WorldWideScience

Sample records for functional protein hinge

  1. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  2. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.

    Directory of Open Access Journals (Sweden)

    Glen B Banks

    2010-05-01

    Full Text Available Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophin(DeltaR4-R23/DeltaCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophin(DeltaR4-R23/DeltaCT led to small myofibers (12% smaller than wild-type, Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophin(DeltaR4-R23/DeltaCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid alpha-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.

  3. Effect of pH on the hinge region of influenza viral protein: a combined constant pH and well-tempered molecular dynamics study

    Science.gov (United States)

    Pathak, Arup Kumar

    2018-05-01

    Despite the knowledge that the influenza protein, hemagglutinin, undergoes a large conformational change at low pH during the process of fusion with the host cell, its molecular mechanism remains elusive. The present constant pH molecular dynamics (CpHMD) study identifies the residues responsible for large conformational change in acidic condition. Based on the pKa calculations, it is predicted that His-106 is much more responsible for the large conformational change than any other residues in the hinge region of hemagglutinin protein. Potential of mean force profile from well-tempered meta-dynamics (WT-MtD) simulation is also generated along the folding pathway by considering radius of gyration (R gyr) as a collective variable (CV). It is very clear from the present WT-MtD study, that the initial bending starts at that hinge region, which may trigger other conformational changes. Both the protein–protein and protein–water HB time correlation functions are monitored along the folding pathway. The protein–protein (full or hinge region) HB time correlation functions are always found to be stronger than those of the protein–water time correlation functions. The dynamical balance between protein–protein and protein–water HB interactions favors the stabilization of the folded state.

  4. Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Bacot-Davis, Valjean R., E-mail: bacotdavis@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Department of Biochemistry, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States)

    2013-08-15

    Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35–40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition. - Highlights: • The hinge domain provides critical residues in Cardiovirus L:Ran complex formation. • Leader prefers to bind Ran in a nucleotide free, GDP-conformation. • L-induced Nup62 phosphorylation is reduced with Ran-deficient binding mutations.

  5. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant.

    Directory of Open Access Journals (Sweden)

    Saara Laulumaa

    Full Text Available Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS. The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.

  6. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    International Nuclear Information System (INIS)

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-01-01

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  7. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region.

    Directory of Open Access Journals (Sweden)

    Veronika N Bade

    Full Text Available The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls, ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation. ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no

  8. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  9. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region

    DEFF Research Database (Denmark)

    Stelzer, Walter; Scharnagl, Christina; Leurs, Ulrike

    2016-01-01

    The transmembrane helix of the amyloid precursor protein is subject to proteolytic cleavages by γ-secretase at different sites resulting in Aβ peptides of different length and toxicity. A number of point mutations within this transmembrane helix alter the cleavage pattern thus enhancing production...... destabilizes amide hydrogen bonds in the hinge which connects dimerization and cleavage regions. Weaker intrahelical hydrogen bonds at the hinge may enhance helix bending and thereby affect recognition of the transmembrane substrate by the enzyme and/or presentation of its cleavage sites to the catalytic cleft....

  10. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  11. Good Functional Recovery of Complex Elbow Dislocations Treated With Hinged External Fixation: A Multicenter Prospective Study

    NARCIS (Netherlands)

    G.I.T. Iordens (Gijs); D. den Hartog (Dennis); E.M.M. van Lieshout (Esther); W.E. Tuinebreijer (Wim); J. de Haan (Jeroen); P. Patka (Peter); M.H.J. Verhofstad (Michiel); N.W.L. Schep (Niels)

    2015-01-01

    textabstractBackground: After a complex dislocation, some elbows remain unstable after closed reduction or fracture treatment. Function after treatment with a hinged external fixator theoretically allows collateral ligaments to heal without surgical reconstruction. However, there is a lack of

  12. Good Functional Recovery of Complex Elbow Dislocations Treated With Hinged External Fixation: A Multicenter Prospective Study

    NARCIS (Netherlands)

    Iordens, Gijs I. T.; den Hartog, Dennis; van Lieshout, Esther M. M.; Tuinebreijer, Wim E.; de Haan, Jeroen; Patka, Peter; Verhofstad, Michael H. J.; Schep, Niels W. L.; Bronkhorst, M. W. G. A.; de Vries, M. R.; Goslings, J. C.; Rhemrev, S. J.; Roukema, G. R.; van der Meulen, H. G. W. M.; Verleisdonk, E. J. M. M.; Vroemen, J. P. A. M.; Wittich, Ph

    2015-01-01

    After a complex dislocation, some elbows remain unstable after closed reduction or fracture treatment. Function after treatment with a hinged external fixator theoretically allows collateral ligaments to heal without surgical reconstruction. However, there is a lack of prospective studies that

  13. A fully redundant power hinge for LANDSAT-D appendages

    Science.gov (United States)

    Mamrol, F. E.; Matteo, D. N.

    1981-01-01

    The configuration and testing of a power driven hinge for deployment of the solar array and antenna boom for the LANDSAT-D spacecraft is discussed. The hinge is fully mechanically and electrically redundant and, thereby, can sustain a single point failure of any one motor (or its power supply), speed reducer, or bearing set without loss of its ability to function. This design utilizes the capability of the stepper motor drive to remove the flexibility of the drive train from the joint stiffness equation when the hinge is loaded against its stop. This feature precludes gapping of the joint under spacecraft maneuver loads even in the absence of a latching feature. Thus, retraction is easily accomplished by motor reversal without the need for a solenoid function to remove the latch.

  14. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  15. Evidence on How a Conserved Glycine in the Hinge Region of HapR Regulates Its DNA Binding Ability: LESSONS FROM A NATURAL VARIANT.

    Energy Technology Data Exchange (ETDEWEB)

    M Dongre; N Singh; C Dureja; N Peddada; A Solanki; F Ashish; S Raychaudhuri

    2011-12-31

    HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapRV2) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapRV2 to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapRV2 (HapRV2G), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapRV2 and HapRV2G proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a 'Y' shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.

  16. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  17. Hinge(ga) Brand - tõhusaim relv mõrtsukate ja varaste vastu / Hinge Brand ; interv. Kaarel Kressa

    Index Scriptorium Estoniae

    Brand, Hinge, 1940-2007

    2006-01-01

    Intervjuu 40 aastat prokuröriametit pidanud ja pensionile siirduva Hinge Brandiga. Lisatud: Hinge Brandi CV ning Põhja ringkonnaprokuratuuri erisasjade prokuröri Jüri Kasesalu, siseministeeriumi arendusjuhi Lauri Taburi ja keskkriminaalpolitsei politseijuhtivinspektori Margus Maasepa kommentaarid

  18. Magnetic Actuation of Self-Assembled DNA Hinges

    Science.gov (United States)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  19. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  20. Reliability evaluation for hinges of folder devices using ESPI

    International Nuclear Information System (INIS)

    Lee, Tae Hun; Chang, Seok Weon; Jhang, Kyung Young

    2004-01-01

    Folder type electronic devices have hinge to support the rotational motion of folder. This hinge is stressed by the rotational inertia moment of folder at the maximum open limit position of folder. This stress is repeated whenever the folder is open, and it is a cause of hinge fracture. In this paper, the reliability evaluation for the hinge fracture in the folder type cellular phone is discussed. For this, the durability testing machine using crack-rocker mechanism is developed to evaluate the life cycle of the hinge, and the degradation after repetitions of opening and shutting is evaluated from the deformation around the hinge, where the deformation is measured by ESPI (electronic speckle pattern interferometer). Experimental results showed that ESPI was able to measure the deformation of hinge precisely, so we could monitor the change of deformation around the hinge as the repetition number of folder open is increased.

  1. Multi-functional hinge equipped with a magneto-rheological rotary damper for solar array deployment system

    Science.gov (United States)

    Wen, Mingfu; Yu, Miao; Fu, Jie; Wu, Zhengzhong

    2015-02-01

    This article describes the design and simulation of a novel multi-functional hinge equipped with a rotary magnetorheological damper for solar array deployment system, which is comprised of a hinge, an angular sensor, a positioning and locking mechanism and a rotary damper. In order to achieve the compact design in structure, some components were reused in different function modules. It's the first to use magnet-rheological fluid (MRF) to dissipate the energy in solar array deployment system. The main advantage in using MR rotary damper instead of a viscous fluid rotary damper is that the damping force of MR damper can be adjusted according to the external magnetic field environment excited. A mechanic model was built and the structure design was focused on the MR rotary damper, a damping force model of this damper is deduced based on hydromechanics with Bingham plastic constitutive model. A simulation of deployment motion was taken to validate the motion sequence of various components during the unfolding and locking process. It can be obtained that a constant damping coefficient can hardly balance the different performance of solar deployment system, then a simulation of the proposed deployment system equipped with rotary MR damper was carried out. According to the simulation, it can be obtained that the terminal velocity decreased by 75.81% and the deployment time decreased by 72.37% compared with a given constant damping coefficients. Therefore, the proposed new type of rotary damper can reach a compromise with different performance utilizing an on-off control strategy.

  2. INFLUENCING OF FRICTION IN HINGES FORCE SIZE OF BARS

    Directory of Open Access Journals (Sweden)

    BOHOMAZ V. N.

    2016-04-01

    Full Text Available Formulation of the problem. The size of critical force of bar on the traditional method of calculation is determined in supposition of ideal hinge in the place of fixing of bar. There are both a hinge resistance at the turn of bar ends and their moving in the real hinges. Thus, there is the necessity of influencing character determination of these hinge imperfections on the size of critical force. In the existent scientific labours is devoted the alike problems, influencing of friction in the hinges of bar fastening on the size of critical force was not taken into account. At determination of bars stability with no ideality of hinges friction in them it is possible to take into account by the eccentric appendix of loading or appendix of moment. However at such approach it is difficult enough to define the size of attached force or moment. Purpose. To set influencing of friction in the hinge of bar fastening on of his critical force size in sense of Euler, and also build dependences for determination of bar critical force taking into account mechanical descriptions of hinges materials. Conclusion. For the task of determination the size of bar critical force with the joint fastening on ends are got the dependences which take into account mechanical descriptions of material hinge. The received dependences allow to define more exact meaning of critical force for bars. The examples of calculation of whole bar and bar with undercuting in the middle are resulted that values of critical force, certain on a traditional method are overpriced.

  3. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus

    KAUST Repository

    Zhu, Lizhe

    2016-02-24

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Agos but rigid for eukaryotic Agos. © 2016 American Chemical Society.

  4. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus.

    Science.gov (United States)

    Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Gao, Xin; Wang, Yanli; Huang, Xuhui

    2016-03-17

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.

  5. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  6. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  7. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  8. Functionalisation of the hinge region in receptor molecules for explosive detection

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved....

  9. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription.

    OpenAIRE

    Saget, B M; Shevell, D E; Walker, G C

    1995-01-01

    The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosph...

  10. Deployment Testing of Flexible Composite Hinges in Bi-Material Beams

    Science.gov (United States)

    Sauder, Jonathan F.; Trease, Brian

    2016-01-01

    Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.

  11. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.

    Science.gov (United States)

    Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M

    2009-12-01

    To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.

  12. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  13. Impact of Plastic Hinge Properties on Capacity Curve of Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Nasim Shatarat

    2017-01-01

    Full Text Available Pushover analysis is becoming recently the most practical tool for nonlinear analysis of regular and irregular highway bridges. The nonlinear behaviour of structural elements in this type of analysis can be modeled through automated-hinge or user-defined hinge models. The nonlinear properties of the user-defined hinge model for existing highway bridges can be determined in accordance with the recommendations of the Seismic Retrofit Manual by the Federal Highway Administration (FHWA-SRM. Finite element software such as the software SAP2000 offers a simpler and easier approach to determine the nonlinear hinge properties through the automated-hinge model which are determined automatically from the member material and cross section properties. However, the uncertainties in using the automated-hinge model in place of user-defined hinge model have never been addressed, especially for existing and widened bridges. In response to this need, pushover analysis was carried out for four old highway bridges, of which two were widened using the same superstructure but with more attention to seismic detailing requirements. The results of the analyses showed noticeable differences in the capacity curves obtained utilizing the user-defined and automated-hinge models. The study recommends that bridge design manuals clearly ask bridge designers to evaluate the deformation capacities of existing bridges and widened bridges using user-defined hinge model that is determined in accordance with the provisions of the FHWA-SRM.

  14. The role of hinges in primary total knee replacement.

    Science.gov (United States)

    Gehrke, T; Kendoff, D; Haasper, C

    2014-11-01

    The use of hinged implants in primary total knee replacement (TKR) should be restricted to selected indications and mainly for elderly patients. Potential indications for a rotating hinge or pure hinge implant in primary TKR include: collateral ligament insufficiency, severe varus or valgus deformity (>20°) with necessary relevant soft-tissue release, relevant bone loss including insertions of collateral ligaments, gross flexion-extension gap imbalance, ankylosis, or hyperlaxity. Although data reported in the literature are inconsistent, clinical results depend on implant design, proper technical use, and adequate indications. We present our experience with a specific implant type that we have used for over 30 years and which has given our elderly patients good mid-term results. Because revision of implants with long cemented stems can be very challenging, an effort should be made in the future to use shorter stems in modular versions of hinged implants. ©2014 The British Editorial Society of Bone & Joint Surgery.

  15. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  16. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  17. Analysis of a piping system under seismic load using incremental hinge technique

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Singh, R.K.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Ramesh Babu, R.

    2008-01-01

    ASME Boiler and Pressure Vessel Code treats piping system as a series of components but not as an overall structural system. Limit analyses and collapse tests at component level are used to establish stress allowables on seismic stresses. The code does not consider the load redistributions and structural redundancy existing in piping systems that prevent system collapse even when one or more individual components loaded beyond their collapse levels. This necessitates a simple analytical method for evaluation of inelastic seismic response at system level. The present paper presents a simplified analytical procedure for predicting inelastic response of a typical piping system subjected to seismic load. The analytical method known as incremental hinge technique is based on plastic system behavior in which the yielded components are replaced with hinge models when a critical hinge moment is reached. It also takes into account the inelastic response spectrum reduction factors and displacement ductility. The analytical method is used to obtain the inelastic response, location of hinge formation and level of base excitation needed for hinge formation. The predicted hinge locations and hinge ordering is compared with the results of a shake table test conducted on the piping system. (author)

  18. Enhanced multimaterial 4D printing with active hinges

    Science.gov (United States)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  19. Seismic response analysis for hinged-leg type port crane

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwazaki, A.; Kanayama, T.; Arai, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-04-01

    Container cranes and unloaders in Kobe Pont were severely damaged during the Southern Hyogo Prefecture Earthquake in 1995. Notably, some of the hinged-leg type of cranes with hinges at the end of sea-or land-side of legs were overturned. These damages were derived from the uplifting of their legs. To explain the uplifting and overturning behavior, we carried out nonlinear analyses and shaking table tests using a 1/8-scale model of the container crane. The results of nonlinear response analyses of hinged-leg type of crane, which are in an agreement with the state of damages in the Southern Hyogo Prefecture Earthquake and the result of shaking table tests, are described. (author)

  20. Optimal design of an extrusion process for a hinge bracket

    International Nuclear Information System (INIS)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong

    2016-01-01

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  1. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  2. Probing Protein Multidimensional Conformational Fluctuations by Single-Molecule Multiparameter Photon Stamping Spectroscopy

    Science.gov (United States)

    2015-01-01

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  3. Operational characterization of CSFH MEMS technology based hinges

    Science.gov (United States)

    Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio

    2018-05-01

    Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple-field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D-RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

  4. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses.

    Science.gov (United States)

    Page, Timothy P; Whitman, Jeffrey

    2016-01-01

    The aims of this study are to define the various stages of capsular contraction syndrome (CCS) and its effect on refractive error with hinge-based accommodating intraocular lenses (IOLs) and to describe a systematic approach for the management of the different stages of CCS. Hinge-based accommodative IOLs function via flexible hinges that vault the optic forward during accommodation. However, it is the flexibility of the IOL that makes it prone to deformation in the event of CCS. The signs of CCS are identified and described as posterior capsular striae, fibrotic bands across the anterior or posterior capsule, and capsule opacification. Various degrees of CCS may affect hinge-based accommodating IOLs in a spectrum from subtle changes in IOL appearance to significant increases in refractive error and loss of uncorrected visual acuity. The signs of CCS and its effect on IOL position and the resulting changes in refractive error are matched to appropriate treatment plans. A surgeon can avoid CCS and manage the condition if familiar with the early signs of CCS. If CCS is identified, yttrium-aluminum-garnet laser capsulotomy should be considered. If moderate CCS occurs, it may be effectively treated with insertion of a capsular tension ring. If CCS is allowed to progress to advanced stages, an IOL exchange may be necessary. Surgeons should be familiar with the stages of CCS and subsequent interventions. The steps outlined in this article help to guide surgeons in the prevention and management of CCS with hinge-based accommodative IOLs in order to provide improved refractive outcomes for patients.

  5. Prokurör nägi inimliku jõhkruse piiritust / Hinge Brand ; interv. Tiiu Põld

    Index Scriptorium Estoniae

    Brand, Hinge, 1940-2007

    2006-01-01

    Intervjuu ametist lahkuva prokurör Hinge Brandiga. Lisatud: Hinge Brandi CV; Hinge Brandi osavõtul peetud kõmulisemad mõrvaprotsessid. Kommenteerivad Aivar Pilv, Elmar Vaher, Alar Kirs, Eda Murak, Dilaila Nahkur-Tammiksaar

  6. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    Science.gov (United States)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  7. Synthetic study on cystinyl peptides using solution and solid phase metodology: human IgG1 hinge region

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Gut, Vladimír; Ježek, Jan; Buděšínský, Miloš; Kašička, Václav; Wünsch, Erich; Hlaváček, Jan

    2010-01-01

    Roč. 39, č. 3 (2010), s. 641-650 ISSN 0939-4451 R&D Projects: GA ČR GA203/03/1362; GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : hinge region * immunoglobulin * prion protein * solution synthesis * solid phase synthesis Subject RIV: CC - Organic Chemistry Impact factor: 4.106, year: 2010

  8. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves.

    Science.gov (United States)

    Simon, Hélène A; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2010-11-01

    Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid-structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.

  9. Burst protection for reactor pressure vessels using a hinged support bearing

    International Nuclear Information System (INIS)

    Michel, E.; Maritsch, F.

    1976-01-01

    The invention deals with a simplification of the design and manufacture and the way of controlling a hinged support bearing used as burst protection. The pure pressure load of the, e.g., 32 hinged supports distributed along the circumference of the pressure vessel head is achieved in the braced state with little control effort by a pure rotating motion caused pneumatically or hydraulically. The hinged supports are inclined by about 45 0 upwards/outwards in the braced state and with their cap-shaped head and foot are selflocking by pivoted between a supporting structure, firmly connected with the building, and a fishing ring. (TK) [de

  10. Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

    Directory of Open Access Journals (Sweden)

    Z. Du

    2016-05-01

    Full Text Available Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

  11. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    Science.gov (United States)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  12. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    International Nuclear Information System (INIS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X Q

    2013-01-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures. (paper)

  13. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage

    DEFF Research Database (Denmark)

    Yoon, G. H.; Kim, Y. Y.; Bendsøe, Martin P.

    2004-01-01

    In topology optimization applications for the design of compliant mechanisms, the formation of hinges is typically encountered. Often such hinges are unphysical artifacts that appear due to the choice of discretization spaces for design and analysis. The objective of this work is to present a new...... two-dimensional compliant mechanism design problems....

  14. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  15. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  16. Amino acid sequence requirements in the human IgA1 hinge for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Senior, BW; Batten, MR; Kilian, Mogens

    2002-01-01

    All the IgA1 proteases of the different pathogenic species of Streptococcus cleave the hinge of the alpha chain of human IgA1 only at one proline-threonine peptide bond. In order to study the importance of these amino acids for cleavage, several hinge mutant recombinant IgA1 antibodies were const...... constructed. The mutations were found to be without major effect upon the structure or functional abilities of the antibodies. However, they had a major effect upon their sensitivity to cleavage by some of the IgA1 proteases....

  17. Plastic collapse load of crown-hinged steel circular arches : a theoretical method

    NARCIS (Netherlands)

    Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.

    2013-01-01

    For construction purposes and to avoid detrimental influences of foundation settlements arches are not always made from a single arch-rib but are built by connecting two curvilinear elements at the crown with a hinge. These arches are also known as crown-hinged arches. This paper presents an

  18. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses

    Directory of Open Access Journals (Sweden)

    Page TP

    2016-06-01

    Full Text Available Timothy P Page,1 Jeffrey Whitman2 1Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, 2Key-Whitman Eye Center, Dallas, TX, USA Purpose: The aims of this study are to define the various stages of capsular contraction syndrome (CCS and its effect on refractive error with hinge-based accommodating intraocular lenses (IOLs and to describe a systematic approach for the management of the different stages of CCS. Methods: Hinge-based accommodative IOLs function via flexible hinges that vault the optic forward during accommodation. However, it is the flexibility of the IOL that makes it prone to deformation in the event of CCS. The signs of CCS are identified and described as posterior capsular striae, fibrotic bands across the anterior or posterior capsule, and capsule opacification. Various degrees of CCS may affect hinge-based accommodating IOLs in a spectrum from subtle changes in IOL appearance to significant increases in refractive error and loss of uncorrected visual acuity. The signs of CCS and its effect on IOL position and the resulting changes in refractive error are matched to appropriate treatment plans. Results: A surgeon can avoid CCS and manage the condition if familiar with the early signs of CCS. If CCS is identified, yttrium–aluminum–garnet laser capsulotomy should be considered. If moderate CCS occurs, it may be effectively treated with insertion of a capsular tension ring. If CCS is allowed to progress to advanced stages, an IOL exchange may be necessary. Conclusion: Surgeons should be familiar with the stages of CCS and subsequent interventions. The steps outlined in this article help to guide surgeons in the prevention and management of CCS with hinge-based accommodative IOLs in order to provide improved refractive outcomes for patients. Keywords: z-syndrome, pseudophakic tilt, IOL subluxation, CTR, capsular tension ring, capsular fibrosis

  19. Hinged roof timber

    Energy Technology Data Exchange (ETDEWEB)

    Shestov, P I; Golub, A G; Yefremov, V I

    1980-08-07

    A hinged roof timer is suggested which includes a beam with prong and loop on the end which have openings in the form of ring slits for the distance wedges and round for the pins. In this case the opening of the distance wedge in the ring is arranged in relation to the opening for the pin closer to the end of the beam, and in the prong, in the opposite order. In order to improve the operating quality by guaranteeing active support of the cantilever roof timber without increasing its overall dimensions for the height of the opening for the distance wedge in the prong and the ring, beams are arranged axisymmetrically to the longitudinal axis.

  20. Kinematics analysis on hinges of robot arm gripper for harmful chemical handling

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Mustafa, Nurul Fahimah; Daud, Mohd Hisam

    2017-09-01

    The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.

  1. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region.

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge

  2. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    Science.gov (United States)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  3. Solar array deployment analysis considering path-dependent behavior of a tape spring hinge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Won; Park, Young Jin [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Solar array deployment analysis is conducted considering the path-dependent nonlinear behavior of tape spring hinge. Such hinges offer many advantages over rigid hinges; they are self-deployable, self-locking, lightweight, and simple. However, they show strongly nonlinear behavior with respect to rotation angle, making deployment analysis difficult. To accurately consider the characteristics of tape spring hinges for deployment analysis, a path-dependent path identification (PI) method for tracing the previous path of the moment is introduced. To analyze the deployment motion, the governing equation for solar array deployment is derived within the framework of Kane's dynamic equation for three deployable solar panels. The numerical solution is compared with the Recurdyn's multi-body dynamics analysis solution using experimentally measured moment-rotation profiles. Solar array deployment analysis is conducted by considering and not considering the path-dependent PI method. This simulation example shows that the proposed path-dependent PI method is very effective for accurately predicting the deployment motion.

  4. The effect of klapskate hinge position on push-off performance: a simulation study

    NARCIS (Netherlands)

    Houdijk, J.H.P.; Bobbert, M.F.; de Koning, J.J.; de Groot, G.

    2003-01-01

    Purpose: The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed

  5. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  6. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the

  7. An optimization approach for black-and-white and hinge-removal topology designs

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongqing; Zhang, Xianmin [South China University of Technology, Guangzhou (China)

    2014-02-15

    An optimization approach for black-and-white and hinge-removal topology designs is studied. To achieve this motive, an optimal topology allowing grey boundaries is found firstly. When a suitable design has been obtained, this solution is then used as a starting point for the follow-up optimization with the goal to free unfavorable intermediate elements. For this purpose, an updated optimality criterion in which a threshold factor is introduced to gradually suppress elements with low density is proposed. The typical optimality method and new technique proposed are applied to the design procedure sequentially. Besides, to circumvent the one-point hinge connection problem producing in the process of freeing intermediate elements, a hinge-removal strategy is also proposed. During the optimization, the binary constraints on design variables are relaxed based on the scheme of solid isotropic material with penalization. Meanwhile, the mesh independency filter is employed to ensure the existence of a solution and remove well-known checkerboards. In this way, a solution that has few intermediate elements and is free of one-point hinge connections is obtained. Finally, different numerical examples including the compliance minimization, compliant mechanisms and vibration problems demonstrate the validity of the proposed approach.

  8. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation.

    Science.gov (United States)

    Jefferis, R; Lund, J; Pound, J D

    1998-06-01

    The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.

  9. Characterization of flexure hinges for the French watt balance experiment

    Directory of Open Access Journals (Sweden)

    Pinot Patrick

    2014-01-01

    Full Text Available In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1 an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2 a mass comparator to determine the bending stiffness of unloaded pivots; 3 a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  10. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M2-GnRH3-hinge-MVP vaccine.

    Science.gov (United States)

    Wang, Yiqin; Alahdal, Murad; Ye, Jia; Jing, Liangliang; Liu, Xiaoxin; Chen, Huan; Jin, Liang; Cao, Rongyue

    2018-01-23

    GnRH and VEGF have been investigated as prostate carcinoma enhancers that support tumor spread and progression. Although both have documented roles in prostate carcinoma and many cancer types, the weak immunogenicity of these peptides has remained a major challenge for use in immunotherapy. Here, we describe a novel strategy to inhibit GnRH and VEGF production and assess the effect on the immune responses against these hormones using the RM-1 prostate cancer model. We designed a novel recombinant fusion protein which combined GnRH and VEGF as a vaccine against this tumor. The newly constructed fusion protein hVEGF121-M2-GnRH3-hinge-MVP contains the human vascular endothelial growth factor (hVEGF121) and three copies of GnRH in sequential linear alignment and T helper epitope MVP as an immunogenic vaccine. The effectiveness of the vaccine in eliciting an immune response and attenuating the prostate tumor growth was evaluated. Results showed that administration of a new vaccine effectively elicited humoral and cellular immune responses. We found that, a novel fusion protein, hVEGF121-M2-GnRH3-hinge-MVP, effectively inhibited growth of RM-1 prostate model and effectively promoted immune response. In conclusion, hVEGF121-M2-GnRH3-hinge-MVP is an effective dual mechanism tumor vaccine that limits RM-1 prostate growth. This vaccine may be a promising strategy for the treatment of hormone refractory prostate malignancies.

  11. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    Directory of Open Access Journals (Sweden)

    Diana Campelo

    2017-10-01

    Full Text Available NADPH-cytochrome P450 reductase (CPR is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction, a linker (hinge, and a connecting/FAD domain (NADPH oxidation. It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state to an ensemble of open conformations (unlocked state, the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.

  12. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives.

    Directory of Open Access Journals (Sweden)

    Brian Healy

    Full Text Available Nisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid 'hinge' region (N 20, M 21 and K 22 which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.

  13. Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys.

    Science.gov (United States)

    Losen, Mario; Labrijn, Aran F; van Kranen-Mastenbroek, Vivianne H; Janmaat, Maarten L; Haanstra, Krista G; Beurskens, Frank J; Vink, Tom; Jonker, Margreet; 't Hart, Bert A; Mané-Damas, Marina; Molenaar, Peter C; Martinez-Martinez, Pilar; van der Esch, Eline; Schuurman, Janine; de Baets, Marc H; Parren, Paul W H I

    2017-04-20

    Autoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target. Here, we have used a model of the neuromuscular autoimmune disease myasthenia gravis in rhesus monkeys (Macaca mulatta) to test the therapeutic potential of a new blocker antibody: MG was induced by passive transfer of pathogenic acetylcholine receptor-specific monoclonal antibody IgG1-637. The effect of the blocker antibody (IgG4Δhinge-637, the hinge-deleted IgG4 version of IgG1-637) was assessed using decrement measurements and single-fiber electromyography. Three daily doses of 1.7 mg/kg IgG1-637 (cumulative dose 5 mg/kg) induced impairment of neuromuscular transmission, as demonstrated by significantly increased jitter, synaptic transmission failures (blockings) and a decrease in the amplitude of the compound muscle action potentials during repeated stimulations (decrement), without showing overt symptoms of muscle weakness. Treatment with three daily doses of 10 mg/kg IgG4Δhinge-637 significantly reduced the IgG1-637-induced increase in jitter, blockings and decrement. Together, these results represent proof-of principle data for therapy of acetylcholine receptor-myasthenia gravis with a monovalent antibody format that blocks binding of pathogenic autoantibodies.

  14. A hinged-pad test structure for sliding friction measurement in micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.P. de; Redmond, J.M.; Michalske, T.A.

    1998-08-01

    The authors describe the design, modeling, fabrication and initial testing of a new test structure for friction measurement in MEMS. The device consists of a cantilevered forked beam and a friction pad attached via a hinge. Compared to previous test structures, the proposed structure can measure friction over much larger pressure ranges, yet occupies one hundred times less area. The placement of the hinge is crucial to obtaining a well-known and constant pressure distribution in the device. Static deflections on the device were measured and modeled numerically, Preliminary results indicate that friction pad slip is sensitive to friction pad normal force.

  15. The use of modal derivatives in determining stroke-dependent frequencies of large stroke flexure hinges

    NARCIS (Netherlands)

    van den Belt, Mieke; Schilder, Jurnan; Valasek, Michael; Sika, Zbynek; Vampola, Tomas

    2017-01-01

    Nowadays, a lot of use is made of large stroke flexure hinges in precision engineering. However, these large stroke flexure hinges typically lose stiffness in supporting direction during deflection. The lowest natural frequency is a commonly used measure for this property. Therefore, in shape and

  16. The effects of klapskate hinge position on push-off performance: a simulation study.

    Science.gov (United States)

    Houdijk, Han; Bobbert, Maarten F; De Koning, Jos J; De Groot, Gert

    2003-12-01

    The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body's center of mass at take off (Weff). Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25% at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice.

  17. The epigenetic regulator Smchd1 contains a functional GHKL-type ATPase domain.

    Science.gov (United States)

    Chen, Kelan; Dobson, Renwick C J; Lucet, Isabelle S; Young, Samuel N; Pearce, F Grant; Blewitt, Marnie E; Murphy, James M

    2016-06-15

    Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic regulator that plays critical roles in gene regulation during development. Mutations in SMCHD1 were recently implicated in the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD), although the mechanistic basis remains of outstanding interest. We have previously shown that Smchd1 associates with chromatin via its homodimeric C-terminal hinge domain, yet little is known about the function of the putative GHKL (gyrase, Hsp90, histidine kinase, MutL)-type ATPase domain at its N-terminus. To formally assess the structure and function of Smchd1's ATPase domain, we have generated recombinant proteins encompassing the predicted ATPase domain and the adjacent region. Here, we show that the Smchd1 N-terminal region exists as a monomer and adopts a conformation resembling that of monomeric full-length heat shock protein 90 (Hsp90) protein in solution, even though the two proteins share only ∼8% overall sequence identity. Despite being monomeric, the N-terminal region of Smchd1 exhibits ATPase activity, which can be antagonized by the reaction product, ADP, or the Hsp90 inhibitor, radicicol, at a nanomolar concentration. Interestingly, introduction of an analogous mutation to that identified in SMCHD1 of an FSHD patient compromised protein stability, suggesting a possible molecular basis for loss of protein function and pathogenesis. Together, these results reveal important structure-function characteristics of Smchd1 that may underpin its mechanistic action at the chromatin level. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. Seismic performance of a grout-repaired construction defect in a column plastic hinge

    International Nuclear Information System (INIS)

    Budek, A.

    2006-01-01

    A column built to test the use of high-strength transverse reinforcement in seismically-loaded shear-critical columns was found to have a construction defect. The column was built to be loaded in double bending and as such was expected to develop two plastic hinges, one at each end of column. In the plastic hinge region at the column top, a void was formed because the concrete could not pass through the load stub's reinforcing steel cage. This void was repaired using nonshrink grout placed in a fluid state. The column was tested after repair and performed satisfactorily. The grouted repair was able to support large plastic rotations and allowed the column to reach a high level of ductility. The only effects of the repair were slightly reduced concrete dilation and stiffness in the repaired hinge. (author)

  19. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Saxena, R; Yoganathan, A P

    1996-11-01

    During recent clinical trials the Medtronic Parallel bileaflet mechanical heart valve was found to have an unacceptable number of valves with thrombus formation when implanted in the mitral position. Thrombi were observed in the hinge region and also in the upstream portion of the valve housing in the vicinity of the hinge. It was hypothesized that the flow conditions inside the hinge may have contributed to the thrombus formation. In order to investigate the flow structures within the hinge, laser Doppler anemometry (LDA) measurements were conducted in both steady and pulsatile flow at approximately 70 predetermined sites within the hinge region of a 27 mm Medtronic Parallel mitral valve with transparent housing. The pulsatile flow velocity measurements were animated in time using a graphical software package to visualize the hinge flow field throughout the cardiac cycle. The LDA measurements revealed that mean forward flow velocities through the hinge region were on the order of 0.10-0.20 m/s. In the inflow channel, a large vortical structure was present during diastole. Upon valve closure, peak reverse velocity reached 3 m/s close to the housing wall in the inflow channel. This area also experienced high turbulent shear stresses (> 6000 dynes/cm2) during the leakage flow phase. A disturbed, vortical flow was again present in the inflow channel after valve closure, while slightly above the leaflet peg and relief the flow was essentially stagnant. The high turbulent stresses near the top of the inflow channel, combined with a persistent vortex, implicate the inflow channel of the hinge as a likely region of thrombus formation. This experimental investigation revealed zones of flow stagnation in the inflow region of the hinge throughout the cardiac cycle and elevated turbulent shear stress levels in the inflow region during the leakage flow phase. These fluid mechanic phenomena are most likely a direct result of the complex geometry of the hinge of this valve

  20. Flow over a cylinder with a hinged-splitter plate

    Science.gov (United States)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate

  1. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  2. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine

    International Nuclear Information System (INIS)

    Okur, Melih; Akmandor, Ibrahim Sinan

    2011-01-01

    Hinged rolling piston compressor of a new thermodynamic cycle Pars engine promises high performance figures such as single stage high compression levels and higher volume flow discharge with competitively low input power and torque. The pumping characteristic of the present engine compressor unit has been increased by the implementation of a spring less vane configuration. The reciprocating vane which is usually operated by spring compression in air conditioning and refrigeration unit has been replaced by a hinge vane mechanism. At high speeds, the conventional spring loaded vane which is forced against the eccentrically moving rotor periphery does disconnect and starts rocking. With the new configuration, this mishap has been eliminated and subsequently resulting compressor pressure leaks have been avoided. Compressor experiments have been carried out at predetermined rotor speeds and compressed volume flow amounts and required shaft powers have been measured and derived accordingly. Experimentally determined pressure-volume relations have been compared with isentropic, isothermal, isochoric compressions as well as isobaric process. It is seen that at lower speeds, hinged vane compression is half way between isentropic and isochoric compressions whereas at high speed the compression process approaches further isochoric compression behavior. The isentropic compression efficiency of the hinged vane compressor is around 85% for pressures reaching 9 atm. - Research highlights: → Volume flow rate of rotary vane compressor unit has been increased by a hinged vane mechanism. → Hinged compressor pressure output is almost twice the performance of a spring loaded compressor. → The slipping and rocking of the spring loaded vane against the rolling piston have been eliminated.

  4. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  5. The effect of klapskate hinge position on push-off performance: a simulation study

    OpenAIRE

    Houdijk, J.H.P.; Bobbert, M.F.; de Koning, J.J.; de Groot, G.

    2003-01-01

    Purpose: The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. Method: For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this m...

  6. Functionality of system components: Conservation of protein function in protein feature space

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Ussery, David; Brunak, Søren

    2003-01-01

    well on organisms other than the one on which it was trained. We evaluate the performance of such a method, ProtFun, which relies on protein features as its sole input, and show that the method gives similar performance for most eukaryotes and performs much better than anticipated on archaea......Many protein features useful for prediction of protein function can be predicted from sequence, including posttranslational modifications, subcellular localization, and physical/chemical properties. We show here that such protein features are more conserved among orthologs than paralogs, indicating...... they are crucial for protein function and thus subject to selective pressure. This means that a function prediction method based on sequence-derived features may be able to discriminate between proteins with different function even when they have highly similar structure. Also, such a method is likely to perform...

  7. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  8. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    Science.gov (United States)

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  9. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  10. Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Borazjani, Iman

    2017-11-01

    Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  11. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  12. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    Science.gov (United States)

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  13. Reconstruction of palatal defect using mucoperiosteal hinge flap and pushback palatoplasty.

    Science.gov (United States)

    Lee, S I; Lee, H S; Hwang, K

    2001-11-01

    This article describes a simple, new surgical technique to provide a complete two-layer closure of palatal defect resulting from a surgical complication of trans palatal resection of skull base chordoma. The nasal layer was reconstructed with triangular shape oral mucoperiosteal turn over hinge flap based on anterior margin of palatal defect and rectangular shaped lateral nasal mucosal hinge flaps. The oral layer was reconstructed with conventional pushback V-Y advancement 2-flaps palatoplasty. Each layer of the flaps were secured with two key mattress suture for flap coaptation. This technique has some advantages: simple, short operation time, one-stage procedure, no need of osteotomy. It can close small- to medium-sized palatal defect of palate or wide cleft palate and can prevent common complication of oronasal fistula, which could be caused by tension.

  14. Optimization of elastic elements of a damping devices for cylindrical hinges in crane-manipulating installations of mobile machines

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-03-01

    Full Text Available The article considers the problems of designing an original damping devices worn for cylindrical hinges in crane-manipulating installations of mobile machines. These devices can significantly reduce the additional impact load on a steel structure manipulators due to the presence of increased gaps in the hinges. Formulated the general formulation of nonlinear constrained optimization of the sizes of the elastic elements of the damping devices. Considered a promising design variants of elastic elements. For circular and arc elastic elements with circular and rectangular cross-section for-mulated the problems of optimal design including criterion functions and systems of geometric, technological, stiffness and strength penalty constraints. Analysis of the impact of various operating and design parameters on the results of optimal design of elastic elements was performed. Were set to the recommended the use of the constructive types of elastic elements to generate the required stiffness of the damper devices.

  15. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions...

  16. Thermoelectric generator with hinged assembly for fins

    International Nuclear Information System (INIS)

    Purdy, D.L.; Shapiro, Z.M.; Hursen, T.F.; Maurer, G.W.

    1976-01-01

    A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield

  17. Architectures and Functional Coverage of Protein-Protein Interfaces

    Science.gov (United States)

    Tuncbag, Nurcan; Gursoy, Attila; Guney, Emre; Nussinov, Ruth; Keskin, Ozlem

    2008-01-01

    The diverse range of cellular functions is performed by a limited number of protein folds existing in nature. One may similarly expect that cellular functional diversity would be covered by a limited number of protein-protein interface architectures. Here, we present 8205 interface clusters, each representing unique interface architecture. This dataset of protein-protein interfaces is analyzed and compared with older datasets. We observe that the number of both biological and crystal interfaces increase significantly compared to the number of PDB entries. Further, we find that the number of distinct interface architectures grows at a much faster rate than the number of folds and is yet to level off. We further analyze the growth trend of the functional coverage by constructing functional interaction networks from interfaces. The functional coverage is also found to steadily increase. Interestingly, we also observe that despite the diversity of interface architectures, some are more favorable and frequently used, and of particular interest, those are the ones which are also preferred in single chains. PMID:18620705

  18. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Directory of Open Access Journals (Sweden)

    Conor M Bolger

    Full Text Available The purposes of the current study were to 1 test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2 investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA. Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05. The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  19. The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate.

    Science.gov (United States)

    Aksyuk, Anastasia A; Leiman, Petr G; Shneider, Mikhail M; Mesyanzhinov, Vadim V; Rossmann, Michael G

    2009-06-10

    The baseplate of bacteriophage T4 is a multicomponent protein complex, which controls phage attachment to the host. It assembles from six wedges and a central hub. During infection the baseplate undergoes a large conformational change from a dome-shaped to a flat, star-shaped structure. We report the crystal structure of the C-terminal half of gene product (gp) 6 and investigate its motion with respect to the other proteins during the baseplate rearrangement. Six gp6 dimers interdigitate, forming a ring that maintains the integrity of the baseplate in both conformations. One baseplate wedge contains an N-terminal dimer of gp6, whereas neighboring wedges are tied together through the C-terminal dimer of gp6. The dimeric interactions are preserved throughout the rearrangement of the baseplate. However, the hinge angle between the N- and C-terminal parts of gp6 changes by approximately 15 degrees , accounting for a 10 A radial increase in the diameter of the gp6 ring.

  20. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  1. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    Science.gov (United States)

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P internal fixation removal, the intraoperative blood loss, and VAS score at 1 day and 3 days after operation in group A were significant better than those in group B ( P external fixator and double plate internal fixation for the treatment of type C humeral intercondylar fractures have ideal outcome in elbow function. But the suspension fixation plus hinged external fixator is better than double plate internal fixation in intraoperative blood loss, postoperative VAS score, and time of internal fixation removal.

  2. Modeling and design of a two-axis elliptical notch flexure hinge

    Science.gov (United States)

    Wu, Jianwei; Zhang, Yin; Lu, Yunfeng; Wen, Zhongpu; Bin, Deer; Tan, Jiubin

    2018-04-01

    As an important part of the joule balance system, the two-axis elliptical notch flexure hinge (TENFH) which typically consists of two single-axis elliptical notch flexure hinges was studied. First, a 6 degrees of freedom (6-DOF) compliance model was established based on the coordinate transformation method. In addition, the maximum stress of the TENFH was derived. The compliance and maximum stress model was verified using finite element analysis simulation. To decouple the attitude of the suspended coil system and reduce the offset between the centroid of the suspended coil mechanism and the mass comparator in the joule balance system, a new mechanical structure of TENFH was designed based on the compliance model and stress model proposed in this paper. The maximum rotation range is up to 10°, and the axial load is more than 5 kg, which meets the requirements of the system. The compliance model was also verified by deformation experimentation with the designed TENFH.

  3. Hinged and sectional complete dentures for restricted mouth opening: A case report and review

    Directory of Open Access Journals (Sweden)

    Aditi Sharma

    2013-01-01

    Full Text Available Restricted mouth opening is a definite prosthodontic hindrance to carry out treatment successfully. Restricted mouth opening can be due to many reasons such as microstomia, oral submucous fibrosis, some genetic disorder, and as a result of some surgical treatment. In the past, various techniques for prosthetic rehabilitation of limited oral opening have been tried such as surgeries, use of dynamic opening devices, magnetic devices, and modification of denture design. Here we present; a simplified technique and simple design for fabrication of maxillary hinged and mandibular hinged and sectional complete denture for a patient with restricted mouth opening due to oral submucous fibrosis.

  4. Capillary origami of micro-machined micro-objects: Bi-layer conductive hinges

    NARCIS (Netherlands)

    Legrain, A.B.H.; Berenschot, Johan W.; Tas, Niels Roelof; Abelmann, Leon

    2015-01-01

    Recently, we demonstrated controllable 3D self-folding by means of capillary forces of silicon-nitride micro-objects made of rigid plates connected to each other by flexible hinges (Legrain et al., 2014). In this paper, we introduce platinum electrodes running from the substrate to the plates over

  5. Canola/rapeseed protein-functionality and nutrition

    Directory of Open Access Journals (Sweden)

    Wanasundara Janitha P.D.

    2016-07-01

    Full Text Available Protein rich meal is a valuable co-product of canola/rapeseed oil extraction. Seed storage proteins that include cruciferin (11S and napin (2S dominate the protein complement of canola while oleosins, lipid transfer proteins and other minor proteins of non-storage nature are also found. Although oil-free canola meal contains 36–40% protein on a dry weight basis, non-protein components including fibre, polymeric phenolics, phytates and sinapine, etc. of the seed coat and cellular components make protein less suitable for food use. Separation of canola protein from non-protein components is a technical challenge but necessary to obtain full nutritional and functional potential of protein. Process conditions of raw material and protein preparation are critical of nutritional and functional value of the final protein product. The storage proteins of canola can satisfy many nutritional and functional requirements for food applications. Protein macromolecules of canola also provide functionalities required in applications beyond edible uses; there exists substantial potential as a source of plant protein and a renewable biopolymer. Available information at present is mostly based on the protein products that can be obtained as mixtures of storage protein types and other chemical constituents of the seed; therefore, full potential of canola storage proteins is yet to be revealed.

  6. Design method for strut-beam connection in hinged frames

    OpenAIRE

    Cardenal Basté, Joan

    2011-01-01

    Glulam is almost exclusively the chosen material of timber frame structures. Of those, three-hinged (three-pin) portal frames are incomparably the most common type. Being both statically determinate and stable against horizontal forces in its own plane o er both practical (basic constructive details) and economical bene ts. The design of the haunch allows for various solutions: it can be curved with continuous laminates, nger jointed, jointed with steel dowels and slotted-i...

  7. Origins of Protein Functions in Cells

    Science.gov (United States)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  8. The influence of material properties on plastic hinge rotational capacity and strength

    NARCIS (Netherlands)

    Steenbergen, H.M.G.M.; Bijlaard, F.S.K.; Daniels, B.J.

    1996-01-01

    In this article the effects of standardised material stress-strain behaviours on plastic hinge length, moment and rotational capacity are investigated using a specially developed computer program. Material properties are described using three standard post-yield stress-strain characteristics, as

  9. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  10. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing

    Science.gov (United States)

    Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597

  11. Functional assignment to JEV proteins using SVM.

    Science.gov (United States)

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  12. Protein domain recurrence and order can enhance prediction of protein functions

    KAUST Repository

    Abdel Messih, Mario A.

    2012-09-07

    Motivation: Burgeoning sequencing technologies have generated massive amounts of genomic and proteomic data. Annotating the functions of proteins identified in this data has become a big and crucial problem. Various computational methods have been developed to infer the protein functions based on either the sequences or domains of proteins. The existing methods, however, ignore the recurrence and the order of the protein domains in this function inference. Results: We developed two new methods to infer protein functions based on protein domain recurrence and domain order. Our first method, DRDO, calculates the posterior probability of the Gene Ontology terms based on domain recurrence and domain order information, whereas our second method, DRDO-NB, relies on the nave Bayes methodology using the same domain architecture information. Our large-scale benchmark comparisons show strong improvements in the accuracy of the protein function inference achieved by our new methods, demonstrating that domain recurrence and order can provide important information for inference of protein functions. The Author(s) 2012. Published by Oxford University Press.

  13. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.

    Science.gov (United States)

    Lee, Jong Kook; Gopal, Ramamourthy; Park, Seong-Cheol; Ko, Hyun Sook; Kim, Yangmee; Hahm, Kyung-Soo; Park, Yoonkyung

    2013-01-01

    HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to DNA. These results indicate that the bending region of Anal 3- Pro peptide is prerequisite for effective

  14. Cyclic plastic hinges with degradation effects for frame structures

    OpenAIRE

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each gen...

  15. Biases in the experimental annotations of protein function and their effect on our understanding of protein function space.

    Directory of Open Access Journals (Sweden)

    Alexandra M Schnoes

    Full Text Available The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the "few articles - many proteins" phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.

  16. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings.

    Science.gov (United States)

    Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M

    2016-01-01

    Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  17. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings

    Directory of Open Access Journals (Sweden)

    Ronja A. Schierjott

    2016-01-01

    Full Text Available Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n=3, whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  18. Attitude Control of Nanosatellites by Paddle Motion Using Elastic Hinges Actuated by Shape Memory Alloy

    Science.gov (United States)

    Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi

    Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.

  19. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    Science.gov (United States)

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  20. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  1. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.

    Science.gov (United States)

    Heller, William T

    2005-01-01

    A common structural motif for many proteins comprises rigid domains connected by a flexible hinge or linker. The flexibility afforded by these domains is important for proper function and such proteins may be able to adopt more than one conformation in solution under equilibrium conditions. Small-angle scattering of proteins in solution samples all conformations that exist in the sampled volume during the time of the measurement, providing an ensemble-averaged intensity. In this paper, the influence of sampling an ensemble of well defined protein structures on the small-angle solution scattering intensity profile is examined through common analysis methods. Two tests were performed using simulated data: one with the extended and collapsed states of the bilobal calcium-binding protein calmodulin and the second with the catalytic subunit of protein kinase A, which has two globular domains connected by a glycine hinge. In addition to analyzing the simulated data for the radii of gyration Rg, distance distribution function P(r) and particle volume, shape restoration was applied to the simulated data. Rg and P(r) of the ensemble profiles could be easily mistaken for a single intermediate state. The particle volumes and models of the ensemble intensity profiles show that some indication of multiple conformations exists in the case of calmodulin, which manifests an enlarged volume and shapes that are clear superpositions of the conformations used. The effect on the structural parameters and models is much more subtle in the case of the catalytic subunit of protein kinase A. Examples of how noise influences the data and analyses are also presented. These examples demonstrate the loss of the indications of multiple conformations in cases where even broad distributions of structures exist. While the tests using calmodulin show that the ensemble states remain discernible from the other ensembles tested or a single partially collapsed state, the tests performed using the

  2. Synthesis and characterization of recombinant abductin-based proteins.

    Science.gov (United States)

    Su, Renay S-C; Renner, Julie N; Liu, Julie C

    2013-12-09

    Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.

  3. Inferring the Functions of Proteins from the Interrelationships between Functional Categories.

    Science.gov (United States)

    Taha, Kamal

    2018-01-01

    This study proposes a new method to determine the functions of an unannotated protein. The proteins and amino acid residues mentioned in biomedical texts associated with an unannotated protein can be considered as characteristics terms for , which are highly predictive of the potential functions of . Similarly, proteins and amino acid residues mentioned in biomedical texts associated with proteins annotated with a functional category can be considered as characteristics terms of . We introduce in this paper an information extraction system called IFP_IFC that predicts the functions of an unannotated protein by representing and each functional category by a vector of weights. Each weight reflects the degree of association between a characteristic term and (or a characteristic term and ). First, IFP_IFC constructs a network, whose nodes represent the different functional categories, and its edges the interrelationships between the nodes. Then, it determines the functions of by employing random walks with restarts on the mentioned network. The walker is the vector of . Finally, is assigned to the functional categories of the nodes in the network that are visited most by the walker. We evaluated the quality of IFP_IFC by comparing it experimentally with two other systems. Results showed marked improvement.

  4. Towards a systematic classification of protein folds

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Bohr, Henrik

    1997-01-01

    structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure...

  5. Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Science.gov (United States)

    Boroughs, R. R.; Padmanabhan, V.

    1983-01-01

    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.

  6. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.

    Directory of Open Access Journals (Sweden)

    Jong Kook Lee

    Full Text Available HP (2-20 is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20 by substituting Trp for Gln(17 and Asp(19 (Anal 3 increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5 and an extended helical region (residues 6-20. To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9 (Anal 3-Pro and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE and sodium dodecyl sulfate (SDS. NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10 was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly

  7. Incorporating functional inter-relationships into protein function prediction algorithms

    Directory of Open Access Journals (Sweden)

    Kumar Vipin

    2009-05-01

    Full Text Available Abstract Background Functional classification schemes (e.g. the Gene Ontology that serve as the basis for annotation efforts in several organisms are often the source of gold standard information for computational efforts at supervised protein function prediction. While successful function prediction algorithms have been developed, few previous efforts have utilized more than the protein-to-functional class label information provided by such knowledge bases. For instance, the Gene Ontology not only captures protein annotations to a set of functional classes, but it also arranges these classes in a DAG-based hierarchy that captures rich inter-relationships between different classes. These inter-relationships present both opportunities, such as the potential for additional training examples for small classes from larger related classes, and challenges, such as a harder to learn distinction between similar GO terms, for standard classification-based approaches. Results We propose a method to enhance the performance of classification-based protein function prediction algorithms by addressing the issue of using these interrelationships between functional classes constituting functional classification schemes. Using a standard measure for evaluating the semantic similarity between nodes in an ontology, we quantify and incorporate these inter-relationships into the k-nearest neighbor classifier. We present experiments on several large genomic data sets, each of which is used for the modeling and prediction of over hundred classes from the GO Biological Process ontology. The results show that this incorporation produces more accurate predictions for a large number of the functional classes considered, and also that the classes benefitted most by this approach are those containing the fewest members. In addition, we show how our proposed framework can be used for integrating information from the entire GO hierarchy for improving the accuracy of

  8. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  9. Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods

    Science.gov (United States)

    Lyle, Karen H.; Horta, Lucas G.

    2012-01-01

    Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.

  10. [Localization and registration of the hinge axis in black Africans].

    Science.gov (United States)

    Assi, K D; N'Guessan, K S; N'Dindin, C; Bamba, A

    2003-06-01

    The study of the cinematic method using "SAM" and "Quick Axis of FAG" added to mandibular condyle palpation for the hinge axis limited points, show that the Black Africans mandibular condyle rotation axis position is higher (3.5 mm) and backer (2 mm) than the Caucasians. The axial points are located to between 11 and 12 mm in front of the tragus and between 7 and 8 mm below on the perpendicular line to the furrow defining the tragus superior side to the Ectocanthus.

  11. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.

    Science.gov (United States)

    Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier

    2016-01-04

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Structural symmetry and protein function.

    Science.gov (United States)

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  13. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  14. Roles for text mining in protein function prediction.

    Science.gov (United States)

    Verspoor, Karin M

    2014-01-01

    The Human Genome Project has provided science with a hugely valuable resource: the blueprints for life; the specification of all of the genes that make up a human. While the genes have all been identified and deciphered, it is proteins that are the workhorses of the human body: they are essential to virtually all cell functions and are the primary mechanism through which biological function is carried out. Hence in order to fully understand what happens at a molecular level in biological organisms, and eventually to enable development of treatments for diseases where some aspect of a biological system goes awry, we must understand the functions of proteins. However, experimental characterization of protein function cannot scale to the vast amount of DNA sequence data now available. Computational protein function prediction has therefore emerged as a problem at the forefront of modern biology (Radivojac et al., Nat Methods 10(13):221-227, 2013).Within the varied approaches to computational protein function prediction that have been explored, there are several that make use of biomedical literature mining. These methods take advantage of information in the published literature to associate specific proteins with specific protein functions. In this chapter, we introduce two main strategies for doing this: association of function terms, represented as Gene Ontology terms (Ashburner et al., Nat Genet 25(1):25-29, 2000), to proteins based on information in published articles, and a paradigm called LEAP-FS (Literature-Enhanced Automated Prediction of Functional Sites) in which literature mining is used to validate the predictions of an orthogonal computational protein function prediction method.

  15. Patient-oriented functional results of total femoral endoprosthetic reconstruction following oncologic resection.

    Science.gov (United States)

    Jones, Kevin B; Griffin, Anthony M; Chandrasekar, Coonoor R; Biau, David; Babinet, Antoine; Deheshi, Benjamin; Bell, Robert S; Grimer, Robert J; Wunder, Jay S; Ferguson, Peter C

    2011-11-01

    Functional outcomes following oncologic total femoral endoprosthetic reconstruction (TFR) are lacking. We compared patient-oriented functional results of TFRs to proximal femur and distal femur reconstructions (PFR and DFR). We also compared function and complications with regard to knee and hip componentry. Fifty-four TFR patients were identified from three institutional prospective databases. Forty-one had fixed- and 13 had rotating-hinge knees, 37 hemiarthroplasty and 17 total hip arthroplasty componentry. Toronto Extremity Salvage Scores (TESS) for n = 27 were compared between groups and to cohorts of PFR (n = 31) and DFR (n = 85) patients using the Mann-Whitney U-test. Follow-up averaged 4 years. Mechanical complications included five hip dislocations and one femoral malrotation. Four dislocations were in fixed-hinge implants, all in those lacking abductor reattachment. TESS averaged 69.3 ± 17.8, statistically decreased from DFR (P = 0.002) and PFR patients (P = 0.036). No significant differences were detected between patients in the fixed-hinge (n = 18) and rotating-hinge (n = 9) groups (P = 0.944), or total hip (n = 8) and hemiarthroplasty (n = 19) groups (P = 0.633). TFR is reserved for extreme cases of limb salvage, portending a poor prognosis overall. Function reflects additive impairments from PFR and DFR. TFR outcomes differ little with rotating- or fixed-hinge, total hip or hemiarthroplasty implants. Copyright © 2011 Wiley Periodicals, Inc.

  16. Function and structure of GFP-like proteins in the protein data bank.

    Science.gov (United States)

    Ong, Wayne J-H; Alvarez, Samuel; Leroux, Ivan E; Shahid, Ramza S; Samma, Alex A; Peshkepija, Paola; Morgan, Alicia L; Mulcahy, Shawn; Zimmer, Marc

    2011-04-01

    The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.

  17. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    Directory of Open Access Journals (Sweden)

    Samir Merabet

    2011-10-01

    Full Text Available Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA, we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  18. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  19. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effects of opioids in the formalin test in the Speke's hinged tortoise (Kinixy's spekii)

    DEFF Research Database (Denmark)

    Wambugu, SN; Towett, PK; Kiama, SG

    2010-01-01

    decrease in the duration of limb retraction in the formalin test. The anti-nociceptive effects were naloxone (5 mg/kg) reversible. The data suggest that the formalin test is a good test for studying nociception and anti-nociception in tortoises and that the opioidergic system plays a role in the control......Little is known about analgesia in lower vertebrates such as the Speke's hinged tortoise (Kinixy's spekii), yet of late they are increasingly being adopted as pets. The effects of morphine (5, 7.5, 10 and 20 mg/kg), pethidine (10, 20, and 50 mg/kg) and naloxone (5 mg/kg) on nociception induced...... by the formalin test (12.5%, 100 microL) were studied in the Speke's hinged tortoise. Formalin induced a monophasic limb retraction behavioural response and its duration was recorded. The behaviour lasted for 16.4 +/- 0.8 min. Morphine (7.5, 10 and 20 mg/kg) and pethidine (20 and 50 mg/kg) induced significant...

  1. Recognition of functional sites in protein structures.

    Science.gov (United States)

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2004-06-04

    Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.

  2. Treatment of neglected elbow dislocations with the help of hinged external fixator: Report of two cases

    Directory of Open Access Journals (Sweden)

    Özgür Karakoyun

    2014-06-01

    Full Text Available Elbow dislocations are cases that have to be treated in emergency conditions. Neglected elbow dislocations are seen very rarely and the treatment of such cases are more complicated than acute cases. We present two cases of neglected elbow dislocations treated with open reduction and hinged external fixators. Case 1: 23 year old female patient had a neglected posterior dislocation of left elbow with ipsilateral humeral shaft fracture caused by car accident. The patient was treated after 3 months of initial trauma. We have performed open reduction for the joint. After that we fixed the joint whit a hinged external fixator. The humeral shaft fracture was also fixed with the components of the external fixator. Case 2: 33 year male patient had a large bone and soft tissue defect around the left elbow accompanying with neglected medial elbow dislocation. He presented to our clinic with a delay of 2 months. The patient was treated with open reduction and hinged external fixator after reconstruction of bone defect of distal humerus. Conclusion: The treatment of neglected cases is quite challenging. Open reduction and external fixation has satisfactory results in treatment of late cases of elbow dislocation with the possibility of early rehabilitation. This method can be considered as an option for such cases. J Clin Exp Invest 2014; 5 (2: 443-446

  3. Prediction of functional sites in proteins using conserved functional group analysis.

    Science.gov (United States)

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-02

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.

  4. The functional properties, modification and utilization of whey proteins

    Directory of Open Access Journals (Sweden)

    B. G. Venter

    1986-03-01

    Full Text Available Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chemical recovery processes have been designed. Chemically and enzymatically modified whey protein is manufactured to obtain technological and functional advantages. The important functional properties of whey proteins, namely hydration, gelation, emulsifying and foaming properties, are reviewed.

  5. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  6. 3DSwap: Curated knowledgebase of proteins involved in 3D domain swapping

    KAUST Repository

    Shameer, Khader

    2011-09-29

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like \\'secondary major interface\\' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the \\'extent of swapping\\' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping. The Author(s) 2011.

  7. Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.

  8. Linking structural features of protein complexes and biological function.

    Science.gov (United States)

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. © 2015 The Protein Society.

  9. Exploring Protein Function Using the Saccharomyces Genome Database.

    Science.gov (United States)

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  10. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy.

    Science.gov (United States)

    Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk

    2018-07-01

    Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the

  11. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  12. A Study on the Modeling of the Oil Damper in an Auto-Door Hinge

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Jong Tae; Kim, Hwan Yeol

    2009-11-01

    An auto-door hinge, which is one of the automatic door-closing apparatuses, has been widely used to prevent fire propagations in living or commercial buildings. The auto-door hinge consists of a spring to accumulate power for closing a door and an oil damper to control door-closing velocity. To predict and optimize the temporal door behavior during the door-closing period, the auto-door closing system was modeled as a second order-damping system. And a damping coefficient of the oil damper was also theoretically modeled by analyzing Newtonian, incompressible, viscous flow through an oil passage between a oil control rod and a oil piston body. The temporal door behaviors during the door-closing period were predicted with respect to the gap distance of the oil passage, oil viscosity, and pre-compressing of the spring. Temporal door behavior measurement method using an encoder system was also developed to validate the modelling on the oil damping system. As using the developed test apparatus, the temporal door position, velocity, and rotational torque were measured, and the modelling method was evaluated

  13. A Study on the Modeling of the Oil Damper in an Auto-Door Hinge

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Jong Tae; Kim, Hwan Yeol

    2009-11-15

    An auto-door hinge, which is one of the automatic door-closing apparatuses, has been widely used to prevent fire propagations in living or commercial buildings. The auto-door hinge consists of a spring to accumulate power for closing a door and an oil damper to control door-closing velocity. To predict and optimize the temporal door behavior during the door-closing period, the auto-door closing system was modeled as a second order-damping system. And a damping coefficient of the oil damper was also theoretically modeled by analyzing Newtonian, incompressible, viscous flow through an oil passage between a oil control rod and a oil piston body. The temporal door behaviors during the door-closing period were predicted with respect to the gap distance of the oil passage, oil viscosity, and pre-compressing of the spring. Temporal door behavior measurement method using an encoder system was also developed to validate the modelling on the oil damping system. As using the developed test apparatus, the temporal door position, velocity, and rotational torque were measured, and the modelling method was evaluated.

  14. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  15. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery.

    Science.gov (United States)

    Zhou, Li; Wang, Hsuan-Yao; Tong, Shanshan; Okamoto, Curtis T; Shen, Wei-Chiang; Zaro, Jennica L

    2017-02-01

    Fc fusion protein technology has been successfully used to generate long-acting forms of several protein therapeutics. In this study, a novel Fc-based drug carrier, single chain Fc-dimer (sc(Fc) 2 ), was designed to contain two Fc domains recombinantly linked via a flexible linker. Since the Fc dimeric structure is maintained through the flexible linker, the hinge region was omitted to further stabilize it against proteolysis and reduce FcγR-related effector functions. The resultant sc(Fc) 2 candidate preserved the neonatal Fc receptor (FcRn) binding. sc(Fc) 2 -mediated delivery was then evaluated using a therapeutic protein with a short plasma half-life, human growth hormone (hGH), as the protein drug cargo. This novel carrier protein showed a prolonged in vivo half-life and increased hGH-mediated bioactivity compared to the traditional Fc-based drug carrier. sc(Fc) 2 technology has the potential to greatly advance and expand the use of Fc-technology for improving the pharmacokinetics and bioactivity of protein therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  17. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  18. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  19. Functions of intrinsic disorder in transmembrane proteins

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Kragelund, Birthe B.

    2017-01-01

    Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane...... receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like...... mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding...

  20. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevant...... form. This is most typically achieved through the use of detergent based reconstitution systems. However, time and again such systems fail to provide a suitable environment causing aggregation and inactivation. Nanodiscs are self-assembled lipoproteins containing two membrane scaffold proteins...... and a lipid bilayer in defined nanometer size, which can act as a stabiliser for membrane proteins. This enables both functional and structural investigation of membrane proteins in a detergent free environment which is closer to the native situation. Understanding the self-assembly of nanodiscs is important...

  1. Comprehensive Analysis of the Therapeutic IgG4 Antibody Pembrolizumab: Hinge Modification Blocks Half Molecule Exchange In Vitro and In Vivo.

    Science.gov (United States)

    Yang, Xiaoyu; Wang, Fengqiang; Zhang, Ying; Wang, Larry; Antonenko, Svetlana; Zhang, Shuli; Zhang, Yi Wei; Tabrizifard, Mohammad; Ermakov, Grigori; Wiswell, Derek; Beaumont, Maribel; Liu, Liming; Richardson, Daisy; Shameem, Mohammed; Ambrogelly, Alexandre

    2015-12-01

    IgG4 antibodies are evolving as an important class of cancer immunotherapies. However, human IgG4 can undergo Fab arm (half molecule) exchange with other IgG4 molecules in vivo. The hinge modification by a point mutation (S228P) prevents half molecule exchange of IgG4. However, the experimental confirmation is still expected by regulatory agencies. Here, we report for the first time the extensive analysis of half molecule exchange for a hinge-modified therapeutic IgG4 molecule, pembrolizumab (Keytruda) targeting programmed death 1 (PD1) receptor that was approved for advanced melanoma. Studies were performed in buffer or human serum using multiple exchange partners including natalizumab (Tysabri) and human IgG4 pool. Formation of bispecific antibodies was monitored by fluorescence resonance energy transfer, exchange with Fc fragments, mixed mode chromatography, immunoassays, and liquid chromatography-mass spectrometry. The half molecule exchange was also examined in vivo in SCID (severe combined immunodeficiency) mice. Both in vitro and in vivo results indicate that the hinge modification in pembrolizumab prevented half molecule exchange, whereas the unmodified counterpart anti-PD1 wt showed active exchange activity with other IgG4 antibodies or self-exchange activity with its own molecules. Our work, as an example expected for meeting regulatory requirements, contributes to establish without ambiguity that hinge-modified IgG4 antibodies are suitable for biotherapeutic applications. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  3. Formation of vortex pairs with hinged rigid flaps at the nozzle exit

    Science.gov (United States)

    Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant

    2013-11-01

    Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.

  4. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  5. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction

    Directory of Open Access Journals (Sweden)

    Fofanov Viacheslav Y

    2010-05-01

    Full Text Available Abstract Background Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels. Results This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST method uses all-against-all substructure comparison to determine Substructural Clusters (SCs. SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs. Conclusions FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated

  6. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    Science.gov (United States)

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  7. Text mining improves prediction of protein functional sites.

    Directory of Open Access Journals (Sweden)

    Karin M Verspoor

    Full Text Available We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites. The structure analysis was carried out using Dynamics Perturbation Analysis (DPA, which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  8. Text Mining Improves Prediction of Protein Functional Sites

    Science.gov (United States)

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  9. Human Milk: Bioactive Proteins/Peptides and Functional Properties.

    Science.gov (United States)

    Lönnerdal, Bo

    2016-06-23

    Breastfeeding has been associated with many benefits, both in the short and in the long term. Infants being breastfed generally have less illness and have better cognitive development at 1 year of age than formula-fed infants. Later in life, they have a lower risk of obesity, diabetes and cardiovascular disease. Several components in breast milk may be responsible for these different outcomes, but bioactive proteins/peptides likely play a major role. Some proteins in breast milk are comparatively resistant towards digestion and may therefore exert their functions in the gastrointestinal tract in intact form or as larger fragments. Other milk proteins may be partially digested in the upper small intestine and the resulting peptides may exert functions in the lower small intestine. Lactoferrin, lysozyme and secretory IgA have been found intact in the stool of breastfed infants and are therefore examples of proteins that are resistant against proteolytic degradation in the gut. Together, these proteins serve protective roles against infection and support immune function in the immature infant. α-lactalbumin, β-casein, κ-casein and osteopontin are examples of proteins that are partially digested in the upper small intestine, and the resulting peptides influence functions in the gut. Such functions include stimulation of immune function, mineral and trace element absorption and defense against infection. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  10. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  11. Nutritional and functional properties of whey proteins concentrate and isolate

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2006-12-01

    Full Text Available Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fractionation techniques, it is possible to produce various whey - protein based products. The most important products based on the whey proteins are whey protein concentrates (WPC and whey protein isolates (WPI. The aim of this paper was to give comprehensive review of nutritional and functional properties of the most common used whey proteins (whey protein concentrate - WPC and whey protein isolate - WPI in the food industry.

  12. Multiscale weighted colored graphs for protein flexibility and rigidity analysis

    Science.gov (United States)

    Bramer, David; Wei, Guo-Wei

    2018-02-01

    Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.

  13. Random heteropolymers preserve protein function in foreign environments

    Science.gov (United States)

    Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting

    2018-03-01

    The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.

  14. Investigation of the Three-Dimensional Hinge Moment Characteristics Generated by the ONERA-M6 Wing with an Aileron

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The hinge moment characteristics for ONERA-M6 wing with aileron configuration have been investigated numerically based on the different gaps and deflecting angles. The results show that the effects on the wing made by the deflecting aileron are notable. Comparing with the nonaileron case, the chordwise pressure coefficient distribution for the wing with aileron has shown the totally different trends. The small gap can force the air flow through and form the extremely strong spraying flow. It can directly destroy the previously formed leading edge vortex (LEV. Due to the presence of the positive deflecting angle, the trailing edge vortex (TEV will begin to generate at the trailing edge of the aileron. The induced secondary LEV will be mixed with the developing TEVs and form the stronger TEVs at the downstream position. Comparing with the subsonic flow, the curve for the supersonic flow has shown a good linear. The corresponding hinge moments are also extremely sensitive to the changing angle of attack, and the slope of curves is also bigger than that of the subsonic flow. The bigger gap and deflecting angle can result in the curve of hinge moment bending upward at high angle of attack. The corresponding pressure cloud and streamlines have also been obtained computationally and analyzed in detail.

  15. Study on Utilization of LVL Sengon (Paraserianthes falcataria for Three-Hinged Gable Frame Structures

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-07-01

    Full Text Available This study focuses on the utilization of non-prismatic LVL members of wood species Sengon (Paraserianthes falcataria for three-hinged gable frame structures. This wood species matures in 6 to 8 years, and the innovative application as LVL product for these structures is evaluated. A full-scale model of a beam-column connection is produced and tested to validate the moment-rotation response predicted by the numerical study using ABAQUS. The FEM results showed a linear-elastic moment-rotation curve response up to a joint rotation of 0.015 radians which is in very good agreement with the experiment. This validated FE model for the beam-column joint was further utilized to generate predictions for the moment-rotation relation using different bolt diameters and configurations. The last part of this study presents an evaluation of the maximum load bearing capacity of three-hinged gable frame timber structures considering a rigid and semi-rigid beam-column joint model. If the load carrying capacity is governed by the yielding of the bolt, the gable frame structure with the rigid beam-column joint overestimates the load bearing capacity by 17% to 25%.

  16. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  17. A collaborative filtering approach for protein-protein docking scoring functions.

    Science.gov (United States)

    Bourquard, Thomas; Bernauer, Julie; Azé, Jérôme; Poupon, Anne

    2011-04-22

    A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions. In this work, we introduce a new procedure for conformation ranking. We previously developed a set of scoring functions where learning was performed using a genetic algorithm. These functions were used to assign a rank to each possible conformation. We now have a refined rank using different classifiers (decision trees, rules and support vector machines) in a collaborative filtering scheme. The scoring function newly obtained is evaluated using 10 fold cross-validation, and compared to the functions obtained using either genetic algorithms or collaborative filtering taken separately. This new approach was successfully applied to the CAPRI scoring ensembles. We show that for 10 targets out of 12, we are able to find a near-native conformation in the 10 best ranked solutions. Moreover, for 6 of them, the near-native conformation selected is of high accuracy. Finally, we show that this function dramatically enriches the 100 best-ranking conformations in near-native structures.

  18. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  19. Usher protein functions in hair cells and photoreceptors.

    Science.gov (United States)

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    Science.gov (United States)

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  1. Automated Quantitative Assessment of Proteins' Biological Function in Protein Knowledge Bases

    Directory of Open Access Journals (Sweden)

    Gabriele Mayr

    2008-01-01

    Full Text Available Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  2. AVID: An integrative framework for discovering functional relationships among proteins

    Directory of Open Access Journals (Sweden)

    Keating Amy E

    2005-06-01

    Full Text Available Abstract Background Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments. Results We present AVID, a computational method that uses a multi-stage learning framework to integrate experimental results with sequence information, generating networks reflecting functional similarities among proteins. We illustrate use of the networks by making predictions of detailed Gene Ontology (GO annotations in three categories: molecular function, biological process, and cellular component. Applied to the yeast Saccharomyces cerevisiae, AVID provides 37,451 pair-wise functional linkages between 4,191 proteins. These relationships are ~65–78% accurate, as assessed by cross-validation testing. Assignments of highly detailed functional descriptors to proteins, based on the networks, are estimated to be ~67% accurate for GO categories describing molecular function and cellular component and ~52% accurate for terms describing biological process. The predictions cover 1,490 proteins with no previous annotation in GO and also assign more detailed functions to many proteins annotated only with less descriptive terms. Predictions made by AVID are largely distinct from those made by other methods. Out of 37,451 predicted pair-wise relationships, the greatest number shared in common with another method is 3,413. Conclusion AVID provides

  3. Scoring protein relationships in functional interaction networks predicted from sequence data.

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    Full Text Available UNLABELLED: The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins. AVAILABILITY: Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data and python scripts to compute these scores are available at http://web.cbio.uct.ac.za/~gmazandu/scoringschemes.

  4. Investigation at transonic speeds of the lateral-control and hinge-moment characteristics of a flap-type spoiler aileron on a 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G; Taylor, Robert T

    1954-01-01

    This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.

  5. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  6. The contact activation proteins: a structure/function overview

    NARCIS (Netherlands)

    Meijers, J. C.; McMullen, B. A.; Bouma, B. N.

    1992-01-01

    In recent years, extensive knowledge has been obtained on the structure/function relationships of blood coagulation proteins. In this overview, we present recent developments on the structure/function relationships of the contact activation proteins: factor XII, high molecular weight kininogen,

  7. Alkylation damage by lipid electrophiles targets functional protein systems.

    Science.gov (United States)

    Codreanu, Simona G; Ullery, Jody C; Zhu, Jing; Tallman, Keri A; Beavers, William N; Porter, Ned A; Marnett, Lawrence J; Zhang, Bing; Liebler, Daniel C

    2014-03-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

  8. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    Science.gov (United States)

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  9. Integrin Activation Dynamics between the RGD-binding Site and the Headpiece Hinge*

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-01-01

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII10-bound αVβ3 integrin headpiece how the binding pocket and interdomain βA/hybrid domain hinge on the distal end of the βA domain are allosterically linked via a hydrophobic T-junction between the middle of the α1 helix and top of the α7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca2+ in place of Mg2+ at the site adjacent to the metal ion-dependent adhesion site (“ADMIDAS”). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca2+ at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated. PMID:19762919

  10. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    DEFF Research Database (Denmark)

    Rossin, Elizabeth J.; Hansen, Kasper Lage; Raychaudhuri, Soumya

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these r......Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed...... in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more...... that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non...

  11. Modifications of Hinge Mechanisms for the Mobile Launcher

    Science.gov (United States)

    Ganzak, Jacob D.

    2018-01-01

    The further development and modifications made towards the integration of the upper and lower hinge assemblies for the Exploration Upper Stage umbilical are presented. Investigative work is included to show the process of applying updated NASA Standards within component and assembly drawings for selected manufacturers. Component modifications with the addition of drawings are created to precisely display part geometries and geometric tolerances, along with proper methods of fabrication. Comparison of newly updated components with original Apollo era components is essential to correctly model the part characteristics and parameters, i.e. mass properties, material selection, weldments, and tolerances. 3-Dimensional modeling software is used to demonstrate the necessary improvements. In order to share and corroborate these changes, a document management system is used to store the various components and associated drawings. These efforts will contribute towards the Mobile Launcher for Exploration Mission 2 to provide proper rotation of the Exploration Upper Stage umbilical, necessary for providing cryogenic fill and drain capabilities.

  12. Usher protein functions in hair cells and photoreceptors

    OpenAIRE

    Cosgrove, Dominic; Zallocchi, Marisa

    2013-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber,...

  13. Structure and function of nanoparticle-protein conjugates

    International Nuclear Information System (INIS)

    Aubin-Tam, M-E; Hamad-Schifferli, K

    2008-01-01

    Conjugation of proteins to nanoparticles has numerous applications in sensing, imaging, delivery, catalysis, therapy and control of protein structure and activity. Therefore, characterizing the nanoparticle-protein interface is of great importance. A variety of covalent and non-covalent linking chemistries have been reported for nanoparticle attachment. Site-specific labeling is desirable in order to control the protein orientation on the nanoparticle, which is crucial in many applications such as fluorescence resonance energy transfer. We evaluate methods for successful site-specific attachment. Typically, a specific protein residue is linked directly to the nanoparticle core or to the ligand. As conjugation often affects the protein structure and function, techniques to probe structure and activity are assessed. We also examine how molecular dynamics simulations of conjugates would complete those experimental techniques in order to provide atomistic details on the effect of nanoparticle attachment. Characterization studies of nanoparticle-protein complexes show that the structure and function are influenced by the chemistry of the nanoparticle ligand, the nanoparticle size, the nanoparticle material, the stoichiometry of the conjugates, the labeling site on the protein and the nature of the linkage (covalent versus non-covalent)

  14. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  15. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    Science.gov (United States)

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  16. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  17. Nutritional and functional properties of whey proteins concentrate and isolate

    OpenAIRE

    Zoran Herceg; Anet Režek

    2006-01-01

    Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fract...

  18. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    Science.gov (United States)

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation

  19. Defining structural and functional dimensions of the extracellular thyrotropin receptor region.

    Science.gov (United States)

    Kleinau, Gunnar; Mueller, Sandra; Jaeschke, Holger; Grzesik, Paul; Neumann, Susanne; Diehl, Anne; Paschke, Ralf; Krause, Gerd

    2011-06-24

    The extracellular region of the thyrotropin receptor (TSHR) can be subdivided into the leucine-rich repeat domain (LRRD) and the hinge region. Both the LRRD and the hinge region interact with thyrotropin (TSH) or autoantibodies. Structural data for the TSHR LRRD were previously determined by crystallization (amino acids Glu(30)-Thr(257), 10 repeats), but the structure of the hinge region is still undefined. Of note, the amino acid sequence (Trp(258)-Tyr(279)) following the crystallized LRRD comprises a pattern typical for leucine-rich repeats with conserved hydrophobic side chains stabilizing the repeat fold. Moreover, functional data for amino acids between the LRRD and the transmembrane domain were fragmentary. We therefore investigated systematically these TSHR regions by mutagenesis to reveal insights into their functional contribution and potential structural features. We found that mutations of conserved hydrophobic residues between Thr(257) and Tyr(279) cause TSHR misfold, which supports a structural fold of this peptide, probably as an additional leucine-rich repeat. Furthermore, we identified several new mutations of hydrophilic amino acids in the entire hinge region leading to partial TSHR inactivation, indicating that these positions are important for intramolecular signal transduction. In summary, we provide new information regarding the structural features and functionalities of extracellular TSHR regions. Based on these insights and in context with previous results, we suggest an extracellular activation mechanism that supports an intramolecular agonistic unit as a central switch for activating effects at the extracellular region toward the serpentine domain.

  20. Automatically extracting functionally equivalent proteins from SwissProt

    Directory of Open Access Journals (Sweden)

    Martin Andrew CR

    2008-10-01

    Full Text Available Abstract Background There is a frequent need to obtain sets of functionally equivalent homologous proteins (FEPs from different species. While it is usually the case that orthology implies functional equivalence, this is not always true; therefore datasets of orthologous proteins are not appropriate. The information relevant to extracting FEPs is contained in databanks such as UniProtKB/Swiss-Prot and a manual analysis of these data allow FEPs to be extracted on a one-off basis. However there has been no resource allowing the easy, automatic extraction of groups of FEPs – for example, all instances of protein C. We have developed FOSTA, an automatically generated database of FEPs annotated as having the same function in UniProtKB/Swiss-Prot which can be used for large-scale analysis. The method builds a candidate list of homologues and filters out functionally diverged proteins on the basis of functional annotations using a simple text mining approach. Results Large scale evaluation of our FEP extraction method is difficult as there is no gold-standard dataset against which the method can be benchmarked. However, a manual analysis of five protein families confirmed a high level of performance. A more extensive comparison with two manually verified functional equivalence datasets also demonstrated very good performance. Conclusion In summary, FOSTA provides an automated analysis of annotations in UniProtKB/Swiss-Prot to enable groups of proteins already annotated as functionally equivalent, to be extracted. Our results demonstrate that the vast majority of UniProtKB/Swiss-Prot functional annotations are of high quality, and that FOSTA can interpret annotations successfully. Where FOSTA is not successful, we are able to highlight inconsistencies in UniProtKB/Swiss-Prot annotation. Most of these would have presented equal difficulties for manual interpretation of annotations. We discuss limitations and possible future extensions to FOSTA, and

  1. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  2. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  3. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    International Nuclear Information System (INIS)

    Lindstroem, Mikael S.

    2009-01-01

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-κB, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  4. The PANTHER database of protein families, subfamilies, functions and pathways

    OpenAIRE

    Mi, Huaiyu; Lazareva-Ulitsky, Betty; Loo, Rozina; Kejariwal, Anish; Vandergriff, Jody; Rabkin, Steven; Guo, Nan; Muruganujan, Anushya; Doremieux, Olivier; Campbell, Michael J.; Kitano, Hiroaki; Thomas, Paul D.

    2004-01-01

    PANTHER is a large collection of protein families that have been subdivided into functionally related subfamilies, using human expertise. These subfamilies model the divergence of specific functions within protein families, allowing more accurate association with function (ontology terms and pathways), as well as inference of amino acids important for functional specificity. Hidden Markov models (HMMs) are built for each family and subfamily for classifying additional protein sequences. The l...

  5. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  6. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  7. Functionality of alternative protein in gluten-free product development.

    Science.gov (United States)

    Deora, Navneet Singh; Deswal, Aastha; Mishra, Hari Niwas

    2015-07-01

    Celiac disease is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. The current treatment for celiac disease is life-long adherence to a strict gluten-exclusion diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. A major limitation in the production of gluten-free products is the lack of protein functionality in non-wheat cereals. Additionally, commercial gluten-free mixes usually contain only carbohydrates, which may significantly limit the amount of protein in the diet. In the recent past, various approaches are attempted to incorporate protein-based ingredients and to modify the functional properties for gluten-free product development. This review aims to the highlight functionality of the alternative protein-based ingredients, which can be utilized for gluten-free product development both functionally as well as nutritionally. © The Author(s) 2014.

  8. Exploring protein dynamics space: the dynasome as the missing link between protein structure and function.

    Directory of Open Access Journals (Sweden)

    Ulf Hensen

    Full Text Available Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics.

  9. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  10. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  11. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei; Bissell, Mina J.

    2009-06-03

    Maintenance of organ homeostasis and control of appropriate response to environmental alterations requires intimate coordination of cellular function and tissue organization. An important component of this coordination may be provided by proteins that can serve distinct, but linked, functions on both sides of the plasma membrane. Here we present a novel hypothesis in which non-classical secretion can provide a mechanism through which single proteins can integrate complex tissue functions. Single genes can exert a complex, dynamic influence through a number of different processes that act to multiply the function of the gene product(s). Alternative splicing can create many different transcripts that encode proteins of diverse, even antagonistic, function from a single gene. Posttranslational modifications can alter the stability, activity, localization, and even basic function of proteins. A protein can exist in different subcellular localizations. More recently, it has become clear that single proteins can function both inside and outside the cell. These proteins often lack defined secretory signal sequences, and transit the plasma membrane by mechanisms separate from the classical ER/Golgi secretory process. When examples of such proteins are examined individually, the multifunctionality and lack of a signal sequence are puzzling - why should a protein with a well known function in one context function in such a distinct fashion in another? We propose that one reason for a single protein to perform intracellular and extracellular roles is to coordinate organization and maintenance of a global tissue function. Here, we describe in detail three specific examples of proteins that act in this fashion, outlining their specific functions in the extracellular space and in the intracellular space, and we discuss how these functions may be linked. We present epimorphin/syntaxin-2, which may coordinate morphogenesis of secretory organs (as epimorphin) with control of

  12. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  13. Proteins of unknown function in the Protein Data Bank (PDB): an inventory of true uncharacterized proteins and computational tools for their analysis.

    Science.gov (United States)

    Nadzirin, Nurul; Firdaus-Raih, Mohd

    2012-10-08

    Proteins of uncharacterized functions form a large part of many of the currently available biological databases and this situation exists even in the Protein Data Bank (PDB). Our analysis of recent PDB data revealed that only 42.53% of PDB entries (1084 coordinate files) that were categorized under "unknown function" are true examples of proteins of unknown function at this point in time. The remainder 1465 entries also annotated as such appear to be able to have their annotations re-assessed, based on the availability of direct functional characterization experiments for the protein itself, or for homologous sequences or structures thus enabling computational function inference.

  14. Dynamic fluctuations provide the basis of a conformational switch mechanism in apo cyclic AMP receptor protein.

    Directory of Open Access Journals (Sweden)

    Burcu Aykaç Fas

    Full Text Available Escherichia coli cyclic AMP Receptor Protein (CRP undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD simulations and Gaussian Network Model (GNM. The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.

  15. Protein mislocalization: mechanisms, functions and clinical applications in cancer

    Science.gov (United States)

    Wang, Xiaohong; Li, Shulin

    2014-01-01

    The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy. PMID:24709009

  16. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy.

    Science.gov (United States)

    Kerkum, Yvette L; Brehm, Merel-Anne; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap

    2014-12-01

    A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01-1.82 N · m · deg(-1). The moment-threshold increased with increasing stiffness (1.13-12.1 N · m), while ROM decreased (4.91-16.5°). Energy was returned by all springs (11.5-116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.

  17. The structure and function of endophilin proteins

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Brodin, Lennart; Jung, Anita

    2011-01-01

    Members of the BAR domain protein superfamily are essential elements of cellular traffic. Endophilins are among the best studied BAR domain proteins. They have a prominent function in synaptic vesicle endocytosis (SVE), receptor trafficking and apoptosis, and in other processes that require...

  18. Collagen targeting using multivalent protein-functionalized dendrimers

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Temming, R.P.; Helms, B.A.; Meijer, E.W.; Merkx, M.

    2011-01-01

    Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic

  19. Identify drug repurposing candidates by mining the protein data bank.

    Science.gov (United States)

    Moriaud, Fabrice; Richard, Stéphane B; Adcock, Stewart A; Chanas-Martin, Laetitia; Surgand, Jean-Sébastien; Ben Jelloul, Marouane; Delfaud, François

    2011-07-01

    Predicting off-targets by computational methods is gaining increasing interest in early-stage drug discovery. Here, we present a computational method based on full 3D comparisons of 3D structures. When a similar binding site is detected in the Protein Data Bank (PDB) (or any protein structure database), it is possible that the corresponding ligand also binds to that similar site. On one hand, this target hopping case is probably rare because it requires a high similarity between the binding sites. On the other hand, it could be a strong rational evidence to highlight possible off-target reactions and possibly a potential undesired side effect. This target-based drug repurposing can be extended a significant step further with the capability of searching the full surface of all proteins in the PDB, and therefore not relying on pocket detection. Using this approach, we describe how MED-SuMo reproduces the repurposing of tadalafil from PDE5A to PDE4A and a structure of PDE4A with tadalafil. Searching for local protein similarities generates more hits than for whole binding site similarities and therefore fragment repurposing is more likely to occur than for drug-sized compounds. In this work, we illustrate that by mining the PDB for proteins sharing similarities with the hinge region of protein kinases. The experimentally validated examples, biotin carboxylase and synapsin, are retrieved. Further to fragment repurposing, this approach can be applied to the detection of druggable sites from 3D structures. This is illustrated with detection of the protein kinase hinge motif in the HIV-RT non-nucleosidic allosteric site.

  20. Computational design of proteins with novel structure and functions

    International Nuclear Information System (INIS)

    Yang Wei; Lai Lu-Hua

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence–structure–function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein–protein interactions. Challenges and future prospects of this field are also discussed. (topical review)

  1. Milk protein tailoring to improve functional and biological properties

    Directory of Open Access Journals (Sweden)

    JEAN-MARC CHOBERT

    2012-01-01

    Full Text Available Proteins are involved in every aspects of life: structure, motion, catalysis, recognition and regulation. Today's highly sophisticated science of the modifications of proteins has ancient roots. The tailoring of proteins for food and medical uses precedes the beginning of what is called biochemistry. Chemical modification of proteins was pursued early in the twentieth century as an analytical procedure for side-chain amino acids. Later, methods were developed for specific inactivation of biologically active proteins and titration of their essential groups. Enzymatic modifications were mainly developed in the seventies when many more enzymes became economically available. Protein engineering has become a valuable tool for creating or improving proteins for practical use and has provided new insights into protein structure and function. The actual and potential use of milk proteins as food ingredients has been a popular topic for research over the past 40 years. With today's sophisticated analytical, biochemical and biological research tools, the presence of compounds with biological activity has been demonstrated. Improvements in separation techniques and enzyme technology have enabled efficient and economic isolation and modification of milk proteins, which has made possible their use as functional foods, dietary supplements, nutraceuticals and medical foods. In this review, some chemical and enzymatic modifications of milk proteins are described, with particular focus on their functional and biological properties.

  2. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-01-01

    operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching

  3. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Directory of Open Access Journals (Sweden)

    Sers Christine T

    2010-12-01

    Full Text Available Abstract Background While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. Results We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 and could confirm more than 73% of them based on evidence in the literature. Conclusions The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.

  4. Divergence, recombination and retention of functionality during protein evolution

    Directory of Open Access Journals (Sweden)

    Xu Yanlong O

    2005-09-01

    Full Text Available Abstract We have only a vague idea of precisely how protein sequences evolve in the context of protein structure and function. This is primarily because structural and functional contexts are not easily predictable from the primary sequence, and evaluating patterns of evolution at individual residue positions is also difficult. As a result of increasing biodiversity in genomics studies, progress is being made in detecting context-dependent variation in substitution processes, but it remains unclear exactly what context-dependent patterns we should be looking for. To address this, we have been simulating protein evolution in the context of structure and function using lattice models of proteins and ligands (or substrates. These simulations include thermodynamic features of protein stability and population dynamics. We refer to this approach as 'ab initio evolution' to emphasise the fact that the equilibrium details of fitness distributions arise from the physical principles of the system and not from any preconceived notions or arbitrary mathematical distributions. Here, we present results on the retention of functionality in homologous recombinants following population divergence. A central result is that protein structure characteristics can strongly influence recombinant functionality. Exceptional structures with many sequence options evolve quickly and tend to retain functionality -- even in highly diverged recombinants. By contrast, the more common structures with fewer sequence options evolve more slowly, but the fitness of recombinants drops off rapidly as homologous proteins diverge. These results have implications for understanding viral evolution, speciation and directed evolutionary experiments. Our analysis of the divergence process can also guide improved methods for accurately approximating folding probabilities in more complex but realistic systems.

  5. Usher proteins in inner ear structure and function.

    Science.gov (United States)

    Ahmed, Zubair M; Frolenkov, Gregory I; Riazuddin, Saima

    2013-11-01

    Usher syndrome (USH) is a neurosensory disorder affecting both hearing and vision in humans. Linkage studies of families of USH patients, studies in animals, and characterization of purified proteins have provided insight into the molecular mechanisms of hearing. To date, 11 USH proteins have been identified, and evidence suggests that all of them are crucial for the function of the mechanosensory cells of the inner ear, the hair cells. Most USH proteins are localized to the stereocilia of the hair cells, where mechano-electrical transduction (MET) of sound-induced vibrations occurs. Therefore, elucidation of the functions of USH proteins in the stereocilia is a prerequisite to understanding the exact mechanisms of MET.

  6. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2005-01-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1.18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should...... on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating...... frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice....

  7. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night.

    Science.gov (United States)

    Oláh, J; Tőkési, N; Lehotzky, A; Orosz, F; Ovádi, J

    2013-11-01

    The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed. Copyright © 2013 Wiley Periodicals, Inc.

  8. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  9. Predicting Protein Function via Semantic Integration of Multiple Networks.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  10. Negative density dependence of sympatric Hinge-back Tortoises (Kinixys erosa and K. homeana in West Africa

    Directory of Open Access Journals (Sweden)

    Luca Luiselli

    2008-05-01

    Full Text Available A series of 59 transect surveys was conducted in selected wet forest habitats, along the coast of West Africa, to estimate the density distribution of African Hinge-back tortoises (Kinixys homeana and K. erosa. Line transect data were fed into a simple model to derive a detection function. The parameters estimated by the model produced an elaborate characterisation of tortoise distribution, which proved to be useful in the formulation of hypotheses about tortoise densities. Line transect data were analysed by DISTANCE, with a series of key and the series adjustment: the uniform function, the 1-parameter half-normal function, and the 2-parameter hazard-rate function were considered as key functions; the cosine series, simple polynomials, and Hermite polynomials were considered as series expansions. The detection function was estimated separately for Kinixys homeana and K. erosa, and for transects grouped for each study area by considering all the combinations of the above key functions and series expansions. The Akaike Information Criterion (AIC was computed for each candidate model and used for model selection. The best model of the detection function, for both the tortoise species was the uniform function with no series expansion. Model results indicated that the density of the two species was inversely related at the local scale, and complementary across the region; such that the density of one species increases from West to East while the other one declines. Overall, the comparison of density estimates between the two tortoises is consistent with a former hypothesis suggesting inter-specific competition and consequent resource partitioning. Other causes may contribute to explain the observed patterns, including the low productivity of rainforest habitats and long-term human perturbation.

  11. The function of communities in protein interaction networks at multiple scales

    Directory of Open Access Journals (Sweden)

    Jones Nick S

    2010-07-01

    Full Text Available Abstract Background If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network. Results Our results demonstrate that the functional homogeneity of communities depends on the scale selected, and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional homogeneity using a novel test and three independent characterizations of protein function, and find a high degree of overlap between these measures. We show that a high mean clustering coefficient of a community can be used to identify those that are functionally homogeneous. By tracing the community membership of a protein through multiple scales we demonstrate how our approach could be useful to biologists focusing on a particular protein. Conclusions We show that there is no one scale of interest in the community structure of the yeast protein interaction network, but we can identify the range of resolution parameters that yield the most functionally coherent communities, and predict which communities are most likely to be functionally homogeneous.

  12. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Functional studies on the phosphatidychloride transfer protein

    NARCIS (Netherlands)

    Brouwer, A.P.M. de

    2002-01-01

    The phosphatidylcholine transfer protein (PC-TP) has been studied for over 30 years now. Despite extensive research concerning the biochemical, biophysical and structural properties of PC-TP, the function of this protein is still elusive. We have studied in vitro the folding and the mechanism of PC

  14. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing.

    Science.gov (United States)

    Franc, Vojtěch; Řehulka, Pavel; Raus, Martin; Stulík, Jiří; Novak, Jan; Renfrow, Matthew B; Šebela, Marek

    2013-10-30

    Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel

  15. Functional dynamics of cell surface membrane proteins.

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  17. Developing Novel Protein-based Materials using Ultrabithorax: Production, Characterization, and Functionalization

    Science.gov (United States)

    Huang, Zhao

    2011-12-01

    Compared to 'conventional' materials made from metal, glass, or ceramics, protein-based materials have unique mechanical properties. Furthermore, the morphology, mechanical properties, and functionality of protein-based materials may be optimized via sequence engineering for use in a variety of applications, including textile materials, biosensors, and tissue engineering scaffolds. The development of recombinant DNA technology has enabled the production and engineering of protein-based materials ex vivo. However, harsh production conditions can compromise the mechanical properties of protein-based materials and diminish their ability to incorporate functional proteins. Developing a new generation of protein-based materials is crucial to (i) improve materials assembly conditions, (ii) create novel mechanical properties, and (iii) expand the capacity to carry functional protein/peptide sequences. This thesis describes development of novel protein-based materials using Ultrabithorax, a member of the Hox family of proteins that regulate developmental pathways in Drosophila melanogaster. The experiments presented (i) establish the conditions required for the assembly of Ubx-based materials, (ii) generate a wide range of Ubx morphologies, (iii) examine the mechanical properties of Ubx fibers, (iv) incorporate protein functions to Ubx-based materials via gene fusion, (v) pattern protein functions within the Ubx materials, and (vi) examine the biocompatibility of Ubx materials in vitro. Ubx-based materials assemble at mild conditions compatible with protein folding and activity, which enables Ubx chimeric materials to retain the function of appended proteins in spatial patterns determined by materials assembly. Ubx-based materials also display mechanical properties comparable to existing protein-based materials and demonstrate good biocompatibility with living cells in vitro. Taken together, this research demonstrates the unique features and future potential of novel Ubx

  18. God of the hinge: treating LGBTQIA patients.

    Science.gov (United States)

    Boland, Annie

    2017-11-01

    This paper looks at systems of gender within the context of analysis. It explores the unique challenges of individuation faced by transsexual, transgender, gender queer, gender non-conforming, cross-dressing and intersex patients. To receive patients generously we need to learn how a binary culture produces profound and chronic trauma. These patients wrestle with being who they are whilst simultaneously receiving negative projections and feeling invisible. While often presenting with the struggles of gender conforming individuals, understanding the specifically gendered aspect of their identity is imperative. An analyst's unconscious bias may lead to iatrogenic shaming. The author argues that rigorous, humble inquiry into the analyst's transphobia can be transformative for patient, analyst, and the work itself. Analysis may, then, provide gender-variant patients with their first remembered and numinous experience of authentic connection to self. Conjuring the image of a hinge, securely placed in the neutral region of a third space, creates a transpositive analytic temenos. Invoking the spirit of the Trickster in the construction of this matrix supports the full inclusion of gender-variant patients. Nuanced attunement scaffolds mirroring and the possibility of play. Being mindful that gender is sturdy and delicate as well as mercurial and defined enriches the analyst's listening. © 2017, The Society of Analytical Psychology.

  19. A three-way approach for protein function classification.

    Directory of Open Access Journals (Sweden)

    Hafeez Ur Rehman

    Full Text Available The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS and Information-Theoretic Rough Sets (ITRS for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy.

  20. A Structurally Variable Hinged Tetrahedron Framework from DNA Origami

    Directory of Open Access Journals (Sweden)

    David M. Smith

    2011-01-01

    Full Text Available Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.

  1. Proteins of Unknown Function in the Protein Data Bank (PDB: An Inventory of True Uncharacterized Proteins and Computational Tools for Their Analysis

    Directory of Open Access Journals (Sweden)

    Nurul Nadzirin

    2012-10-01

    Full Text Available Proteins of uncharacterized functions form a large part of many of the currently available biological databases and this situation exists even in the Protein Data Bank (PDB. Our analysis of recent PDB data revealed that only 42.53% of PDB entries (1084 coordinate files that were categorized under “unknown function” are true examples of proteins of unknown function at this point in time. The remainder 1465 entries also annotated as such appear to be able to have their annotations re-assessed, based on the availability of direct functional characterization experiments for the protein itself, or for homologous sequences or structures thus enabling computational function inference.

  2. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    Ogawa, Tomoko

    1994-01-01

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  3. Functional similarities between the dictyostelium protein AprA and the human protein dipeptidyl-peptidase IV.

    Science.gov (United States)

    Herlihy, Sarah E; Tang, Yu; Phillips, Jonathan E; Gomer, Richard H

    2017-03-01

    Autocrine proliferation repressor protein A (AprA) is a protein secreted by Dictyostelium discoideum cells. Although there is very little sequence similarity between AprA and any human protein, AprA has a predicted structural similarity to the human protein dipeptidyl peptidase IV (DPPIV). AprA is a chemorepellent for Dictyostelium cells, and DPPIV is a chemorepellent for neutrophils. This led us to investigate if AprA and DPPIV have additional functional similarities. We find that like AprA, DPPIV is a chemorepellent for, and inhibits the proliferation of, D. discoideum cells, and that AprA binds some DPPIV binding partners such as fibronectin. Conversely, rAprA has DPPIV-like protease activity. These results indicate a functional similarity between two eukaryotic chemorepellent proteins with very little sequence similarity, and emphasize the usefulness of using a predicted protein structure to search a protein structure database, in addition to searching for proteins with similar sequences. © 2016 The Protein Society.

  4. Production of functional protein hydrolysates from Egyptian breeds ...

    African Journals Online (AJOL)

    Production of functional protein hydrolysates from Egyptian breeds of soybean and lupin seeds. AA khalil, SS Mohamed, FS Taha, EN Karlsson. Abstract. Enzymatic hydrolysis is an agro-processing aid that can be utilized in order to improve nutritional quality of protein extracts from many sources. In this study, protein ...

  5. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  6. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  7. THE ESSENTIAL DYNAMICS OF THERMOLYSIN - CONFIRMATION OF THE HINGE-BENDING MOTION AND COMPARISON OF SIMULATIONS IN VACUUM AND WATER

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Amadei, A; Linssen, A.B M; Eijsink, V.G.H.; Vriend, G.; Berendsen, H.J.C.

    Comparisons of the crystal structures of thermolysin and the thermolysin-like protease produced by B. cereus have recently led to the hypothesis that neutral proteases undergo a hinge-bending motion. We have investigated this hypothesis by analyzing molecular dynamics simulations of thermolysin in

  8. Hierarchical partitioning of metazoan protein conservation profiles provides new functional insights.

    Directory of Open Access Journals (Sweden)

    Jonathan Witztum

    Full Text Available The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles. We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent, as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life.

  9. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Wiki-pi: a web-server of annotated human protein-protein interactions to aid in discovery of protein function.

    Directory of Open Access Journals (Sweden)

    Naoki Orii

    Full Text Available Protein-protein interactions (PPIs are the basis of biological functions. Knowledge of the interactions of a protein can help understand its molecular function and its association with different biological processes and pathways. Several publicly available databases provide comprehensive information about individual proteins, such as their sequence, structure, and function. There also exist databases that are built exclusively to provide PPIs by curating them from published literature. The information provided in these web resources is protein-centric, and not PPI-centric. The PPIs are typically provided as lists of interactions of a given gene with links to interacting partners; they do not present a comprehensive view of the nature of both the proteins involved in the interactions. A web database that allows search and retrieval based on biomedical characteristics of PPIs is lacking, and is needed. We present Wiki-Pi (read Wiki-π, a web-based interface to a database of human PPIs, which allows users to retrieve interactions by their biomedical attributes such as their association to diseases, pathways, drugs and biological functions. Each retrieved PPI is shown with annotations of both of the participant proteins side-by-side, creating a basis to hypothesize the biological function facilitated by the interaction. Conceptually, it is a search engine for PPIs analogous to PubMed for scientific literature. Its usefulness in generating novel scientific hypotheses is demonstrated through the study of IGSF21, a little-known gene that was recently identified to be associated with diabetic retinopathy. Using Wiki-Pi, we infer that its association to diabetic retinopathy may be mediated through its interactions with the genes HSPB1, KRAS, TMSB4X and DGKD, and that it may be involved in cellular response to external stimuli, cytoskeletal organization and regulation of molecular activity. The website also provides a wiki-like capability allowing users

  11. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  12. Functional similarities between the dictyostelium protein AprA and the human protein dipeptidyl‐peptidase IV

    Science.gov (United States)

    Herlihy, Sarah E.; Tang, Yu; Phillips, Jonathan E.

    2017-01-01

    Abstract Autocrine proliferation repressor protein A (AprA) is a protein secreted by Dictyostelium discoideum cells. Although there is very little sequence similarity between AprA and any human protein, AprA has a predicted structural similarity to the human protein dipeptidyl peptidase IV (DPPIV). AprA is a chemorepellent for Dictyostelium cells, and DPPIV is a chemorepellent for neutrophils. This led us to investigate if AprA and DPPIV have additional functional similarities. We find that like AprA, DPPIV is a chemorepellent for, and inhibits the proliferation of, D. discoideum cells, and that AprA binds some DPPIV binding partners such as fibronectin. Conversely, rAprA has DPPIV‐like protease activity. These results indicate a functional similarity between two eukaryotic chemorepellent proteins with very little sequence similarity, and emphasize the usefulness of using a predicted protein structure to search a protein structure database, in addition to searching for proteins with similar sequences. PMID:28028841

  13. Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings

    OpenAIRE

    TANAKA, Kousuke; HIRAGA, Atsushi; TAKAHASHI, Toshiyuki; KUWANO, Atsutoshi; MORRISON, Scott Edward

    2015-01-01

    ABSTRACT We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mea...

  14. Geometrical comparison of two protein structures using Wigner-D functions.

    Science.gov (United States)

    Saberi Fathi, S M; White, Diana T; Tuszynski, Jack A

    2014-10-01

    In this article, we develop a quantitative comparison method for two arbitrary protein structures. This method uses a root-mean-square deviation characterization and employs a series expansion of the protein's shape function in terms of the Wigner-D functions to define a new criterion, which is called a "similarity value." We further demonstrate that the expansion coefficients for the shape function obtained with the help of the Wigner-D functions correspond to structure factors. Our method addresses the common problem of comparing two proteins with different numbers of atoms. We illustrate it with a worked example. © 2014 Wiley Periodicals, Inc.

  15. Tet protein function during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The TET (Ten-eleven translocation 1, 2 and 3 proteins have been shown to function as DNA hydroxymethylases in vertebrates and their requirements have been documented extensively. Recently, the Tet proteins have been shown to also hydroxylate 5-methylcytosine in RNA. 5-hydroxymethylcytosine (5hmrC is enriched in messenger RNA but the function of this modification has yet to be elucidated. Because Cytosine methylation in DNA is barely detectable in Drosophila, it serves as an ideal model to study the biological function of 5hmrC. Here, we characterized the temporal and spatial expression and requirement of Tet throughout Drosophila development. We show that Tet is essential for viability as Tet complete loss-of-function animals die at the late pupal stage. Tet is highly expressed in neuronal tissues and at more moderate levels in somatic muscle precursors in embryos and larvae. Depletion of Tet in muscle precursors at early embryonic stages leads to defects in larval locomotion and late pupal lethality. Although Tet knock-down in neuronal tissue does not cause lethality, it is essential for neuronal function during development through its affects upon locomotion in larvae and the circadian rhythm of adult flies. Further, we report the function of Tet in ovarian morphogenesis. Together, our findings provide basic insights into the biological function of Tet in Drosophila, and may illuminate observed neuronal and muscle phenotypes observed in vertebrates.

  16. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  17. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  18. Using RNA Interference to Study Protein Function

    OpenAIRE

    Curtis, Carol D.; Nardulli, Ann M.

    2009-01-01

    RNA interference can be extremely useful in determining the function of an endogenously-expressed protein in its normal cellular environment. In this chapter, we describe a method that uses small interfering RNA (siRNA) to knock down mRNA and protein expression in cultured cells so that the effect of a putative regulatory protein on gene expression can be delineated. Methods of assessing the effectiveness of the siRNA procedure using real time quantitative PCR and Western analysis are also in...

  19. Intricate knots in proteins: Function and evolution.

    Directory of Open Access Journals (Sweden)

    Peter Virnau

    2006-09-01

    Full Text Available Our investigation of knotted structures in the Protein Data Bank reveals the most complicated knot discovered to date. We suggest that the occurrence of this knot in a human ubiquitin hydrolase might be related to the role of the enzyme in protein degradation. While knots are usually preserved among homologues, we also identify an exception in a transcarbamylase. This allows us to exemplify the function of knots in proteins and to suggest how they may have been created.

  20. Exploring overlapping functional units with various structure in protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Zhang

    Full Text Available Revealing functional units in protein-protein interaction (PPI networks are important for understanding cellular functional organization. Current algorithms for identifying functional units mainly focus on cohesive protein complexes which have more internal interactions than external interactions. Most of these approaches do not handle overlaps among complexes since they usually allow a protein to belong to only one complex. Moreover, recent studies have shown that other non-cohesive structural functional units beyond complexes also exist in PPI networks. Thus previous algorithms that just focus on non-overlapping cohesive complexes are not able to present the biological reality fully. Here, we develop a new regularized sparse random graph model (RSRGM to explore overlapping and various structural functional units in PPI networks. RSRGM is principally dominated by two model parameters. One is used to define the functional units as groups of proteins that have similar patterns of connections to others, which allows RSRGM to detect non-cohesive structural functional units. The other one is used to represent the degree of proteins belonging to the units, which supports a protein belonging to more than one revealed unit. We also propose a regularizer to control the smoothness between the estimators of these two parameters. Experimental results on four S. cerevisiae PPI networks show that the performance of RSRGM on detecting cohesive complexes and overlapping complexes is superior to that of previous competing algorithms. Moreover, RSRGM has the ability to discover biological significant functional units besides complexes.

  1. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  2. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Tacchi, Jessica L; Raymond, Benjamin B A; Haynes, Paul A; Berry, Iain J; Widjaja, Michael; Bogema, Daniel R; Woolley, Lauren K; Jenkins, Cheryl; Minion, F Chris; Padula, Matthew P; Djordjevic, Steven P

    2016-02-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. © 2016 The Authors.

  4. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    Science.gov (United States)

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  5. Proteins with Novel Structure, Function and Dynamics

    Science.gov (United States)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  6. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  7. JAFA: a protein function annotation meta-server

    DEFF Research Database (Denmark)

    Friedberg, Iddo; Harder, Tim; Godzik, Adam

    2006-01-01

    Annotations, or JAFA server. JAFA queries several function prediction servers with a protein sequence and assembles the returned predictions in a legible, non-redundant format. In this manner, JAFA combines the predictions of several servers to provide a comprehensive view of what are the predicted functions...

  8. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family

    Directory of Open Access Journals (Sweden)

    Sonnhammer Erik L

    2008-01-01

    Full Text Available Abstract Background Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection. Results We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in Plasmodium falciparum. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the Plasmodium export (PEXEL motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization. Conclusion These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins.

  9. Designing sequence to control protein function in an EF-hand protein.

    Science.gov (United States)

    Bunick, Christopher G; Nelson, Melanie R; Mangahas, Sheryll; Hunter, Michael J; Sheehan, Jonathan H; Mizoue, Laura S; Bunick, Gerard J; Chazin, Walter J

    2004-05-19

    The extent of conformational change that calcium binding induces in EF-hand proteins is a key biochemical property specifying Ca(2+) sensor versus signal modulator function. To understand how differences in amino acid sequence lead to differences in the response to Ca(2+) binding, comparative analyses of sequence and structures, combined with model building, were used to develop hypotheses about which amino acid residues control Ca(2+)-induced conformational changes. These results were used to generate a first design of calbindomodulin (CBM-1), a calbindin D(9k) re-engineered with 15 mutations to respond to Ca(2+) binding with a conformational change similar to that of calmodulin. The gene for CBM-1 was synthesized, and the protein was expressed and purified. Remarkably, this protein did not exhibit any non-native-like molten globule properties despite the large number of mutations and the nonconservative nature of some of them. Ca(2+)-induced changes in CD intensity and in the binding of the hydrophobic probe, ANS, implied that CBM-1 does undergo Ca(2+) sensorlike conformational changes. The X-ray crystal structure of Ca(2+)-CBM-1 determined at 1.44 A resolution reveals the anticipated increase in hydrophobic surface area relative to the wild-type protein. A nascent calmodulin-like hydrophobic docking surface was also found, though it is occluded by the inter-EF-hand loop. The results from this first calbindomodulin design are discussed in terms of progress toward understanding the relationships between amino acid sequence, protein structure, and protein function for EF-hand CaBPs, as well as the additional mutations for the next CBM design.

  10. Structural and Function Prediction of Musa acuminata subsp. Malaccensis Protein

    Directory of Open Access Journals (Sweden)

    Anum Munir

    2016-03-01

    Full Text Available Hypothetical proteins (HPs are the proteins whose presence has been anticipated, yet in vivo function has not been built up. Illustrating the structural and functional privileged insights of these HPs might likewise prompt a superior comprehension of the protein-protein associations or networks in diverse types of life. Bananas (Musa acuminata spp., including sweet and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister grouped to the all-around considered Poales, which incorporate oats. Bananas are crucial for nourishment security in numerous tropical and subtropical nations and the most prominent organic product in industrialized nations. In the present study, the hypothetical protein of M. acuminata (Banana was chosen for analysis and modeling by distinctive bioinformatics apparatuses and databases. As indicated by primary and secondary structure analysis, XP_009393594.1 is a stable hydrophobic protein containing a noteworthy extent of α-helices; Homology modeling was done utilizing SWISS-MODEL server where the templates identity with XP_009393594.1 protein was less which demonstrated novelty of our protein. Ab initio strategy was conducted to produce its 3D structure. A few evaluations of quality assessment and validation parameters determined the generated protein model as stable with genuinely great quality. Functional analysis was completed by ProtFun 2.2, and KEGG (KAAS, recommended that the hypothetical protein is a transcription factor with cytoplasmic domain as zinc finger. The protein was observed to be vital for translation process, involved in metabolism, signaling and cellular processes, genetic information processing and Zinc ion binding. It is suggested that further test approval would help to anticipate the structures and functions of other uncharacterized proteins of different plants and living being.

  11. Functional characterization of Arabidopsis thaliana transthyretin-like protein.

    Science.gov (United States)

    Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M

    2010-02-18

    Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  12. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  13. Functional classification of protein structures by local structure matching in graph representation.

    Science.gov (United States)

    Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo

    2018-03-31

    As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  14. SM30 protein function during sea urchin larval spicule formation.

    Science.gov (United States)

    Wilt, Fred; Killian, Christopher E; Croker, Lindsay; Hamilton, Patricia

    2013-08-01

    A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An SMC-like protein binds and regulates Caenorhabditis elegans condensins.

    Directory of Open Access Journals (Sweden)

    Lucy Fang-I Chao

    2017-03-01

    Full Text Available Structural Maintenance of Chromosomes (SMC family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II; C. elegans has three (I, II, and the X-chromosome specialized condensin IDC and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.

  16. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

    Science.gov (United States)

    Klett, Javier; Núñez-Salgado, Alfonso; Dos Santos, Helena G; Cortés-Cabrera, Álvaro; Perona, Almudena; Gil-Redondo, Rubén; Abia, David; Gago, Federico; Morreale, Antonio

    2012-09-11

    An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

  17. Phospholipid liposomes functionalized by protein

    Science.gov (United States)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  18. Protein domain recurrence and order can enhance prediction of protein functions

    KAUST Repository

    Abdel Messih, Mario A.; Chitale, Meghana; Bajic, Vladimir B.; Kihara, Daisuke; Gao, Xin

    2012-01-01

    Motivation: Burgeoning sequencing technologies have generated massive amounts of genomic and proteomic data. Annotating the functions of proteins identified in this data has become a big and crucial problem. Various computational methods have been

  19. Prediction of human protein function from post-translational modifications and localization features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Blom, Nikolaj

    2002-01-01

    a number of functional attributes that are more directly related to the linear sequence of amino acids, and hence easier to predict, than protein structure. These attributes include features associated with post-translational modifications and protein sorting, but also much simpler aspects......We have developed an entirely sequence-based method that identifies and integrates relevant features that can be used to assign proteins of unknown function to functional classes, and enzyme categories for enzymes. We show that strategies for the elucidation of protein function may benefit from...

  20. Jatropha seed protein functional properties for technical applications

    NARCIS (Netherlands)

    Lestari, D.; Mulder, W.J.; Sanders, J.P.M.

    2011-01-01

    Jatropha press cake, by-product after oil expression from Jatropha seeds, contains 24–28% protein on dry basis. Objectives of this research were to investigate functional properties, such as solubility, emulsifying, foaming, film forming, and adhesive properties, of Jatropha press cake proteins and

  1. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    Science.gov (United States)

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  2. Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Jun Pan

    2014-01-01

    Full Text Available Introduction: This study aims to identify protein clusters with potential functional relevance in the pathogenesis of hepatocellular carcinoma (HCC and metastatic hepatic carcinoma using network analysis. Materials and Methods: We used human protein interaction data to build a protein-protein interaction network with Cytoscape and then derived functional clusters using MCODE. Combining the gene expression profiles, we calculated the functional scores for the clusters and selected statistically significant clusters. Meanwhile, Gene Ontology was used to assess the functionality of these clusters. Finally, a support vector machine was trained on the gold standard data sets. Results: The differentially expressed genes of HCC were mainly involved in metabolic and signaling processes. We acquired 13 significant modules from the gene expression profiles. The area under the curve value based on the differentially expressed modules were 98.31%, which outweighed the classification with DEGs. Conclusions: Differentially expressed modules are valuable to screen biomarkers combined with functional modules.

  3. RACK1, A Multifaceted Scaffolding Protein: Structure and Function

    LENUS (Irish Health Repository)

    Adams, David R

    2011-10-06

    Abstract The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.

  4. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  5. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    Science.gov (United States)

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  6. Structure and function of homodomain-leucine zipper (HD-Zip) proteins.

    Science.gov (United States)

    Elhiti, Mohamed; Stasolla, Claudio

    2009-02-01

    Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.

  7. Custom rotating hinge total knee arthroplasty in patients with poliomyelitis affected limbs.

    Science.gov (United States)

    Rahman, Jeeshan; Hanna, Sammy A; Kayani, Babar; Miles, Jonathan; Pollock, Robin C; Skinner, John A; Briggs, Timothy W; Carrington, Richard W

    2015-05-01

    Total knee arthroplasty (TKA) in limbs affected by poliomyelitis is a technically challenging procedure. These patients often demonstrate acquired articular and metaphyseal angular deformities, bone loss, narrowness of the intramedullary canals, impaired quadriceps strength, flexion contractures and ligamentous laxity producing painful hyperextension. Thus, using condylar knee designs in these patients will likely result in early failure because of instability and abnormal load distribution. The aim of this study was to assess the outcomes associated with use of the customised (SMILES) rotating-hinge knee system at our institution for TKA in poliomyelitis-affected limbs. We retrospectively reviewed the outcome of 14 TKAs using the (SMILES) prosthesis in 13 patients with limbs affected by poliomyelitis. All patients had painful unstable knees with hyperextension. There were ten females and three males with a mean age of 66 years (range 51-84) at time of surgery. Patients were followed up clinically, radiologically and functionally with the Oxford knee score (OKS). Mean follow-up was 72 months (16-156). There were no immediate or early complications. One patient fell and sustained a peri-prosthetic fracture at seven months requiring revision to a longer stem. Radiological evaluation showed satisfactory alignment with no signs of loosening in all cases. Mean OKS improved from 11.6 (4-18) to 31.5 (18-40) postoperatively (p poliomyelitis. The device compensates well for ligamentous insufficiency as well as for any associated bony deformity.

  8. Functional characterization of Arabidopsis thaliana transthyretin-like protein

    Directory of Open Access Journals (Sweden)

    Almeida Maria R

    2010-02-01

    Full Text Available Abstract Background Arabidopsis thaliana transthyretin-like (TTL protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU decarboxylase (N-terminal domain and 5-hydroxyisourate (5-HIU hydrolase (C-terminal domain. TTL is a member of the transthyretin-related protein family (TRP, which comprises a number of proteins with sequence homology to transthyretin (TTR and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. Results The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. Conclusions The Arabidopsis thaliana transthyretin-like (TTL protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  9. Liver Function Status in some Nigerian Children with Protein Energy ...

    African Journals Online (AJOL)

    Objective: To ascertain functional status of the liver in Nigeria Children with Protein energy malnutrition. Materials and Methods: Liver function tests were performed on a total of 88 children with protein energy malnutrition (PEM). These were compared with 22 apparently well-nourished children who served as controls.

  10. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  11. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    Science.gov (United States)

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  12. Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.

  13. Functional equivalency inferred from "authoritative sources" in networks of homologous proteins.

    Science.gov (United States)

    Natarajan, Shreedhar; Jakobsson, Eric

    2009-06-12

    A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based on simple concepts from network theory. A key feature of our algorithm is utilization of the user's knowledge to assign high confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7 membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species. Based on that comparison, we believe that incorporation of user's knowledge as a key aspect of the technique adds value to purely statistical formal methods.

  14. Density functional study of molecular interactions in secondary structures of proteins.

    Science.gov (United States)

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  15. Modulation of formalin-induced pain-related behaviour by clonidine and yohimbine in the Speke's hinged tortoise (Kiniskys spekii)

    DEFF Research Database (Denmark)

    Makau, C M; Towett, P K; Abelson, K S P

    2017-01-01

    The study was designed to investigate the involvement of noradrenergic and serotonergic receptor systems in the modulation of formalin-induced pain-related behaviour in the Speke's hinged tortoise. Intradermal injection of 100 μL of formalin at a dilution of 12.5% caused pain-related behaviour (h...

  16. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  17. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  18. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization

    OpenAIRE

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals...

  19. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins.

    Science.gov (United States)

    Fu, Xuekun; Liang, Chao; Li, Fangfei; Wang, Luyao; Wu, Xiaoqiu; Lu, Aiping; Xiao, Guozhi; Zhang, Ge

    2018-05-12

    Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.

  20. Integrative approaches to the prediction of protein functions based on the feature selection

    Directory of Open Access Journals (Sweden)

    Lee Hyunju

    2009-12-01

    Full Text Available Abstract Background Protein function prediction has been one of the most important issues in functional genomics. With the current availability of various genomic data sets, many researchers have attempted to develop integration models that combine all available genomic data for protein function prediction. These efforts have resulted in the improvement of prediction quality and the extension of prediction coverage. However, it has also been observed that integrating more data sources does not always increase the prediction quality. Therefore, selecting data sources that highly contribute to the protein function prediction has become an important issue. Results We present systematic feature selection methods that assess the contribution of genome-wide data sets to predict protein functions and then investigate the relationship between genomic data sources and protein functions. In this study, we use ten different genomic data sources in Mus musculus, including: protein-domains, protein-protein interactions, gene expressions, phenotype ontology, phylogenetic profiles and disease data sources to predict protein functions that are labelled with Gene Ontology (GO terms. We then apply two approaches to feature selection: exhaustive search feature selection using a kernel based logistic regression (KLR, and a kernel based L1-norm regularized logistic regression (KL1LR. In the first approach, we exhaustively measure the contribution of each data set for each function based on its prediction quality. In the second approach, we use the estimated coefficients of features as measures of contribution of data sources. Our results show that the proposed methods improve the prediction quality compared to the full integration of all data sources and other filter-based feature selection methods. We also show that contributing data sources can differ depending on the protein function. Furthermore, we observe that highly contributing data sets can be similar among

  1. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.

    Science.gov (United States)

    Liu, Zhihai; Su, Minyi; Han, Li; Liu, Jie; Yang, Qifan; Li, Yan; Wang, Renxiao

    2017-02-21

    In structure-based drug design, scoring functions are widely used for fast evaluation of protein-ligand interactions. They are often applied in combination with molecular docking and de novo design methods. Since the early 1990s, a whole spectrum of protein-ligand interaction scoring functions have been developed. Regardless of their technical difference, scoring functions all need data sets combining protein-ligand complex structures and binding affinity data for parametrization and validation. However, data sets of this kind used to be rather limited in terms of size and quality. On the other hand, standard metrics for evaluating scoring function used to be ambiguous. Scoring functions are often tested in molecular docking or even virtual screening trials, which do not directly reflect the genuine quality of scoring functions. Collectively, these underlying obstacles have impeded the invention of more advanced scoring functions. In this Account, we describe our long-lasting efforts to overcome these obstacles, which involve two related projects. On the first project, we have created the PDBbind database. It is the first database that systematically annotates the protein-ligand complexes in the Protein Data Bank (PDB) with experimental binding data. This database has been updated annually since its first public release in 2004. The latest release (version 2016) provides binding data for 16 179 biomolecular complexes in PDB. Data sets provided by PDBbind have been applied to many computational and statistical studies on protein-ligand interaction and various subjects. In particular, it has become a major data resource for scoring function development. On the second project, we have established the Comparative Assessment of Scoring Functions (CASF) benchmark for scoring function evaluation. Our key idea is to decouple the "scoring" process from the "sampling" process, so scoring functions can be tested in a relatively pure context to reflect their quality. In our

  2. Floating Characteristics of Rudders and Elevators in Spinning Attitudes as Determined From Hinge-Moment-Coefficient Data With Application to Personal-Owner-Type Airplanes

    National Research Council Canada - National Science Library

    Bihrle, William

    1950-01-01

    A study was made of available rudder and elevator hinge-moment-coefficient-coefficient data in order to determine the floating characteristics of various types of rudders and elevators in spinning attitudes...

  3. Printing Proteins as Microarrays for High-Throughput Function Determination

    Science.gov (United States)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  4. Lipid-mediated protein functionalization of electrospun polycaprolactone fibers

    Directory of Open Access Journals (Sweden)

    C. Cohn

    2016-05-01

    Full Text Available In this study, electrospun polycaprolactone (PCL fibers are plasma-treated and chemically conjugated with cholesteryl succinyl silane (CSS. In addition to Raman spectroscopy, an immobilization study of DiO as a fluorescent probe of lipid membranes provides evidence supporting the CSS coating of plasma-treated PCL fibers. Further, anti-CD20 antibodies are used as a model protein to evaluate the potential of lipid-mediated protein immobilization as a mechanism to functionalize the CSS-PCL fiber scaffolds. Upon anti-CD20 functionalization, the CSS-PCL fiber scaffolds capture Granta-22 cells 2.4 times more than the PCL control does, although the two fiber scaffolds immobilize a comparable amount of anti-CD20. Taken together, results from the present study demonstrate that the CSS coating and CSS-mediated antibody immobilization offers an appealing strategy to functionalize electrospun synthetic polymer fibers and confer cell-specific functions on the fiber scaffolds, which can be mechanically robust but often lack biological functions.

  5. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  6. Functional discrimination of membrane proteins using machine learning techniques

    Directory of Open Access Journals (Sweden)

    Yabuki Yukimitsu

    2008-03-01

    Full Text Available Abstract Background Discriminating membrane proteins based on their functions is an important task in genome annotation. In this work, we have analyzed the characteristic features of amino acid residues in membrane proteins that perform major functions, such as channels/pores, electrochemical potential-driven transporters and primary active transporters. Results We observed that the residues Asp, Asn and Tyr are dominant in channels/pores whereas the composition of hydrophobic residues, Phe, Gly, Ile, Leu and Val is high in electrochemical potential-driven transporters. The composition of all the amino acids in primary active transporters lies in between other two classes of proteins. We have utilized different machine learning algorithms, such as, Bayes rule, Logistic function, Neural network, Support vector machine, Decision tree etc. for discriminating these classes of proteins. We observed that most of the algorithms have discriminated them with similar accuracy. The neural network method discriminated the channels/pores, electrochemical potential-driven transporters and active transporters with the 5-fold cross validation accuracy of 64% in a data set of 1718 membrane proteins. The application of amino acid occurrence improved the overall accuracy to 68%. In addition, we have discriminated transporters from other α-helical and β-barrel membrane proteins with the accuracy of 85% using k-nearest neighbor method. The classification of transporters and all other proteins (globular and membrane showed the accuracy of 82%. Conclusion The performance of discrimination with amino acid occurrence is better than that with amino acid composition. We suggest that this method could be effectively used to discriminate transporters from all other globular and membrane proteins, and classify them into channels/pores, electrochemical and active transporters.

  7. The Function of UreB in Klebsiella aerogenes Urease†

    Science.gov (United States)

    Carter, Eric L.; Boer, Jodi L.; Farrugia, Mark A.; Flugga, Nicholas; Towns, Christopher L.; Hausinger, Robert P.

    2011-01-01

    Urease from Klebsiella aerogenes is composed of three subunits (UreA, UreB, and UreC) which assemble into a (UreABC)3 quaternary structure. UreC harbors the dinuclear nickel active site, whereas the functions of UreA and UreB remain unknown. UreD and UreF accessory proteins previously were suggested to reposition UreB and increase exposure of the nascent urease active site, thus facilitating metallocenter assembly. In this study, cells were engineered to separately produce (UreAC)3 or UreB, and the purified proteins were characterized. Monomeric UreB spontaneously binds to the trimeric heterodimer of UreA plus UreC to form (UreABC*)3 apoprotein, as shown by gel filtration chromatography, integration of electrophoretic gel band intensities, and mass spectrometry. Similar to authentic urease apoprotein, active enzyme is produced by incubation of (UreABC*)3 with Ni2+ and bicarbonate. Conversely, UreBΔ1-19, lacking the 19 residue potential hinge and tether to UreC, does not form a complex with (UreAC)3 and yields negligible levels of active enzyme when incubated under activation conditions with (UreAC)3. Comparison of activities and nickel contents for (UreAC)3, (UreABC*)3, and (UreABC)3 samples treated with Ni2+ and bicarbonate and then desalted indicates that UreB facilitates efficient incorporation of the metal into the active site and protects the bound metal from chelation. Amylose resin pull-down studies reveal that MBP-UreD (a fusion of maltose binding protein with UreD) forms complexes with (UreABC)3, (UreAC)3, and UreB in vivo, but not in vitro. By contrast, MBP-UreD does not form an in vivo complex with UreBΔ1-19. The soluble MBP-UreD:UreF:UreG complex binds in vitro to (UreABC)3, but not to (UreAC)3 or UreB. Together these data demonstrate that UreB facilitates the interaction of urease with accessory proteins during metallocenter assembly, with the N-terminal hinge and tether region being specifically required for this process. In addition to its role in

  8. CHEMICAL COMPOSITION AND FUNCTIONAL PROPERTIES OF RICE PROTEIN CONCENTRATES

    Directory of Open Access Journals (Sweden)

    V. V. Kolpakova

    2015-01-01

    Full Text Available Traditionally rice and products of its processing are used to cook porridge, pilaf, lettuce, confectionery, fish, dairy and meat products. At the same time new ways of its processing with releasing of protein products for more effective using, including the use of a glutenfree diet, are developing. The task of this study was a comparative research of nutrition and biological value and functional properties of protein and protein-calcium concentrates produced from rice flour milled from white and brown rice. The traditional and special methods were used. Concentrates were isolated with enzyme preparations of xylanase and amylolytic activity with the next dissolution of protein in diluted hydrochloric acid. Concentrates differed in the content of mineral substances (calcium, zinc, iron and other elements, amino acids and functional properties. The values of the functional properties and indicators of the nutritional value of concentrates from white rice show the advisability of their using in food products, including gluten-free products prepared on the basis of the emulsion and foam systems, and concentrates from brown rice in food products prepared on the basis of using of the emulsion systems. Protein concentrates of brown rice have a low foaming capacity and there is no foam stability at all.

  9. Functional analysis of thermostable proteins involved in carbohydrate metabolism

    NARCIS (Netherlands)

    Akerboom, A.P.

    2007-01-01

    Thermostable proteins can resist temperature stress whilst keeping their integrity and functionality. In many cases, thermostable proteins originate from hyperthermophilic microorganisms that thrive in extreme environments. These systems are generally located close to geothermal (volcanic) activity,

  10. Structural determination of functional units of the nucleotide binding domain (NBD94 of the reticulocyte binding protein Py235 of Plasmodium yoelii.

    Directory of Open Access Journals (Sweden)

    Ardina Grüber

    2010-02-01

    Full Text Available Invasion of the red blood cells (RBC by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94 of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH.In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94(444-547, NBD94(566-663 and NBD94(674-793, respectively. Using fluorescence correlation spectroscopy NBD94(444-547 has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94(444-547 in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 A in length. The high quality of the constructs, forming the hinge-region, NBD94(566-663 and NBD94(674-793 enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94(566-663 consists of two helices with 97.8 A and 48.6 A in length, linked by a loop. By comparison, the low resolution structure of NBD94(674-793 in solution represents a chair-like shape with three architectural segments.These structures give the first insight into how nucleotide binding impacts on the overall structure of RH and demonstrates the

  11. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP.

    Directory of Open Access Journals (Sweden)

    Paolo Dametto

    Full Text Available The cellular prion protein (PrPC consists of a flexible N-terminal tail (FT, aa 23-128 hinged to a membrane-anchored globular domain (GD, aa 129-231. Ligation of the GD with antibodies induces rapid neurodegeneration, which is prevented by deletion or functional inactivation of the FT. Therefore, the FT is an allosteric effector of neurotoxicity. To explore its mechanism of action, we generated transgenic mice expressing the FT fused to a GPI anchor, but lacking the GD (PrPΔ141-225, or "FTgpi". Here we report that FTgpi mice develop a progressive, inexorably lethal neurodegeneration morphologically and biochemically similar to that triggered by anti-GD antibodies. FTgpi was mostly retained in the endoplasmic reticulum, where it triggered a conspicuous unfolded protein response specifically activating the PERK pathway leading to phosphorylation of eIF2α and upregulation of CHOP ultimately leading to neurodegeration similar to what was observed in prion infection.

  12. BRICHOS - a superfamily of multidomain proteins with diverse functions

    Directory of Open Access Journals (Sweden)

    Johansson Jan

    2009-09-01

    Full Text Available Abstract Background The BRICHOS domain has been found in 8 protein families with a wide range of functions and a variety of disease associations, such as respiratory distress syndrome, dementia and cancer. The domain itself is thought to have a chaperone function, and indeed three of the families are associated with amyloid formation, but its structure and many of its functional properties are still unknown. Findings The proteins in the BRICHOS superfamily have four regions with distinct properties. We have analysed the BRICHOS proteins focusing on sequence conservation, amino acid residue properties, native disorder and secondary structure predictions. Residue conservation shows large variations between the regions, and the spread of residue conservation between different families can vary greatly within the regions. The secondary structure predictions for the BRICHOS proteins show remarkable coherence even where sequence conservation is low, and there seems to be little native disorder. Conclusions The greatly variant rates of conservation indicates different functional constraints among the regions and among the families. We present three previously unknown BRICHOS families; group A, which may be ancestral to the ITM2 families; group B, which is a close relative to the gastrokine families, and group C, which appears to be a truly novel, disjoint BRICHOS family. The C-terminal region of group C has nearly identical sequences in all species ranging from fish to man and is seemingly unique to this family, indicating critical functional or structural properties.

  13. Three-dimensional micro assembly of a hinged nickel micro device by magnetic lifting and micro resistance welding

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Hsu, Wensyang

    2009-01-01

    The three-dimensional micro assembly of hinged nickel micro devices by magnetic lifting and micro resistance welding is proposed here. By an electroplating-based surface machining process, the released nickel structure with the hinge mechanism can be fabricated. Lifting of the released micro structure to different tilted angles is accomplished by controlling the positions of a magnet beneath the device. An in situ electro-thermal actuator is used here to provide the pressing force in micro resistance welding for immobilizing the tilted structure. The proposed technique is shown to immobilize micro devices at controlled angles ranging from 14° to 90° with respect to the substrate. Design parameters such as the electro-thermal actuator and welding beam width are also investigated. It is found that there is a trade-off in beam width design between large contact pressure and low thermal deformation. Different dominated effects from resistivity enhancement and contact area enlargement during the welding process are also observed in the dynamic resistance curves. Finally, a lifted and immobilized electro-thermal bent-beam actuator is shown to displace upward about 27.7 µm with 0.56 W power input to demonstrate the capability of electrical transmission at welded joints by the proposed 3D micro assembly technique

  14. A comprehensive software suite for protein family construction and functional site prediction.

    Directory of Open Access Journals (Sweden)

    David Renfrew Haft

    Full Text Available In functionally diverse protein families, conservation in short signature regions may outperform full-length sequence comparisons for identifying proteins that belong to a subgroup within which one specific aspect of their function is conserved. The SIMBAL workflow (Sites Inferred by Metabolic Background Assertion Labeling is a data-mining procedure for finding such signature regions. It begins by using clues from genomic context, such as co-occurrence or conserved gene neighborhoods, to build a useful training set from a large number of uncharacterized but mutually homologous proteins. When training set construction is successful, the YES partition is enriched in proteins that share function with the user's query sequence, while the NO partition is depleted. A selected query sequence is then mined for short signature regions whose closest matches overwhelmingly favor proteins from the YES partition. High-scoring signature regions typically contain key residues critical to functional specificity, so proteins with the highest sequence similarity across these regions tend to share the same function. The SIMBAL algorithm was described previously, but significant manual effort, expertise, and a supporting software infrastructure were required to prepare the requisite training sets. Here, we describe a new, distributable software suite that speeds up and simplifies the process for using SIMBAL, most notably by providing tools that automate training set construction. These tools have broad utility for comparative genomics, allowing for flexible collection of proteins or protein domains based on genomic context as well as homology, a capability that can greatly assist in protein family construction. Armed with this new software suite, SIMBAL can serve as a fast and powerful in silico alternative to direct experimentation for characterizing proteins and their functional interactions.

  15. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum.

    Science.gov (United States)

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.

  16. Fc-fusion Proteins in Therapy: An Updated View.

    Science.gov (United States)

    Jafari, Reza; Zolbanin, Naime M; Rafatpanah, Houshang; Majidi, Jafar; Kazemi, Tohid

    2017-01-01

    Fc-fusion proteins are composed of Fc region of IgG antibody (Hinge-CH2-CH3) and a desired linked protein. Fc region of Fc-fusion proteins can bind to neonatal Fc receptor (FcRn) thereby rescuing it from degradation. The first therapeutic Fc-fusion protein was introduced for the treatment of AIDS. The molecular designing is the first stage in production of Fc-fusion proteins. The amino acid residues in the Fc region and linked protein are very important in the bioactivity and affinity of the fusion proteins. Although, therapeutic monoclonal antibodies are the top selling biologics but the application of therapeutic Fc-fusion proteins in clinic is in progress and among these medications Etanercept is the most effective in therapy. At present, eleven Fc-fusion proteins have been approved by FDA. There are novel Fc-fusion proteins which are in pre-clinical and clinical development. In this article, we review the molecular and biological characteristics of Fc-fusion proteins and then further discuss the features of novel therapeutic Fc-fusion proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  18. Functional requirements of the yellow fever virus capsid protein.

    Science.gov (United States)

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  19. Role of the MAGUK protein family in synapse formation and function.

    Science.gov (United States)

    Oliva, Carlos; Escobedo, Pía; Astorga, César; Molina, Claudia; Sierralta, Jimena

    2012-01-01

    Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  20. Arabidopsis thaliana mTERF proteins: evolution and functional classification

    Directory of Open Access Journals (Sweden)

    Tatjana eKleine

    2012-10-01

    Full Text Available Organellar gene expression (OGE is crucial for plant development, photosynthesis and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes - especially the duplicated genes - display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the chloroplast and chloroplast-associated clusters are principally involved in chloroplast gene expression, embryogenesis and protein catabolism, while representatives of the mitochondrial cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the mitochondrion-associated cluster and the low expression group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression, mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear

  1. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Tian, He; Naganathan, Saranga; Kazmi, Manija A

    2014-01-01

    Novel methods are required for site-specific, quantitative fluorescent labeling of G-protein-coupled receptors (GPCRs) and other difficult-to-express membrane proteins. Ideally, fluorescent probes should perturb the native structure and function as little as possible. We evaluated bioorthogonal...

  2. Large Negative Linear Compressibility in InH(BDC)₂ from Framework Hinging.

    Science.gov (United States)

    Zeng, Qingxin; Wang, Kai; Zou, Bo

    2017-11-08

    Materials with negative linear compressibility (NLC) counterintuitively expand along one specific direction coupled to the volume reduction when compressed uniformly. NLC with a large value is desired for compression and materials science. However, NLC is generally smaller than -20 TPa -1 . High-pressure X-ray diffraction experiments reveal that the β-quartz-like InH(BDC) 2 generates an extreme NLC (-62.4 TPa -1 ) by framework hinging. InH(BDC) 2 is much safer and lower-cost than Au + /Ag + and CN - -containing materials that dominated the fields of large NLC. This work reconfirms that a negative thermal expansion flexible framework could likely exhibit large NLC. Moreover, a large NLC could be anticipated to arise from β-quartz-like or related frameworks composed of rigid linear ligands and flexible framework angles.

  3. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures

    International Nuclear Information System (INIS)

    Zu-Guo, Yu; Qian-Jun, Xiao; Long, Shi; Jun-Wu, Yu; Anh, Vo

    2010-01-01

    Investigating the biological function of proteins is a key aspect of protein studies. Bioinformatic methods become important for studying the biological function of proteins. In this paper, we first give the chaos game representation (CGR) of randomly-linked functional protein sequences, then propose the use of the recurrent iterated function systems (RIFS) in fractal theory to simulate the measure based on their chaos game representations. This method helps to extract some features of functional protein sequences, and furthermore the biological functions of these proteins. Then multifractal analysis of the measures based on the CGRs of randomly-linked functional protein sequences are performed. We find that the CGRs have clear fractal patterns. The numerical results show that the RIFS can simulate the measure based on the CGR very well. The relative standard error and the estimated probability matrix in the RIFS do not depend on the order to link the functional protein sequences. The estimated probability matrices in the RIFS with different biological functions are evidently different. Hence the estimated probability matrices in the RIFS can be used to characterise the difference among linked functional protein sequences with different biological functions. From the values of the D q curves, one sees that these functional protein sequences are not completely random. The D q of all linked functional proteins studied are multifractal-like and sufficiently smooth for the C q (analogous to specific heat) curves to be meaningful. Furthermore, the D q curves of the measure μ based on their CGRs for different orders to link the functional protein sequences are almost identical if q ≥ 0. Finally, the C q curves of all linked functional proteins resemble a classical phase transition at a critical point. (cross-disciplinary physics and related areas of science and technology)

  4. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    Science.gov (United States)

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is

  5. PDZ-containing proteins: alternative splicing as a source of functional diversity.

    Science.gov (United States)

    Sierralta, Jimena; Mendoza, Carolina

    2004-12-01

    Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.

  6. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins

    Directory of Open Access Journals (Sweden)

    Xiaoyao Yang

    2017-07-01

    Full Text Available Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A chymotrypsin-like 2A, (B Parechovirus-like 2A, (C hepatitis-A-virus-like 2A, (D Aphthovirus-like 2A, and (E 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.

  7. Expanded explorations into the optimization of an energy function for protein design

    Science.gov (United States)

    Huang, Yao-ming; Bystroff, Christopher

    2014-01-01

    Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here we present new insights towards the application of machine learning to the problem of finding a general energy function for protein design. Machine learning requires the definition of an objective function, which carries with it the implied definition of success in protein design. We explored four functions, consisting of two functional forms, each with two criteria for success. Optimization was carried out by a Monte Carlo search through the space of all variable parameters. Cross-validation of the optimized energy function against a test set gave significantly different results depending on the choice of objective function, pointing to relative correctness of the built-in assumptions. Novel energy cross-terms correct for the observed non-additivity of energy terms and an imbalance in the distribution of predicted amino acids. This paper expands on the work presented at ACM-BCB, Orlando FL , October 2012. PMID:24384706

  8. Probability-density-function characterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.

    2006-01-01

    We propose a method to characterize and quantify multipartite entanglement for pure states. The method hinges upon the study of the probability density function of bipartite entanglement and is tested on an ensemble of qubits in a variety of situations. This characterization is also compared to several measures of multipartite entanglement

  9. Preparation of functional lupine protein fractions by dry separation

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Berghout, J.A.M.; Goot, van der A.J.; Boom, R.M.; Schutyser, M.A.I.

    2014-01-01

    Lupine protein concentrate is a promising ingredient that can be obtained by a combination of milling and air classification, generally called dry fractionation. This is a more sustainable route than conventional wet extraction and delivers a protein concentrate with native functional properties.

  10. Binding proteins of somatomedins and their functions

    International Nuclear Information System (INIS)

    Kostelecka, Z.; Blahovec, J.

    1998-01-01

    In this paper the functions of binding proteins are discussed. One variable that provides insulin-like growth factors (IGFs) control at the extracellular level is the presence of high-affinity, soluble insulin-like growth factor proteins (IGFBPs). IGFBP-1 inhibits IGF effect on human osteosarcoma cells. Increased concentration of IGFBP-3 inhibits the proliferation of breast cancer cell line MCF 7 either directly or by competition for IGF receptors. Maybe IGFBPs work as anti-mitogens and IGFs are potential promotors of cancer growth

  11. Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings.

    Science.gov (United States)

    Tanaka, Kousuke; Hiraga, Atsushi; Takahashi, Toshiyuki; Kuwano, Atsutoshi; Morrison, Scott Edward

    2015-01-01

    We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mean ratio of the solar surface width to the articular surface width. These results suggest that the AHSs corrected the contracted feet in these yearling horses.

  12. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    Science.gov (United States)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  13. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization.

    Science.gov (United States)

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  14. Using analyses of amino Acid coevolution to understand protein structure and function.

    Science.gov (United States)

    Ashenberg, Orr; Laub, Michael T

    2013-01-01

    Determining which residues of a protein contribute to a specific function is a difficult problem. Analyses of amino acid covariation within a protein family can serve as a useful guide by identifying residues that are functionally coupled. Covariation analyses have been successfully used on several different protein families to identify residues that work together to promote folding, enable protein-protein interactions, or contribute to an enzymatic activity. Covariation is a statistical signal that can be measured in a multiple sequence alignment of homologous proteins. As sequence databases have expanded dramatically, covariation analyses have become easier and more powerful. In this chapter, we describe how functional covariation arises during the evolution of proteins and how this signal can be distinguished from various background signals. We discuss the basic methodology for performing amino acid covariation analysis, using bacterial two-component signal transduction proteins as an example. We provide practical suggestions for each step of the process including assembly of protein sequences, construction of a multiple sequence alignment, measurement of covariation, and analysis of results. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Structural and Functional Annotation of Hypothetical Proteins of O139

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-06-01

    Full Text Available In developing countries threat of cholera is a significant health concern whenever water purification and sewage disposal systems are inadequate. Vibrio cholerae is one of the responsible bacteria involved in cholera disease. The complete genome sequence of V. cholerae deciphers the presence of various genes and hypothetical proteins whose function are not yet understood. Hence analyzing and annotating the structure and function of hypothetical proteins is important for understanding the V. cholerae. V. cholerae O139 is the most common and pathogenic bacterial strain among various V. cholerae strains. In this study sequence of six hypothetical proteins of V. cholerae O139 has been annotated from NCBI. Various computational tools and databases have been used to determine domain family, protein-protein interaction, solubility of protein, ligand binding sites etc. The three dimensional structure of two proteins were modeled and their ligand binding sites were identified. We have found domains and families of only one protein. The analysis revealed that these proteins might have antibiotic resistance activity, DNA breaking-rejoining activity, integrase enzyme activity, restriction endonuclease, etc. Structural prediction of these proteins and detection of binding sites from this study would indicate a potential target aiding docking studies for therapeutic designing against cholera.

  16. Automatic discovery of cross-family sequence features associated with protein function

    Directory of Open Access Journals (Sweden)

    Krings Andrea

    2006-01-01

    Full Text Available Abstract Background Methods for predicting protein function directly from amino acid sequences are useful tools in the study of uncharacterised protein families and in comparative genomics. Until now, this problem has been approached using machine learning techniques that attempt to predict membership, or otherwise, to predefined functional categories or subcellular locations. A potential drawback of this approach is that the human-designated functional classes may not accurately reflect the underlying biology, and consequently important sequence-to-function relationships may be missed. Results We show that a self-supervised data mining approach is able to find relationships between sequence features and functional annotations. No preconceived ideas about functional categories are required, and the training data is simply a set of protein sequences and their UniProt/Swiss-Prot annotations. The main technical aspect of the approach is the co-evolution of amino acid-based regular expressions and keyword-based logical expressions with genetic programming. Our experiments on a strictly non-redundant set of eukaryotic proteins reveal that the strongest and most easily detected sequence-to-function relationships are concerned with targeting to various cellular compartments, which is an area already well studied both experimentally and computationally. Of more interest are a number of broad functional roles which can also be correlated with sequence features. These include inhibition, biosynthesis, transcription and defence against bacteria. Despite substantial overlaps between these functions and their corresponding cellular compartments, we find clear differences in the sequence motifs used to predict some of these functions. For example, the presence of polyglutamine repeats appears to be linked more strongly to the "transcription" function than to the general "nuclear" function/location. Conclusion We have developed a novel and useful approach for

  17. A semi-nonparametric mixture model for selecting functionally consistent proteins.

    Science.gov (United States)

    Yu, Lianbo; Doerge, Rw

    2010-09-28

    High-throughput technologies have led to a new era of proteomics. Although protein microarray experiments are becoming more common place there are a variety of experimental and statistical issues that have yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated. One of the largest of these challenges is the selection of functionally consistent proteins. We present a novel semi-nonparametric mixture model for classifying proteins as consistent or inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the proposed approach is compared to current methods via simulation under a variety of experimental conditions. We provide a statistical method for selecting functionally consistent proteins in the context of protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be generalized to solve other mixture data problems. The main advantage of this approach is that it provides the posterior probability of consistency for each protein.

  18. Dry fractionation for production of functional pea protein concentrates

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Vissers, A.M.; Boom, R.M.; Schutyser, M.A.I.

    2013-01-01

    Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were

  19. A large-scale evaluation of computational protein function prediction

    NARCIS (Netherlands)

    Radivojac, P.; Clark, W.T.; Oron, T.R.; Schnoes, A.M.; Wittkop, T.; Kourmpetis, Y.A.I.; Dijk, van A.D.J.; Friedberg, I.

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be

  20. Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling

    International Nuclear Information System (INIS)

    Knight, Jennifer L.; Zhou, Zhiyong; Gallicchio, Emilio; Himmel, Daniel M.; Friesner, Richard A.; Arnold, Eddy; Levy, Ronald M.

    2008-01-01

    Torsion-angle sampling, as implemented in the Protein Local Optimization Program (PLOP), is used to generate multiple structurally variable single-conformer models which are in good agreement with X-ray data. An ensemble-refinement approach to differentiate between positional uncertainty and conformational heterogeneity is proposed. Modeling structural variability is critical for understanding protein function and for modeling reliable targets for in silico docking experiments. Because of the time-intensive nature of manual X-ray crystallographic refinement, automated refinement methods that thoroughly explore conformational space are essential for the systematic construction of structurally variable models. Using five proteins spanning resolutions of 1.0–2.8 Å, it is demonstrated how torsion-angle sampling of backbone and side-chain libraries with filtering against both the chemical energy, using a modern effective potential, and the electron density, coupled with minimization of a reciprocal-space X-ray target function, can generate multiple structurally variable models which fit the X-ray data well. Torsion-angle sampling as implemented in the Protein Local Optimization Program (PLOP) has been used in this work. Models with the lowest R free values are obtained when electrostatic and implicit solvation terms are included in the effective potential. HIV-1 protease, calmodulin and SUMO-conjugating enzyme illustrate how variability in the ensemble of structures captures structural variability that is observed across multiple crystal structures and is linked to functional flexibility at hinge regions and binding interfaces. An ensemble-refinement procedure is proposed to differentiate between variability that is a consequence of physical conformational heterogeneity and that which reflects uncertainty in the atomic coordinates

  1. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    Science.gov (United States)

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  2. Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus

    OpenAIRE

    Mohan, Ramadevi; Venugopal, Subhashree

    2012-01-01

    Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural ...

  3. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  4. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    Science.gov (United States)

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  5. Integration of relational and hierarchical network information for protein function prediction

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoyu

    2008-08-01

    Full Text Available Abstract Background In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions. Results We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing. Conclusion A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased

  6. Optimization of functionalization conditions for protein analysis by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo-Hernández, María, E-mail: maria.arroyo@ctb.upm.es [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Daza, Rafael; Pérez-Rigueiro, Jose; Elices, Manuel; Nieto-Márquez, Jorge; Guinea, Gustavo V. [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2014-10-30

    Highlights: • Highest fluorescence is obtained for central conditions. • Largest primary amine contribution is obtained for central conditions. • RMS roughness is smaller than 1 nm for all functional films. • Selected deposition conditions lead to proper RMS and functionality values. • LDH proteins adsorbed on AVS-films were observed by AFM. - Abstract: Activated vapor silanization (AVS) is used to functionalize silicon surfaces through deposition of amine-containing thin films. AVS combines vapor silanization and chemical vapor deposition techniques and allows the properties of the functionalized layers (thickness, amine concentration and topography) to be controlled by tuning the deposition conditions. An accurate characterization is performed to correlate the deposition conditions and functional-film properties. In particular, it is shown that smooth surfaces with a sufficient surface density of amine groups may be obtained with this technique. These surfaces are suitable for the study of proteins with atomic force microscopy.

  7. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    OpenAIRE

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their func...

  8. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  9. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity

    Directory of Open Access Journals (Sweden)

    Liang eZhou

    2015-01-01

    Full Text Available Lantibiotics are ribosomally synthesized (methyllanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g. in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called hinge region of nisin (residues NMK was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, -1, -2 exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures.

  10. Insulator function and topological domain border strength scale with architectural protein occupancy

    Science.gov (United States)

    2014-01-01

    Background Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. Results By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. Conclusions We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains. PMID

  11. Experimental parameterization of an energy function for the simulation of unfolded proteins

    DEFF Research Database (Denmark)

    Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.

    2008-01-01

    The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and e...... and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.......The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle...

  12. Functional advantages of dynamic protein disorder.

    Science.gov (United States)

    Berlow, Rebecca B; Dyson, H Jane; Wright, Peter E

    2015-09-14

    Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Numerical modeling of cold room's hinged door opening and closing processes

    Science.gov (United States)

    Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.

    2016-06-01

    The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.

  14. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay.

    Science.gov (United States)

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.

  15. Cost Function Network-based Design of Protein-Protein Interactions: predicting changes in binding affinity.

    Science.gov (United States)

    Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie

    2018-02-20

    Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.

  16. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates

    Science.gov (United States)

    Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin hydrolysates. The objectives of this study were to: isolating soluble and insoluble proteins from hydrolyzed catfish skin and study the chemical and functional properties of the prote...

  17. Atomic Insight into the Altered O6-Methylguanine-DNA Methyltransferase Protein Architecture in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Naveed Anjum Chikan

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits. To this end, gastric cancer patients pooled out from the population were selected for the mutational screening of a specific error prone region of MGMT gene. We found that nearly 40% of the studied neoplastic samples harbored missense mutation at codon151 resulting into Serine to Isoleucine variation. This variation resulted in bringing about the structural disorder, subsequently ensuing into a major stoichiometric variance in recognition domain, substrate binding and selectivity loop of the active site of the MGMT protein, as observed under virtual microscope of molecular dynamics simulation (MDS. The atomic insight into MGMT protein by computational approach showed a significant change in the intra molecular hydrogen bond pattern, thus leading to the observed structural anomalies. To further examine the mutational implications on regulatory plugs of MGMT that holds the protein in a DNA-Binding position, a MDS based analysis was carried out on, all known physically interacting amino acids essentially clustered into groups based on their position and function. The results generated by physical-functional clustering of protein indicated that the identified mutation in the vicinity of the active site of MGMT protein causes the local and global destabilization of a protein by either eliminating the stabilizing salt bridges in cluster C3, C4, and C5 or by locally destabilizing the

  18. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    Science.gov (United States)

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  19. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    Science.gov (United States)

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  20. [Functional properties of mesquite bean protein (Prosopis juliflora)].

    Science.gov (United States)

    Holmquist-Donquis, I; Ruíz de Rey, G

    1997-12-01

    A protein concentrate was prepared from whole mesquite bean (Prosopis juliflora) to evaluate and characterize its functional properties; solubility index, effects of moist heat on its solubility, water sorption, fat absorption, foaming capability and foam stability, emulsifying capacity, viscosity and the effects of NaCl and temperature on some of these properties. These properties were evaluated by procedures used to determine its potential application as a food ingredient and its market potential as a new protein source. The protein isoelectric point ranged between pH 4.00-4.50. Maximum solubility was obtained at a pH 10.00 in a 0.75 M NaCl solution and under heat treatment at 112 degrees C for 5 min. Under the studied conditions the amount of water absorbed and the fat absorption capacity, strongly suggest the mesquite bean protein utilization in foods where both properties are important in order to enhances flavor retention and mouth-feel improvement. Although its foaming capability was larger than that of the egg albumin under similar pH conditions, the protein concentrate did not show a good stability, however, both properties could be improved. Emulsifying capacity as a pH function, showed a positive correlation (r = 0.8435 with a signification level of p = 0.004) with the solubility index but, decreased with NaCl even at low concentrations. For these reasons, the uses of mesquite bean protein for this property will be determined by the pH and ionic strength of the product to be processed.

  1. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Science.gov (United States)

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  2. Translating Comprehensive Conservative Care for Chronic Knee Pain Into a Digital Care Pathway: 12-Week and 6-Month Outcomes for the Hinge Health Program

    Science.gov (United States)

    Erhart-Hledik, Jennifer C; Kinsella, Rose; Hunter, Simon; Mecklenburg, Gabriel; Perez, Daniel

    2017-01-01

    Background Chronic knee pain (CKP) affects a large number of adults, many of whom do not receive best-practice care and are at high risk for unnecessary surgery. Objective The aim of this study was to investigate the effect of the Hinge Health 12-week digital care program (DCP) for CKP on knee pain and function, with secondary outcomes of surgery interest and satisfaction, at 12 weeks and 6 months after starting the program. Methods Individuals with CKP were recruited onto the 12-week program, comprising sensor-guided physical exercises, weekly education, activity tracking, and psychosocial support such as personal coaching and cognitive behavioral therapy (CBT). We used a single-arm design with assessment of outcomes at baseline, 12 weeks, and 6 months after starting the program. We used a linear mixed effects model with Tukey contrasts to compare timepoints and report intention-to-treat statistics with last observation carried forward. Results The cohort consisted of 41 individuals (32 female, mean age 52 years, SD 9 years). Between baseline and week 12, participants reported clinically significant improvements in the Knee Injury and Osteoarthritis Outcome Score (KOOS) pain and Knee Injury and Osteoarthritis Outcome Score-Physical Function Short Form (KOOS-PS) function scales of 16 points (95% CI 12-21, P<.001) and 10 points (95% CI 6-14, P<.001), respectively. Significant reductions of 57% (mean difference 30, 95% CI 21-38, P<.001) and 51% (mean difference 25, 95% CI 16-33, P<.001) in visual analog scale (VAS) knee pain and stiffness, respectively, were observed at 12 weeks, as well as a 67% reduction in surgery interest (mean reduction 2.3 out of 10, 95% CI 1.5-3.1, P<.001). Average satisfaction at week 12 was 9.2 out of 10. Critically, all improvements were maintained at 6 months at similar or greater magnitude. Conclusions Participants on the Hinge Health DCP for CKP showed substantial clinical improvements that were maintained 6 months after enrolling in the

  3. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function

    OpenAIRE

    Thomas, Paul D.; Campbell, Michael J.; Kejariwal, Anish; Mi, Huaiyu; Karlak, Brian; Daverman, Robin; Diemer, Karen; Muruganujan, Anushya; Narechania, Apurva

    2003-01-01

    In the genomic era, one of the fundamental goals is to characterize the function of proteins on a large scale. We describe a method, PANTHER, for relating protein sequence relationships to function relationships in a robust and accurate way. PANTHER is composed of two main components: the PANTHER library (PANTHER/LIB) and the PANTHER index (PANTHER/X). PANTHER/LIB is a collection of “books,” each representing a protein family as a multiple sequence alignment, a Hidden Markov Model (HMM)...

  4. The construction of an amino acid network for understanding protein structure and function.

    Science.gov (United States)

    Yan, Wenying; Zhou, Jianhong; Sun, Maomin; Chen, Jiajia; Hu, Guang; Shen, Bairong

    2014-06-01

    Amino acid networks (AANs) are undirected networks consisting of amino acid residues and their interactions in three-dimensional protein structures. The analysis of AANs provides novel insight into protein science, and several common amino acid network properties have revealed diverse classes of proteins. In this review, we first summarize methods for the construction and characterization of AANs. We then compare software tools for the construction and analysis of AANs. Finally, we review the application of AANs for understanding protein structure and function, including the identification of functional residues, the prediction of protein folding, analyzing protein stability and protein-protein interactions, and for understanding communication within and between proteins.

  5. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.

    Science.gov (United States)

    Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A

    2002-09-01

    Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.

  6. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    Directory of Open Access Journals (Sweden)

    Yushen Du

    2016-11-01

    Full Text Available Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp, we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available.

  7. Ion Binding Energies Determining Functional Transport of ClC Proteins

    Science.gov (United States)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  8. Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions

    Science.gov (United States)

    VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.

    2011-01-01

    Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273

  9. In silico functional elucidation of uncharacterized proteins of Chlamydia abortus strain LLG.

    Science.gov (United States)

    Singh, Gagandeep; Sharma, Dixit; Singh, Vikram; Rani, Jyoti; Marotta, Francessco; Kumar, Manoj; Mal, Gorakh; Singh, Birbal

    2017-03-01

    This study reports structural modeling, molecular dynamics profiling of hypothetical proteins in Chlamydia abortus genome database. The hypothetical protein sequences were extracted from C. abortus LLG Genome Database for functional elucidation using in silico methods. Fifty-one proteins with their roles in defense, binding and transporting other biomolecules were unraveled. Forty-five proteins were found to be nonhomologous to proteins present in hosts infected by C. abortus . Of these, 31 proteins were related to virulence. The structural modeling of two proteins, first, WP_006344020.1 (phosphorylase) and second, WP_006344325.1 (chlamydial protease/proteasome-like activity factor) were accomplished. The conserved active sites necessary for the catalytic function were analyzed. The finally concluded proteins are envisioned as possible targets for developing drugs to curtail chlamydial infections, however, and should be validated by molecular biological methods.

  10. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.

    2011-01-01

    An effective intracellular protein delivery system was developed based on functionalized linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Three differently functionalized PAAs were synthesized, two of these having repetitive disulfide

  11. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  12. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    Science.gov (United States)

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  13. Physicochemical and functional properties of protein isolate obtained from cottonseed meal.

    Science.gov (United States)

    Ma, Mengting; Ren, Yanjing; Xie, Wei; Zhou, Dayun; Tang, Shurong; Kuang, Meng; Wang, Yanqin; Du, Shuang-Kui

    2018-02-01

    To investigate the effect of preparation methods of cottonseed meals on protein properties, the physicochemical and functional properties of proteins isolated from hot-pressed solvent extraction cottonseed meal (HCM), cold-pressed solvent extraction cottonseed meal (CCM) and subcritical fluid extraction cottonseed meal (SCM) were investigated. Cottonseed proteins had two major bands (at about 45 and 50kD), two X-ray diffraction peaks (8.5° and 19.5°) and one endothermic peak (94.31°C-97.72°C). Proteins of HCM showed relatively more β-sheet (38.3%-40.5%), and less β-turn (22.2%-25.8%) and α-helix (15.8%-19.5%), indicating the presence of highly denatured protein molecules. Proteins of CCM and SCM exhibited high water/oil absorption capacity, emulsifying abilities, surface hydrophobicity and fluorescence intensity, suggesting that the proteins have potential as functional ingredients in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Science.gov (United States)

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  15. Evolved Escherichia coli Strains for Amplified, Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Gul, Nadia; Linares, Daniel M.; Ho, Franz Y.; Poolman, Bert

    2014-01-01

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several

  16. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    Science.gov (United States)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  17. The comprehensive native interactome of a fully functional tagged prion protein.

    Directory of Open Access Journals (Sweden)

    Dorothea Rutishauser

    Full Text Available The enumeration of the interaction partners of the cellular prion protein, PrP(C, may help clarifying its elusive molecular function. Here we added a carboxy proximal myc epitope tag to PrP(C. When expressed in transgenic mice, PrP(myc carried a GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrP(C. PrP(myc antagonized the toxicity of truncated PrP, restored prion infectibility of PrP(C-deficient mice, and was physically incorporated into PrP(Sc aggregates, indicating that it possessed all functional characteristics of genuine PrP(C. We then immunopurified myc epitope-containing protein complexes from PrP(myc transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded tags identified seven proteins which co-eluted equimolarly with PrP(C and may represent component of a multiprotein complex. Selected PrP(C interactors were validated using independent methods. Several of these proteins appear to exert functions in axomyelinic maintenance.

  18. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  19. ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network.

    Science.gov (United States)

    Cao, Renzhi; Freitas, Colton; Chan, Leong; Sun, Miao; Jiang, Haiqing; Chen, Zhangxin

    2017-10-17

    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.

  20. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration.

    Science.gov (United States)

    Beghein, Els; Gettemans, Jan

    2017-01-01

    Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein-protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.

  1. Mechanisms of EHD/RME-1 Protein Function in Endocytic Transport

    Science.gov (United States)

    Grant, Barth D.; Caplan, Steve

    2009-01-01

    The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases. PMID:18801062

  2. Functional and technological properties of camel milk proteins: a review

    DEFF Research Database (Denmark)

    Hailu, Yonas; Hansen, Egon Bech; Seifu, Eyassu

    2016-01-01

    This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being...... processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of к-casein cause differences...... in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin...

  3. The functional range of heat shock proteins to combat environmental toxicity

    International Nuclear Information System (INIS)

    Mahmood, K.; Mahmood, Q.; Pervez, A.; Nasreen, S.

    2012-01-01

    Almost all the organisms possess a system to cope with the harsh physiochemical factors of environment. Such a system is based on a group of stress genes, which show rapid responses in form of stress proteins, especially heat shock proteins, when cells are confronted with insult. Heat shock proteins are now known to express in response to variety of toxic and stress conditions including diseases. As a molecular chaperone, against cytotoxicity, these ensure the functional ability of cells by repairing the denatured proteins, cellular structures like cytoskeleton and centrosomes and processes dealing with protein synthesis are stabilized or repaired during a second stress in stress tolerant cells and organisms. In unstressed cells these play an imperative role in the synthesis and transport of normal proteins. Their role in certain diseases reveals their potential application in medical field. Certain Hsp are helpful in coping carcinogenicity caused environmental pollutants and have been suggested to have anti-apoptotic, anti stress and anti-allergic function. Their expression is tissue and species specific with respect to type, intensity and duration of a toxicant. These are developmentally regulated and help in process of differentiation and thus their abnormal regulation impairs the normal development. However, their role as bio marker in risk assessment of environmental pollution warrants further research. Due to broad functional range, therefore, present review is embracing the functional aspects of smaller and Hsp 70 families expressing in animals under toxic conditions. (author)

  4. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Science.gov (United States)

    Hu, Pingzhao; Janga, Sarath Chandra; Babu, Mohan; Díaz-Mejía, J Javier; Butland, Gareth; Yang, Wenhong; Pogoutse, Oxana; Guo, Xinghua; Phanse, Sadhna; Wong, Peter; Chandran, Shamanta; Christopoulos, Constantine; Nazarians-Armavil, Anaies; Nasseri, Negin Karimi; Musso, Gabriel; Ali, Mehrab; Nazemof, Nazila; Eroukova, Veronika; Golshani, Ashkan; Paccanaro, Alberto; Greenblatt, Jack F; Moreno-Hagelsieb, Gabriel; Emili, Andrew

    2009-04-28

    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  5. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites

    International Nuclear Information System (INIS)

    Bodaghi, Sohrab; Jia Rong; Zheng Zhiming

    2009-01-01

    Human papillomavirus type 16 (HPV16) genome expresses six regulatory proteins (E1, E2, E4, E5, E6, and E7) which regulate viral DNA replication, gene expression, and cell function. We expressed HPV16 E2, E4, E6, and E7 from bacteria as GST fusion proteins and examined their possible functions in RNA splicing. Both HPV16 E2, a viral transactivator protein, and E6, a viral oncoprotein, inhibited splicing of pre-mRNAs containing an intron with suboptimal splice sites, whereas HPV5 E2 did not. The N-terminal half and the hinge region of HPV16 E2 as well as the N-terminal and central portions of HPV16 E6 are responsible for the suppression. HPV16 E2 interacts with pre-mRNAs through its C-terminal DNA-binding domain. HPV16 E6 binds pre-mRNAs via nuclear localization signal (NLS3) in its C-terminal half. Low-risk HPV6 E6, a cytoplasmic protein, does not bind RNA. Notably, both HPV16 E2 and E6 selectively bind to the intron region of pre-mRNAs and interact with a subset of cellular SR proteins. Together, these findings suggest that HPV16 E2 and E6 are RNA binding proteins and might play roles in posttranscriptional regulation during virus infection

  7. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Leslie Goo

    2017-02-01

    Full Text Available The structural flexibility or 'breathing' of the envelope (E protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F of the West Nile virus (WNV E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV, but not Zika virus (ZIKV, E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.

  8. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  9. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  10. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...

  11. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    Science.gov (United States)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  12. Feature Selection and the Class Imbalance Problem in Predicting Protein Function from Sequence

    NARCIS (Netherlands)

    Al-Shahib, A.; Breitling, R.; Gilbert, D.

    2005-01-01

    Abstract: When the standard approach to predict protein function by sequence homology fails, other alternative methods can be used that require only the amino acid sequence for predicting function. One such approach uses machine learning to predict protein function directly from amino acid sequence

  13. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  14. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    Science.gov (United States)

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  15. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    Science.gov (United States)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  16. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Directory of Open Access Journals (Sweden)

    McCarthy Fiona M

    2007-11-01

    Full Text Available Abstract Background The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned. Results We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the in vivo expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology, we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines. Conclusion We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and

  17. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier

    KAUST Repository

    Kulmanov, Maxat

    2017-09-27

    Motivation A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. Results We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein–protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations.

  18. Dietary protein effects on irradiated rat kidney function

    International Nuclear Information System (INIS)

    Mahler, P.A.; Yatuin, M.B.

    1984-01-01

    The authors have previously reported that unilaterally nephrectomized, kidney irradiated young male S-D rats have an increased median survival when placed on a low (4%) protein diet, as compared to a normal (20%) or high (50%) protein diet (200, 103, and 59 days respectively for 14 Gy irradiation). They have expanded these studies to examine the effects of irradiation and dietary protein levels on kidney function, by examining the parameters of blood urea nitrogen, serum creatinine, urine urea nitrogen, urine creatinine, urine osmolarity, urine volume, and water consumption. Irradiated 20% protein diet animals show an increase in water consumption and urine production and also a decrease in urine osmolarity, urine urea concentration and urine creatinine concentration. These changes all support the hypothesis the kidney irradiated rats fed a normal protein diet have a reduced capability to concentrate urine compared to nonirradiated control rats. Evaluation of the same parameters in irradiated rats fed a 4% protein diet does not indicate a similar loss of concentrating capability. Whether this protection is due to the growth inhibition of the 4% protein diet or some other phenomena remains to be determined

  19. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  20. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics.

    Science.gov (United States)

    Sharma, Ajeet K; O'Brien, Edward P

    2018-04-01

    Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ambulatory Function and Perception of Confidence in Persons with Stroke with a Custom-Made Hinged versus a Standard Ankle Foot Orthosis

    Directory of Open Access Journals (Sweden)

    Angélique Slijper

    2012-01-01

    Full Text Available Objective. The aim was to compare walking with an individually designed dynamic hinged ankle foot orthosis (DAFO and a standard carbon composite ankle foot orthosis (C-AFO. Methods. Twelve participants, mean age 56 years (range 26–72, with hemiparesis due to stroke were included in the study. During the six-minute walk test (6MW, walking velocity, the Physiological Cost Index (PCI, and the degree of experienced exertion were measured with a DAFO and C-AFO, respectively, followed by a Stairs Test velocity and perceived confidence was rated. Results. The mean differences in favor for the DAFO were in 6MW 24.3 m (95% confidence interval [CI] 4.90, 43.76, PCI −0.09 beats/m (95% CI −0.27, 0.95, velocity 0.04 m/s (95% CI −0.01, 0.097, and in the Stairs Test −11.8 s (95% CI −19.05, −4.48. All participants except one perceived the degree of experienced exertion lower and felt more confident when walking with the DAFO. Conclusions. Wearing a DAFO resulted in longer walking distance and faster stair climbing compared to walking with a C-AFO. Eleven of twelve participants felt more confident with the DAFO, which may be more important than speed and distance and the most important reason for prescribing an AFO.

  2. A transthyretin-related protein is functionally expressed in Herbaspirillum seropedicae.

    Science.gov (United States)

    Matiollo, Camila; Vernal, Javier; Ecco, Gabriela; Bertoldo, Jean Borges; Razzera, Guilherme; de Souza, Emanuel M; Pedrosa, Fábio O; Terenzi, Hernán

    2009-10-02

    Transthyretin-related proteins (TRPs) constitute a family of proteins structurally related to transthyretin (TTR) and are found in a large range of bacterial, fungal, plant, invertebrate, and vertebrate species. However, it was recently recognized that both prokaryotic and eukaryotic members of this family are not functionally related to transthyretins. TRPs are in fact involved in the purine catabolic pathway and function as hydroxyisourate hydrolases. An open reading frame encoding a protein similar to the Escherichia coli TRP was identified in Herbaspirillum seropedicae genome (Hs_TRP). It was cloned, overexpressed in E. coli, and purified to homogeneity. Mass spectrometry data confirmed the identity of this protein, and circular dichroism spectrum indicated a predominance of beta-sheet structure, as expected for a TRP. We have demonstrated that Hs_TRP is a 5-hydroxyisourate hydrolase and by site-directed mutagenesis the importance of three conserved catalytic residues for Hs_TRP activity was further confirmed. The production of large quantities of this recombinant protein opens up the possibility of obtaining its 3D-structure and will help further investigations into purine catabolism.

  3. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yan

    Full Text Available Protein-nucleic acid (protein-DNA and protein-RNA recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.

  4. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.

    Science.gov (United States)

    Su, Min-Gang; Weng, Julia Tzu-Ya; Hsu, Justin Bo-Kai; Huang, Kai-Yao; Chi, Yu-Hsiang; Lee, Tzong-Yi

    2017-12-21

    Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM's function is critical to our ability to manipulate the biological mechanisms of protein. In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking

  5. Patchwork structure-function analysis of the Sendai virus matrix protein.

    Science.gov (United States)

    Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent

    2014-09-01

    Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The evolution of function in strictosidine synthase-like proteins.

    Science.gov (United States)

    Hicks, Michael A; Barber, Alan E; Giddings, Lesley-Ann; Caldwell, Jenna; O'Connor, Sarah E; Babbitt, Patricia C

    2011-11-01

    The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural, and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called strictosidine synthase-like (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins. Copyright © 2011 Wiley-Liss, Inc.

  7. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes.

    Science.gov (United States)

    Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie

    2009-10-01

    MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.

  8. Xanthophylls as modulators of membrane protein function.

    Science.gov (United States)

    Ruban, Alexander V; Johnson, Matthew P

    2010-12-01

    This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function--control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Predicting Structure and Function for Novel Proteins of an Extremophilic Iron Oxidizing Bacterium

    Science.gov (United States)

    Wheeler, K.; Zemla, A.; Banfield, J.; Thelen, M.

    2007-12-01

    Proteins isolated from uncultivated microbial populations represent the functional components of microbial processes and contribute directly to community fitness under natural conditions. Investigations into proteins in the environment are hindered by the lack of genome data, or where available, the high proportion of proteins of unknown function. We have identified thousands of proteins from biofilms in the extremely acidic drainage outflow of an iron mine ecosystem (1). With an extensive genomic and proteomic foundation, we have focused directly on the problem of several hundred proteins of unknown function within this well-defined model system. Here we describe the geobiological insights gained by using a high throughput computational approach for predicting structure and function of 421 novel proteins from the biofilm community. We used a homology based modeling system to compare these proteins to those of known structure (AS2TS) (2). This approach has resulted in the assignment of structures to 360 proteins (85%) and provided functional information for up to 75% of the modeled proteins. Detailed examination of the modeling results enables confident, high-throughput prediction of the roles of many of the novel proteins within the microbial community. For instance, one prediction places a protein in the phosphoenolpyruvate/pyruvate domain superfamily as a carboxylase that fills in a gap in an otherwise complete carbon cycle. Particularly important for a community in such a metal rich environment is the evolution of over 25% of the novel proteins that contain a metal cofactor; of these, one third are likely Fe containing proteins. Two of the most abundant proteins in biofilm samples are unusual c-type cytochromes. Both of these proteins catalyze iron- oxidation, a key metabolic reaction supporting the energy requirements of this community. Structural models of these cytochromes verify our experimental results on heme binding and electron transfer reactivity, and

  10. Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

    Science.gov (United States)

    Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A

    2017-10-01

    By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.

  11. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  12. A surprising role for conformational entropy in protein function

    Science.gov (United States)

    Wand, A. Joshua; Moorman, Veronica R.; Harpole, Kyle W.

    2014-01-01

    Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a grand challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to experimentally access is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned and what the future may hold for this emerging view of protein function. PMID:23478875

  13. Multifarious Functions of the Fragile X Mental Retardation Protein.

    Science.gov (United States)

    Davis, Jenna K; Broadie, Kendal

    2017-10-01

    Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2009-04-01

    Full Text Available One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans. Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  15. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  16. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    OpenAIRE

    Shang, Lijun; Tucker, Stephen J.

    2007-01-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the ?helix-bundle crossing?. However, in the inwardly rectifying (Kir) potassium channel family, the role of this ?hinge? residue in the second transmembrane domain (TM2) and t...

  17. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  18. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  19. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.

    Science.gov (United States)

    Hall, Felicia G; Jones, Owen G; O'Haire, Marguerite E; Liceaga, Andrea M

    2017-06-01

    Recently, the benefits of entomophagy have been widely discussed. Due to western cultures' reluctance, entomophagy practices are leaning more towards incorporating insects into food products. In this study, whole crickets (Gryllodes sigillatus) were hydrolyzed with alcalase at 0.5, 1.5, and 3.0% (w/w) for 30, 60, and 90min. Degree of hydrolysis (DH), amino acid composition, solubility, emulsion and foaming properties were evaluated. Hydrolysis produced peptides with 26-52% DH compared to the control containing no enzyme (5% DH). Protein solubility of hydrolysates improved (p30% soluble protein at pH 3 and 7 and 50-90% at alkaline pH, compared with the control. Emulsion activity index ranged from 7 to 32m 2 /g, while foamability ranged from 100 to 155% for all hydrolysates. These improved functional properties demonstrate the potential to develop cricket protein hydrolysates as a source of functional alternative protein in food ingredient formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Functional analysis of virion host shutoff protein of pseudorabies virus

    International Nuclear Information System (INIS)

    Lin, H.-W.; Chang, Y.-Y.; Wong, M.-L.; Lin, J.-W.; Chang, T.-J.

    2004-01-01

    During lytic infection, the virion host shutoff (vhs) protein of alphaherpesviruses causes the degradation of mRNAs nonspecifically. In this work, we cloned the vhs gene (UL41 open reading frame) of pseudorabies virus (PRV; TNL strain) by PCR, and its nucleotide sequences were determined. The PCR product of vhs gene was subcloned into the prokaryotic pET32b expression vector, and production of the recombinant vhs protein was examined by SDS-PAGE. Result of Western blotting demonstrated that our recombinant vhs protein reacted with antiserum against a synthetic peptide of 17 amino acids of the vhs protein. After purification with nickel-chelate affinity chromatography, the purified recombinant vhs protein exhibited in vitro ribonuclease activity as expected. We further cloned the vhs gene into eukaryotic expression vectors and investigated the intracellular function of vhs protein by DNA transfection. By transient trasfection and CAT assay, we found the CAT activity was reduced in the presence of vhs, indicating that degradation of mRNA of the CAT gene was caused by the vhs. Furthermore, our results showed that the plaque formation of pseudorabies virus was blocked by exogenous vhs. Taken together, we have cloned the vhs gene of pseudorabies virus (TNL strain) and conducted functional analysis of the recombinant vhs protein in vitro as well as in vivo

  1. NPPD: A Protein-Protein Docking Scoring Function Based on Dyadic Differences in Networks of Hydrophobic and Hydrophilic Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Edward S. C. Shih

    2015-03-01

    Full Text Available Protein-protein docking (PPD predictions usually rely on the use of a scoring function to rank docking models generated by exhaustive sampling. To rank good models higher than bad ones, a large number of scoring functions have been developed and evaluated, but the methods used for the computation of PPD predictions remain largely unsatisfactory. Here, we report a network-based PPD scoring function, the NPPD, in which the network consists of two types of network nodes, one for hydrophobic and the other for hydrophilic amino acid residues, and the nodes are connected when the residues they represent are within a certain contact distance. We showed that network parameters that compute dyadic interactions and those that compute heterophilic interactions of the amino acid networks thus constructed allowed NPPD to perform well in a benchmark evaluation of 115 PPD scoring functions, most of which, unlike NPPD, are based on some sort of protein-protein interaction energy. We also showed that NPPD was highly complementary to these energy-based scoring functions, suggesting that the combined use of conventional scoring functions and NPPD might significantly improve the accuracy of current PPD predictions.

  2. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Wibke J Meyer

    2006-08-01

    Full Text Available Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNA-triggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.

  3. KARAKTERISTIK FUNGSIONAL PROTEIN MISELIUM JAMUR TIRAM MERAH MUDA DAN MERANG [Functional Characteristics of Protein Mycelium of Pink Oyster and Paddy Straw Mushrooms

    Directory of Open Access Journals (Sweden)

    Sukarno*

    2014-06-01

    Full Text Available Mycelium of mushroom contained high protein, which determined its functional characteristics such as water holding capacity (WHC, oil holding capacity (OAC, emulsion stability, and gel formation. This study aimed to determine the protein functional properties of Pleurotus flabellatus and Volvariella volvacea mycelia. Information obtained can be used to increase utilization of the mycelia as source of food. Mycelia biomass were obtained by growing the fungal cultures in Potato Dextrose Broth (PDB on shaker at 100-150 rpm. Mycelia were harvested three times at 7, 8, and 9-days after inoculation for measuring their protein contents by kjehdahl method. Functional properties of mycelium protein measured were WHC, OAC, emulsion stability, and gel formation by folding test method. Based on the analysis of protein content in dry weight basis, 8-day old P. flabellatus and V. volvacea mycelia produced the highest protein contents with the value were 31.72 and 19.98%, respectively. Further analysis of protein functional properties showed that P. flabellatus mycelium had 10.38% of WHC, 0.52 mL/g of OAC, 57.14% of emulsion stability and gel strength level with the valueof 2, whereas the V. volvacea mycelium had 15.89% of WHC, 0.80 mL/g of OAC, 48.69% of emulsion stability, and did not form a gel. Protein functional properties of P. flabellatus were better than that of V. volvacea mycelium in terms of protein content, emulsion stability, and gel formation.

  4. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  5. Fundamental Characteristics of AAA+ Protein Family Structure and Function.

    Science.gov (United States)

    Miller, Justin M; Enemark, Eric J

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.

  6. Computational study of the Risoe-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    Energy Technology Data Exchange (ETDEWEB)

    Troldborg, N.

    2005-03-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risoe-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 - 10{sup 6}. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice. (author)

  7. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  8. UTILIZATION OF PLANT PROTEINS IN FUNCTIONAL NUTRITION

    Directory of Open Access Journals (Sweden)

    V. G. Kulakov

    2017-01-01

    Full Text Available Development of functional food products technology is considered to be a prospect way for creating new food products. Such products are known to be popular among consumers. Utilization of plant proteins allows to widen and improve food assortment and quality. The article represents a review of plant proteins utilization in production of functional food. For optimization of flour confectionery chemical composition the authors utilized a method of receipts modeling. Simulation of combined products is based on the principles of food combinatorics and aims to create recipes of new types of food products on basis of methods of mathematical optimization by reasonable selection of the basic raw materials, ingredients, food additives and dietary supplements, totality of which ensures formation desired organoleptic, physical and chemical properties product as well as a predetermined level of food, biological and energy value. Modeling process of combined products recipes includes the following three stages: preparation of input data for the design, formalization requirements for the composition and properties of raw ingredients and quality final product, process modeling; product design with desired structural properties.

  9. STRING 8--a global view on proteins and their functional interactions in 630 organisms

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Kuhn, Michael; Stark, Manuel

    2008-01-01

    Functional partnerships between proteins are at the core of complex cellular phenotypes, and the networks formed by interacting proteins provide researchers with crucial scaffolds for modeling, data reduction and annotation. STRING is a database and web resource dedicated to protein-protein inter......Functional partnerships between proteins are at the core of complex cellular phenotypes, and the networks formed by interacting proteins provide researchers with crucial scaffolds for modeling, data reduction and annotation. STRING is a database and web resource dedicated to protein......-protein interactions, including both physical and functional interactions. It weights and integrates information from numerous sources, including experimental repositories, computational prediction methods and public text collections, thus acting as a meta-database that maps all interaction evidence onto a common set...... of genomes and proteins. The most important new developments in STRING 8 over previous releases include a URL-based programming interface, which can be used to query STRING from other resources, improved interaction prediction via genomic neighborhood in prokaryotes, and the inclusion of protein structures...

  10. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    Science.gov (United States)

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  11. Small sets of interacting proteins suggest functional linkage mechanisms via Bayesian analogical reasoning.

    Science.gov (United States)

    Airoldi, Edoardo M; Heller, Katherine A; Silva, Ricardo

    2011-07-01

    Proteins and protein complexes coordinate their activity to execute cellular functions. In a number of experimental settings, including synthetic genetic arrays, genetic perturbations and RNAi screens, scientists identify a small set of protein interactions of interest. A working hypothesis is often that these interactions are the observable phenotypes of some functional process, which is not directly observable. Confirmatory analysis requires finding other pairs of proteins whose interaction may be additional phenotypical evidence about the same functional process. Extant methods for finding additional protein interactions rely heavily on the information in the newly identified set of interactions. For instance, these methods leverage the attributes of the individual proteins directly, in a supervised setting, in order to find relevant protein pairs. A small set of protein interactions provides a small sample to train parameters of prediction methods, thus leading to low confidence. We develop RBSets, a computational approach to ranking protein interactions rooted in analogical reasoning; that is, the ability to learn and generalize relations between objects. Our approach is tailored to situations where the training set of protein interactions is small, and leverages the attributes of the individual proteins indirectly, in a Bayesian ranking setting that is perhaps closest to propensity scoring in mathematical psychology. We find that RBSets leads to good performance in identifying additional interactions starting from a small evidence set of interacting proteins, for which an underlying biological logic in terms of functional processes and signaling pathways can be established with some confidence. Our approach is scalable and can be applied to large databases with minimal computational overhead. Our results suggest that analogical reasoning within a Bayesian ranking problem is a promising new approach for real-time biological discovery. Java code is available at

  12. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  13. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.

    Science.gov (United States)

    Vigil, Dominico; Lin, Jung-Hsin; Sotriffer, Christoph A; Pennypacker, Juniper K; McCammon, J Andrew; Taylor, Susan S

    2006-01-01

    Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.

  14. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins.

    Science.gov (United States)

    Ly, Hoai J; Ikegami, Tetsuro

    2016-07-02

    Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.

  15. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function.

    Directory of Open Access Journals (Sweden)

    Surinder M Singh

    Full Text Available Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM. However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD. We created and expressed the wild-type (WT N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts, and unfolds faster than the WT (stopped-flow kinetics. Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments. These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.

  16. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  17. Effects of Hydrolysed Whey Proteins on the Techno-Functional Characteristics of Whey Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Klaus Noller

    2013-03-01

    Full Text Available Pure whey protein isolate (WPI-based cast films are very brittle due to its strong formation of protein cross-linking of disulphide bonding, hydrogen bonding as well as hydrophobic and electrostatic interactions. However, this strong cross-linking is the reason for its final barrier performance. To overcome film brittleness of whey protein layers, plasticisers like glycerol are used. It reduces intermolecular interactions, increases the mobility of polymer chains and thus film flexibility can be achieved. The objective of this study was to investigate the influence of hydrolysed whey protein isolate (WPI in whey protein isolate-based cast films on their techno-functional properties. Due to the fact, that the addition of glycerol is necessary but at the same time increases the free volume in the film leading to higher oxygen and water vapour permeability, the glycerol concentration was kept constant. Cast films with different ratios of hydrolysed and not hydrolysed WPI were produced. They were characterised in order to determine the influence of the lower molecular weight caused by the addition of hydrolysed WPI on the techno-functional properties. This study showed that increasing hydrolysed WPI concentrations significantly change the mechanical properties while maintaining the oxygen and water vapour permeability. The tensile and elastic film properties decreased significantly by reducing the average molecular weight whereas the yellowish coloration and the surface tension considerably increased. This study provided new data which put researchers and material developers in a position to tailor the characteristics of whey protein based films according to their intended application and further processing.

  18. The semenogelins: proteins with functions beyond reproduction?

    Science.gov (United States)

    Jonsson, M; Lundwall, A; Malm, J

    2006-12-01

    The coagulum proteins of human semen, semenogelins I and II, are secreted in abundance by the seminal vesicles. Their function in reproduction is poorly understood as they are rapidly degraded in ejaculated semen. However, more recent results indicate that it is time to put the semenogelins in a broader physiological perspective that goes beyond reproduction and fertility.

  19. The semenogelins: proteins with functions beyond reproduction?

    OpenAIRE

    Jonsson, Magnus; Lundwall, Åke; Malm, Johan

    2006-01-01

    The coagulum proteins of human semen, semenogelins I and II, are secreted in abundance by the seminal vesicles. Their function in reproduction is poorly understood as they are rapidly degraded in ejaculated semen. However, more recent results indicate that it is time to put the semenogelins in a broader physiological perspective that goes beyond reproduction and fertility.

  20. Parametric Bayesian priors and better choice of negative examples improve protein function prediction.

    Science.gov (United States)

    Youngs, Noah; Penfold-Brown, Duncan; Drew, Kevin; Shasha, Dennis; Bonneau, Richard

    2013-05-01

    Computational biologists have demonstrated the utility of using machine learning methods to predict protein function from an integration of multiple genome-wide data types. Yet, even the best performing function prediction algorithms rely on heuristics for important components of the algorithm, such as choosing negative examples (proteins without a given function) or determining key parameters. The improper choice of negative examples, in particular, can hamper the accuracy of protein function prediction. We present a novel approach for choosing negative examples, using a parameterizable Bayesian prior computed from all observed annotation data, which also generates priors used during function prediction. We incorporate this new method into the GeneMANIA function prediction algorithm and demonstrate improved accuracy of our algorithm over current top-performing function prediction methods on the yeast and mouse proteomes across all metrics tested. Code and Data are available at: http://bonneaulab.bio.nyu.edu/funcprop.html

  1. Geometric modeling of controlled third-class hinged mechanisms with a stand in one extreme position for cyclic automatic machines

    Science.gov (United States)

    Khomchenko, V. G.; Varepo, L. G.; Glukhov, V. I.; Krivokhatko, E. A.

    2017-06-01

    The geometric model for the synthesis of third-class lever mechanisms is proposed, which allows, by changing the length of the auxiliary link and the position of its fixed hinge, to rearrange the movement of the working organ onto the cyclograms with different predetermined dwell times. It is noted that with the help of the proposed model, at the expense of the corresponding geometric constructions, the best uniform Chebyshev approximation can be achieved at the interval of the standstill.

  2. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  3. Enzymatic functionalization of a nanobody using protein insertion technology.

    Science.gov (United States)

    Crasson, O; Rhazi, N; Jacquin, O; Freichels, A; Jérôme, C; Ruth, N; Galleni, M; Filée, P; Vandevenne, M

    2015-10-01

    Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has become a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase constitutes a suitable technology to functionalize nanobodies and allows the creation of versatile tools that can be used in innovative biotechnological assays. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Functional diversification of structurally alike NLR proteins in plants.

    Science.gov (United States)

    Chakraborty, Joydeep; Jain, Akansha; Mukherjee, Dibya; Ghosh, Suchismita; Das, Sampa

    2018-04-01

    In due course of evolution many pathogens alter their effector molecules to modulate the host plants' metabolism and immune responses triggered upon proper recognition by the intracellular nucleotide-binding oligomerization domain containing leucine-rich repeat (NLR) proteins. Likewise, host plants have also evolved with diversified NLR proteins as a survival strategy to win the battle against pathogen invasion. NLR protein indeed detects pathogen derived effector proteins leading to the activation of defense responses associated with programmed cell death (PCD). In this interactive process, genome structure and plasticity play pivotal role in the development of innate immunity. Despite being quite conserved with similar biological functions in all eukaryotes, the intracellular NLR immune receptor proteins happen to be structurally distinct. Recent studies have made progress in identifying transcriptional regulatory complexes activated by NLR proteins. In this review, we attempt to decipher the intracellular NLR proteins mediated surveillance across the evolutionarily diverse taxa, highlighting some of the recent updates on NLR protein compartmentalization, molecular interactions before and after activation along with insights into the finer role of these receptor proteins to combat invading pathogens upon their recognition. Latest information on NLR sensors, helpers and NLR proteins with integrated domains in the context of plant pathogen interactions are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    Science.gov (United States)

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI bleached by hydrogen and benzoyl peroxide and provides insights for the product applications which may benefit from bleaching. © 2015 Institute of Food Technologists®

  6. Solid state protein monolayers: Morphological, conformational, and functional properties

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.

    2004-12-01

    We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.

  7. Mung bean proteins and peptides: nutritional, functional and bioactive properties

    Directory of Open Access Journals (Sweden)

    Zhu Yi-Shen

    2018-02-01

    Full Text Available To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO/the World Health Organization (WHO amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin. However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.

  8. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  9. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    Science.gov (United States)

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  10. Properties and Functions of the Dengue Virus Capsid Protein.

    Science.gov (United States)

    Byk, Laura A; Gamarnik, Andrea V

    2016-09-29

    Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

  11. SITEX 2.0: Projections of protein functional sites on eukaryotic genes. Extension with orthologous genes.

    Science.gov (United States)

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2017-04-01

    Functional sites define the diversity of protein functions and are the central object of research of the structural and functional organization of proteins. The mechanisms underlying protein functional sites emergence and their variability during evolution are distinguished by duplication, shuffling, insertion and deletion of the exons in genes. The study of the correlation between a site structure and exon structure serves as the basis for the in-depth understanding of sites organization. In this regard, the development of programming resources that allow the realization of the mutual projection of exon structure of genes and primary and tertiary structures of encoded proteins is still the actual problem. Previously, we developed the SitEx system that provides information about protein and gene sequences with mapped exon borders and protein functional sites amino acid positions. The database included information on proteins with known 3D structure. However, data with respect to orthologs was not available. Therefore, we added the projection of sites positions to the exon structures of orthologs in SitEx 2.0. We implemented a search through database using site conservation variability and site discontinuity through exon structure. Inclusion of the information on orthologs allowed to expand the possibilities of SitEx usage for solving problems regarding the analysis of the structural and functional organization of proteins. Database URL: http://www-bionet.sscc.ru/sitex/ .

  12. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  13. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  14. From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins

    Science.gov (United States)

    Forman-Kay, Julie D.; Mittag, Tanja

    2015-01-01

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708

  15. Protein profile of human hepatocarcinoma cell line SMMC-7721: Identification and functional analysis

    Institute of Scientific and Technical Information of China (English)

    Yi Feng; Zhong-Min Tian; Ming-Xi Wan; Zhao-Bin Zheng

    2007-01-01

    AIM: To investigate the protein profile of human hepatocarcinoma cell line SMMC-7721, to analyze the specific functions of abundant expressed proteins in the processes of hepatocarcinoma genesis, growth and metastasis, to identify the hepatocarcinoma-specific biomarkers for the early prediction in diagnosis, and to explore the new drug targets for liver cancer therapy.METHODS: Total proteins from human hepatocarcinomacell line SMMC-7721 were separated by two-dimensional electrophoresis (2DE). The silver-stained gel was analyzed by 2DE software Image Master 2D Elite.Interesting protein spots were identified by peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)and database searching.RESULTS: We obtained protein profile of human hepatocarcinoma cell line SMMC-7721. Among the twenty-one successfully identified proteins, mitofilin,endoplasmic reticulum protein ERp29, ubiquinol-cytochrome C reductase complex core protein Ⅰ,peroxisomal enoyl CoA hydratase, peroxiredoxin-4 and probable 3-oxoacid CoA transferase 1 precursor were the six novel proteins identified in human hepatocarcinoma cells or tissues. Specific functions of the identified heat-shock proteins were analyzed in detail, and the results suggested that these proteins might promote tumorigenesis via inhibiting cell death induced by several cancer-related stresses or via inhibiting apoptosis at multiple points in the apoptotic signal pathway. Other identified chaperones and cancer-related proteins were also analyzed.CONCLUSION: Based on the protein profile of SMMC-7721 cells, functional analysis suggests that the identified chaperones and cancer-related proteins have their own pathways to contribute to the tumorigenesis, tumor growth and metastasis of liver cancer. Furthermore, proteomic analysis is indicated to be feasible in the cancer study.

  16. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.

    Science.gov (United States)

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2015-01-01

    Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and

  17. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires

    International Nuclear Information System (INIS)

    Carreño-Fuentes, Liliana; Palomares, Laura A; Ramírez, Octavio T; Ascencio, Jorge A; Medina, Ariosto; Aguila, Sergio

    2013-01-01

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials. (paper)

  18. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Science.gov (United States)

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  19. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  20. Knowledge, perceptions and preferences of elderly regarding protein-enriched functional food.

    Science.gov (United States)

    van der Zanden, Lotte D T; van Kleef, Ellen; de Wijk, René A; van Trijp, Hans C M

    2014-09-01

    Promoting protein consumption in the elderly population may contribute to improving the quality of their later years in life. Our study aimed to explore knowledge, perceptions and preferences of elderly consumers regarding protein-enriched food. We conducted three focus groups with independently living (ID) elderly (N = 24, Mage = 67 years) and three with elderly living in a residential home (RH) (N = 18, Mage = 83 years). Both the ID and RH elderly were predominantly sceptical about functional food in general. Confusion, distrust and a perceived lack of personal relevance were main perceived barriers to purchasing and consuming these products, although a majority of the participants did report occasionally consuming at least one type of functional food. For the ID elderly, medical advice was an important facilitator that could overcome barriers to purchasing and consuming protein-enriched food, indicating the importance of personal relevance for this group. For the RH elderly, in contrast, sensory appeal of protein-enriched foods was a facilitator. Carrier preferences were similar for the two groups; the elderly preferred protein-enriched foods based on healthy products that they consumed frequently. Future studies should explore ways to deal with the confusion and distrust regarding functional food within the heterogeneous population of elderly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    Science.gov (United States)

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  2. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  3. Functional properties and Solubility of date seed proteins as ...

    African Journals Online (AJOL)

    Med ali

    2013-03-06

    Mar 6, 2013 ... Key words: Phoenix dactylifera L, date palm seed, fibre, protein, functional properties. INTRODUCTION. The date .... was employed to perform dynamic measurements. ... are likely to be composed of high-molecular weight.

  4. The role of oligomerization and cooperative regulation in protein function: the case of tryptophan synthase.

    Directory of Open Access Journals (Sweden)

    M Qaiser Fatmi

    Full Text Available The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS. TRPS uses a set of α/β-dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand-bound conformations. Our simulations also revealed that the α/β-dimeric unit stabilizes the substrate-protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function.

  5. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.

    Science.gov (United States)

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Functional dissection of the Hox protein Abdominal-B in Drosophila cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Zongzhao [Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang, Beijing 100101 (China); CellNetworks - Cluster of Excellence, Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, D-69120 Heidelberg (Germany); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Yang, Xingke, E-mail: yangxk@ioz.ac.cn [Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang, Beijing 100101 (China); Lohmann, Ingrid, E-mail: ilohmann@flydev.org [CellNetworks - Cluster of Excellence, Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer ct340 CRM was identified to be the posterior spiracle enhancer of gene cut. Black-Right-Pointing-Pointer ct340 is under the direct transcriptional control of Hox protein Abd-B. Black-Right-Pointing-Pointer An efficient cloning system was developed to assay protein-DNA interaction. Black-Right-Pointing-Pointer New features of Abd-B dependent target gene regulation were detected. -- Abstract: Hox transcription factors regulate the morphogenesis along the anterior-posterior (A/P) body axis through the interaction with small cis-regulatory modules (CRMs) of their target gene, however so far very few Hox CRMs are known and have been analyzed in detail. In this study we have identified a new Hox CRM, ct340, which guides the expression of the cell type specification gene cut (ct) in the posterior spiracle under the direct control of the Hox protein Abdominal-B (Abd-B). Using the ct340 enhancer activity as readout, an efficient cloning system to generate VP16 activation domain fusion protein was developed to unambiguously test protein-DNA interaction in Drosophila cell culture. By functionally dissecting the Abd-B protein, new features of Abd-B dependent target gene regulation were detected. Due to its easy adaptability, this system can be generally used to map functional domains within sequence-specific transcriptional factors in Drosophila cell culture, and thus provide preliminary knowledge of the protein functional domain structure for further in vivo analysis.

  7. Bam35 tectivirus intraviral interaction map unveils new function and localization of phage ORFan proteins.

    Science.gov (United States)

    Berjón-Otero, Mónica; Lechuga, Ana; Mehla, Jitender; Uetz, Peter; Salas, Margarita; Redrejo-Rodríguez, Modesto

    2017-07-26

    Tectiviridae comprises a group of tail-less, icosahedral, membrane-containing bacteriophages that can be divided into two groups by their hosts, either Gram-negative or Gram-positive bacteria. While the first group is composed of PRD1 and nearly identical well characterized lytic viruses, the second one includes more variable temperate phages, like GIL16 or Bam35, whose hosts are Bacillus cereus and related Gram-positive bacteria.In the genome of Bam35, nearly half of the 32 annotated open reading frames (ORFs) have no homologs in databases (ORFans), being putative proteins of unknown function, which hinders the understanding of their biology. With the aim of increasing the knowledge of the viral proteome, we carried out a comprehensive yeast two-hybrid analysis among all the putative proteins encoded by the Bam35 genome. The resulting protein interactome comprises 76 unique interactions among 24 proteins, of which 12 have an unknown function. These results suggested that the P17 protein is the minor capsid protein of Bam35 and P24 is the penton protein, being the latter also supported by iterative threading protein modeling. Moreover, the inner membrane transglycosylase protein P26 could have an additional structural role. We also detected interactions involving non-structural proteins, such as the DNA binding protein P1 and the genome terminal protein (P4), which was confirmed by co-immunoprecipitation of recombinant proteins. Altogether, our results provide a functional view of the Bam35 viral proteome, with a focus on the composition and organization of the viral particle. IMPORTANCE Tail-less viruses of the family Tectiviridae can infect commensal and pathogenic Gram-positive and Gram-negative bacteria. Moreover, they have been proposed to be at the evolutionary origin of several groups of large eukaryotic DNA viruses and self-replicating plasmids. However, due to their ancient origin and complex diversity, many tectiviral proteins are ORFans of unknown

  8. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function.

    Science.gov (United States)

    Findeisen, Felix; Campiglio, Marta; Jo, Hyunil; Abderemane-Ali, Fayal; Rumpf, Christine H; Pope, Lianne; Rossen, Nathan D; Flucher, Bernhard E; DeGrado, William F; Minor, Daniel L

    2017-06-21

    For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca V ) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Ca V β). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Ca V β interactions and reduce the entropic penalty associated with AID binding to Ca V β. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Ca V α 1 :Ca V β interaction that modulate Ca V function in an Ca V β isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca V modulator design.

  9. Simplified Swarm Optimization-Based Function Module Detection in Protein–Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xianghan Zheng

    2017-04-01

    Full Text Available Proteomics research has become one of the most important topics in the field of life science and natural science. At present, research on protein–protein interaction networks (PPIN mainly focuses on detecting protein complexes or function modules. However, existing approaches are either ineffective or incomplete. In this paper, we investigate detection mechanisms of functional modules in PPIN, including open database, existing detection algorithms, and recent solutions. After that, we describe the proposed approach based on the simplified swarm optimization (SSO algorithm and the knowledge of Gene Ontology (GO. The proposed solution implements the SSO algorithm for clustering proteins with similar function, and imports biological gene ontology knowledge for further identifying function complexes and improving detection accuracy. Furthermore, we use four different categories of species datasets for experiment: fruitfly, mouse, scere, and human. The testing and analysis result show that the proposed solution is feasible, efficient, and could achieve a higher accuracy of prediction than existing approaches.

  10. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    , regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes......-dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  11. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions.

    Science.gov (United States)

    Gerlt, John A

    2017-08-22

    The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.

  12. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Batten, MR; Senior, BW; Kilian, Mogens

    2003-01-01

    The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either...... side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial...... effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement...

  13. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Oyang Yen-Jen

    2010-10-01

    Full Text Available Abstract Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy.

  14. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions.

    Science.gov (United States)

    Raleigh, David R; Marchiando, Amanda M; Zhang, Yong; Shen, Le; Sasaki, Hiroyuki; Wang, Yingmin; Long, Manyuan; Turner, Jerrold R

    2010-04-01

    In vitro studies have demonstrated that occludin and tricellulin are important for tight junction barrier function, but in vivo data suggest that loss of these proteins can be overcome. The presence of a heretofore unknown, yet related, protein could explain these observations. Here, we report marvelD3, a novel tight junction protein that, like occludin and tricellulin, contains a conserved four-transmembrane MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain. Phylogenetic tree reconstruction; analysis of RNA and protein tissue distribution; immunofluorescent and electron microscopic examination of subcellular localization; characterization of intracellular trafficking, protein interactions, dynamic behavior, and siRNA knockdown effects; and description of remodeling after in vivo immune activation show that marvelD3, occludin, and tricellulin have distinct but overlapping functions at the tight junction. Although marvelD3 is able to partially compensate for occludin or tricellulin loss, it cannot fully restore function. We conclude that marvelD3, occludin, and tricellulin define the tight junction-associated MARVEL protein family. The data further suggest that these proteins are best considered as a group with both redundant and unique contributions to epithelial function and tight junction regulation.

  15. Research of the complex of functional and technological properties of animal protein

    Directory of Open Access Journals (Sweden)

    Олена Борисівна Дроменко

    2016-12-01

    Full Text Available The analysis of the results of analytical and practical research of the complex of functional and technological properties of animal protein Gelexcel A-95 as the basis for creation of complex functional additives is shown. The regularities of their changes are determined depending on technological factors. Rational parameters of animal protein rehydration, gelation conditions, emulsification for further use in the process of production of meat products are identified

  16. Functional NifD-K fusion protein in Azotobacter vinelandii is a homodimeric complex equivalent to the native heterotetrameric MoFe protein

    International Nuclear Information System (INIS)

    Lahiri, Surobhi; Pulakat, Lakshmi; Gavini, Nara

    2005-01-01

    The MoFe protein of the complex metalloenzyme nitrogenase folds as a heterotetramer containing two copies each of the homologous α and β subunits, encoded by the nifD and the nifK genes respectively. Recently, the functional expression of a fusion NifD-K protein of nitrogenase was demonstrated in Azotobacter vinelandii, strongly implying that the MoFe protein is flexible as it could accommodate major structural changes, yet remain functional [M.H. Suh, L. Pulakat, N. Gavini, J. Biol. Chem. 278 (2003) 5353-5360]. This finding led us to further explore the type of interaction between the fused MoFe protein units. We aimed to determine whether an interaction exists between the two fusion MoFe proteins to form a homodimer that is equivalent to native heterotetrameric MoFe protein. Using the Bacteriomatch Two-Hybrid System, translationally fused constructs of NifD-K (fusion) with the full-length λCI of the pBT bait vector and also NifD-K (fusion) with the N-terminal α-RNAP of the pTRG target vector were made. To compare the extent of interaction between the fused NifD-K proteins to that of the β-β interactions in the native MoFe protein, we proceeded to generate translationally fused constructs of NifK with the α-RNAP of the pTRG vector and λCI protein of the pBT vector. The strength of the interaction between the proteins in study was determined by measuring the β-galactosidase activity and extent of ampicillin resistance of the colonies expressing these proteins. This analysis demonstrated that direct protein-protein interaction exists between NifD-K fusion proteins, suggesting that they exist as homodimers. As the interaction takes place at the β-interfaces of the NifD-K fusion proteins, we propose that these homodimers of NifD-K fusion protein may function in a similar manner as that of the heterotetrameric native MoFe protein. The observation that the extent of protein-protein interaction between the β-subunits of the native MoFe protein in Bacterio

  17. Thick Filament Protein Network, Functions, and Disease Association.

    Science.gov (United States)

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  18. Synthesis of protected peptides from the human IgG1 hinge region on PEG support using disulfide bond synthons and alkaline or enzymatic detachment

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šafařík, Martin; Šebestík, Jaroslav; Gut, Vladimír; Maloň, Petr; Hlaváček, Jan

    2006-01-01

    Roč. 47, č. 6 (2006), s. 1023-1025 ISSN 0040-4039 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide synthesis * IgG1 hinge peptide * PEG carrier Subject RIV: CC - Organic Chemistry Impact factor: 2.509, year: 2006

  19. The three-hinged arch as an example of piezomechanic passive controlled structure

    Science.gov (United States)

    Pagnini, Luisa Carlotta; Piccardo, Giuseppe

    2016-09-01

    Although piezoelectric transducers are employed in a variety of fields, their application for vibration control of civil or industrial structures has not yet been fully developed, at the best of authors' knowledge. Thanks to a new generation of ever more performing piezoceramic materials and to the recent development of scientific proposals based on a very simple technology, this paper presents a step forward to engineering applications for the control of structural systems. A three-hinged arch controlled by piezoelectric stack actuators and passive RL electrical circuits is chosen as a simple structural model that may represent the starting point for a generalization to the most common typologies of civil and industrial engineering structures. Based on the concept of electromechanical analogy, the evolution equations are obtained through a consistent Lagrangian approach. A multimodal vibration suppression is guaranteed by the spectral analogy between the mechanical and electrical components. Preliminary applications related to free oscillations, with one or more actuators on each member, seem to lead to excellent performance in terms of multimodal damping and dissipated energy.

  20. From Green to Blue: Site-Directed Mutagenesis of the Green Fluorescent Protein to Teach Protein Structure-Function Relationships

    Science.gov (United States)

    Giron, Maria D.; Salto, Rafael

    2011-01-01

    Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…

  1. Mutagenesis Objective Search and Selection Tool (MOSST: an algorithm to predict structure-function related mutations in proteins

    Directory of Open Access Journals (Sweden)

    Asenjo Juan A

    2011-04-01

    Full Text Available Abstract Background Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships. Results A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein

  2. Functional divergence outlines the evolution of novel protein ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... identified a number of vital amino acid sites which contribute to predicted functional diversity. We have ... Taking this into account, in this study we looked into the possibility of ... to the structure of NifH protein and solubility accessibility of ..... ment through sequence weighting, position-specific gap penalties.

  3. Identification of functional candidates amongst hypothetical proteins of Mycobacterium leprae Br4923, a causative agent of leprosy.

    Science.gov (United States)

    Naqvi, Ahmad Abu Turab; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    Mycobacterium leprae is an intracellular obligate parasite that causes leprosy in humans, and it leads to the destruction of peripheral nerves and skin deformation. Here, we report an extensive analysis of the hypothetical proteins (HPs) from M. leprae strain Br4923, assigning their functions to better understand the mechanism of pathogenesis and to search for potential therapeutic interventions. The genome of M. leprae encodes 1604 proteins, of which the functions of 632 are not known (HPs). In this paper, we predicted the probable functions of 312 HPs. First, we classified all HPs into families and subfamilies on the basis of sequence similarity, followed by domain assignment, which provides many clues for their possible function. However, the functions of 320 proteins were not predicted because of low sequence similarity with proteins of known function. Annotated HPs were categorized into enzymes, binding proteins, transporters, and proteins involved in cellular processes. We found several novel proteins whose functions were unknown for M. leprae. These proteins have a requisite association with bacterial virulence and pathogenicity. Finally, our sequence-based analysis will be helpful for further validation and the search for potential drug targets while developing effective drugs to cure leprosy.

  4. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.

    Science.gov (United States)

    Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael

    2017-06-15

    Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    Science.gov (United States)

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.

  6. Structure/Function of the Novel Proteins LCIB and LCIC in the Chlamydomonas CCM

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Spalding H. [Iowa State Univ., Ames, IA (United States). Dept. of Genetics, Development and Cell Biology

    2017-05-09

    The goal of this project was to investigate the function of two novel proteins, LCIB and LCIC, which together form an essential protein complex that is required for function of a carbon-dioxide-concentrating mechanism (CCM) required by microalgae to grow in environments where carbon dioxide levels are at or below air equilibration levels.

  7. An attempt to understand kidney's protein handling function by comparing plasma and urine proteomes.

    Directory of Open Access Journals (Sweden)

    Lulu Jia

    Full Text Available BACKGROUND: With the help of proteomics technology, the human plasma and urine proteomes, which closely represent the protein compositions of the input and output of the kidney, respectively, have been profiled in much greater detail by different research teams. Many datasets have been accumulated to form "reference profiles" of the plasma and urine proteomes. Comparing these two proteomes may help us understand the protein handling aspect of kidney function in a way, however, which has been unavailable until the recent advances in proteomics technology. METHODOLOGY/PRINCIPAL FINDINGS: After removing secreted proteins downstream of the kidney, 2611 proteins in plasma and 1522 in urine were identified with high confidence and compared based on available proteomic data to generate three subproteomes, the plasma-only subproteome, the plasma-and-urine subproteome, and the urine-only subproteome, and they correspond to three groups of proteins that are handled in three different ways by the kidney. The available experimental molecular weights of the proteins in the three subproteomes were collected and analyzed. Since the functions of the overrepresented proteins in the plasma-and-urine subproteome are probably the major functions that can be routinely regulated by excretion from the kidney in physiological conditions, Gene Ontology term enrichment in the plasma-and-urine subproteome versus the whole plasma proteome was analyzed. Protease activity, calcium and growth factor binding proteins, and coagulation and immune response-related proteins were found to be enriched. CONCLUSION/SIGNIFICANCE: The comparison method described in this paper provides an illustration of a new approach for studying organ functions with a proteomics methodology. Because of its distinctive input (plasma and output (urine, it is reasonable to predict that the kidney will be the first organ whose functions are further elucidated by proteomic methods in the near future. It

  8. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.).

    Science.gov (United States)

    Mao, Xiaoying; Hua, Yufei

    2012-01-01

    In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H(0) of WPC was significantly higher (p structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients.

  9. Nck adapter proteins: functional versatility in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2009-02-01

    Full Text Available Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.

  10. Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter

    Directory of Open Access Journals (Sweden)

    Klaubert Dieter H

    2008-04-01

    Full Text Available Abstract Background The ability to specifically label proteins within living cells can provide information about their dynamics and function. To study a membrane protein, we fused a multi-functional reporter protein, HaloTag®, to the extracellular domain of a truncated integrin. Results Using the HaloTag technology, we could study the localization, trafficking and processing of an integrin-HaloTag fusion, which we showed had cellular dynamics consistent with native integrins. By labeling live cells with different fluorescent impermeable and permeable ligands, we showed spatial separation of plasma membrane and internal pools of the integrin-HaloTag fusion, and followed these protein pools over time to study bi-directional trafficking. In addition to combining the HaloTag reporter protein with different fluorophores, we also employed an affinity tag to achieve cell capture. Conclusion The HaloTag technology was used successfully to study expression, trafficking, spatial separation and real-time translocation of an integrin-HaloTag fusion, thereby demonstrating that this technology can be a powerful tool to investigate membrane protein biology in live cells.

  11. Evaluation of epididymal function through specific protein on spermatozoa.

    Science.gov (United States)

    Del Río, A G; De Sánchez, L Z; Sirena, A

    1984-01-01

    Investigations were focused on the characterization of specific epididymal proteins on the human spermatozoa as a representative parameter for epididymal function. An easy and attainable method, suitable for investigators and clinical use, is proposed in this article.

  12. Roles of water in protein structure and function studied by molecular liquid theory.

    Science.gov (United States)

    Imai, Takashi

    2009-01-01

    The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.

  13. Fast dynamics perturbation analysis for prediction of protein functional sites

    Directory of Open Access Journals (Sweden)

    Cohn Judith D

    2008-01-01

    Full Text Available Abstract Background We present a fast version of the dynamics perturbation analysis (DPA algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites. Results The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis.

  14. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  15. SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity.

    Science.gov (United States)

    Li, Ying Hong; Xu, Jing Yu; Tao, Lin; Li, Xiao Feng; Li, Shuang; Zeng, Xian; Chen, Shang Ying; Zhang, Peng; Qin, Chu; Zhang, Cheng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong

    2016-01-01

    Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional families from protein sequences irrespective of similarity, which complemented those similarity-based and other methods in predicting diverse classes of proteins including the distantly-related proteins and homologous proteins of different functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1) expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors protein representation, (3) improved predictive performances due to the use of more enriched training datasets and more variety of protein descriptors, (4) newly integrated BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families that were similar in sequence to a query protein, and (5) newly added batch submission option for supporting the classification of multiple proteins. Moreover, 2 more machine learning approaches, K nearest neighbor and probabilistic neural networks, were added for facilitating collective assessment of protein functions by multiple methods. SVM-Prot can be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.

  16. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    Science.gov (United States)

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  17. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  18. Lacritin and other new proteins of the lacrimal functional unit.

    Science.gov (United States)

    McKown, Robert L; Wang, Ningning; Raab, Ronald W; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B; Laurie, Gordon W

    2009-05-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.

  19. Production of Lupinus angustifolius protein hydrolysates with improved functional properties

    Directory of Open Access Journals (Sweden)

    Millán, Francisco

    2005-06-01

    Full Text Available Protein hydrolysates wer e obtained from lupin flour and from the purified globulin α -conglutin, and their functional properties were studied. Hydrolysis with alcalase for 60 minutes yielded degrees of hydrolysis ranging from 4 % to 11 % for lupin flour, and from 4 % to 13% for α -conglutin. Protein solubility, oil absorption, foam capacity and stability, emulsifying activity, and emulsion stability of hydrolysates with 6% degree of hydrolysis were determined and compared with the properties of the original flour. The protein hydrolysates showed better functional properties than the original proteins. Most importantly, the solubility of the α -conglutin and L. angustifolius flour hydrolysates was increased by 43 % and 52 %, respectively. Thus, lupin seed protein hydrolysates have improved functional properties and could be used in the elaboration of a variety of products such as breads, cakes, and salad dressings.Se obtuvieron hidrolizados proteicos de la harina del altramuz y de la globulina α - conglutina purificada y se estudiaron sus propiedades funcionales. La hidrólisis con alcalasa durante 60 minutos produjo hidrolizados con grados de hidrólisis entre el 4 % y el 11 % para la harina y entre el 4 % y el 13 % para la α - conglutina. Se estudió en un hidrolizado con un 6 % de grado de hidrólisis la solubilidad proteica, absorción de aceite, capacidad y estabilidad espumante y actividad y estabilidad emulsificante. Los hidrolizados proteicos mostraron mejores propiedades funcionales que las proteínas originales. Más aún, la solubilidad de los hidrolizados de α - conglutina y la harina se incrementó en un 43 % y 52 % respectivamente. Así pues, hidrolizados de proteínas de semilla de lupino presentan mejores propiedades funcionales y podrían usarse en la elaboración de productos como pan, dulces, salsas o cremas.

  20. Functional improvement of antibody fragments using a novel phage coat protein III fusion system

    DEFF Research Database (Denmark)

    Jensen, Kim Bak; Larsen, Martin; Pedersen, Jesper Søndergaard

    2002-01-01

    Functional expressions of proteins often depend on the presence of host specific factors. Frequently recombinant expression strategies of proteins in foreign hosts, such as bacteria, have been associated with poor yields or significant loss of functionality. Improvements in the performance of het......(s) of the filamentous phage coat protein III. Furthermore, it will be shown that the observed effect is neither due to improved stability nor increased avidity....