11 B reactor are analyzed in section 4. The nuclear fusion reaction rate is derived assuming a quasilinear plateau distribution function (QPDF) for protons, and an ignition condition of p- 11 B reactor is shown to be possible. The 3 of the presented papers are indexed individually. (J.P.N.)

  2. Molecular design, synthesis and physical properties of novel Cytisine-derivatives - Experimental and theoretical study

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2013-02-01

    The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.

  3. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations

    International Nuclear Information System (INIS)

    Lashgari, Mohsen; Malek, Ali M.

    2010-01-01

    Using quantum electrochemical approaches based on density functional theory and cluster/polarized continuum model, we investigated the corrosion behavior of aluminum in HCl and NaOH media containing phenol inhibitor. In this regard, we determined the geometry and electronic structure of the species at metal/solution interface. The investigations revealed that the interaction energies of hydroxide corrosive agents with aluminum surface should be more negative than those of chloride ones. The inhibitor adsorption in acid is more likely to have a physical nature while it appears as though to be chemical in basic media. To verify these predictions, using Tafel plots, we studied the phenomena from experimental viewpoint. The studies confirmed that the rate of corrosion in alkaline solution is substantially greater than in HCl media. Moreover, phenol is a potential-molecule having mixed-type inhibition mechanism. The relationship between inhibitory action and molecular parameters was discussed and the activity in alkaline media was also theoretically anticipated. This prediction was in accord with experiment.

  4. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.

    Science.gov (United States)

    Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki

    2018-03-01

    A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte-saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles are solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical study on the molecular tautomerism of the 3-hydroxy-pyridin-4-one system

    Science.gov (United States)

    Zborowski, Krzysztof K.; Mohammadpour, Mehrdad; Sadeghi, Amir; Proniewicz, Leonard M.

    2013-04-01

    3-hydroxy-pyridin-4-one is a parent molecule for the family of hydroxypyridinones that are known in coordination chemistry as efficient metal ions chelators. In this work, relative stabilities of some possible tautomers were investigated using several quantum chemical methods: CBS (complete basis set methods), Gn, DFT (density functional theory), Hartree-Fock and MP2. Performed calculations show that the system under consideration exists as a mixture of two tautomers with comparable energies. Among them, the hydroxypyridinone structure of the studied molecular system seems to be a bit more stable than the o-dihydroxypyridine one, by a few kJ/mol only. Aromaticity and intra-molecular hydrogen bonding are the main effects influencing the stability of the studied tautomeric structures. Consequently, aromatic effects were calculated using several indices of aromaticity: HOMA (harmonic oscillator model of aromaticity), NICS (nucleus independent chemical shift), H, PDI (para delocalisation index), MCI (multi-centre index) and ASE (aromatic stabilisation energy). The strength of possible intra-molecular hydrogen bonds (H-bonds) was determined by means of the AIM (atoms-in-molecules) method and by calculating enthalpies for theoretical reactions that do or do not involve H-bonds. The AIM method was employed to understand how variations in atomic energies influence the stability of different tautomeric structures.

  6. Natural Carbonized Sugar as a Low-Temperature Ammonia Sensor Material: Experimental, Theoretical, and Computational Studies.

    Science.gov (United States)

    Ghule, Balaji G; Shaikh, Shoyebmohamad; Ekar, Satish U; Nakate, Umesh T; Gunturu, Krishna Chaitanya; Shinde, Nanasaheb M; Naushad, Mu; Kim, Kwang Ho; O'Dwyer, Colm; Mane, Rajaram S

    2017-12-13

    Carbonized sugar (CS) has been synthesized via microwave-assisted carbonization of market-quality tabletop sugar bearing in mind the advantages of this synthesis method, such as being useful, cost-effective, and eco-friendly. The as-prepared CS has been characterized for its morphology, phase purity, type of porosity, pore-size distribution, and so on. The gas-sensing properties of CS for various oxidizing and reducing gases are demonstrated at ambient temperature, where we observe good selectivity toward liquid ammonia among other gases. The highest ammonia response (50%) of a CS-based sensor was noted at 80 °C for 100 ppm concentration. The response and recovery times of the CS sensor are 180 and 216 s, respectively. This unveiling ammonia-sensing study is explored through a plausible theoretical mechanism, which is further well-supported by computational modeling performed using density function theory. The effect of relative humidity on the CS sensor has also been studied at ambient temperature, which demonstrated that the minimum and maximum (20-100%) relative humidity values revealed 16 and 62% response, respectively.

  7. Synthesis, crystal growth, characterization and theoretical studies of 4-aminobenzophenonium picrate

    Science.gov (United States)

    Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P.

    2015-01-01

    Single crystals of 4-aminobenzophenonium picrate (4ABPP) were grown by slow evaporation of a mixed solvent system methanol-acetone (1:1,v/v) containing equimolar quantities of picric acid and 4-aminobenzophenone. The proton and carbon signals are confirmed by nuclear magnetic resonance spectroscopy. The various functional groups present in the molecule are identified by FT-IR analysis. Optimized geometry, first-order molecular hyperpolarizability (β), polarizability (α), bond length, bond angles and excited state energy from theoretical UV were derived by Hartree-Fock calculations. The complete assignment of the vibrational modes for 4-aminobenzophenonium picrate was performed by the scaled quantum mechanics force field (SQMFF) methodology using potential energy distribution. Natural bond orbital (NBO) calculations were employed to study the stabilities arising from charge delocalization and intermolecular interactions of 4ABPP. The atomic charge distributions of the various atoms present in 4ABPP are obtained by Mulliken charge population analysis. The as-grown crystal is further characterized by thermal and optical absorbance studies.

  8. Theoretical and experimental study of image formation in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Prunier epouse Mory, Claudie

    1985-01-01

    This thesis contains a theoretical and experimental study of image formation in a dedicated scanning transmission electron microscope (STEM). Using a detailed description of the different optical elements between the field emission source and the specimen, one calculates the shape and size of the primary probe of electrons impinging on the sample. This modelization enables to estimate the spatial resolution in the different imaging or microanalytical modes. The influence of the specimen and the role of the various detectors are taken into account to calculate the point spread function of the instrument in STEM imaging modes. An experimental study of the characteristic properties of phase contrast bright field micrographs and incoherent dark field ones is performed by comparison of digitally recorded images in similar conditions. Spatial resolution, contrast and signal/noise ratio are assessed by correlation methods, Fourier analysis and statistical considerations; one can deduce the optimum focusing conditions. Limits such as the point resolution on quasi-atomic metallic clusters are determined and an analysis of the capabilities of signal mixing concludes this work. Applications are offered in various domains such as the visualisation of small metallic particles, biomolecules and unstained biological sections. (author) [fr

  9. Spectrum of Singly Charged Uranium (U II : Theoretical Interpretation of Energy Levels, Partition Function and Classified Ultraviolet Lines

    Directory of Open Access Journals (Sweden)

    Ali Meftah

    2017-06-01

    Full Text Available In an attempt to improve U II analysis, the lowest configurations of both parities have been interpreted by means of the Racah-Slater parametric method, using Cowan codes. In the odd parity, including the ground state, 253 levels of the interacting configurations 5 f 3 7 s 2 + 5 f 3 6 d 7 s + 5 f 3 6 d 2 + 5 f 4 7 p + 5 f 5 are interpreted by 24 free parameters and 64 constrained ones, with a root mean square (rms deviation of 60 cm − 1 . In the even parity, the four known configurations 5 f 4 7 s , 5 f 4 6 d , 5 f 2 6 d 2 7 s , 5 f 2 6 d 7 s 2 and the unknown 5 f 2 6 d 3 form a basis for interpreting 125 levels with a rms deviation of 84 cm − 1 . Due to perturbations, the theoretical description of the higher configurations 5 f 3 7 s 7 p + 5 f 3 6 d 7 p remains unsatisfactory. The known and predicted levels of U II are used for a determination of the partition function. The parametric study led us to a re-investigation of high resolution ultraviolet spectrum of uranium recorded at the Meudon Observatory in the late eighties, of which the analysis was unachieved. In the course of the present study, a number of 451 lines of U II has been classified in the region 2344 –2955 Å. One new level has been established as 5 f 3 6 d 7 p ( 4 I 6 K ( J = 5.5 at 39113.98 ± 0.1 cm − 1 .

  10. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    International Nuclear Information System (INIS)

    Fan, B.B.; Yang, X.B.; Zhang, R.

    2010-01-01

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp 2 hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  11. Theoretical study of the localization of excess electrons at the surface of ice

    International Nuclear Information System (INIS)

    Hermann, A; Schwerdtfeger, P; Schmidt, W G

    2008-01-01

    The localization of excess electrons at the basal plane surface of hexagonal ice Ih is investigated theoretically, combining density functional theory (DFT) with a partial self-interaction correction (SIC) scheme, to account for spurious self-interaction effects that artificially delocalize the excess electrons. Starting from energetically favored surface geometries, we find strong localization of excess electrons at surface dangling bonds, in particular for surface adsorbed water monomers and dimers

  12. Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid in a Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Yujie Huang

    2015-01-01

    Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.

  13. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations.

    Science.gov (United States)

    Banks, H Thomas; Robbins, Danielle; Sutton, Karyn L

    2013-01-01

    In this paper we present new results for differentiability of delay systems with respect to initial conditions and delays. After motivating our results with a wide range of delay examples arising in biology applications, we further note the need for sensitivity functions (both traditional and generalized sensitivity functions), especially in control and estimation problems. We summarize general existence and uniqueness results before turning to our main results on differentiation with respect to delays, etc. Finally we discuss use of our results in the context of estimation problems.

  14. Medication competency of nurses according to theoretical and drug calculation online exams: A descriptive correlational study.

    Science.gov (United States)

    Sneck, Sami; Saarnio, Reetta; Isola, Arja; Boigu, Risto

    2016-01-01

    Medication administration is an important task of registered nurses. According to previous studies, nurses lack theoretical knowledge and drug calculation skills and knowledge-based mistakes do occur in clinical practice. Finnish health care organizations started to develop a systematic verification processes for medication competence at the end of the last decade. No studies have yet been made of nurses' theoretical knowledge and drug calculation skills according to these online exams. The aim of this study was to describe the medication competence of Finnish nurses according to theoretical and drug calculation exams. A descriptive correlation design was adopted. Participants and settings All nurses who participated in the online exam in three Finnish hospitals between 1.1.2009 and 31.05.2014 were selected to the study (n=2479). Quantitative methods like Pearson's chi-squared tests, analysis of variance (ANOVA) with post hoc Tukey tests and Pearson's correlation coefficient were used to test the existence of relationships between dependent and independent variables. The majority of nurses mastered the theoretical knowledge needed in medication administration, but 5% of the nurses struggled with passing the drug calculation exam. Theoretical knowledge and drug calculation skills were better in acute care units than in the other units and younger nurses achieved better results in both exams than their older colleagues. The differences found in this study were statistically significant, but not high. Nevertheless, even the tiniest deficiency in theoretical knowledge and drug calculation skills should be focused on. It is important to identify the nurses who struggle in the exams and to plan targeted educational interventions for supporting them. The next step is to study if verification of medication competence has an effect on patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The generation of charge carriers in semi conductors – A theoretical study

    CSIR Research Space (South Africa)

    Kiarii, EM

    2017-04-01

    Full Text Available , vol. 678: 167-176 The generation of charge carriers in semi conductors – A theoretical study Kiarii EM Govender, Krishna K Ndungu PG Govender PG ABSTRACT: A systematic study of electronic and optical properties of titanium dioxide under...

  16. Curriculum, Curriculum Development, Curriculum Studies? Problematising Theoretical Ambiguities in Doctoral Theses in the Education Field

    Science.gov (United States)

    du Preez, Petro; Simmonds, Shan

    2014-01-01

    Theoretical ambiguities in curriculum studies result in conceptual mayhem. Accordingly, they hinder the development of the complicated conversation on curriculum as a verb. This article aims to contribute to reconceptualizing curriculum studies as a dynamic social practice that aspires to thinking and acting with intelligences and sensitivity so…

  17. THEORETICAL AND METHODOLOGICAL APPROACHES TO THE STUDY OF PROTEST ACTIVITY IN THE WESTERN SOCIOLOGICAL THOUGHT

    OpenAIRE

    Купрєєва, Ю. О.

    2015-01-01

    In this article the author discusses the main theoretical and methodological approaches to the study of protest activity. Among them - the theory of collective behavior, the relative deprivation theory, the new social movements theory and the resource mobilization theory. Highlighted their strengths and weaknesses. Focused on the new direction of protest studies connected with the development of the Internet.

  18. On the communicative function of body odors: A theoretical integration and review

    NARCIS (Netherlands)

    de Groot, J.H.B.; Smeets, M.A.M.; Semin, G.R.

    2017-01-01

    Humans use multiple senses to navigate the social world, and the sense of smell is arguably the most underestimated one. An intriguing aspect of the sense of smell is its social communicative function. Research has shown that human odors convey information about a range of states (e.g., emotions,

  19. Information-Theoretic Conditions for Two-Party Secure Function Evaluation

    DEFF Research Database (Denmark)

    Schaffner, Christian; Crépeau, Claude; Savvides, George

    2006-01-01

    The standard security definition of unconditional secure function evaluation, which is based on the ideal/real model paradigm, has the disadvantage of being overly complicated to work with in practice. On the other hand, simpler ad-hoc definitions tailored to special scenarios have often been...

  20. Theoretical and experimental study of resonant inelastic X-ray scattering for NiO

    International Nuclear Information System (INIS)

    Kotani, A.; Matsubara, M.; Uozumi, T.; Ghiringhelli, G.; Fracassi, F.; Dallera, C.; Tagliaferri, A.; Brookes, N.B.; Braicovich, L.

    2006-01-01

    Resonant inelastic X-ray scattering (RIXS) spectra for Ni 2p to 3d excitation and 3d to 2p de-excitation of NiO are studied both theoretically and experimentally. Theoretical calculations with a single impurity Anderson model (SIAM) describe the charge transfer (CT) and d-d excitations in RIXS, and detailed study is made for the CT energy. High resolution RIXS measurements reveal the precise d-d excitation structure and its polarization dependence, and they are well reproduced by the SIAM calculation

  1. Theoretical modelling of semiconductor surfaces microscopic studies of electrons and photons

    CERN Document Server

    Srivastava, G P

    1999-01-01

    The state-of-the-art theoretical studies of ground state properties, electronic states and atomic vibrations for bulk semiconductors and their surfaces by the application of the pseudopotential method are discussed. Studies of bulk and surface phonon modes have been extended by the application of the phenomenological bond charge model. The coverage of the material, especially of the rapidly growing and technologically important topics of surface reconstruction and chemisorption, is up-to-date and beyond what is currently available in book form. Although theoretical in nature, the book provides

  2. Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications.

    Science.gov (United States)

    Cavo, Marta; Scaglione, Silvia

    2016-11-01

    The really nontrivial goal of tissue engineering is combining all scaffold micro-architectural features, affecting both fluid-dynamical and mechanical performance, to obtain a fully functional implant. In this work we identified an optimal geometrical pattern for bone tissue engineering applications, best balancing several graft needs which correspond to competing design goals. In particular, we investigated the occurred changes in graft behavior by varying pore size (300μm, 600μm, 900μm), interpore distance (equal to pore size or 300μm fixed) and pores interconnection (absent, 45°-oriented, 90°-oriented). Mathematical considerations and Computational Fluid Dynamics (CFD) tools, here combined in a complete theoretical model, were carried out to this aim. Poly-lactic acid (PLA) based samples were realized by 3D printing, basing on the modeled architectures. A collagen (COL) coating was also realized on grafts surface and the interaction between PLA and COL, besides the protein contribution to graft bioactivity, was evaluated. Scaffolds were extensively characterized; human articular cells were used to test their biocompatibility and to evaluate the theoretical model predictions. Grafts fulfilled both the chemical and physical requirements. Finally, a good agreement was found between the theoretical model predictions and the experimental data, making these prototypes good candidates for bone graft replacements. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis

    Science.gov (United States)

    Wang, Meng; Liu, Chao; Xu, Xiaoxiao; Li, Qibin

    2016-06-01

    The unimolecular and bimolecular decomposition reactions in processes of vanillin pyrolysis were theoretically investigated by employing density functional theory (DFT) method at M06-2X/6-31 G+(d,p) level. The result shows that the homolytic cleavage of O-CH3 bond could be the dominant initial step in the pyrolysis of vanillin. The hydrogen abstractions from functional groups of vanillin by the formed radicals play important roles in the formation of main products. Both formyl, hydroxyl and methoxyl group contribute to the formation of CO. Benzene is formed from the hydrogen addition reaction between hydrogen radical and phenol at high temperature.

  4. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  5. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    Science.gov (United States)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  6. Theoretical and experimental study of modes associated to ion cyclotron heating on TFR

    International Nuclear Information System (INIS)

    Pignol, L.

    1985-05-01

    In this work, the ion cyclotron wave evolution is followed thanks to a coherent scattering device using carbon dioxide laser radiation. A theoretical part presents the dispersion equation that obey the waves excited in the plasma by antenna emitting ion cyclotron frequency. Then measurements given by the diagnostic are given. Fast and slow waves evidenced theoretically, are experimentally observed. Two simple theoretical models allow to extract physical quantities characteristics of the two modes. These two modes are followed along the radial coordinate of the tore and their behavior through the hybrid curve is studied. measured spectra shape is shown to confirm the described numerical code validity. Time study of the slow wave shows of internal relaxation phenomenon of plasma [fr

  7. EFFICIENCY OF ISO 9001 IN PORTUGAL: A QUALITATIVE STUDY FROM A HOLISTIC THEORETICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Alcina Dias

    2013-03-01

    Full Text Available The purpose of this paper is to analy se the efficiency of ISO 9001 from a holistic theoretical approach where the Contingency theory, the Institutional theory and the Resources-Based View are integrated. The study was carried out in companies of different sectors of activity in Portugal, based on a qualitative methodology (interviews. The fact of the interviews having been undertaken under an ISO 9001 structure made it easier for companies to grasp the issues under investigation. An ISO 9001 characterisation was carried out on a theoretical framework approach and findings point out efficiency gains and revealed that the absence of ISO 9001 would work as a competitive disadvantage. The contribution of this research aims to reinforce the state of art as concerns the theoretical scope of analysis of these issues enriched by the case study achievement.

  8. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry

    International Nuclear Information System (INIS)

    Staron, E.

    1996-01-01

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs

  9. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  11. Theoretical studies on the inactivation mechanism of γ-aminobutyric acid aminotransferase.

    Science.gov (United States)

    Durak, A T; Gökcan, H; Konuklar, F A S

    2011-07-21

    The inactivation mechanism of γ-aminobutyric acid aminotransferase (GABA-AT) in the presence of γ-vinyl-aminobutyric acid, an anti-epilepsy drug, has been studied by means of theoretical calculations. Density functional theory methods have been applied to compare the three experimentally proposed inactivation mechanisms (Silverman et al., J. Biol. Chem., 2004, 279, 363). All the calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Single point solvent calculations were carried out in water, by means of an integral equation formalism-polarizable continuum model (IEFPCM) at the B3LYP/6-31+G(d,p) level of theory. The present calculations provide an insight into the mechanistic preferences of the inactivation reaction of GABA-AT. The results also allow us to elucidate the key factors behind the mechanistic preferences. The computations also confirm the importance of explicit water molecules around the reacting center in the proton transfer steps.

  12. Experimental and theoretical study to explain the morphology of CaMoO4 crystals

    Science.gov (United States)

    Oliveira, F. K. F.; Oliveira, M. C.; Gracia, L.; Tranquilin, R. L.; Paskocimas, C. A.; Motta, F. V.; Longo, E.; Andrés, J.; Bomio, M. R. D.

    2018-03-01

    CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x = 5 and 6) and [MoOy] (y = 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals.

  13. The quantization of the attention function under a Bayes information theoretic model

    International Nuclear Information System (INIS)

    Wynn, H.P.; Sebastiani, P.

    2001-01-01

    Bayes experimental design using entropy, or equivalently negative information, as a criterion is fairly well developed. The present work applies this model but at a primitive level in statistical sampling. It is assumed that the observer/experimentor is allowed to place a window over the support of a sampling distribution and only 'pay for' observations that fall in this window. The window can be modeled with an 'attention function', simply the indicator function of the window. The understanding is that the cost of the experiment is only the number of paid for observations: n. For fixed n and under the information model it turns out that for standard problems the optimal structure for the window, in the limit amongst all types of window including disjoint regions, is discrete. That is to say it is optimal to observe the world (in this sense) through discrete slits. It also shows that in this case Bayesians with different priors will receive different samples because typically the optimal attention windows will be disjoint. This property we refer to as the quantization of the attention function

  14. Theoretical study of hydrogen adsorption of graphene and carbon nanotubes decorated with palladium

    International Nuclear Information System (INIS)

    Lopez Corral, Ignacio; German, Estefania; Volpe, Maria A; Brizuela, Graciela; Juan, Alfredo

    2008-01-01

    Since their discovery in 1991, carbon nanotubes (CNT) have awakened great interest in materials science thanks to their extraordinary structural, electronic and mechanical properties which facilitate their application in many different areas. One of the most promising applications is the possibility of using CNT to store hydrogen for use in small scale fuel cells. Unfortunately, experimental studies performed some years ago have often led to controversial conclusions, causing a continuing debate that has still not been resolved. The most recent work suggests that the storage of hydrogen for practical purposes can be achieved with CNT decorated with transition metals, for example Pd. In this context, theoretical modeling methods have to be used for a detailed understanding of the influence and scope of this type of modification in the interaction of the nanotubes with atomic or molecular hydrogen. This work studied hydrogen adsorption in single-walled carbon nanotubes (SWCNT) doped with Pd atoms, using density functional theory (DFT) and semi-empirical methods. As a preliminary approximation to the system a graphene sheet was used, modeled with a 190 atom cluster of C in a hexagonal arrangement, on which a single Pd atom was placed in adsorption sites. Then C 190 clusters were used to simulate two different types of SWCNT: the zigzag SWCNT of quirality (10.0) and the armchair SWCNT of quirality (5.5), both decorated similarly on the graphene. Geometric optimization procedures for the system's different components were carried out with these models, and then the changes produced during the adsorption process in the electronic occupation of atomic orbitals and unions, for which crystal orbital overlap population (COOP) curves and overlap population (OP) values were evaluated. The results obtained with the graphene and nanotube approximations are in agreement and show that the SWCNT modified with Pd have more capacity to trap hydrogen than the non doped SWCNT. The

  15. Theoretical study on alkyne-linked carbazole polymers for blue-light multifunctional materials

    International Nuclear Information System (INIS)

    Yi Ling; Wang Xueye

    2011-01-01

    This paper studied poly[(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] (P1), butadiynylene-linked poly (3,6-carbazole) (P2) and butadiynylene-linked poly (2,7-carbazole) (P3) through the theoretical measurements with Gaussian 03 program package. To investigate the relationship between structures and properties of these multifunctional electroluminescent materials, their geometrical structures of ground and excited-states were optimized by B3LYP/6-31G (d) and CIS/6-31G (d) methods, respectively. The lowest excitation energies (E g 's), and the maximum absorption and emission wavelengths of these polymers were calculated by time-dependent density functional theory methods (TD-DFT). The important parameters for luminescent materials were also predicated including the ionization potentials (I p 's) and electron affinities (E a 's). The calculated results show that the highest-occupied molecular orbital (HOMO) energies lift about 0.27-0.49 eV compared to N,N'-bis(naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), suggesting the significant improved hole-accepting and transporting abilities. In addition, substitution of alkyne for carbazole resulted in a narrow band gap and a red shift of both the absorption and emission peaks. Through above calculations, it is evidenced that these polymers can be considered as candidates for excellent OLEDs with good hole-creating abilities and high blue-light emission. - Highlights: → We studied poly [(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] by theoretical method. → The geometrical structures of ground and excited-states had been optimized by B3LYP/6-31G (d) and CIS/6-31G (d). → The relationship between structures and properties of these multifunctional electroluminescent materials had been investigated. → These molecules are excellent candidates for multifunctional OLED materials. → The substitution of alkyne for carbazole results in a narrow band gap and a red shift of both

  16. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    Science.gov (United States)

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  17. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  18. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    Science.gov (United States)

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. © 2013. Published by Elsevier B.V. All rights reserved.

  19. Theoretical study of inner-shell ionization by heavy-particle impact

    International Nuclear Information System (INIS)

    Sarkadi, L.

    2000-01-01

    Complete text of publication follows. In our previous theoretical studies of inner-shell ionization of atoms by heavy-particle impact we applied the so-called coupled-states model. This theory was constructed to account for the intra-shell coupling effects in L-shell ionization. The model satisfactory reproduced the main tendencies of the measured L-shell ionization data (cross sections, L 3 -subshell alignment parameters) in a broad range of the collision energy, target and projectile atomic number. However, the accuracy of these calculations was uncertain, because the coupled-states model contained a series of approximation. The most questionable assumption was that the changes of the cross sections due to the subshell coupling effects were expressed by correction factors. The correction factors were derived considering only some representative transitions between the bound and continuum states, namely transitions into states of energy E f = 0 and angular momentum l f = 0.1. As a first step to improve the coupled-states model, a computer program was developed to calculate the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψ* f (r) /R - r/ -1 ψ i (r)dr, for arbitrary final state energy E f and angular momentum l f . The ψ k (r)'s are non-relativistic hydrogenic wave functions. The program consists of subroutines that compute matrix elements between eigenstates of both the total angular momentum j, and the orbital angular momentum l. As further output quantities, the radial components of the multipole series expansion of the matrix elements (the so-called G functions) can be obtained, as well. The structure of the program is such that the hydrogenic wave functions can be replaced by arbitrary one-electron wave functions. The program was tested in calculations of K-, L- and M-shell ionization probabilities and cross sections within the framework of the straight-line version of the (first-order) semiclassical

  20. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    Science.gov (United States)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  1. Spin-dependent Hall effect in degenerate semiconductors: a theoretical study

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V SDH ) is derived, and drift and diffusive contributions to V SDH are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V SDH increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V SDH is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.

  2. Theoretical framework to study exercise motivation for breast cancer risk reduction.

    Science.gov (United States)

    Wood, Maureen E

    2008-01-01

    To identify an appropriate theoretical framework to study exercise motivation for breast cancer risk reduction among high-risk women. An extensive review of the literature was conducted to gather relevant information pertaining to the Health Promotion Model, self-determination theory, social cognitive theory, Health Belief Model, Transtheoretical Model, theory of planned behavior, and protection motivation theory. An iterative approach was used to summarize the literature related to exercise motivation within each theoretical framework. Protection motivation theory could be used to examine the effects of perceived risk and self-efficacy in motivating women to exercise to facilitate health-related behavioral change. Evidence-based research within a chosen theoretical model can aid practitioners when making practical recommendations to reduce breast cancer risk.

  3. A Theoretical Study of the Outer Layers of Eight Kepler F-stars: The Relevance of Ionization Processes

    Science.gov (United States)

    Brito, Ana; Lopes, Ilídio

    2017-07-01

    We have analyzed the theoretical model envelopes of eight Kepler F-stars by computing the phase shift of the acoustic waves, α (ω ), and its related function, β (ω ). The latter is shown to be a powerful probe of the external stellar layers since it is particularly sensitive to the partial ionization zones located in these upper layers. We found that these theoretical envelopes can be organized into two groups, each of which is characterized by a distinct β (ω ) shape that we show to reflect the differences related to the magnitudes of ionization processes. Since β (ω ) can also be determined from the experimental frequencies, we compared our theoretical results with the observable β (ω ). Using the function β (ω ), and with the purpose of quantifying the magnitude of the ionization processes occurring in the outer layers of these stars, we define two indexes, {{Δ }}{β }1 and {{Δ }}{β }2. These indexes allow us to connect the microphysics of the interior of the star with macroscopic observable characteristics. Motivated by the distinct magnetic activity behaviors of F-stars, we studied the relation between the star’s rotation period and these indexes. We found a trend, in the form of a power-law dependence, that favors the idea that ionization is acting as an underlying mechanism, which is crucial for understanding the relation between rotation and magnetism and even observational features such as the Kraft break.

  4. A Theoretical Analysis: Physical Unclonable Functions and The Software Protection Problem

    Energy Technology Data Exchange (ETDEWEB)

    Nithyanand, Rishab [Stony Brook Univ., NY (United States); Solis, John H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-09-01

    Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are physical systems whose responses to input stimuli (i.e., challenges) are easy to measure (within reasonable error bounds) but hard to clone. This property of unclonability is due to the accepted hardness of replicating the multitude of uncontrollable manufacturing characteristics and makes PUFs useful in solving problems such as device authentication, software protection, licensing, and certified execution. In this paper, we focus on the effectiveness of PUFs for software protection and show that traditional non-computational (black-box) PUFs cannot solve the problem against real world adversaries in offline settings. Our contributions are the following: We provide two real world adversary models (weak and strong variants) and present definitions for security against the adversaries. We continue by proposing schemes secure against the weak adversary and show that no scheme is secure against a strong adversary without the use of trusted hardware. Finally, we present a protection scheme secure against strong adversaries based on trusted hardware.

  5. [Habermas and Paulo Freire: theoretical referrals for the study on communication in nursing].

    Science.gov (United States)

    Larocca, Liliana Muller; Mazza, Verônica de Azevedo

    2003-08-01

    The present work has the objective of introducing the ideas of Jürgen Habermas and Paulo Freire about the dialogue as a fundamental human phenomenon, data on their trajectories of life, ideological approaches when locating the human being through history and their relevance as theoretical referrals for the study on communication in the process of the nurse's work.

  6. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  7. A Case-Study Assignment to Teach Theoretical Perspectives in Abnormal Psychology.

    Science.gov (United States)

    Perkins, David V.

    1991-01-01

    Describes an assignment that requires students to organize, prepare, and revise a case study in abnormal behavior. Explains that students employ a single theoretical perspective in preparing a report on a figure from history, literature, the arts, or current events. Discusses the value of the assignment for students. (SG)

  8. A theoretical study on the influence of gas adsorption on interparticle forces in powders

    NARCIS (Netherlands)

    Cottaar, E.J.E.; Rietema, K.

    1986-01-01

    Using data from the literature and some additional experiments it is investigated whether the interparticle forces in general and more specifically the cohesion between particles are influenced by the physisorption of gases. In this otherwise theoretical study the force to be applied to a particle

  9. Reactor oscillator project - Theoretical study; operation problems; choice of the ionization chamber

    International Nuclear Information System (INIS)

    Lolic, B.; Markovic, V.

    1961-01-01

    Theoretical study of the reactor operator covers methods of the danger coefficient and the method based on measuring the phase angle. Operation with the reactor oscillator describes measurement of the cross section and resonance integral, measurement of the fissionable materials properties, measurement of impurities in the graphite sample. A separate chapter is devoted to the choice of the appropriate ionization chamber

  10. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders

    2008-01-01

    that similar mechanisms are operating. A DFT (B3LYP) study of the catalytic cycle indicated a rapid oxidative addition into the C(O)-H bond followed by a rate-limiting extrusion of CO and reductive elimination. The theoretical kinetic isotope effects based on this mechanism were in excellent agreement...

  11. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  12. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  13. A Theoretical Framework to Study Variations in Workplace Violence Experienced by Emergency Responders

    NARCIS (Netherlands)

    L. van Reemst (Lisa)

    2016-01-01

    textabstractEmergency responders are often sent to the front line and are often confronted with aggression and violence in inter- action with citizens. According to previous studies, some professionals experience more workplace violence than others. In this article, the theoretical framework to

  14. A theoretical framework to study variations in workplace violence experienced by emergency responders

    NARCIS (Netherlands)

    L. van Reemst (Lisa)

    2016-01-01

    markdownabstractEmergency responders are often sent to the front line and are often confronted with aggression and violence in interaction with citizens. According to previous studies, some professionals experience more workplace violence than others. In this article, the theoretical framework to

  15. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NARCIS (Netherlands)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar Gelepordsari, M.; Salavati-Fard, T.

    2016-01-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned

  16. Theoretical study and experimental investigation of mixed and natural circulation in LMFBR core subassemblies

    International Nuclear Information System (INIS)

    Leteinturier, D.; Blanc, D.; Menant, B.; Basque, G.

    1980-02-01

    A presentation is made of theoretical and experimental studies carried out in France on mixed and natural convection in LMFBR wire wrapped bundles. Two codes are described, one for mixed convection THERNAT and the other for natural convection BACCHUS. THe related experimental program FETUNA, with electrically heated bundles in sodium loops, is also presented

  17. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    Science.gov (United States)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  18. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  19. Determining the theoretical reliability function of thermal power system using simple and complex Weibull distribution

    Directory of Open Access Journals (Sweden)

    Kalaba Dragan V.

    2014-01-01

    Full Text Available The main subject of this paper is the representation of the probabilistic technique for thermal power system reliability assessment. Exploitation research of the reliability of the fossil fuel power plant system has defined the function, or the probabilistic law, according to which the random variable behaves (occurrence of complete unplanned standstill. Based on these data, and by applying the reliability theory to this particular system, using simple and complex Weibull distribution, a hypothesis has been confirmed that the distribution of the observed random variable fully describes the behaviour of such a system in terms of reliability. Establishing a comprehensive insight in the field of probabilistic power system reliability assessment technique could serve as an input for further research and development in the area of power system planning and operation.

  20. Misalignment Effect Function Measurement for Oblique Rotation Axes: Counterintuitive Predictions and Theoretical Extensions

    Science.gov (United States)

    Ellis, Stephen R.; Adelstein, Bernard D.; Yeom, Kiwon

    2013-01-01

    The Misalignment Effect Function (MEF) describes the decrement in manual performance associated with a rotation between operators' visual display frame of reference and that of their manual control. It now has been empirically determined for rotation axes oblique to canonical body axes and is compared with the MEF previously measured for rotations about canonical axes. A targeting rule, called the Secant Rule, based on these earlier measurements is derived from a hypothetical process and shown to describe some of the data from three previous experiments. It explains the motion trajectories determined for rotations less than 65deg in purely kinematic terms without the need to appeal to a mental rotation process. Further analysis of this rule in three dimensions applied to oblique rotation axes leads to a somewhat surprising expectation that the difficulty posed by rotational misalignment should get harder as the required movement is shorter. This prediction is confirmed. Geometry underlying this rule also suggests analytic extensions for predicting more generally the difficulty of making movements in arbitrary directions subject to arbitrary misalignments.