WorldWideScience

Sample records for functional neuroimaging research

  1. Data sharing in neuroimaging research

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste ePoline

    2012-04-01

    Full Text Available Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging.

  2. Brain structure and function related to depression in Alzheimer's disease: contributions from neuroimaging research.

    Science.gov (United States)

    Brommelhoff, Jessica A; Sultzer, David L

    2015-01-01

    The development of minimally invasive in vivo methods for imaging the brain has allowed for unprecedented advancement in our understanding of brain-behavior relationships. Structural, functional, and multimodal neuroimaging techniques have become more sophisticated in detecting structural and physiological abnormalities that may underlie various affective disorders and neurological illnesses such as depression in Alzheimer's disease (AD). In general, neuroimaging studies of depression in AD investigate whether depression is associated with damage to structures in specific neural networks involving frontal and subcortical structures or with functional disruption of cortical neural systems. This review provides an overview of how various imaging modalities have contributed to our understanding of the neurobiology of depression in AD. At present, the literature does not conclusively support any specific pathogenesis for depression, and it is not clear whether patients with AD and depression have histopathological and neurochemical characteristics that contribute to mood symptoms that are different from cognitively intact individuals with depression. Neuroimaging studies suggest that atrophy of temporal or frontal structures, white matter lesions in frontal lobe or subcortical systems, reduced activity in dorsolateral frontal cortex, or small vessel cerebrovascular disease may be associated with depression in AD. Conceptual, clinical, and methodological challenges in studying this relationship are discussed. Further work is needed to understand the specific brain structures, relevant white matter tracts, and interactions among them that are most important. This review concludes with potential directions for future research.

  3. Functional neuroimaging of sleep.

    Science.gov (United States)

    Nofzinger, Eric A

    2005-03-01

    Sleep and sleep disorders have traditionally been viewed from a polysomnographic perspective. Although these methods provide information on the timing of various stages of sleep and wakefulness, they do not provide information regarding function in brain structures that have been implicated in the generation of sleep and that may be abnormal in different sleep disorders. Functional neuroimaging methods provide information regarding changes in brain function across the sleep-wake cycle that provides information for models of sleep dysregulation in a variety of sleep disorders. Early studies show reliable increases in function in limbic and anterior paralimbic cortex in rapid eye movement (REM) sleep and decreases in function in higher-order cortical regions in known thalamocortical networks during non-REM sleep. Although most of the early work in this area has been devoted to the study of normal sleep mechanisms, a collection of studies in diverse sleep disorders such as sleep deprivation, depression, insomnia, dyssomnias, narcolepsy, and sleep apnea suggest that functional neuroimaging methods have the potential to clarify the pathophysiology of sleep disorders and to guide treatment strategies.

  4. Functional neuroimaging of sleep disorders.

    Science.gov (United States)

    Nofzinger, Eric A

    2008-01-01

    Functional neuroimaging methods provide a means to understand brain function in patients with sleep disorders. This paper summarizes functional neuroimaging findings in sleep disorders patients, and studies addressing the pharmacology of sleep and sleep disorders. Areas in which functional neuroimaging methods may be helpful in sleep medicine, and in which future development is advised, include: 1) clarification of pathophysiology; 2) aid in differential diagnosis; 3) assessment of treatment response; 4) guiding new drug development; and 5) monitoring treatment response.

  5. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    Science.gov (United States)

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  6. Cognitive avionics and watching spaceflight crews think: generation-after-next research tools in functional neuroimaging.

    Science.gov (United States)

    Genik, Richard J; Green, Christopher C; Graydon, Francis X; Armstrong, Robert E

    2005-06-01

    Confinement and isolation have always confounded the extraordinary endeavor of human spaceflight. Psychosocial health is at the forefront in considering risk factors that imperil missions of 1- to 2-yr duration. Current crewmember selection metrics restricted to behavioral observation by definition observe rather than prevent performance degradation and are thus inadequate when preflight training cannot simulate an entire journey. Nascent techniques to monitor functional and task-related cortical neural activity show promise and can be extended to include whole-brain monitoring. Watching spaceflight crews think can reveal the efficiency of training procedures. Moreover, observing subcortical emotion centers may provide early detection of developing neuropsychiatric disorders. The non-invasive functional neuroimaging modalities electroencephalography (EEG), magnetoencephalography (MEG), magnetic resonance imaging (MRI), and near-infrared spectroscopy (NIRS), and highlights of how they may be engineered for spacecraft are detailed. Preflight and in-flight applications to crewmember behavioral health from current generation, next generation, and generation-after-next neuroscience research studies are also described. The emphasis is on preventing the onset of neuropsychiatric dysfunctions, thus reducing the risk of mission failure due to human error.

  7. Finding related functional neuroimaging volumes

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2004-01-01

    We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving each...

  8. FUNCTIONAL NEUROIMAGING IN GERIATRIC DEPRESSION

    Science.gov (United States)

    Gunning, Faith M.; Smith, Gwenn S.

    2012-01-01

    Synopsis Abnormalities in specific cerebral networks likely confer vulnerability that increases the susceptibility for development of geriatric depression and impact the course of symptoms. Functional neuroimaging enables the in vivo identification of alterations in cerebral function that not only characterize disease vulnerability, but also may contribute to variability in depressive symptoms and antidepressant response. Judicious use of functional neuroimaging tools can advance pathophysiological models of geriatric depression. Furthermore, due to the age-related vulnerability of specific brain systems that have been implicated in mood disorders, geriatric depression provides a logical context within which to study the role of specific functional abnormalities in both antidepressant response and key behavioral and cognitive abnormalities of mood disorders. PMID:21536165

  9. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... to predict or decode experimentally defined cognitive states based on brain scans. The topics covered in the dissertation are divided into two broad parts: The first part investigates the relative importance of model selection on the brain patterns extracted form analysis models. Typical neuroimaging data...... of model regularization parameter choices on the model generalization, the reliability of the spatial brain patterns extracted from the analysis model, and the ability of the resulting model to identify relevant brain networks defining the underlying neural encoding of the experiment. We show that known...

  10. Neuroimaging for psychotherapy research: current trends.

    Science.gov (United States)

    Weingarten, Carol P; Strauman, Timothy J

    2015-01-01

    This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive compulsive disorder (OCD), and schizophrenia. The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research.

  11. The open-source neuroimaging research enterprise.

    Science.gov (United States)

    Marcus, Daniel S; Archie, Kevin A; Olsen, Timothy R; Ramaratnam, Mohana

    2007-11-01

    While brain imaging in the clinical setting is largely a practice of looking at images, research neuroimaging is a quantitative and integrative enterprise. Images are run through complex batteries of processing and analysis routines to generate numeric measures of brain characteristics. Other measures potentially related to brain function - demographics, genetics, behavioral tests, neuropsychological tests - are key components of most research studies. The canonical scanner - PACS - viewing station axis used in clinical practice is therefore inadequate for supporting neuroimaging research. Here, we model the neuroimaging research enterprise as a workflow. The principal components of the workflow include data acquisition, data archiving, data processing and analysis, and data utilization. We also describe a set of open-source applications to support each step of the workflow and the transitions between these steps. These applications include DIGITAL IMAGING AND COMMUNICATIONS IN MEDICINE viewing and storage tools, the EXTENSIBLE NEUROIMAGING ARCHIVE TOOLKIT data archiving and exploration platform, and an engine for running processing/analysis pipelines. The overall picture presented is aimed to motivate open-source developers to identify key integration and communication points for interoperating with complimentary applications.

  12. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... attempt to predict or decode experimentally defined cognitive states based on brain scans. The topics covered in the dissertation are divided into two broad parts: The first part investigates the relative importance of model selection on the brain patterns extracted form analysis models. Typical...... influence of model regularization parameter choices on the model generalization, the reliability of the spatial brain patterns extracted from the analysis model, and the ability of the model to identify relevant brain networks defining the underlying neural encoding of the experiment. We show that known...

  13. Functional neuroimaging of traumatic brain injury: advances and clinical utility

    Directory of Open Access Journals (Sweden)

    Irimia A

    2015-09-01

    Full Text Available Andrei Irimia, John Darrell Van Horn USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Abstract: Functional deficits due to traumatic brain injury (TBI can have significant and enduring consequences upon patients’ life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques – especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography – for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI. Keywords: cognitive decline, personality change, magnetic resonance imaging, diffusion tensor imaging

  14. Turner syndrome: neuroimaging findings: structural and functional.

    LENUS (Irish Health Repository)

    Mullaney, Ronan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including the parietal lobe; cerebellum, amygdala, hippocampus; and basal ganglia; and perhaps differences in "connectivity" between frontal and parieto-occipital regions. Finally, there is preliminary evidence that genomic imprinting, sex hormones and growth hormone have significant modulatory effects on brain maturation in TS.

  15. Neuroimaging in autism--from basic science to translational research.

    Science.gov (United States)

    Ecker, Christine; Murphy, Declan

    2014-02-01

    Over the past decade, human neuroimaging studies have provided invaluable insights into the neural substrates that underlie autism spectrum disorder (ASD). Although observations from multiple neuroimaging approaches converge in suggesting that changes in brain structure, functioning and connectivity are associated with ASD, the neurobiology of this disorder is complex, and considerable aetiological and phenotypic heterogeneity exists among individuals on the autism spectrum. Characterization of the neurobiological alterations that underlie ASD and development of novel pharmacotherapies for ASD, therefore, requires multidisciplinary collaboration. Consequently, pressure is growing to combine neuroimaging data with information provided by other disciplines to translate research findings into clinically useful biomarkers. So far, however, neuroimaging studies in patients with ASD have mainly been conducted in isolation, and the low specificity of neuroimaging measures has hindered the development of biomarkers that could aid clinical trials and/or facilitate patient identification. Novel approaches to acquiring and analysing data on brain characteristics are currently being developed to overcome these inherent limitations, and to integrate neuroimaging into translational research. Here, we discuss promising new studies of cortical pathology in patients with ASD, and outline how the novel insights thereby obtained could inform diagnosis and treatment of ASD in the future.

  16. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG.

    Science.gov (United States)

    He, Bin; Liu, Zhongming

    2008-01-01

    Noninvasive functional neuroimaging, as an important tool for basic neuroscience research and clinical diagnosis, continues to face the need of improving the spatial and temporal resolution. While existing neuroimaging modalities might approach their limits in imaging capability mostly due to fundamental as well as technical reasons, it becomes increasingly attractive to integrate multiple complementary modalities in an attempt to significantly enhance the spatiotemporal resolution that cannot be achieved by any modality individually. Electrophysiological and hemodynamic/metabolic signals reflect distinct but closely coupled aspects of the underlying neural activity. Combining fMRI and EEG/MEG data allows us to study brain function from different perspectives. In this review, we start with an overview of the physiological origins of EEG/MEG and fMRI, as well as their fundamental biophysics and imaging principles, we proceed with a review of the major advances in the understanding and modeling of neurovascular coupling and in the methodologies for the fMRI-EEG/MEG simultaneous recording. Finally, we summarize important remaining issues and perspectives concerning multimodal functional neuroimaging, including brain connectivity imaging.

  17. Functional neuroimaging and childhood autism

    Energy Technology Data Exchange (ETDEWEB)

    Boddaert, Nathalie [Service de Radiologie Pediatrique, Necker-Enfants Malades Hospital, Paris (France); Service Hospitalier Frederic Joliot, DRM, DSV, CEA, Orsay (France); Zilbovicius, Monica [Service Hospitalier Frederic Joliot, DRM, DSV, CEA, Orsay (France); INSERM, Tours (France)

    2002-01-01

    Childhood autism is now widely viewed as being of developmental neurobiological origin. Yet, localised structural and functional brain correlates of autism have to be established. Structural brain-imaging studies performed in autistic patients have reported abnormalities such as increased total brain volume and cerebellar abnormalities. However, none of these abnormalities fully account for the full range of autistic symptoms. Functional brain imaging, such as positron emission tomography (PET), single photon emission computed tomography (SPECT) and functional MRI (fMRI) have added a new perspective to the study of normal and pathological brain functions. In autism, functional studies have been performed at rest or during activation. However, first-generation functional imaging devices were not sensitive enough to detect any consistent dysfunction. Recently, with improved technology, two independent groups have reported bilateral hypoperfusion of the temporal lobes in autistic children. In addition, activation studies, using perceptive and cognitive paradigms, have shown an abnormal pattern of cortical activation in autistic patients. These results suggest that different connections between particular cortical regions could exist in autism. The purpose of this review is to present the main results of rest and activation studies performed in autism. (orig.)

  18. Functional neuroimaging in Tourette syndrome: recent perspectives

    Directory of Open Access Journals (Sweden)

    Debes NM

    2017-04-01

    Full Text Available Nanette Mol Debes, Marie Préel, Liselotte Skov Pediatric Department, Tourette Clinic, Herlev University Hospital, Herlev, DenmarkAbstract: The most recent functional neuroimaging studies on Tourette syndrome (TS are reviewed in this paper. Although it can be difficult to compare functional neuroimaging studies due to differences in methods, differences in age of the included subjects, and differences in the extent to which the presence of comorbidity, medical treatment, and severity of tics are considered in the various studies; most studies show that the cortico-striato-thalamo-cortical circuit seems to be involved in the generation of tics. Changes in this circuit seem to be correlated with tic severity. Correlations have been found between the presence of tics and hypermetabolism in various brain regions. Abnormalities of GABAergic, serotonergic, and dopaminergic neurotransmission in patients with TS have been suggested. During tic suppression, increased activity in the inferior frontal gyrus is seen. The premotor cortex might be involved in inhibition of motor control in subjects with TS. The right anterior insula is suggested to be a part of the urge–tic network. Several studies have shown altered motor network activations and sensorimotor gating deficits in subjects with TS. In future studies, inclusion of more well-defined subjects and further examination of premonitory urge and tic suppression is needed in order to increase the knowledge about the pathophysiology and treatment possibilities of TS. Keywords: functional neuroimaging, Tourette syndrome

  19. Neural Correlates of Visual Perceptual Expertise: Evidence from Cognitive Neuroscience Using Functional Neuroimaging

    Science.gov (United States)

    Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…

  20. Human functional neuroimaging of brain changes associated with practice

    OpenAIRE

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  1. Neuroimaging in Parkinson disease: from research setting to clinical practice.

    Science.gov (United States)

    Politis, Marios

    2014-12-01

    Over the past three decades, neuroimaging studies-including structural, functional and molecular modalities-have provided invaluable insights into the mechanisms underlying Parkinson disease (PD). Observations from multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical changes that affect receptor sites and neurotransmitter systems. Characterization of the neurobiological alterations that lead to phenotypic heterogeneity in patients with PD has considerably aided the in vivo investigation of aetiology and pathophysiology, and the identification of novel targets for pharmacological or surgical treatments, including cell therapy. Although PD is now considered to be very complex, no neuroimaging modalities are specifically recommended for routine use in clinical practice. However, conventional MRI and dopamine transporter imaging are commonly used as adjuvant tools in the differential diagnosis between PD and nondegenerative causes of parkinsonism. First-line neuroimaging tools that could have an impact on patient prognosis and treatment strategies remain elusive. This Review discusses the lessons learnt from decades of neuroimaging research in PD, and the promising new approaches with potential applicability to clinical practice.

  2. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    Science.gov (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  3. [Functional neuroimaging of auditory hallucinations in schizophrenia].

    Science.gov (United States)

    Font, M; Parellada, E; Fernández-Egea, E; Bernardo, M; Lomeña, F

    2003-01-01

    The neurobiological bases underlying the generation of auditory hallucinations, a distressing and paradigmatic symptom of schizophrenia, are still unknown in spite of in-depth phenomenological descriptions. This work aims to make a critical review of the latest published literature in recent years, focusing on functional neuroimaging studies (PET, SPECT, fMRI) of auditory hallucinations. Thus, the studies are classified according to whether they are sensory activation, trait and state. The two main hypotheses proposed to explain the phenomenon, external speech vs. subvocal or inner speech, are also explained. Finally, the latest unitary theory as well as the limitations the studies published are commented on. The need to continue investigating in this field, that is still underdeveloped, is posed in order to understand better the etiopathogenesis of auditory hallucinations in schizophrenia.

  4. Structural and functional neuroimaging in intractable epilepsy

    Directory of Open Access Journals (Sweden)

    Chinchure Swati

    2010-01-01

    Full Text Available Medical management remains unsatisfactory in about a third of patients with epilepsy and some of them are candidates for resective epilepsy surgery. Structural and functional neuroimaging plays an important role in the identification of the precise cortical region responsible for seizures and is very crucial for a good surgical outcome. Furthermore, identification of eloquent cortical areas near the region to be resected is essential to avoid postoperative neurologic deficit. The magnetic resonance imaging (MRI protocol for epilepsy can be individually tailored depending on the seizure semiology and possibly electroencephalography. New MRI techniques demonstrate the structure of the brain in fine detail, help in understanding the underlying pathology, and demonstrate functional activity of the brain with high spatial and temporal resolution. Metabolic imaging techniques, such as positron emission tomography (PET and single photon emission tomography (SPECT visualize metabolic alterations of the brain in the ictal and interictal states. In MR-negative epilepsy patients, these techniques may have localizing value. The proper use and interpretation of the findings provided by these new technologies is crucial. In this review article, we discuss various conventional and advanced MRI techniques, interpretation of various findings, and the role of functional imaging modalities, such as functional MRI, PET, and SPECT in the localization of epileptogenic substrate as well as for understanding the pathophysiology, propagation, and neurochemical correlates of epilepsy.

  5. Clinical functional MRI. Presurgical functional neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, C. (ed.) [Heidelberg Univ. (Germany). Div. of Neuroradiology

    2007-07-01

    Functional magnetic resonance imaging (fMRI) permits noninvasive imaging of the ''human brain at work'' under physiological conditions. This is the first textbook on clinical fMRI. It is devoted to preoperative fMRI in patients with brain tumors and epilepsies, which are the most well-established clinical applications. By localizing and lateralizing specific brain functions, as well as epileptogenic zones, fMRI facilitates the selection of a safe treatment and the planning and performance of function-preserving neurosurgery. State of the art fMRI procedures are presented, with detailed consideration of the physiological and methodological background, imaging and data processing, normal and pathological findings, diagnostic possibilities and limitations, and other related techniques. All chapters are written by recognized experts in their fields, and the book is designed to be of value to beginners, trained clinicians and experts alike. (orig.)

  6. Turner Syndrome: Neuroimaging Findings--Structural and Functional

    Science.gov (United States)

    Mullaney, Ronan; Murphy, Declan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including…

  7. Schizophrenia: What do we know from neuroimaging research?

    NARCIS (Netherlands)

    Noort, M.W.M.L. van den; Bosch, M.P.C.; Zedlitz, A.M.E.E.; Hadzibeganovic, T.; Kralingen, R.B.A.S. van

    2009-01-01

    Objectives A summary of the main neuroimaging findings in the field of schizophrenia will be given in order to get a better understanding of this disorder. Methods The authors conducted an extensive literature review, using PubMed and the internet. Results Neuroimaging research on schizophrenia has

  8. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    Science.gov (United States)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  9. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    and yielded consistent alterations in neural activity in patients with PD. Differences in cortical activation between PD patients and healthy controls converged in a left-lateralized fronto-parietal network comprising the presupplementary motor area, primary motor cortex, inferior parietal cortex......Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  10. Anatomical and functional neuroimaging in awake, behaving marmosets.

    Science.gov (United States)

    Silva, Afonso C

    2017-03-01

    The common marmoset (Callithrix jacchus) is a small New World monkey that has gained significant recent interest in neuroscience research, not only because of its compatibility with gene editing techniques, but also due to its tremendous versatility as an experimental animal model. Neuroimaging modalities, including anatomical (MRI) and functional magnetic resonance imaging (fMRI), complemented by two-photon laser scanning microscopy and electrophysiology, have been at the forefront of unraveling the anatomical and functional organization of the marmoset brain. High-resolution anatomical MRI of the marmoset brain can be obtained with remarkable cytoarchitectonic detail. Functional MRI of the marmoset brain has been used to study various sensory systems, including somatosensory, auditory, and visual pathways, while resting-state fMRI studies have unraveled functional brain networks that bear great correspondence to those previously described in humans. Two-photon laser scanning microscopy of the marmoset brain has enabled the simultaneous recording of neuronal activity from thousands of neurons with single cell spatial resolution. In this article, we aim to review the main results obtained by our group and by our colleagues in applying neuroimaging techniques to study the marmoset brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 373-389, 2017.

  11. Executive Function in Adolescence: A Commentary on Regulatory Control and Depression in Adolescents: Findings From Neuroimaging and Neuropsychological Research.

    Science.gov (United States)

    Luciana, Monica

    2016-01-01

    This commentary addresses the manner in which executive control processes and their development is impacted by major depressive episodes during adolescence. Strengths of the articles within this special issue include the breadth of executive functions that were examined, incorporation of biological probes to understand neural mechanisms involved in observed impairments, the use of longitudinal paradigms to assess developmental timing, consideration and modeling of comorbid conditions, and the identification of individual difference factors that may serve as both liabilities and resilience factors. This work is timely; a close examination of negative emotions and how they change during adolescence is needed if we are to fully understand motivation-cognition interactions and how they are impaired by psychopathology.

  12. Musical hallucinations: a brief review of functional neuroimaging findings.

    Science.gov (United States)

    Bernardini, Francesco; Attademo, Luigi; Blackmon, Karen; Devinsky, Orrin

    2016-12-19

    Musical hallucinations are uncommon phenomena characterized by intrusive and frequently distressful auditory musical percepts without an external source, often associated with hypoacusis, psychiatric illness, focal brain lesion, epilepsy, and intoxication/pharmacology. Their physiological basis is thought to involve diverse mechanisms, including "release" from normal sensory or inhibitory inputs as well as stimulation during seizures, or they can be produced by functional or structural disorders in diverse cortical and subcortical areas. The aim of this review is to further explore their pathophysiology, describing the functional neuroimaging findings regarding musical hallucinations. A literature search of the PubMed electronic database was conducted through to 29 December 2015. Search terms included "musical hallucinations" combined with the names of specific functional neuroimaging techniques. A total of 18 articles, all clinical case reports, providing data on 23 patients, comprised the set we reviewed. Diverse pathological processes and patient populations with musical hallucinations were included in the studies. Converging data from multiple studies suggest that the superior temporal sulcus is the most common site and that activation is the most common mechanism. Further neurobiological research is needed to clarify the pathophysiology of musical hallucinations.

  13. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance

    Directory of Open Access Journals (Sweden)

    Silk Jennifer S

    2011-05-01

    Full Text Available Abstract Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120. Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The

  14. Neuroimaging Research with Children: Ethical Issues and Case Scenarios

    Science.gov (United States)

    Coch, Donna

    2007-01-01

    There are few available resources for learning and teaching about ethical issues in neuroimaging research with children, who constitute a special and vulnerable population. Here, a brief review of ethical issues in developmental research, situated within the emerging field of neuroethics, highlights the increasingly interdisciplinary nature of…

  15. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, Christoph (ed.) [Univ. Hospitals Basel (Switzerland). Division of Diagnostic and Inventional Neuroradiology

    2015-06-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  16. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    Science.gov (United States)

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  17. Memory Systems, Processing Modes, and Components: Functional Neuroimaging Evidence

    Science.gov (United States)

    Cabeza, Roberto; Moscovitch, Morris

    2013-01-01

    In the 1980s and 1990s, there was a major theoretical debate in the memory domain regarding the multiple memory systems and processing modes frameworks. The components of processing framework argued for a middle ground: Instead of neatly divided memory systems or processing modes, this framework proposed the existence of numerous processing components that are recruited in different combinations by memory tasks and yield complex patterns of associations and dissociations. Because behavioral evidence was not sufficient to decide among these three frameworks, the debate was largely abandoned. However, functional neuroimaging evidence accumulated during the last two decades resolves the stalemate, because this evidence is more consistent with the components framework than with the other two frameworks. For example, functional neuroimaging evidence shows that brain regions attributed to one memory system can contribute to tasks associated with other memory systems and that brain regions attributed to the same processing mode (perceptual or conceptual) can be dissociated from each other. Functional neuroimaging evidence suggests that memory processes are supported by transient interactions between a few regions called process-specific alliances. These conceptual developments are an example of how functional neuroimaging can contribute to theoretical debates in cognitive psychology. PMID:24163702

  18. Functional Neuroimaging of Appetite and Gut–Brain Interactions

    NARCIS (Netherlands)

    Smeets, P.A.M.; Preissl, Hubert

    2016-01-01

    Ultimately, eating decisions are made in the brain, based on the integration
    of multiple neural and hormonal signals. Since the early 1990s the use of
    functional
    neuroimaging
    techniques has continued to increase. Their application
    in the study of the regulation of food intake and gut

  19. Testing for difference between two groups of functional neuroimaging experiments

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Chen, Andrew C. N.; Hansen, Lars Kai

    2004-01-01

    We describe a meta-analytic method that tests for the difference between two groups of functional neuroimaging experiments. We use kernel density estimation in three-dimensional brain space to convert points representing focal brain activations into a voxel-based representation. We find the maximum...

  20. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.

  1. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    Science.gov (United States)

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional

  2. Functional neuroimaging of satiation and satiety

    NARCIS (Netherlands)

    Spetter, M.S.

    2012-01-01

    The main aim of this research project was to understand the effect of internal state on brain activity associated with different food and odour properties. To this end, the brain activation in response to differential taste and odour stimuli when either being hungry or satiated, and additionally,

  3. Functional neuroimaging of satiation and satiety

    NARCIS (Netherlands)

    Spetter, M.S.

    2012-01-01

    The main aim of this research project was to understand the effect of internal state on brain activity associated with different food and odour properties. To this end, the brain activation in response to differential taste and odour stimuli when either being hungry or satiated, and additionally, th

  4. The neuroimaging research process from the participants' perspective.

    Science.gov (United States)

    Cooke, Richard; Peel, Elizabeth; Shaw, Rachel L; Senior, Carl

    2007-02-01

    The aim of this study was to investigate participants' experiences of taking part in research conducted using fMRI or MEG procedures. Forty-four participants completed a questionnaire after taking part in either fMRI or MEG experiments; the questionnaire asked about experiences of and attitudes toward fMRI/MEG. Ten follow-up interviews were conducted to enable an in-depth analysis of these attitudes and experiences. The findings were generally positive: all participants thought fMRI and MEG were safe procedures, 93% would recommend participating in neuroimaging research to their friends and family, and participants were positive about participating in future neuroimaging research. However, some negative issues were identified. Some participants reported feeling nervous prior to scanning procedures, several participants reported side-effects after taking part, a number of participants were upset at being in a confined space and some participants did not feel confident about exiting the scanner in an emergency. Several recommendations for researchers are made, including a virtual tour of the scanning equipment during the consenting process in order to better prepare potential participants for the scanning experience and to minimize the potential psychological discomfort sometimes experienced in neuroimaging research.

  5. Functional neuroimaging abnormalities in idiopathic generalized epilepsy

    Directory of Open Access Journals (Sweden)

    Megan L. McGill

    2014-01-01

    Full Text Available Magnetic resonance imaging (MRI techniques have been used to quantitatively assess focal and network abnormalities. Idiopathic generalized epilepsy (IGE is characterized by bilateral synchronous spike–wave discharges on electroencephalography (EEG but normal clinical MRI. Dysfunctions involving the neocortex, particularly the prefrontal cortex, and thalamus likely contribute to seizure activity. To identify possible morphometric and functional differences in the brains of IGE patients and normal controls, we employed measures of thalamic volumes, cortical thickness, gray–white blurring, fractional anisotropy (FA measures from diffusion tensor imaging (DTI and fractional amplitude of low frequency fluctuations (fALFF in thalamic subregions from resting state functional MRI. Data from 27 patients with IGE and 27 age- and sex-matched controls showed similar thalamic volumes, cortical thickness and gray–white contrast. There were no differences in FA values on DTI in tracts connecting the thalamus and prefrontal cortex. Functional analysis revealed decreased fALFF in the prefrontal cortex (PFC subregion of the thalamus in patients with IGE. We provide minimum detectable effect sizes for each measure used in the study. Our analysis indicates that fMRI-based methods are more sensitive than quantitative structural techniques for characterizing brain abnormalities in IGE.

  6. A review of neuropsychological and neuroimaging research in autistic spectrum disorders: Attention, inhibition and cognitive flexibility

    OpenAIRE

    2008-01-01

    PUBLISHED Autistic spectrum disorders (ASD) are devastating neurodevelopmental disorders of unknown aetiology with characteristic deficits in social interaction, communication and behaviour. Individuals with ASD show deficits in executive function (EF), which are hypothesised to underlie core repetitive, stereotyped behaviours of autism. Neuroimaging research has identified structural brain abnormalities in ASD, which coincide with brain regions involved in EF. Therefore, we reviewed the l...

  7. Functional and clinical insights from neuroimaging studies in childhood-onset schizophrenia.

    Science.gov (United States)

    Ordóñez, Anna E; Sastry, Nevin V; Gogtay, Nitin

    2015-08-01

    Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.

  8. Research updates in neuroimaging studies of children who stutter.

    Science.gov (United States)

    Chang, Soo-Eun

    2014-05-01

    In the past two decades, neuroimaging investigations of stuttering have led to important discoveries of structural and functional brain differences in people who stutter, providing significant clues to the neurological basis of stuttering. One major limitation, however, has been that most studies so far have only examined adults who stutter, whose brain and behavior likely would have adopted compensatory reactions to their stuttering; these confounding factors have made interpretations of the findings difficult. Developmental stuttering is a neurodevelopmental condition, and like many other neurodevelopmental disorders, stuttering is associated with an early childhood onset of symptoms and greater incidence in males relative to females. More recent studies have begun to examine children who stutter using various neuroimaging techniques that allow examination of functional neuroanatomy and interaction of major brain areas that differentiate children who stutter compared with age-matched controls. In this article, I review these more recent neuroimaging investigations of children who stutter, in the context of what we know about typical brain development, neuroplasticity, and sex differences relevant to speech and language development. Although the picture is still far from complete, these studies have potential to provide information that can be used as early objective markers, or prognostic indicators, for persistent stuttering in the future. Furthermore, these studies are the first steps in finding potential neural targets for novel therapies that may involve modulating neuroplastic growth conducive to developing and maintaining fluent speech, which can be applied to treatment of young children who stutter.

  9. What can functional neuroimaging tell the experimental psychologist?

    Science.gov (United States)

    Henson, Richard

    2005-02-01

    I argue here that functional neuroimaging data--which I restrict to the haemodynamic techniques of fMRI and PET--can inform psychological theorizing, provided one assumes a "systematic" function-structure mapping in the brain. In this case, imaging data simply comprise another dependent variable, along with behavioural data, that can be used to test competing theories. In particular, I distinguish two types of inference: function-to-structure deduction and structure-to-function induction. With the former inference, a qualitatively different pattern of activity over the brain under two experimental conditions implies at least one different function associated with changes in the independent variable. With the second type of inference, activity of the same brain region(s) under two conditions implies a common function, possibly not predicted a priori. I illustrate these inferences with imaging studies of recognition memory, short-term memory, and repetition priming. I then consider in greater detail what is meant by a "systematic" function-structure mapping and argue that, particularly for structure-to-function induction, this entails a one-to-one mapping between functional and structural units, although the structural unit may be a network of interacting regions and care must be taken over the appropriate level of functional/structural abstraction. Nonetheless, the assumption of a systematic function-structure mapping is a "working hypothesis" that, in common with other scientific fields, cannot be proved on independent grounds and is probably best evaluated by the success of the enterprise as a whole. I also consider statistical issues such as the definition of a qualitative difference and methodological issues such as the relationship between imaging and behavioural data. I finish by reviewing various objections to neuroimaging, including neophrenology, functionalism, and equipotentiality, and by observing some criticisms of current practice in the imaging

  10. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  11. Assessing the Neuroendocrine Stress Response in the Functional Neuroimaging Context

    Science.gov (United States)

    King, Anthony P.; Liberzon, Israel

    2009-01-01

    Neural regulation of stress responses, and the feedback of stress hormones to the brain, reflect complex brain-body interactions that may underlie the effects of psychological stress on health. Elucidating the brain circuitry involved in the cortical control of limbic-hypothalamic-pituitary-adrenal axis, and the cortical “targets” of cortisol that in turn modulates brain function, requires careful assessment of glucocorticoid hormones, in the context of the neuroimaging paradigms. Here we discuss approaches for assessment of endocrine function in the context of neuroimaging, including methods of blood and saliva specimen collection, and methods for drug/hormone administration. We also briefly discuss important temporal considerations, including appropriate timing of sample collections for hormones with different time-courses of activation (e.g. ACTH vs. cortisol), the pharmacokinetics of both endogenous hormones and administered agents, and circadian considerations. These are crucial to experimental designs of rhythmic hormonal systems and multiple feedback loops. We briefly address psychological/behavioral ‘activation’ paradigms used for inducing endogenous LHPA axis responses within or in proximity to scanner, as well as strategies for administration of exogenous hormones or secretagogues. Finally, we discuss some of the analyses issues in terms of hormone responses (e.g. response and area under curve, diurnal variability) and strategies for linking measured levels of peripheral humoral factor to brain activity (e.g. hormone responses as between subject regressors of BOLD activations, hormone levels as within subject regressors in analyses of covariance of brain activity over time, etc.). PMID:19481160

  12. Ethical issues in neuroimaging health research: an IPA study with research participants.

    Science.gov (United States)

    Shaw, Rachel L; Senior, Carl; Peel, Elizabeth; Cooke, Richard; Donnelly, Louise S

    2008-11-01

    Neuroimaging is increasingly used to understand conditions like stroke and epilepsy. However, there is growing recognition that neuroimaging can raise ethical issues. We used interpretative phenomenological analysis to analyse interview data pre-and post-scan to explore these ethical issues. Findings show participants can become anxious prior to scanning and the protocol for managing incidental findings is unclear. Participants lacked a frame of reference to contextualize their expectations and often drew on medical narratives. Recommendations to reduce anxiety include dialogue between researcher and participant to clarify understanding during consent and the use of a ;virtual tour' of the neuroimaging experience.

  13. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    DEFF Research Database (Denmark)

    Comasco, Erika; Frøkjær, Vibe; Sundström-Poromaa, Inger

    2014-01-01

    The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuat......The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone...... fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri......-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal variations on the brain....

  14. NeuroDebian Virtual Machine Deployment Facilitates Trainee-Driven Bedside Neuroimaging Research.

    Science.gov (United States)

    Cohen, Alexander; Kenney-Jung, Daniel; Botha, Hugo; Tillema, Jan-Mendelt

    2016-09-21

    Freely available software, derived from the past 2 decades of neuroimaging research, is significantly more flexible for research purposes than presently available clinical tools. Here, we describe and demonstrate the utility of rapidly deployable analysis software to facilitate trainee-driven translational neuroimaging research. A recipe and video tutorial were created to guide the creation of a NeuroDebian-based virtual computer that conforms to current neuroimaging research standards and can exist within a HIPAA-compliant system. This allows for retrieval of clinical imaging data, conversion to standard file formats, and rapid visualization and quantification of individual patients' cortical and subcortical anatomy. As an example, we apply this pipeline to a pediatric patient's data to illustrate the advantages of research-derived neuroimaging tools in asking quantitative questions "at the bedside." Our goal is to provide a path of entry for trainees to become familiar with common neuroimaging tools and foster an increased interest in translational research.

  15. Functional neuroimaging of semantic and episodic musical memory.

    Science.gov (United States)

    Platel, Hervé

    2005-12-01

    The distinction between episodic and semantic memory has become very popular since it was first proposed by Tulving in 1972. So far, very few neuropsychological, psychophysical, and imaging studies have related to the mnemonic aspects of music, notably on the long-term memory features, and practically nothing is known about the functional anatomy of long-term memory for music. Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. For instance, the HERA model (hemispheric encoding/retrieval asymmetry) ascribes to the left prefrontal cortex a preferential role in the encoding process of episodic material and the recall of semantic information, while the right prefrontal cortex would preferentially operate in the recall of episodic information. However, these results were essentially obtained with verbal and visuo-spatial material. We have done a study to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. Two distinct patterns of activations were found: bilateral activation of the middle and superior frontal areas and precuneus for episodic memory, and activation of the medial and orbital frontal cortex bilaterally, left angular gyrus, and the anterior part of the left middle and superior temporal gyri for semantic memory. We discuss these findings in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.

  16. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

    Directory of Open Access Journals (Sweden)

    Simonetti, Patricia

    2015-03-01

    Full Text Available Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system. Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus. Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area. Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

  17. Data mining a functional neuroimaging database for functional segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  18. Functional neuroimaging of conversion disorder: the role of ancillary activation.

    Science.gov (United States)

    Burke, Matthew J; Ghaffar, Omar; Staines, W Richard; Downar, Jonathan; Feinstein, Anthony

    2014-01-01

    Previous functional neuroimaging studies investigating the neuroanatomy of conversion disorder have yielded inconsistent results that may be attributed to small sample sizes and disparate methodologies. The objective of this study was to better define the functional neuroanatomical correlates of conversion disorder. Ten subjects meeting clinical criteria for unilateral sensory conversion disorder underwent fMRI during which a vibrotactile stimulus was applied to anesthetic and sensate areas. A block design was used with 4 s of stimulation followed by 26 s of rest, the pattern repeated 10 times. Event-related group averages of the BOLD response were compared between conditions. All subjects were right-handed females, with a mean age of 41. Group analyses revealed 10 areas that had significantly greater activation (p conversion symptoms are associated with a pattern of abnormal cerebral activation comprising neural networks implicated in emotional processing and sensory integration. Further study of the roles and potential interplay of these networks may provide a basis for an underlying psychobiological mechanism of conversion disorder.

  19. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    Erika eComasco

    2014-12-01

    Full Text Available The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. This review summarizes the findings of thirty-four studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women’s brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal

  20. Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging.

    Science.gov (United States)

    Gasquoine, Philip Gerard

    2013-03-01

    Early localizationists linked anterior cingulate cortex (ACC: Brodmann's area 24 and adjacent regions) with emotional behavior, paving the way for bilateral cingulotomy psychosurgery in severe, treatment resistant, cases of obsessive-compulsive disorder, chronic pain, depression, and substance abuse. Neuropsychological follow-up of such cases demonstrated executive function impairment. Abnormal neuroimaged activity in ACC has been found in many psychiatric conditions, including obsessive-compulsive disorder, chronic pain, substance abuse, and schizophrenia. With healthy participants, increased neuroimaged activity in ACC has been linked with challenging executive function tasks, homeostatically incongruous physical states, and the encoding of the pleasant/averseness of stimuli. There is disagreement on the cortical substrate subsumed by the term ACC, the existence of functionally distinct ACC subregions (e.g., dorsal: cognitive vs. ventral: emotion), and the interpretation of functional neuroimaging studies. Synthesis of neuropsychological and functional neuroimaging studies suggests ACC contributes to behavior by modifying responses especially in reaction to challenging cognitive and physical states that require additional effortful cognitive control. This is accomplished by monitoring the emotional salience of stimuli, exerting control over the autonomic nervous system, and modulating cognitive activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview.

    Science.gov (United States)

    Biskup, C S; Gaber, T; Helmbold, K; Bubenzer-Busch, S; Zepf, F D

    2015-04-01

    Imbalances of neurotransmitter systems, particularly serotonin (5-HT) and dopamine (DA), are known to play an essential role in many neuropsychiatric disorders. The transient manipulation of such systems through the alteration of their amino acid precursors is a well-known research tool. Among these methods are alterations of tryptophan, the essential amino acid (AA) precursor of 5-HT, as well as manipulations of tyrosine and phenylalanine, the AA precursors of DA, which can be metabolized into norepinephrine and subsequently into epinephrine. These systems can be loaded by applying a large dose of these AAs or depleted by applying an amino acid mixture lacking the respective AAs serving as precursors. Functional neuroimaging has given insights into differential brain activation patterns and functions depending on the tasks performed, pharmacological treatments or specific disorders. Such research has shed light on the function of many brain areas as well as their interactions. The combination of AA challenge approaches with neuroimaging techniques has been subject of numerous studies. Overall, the studies conducted in this particular field of research have shown that AA challenge techniques are valid and effective research tools that allow the investigation of serotonergic and dopaminergic systems without causing serious side effects or long-term damage to the subjects. In this review, we will present an overview of the results obtained so far and discuss the implications of these findings as well as open questions that remain to be answered.

  2. Identification of neural targets for the treatment of psychiatric disorders: the role of functional neuroimaging.

    Science.gov (United States)

    Vago, David R; Epstein, Jane; Catenaccio, Eva; Stern, Emily

    2011-04-01

    Neurosurgical treatment of psychiatric disorders has been influenced by evolving neurobiological models of symptom generation. The advent of functional neuroimaging and advances in the neurosciences have revolutionized understanding of the functional neuroanatomy of psychiatric disorders. This article reviews neuroimaging studies of depression from the last 3 decades and describes an emerging neurocircuitry model of mood disorders, focusing on critical circuits of cognition and emotion, particularly those networks involved in the regulation of evaluative, expressive and experiential aspects of emotion. The relevance of this model for neurotherapeutics is discussed, as well as the role of functional neuroimaging of psychiatric disorders.

  3. A functional neuroimaging study of motivation and executive function.

    Science.gov (United States)

    Taylor, Stephan F; Welsh, Robert C; Wager, Tor D; Phan, K Luan; Fitzgerald, Kate D; Gehring, William J

    2004-03-01

    Executive functions, such as working memory, must intersect with functions that determine value for the organism. Functional imaging work in humans and single-unit recordings in non-human primates provide evidence that PFC might integrate motivational context with working memory. With functional magnetic resonance imaging (fMRI), we addressed the question of motivation and working memory, using a trial-related design in an object-working memory task. The design permitted the analysis of BOLD signal at separate stages, corresponding to encoding, maintenance, and retrieval. Subjects were motivated by a financial incentive during the task, such that they could gain a high or a low reward. The two different levels of reward also entailed greater or lesser risk of losing money for incorrect responses. In the high, relative to the low, reward condition, subjects shifted response bias, and showed a trend to greater sensitivity. We found main effects in fMRI BOLD signal for reward, which overlapped with BOLD effects for maintenance of information, in the right superior frontal sulcus and bilateral intraparietal sulcus. We also found an interaction between reward and retrieval from working memory in the right dorsolateral prefrontal cortex. Main effects of load and reward occurred in adjacent regions of the ventrolateral PFC during retrieval. The data demonstrate that when subjects perform a simple working memory task, financial incentives motivate performance and interact with some of the same neural networks that process various stages of working memory. Areas of overlap and interaction may integrate information about value, or they may represent a general effect of motivation increasing neural effort.

  4. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016.

    Science.gov (United States)

    Etchell, Andrew C; Civier, Oren; Ballard, Kirrie J; Sowman, Paul F

    2017-03-12

    Stuttering is a disorder that affects millions of people all over the world. Over the pasttwo decades, there has been a great deal of interest in investigating the neural basis of the disorder. This systematic literature review is intended to provide a comprehensive summary of theneuroimaging literature on developmental stuttering. It is a resource for researchers to quicklyand easily identify relevant studies for their areas of interest and enable them to determine themost appropriate methodology to utilize in their work. The review also highlights gaps in the literature in terms of methodology and areas of research. We conducted a systematic literature review on neuroimaging studies on developmental stuttering according to the PRISMA guidelines. We searched for articles in the pubmed database containing "stuttering" OR "stammering" AND either "MRI", "PET", "EEG", "MEG", "TMS"or "brain" that were published between 1995/​01/​01 and 2016/​01/​01. The search returned a total of 359 items with an additional 26 identified from a manualsearch. Of these, there were a total of 111 full text articles that met criteria for inclusion in thesystematic literature review. We also discuss neuroimaging studies on developmental stutteringpublished throughout 2016. The discussion of the results is organized first by methodology andsecond by population (i.e., adults or children) and includes tables that contain all items returnedby the search. There are widespread abnormalities in the structural architecture and functional organization of the brains of adults and children who stutter. These are evident not only in speechtasks, but also non-speech tasks. Future research should make greater use of functional neuroimaging and noninvasive brain stimulation, and employ structural methodologies that havegreater sensitivity. Newly planned studies should also investigate sex differences, focus on augmenting treatment, examine moments of dysfluency and longitudinally or cross

  5. Responsible Reporting: Neuroimaging News in the Age of Responsible Research and Innovation.

    Science.gov (United States)

    de Jong, Irja Marije; Kupper, Frank; Arentshorst, Marlous; Broerse, Jacqueline

    2016-08-01

    Besides offering opportunities in both clinical and non-clinical domains, the application of novel neuroimaging technologies raises pressing dilemmas. 'Responsible Research and Innovation' (RRI) aims to stimulate research and innovation activities that take ethical and social considerations into account from the outset. We previously identified that Dutch neuroscientists interpret "responsible innovation" as educating the public on neuroimaging technologies via the popular press. Their aim is to mitigate (neuro)hype, an aim shared with the wider emerging RRI community. Here, we present results of a media-analysis undertaken to establish whether the body of articles in the Dutch popular press presents balanced conversations on neuroimaging research to the public. We found that reporting was mostly positive and framed in terms of (healthcare) progress. There was rarely a balance between technology opportunities and limitations, and even fewer articles addressed societal or ethical aspects of neuroimaging research. Furthermore, neuroimaging metaphors seem to favour oversimplification. Current reporting is therefore more likely to enable hype than to mitigate it. How can neuroscientists, given their self-ascribed social responsibility, address this conundrum? We make a case for a collective and shared responsibility among neuroscientists, journalists and other stakeholders, including funders, committed to responsible reporting on neuroimaging research.

  6. A Functional Neuroimaging Analysis of the Trail Making Test-B: Implications for Clinical Application

    Directory of Open Access Journals (Sweden)

    Mark D. Allen

    2011-01-01

    Full Text Available Recent progress has been made using fMRI as a clinical assessment tool, often employing analogues of traditional “paper and pencil” tests. The Trail Making Test (TMT, popular for years as a neuropsychological exam, has been largely ignored in the realm of neuroimaging, most likely because its physical format and administration does not lend itself to straightforward adaptation as an fMRI paradigm. Likewise, there is relatively more ambiguity about the neural systems associated with this test than many other tests of comparable clinical use. In this study, we describe an fMRI version of Trail Making Test-B (TMTB that maintains the core functionality of the TMT while optimizing its use for both research and clinical settings. Subjects (N = 32 were administered the Functional Trail Making Test-B (f-TMTB. Brain region activations elicited by the f-TMTB were consistent with expectations given by prior TMT neurophysiological studies, including significant activations in the ventral and dorsal visual pathways and the medial pre-supplementary motor area. The f-TMTB was further evaluated for concurrent validity with the traditional TMTB using an additional sample of control subjects (N = 100. Together, these results support the f-TMTB as a viable neuroimaging adaptation of the TMT that is optimized to evoke maximally robust fMRI activation with minimal time and equipment requirements.

  7. Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network

    Directory of Open Access Journals (Sweden)

    Jeffry R. Alger

    2016-01-01

    Full Text Available The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network is an ongoing multi-center collaborative research group established to conduct integrated studies in participants with urologic chronic pelvic pain syndrome (UCPPS. The goal of these investigations is to provide new insights into the etiology, natural history, clinical, demographic and behavioral characteristics, search for new and evaluate candidate biomarkers, systematically test for contributions of infectious agents to symptoms, and conduct animal studies to understand underlying mechanisms for UCPPS. Study participants were enrolled in a one-year observational study and evaluated through a multisite, collaborative neuroimaging study to evaluate the association between UCPPS and brain structure and function. 3D T1-weighted structural images, resting-state fMRI, and high angular resolution diffusion MRI were acquired in five participating MAPP Network sites using 8 separate MRI hardware and software configurations. We describe the neuroimaging methods and procedures used to scan participants, the challenges encountered in obtaining data from multiple sites with different equipment/software, and our efforts to minimize site-to-site variation.

  8. Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network.

    Science.gov (United States)

    Alger, Jeffry R; Ellingson, Benjamin M; Ashe-McNalley, Cody; Woodworth, Davis C; Labus, Jennifer S; Farmer, Melissa; Huang, Lejian; Apkarian, A Vania; Johnson, Kevin A; Mackey, Sean C; Ness, Timothy J; Deutsch, Georg; Harris, Richard E; Clauw, Daniel J; Glover, Gary H; Parrish, Todd B; Hollander, Jan den; Kusek, John W; Mullins, Chris; Mayer, Emeran A

    2016-01-01

    The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network is an ongoing multi-center collaborative research group established to conduct integrated studies in participants with urologic chronic pelvic pain syndrome (UCPPS). The goal of these investigations is to provide new insights into the etiology, natural history, clinical, demographic and behavioral characteristics, search for new and evaluate candidate biomarkers, systematically test for contributions of infectious agents to symptoms, and conduct animal studies to understand underlying mechanisms for UCPPS. Study participants were enrolled in a one-year observational study and evaluated through a multisite, collaborative neuroimaging study to evaluate the association between UCPPS and brain structure and function. 3D T1-weighted structural images, resting-state fMRI, and high angular resolution diffusion MRI were acquired in five participating MAPP Network sites using 8 separate MRI hardware and software configurations. We describe the neuroimaging methods and procedures used to scan participants, the challenges encountered in obtaining data from multiple sites with different equipment/software, and our efforts to minimize site-to-site variation.

  9. Neuroimaging and psychophysiological measurement in organizational research: an agenda for research in organizational cognitive neuroscience.

    Science.gov (United States)

    Lee, Nick; Chamberlain, Laura

    2007-11-01

    Although organizational research has made tremendous strides in the last century, recent advances in neuroscience and the imaging of functional brain activity remain underused. In fact, even the use of well-established psychophysiological measurement tools is comparatively rare. Following the lead of social cognitive neuroscience, in this review, we conceptualize organizational cognitive neuroscience as a field dedicated to exploring the processes within the brain that underlie or influence human decisions, behaviors, and interactions either (a) within organizations or (b) in response to organizational manifestations or institutions. We discuss organizational cognitive neuroscience, bringing together work that may previously have been characterized rather atomistically, and provide a brief overview of individual methods that may be of use. Subsequently, we discuss the possible convergence and integration of the different neuroimaging and psychophysiological measurement modalities. A brief review of prior work in the field shows a significant need for a more coherent and theory-driven approach to organizational cognitive neuroscience. In response, we discuss a recent example of such work, along with three hypothetical case studies that exemplify the link between organizational and psychological theory and neuroscientific methods.

  10. Prediction of children's reading skills using behavioral, functional, and structural neuroimaging measures.

    Science.gov (United States)

    Hoeft, Fumiko; Ueno, Takefumi; Reiss, Allan L; Meyler, Ann; Whitfield-Gabrieli, Susan; Glover, Gary H; Keller, Timothy A; Kobayashi, Nobuhisa; Mazaika, Paul; Jo, Booil; Just, Marcel Adam; Gabrieli, John D E

    2007-06-01

    The ability to decode letters into language sounds is essential for reading success, and accurate identification of children at high risk for decoding impairment is critical for reducing the frequency and severity of reading impairment. We examined the utility of behavioral (standardized tests), and functional and structural neuroimaging measures taken with children at the beginning of a school year for predicting their decoding ability at the end of that school year. Specific patterns of brain activation during phonological processing and morphology, as revealed by voxel-based morphometry (VBM) of gray and white matter densities, predicted later decoding ability. Further, a model combining behavioral and neuroimaging measures predicted decoding outcome significantly better than either behavioral or neuroimaging models alone. Results were validated using cross-validation methods. These findings suggest that neuroimaging methods may be useful in enhancing the early identification of children at risk for poor decoding and reading skills. Copyright (c) 2007 APA, all rights reserved.

  11. Advanced magnetic resonance neuroimaging of language function recovery after aphasic stroke: a technical review.

    Science.gov (United States)

    Smits, Marion; Visch-Brink, Evy G; van de Sandt-Koenderman, Mieke E; van der Lugt, Aad

    2012-01-01

    Two advanced magnetic resonance neuroimaging techniques, functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), have recently made their way into clinically oriented research and hold great promise to study the brain's adaptive changes of function and structure after aphasic stroke, respectively. Such functional and structural neuroplasticity is thought to underlie the recovery of language function, occurring spontaneously and/or in the context of therapeutic intervention. With fMRI, brain activity can be visualized. Spontaneous brain activity, present in multiple brain networks, is measured with resting-state fMRI and language-related brain activity by having the subject perform a language task during scanning (task-based fMRI). With DTI the major white matter tracts, such as the dorsal and ventral language pathways and the commissural fibers, can be visualized and quantified. Both techniques are entirely noninvasive and thus offer the unique opportunity to perform multiple assessments within the same subject. To gain more insight in functional and structural neuroplasticity after aphasic stroke, advanced magnetic resonance neuroimaging studies in specific patient populations, at several stages after stroke and in the course of language recovery, are needed. Such studies will help to clarify the influence of the many factors that play a role in the recovery of language function and are thus vital to further the development of aphasia therapy. Application of these techniques in aphasic stroke patients, however, is not without challenge. The purpose of this article is to discuss the methodologic challenges of fMRI and DTI in the assessment of language recovery after aphasic stroke. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Reading the Freudian theory of sexual drives from a functional neuroimaging perspective.

    Science.gov (United States)

    Stoléru, Serge

    2014-01-01

    One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal (SA) have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentially consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective, sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of SA. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character. Finally, based on functional neuroimaging results, some possible improvements to the psychoanalytic theory of sexual drives are suggested.

  13. Recommendations for sex/gender neuroimaging research: key principles and implications for research design, analysis, and interpretation

    Science.gov (United States)

    Rippon, Gina; Jordan-Young, Rebecca; Kaiser, Anelis; Fine, Cordelia

    2014-01-01

    Neuroimaging (NI) technologies are having increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which humans develop and function. The study of sex/gender is often a focus for NI research, and may be motivated by a desire to better understand general developmental principles, mental health problems that show female-male disparities, and gendered differences in society. In order to ensure the maximum possible contribution of NI research to these goals, we draw attention to four key principles—overlap, mosaicism, contingency and entanglement—that have emerged from sex/gender research and that should inform NI research design, analysis and interpretation. We discuss the implications of these principles in the form of constructive guidelines and suggestions for researchers, editors, reviewers and science communicators. PMID:25221493

  14. Structural and functional neuroimaging findings associated with the use of clozapine in schizophrenia: a systematic review

    Directory of Open Access Journals (Sweden)

    Giovana J. Garcia

    2015-03-01

    Full Text Available Objective: Schizophrenia is one of the most severe psychiatric disorders, and its current treatment relies on antipsychotic medications with only partial effectiveness. Clozapine is an atypical antipsychotic with a specific profile of action indicated for treatment-resistant schizophrenia. Neuroimaging studies assessing the effects of clozapine could help shed light on the neural underpinnings of the effects of this drug in the brain. The objective of this study was to review the available literature on the structural and functional neuroimaging findings associated with use of clozapine. Method: We conducted a systematic review of the indexed literature using the PubMed, BIREME, and ISI Web of Knowledge search engines and the following keywords: clozapine, neuroimaging, computed tomography, MRI, functional magnetic resonance, PET, SPECT, and DTI. Results: A total of 23 articles were included in the review. In structural studies, the use of clozapine was associated with volume reductions in the basal ganglia, especially the caudate nucleus, where functional neuroimaging studies also found decreased perfusion. In the frontal lobe, clozapine treatment was associated with increased gray matter volume and reduced perfusion. Conclusion: The results of the studies reviewed suggest that the use of clozapine is associated with distinctive structural and functional neuroimaging findings that are not shared with other antipsychotics.

  15. Structural and functional neuroimaging findings associated with the use of clozapine in schizophrenia: a systematic review.

    Science.gov (United States)

    Garcia, Giovana J; Chagas, Marcos H; Silva, Carlos H; Machado-de-Sousa, João P; Crippa, José A; Hallak, Jaime E

    2015-01-01

    Schizophrenia is one of the most severe psychiatric disorders, and its current treatment relies on antipsychotic medications with only partial effectiveness. Clozapine is an atypical antipsychotic with a specific profile of action indicated for treatment-resistant schizophrenia. Neuroimaging studies assessing the effects of clozapine could help shed light on the neural underpinnings of the effects of this drug in the brain. The objective of this study was to review the available literature on the structural and functional neuroimaging findings associated with use of clozapine. We conducted a systematic review of the indexed literature using the PubMed, BIREME, and ISI Web of Knowledge search engines and the following keywords: clozapine, neuroimaging, computed tomography, MRI, functional magnetic resonance, PET, SPECT, and DTI. A total of 23 articles were included in the review. In structural studies, the use of clozapine was associated with volume reductions in the basal ganglia, especially the caudate nucleus, where functional neuroimaging studies also found decreased perfusion. In the frontal lobe, clozapine treatment was associated with increased gray matter volume and reduced perfusion. The results of the studies reviewed suggest that the use of clozapine is associated with distinctive structural and functional neuroimaging findings that are not shared with other antipsychotics.

  16. Linking variability in brain chemistry and circuit function through multimodal human neuroimaging

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, A R

    2012-01-01

    to assay in vivo regional brain chemistry and function, respectively. Typically, these neuroimaging modalities are implemented independently despite the capacity for integrated data sets to offer unique insight into molecular mechanisms associated with brain function. Through examples from the serotonin...... and dopamine system and its effects on threat- and reward-related brain function, we review evidence for how such a multimodal neuroimaging strategy can be successfully implemented. Furthermore, we discuss how multimodal PET-fMRI can be integrated with techniques such as imaging genetics, pharmacological...

  17. Functional neuroimaging of visual creativity: a systematic review and meta‐analysis

    OpenAIRE

    2016-01-01

    Abstract Introduction The generation of creative visual imagery contributes to technological and scientific innovation and production of visual art. The underlying cognitive and neural processes are, however, poorly understood. Methods This review synthesizes functional neuroimaging studies of visual creativity. Seven functional magnetic resonance imaging (fMRI) and 19 electroencephalography (EEG) studies were included, comprising 27 experiments and around 800 participants. Results Activation...

  18. A neuroinformatics database system for disease-oriented neuroimaging research.

    Science.gov (United States)

    Wong, Stephen T C; Hoo, Kent Soo; Cao, Xinhua; Tjandra, Donny; Fu, J C; Dillon, William P

    2004-03-01

    Clinical databases are continually growing and accruing more patient information. One of the challenges for managing this wealth of data is efficient retrieval and analysis of a broad range of image and non-image patient data from diverse data sources. This article describes the design and implementation of a new class of research data warehouse, neuroinformatics database system (NIDS), which will alleviate these problems for clinicians and researchers studying and treating patients with intractable temporal lobe epilepsy. The NIDS is a secured, multi-tier system that enables the user to gather, proofread, analyze, and store data from multiple underlying sources. In addition to data management, the NIDS provides several key functions including image analysis and processing, free text search of patient reports, construction of general queries, and on-line statistical analysis. The establishment of this integrated research database will serve as a foundation for future hypothesis-driven experiments, which could uncover previously unsuspected correlations and perhaps help to identify new and accurate predictors for image diagnosis.

  19. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging.

    Science.gov (United States)

    Liu, Christina H

    2015-01-01

    MRI and magnetic resonance spectroscopy (MRS) along with computed tomography and PET are the most common imaging modalities used in the clinics to detect structural abnormalities and pathological conditions in the brain. MRI generates superb image resolution/contrast without radiation exposure that is associated with computed tomography and PET; MRS and spectroscopic imaging technologies allow us to measure changes in brain biochemistry. Increasingly, neurobiologists and MRI scientists are collaborating to solve neuroscience problems across sub-cellular through anatomical levels. To achieve successful cross-disciplinary collaborations, neurobiologists must have sufficient knowledge of magnetic resonance principles and applications in order to effectively communicate with their MRI colleagues. This review provides an overview of magnetic resonance techniques and how they can be used to gain insight into the active brain at the anatomical, functional and molecular levels with the goal of encouraging neurobiologists to include MRI/MRS as a research tool in their endeavors.

  20. The hallucinating brain : A review of structural and functional neuroimaging studies of hallucinations

    NARCIS (Netherlands)

    Allen, Paul; Laroi, Frank; McGuire, Philip K.; Aleman, Andre

    2008-01-01

    Hallucinations remains one of the most intriguing phenomena in psychopathology. In the past two decades the advent of neuroimaging techniques have allowed researchers to investigate what is happening in the brain of those who experience hallucinations. In this article we review both structural and f

  1. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...

  2. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Arup; Hansen, Lars Kai; Balslev, Daniela

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...... that the statistically motivated associations are well aligned with general neuroscientific knowledge...

  3. Reading the Freudian theory of sexual drives from a functional neuroimaging perspective

    Directory of Open Access Journals (Sweden)

    Serge eStoléru

    2014-03-01

    Full Text Available One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentally consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of sexual arousal. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character.

  4. The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves

    DEFF Research Database (Denmark)

    Kjems, Ulrik; Hansen, Lars Kai; Anderson, Jon

    2002-01-01

    Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects...

  5. Systematic review of structural and functional neuroimaging findings in children and adults with CKD.

    Science.gov (United States)

    Moodalbail, Divya G; Reiser, Kathryn A; Detre, John A; Schultz, Robert T; Herrington, John D; Davatzikos, Christos; Doshi, Jimit J; Erus, Guray; Liu, Hua-Shan; Radcliffe, Jerilynn; Furth, Susan L; Hooper, Stephen R

    2013-08-01

    CKD has been linked with cognitive deficits and affective disorders in multiple studies. Analysis of structural and functional neuroimaging in adults and children with kidney disease may provide additional important insights into the pathobiology of this relationship. This paper comprehensively reviews neuroimaging studies in both children and adults. Major databases (PsychLit, MEDLINE, WorldCat, ArticleFirst, PubMed, Ovid MEDLINE) were searched using consistent search terms, and studies published between 1975 and 2012 were included if their samples focused on CKD as the primary disease process. Exclusion criteria included case reports, chapters, and review articles. This systematic process yielded 43 studies for inclusion (30 in adults, 13 in children). Findings from this review identified several clear trends: (1) presence of cerebral atrophy and cerebral density changes in patients with CKD; (2) cerebral vascular disease, including deep white matter hyperintensities, white matter lesions, cerebral microbleeds, silent cerebral infarction, and cortical infarction, in patients with CKD; and (3) similarities in regional cerebral blood flow between patients with CKD and those with affective disorders. These findings document the importance of neuroimaging procedures in understanding the effect of CKD on brain structure, function, and associated behaviors. Results provide a developmental linkage between childhood and adulthood, with respect to the effect of CKD on brain functioning across the lifespan, with strong implications for a cerebrovascular mechanism contributing to this developmental linkage. Use of neuroimaging methods to corroborate manifest neuropsychological deficits or perhaps to indicate preventive actions may prove useful to individuals with CKD.

  6. Brain dysfunction behind functional symptoms: neuroimaging and somatoform, conversive, and dissociative disorders.

    Science.gov (United States)

    García-Campayo, Javier; Fayed, Nicolas; Serrano-Blanco, Antoni; Roca, Miquel

    2009-03-01

    Neuroimaging research in psychiatry has been increasing exponentially in recent years, yet many psychiatrists are relatively unfamiliar with this field. This article summarizes the findings of the most relevant research articles on the neuroimaging of somatoform, conversive, and dissociative disorders published from January 2007 through June 2008. Neuroimaging findings summarized here include alterations of stress regulation and coping in somatoform pain disorders, the importance of catastrophizing in somatization disorder, and the relevance of a history of physical/sexual abuse in irritable bowel syndrome. Regarding fibromyalgia, three of the most significant advances have been the impossibility of differentiating primary and concomitant fibromyalgia in the presence of quiescent underlying disease, the role of hippocampal dysfunction, and the possibility that fibromyalgia may be characterized as an aging process. In dissociative disorders, the high levels of elaborative memory encoding and the reduced size of the parietal lobe are highlighted. The most promising clinical consequence of these studies, in addition to improving knowledge about the etiology of these illnesses, is the possibility of using neuroimaging findings to identify subgroups of patients, which could allow treatments to be tailored.

  7. Experiences with Matlab and VRML in Functional Neuroimaging Visualizations

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2000-01-01

    We describe some experiences with Matlab and VRML. We are developing a toolbox for neuroinformatics and describe some of the functionalities we have implemented or will implement and how Matlab and VRML support the implementation....

  8. PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions.

    Science.gov (United States)

    Takahashi, Hidehiko

    2013-12-01

    The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.

  9. [Structural and functional neuroimaging of the pathophysiology of apraxia].

    Science.gov (United States)

    Weiss, P H; Fink, G R

    2010-12-01

    A better understanding of the neural bases of apraxia is an important prerequisite to develop new therapeutic strategies for the disabling apraxic deficits after left-hemisphere stroke, like disturbed imitation of gestures, deficient pantomime, and object use deficits. Recently, functional and structural imaging methods allowed deeper insights into the pathophysiology of apraxia: While apraxic object use deficits result from the dysfunction of an extended fronto-parietal network within the left hemisphere, pantomime deficits are caused by impaired functioning of the left inferior frontal cortex. Further apraxia-related, motor cognitive processes (i.e., gesture imitation, integration of temporal and spatial movement information, and intentional movement planning) depend on the integrity of the left parietal cortex. Newly developed functional and structural imaging methods, like dynamic causal modelling (DCM) and diffusion tensor imaging (DTI), promise to further elucidate the pathophysiology of apraxia at the network level.

  10. Structural and functional neuroimaging in patients with Parkinson's disease and visual hallucinations: A critical review.

    Science.gov (United States)

    Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Saini, Jitender; Pal, Pramod Kumar

    2015-07-01

    Patients with Parkinson's disease (PD) may develop various non-motor symptoms (NMS) during the course of the illness and psychosis is one of the common NMS of PD. Visual hallucinations (VH) are the most common manifestation of psychosis in PD. The exact pathogenesis of VH in patients with PD is not clearly understood. Presence of VH has been described to be associated with rapid cognitive decline and increased nursing home placements in PD patients. A large number of structural and functional neuroimaging studies have been conducted to understand the cerebral basis of VH in PD. Structural imaging studies (Voxel Based Morphometry) have reported grey matter atrophy in multiple regions of the brain such as primary visual cortex, visual association cortex, limbic regions, cholinergic structures such as pedunculopontine nucleus and substantia innominata, which conclude possible alterations of brain regions associated with functions such as visuospatial-perception, attention control and memory. Most functional neuroimaging studies (functional MRI, positron emission tomography and single photon emission computerized tomography) have reported altered activation, blood flow, or reduced metabolism in both dorsal and ventral visual pathways, which probably indicates an alteration in the normal bottom-top visual processing and the presence of an aberrant top-down visual processing. This review critically analyzes the published studies on the structural and functional neuroimaging in PD patients with VH.

  11. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...... neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need...

  12. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology.

    Science.gov (United States)

    Kringelbach, Morten L; Rolls, Edmund T

    2004-04-01

    The human orbitofrontal cortex is an important brain region for the processing of rewards and punishments, which is a prerequisite for the complex and flexible emotional and social behaviour which contributes to the evolutionary success of humans. Yet much remains to be discovered about the functions of this key brain region, and new evidence from functional neuroimaging and clinical neuropsychology is affording new insights into the different functions of the human orbitofrontal cortex. We review the neuroanatomical and neuropsychological literature on the human orbitofrontal cortex, and propose two distinct trends of neural activity based on a meta-analysis of neuroimaging studies. One is a mediolateral distinction, whereby medial orbitofrontal cortex activity is related to monitoring the reward value of many different reinforcers, whereas lateral orbitofrontal cortex activity is related to the evaluation of punishers which may lead to a change in ongoing behaviour. The second is a posterior-anterior distinction with more complex or abstract reinforcers (such as monetary gain and loss) represented more anteriorly in the orbitofrontal cortex than simpler reinforcers such as taste or pain. Finally, we propose new neuroimaging methods for obtaining further evidence on the localisation of function in the human orbitofrontal cortex.

  13. Functional neuro-imaging as a pre-surgical tool in epilepsy

    OpenAIRE

    Zulfi Haneef; David K. Chen

    2014-01-01

    Functional neuro-imaging techniques are helpful in the pre-surgical evaluation of epilepsy for localization of the epileptogenic zone as ancillary tools to electroencephalography (EEG) and magnetic resonance imaging (MRI) or when other localization techniques are normal, non-concordant or discordant. Positron emission tomography (PET) and ictal single photon emission computed tomography (ictal SPECT) imaging are traditional tests that have been reported to have good sensitivity and specificit...

  14. Functional neuroimaging of sex differences in autobiographical memory recall.

    Science.gov (United States)

    Young, Kymberly D; Bellgowan, Patrick S F; Bodurka, Jerzy; Drevets, Wayne C

    2013-12-01

    Autobiographical memory (AM) is episodic memory for personally experienced events. The brain areas underlying AM retrieval are known to include several prefrontal cortical and medial temporal lobe regions. Sex differences in AM recall have been reported in several behavioral studies, but the functional anatomical correlates underlying such differences remain unclear. This study used fMRI to compare the neural correlates of AM recall between healthy male and female participants (n = 20 per group). AM recall in response to positive, negative, and neutral cue words was compared to a semantic memory task involving the generation of examples from a category using emotionally valenced cues. Behaviorally, females recalled more negative and fewer positive AMs compared with males, while ratings of arousal, vividness, and memory age did not differ significantly between sexes. Males and females also did not differ significantly in their performance on control tasks. Neurophysiologically, females showed increased hemodynamic activity compared to males in the dorsolateral prefrontal cortex (DLPFC), dorsal anterior insula, and precuneus while recalling specific AMs (all valences combined); increased activity in the DLPFC, transverse temporal gyrus, and precuneus while recalling positive AMs; and increased activity in the anterior cingulate cortex, precuneus, amygdala, and temporopolar cortex when recalling negative AMs. When comparing positive to negative AMs directly, males and females differed in their BOLD responses in the hippocampus and DLPFC. We propose that the differential hemodynamic changes may reflect sex-specific cognitive strategies during recall of AMs irrespective of the phenomenological properties of those memories. Copyright © 2012 Wiley Periodicals, Inc.

  15. Parallel workflows for data-driven structural equation modeling in functional neuroimaging

    Directory of Open Access Journals (Sweden)

    Sarah Kenny

    2009-10-01

    Full Text Available We present a computational framework suitable for a data-driven approach to structural equation modeling (SEM and describe several workflows for modeling functional magnetic resonance imaging (fMRI data within this framework. The Computational Neuroscience Applications Research Infrastructure (CNARI employs a high-level scripting language called Swift, which is capable of spawning hundreds of thousands of simultaneous R processes (R Core Development Team, 2008, consisting of self-contained structural equation models, on a high performance computing system (HPC. These self-contained R processing jobs are data objects generated by OpenMx, a plug-in for R, which can generate a single model object containing the matrices and algebraic information necessary to estimate parameters of the model. With such an infrastructure in place a structural modeler may begin to investigate exhaustive searches of the model space. Specific applications of the infrastructure, statistics related to model fit, and limitations are discussed in relation to exhaustive SEM. In particular, we discuss how workflow management techniques can help to solve large computational problems in neuroimaging.

  16. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-08-04

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  17. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Directory of Open Access Journals (Sweden)

    Liana C L Portugal

    Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model

  18. Computational principles of syntax in the regions specialized for language: integrating theoretical linguistics and functional neuroimaging.

    Science.gov (United States)

    Ohta, Shinri; Fukui, Naoki; Sakai, Kuniyoshi L

    2013-01-01

    The nature of computational principles of syntax remains to be elucidated. One promising approach to this problem would be to construct formal and abstract linguistic models that parametrically predict the activation modulations in the regions specialized for linguistic processes. In this article, we review recent advances in theoretical linguistics and functional neuroimaging in the following respects. First, we introduce the two fundamental linguistic operations: Merge (which combines two words or phrases to form a larger structure) and Search (which searches and establishes a syntactic relation of two words or phrases). We also illustrate certain universal properties of human language, and present hypotheses regarding how sentence structures are processed in the brain. Hypothesis I is that the Degree of Merger (DoM), i.e., the maximum depth of merged subtrees within a given domain, is a key computational concept to properly measure the complexity of tree structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic expression is determined essentially by functional elements, which trigger Merge and Search. We then present our recent functional magnetic resonance imaging experiment, demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective activations in the left inferior frontal gyrus and supramarginal gyrus. Hypothesis III is that the DoM domain changes dynamically in accordance with iterative Merge applications, the Search distances, and/or task requirements. We confirm that the DoM accounts for activations in various sentence types. Hypothesis III successfully explains activation differences between object- and subject-relative clauses, as well as activations during explicit syntactic judgment tasks. A future research on the computational principles of syntax will further deepen our understanding of uniquely human mental faculties.

  19. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    Science.gov (United States)

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  20. Recommendations for sex/gender neuroimaging research: Key principles and implications for research design, analysis and interpretation

    Directory of Open Access Journals (Sweden)

    Gina eRippon

    2014-08-01

    Full Text Available For over a decade, neuroimaging (NI technologies have had an increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which s/he develops and functions. The study of the relationship between sex and gender could offer a valuable example of such research. We identify here four main principles that should inform NI research. First, the principle of overlap, arising from evidence of significant overlap of female/male distributions on measures of many gendered behaviours. Second, the principle of mosaicism, arising from evidence that for both behaviour and brain, each individual manifests a complex and idiosyncratic combination of feminine and masculine characteristics. Third, the principle of contingency, arising from evidence that female/male behavioural differences are contingent on time, place, social group and context. Fourth, the principle of entanglement, arising from an awareness that the neural phenotypes that NI techniques measure are a function of the interactive and reciprocal influence of biology and environment. These important principles have emerged and become well-established over the past few decades, but their implications are often not reflected in the design and interpretation of NI sex/gender research. We therefore offer a set of guidelines for researchers to ensure that NI sex/gender research is appropriately designed and interpreted. We hope this ‘toolkit’ will also be of use to editorial boards and journal reviewers, as well as those who view, communicate and interpret such research.

  1. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.

    Science.gov (United States)

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  2. The impacts of cognitive-behavioral therapy on the treatment of phobic disorders measured by functional neuroimaging techniques: a systematic review

    Directory of Open Access Journals (Sweden)

    Amanda Galvao-de Almeida

    2013-09-01

    Full Text Available Objective: Functional neuroimaging techniques represent fundamental tools in the context of translational research integrating neurobiology, psychopathology, neuropsychology, and therapeutics. In addition, cognitive-behavioral therapy (CBT has proven its efficacy in the treatment of anxiety disorders and may be useful in phobias. The literature has shown that feelings and behaviors are mediated by specific brain circuits, and changes in patterns of interaction should be associated with cerebral alterations. Based on these concepts, a systematic review was conducted aiming to evaluate the impact of CBT on phobic disorders measured by functional neuroimaging techniques. Methods: A systematic review of the literature was conducted including studies published between January 1980 and April 2012. Studies written in English, Spanish or Portuguese evaluating changes in the pattern of functional neuroimaging before and after CBT in patients with phobic disorders were included. Results: The initial search strategy retrieved 45 studies. Six of these studies met all inclusion criteria. Significant deactivations in the amygdala, insula, thalamus and hippocampus, as well as activation of the medial orbitofrontal cortex, were observed after CBT in phobic patients when compared with controls. Conclusion: In spite of their technical limitations, neuroimaging techniques provide neurobiological support for the efficacy of CBT in the treatment of phobic disorders. Further studies are needed to confirm this conclusion.

  3. Neuroimaging in Iran: A Review

    Directory of Open Access Journals (Sweden)

    G. Ali Hossein-Zadeh

    2010-11-01

    Full Text Available ABSTRACTNeuroimaging allows noninvasive evaluation of the anatomy, physiology, and function of the brain. It is widely used for diagnosis, treatment planning, and treatment evaluation of neurological disorders as well as understanding functions of the brain in health and disease. Neuroimaging modalities include X-ray computed tomography (CT, magnetic resonance imaging (MRI, single photon emission computed tomography (SPECT, positron emission tomography (PET, electroencephalography (EEG, and magnetoencephalography (MEG. This paper presents an overview of the neuroimaging research in Iran in recent years, partitioned into three categories: anatomical imaging; anatomical image analysis; and functional imaging and analysis. Published papers reflect considerable progress in development of neuroimaging infrastructure, hardware installation and software development. However, group work and research collaborations among engineers, scientists, and clinicians need significant enhancement to optimize utility of the resources and maximize productivity. This is a challenge that cannot be solved without specific plans, policies, and funding.

  4. Neuroimaging in Epilepsy.

    Science.gov (United States)

    Middlebrooks, Erik H; Ver Hoef, Lawrence; Szaflarski, Jerzy P

    2017-04-01

    In recent years, the field of neuroimaging has undergone dramatic development. Specifically, of importance for clinicians and researchers managing patients with epilepsies, new methods of brain imaging in search of the seizure-producing abnormalities have been implemented, and older methods have undergone additional refinement. Methodology to predict seizure freedom and cognitive outcome has also rapidly progressed. In general, the image data processing methods are very different and more complicated than even a decade ago. In this review, we identify the recent developments in neuroimaging that are aimed at improved management of epilepsy patients. Advances in structural imaging, diffusion imaging, fMRI, structural and functional connectivity, hybrid imaging methods, quantitative neuroimaging, and machine-learning are discussed. We also briefly summarize the potential new developments that may shape the field of neuroimaging in the near future and may advance not only our understanding of epileptic networks as the source of treatment-resistant seizures but also better define the areas that need to be treated in order to provide the patients with better long-term outcomes.

  5. Neurocognitive-genetic and neuroimaging-genetic research paradigms in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Kurnianingsih, Yoanna Arlina; Kuswanto, Carissa Nadia; McIntyre, Roger S; Qiu, Anqi; Ho, Beng Choon; Sim, Kang

    2011-11-01

    Studies examining intermediate phenotypes such as neurocognitive and neuroanatomical measures along with susceptibility genes are important for improving our understanding of the neural basis of schizophrenia (SZ) and bipolar disorder (BD). In this paper, we review extant studies involving neurocognitive-genetic and neuroimaging-genetic perspectives and particularly related to catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF) and neuregulin-1 (NRG1) genes in SZ and BD. In terms of neurocognitive-genetic investigations, COMT and BDNF are the two most studied candidate genes especially in patients with SZ. Whereas BDNF Met carriers perform worse on verbal working memory, problem solving and visuo-spatial abilities, COMT Met carriers perform better in working memory, attention, executive functioning with evidence of genotype by diagnosis interactions including high-risk individuals. In terms of genetic-structural MRI studies, patients with SZ are found to have reductions in the frontal, temporal, parietal cortices, and limbic regions, which are associated with BDNF, COMT, and NRGI genes. Genetic-functional MRI studies in psychotic disorders are sparse, especially with regard to BD. These neurocognitive and neuroimaging findings are associated with genes which are implicated in functional pathways related to neuronal signaling, inter-neuronal communication and neuroplasticity.

  6. Epistemics for Learning Disabilities: Contributions from Magnetoencephalography, a Functional Neuroimaging Tool

    Directory of Open Access Journals (Sweden)

    VÍCTOR SANTIUSTE-BERMEJO

    2008-01-01

    Full Text Available The syndrome known as Learning Disabilities (LD was described by S. Kirk in 1963. From that point on, institutions from the US, Canada and Spain have engaged in refining the concept and classification of LDs. The Complutense University in Spain, has proposed a descriptive and all-embracing definition, and has studied the different manifestations of LD, pursuing the description of biological markers and neurological features of LD’s main expressions: dyslexia, dyscalculia, dysorthographia, Attention Deficit and Hyperactivity Disorder –ADHD, and so forth. Findings in LD using functional neuroimaging techniques, namely Magnetoencephalography (MEG, are described. MEG is a non-invasive technique, which records magnetic fields naturally generated by the brain and their spatial distribution. It allows simultaneous functional and structural information. MEG is therefore used in the study of primary and superior cognitive functions, in surveillance of patterns of normal cognitive function and those specific to the different LD clinical manifestations.

  7. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.

    Science.gov (United States)

    Wardlaw, Joanna M; Smith, Eric E; Biessels, Geert J; Cordonnier, Charlotte; Fazekas, Franz; Frayne, Richard; Lindley, Richard I; O'Brien, John T; Barkhof, Frederik; Benavente, Oscar R; Black, Sandra E; Brayne, Carol; Breteler, Monique; Chabriat, Hugues; Decarli, Charles; de Leeuw, Frank-Erik; Doubal, Fergus; Duering, Marco; Fox, Nick C; Greenberg, Steven; Hachinski, Vladimir; Kilimann, Ingo; Mok, Vincent; Oostenbrugge, Robert van; Pantoni, Leonardo; Speck, Oliver; Stephan, Blossom C M; Teipel, Stefan; Viswanathan, Anand; Werring, David; Chen, Christopher; Smith, Colin; van Buchem, Mark; Norrving, Bo; Gorelick, Philip B; Dichgans, Martin

    2013-08-01

    Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  9. CBRAIN: A web-based, distributed computing platform for collaborative neuroimaging research

    Directory of Open Access Journals (Sweden)

    Tarek eSherif

    2014-05-01

    Full Text Available The Canadian Brain Imaging Research Platform (CBRAIN is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN’s flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC centers in Canada, one in Korea, one in Germany and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson’s and Alzheimer’s diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  10. Prognostic Role of Functional Neuroimaging after Multilobar Resection in Patients with Localization-Related Epilepsy.

    Directory of Open Access Journals (Sweden)

    Eun Bin Cho

    Full Text Available To investigate the usage of functional neuroimaging as a prognostic tool for seizure recurrence and long-term outcomes in patients with multilobar resection, we recruited 90 patients who received multilobar resections between 1995 and 2013 with at least 1-year follow-up (mean 8.0 years. All patients were monitored using intracranial electroencephalography (EEG after pre-surgical evaluation. Clinical data (demographics, electrophysiology, and neuroimaging were reviewed retrospectively. Surgical outcomes were evaluated at 1, 2, 5 years after surgery, and at the end of the study. After 1 year, 56 patients (62.2% became Engel class I and at the last follow-up, 47 patients (52.2% remained seizure-free. Furthermore, non-localized 18F-fluorodeoxyglucose positron emission tomography (PET, identifying hypometabolic areas not concordant with ictal onset zones, significantly correlated with seizure recurrence after 1 year. Non-lesional magnetic resonance imaging (MRI and left-sided resection correlated with poor outcomes. In the last follow-up, non-localized PET and left-sided resection significantly correlated with seizure recurrence. Both localized PET and ictal-interictal SPECT subtraction co-registered to MR (SISCOM predicted good surgical outcomes in the last follow-up (69.2%, Engel I. This study suggests that PET and SISCOM may predict postoperative outcomes for patients after multilobar epilepsy and shows comparable long-term surgical outcomes after multilobar resection.

  11. Effect of Spatial Alignment Transformations in PCA and ICA of Functional Neuroimages

    DEFF Research Database (Denmark)

    Lukic, Ana S.; Wernick, Miles N.; Yang, Yongui;

    2007-01-01

    It has been previously observed that spatial independent component analysis (ICA), if applied to data pooled in a particular way, may lessen the need for spatial alignment of scans in a functional neuroimaging study. In this paper we seek to determine analytically the conditions under which...... this observation is true, not only for spatial ICA, but also for temporal ICA and for principal component analysis (PCA). In each case we find conditions that the spatial alignment operator must satisfy to ensure invariance of the results. We illustrate our findings using functional magnetic-resonance imaging (f......MRI) data. Our analysis is applicable to both inter-subject and intra-subject spatial normalization....

  12. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    Results from functional neuroimaging such as positron emission tomography and functional magnetic resonance are often reported as sets of 3-dimensional coordinates in Talairach stereotactic space. By utilizing data collected in the BrainMap database and from our own small XML database we can...... automatically model and visualize several studies at once. We model a set of 3-dimensional coordinates by a voxelization step where flexible probability density models such as kernel density estimators produce a voxel-volume representation of a study, allowing us to represent all coordinate data in one single...... lists. Image-based indices can be created by singular value decomposition and by matching individual volumes against eigenimages. Individual experiments, sets of experiments as well as results from meta-analyses can be rendered as glyphs, cut-planes or isosurfaces in 3-dimensional Corner Cube...

  13. Neuroimaging findings in primary insomnia.

    Science.gov (United States)

    O'Byrne, J N; Berman Rosa, M; Gouin, J-P; Dang-Vu, T T

    2014-10-01

    State-of-the-art neuroimaging techniques have accelerated progress in the study and understanding of sleep in humans. Neuroimaging studies in primary insomnia remain relatively few, considering the important prevalence of this disorder in the general population. This review examines the contribution of functional and structural neuroimaging to our current understanding of primary insomnia. Functional studies during sleep provided support for the hyperarousal theory of insomnia. Functional neuroimaging also revealed abnormalities in cognitive and emotional processing in primary insomnia. Results from structural studies suggest neuroanatomical alterations in primary insomnia, mostly in the hippocampus, anterior cingulate cortex and orbitofrontal cortex. However, these results are not well replicated across studies. A few magnetic resonance spectroscopy studies revealed abnormalities in neurotransmitter concentrations and bioenergetics in primary insomnia. The inconsistencies among neuroimaging findings on insomnia are likely due to clinical heterogeneity, differences in imaging and overall diversity of techniques and designs employed. Larger samples, replication, as well as innovative methodologies are necessary for the progression of this perplexing, yet promising area of research. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Neuroimaging in anxiety disorders.

    Science.gov (United States)

    Engel, Kirsten; Bandelow, Borwin; Gruber, Oliver; Wedekind, Dirk

    2009-06-01

    Neuroimaging studies have gained increasing importance in validating neurobiological network hypotheses for anxiety disorders. Functional imaging procedures and radioligand binding studies in healthy subjects and in patients with anxiety disorders provide growing evidence of the existence of a complex anxiety network, including limbic, brainstem, temporal, and prefrontal cortical regions. Obviously, "normal anxiety" does not equal "pathological anxiety" although many phenomena are evident in healthy subjects, however to a lower extent. Differential effects of distinct brain regions and lateralization phenomena in different anxiety disorders are mentioned. An overview of neuroimaging investigations in anxiety disorders is given after a brief summary of results from healthy volunteers. Concluding implications for future research are made by the authors.

  15. Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period.

    Directory of Open Access Journals (Sweden)

    Glenn R Wylie

    Full Text Available Functional neuroimaging studies in mild traumatic brain injury (mTBI have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma. The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject's reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D. hours after injury (time 1. At follow up (8.7, + 1.2 S.D., days after injury, time 2, 18 of mTBI subjects (64% reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects

  16. Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) facilitates finding and comparing neuroimaging resources for functional and structural...

  17. The social evaluation of faces: a meta-analysis of functional neuroimaging studies.

    Science.gov (United States)

    Mende-Siedlecki, Peter; Said, Christopher P; Todorov, Alexander

    2013-03-01

    Neuroscience research on the social evaluation of faces has accumulated over the last decade, yielding divergent results. We used a meta-analytic technique, multi-level kernel density analysis (MKDA), to analyze 29 neuroimaging studies on face evaluation. Across negative face evaluations, we observed the most consistent activations in bilateral amygdala. Across positive face evaluations, we observed the most consistent activations in medial prefrontal cortex, pregenual anterior cingulate cortex (pgACC), medial orbitofrontal cortex (mOFC), left caudate and nucleus accumbens (NAcc). Based on additional analyses comparing linear and non-linear responses, we propose a ventral/dorsal dissociation within the amygdala, wherein separate populations of neurons code for face valence and intensity, respectively. Finally, we argue that some of the differences between studies are attributable to differences in the typicality of face stimuli. Specifically, extremely attractive faces are more likely to elicit responses in NAcc/caudate and mOFC.

  18. Design of a novel biomedical signal processing and analysis tool for functional neuroimaging.

    Science.gov (United States)

    Kaçar, Sezgin; Sakoğlu, Ünal

    2016-03-01

    In this paper, a MATLAB-based graphical user interface (GUI) software tool for general biomedical signal processing and analysis of functional neuroimaging data is introduced. Specifically, electroencephalography (EEG) and electrocardiography (ECG) signals can be processed and analyzed by the developed tool, which incorporates commonly used temporal and frequency analysis methods. In addition to common methods, the tool also provides non-linear chaos analysis with Lyapunov exponents and entropies; multivariate analysis with principal and independent component analyses; and pattern classification with discriminant analysis. This tool can also be utilized for training in biomedical engineering education. This easy-to-use and easy-to-learn, intuitive tool is described in detail in this paper.

  19. Iconicity in the lab: a review of behavioral, developmental, and neuroimaging research into sound-symbolism.

    Science.gov (United States)

    Lockwood, Gwilym; Dingemanse, Mark

    2015-01-01

    This review covers experimental approaches to sound-symbolism-from infants to adults, and from Sapir's foundational studies to twenty-first century product naming. It synthesizes recent behavioral, developmental, and neuroimaging work into a systematic overview of the cross-modal correspondences that underpin iconic links between form and meaning. It also identifies open questions and opportunities, showing how the future course of experimental iconicity research can benefit from an integrated interdisciplinary perspective. Combining insights from psychology and neuroscience with evidence from natural languages provides us with opportunities for the experimental investigation of the role of sound-symbolism in language learning, language processing, and communication. The review finishes by describing how hypothesis-testing and model-building will help contribute to a cumulative science of sound-symbolism in human language.

  20. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    Directory of Open Access Journals (Sweden)

    Brinkley James F

    2007-10-01

    Full Text Available Abstract Background Three-dimensional (3-D visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  1. Functional neuroimaging during altered states of consciousness: how and what do we measure?

    Science.gov (United States)

    Hirsch, Joy

    2005-01-01

    The emergence of functional neuroimaging has extended the doctrine of functional specificity of the brain beyond the primary stages of perception, language, and motor systems to high-level cognitive, personality, and affective systems. This chapter applies functional magnetic resonance imaging to another high-level realm of cognition and neurology to characterize cortical function in patients with disorders of consciousness. At first pass, this objective appears paradoxical because conventional investigations of a cognitive process require experimental manipulation. For example, to map the location of language-sensitive cortex, a language-related task is performed according to a temporal sequence that alternates the task with rest (no-task) periods. Application of this approach to the study of consciousness would require that levels of consciousness be similarly varied, this is an unlikely technique. Alternatively, another strategy is presented here where the focus is on functional brain activity elicited during various passive stimulations of patients who are minimally conscious. Comparisons between patients with altered states of consciousness due to brain injury and healthy subjects may be employed to infer readiness and potential to sustain awareness. As if a behavioral microscope, fMRI enables a view of occluded neural processes to inform medical practitioners about the health of the neurocircuity-mediating cognitive processes. An underlying point of view is that assessment of recovery potential can be enhanced by neuroimaging techniques that reveal the status of residual systems specialized for essential cognitive and volitional tasks for each patient. Thus, development of imaging techniques that assess the functional status of individual unresponsive patients is a primary goal. The structural integrity of injured brains is often compromised depending on the specific traumatic event, and, therefore, images cannot be grouped across patients, as is the standard

  2. Workflow-based approaches to neuroimaging analysis.

    Science.gov (United States)

    Fissell, Kate

    2007-01-01

    Analysis of functional and structural magnetic resonance imaging (MRI) brain images requires a complex sequence of data processing steps to proceed from raw image data to the final statistical tests. Neuroimaging researchers have begun to apply workflow-based computing techniques to automate data analysis tasks. This chapter discusses eight major components of workflow management systems (WFMSs): the workflow description language, editor, task modules, data access, verification, client, engine, and provenance, and their implementation in the Fiswidgets neuroimaging workflow system. Neuroinformatics challenges involved in applying workflow techniques in the domain of neuroimaging are discussed.

  3. Evidence against functionalism from neuroimaging of the alien colour effect in synaesthesia.

    Science.gov (United States)

    Gray, Jeffrey A; Parslow, David M; Brammer, Michael J; Chopping, Susan; Vythelingum, Goparlen N; ffytche, Dominic H

    2006-02-01

    Coloured hearing synaesthetes experience colours to heard words, as confirmed by reliability of self-report, psychophysical testing and functional neuroimaging data. Some also describe the 'alien colour effect' (ACE): in response to colour names, they experience colours different from those named. We have previously reported that the ACE slows colour naming in a Stroop task, reflecting cognitive interference from synaesthetically induced colours, which depends upon their being consciously experienced. It has been proposed that the hippocampus mediates such consciously experienced conflict. Consistent with this hypothesis, we now report that, in functional magnetic resonance imaging of the Stroop task, hippocampal activation differentiates synaesthetes with the ACE from those without it and from non-synaesthete controls. These findings confirm the reality of coloured hearing synaesthesia and the ACE, phenomena which pose major challenges to the dominant contemporary account of mental states, functionalism. Reductive functionalism identifies types of mental states with causal roles: relations to inputs, outputs and other states. However, conscious mental states, such as experiences of colour, are distinguished by their qualitative properties or qualia. If functionalism is applied to conscious mental states, it identifies the qualitative type of an experience with its causal role or function. This entails both that experiences with disparate qualitative properties cannot have the same functional properties, and that experiences with disparate functional properties cannot have the same qualitative properties. Challenges to functionalism have often denied the first entailment. Here, we challenge the second entailment on empirical grounds. In coloured hearing synaesthesia, colour qualia are associated with both hearing words and seeing surfaces; and, in the ACE, these two functions act in opposition to one another. Whatever its merits as an account of other mental states

  4. Functional neuro-imaging as a pre-surgical tool in epilepsy.

    Science.gov (United States)

    Haneef, Zulfi; Chen, David K

    2014-03-01

    Functional neuro-imaging techniques are helpful in the pre-surgical evaluation of epilepsy for localization of the epileptogenic zone as ancillary tools to electroencephalography (EEG) and magnetic resonance imaging (MRI) or when other localization techniques are normal, non-concordant or discordant. Positron emission tomography (PET) and ictal single photon emission computed tomography (ictal SPECT) imaging are traditional tests that have been reported to have good sensitivity and specificity although the results are better with more expertise as is true for any technique. More recently magnetoencephalogram/magnetic source imaging (MEG/MSI), diffusion tensor imaging and functional magnetic resonance imaging (fMRI) have been used in localization and functional mapping during the pre-surgical work-up of epilepsy. Newer techniques such as fMRI-EEG, functional connectivity magnetic resonance imaging and near infra-red spectroscopy, magnetic resonance spectroscopy and magneto nanoparticles hold promise for further development that could then be applied in the work-up of epilepsy surgery. In this manuscript, we review these techniques and their current position in the pre-surgical evaluation of epilepsy.

  5. Intrinsic functional component analysis via sparse representation on Alzheimer's disease neuroimaging initiative database.

    Science.gov (United States)

    Jiang, Xi; Zhang, Xin; Zhu, Dajiang

    2014-10-01

    Alzheimer's disease (AD) is the most common type of dementia (accounting for 60% to 80%) and is the fifth leading cause of death for those people who are 65 or older. By 2050, one new case of AD in United States is expected to develop every 33 sec. Unfortunately, there is no available effective treatment that can stop or slow the death of neurons that causes AD symptoms. On the other hand, it is widely believed that AD starts before development of the associated symptoms, so its prestages, including mild cognitive impairment (MCI) or even significant memory concern (SMC), have received increasing attention, not only because of their potential as a precursor of AD, but also as a possible predictor of conversion to other neurodegenerative diseases. Although these prestages have been defined clinically, accurate/efficient diagnosis is still challenging. Moreover, brain functional abnormalities behind those alterations and conversions are still unclear. In this article, by developing novel sparse representations of whole-brain resting-state functional magnetic resonance imaging signals and by using the most updated Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we successfully identified multiple functional components simultaneously, and which potentially represent those intrinsic functional networks involved in the resting-state activities. Interestingly, these identified functional components contain all the resting-state networks obtained from traditional independent-component analysis. Moreover, by using the features derived from those functional components, it yields high classification accuracy for both AD (94%) and MCI (92%) versus normal controls. Even for SMC we can still have 92% accuracy.

  6. I finally see what you see: Parkinson's disease visual hallucinations captured with functional neuroimaging.

    Science.gov (United States)

    Goetz, Christopher G; Vaughan, Christina L; Goldman, Jennifer G; Stebbins, Glenn T

    2014-01-01

    Functional neuroimaging studies have described alterations in neural activation in PD patients with chronic hallucinations. These studies have not, however, captured neural activation patterns during an actual hallucinatory event. The objective of this work was to investigate neuroanatomical substrates active during visual hallucinations in a patient with Parkinson's disease (PD). We conducted an event-related functional magnetic resonance imaging (fMRI) case-study examination of a 66-year-old male PD patient with stereotypic, chronic, and frequent visual hallucinations. The patient reported 16 hallucinations during the fMRI scan. Increased activation during hallucinations was found in the cingulate, insula, frontal lobe, thalamus, and brain stem. Decreased activation was found in the lingual and fusiform gyri, inferior occipital gyrus, and middle frontal and superior temporal lobes. To our knowledge, this report is the first published case documenting the cortical activation patterns using fMRI techniques in a PD patient during active hallucinations. Our results suggest that during a visual hallucination, a marked desynchronization occurs between posterior and anterior cortical areas involved in visual processing. Copyright © 2013 Movement Disorder Society.

  7. Functional neuroimaging and psychology: what have you done for me lately?

    Science.gov (United States)

    Moran, Joseph M; Zaki, Jamil

    2013-06-01

    Functional imaging has become a primary tool in the study of human psychology but is not without its detractors. Although cognitive neuroscientists have made great strides in understanding the neural instantiation of countless cognitive processes, commentators have sometimes argued that functional imaging provides little or no utility for psychologists. And indeed, myriad studies over the last quarter century have employed the technique of brain mapping-identifying the neural correlates of various psychological phenomena-in ways that bear minimally on psychological theory. How can brain mapping be made more relevant to behavioral scientists broadly? Here, we describe three trends that increase precisely this relevance: (i) the use of neuroimaging data to adjudicate between competing psychological theories through forward inference, (ii) isolating neural markers of information processing steps to better understand complex tasks and psychological phenomena through probabilistic reverse inference, and (iii) using brain activity to predict subsequent behavior. Critically, these new approaches build on the extensive tradition of brain mapping, suggesting that efforts in this area-although not initially maximally relevant to psychology-can indeed be used in ways that constrain and advance psychological theory.

  8. Neural convergence and divergence in the mammalian cerebral cortex: from experimental neuroanatomy to functional neuroimaging

    Science.gov (United States)

    Man, Kingson; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2013-01-01

    A development essential for understanding the neural basis of complex behavior and cognition is the description, during the last quarter of the twentieth century, of detailed patterns of neuronal circuitry in the mammalian cerebral cortex. This effort established that sensory pathways exhibit successive levels of convergence, from the early sensory cortices to sensory-specific association cortices and to multisensory association cortices, culminating in maximally integrative regions; and that this convergence is reciprocated by successive levels of divergence, from the maximally integrative areas all the way back to the early sensory cortices. This article first provides a brief historical review of these neuroanatomical findings, which were relevant to the study of brain and mind-behavior relationships using a variety of approaches and to the proposal of heuristic anatomo-functional frameworks. In a second part, the article reviews new evidence that has accumulated from studies of functional neuroimaging, employing both univariate and multivariate analyses, as well as electrophysiology, in humans and other mammals, that the integration of information across the auditory, visual, and somatosensory-motor modalities proceeds in a content-rich manner. Behaviorally and cognitively relevant information is extracted from and conserved across the different modalities, both in higher-order association cortices and in early sensory cortices. Such stimulus-specific information is plausibly relayed along the neuroanatomical pathways alluded to above. The evidence reviewed here suggests the need for further in-depth exploration of the intricate connectivity of the mammalian cerebral cortex in experimental neuroanatomical studies. PMID:23840023

  9. The neural basis of semantic and episodic forms of self-knowledge: insights from functional neuroimaging.

    Science.gov (United States)

    D'Argembeau, Arnaud; Salmon, Eric

    2012-01-01

    Throughout evolution, hominids have developed greater capacity to think about themselves in abstract and symbolic ways. This process has reached its apex in humans with the construction of a concept of self as a distinct entity with a personal history. This chapter provides a review of recent functional neuroimaging studies that have investigated the neural correlates of such "higher-level" aspects of the human self, focusing in particular on processes that allow individuals to consciously represent and reflect on their own personal attributes (semantic forms of self-knowledge) and experiences (episodic forms of self-knowledge). These studies point to the medial prefrontal cortex (MPFC) as a key neural structure for processing various kinds of self-referential information. We speculate that the MPFC may mediate dynamic processes that appraise and code the self-relatedness or self-relevance of information. This brain region may thus play a key role in creating the mental model of the self that is displayed in our mind at a given moment.

  10. Dissociation between emotion and personality judgments: convergent evidence from functional neuroimaging.

    Science.gov (United States)

    Heberlein, Andrea S; Saxe, Rebecca R

    2005-12-01

    Cognitive neuroscientists widely agree on the importance of providing convergent evidence from neuroimaging and lesion studies to establish structure-function relationships. However, such convergent evidence is, in practice, rarely provided. A previous lesion study found a striking double dissociation between two superficially similar social judgment processes, emotion recognition and personality attribution, based on the same body movement stimuli (point-light walkers). Damage to left frontal opercular (LFO) cortices was associated with impairments in personality trait attribution, whereas damage to right postcentral/supramarginal cortices was associated with impairments in emotional state attribution. Here, we present convergent evidence from fMRI in support of this double dissociation, with regions of interest (ROIs) defined by the regions of maximal lesion overlap from the previous study. Subjects learned four emotion words and four trait words, then watched a series of short point-light walker body movement stimuli. After each stimulus, subjects saw either an emotion word or a trait word and rated how well the word described the stimulus. The LFO ROI exhibited greater activity during personality judgments than during emotion judgments. In contrast, the right postcentral/supramarginal ROI exhibited greater activity during emotion judgments than during personality judgments. Follow-up experiments ruled out the possibility that the LFO activation difference was due to word frequency differences. Additionally, we found greater activity in a region of the medial prefrontal cortex previously associated with "theory of mind" tasks when subjects made personality, as compared to emotion judgments.

  11. Neural convergence and divergence in the mammalian cerebral cortex: from experimental neuroanatomy to functional neuroimaging.

    Science.gov (United States)

    Man, Kingson; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2013-12-15

    A development essential for understanding the neural basis of complex behavior and cognition is the description, during the last quarter of the twentieth century, of detailed patterns of neuronal circuitry in the mammalian cerebral cortex. This effort established that sensory pathways exhibit successive levels of convergence, from the early sensory cortices to sensory-specific and multisensory association cortices, culminating in maximally integrative regions. It was also established that this convergence is reciprocated by successive levels of divergence, from the maximally integrative areas all the way back to the early sensory cortices. This article first provides a brief historical review of these neuroanatomical findings, which were relevant to the study of brain and mind-behavior relationships and to the proposal of heuristic anatomofunctional frameworks. In a second part, the article reviews new evidence that has accumulated from studies of functional neuroimaging, employing both univariate and multivariate analyses, as well as electrophysiology, in humans and other mammals, that the integration of information across the auditory, visual, and somatosensory-motor modalities proceeds in a content-rich manner. Behaviorally and cognitively relevant information is extracted from and conserved across the different modalities, both in higher order association cortices and in early sensory cortices. Such stimulus-specific information is plausibly relayed along the neuroanatomical pathways alluded to above. The evidence reviewed here suggests the need for further in-depth exploration of the intricate connectivity of the mammalian cerebral cortex in experimental neuroanatomical studies.

  12. Ethics of neuroimaging after serious brain injury.

    Science.gov (United States)

    Weijer, Charles; Peterson, Andrew; Webster, Fiona; Graham, Mackenzie; Cruse, Damian; Fernández-Espejo, Davinia; Gofton, Teneille; Gonzalez-Lara, Laura E; Lazosky, Andrea; Naci, Lorina; Norton, Loretta; Speechley, Kathy; Young, Bryan; Owen, Adrian M

    2014-05-20

    Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to "yes" or "no" answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients' interests, and we explore conceptual issues in the

  13. A clinical case study of a psychoanalytic psychotherapy monitored with functional neuroimaging

    Directory of Open Access Journals (Sweden)

    Anna eBuchheim

    2013-10-01

    Full Text Available This case study describes one year of the psychoanalytic psychotherapy using clinical data, a standardized instrument of the psychotherapeutic process (Psychotherapy process Q-Set, PQS, and functional neuroimaging (fMRI. A female dysthymic patient with narcissistic traits was assessed at monthly intervals (12 sessions. In the fMRI scans, which took place immediately after therapy hours, the patient looked at pictures of attachment-relevant scenes (from the Adult Attachment Projective Picture System, AAP divided into two groups: those accompanied by a neutral description, and those accompanied by a description tailored to core conflicts of the patient as assessed in the AAP.Clinically, this patient presented defense mechanisms that influenced the relationship with the therapist and that was characterized by fluctuations of mood that lasted whole days, following a pattern that remained stable during the year of the study. The two modes of functioning associated with the mood shifts strongly affected the interaction with the therapist, whose quality varied accordingly (‘easy’ and ‘difficult’ hours. The PQS analysis showed the association of 'easy' hours with the topic of the involvement in significant relationships and of 'difficult hours' with self-distancing, a defensive manoeuvre common in narcissistic personality structures. In the fMRI data, the modes of functioning visible in the therapy hours were significantly associated with modulation of the signal elicited by personalized attachment-related scenes in the posterior cingulate (p=0.017 cluster-level, whole-volume corrected. This region has been associated in previous studies to self-distancing from negatively valenced pictures presented during the scan.The present study may provide evidence of the possible involvement of this brain area in spontaneously enacted self-distancing defensive strategies, which may be of relevance in resistant patient reactions in the course of a

  14. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs.

    Science.gov (United States)

    Carhart-Harris, Robin L; Leech, Robert; Hellyer, Peter J; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R; Nutt, David

    2014-01-01

    Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of "primary states" is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit "criticality," i.e., the property of being poised at a "critical" point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with

  15. The entropic brain:A theory of conscious states informed by neuroimaging research with psychedelic drugs

    Directory of Open Access Journals (Sweden)

    Robin Lester Carhart-Harris

    2014-02-01

    Full Text Available Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neural dynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of ‘primary states’ is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. It is noted that elevated entropy in this sense, is a characteristic of systems exhibiting ‘self-organised criticality’, i.e., a property of systems that gravitate towards a ‘critical’ point in a transition zone between order and disorder in which certain phenomena such as power-law scaling appear. This implies that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organised activity within the default-mode network (DMN and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled. These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as REM sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetised state.

  16. Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports

    Directory of Open Access Journals (Sweden)

    Kieran C. R. Fox

    2013-07-01

    Full Text Available Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW during waking, and dream mentation during sleep. This overlap has encouraged speculation that both ‘daydreaming’ and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI studies of the default mode network (DMN, with high chances of MW and rapid eye movement (REM sleep (with high chances of dreaming. Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC, medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an ‘intensified’ version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal

  17. Examining Reading Development and Reading Disability in English Language Learners: Potential Contributions from Functional Neuroimaging

    Science.gov (United States)

    Pugh, Kenneth R.; Sandak, Rebecca; Frost, Stephen J.; Moore, Dina; Mencl, W. Einar

    2005-01-01

    Neuroimaging studies have suggested that across different written languages, skilled reading behavior is supported by similar, largely left hemisphere (LH), networks. In addition, recent studies of reading disability (RD) in monolingual readers, conducted in several languages, suggest a common neurobiological signature for this syndrome…

  18. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

    NARCIS (Netherlands)

    Wardlaw, Joanna M.; Smith, Eric E.; Biessels, Geert J.; Cordonnier, Charlotte; Fazekas, Franz; Frayne, Richard; Lindley, Richard I.; O'Brien, John T.; Barkhof, Frederik; Benavente, Oscar R.; Black, Sandra E.; Brayne, Carol; Breteler, Monique; Chabriat, Hugues; DeCarli, Charles; de Leeuw, Frank-Erik; Doubal, Fergus; Duering, Marco; Fox, Nick C.; Greenberg, Steven; Hachinski, Vladimir; Kilimann, Ingo; Mok, Vincent; van Oostenbrugge, Robert; Pantoni, Leonardo; Speck, Oliver; Stephan, Blossom C. M.; Teipel, Stefan; Viswanathan, Anand; Werring, David; Chen, Christopher; Smith, Colin; van Buchem, Mark; Norrving, Bo; Gorelick, Philip B.; Dichgans, Martin

    2013-01-01

    Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have

  19. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

    NARCIS (Netherlands)

    Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O'Brien, J.T.; Barkhof, F.; Benavente, O.R.; Black, S.E.; Brayne, C.; Breteler, M.; Chabriat, H.; DeCarli, C.; Leeuw, F.E. de; Doubal, F.; Duering, M.; Fox, N.C.; Greenberg, S.; Hachinski, V.; Kilimann, I.; Mok, V.; Oostenbrugge, R.; Pantoni, L.; Speck, O.; Stephan, B.C.; Teipel, S.; Viswanathan, A.; Werring, D.; Chen, C.; Smith, C.; Buchem, M. van; Norrving, B.; Gorelick, P.B.; Dichgans, M.; nEuroimaging, S.T.f.R.V.c.o.

    2013-01-01

    Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have

  20. Neuroimaging schizophrenia: a picture is worth a thousand words, but is it saying anything important?

    Science.gov (United States)

    Ahmed, Anthony O; Buckley, Peter F; Hanna, Mona

    2013-03-01

    Schizophrenia is characterized by neurostructural and neurofunctional aberrations that have now been demonstrated through neuroimaging research. The article reviews recent studies that have attempted to use neuroimaging to understand the relation between neurological abnormalities and aspects of the phenomenology of schizophrenia. Neuroimaging studies show that neurostructural and neurofunctional abnormalities are present in people with schizophrenia and their close relatives and may represent putative endophenotypes. Neuroimaging phenotypes predict the emergence of psychosis in individuals classified as high-risk. Neuroimaging studies have linked structural and functional abnormalities to symptoms; and progressive structural changes to clinical course and functional outcome. Neuroimaging has successfully indexed the neurotoxic and neuroprotective effects of schizophrenia treatments. Pictures can inform about aspects of the phenomenology of schizophrenia including etiology, onset, symptoms, clinical course, and treatment effects but this assertion is tempered by the scientific and practical limitations of neuroimaging.

  1. Informing the Structure of Executive Function in Children: A Meta-Analysis of Functional Neuroimaging Data.

    Science.gov (United States)

    McKenna, Róisín; Rushe, T; Woodcock, Kate A

    2017-01-01

    The structure of executive function (EF) has been the focus of much debate for decades. What is more, the complexity and diversity provided by the developmental period only adds to this contention. The development of executive function plays an integral part in the expression of children's behavioral, cognitive, social, and emotional capabilities. Understanding how these processes are constructed during development allows for effective measurement of EF in this population. This meta-analysis aims to contribute to a better understanding of the structure of executive function in children. A coordinate-based meta-analysis was conducted (using BrainMap GingerALE 2.3), which incorporated studies administering functional magnetic resonance imaging (fMRI) during inhibition, switching, and working memory updating tasks in typical children (aged 6-18 years). The neural activation common across all executive tasks was compared to that shared by tasks pertaining only to inhibition, switching or updating, which are commonly considered to be fundamental executive processes. Results support the existence of partially separable but partially overlapping inhibition, switching, and updating executive processes at a neural level, in children over 6 years. Further, the shared neural activation across all tasks (associated with a proposed "unitary" component of executive function) overlapped to different degrees with the activation associated with each individual executive process. These findings provide evidence to support the suggestion that one of the most influential structural models of executive functioning in adults can also be applied to children of this age. However, the findings also call for careful consideration and measurement of both specific executive processes, and unitary executive function in this population. Furthermore, a need is highlighted for a new systematic developmental model, which captures the integrative nature of executive function in children.

  2. Neuroimaging of epilepsy

    Science.gov (United States)

    Cendes, Fernando; Theodore, William H.; Brinkmann, Benjamin H.; Sulc, Vlastimil; Cascino, Gregory D.

    2017-01-01

    Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy. PMID:27430454

  3. Neuroimaging of epilepsy.

    Science.gov (United States)

    Cendes, Fernando; Theodore, William H; Brinkmann, Benjamin H; Sulc, Vlastimil; Cascino, Gregory D

    2016-01-01

    Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy. © 2016 Elsevier B.V. All rights reserved.

  4. The use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain.

    Science.gov (United States)

    Jensen, Karin B; Berna, Chantal; Loggia, Marco L; Wasan, Ajay D; Edwards, Robert R; Gollub, Randy L

    2012-06-29

    A large number of studies have provided evidence for the efficacy of psychological and other non-pharmacological interventions in the treatment of chronic pain. While these methods are increasingly used to treat pain, remarkably few studies focused on the exploration of their neural correlates. The aim of this article was to review the findings from neuroimaging studies that evaluated the neural response to distraction-based techniques, cognitive behavioral therapy (CBT), clinical hypnosis, mental imagery, physical therapy/exercise, biofeedback, and mirror therapy. To date, the results from studies that used neuroimaging to evaluate these methods have not been conclusive and the experimental methods have been suboptimal for assessing clinical pain. Still, several different psychological and non-pharmacological treatment modalities were associated with increased pain-related activations of executive cognitive brain regions, such as the ventral- and dorsolateral prefrontal cortex. There was also evidence for decreased pain-related activations in afferent pain regions and limbic structures. If future studies will address the technical and methodological challenges of today's experiments, neuroimaging might have the potential of segregating the neural mechanisms of different treatment interventions and elucidate predictive and mediating factors for successful treatment outcomes. Evaluations of treatment-related brain changes (functional and structural) might also allow for sub-grouping of patients and help to develop individualized treatments.

  5. The use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain

    Science.gov (United States)

    Jensen, Karin B.; Berna, Chantal; Loggia, Marco L.; Wasan, Ajay; Edwards, Robert R.; Gollub, Randy L.

    2013-01-01

    A large number of studies have provided evidence for the efficacy of psychological and other non-pharmacological interventions in the treatment of chronic pain. While these methods are increasingly used to treat pain, remarkably few studies focused on the exploration of their neural correlates. The aim of this article was to review the findings from neuroimaging studies that evaluated the neural response to distraction-based techniques, cognitive behavioral therapy (CBT), clinical hypnosis, mental imagery, physical therapy/exercise, biofeedback, and mirror therapy. To date, the results from studies that used neuroimaging to evaluate these methods have not been conclusive and the experimental methods have been suboptimal for assessing clinical pain. Still, several different psychological and non-pharmacological treatment modalities were associated with increased painrelated activations of executive cognitive brain regions, such as the ventral- and dorsolateral prefrontal cortex. There was also evidence for decreased pain-related activations in afferent pain regions and limbic structures. If future studies will address the technical and methodological challenges of today’s experiments, neuroimaging might have the potential of segregating the neural mechanisms of different treatment interventions and elucidate predictive and mediating factors for successful treatment outcomes. Evaluations of treatment-related brain changes (functional and structural) might also allow for sub-grouping of patients and help to develop individualized treatments. PMID:22445888

  6. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  7. Functional neuroimaging with default mode network regions distinguishes PTSD from TBI in a military veteran population.

    Science.gov (United States)

    Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A; Amen, Daniel G

    2015-09-01

    from PTSD/TBI baseline scans had 87 % sensitivity, 83 % specificity, and 92 % accuracy. Concentration scans had 91 % sensitivity, 76 % specificity, and 88 % accuracy. Baseline-concentration scans had 84 % sensitivity, 64 % specificity, and 85 % accuracy. This study demonstrates the ability to separate PTSD and TBI from each other in a veteran population using functional neuroimaging.

  8. Neuroimaging of resilience to stress: current state of affairs.

    Science.gov (United States)

    van der Werff, Steven J A; Pannekoek, J Nienke; Stein, Dan J; van der Wee, Nic J A

    2013-09-01

    Resilience is defined as a dynamic, multidimensional process encompassing positive adaptation within the context of significant adversity. The complex nature of this construct makes it a difficult topic to study in neuroimaging research; however, in this article, we propose ways to operationalize resilience. The limited amount of structural and functional neuroimaging studies specifically designed to examine resilience have mainly focused on investigating alterations in regions of the brain involved in emotion and stress regulation circuitry. In the future, neuroimaging of resilience is expected to benefit from functional and structural connectivity approaches and the use of novel imaging task paradigms.

  9. Functional neuroimaging studies of aging and emotion: Fronto-amygdalar differences during emotional perception and episodic memory

    Science.gov (United States)

    ST JACQUES, PEGGY L.; BESSETTE-SYMONS, BRANDY; CABEZA, ROBERTO

    2013-01-01

    Emotional processes are enhanced in aging, such that aging is characterized by superior emotional regulation. This article provides a brief review of the neural bases supporting this effect with a focus on functional neuroimaging studies of perception and episodic memory. The most consistent finding across these studies is that older adults show an alteration in the recruitment of the amygdala, but greater recruitment of the frontal cortex. These Fronto-amygdalar Age-related Differences in Emotion (FADE) may reflect emotional regulation strategies mediated by frontal brain regions that dampen emotion-related activations in the amygdala. PMID:19703320

  10. Functional neuroimaging studies of aging and emotion: fronto-amygdalar differences during emotional perception and episodic memory.

    Science.gov (United States)

    St Jacques, Peggy L; Bessette-Symons, Brandy; Cabeza, Roberto

    2009-11-01

    Emotional processes are enhanced in aging, such that aging is characterized by superior emotional regulation. This article provides a brief review of the neural bases supporting this effect with a focus on functional neuroimaging studies of perception and episodic memory. The most consistent finding across these studies is that older adults show an alteration in the recruitment of the amygdala, but greater recruitment of the frontal cortex. These Fronto-amygdalar Age-related Differences in Emotion (FADE) may reflect emotional regulation strategies mediated by frontal brain regions that dampen emotion-related activations in the amygdala.

  11. To BD or not to BD: functional neuroimaging and the boundaries of bipolarity.

    Science.gov (United States)

    Kuiper, Sandy; McLean, Loyola; Malhi, Gin S

    2013-01-01

    Bipolar disorders are major mood disorders defined by the presence of discrete episodes of depression and either mania, in bipolar I disorder, or hypomania, in bipolar II disorder. There is little contention that both are serious psychiatric conditions or that they are associated with substantial suffering, disability, risk of suicide and cost to the community. Recently, focus has shifted away from classic manic-depressive illness toward a 'bipolar spectrum' model, which allows for much softer presentations to be conceptualized as bipolarity, but the boundaries of this concept remain contentious. In this article, we will consider the contribution of neuroimaging to delineating the bipolar phenotype and differentiating it from similar disorders.

  12. Research progress of neuroimaging of blood-brain barrier breakdown in Alzheimer's disease patients

    Directory of Open Access Journals (Sweden)

    Qin XU

    2017-07-01

    Full Text Available Recent studies indicate that blood-brain barrier (BBB breakdown may play an important role in the pathophysiology of cognitive dysfunction and dementia. BBB regulates the homeostasis of brain microenvironment, controls the transfer of required nutrients (e.g., glucose and amino acids, and limits entry of blood - derived products, pathogens and neurotoxins into the brain tissue. Recent advances in neuroimaging techniques offer new possibilities to realize positioning and quantitative detection of BBB disruption. It provides a new insertion point for elucidating the pathogenesis of Alzheimer's disease (AD. DOI: 10.3969/j.issn.1672-6731.2017.06.013

  13. Neuroimaging and biomarkers in addiction treatment.

    Science.gov (United States)

    Garrison, Kathleen A; Potenza, Marc N

    2014-12-01

    Neuroimaging studies have made a significant contribution to the efforts to identify measurable indices, or biomarkers, of addictions and their treatments. Biomarkers in addiction treatment are needed to provide targets for treatment, detect treatment subgroups, predict treatment response, and broadly improve outcomes. Neuroimaging is important to biomarkers research as it relates neural circuits to both molecular mechanisms and behavior. A focus of recent efforts in neuroimaging in addiction has been to elucidate the neural correlates associated with dimensions of functioning in substance-use and related disorders, such as cue-reactivity, impulsivity, and cognitive control, among others. These dimensions of functioning have been related to addiction treatment outcomes and relapse, and therefore, a better understanding of these dimensions and their neural correlates may help to identify brain-behavior biomarkers of treatment response. This paper reviews recent neuroimaging studies that report potential biomarkers in addiction treatment related to cue-reactivity, impulsivity, and cognitive control, as well as recent advances in neuroimaging that may facilitate efforts to determine reliable biomarkers. This important initial work has begun to identify possible mediators and moderators of treatment response, and multiple promising indices are being tested.

  14. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models.

    Science.gov (United States)

    Huneau, Clément; Benali, Habib; Chabriat, Hugues

    2015-01-01

    The mechanisms that link a transient neural activity to the corresponding increase of cerebral blood flow (CBF) are termed neurovascular coupling (NVC). They are possibly impaired at early stages of small vessel or neurodegenerative diseases. Investigation of NVC in humans has been made possible with the development of various neuroimaging techniques based on variations of local hemodynamics during neural activity. Specific dynamic models are currently used for interpreting these data that can include biophysical parameters related to NVC. After a brief review of the current knowledge about possible mechanisms acting in NVC we selected seven models with explicit integration of NVC found in the literature. All these models were described using the same procedure. We compared their physiological assumptions, mathematical formalism, and validation. In particular, we pointed out their strong differences in terms of complexity. Finally, we discussed their validity and their potential applications. These models may provide key information to investigate various aspects of NVC in human pathology.

  15. Investigating human neurovascular coupling using functional neuroimaging: a critical review of dynamic models

    Directory of Open Access Journals (Sweden)

    Clément eHuneau

    2015-12-01

    Full Text Available The mechanisms that link a transient neural activity to the corresponding increase of cerebral blood flow (CBF are termed neurovascular coupling (NVC. They are possibly impaired at early stage of small vessel or neurodegenerative diseases. Investigation of NVC in human has been made possible since the development of various neuroimaging techniques based on variations of local hemodynamics during neural activity. Specific dynamic models are currently used for interpreting these data that can include biophysical parameters related to NVC. We reviewed the seven models with explicit integration of NVC found in the literature and described their physiological assumption, mathematical formalism and validation. All models were described regarding a constant schematic formalism. Differences between them, particularly regarding their complexity, and hence, their potential use were finally evaluated. These models may provide key information to investigate various aspects of NVC in human pathology.

  16. Progression of limb apraxia in corticobasal syndrome: neuropychological and functional neuroimaging report of a case series.

    Science.gov (United States)

    Stamenova, Vessela; Roy, Eric A; Szilagyi, Gregory; Honjo, Kie; Black, Sandra E; Masellis, Mario

    2015-01-01

    The current study described the progression of limb apraxia in seven corticobasal syndrome patients through a comprehensive battery, including both gesture production tasks and conceptual tool/action knowledge tasks. The examination of the behavioral and neuroimaging (SPECT) data revealed two patient subgroups. One group consisted of patients with preserved conceptual tool/action knowledge, relatively mild gesture production and neuropsychological deficits with few significantly hypoperfused regions of interest. The other group consisted of those whose conceptual tool/action knowledge and general cognition eventually deteriorated and who were quite severely affected in their gesture production performance. These patients were characterized by bilateral hypoperfusion in parietal regions and in one case bilateral anterior cingulate regions.

  17. Recent advances in the data analysis method of functional magnetic resonance imaging and its applications in neuroimaging

    Institute of Scientific and Technical Information of China (English)

    TIAN Jie; YANG Lei; HU Jin

    2006-01-01

    Functional magnetic resonance imaging (fMRI) has opened a new area to explore the human brain. The fMRI can reveal the deep insights of spatial and temporal changes underlying a broad range of brain function, such as motor, vision, memory and emotion, all of which are helpful in the clinical investigation. In this paper, we introduce some recent-developed algorithms for fMRI signal detection such as model-driven method (general linear model, deconvolution model, non-linear model, etc. ) and data-driven method (principle component analysis, independent component analysis, self-organization mapping, clustered constrained non-negative matrix factorization, etc. ). We also propose several important applications of neuroimaging and point out their shortcomings and future perspectives.

  18. Translational Perspectives for Computational Neuroimaging.

    Science.gov (United States)

    Stephan, Klaas E; Iglesias, Sandra; Heinzle, Jakob; Diaconescu, Andreea O

    2015-08-19

    Functional neuroimaging has made fundamental contributions to our understanding of brain function. It remains challenging, however, to translate these advances into diagnostic tools for psychiatry. Promising new avenues for translation are provided by computational modeling of neuroimaging data. This article reviews contemporary frameworks for computational neuroimaging, with a focus on forward models linking unobservable brain states to measurements. These approaches-biophysical network models, generative models, and model-based fMRI analyses of neuromodulation-strive to move beyond statistical characterizations and toward mechanistic explanations of neuroimaging data. Focusing on schizophrenia as a paradigmatic spectrum disease, we review applications of these models to psychiatric questions, identify methodological challenges, and highlight trends of convergence among computational neuroimaging approaches. We conclude by outlining a translational neuromodeling strategy, highlighting the importance of openly available datasets from prospective patient studies for evaluating the clinical utility of computational models. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Is there an Association between Peripheral Immune Markers and Structural/Functional Neuroimaging Findings?

    LENUS (Irish Health Repository)

    Frodl, Thomas

    2013-01-10

    OBJECTIVES: There is mounting evidence that inflammatory processes play a key role in emotional as well as cognitive dysfunctions. In this context, research employing magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MR spectroscopy) suggests a possible link between structural\\/functional anomalies in the brain and an increase of circulating inflammation markers. The present paper reviews this research, with particular focus on major depressive disorder (MDD), cognitive impairment in older adults, Alzheimer\\'s disease (AD) and schizophrenia. RESULTS: In MDD, cognitive impairment and AD, inflammatory processes have been found to be associated with both structural and functional anomalies, perhaps under the influence of environmental stress. Not enough research can suggest similar considerations in schizophrenia, although studies in mice and non-human primates support the belief that inflammatory responses generated during pregnancy can affect brain development and contribute to the etiology of schizophrenia. CONCLUSIONS: The present review suggests a link between inflammatory processes and MRI detected anomalies in the brain of individuals with MDD, older adults with cognitive impairment as well as of individuals with AD and schizophrenia.

  20. Neuroimaging Biomarkers for Psychosis

    Science.gov (United States)

    Hager, Brandon M.

    2015-01-01

    Background Biomarkers provide clinicians with a predictable model for the diagnosis, treatment and follow-up of medical ailments. Psychiatry has lagged behind other areas of medicine in the identification of biomarkers for clinical diagnosis and treatment. In this review, we investigated the current state of neuroimaging as it pertains to biomarkers for psychosis. Methods We reviewed systematic reviews and meta-analyses of the structural (sMRI), functional (fMRI), diffusion-tensor (DTI), Positron emission tomography (PET) and spectroscopy (MRS) studies of subjects at-risk or those with an established schizophrenic illness. Only articles reporting effect-sizes and confidence intervals were included in an assessment of robustness. Results Out of the identified meta-analyses and systematic reviews, 21 studies met the inclusion criteria for assessment. There were 13 sMRI, 4 PET, 3 MRS, and 1 DTI studies. The search terms included in the current review encompassed familial high risk (FHR), clinical high risk (CHR), First episode (FES), Chronic (CSZ), schizophrenia spectrum disorders (SSD), and healthy controls (HC). Conclusions Currently, few neuroimaging biomarkers can be considered ready for diagnostic use in patients with psychosis. At least in part, this may be related to the challenges inherent in the current symptom-based approach to classifying these disorders. While available studies suggest a possible value of imaging biomarkers for monitoring disease progression, more systematic research is needed. To date, the best value of imaging data in psychoses has been to shed light on questions of disease pathophysiology, especially through the characterization of endophenotypes. PMID:25883891

  1. Neuroimaging in Restless Legs Syndrome.

    Science.gov (United States)

    Provini, Federica; Chiaro, Giacomo

    2015-09-01

    Neuroimaging studies are of crucial relevance in defining the pathophysiology of restless legs syndrome (RLS). MRI studies showed no structural brain lesions and confirmed a central iron deficiency. Structural and functional studies showed an involvement of the thalamus, sensorimotor cortical areas, and cerebellum in RLS and assessed neurotransmission abnormalities in the dopaminergic and opiate systems. Finally, glutamatergic hyperactivity has been proposed as a cause of disrupted and shortened sleep in RLS. Differences among the results of the studies make it difficult to draw any definitive conclusions, thus, suggesting the need for future research.

  2. Who are those “risk-taking adolescents”? Individual differences in developmental neuroimaging research

    Directory of Open Access Journals (Sweden)

    James M. Bjork

    2015-02-01

    Full Text Available Functional magnetic resonance imaging (fMRI has illuminated the development of human brain function. Some of this work in typically-developing youth has ostensibly captured neural underpinnings of adolescent behavior which is characterized by risk-seeking propensity, according to psychometric questionnaires and a wealth of anecdote. Notably, cross-sectional comparisons have revealed age-dependent differences between adolescents and other age groups in regional brain responsiveness to prospective or experienced rewards (usually greater in adolescents or penalties (usually diminished in adolescents. These differences have been interpreted as reflecting an imbalance between motivational drive and behavioral control mechanisms, especially in mid-adolescence, thus promoting greater risk-taking. While intriguing, we caution here that researchers should be more circumspect in attributing clinically significant adolescent risky behavior to age-group differences in task-elicited fMRI responses from neurotypical subjects. This is because actual mortality and morbidity from behavioral causes (e.g. substance abuse, violence by mid-adolescence is heavily concentrated in individuals who are not neurotypical, who rather have shown a lifelong history of behavioral disinhibition that frequently meets criteria for a disruptive behavior disorder, such as conduct disorder, oppositional-defiant disorder, or attention-deficit hyperactivity disorder. These young people are at extreme risk of poor psychosocial outcomes, and should be a focus of future neurodevelopmental research.

  3. A functional neuroimaging study of the clinical reasoning of medical students.

    Science.gov (United States)

    Chang, Hyung-Joo; Kang, June; Ham, Byung-Joo; Lee, Young-Mee

    2016-12-01

    As clinical reasoning is a fundamental competence of physicians for good clinical practices, medical academics have endeavored to teach reasoning skills to undergraduate students. However, our current understanding of student-level clinical reasoning is limited, mainly because of the lack of evaluation tools for this internal cognitive process. This functional magnetic resonance imaging (fMRI) study aimed to examine the clinical reasoning processes of medical students in response to problem-solving questions. We recruited 24 2nd-year medical students who had completed their preclinical curriculum. They answered 40 clinical vignette-based multiple-choice questions during fMRI scanning. We compared the imaging data for 20 problem-solving questions (reasoning task) and 20 recall questions (recall task). Compared to the recall task, the reasoning task resulted in significantly greater activation in nine brain regions, including the dorsolateral prefrontal cortex and inferior parietal cortex, which are known to be associated with executive function and deductive reasoning. During the recall task, significant activation was observed in the brain regions that are related to memory and emotions, including the amygdala and ventromedial prefrontal cortex. Our results support that medical students mainly solve clinical questions with deductive reasoning involving prior knowledge structures and executive functions. The problem-solving questions induced the students to utilize higher cognitive functions compared with the recall questions. Interestingly, the results suggested that the students experienced some emotional distress while they were solving the recall questions. In addition, these results suggest that fMRI is a promising research tool for investigating students' cognitive processes.

  4. Neuroimaging in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Barkhof, Frederik [VU Univ. Medical Center, Amsterdam (NL). Dept. of Radiology and Image Analysis Center (IAC); Fox, Nick C. [UCL Institute of Neurology, London (United Kingdom). Dementia Research Centre; VU Univ. Medical Center, Amsterdam (Netherlands); Bastos-Leite, Antonio J. [Porto Univ. (Portugal). Dept. of Medical Imaging; Scheltens, Philip [VU Univ. Medical Center, Amsterdam (Netherlands). Dept. of Neurology and Alzheimer Center

    2011-07-01

    Against a background of an ever-increasing number of patients, new management options, and novel imaging modalities, neuroimaging is playing an increasingly important role in the diagnosis of dementia. This up-to-date, superbly illustrated book aims to provide a practical guide to the effective use of neuroimaging in the patient with cognitive decline. It sets out the key clinical and imaging features of the wide range of causes of dementia and directs the reader from clinical presentation to neuroimaging and on to an accurate diagnosis whenever possible. After an introductory chapter on the clinical background, the available ''toolbox'' of structural and functional neuroimaging techniques is reviewed in detail, including CT, MRI and advanced MR techniques, SPECT and PET, and image analysis methods. The imaging findings in normal ageing are then discussed, followed by a series of chapters that carefully present and analyze the key imaging findings in patients with dementias. A structured path of analysis follows the main presenting feature: disorders associated with primary gray matter loss, with white matter changes, with brain swelling, etc. Throughout, a practical approach is adopted, geared specifically to the needs of clinicians (neurologists, radiologists, psychiatrists, geriatricians) working in the field of dementia, for whom this book should prove an invaluable resource. (orig.)

  5. [Modern neuroimaging of brain plasticity].

    Science.gov (United States)

    Kasprian, G; Seidel, S

    2010-02-01

    Modern neuroimaging methods offer new insights into the plasticity of the human brain. As the techniques of functional MRI and diffusion tensor imaging are increasingly being applied in a clinical setting, the examiner is now frequently confronted with the interpretation of imaging findings related to regenerative processes in response to lesions of the central and also of the peripheral nervous system. In this article individual results of modern neuroimaging studies are discussed in the context of structural and functional plasticity of the CNS.

  6. 睡眠疾病的功能影像学研究进展%Functional neuroimaging of sleep disorders

    Institute of Scientific and Technical Information of China (English)

    邱春; 赵军; 管一晖

    2013-01-01

    睡眠疾病严重影响着人类的日常生活和健康,然而其发病机制及病理改变尚不清楚.功能影像学为睡眠疾病的研究提供了较好的平台,该文主要就几种常见的睡眠障碍疾病的功能影像学研究进展进行综述,同时简要介绍各种疾病的临床表现、脑部结构异常及主要病理改变.%Sleep disorders may affect the health and normal life of human badly.However,the pathophysiology underlying adult sleep disorders is still unclear.Functional neuroimaging can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity.This paper reviews functional brain imaging findings in major intrinsic sleep disorders (i.e.,idiopathic insomnia,narcolepsy,and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e.,periodic limb movement disorder and REM sleep behavior disorder).Metabolic/functional investigations (positron emission tomography,single photon emission computed tomography,functional magnetic resonance imaging) are mainly reviewed,as well as neuroanatomical assessments (voxel-based morphometry,magnetic resonance spectroscopy).Meanwhile,here are some brief introduction of different kinds of sleep disorders.

  7. Neuroimaging of central breathlessness mechanisms.

    Science.gov (United States)

    Pattinson, Kyle T S; Johnson, Miriam J

    2014-09-01

    Breathlessness debilitates millions of people with cardiorespiratory conditions and cancer. Symptoms correlate poorly with the objective measures of disease (e.g. spirometry). Altered brain processing of respiratory sensations may contribute to this disparity. This article summarizes how functional neuroimaging works, focussing on functional MRI (FMRI) and magnetoencephalography, how neuroimaging has shed light on the central mechanisms of breathlessness and thus how it may help target new therapies. Current understanding of central neural activity in breathlessness comes mainly from a small number of studies in healthy volunteers using models of induced acute breathlessness. Parallels with neuroimaging findings in pain and fear or anxiety have been used to interpret the neuroimaging studies of breathlessness to form hypotheses. Despite the lack of recent neuroimaging studies in breathlessness, there have been methodological advances in overcoming confounders with respiratory FMRI. In addition, developing interest in the distinction of emotional from the sensory aspects of breathlessness and the use of opioids for breathlessness has driven mechanistic understandings. Neuroimaging of breathlessness remains in its infancy. However, advances in the understanding of central perception, combined with novel neuroimaging techniques, means that we are poised to increase our understanding of the brain processes of breathlessness and their modulation.

  8. Neuroimaging studies of social cognition in schizophrenia.

    Science.gov (United States)

    Fujiwara, Hironobu; Yassin, Walid; Murai, Toshiya

    2015-05-01

    Impaired social cognition is considered a core contributor to unfavorable psychosocial functioning in schizophrenia. Rather than being a unitary process, social cognition is a collection of multifaceted processes that recruit multiple brain structures, thus structural and functional neuroimaging techniques are ideal methodologies for revealing the underlying pathophysiology of impaired social cognition. Many neuroimaging studies have suggested that in addition to white-matter deficits, schizophrenia is associated with decreased gray-matter volume in multiple brain areas, especially fronto-temporal and limbic regions. However, few schizophrenia studies have examined associations between brain abnormalities and social cognitive disabilities. During the last decade, we have investigated structural brain abnormalities in schizophrenia using high-resolution magnetic resonance imaging, and our findings have been confirmed by us and others. By assessing different types of social cognitive abilities, structural abnormalities in multiple brain regions have been found to be associated with disabilities in social cognition, such as recognition of facial emotion, theory of mind, and empathy. These structural deficits have also been associated with alexithymia and quality of life in ways that are closely related to the social cognitive disabilities found in schizophrenia. Here, we overview a series of neuroimaging studies from our laboratory that exemplify current research into this topic, and discuss how it can be further tackled using recent advances in neuroimaging technology.

  9. Neuroimaging and sleep medicine.

    Science.gov (United States)

    Nofzinger, Eric A

    2005-06-01

    In sleep medicine, patients with sleep disorders are evaluated and treated. The primary assessment tool of the field has traditionally been polysomnography. While polysomnography has been helpful in the evaluation of some sleep disorders, such as sleep apnea syndrome and periodic limb movement disorder, it has been less helpful in others, such as the insomnias, or sleep disorders secondary to mental disorders. These disorders are presumed to stem from some alteration in brain function that disrupts sleep. The development of functional neuroimaging methods provides a means to understand brain function in patients with sleep disorders in a manner not accessible to polysomnography. This paper summarizes functional neuroimaging findings during healthy sleep, then, reviews available studies in sleep disorders patients, and studies addressing the pharmacology of sleep and sleep disorders. Areas in which functional neuroimaging methods may be helpful in sleep medicine, and in which future development is advised, include: (1) clarification of pathophysiology; (2) aid in differential diagnosis; (3) assessment of treatment response; (4) guiding new drug development; and (5) monitoring treatment response.

  10. Multimodal neuroimaging of prefrontal cortex (dys)function: EEG, fNIRS, fNIRS-fMRI and Imaging Genetics approaches

    OpenAIRE

    Heinzel, Sebastian

    2013-01-01

    The present cumulative dissertation comprises three neuroimaging studies using different techniques, functional tasks and experimental variables of diverse nature to investigate human prefrontal cortex (PFC) (dys)function as well as methodological aspects of functional near-infrared spectroscopy (fNIRS). (1) Both dopamine (DA) availability (“inverted U-model”) and excitatory versus inhibitory DA receptor stimulation (“dual-state theory”) have been linked to PFC processing and cognitive contro...

  11. Neuroimaging in eating disorders

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2011-09-01

    Full Text Available Ignacio Jáuregui-LoberaBehavioral Sciences Institute and Pablo de Olavide University, Seville, SpainAbstract: Neuroimaging techniques have been useful tools for accurate investigation of brain structure and function in eating disorders. Computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy, and voxel-based morphometry have been the most relevant technologies in this regard. The purpose of this review is to update the existing data on neuroimaging in eating disorders. The main brain changes seem to be reversible to some extent after adequate weight restoration. Brain changes in bulimia nervosa seem to be less pronounced than in anorexia nervosa and are mainly due to chronic dietary restrictions. Different subtypes of eating disorders might be correlated with specific brain functional changes. Moreover, anorectic patients who binge/purge may have different functional brain changes compared with those who do not binge/purge. Functional changes in the brain might have prognostic value, and different changes with respect to the binding potential of 5-HT1A, 5-HT2A, and D2/D3 receptors may be persistent after recovering from an eating disorder.Keywords: neuroimaging, brain changes, brain receptors, anorexia nervosa, bulimia nervosa, eating disorders

  12. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data.

    Science.gov (United States)

    Nieuwenhuys, Rudolf

    2013-03-01

    The human cerebral cortex contains numerous myelinated fibres, many of which are concentrated in tangentially organized layers and radially oriented bundles. The spatial organization of these fibres is by no means homogeneous throughout the cortex. Local differences in the thickness and compactness of the fibre layers, and in the length and strength of the radial bundles renders it possible to recognize areas with a different myeloarchitecture. The neuroanatomical subdiscipline aimed at the identification and delineation of such areas is known as myeloarchitectonics. There is another, closely related neuroanatomical subdiscipline, named cytoarchitectonics. The aims and scope of this subdiscipline are the same as those of myeloarchitectonics, viz. parcellation. However, this subdiscipline focuses, as its name implies, on the size, shape and arrangement of the neuronal cell bodies in the cortex, rather than on the myelinated fibres. At the beginning of the twentieth century, two young investigators, Oskar and Cécile Vogt founded a centre for brain research, aimed to be devoted to the study of the (cyto + myelo) architecture of the cerebral cortex. The study of the cytoarchitecture was entrusted to their collaborator Korbinian Brodmann, who gained great fame with the creation of a cytoarchitectonic map of the human cerebral cortex. Here, we focus on the myeloarchitectonic studies on the cerebral cortex of the Vogt-Vogt school, because these studies are nearly forgotten in the present attempts to localize functional activations and to interprete findings in modern neuroimaging studies. Following introductory sections on the principles of myeloarchitectonics, and on the achievements of three myeloarchitectonic pioneers who did not belong to the Vogt-Vogt school, the pertinent literature is reviewed in some detail. These studies allow the conclusion that the human neocortex contains about 185 myeloarchitectonic areas, 70 frontal, 6 insular, 30 parietal, 19 occipital

  13. Neuroimaging in Mental Health Care: Voices in Translation

    Directory of Open Access Journals (Sweden)

    Emily L. Borgelt

    2012-10-01

    Full Text Available Images of brain function, popularly called neuroimages, have become a mainstay of contemporary communication about neuroscience and mental health. Paralleling media coverage of neuroimaging research and the high visibility of clinics selling scans is pressure from sponsors to move basic research about brain function along the translational pathway. Indeed, neuroimaging benefit mental health care with early or tailored intervention, opportunities for education and planning, and access to resources afforded by objectification of disorder. However, risks of premature technology transfer, such as misinterpretation, misrepresentation, and increased stigmatization, could compromise patient care.Stakeholder views on neuroimaging for mental health care are a largely untapped resource of information and guidance for translational efforts. We argue that the insights of key stakeholders – researchers, healthcare providers, patients, and families - have an essential role to play upstream in professional, critical, and ethical discourse about neuroimaging in mental health. Here we integrate previously orthogonal lines of inquiry involving stakeholder research to describe the translational landscape as well as challenges on its horizon.

  14. Neuroimaging of consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, Andrea Eugenio [Birmingham Univ. (United Kingdom). Dept. of Neuropsychiatry; UCL Institute of Neurology, London (United Kingdom). Sobell Dept. of Motor, Neuroscience and Movement Disorders; Nani, Andrea [Birmingham Univ. (United Kingdom). Research Group BSMHFT; Blumenfeld, Hal [Yale University School of Medicine, New Haven, CT (United States). Depts. of Neurology, Neurobiology and Neurosurgery; Laureys, Steven (ed.) [Liege Univ. (Belgium). Cyclotron Research Centre

    2013-07-01

    An important reference work on a multidisciplinary and rapidly expanding area. Particular focus on the relevance of neuroimaging for the diagnosis and treatment of common neuropsychiatric disorders affecting consciousness. Written by world-class experts in the field. Relevant for clinicians, researchers, and scholars across different specialties. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This book presents the state of the art in neuroimaging exploration of the brain correlates of the alterations in consciousness across these conditions, with a particular focus on the potential applications for diagnosis and management. Although the book has a practical approach and is primarily targeted at neurologists, neuroradiologists, and psychiatrists, a wide range of researchers and health care professionals will find it an essential reference that explains the significance of neuroimaging of consciousness for clinical practice. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This

  15. Functional neuroimaging of mentalizing during the trust game in social anxiety disorder

    Science.gov (United States)

    Sripada, Chandra Sehkar; Angstadt, Mike; Banks, Sarah; Nathan, Pradeep J.; Liberzon, Israel; Luan Phan, K.

    2009-01-01

    Individuals with generalized social anxiety disorder tend to make overly negative and distorted predictions about social events, which enhance perceptions of threat and contribute to excessive anxiety in social situations. Here, we coupled functional magnetic resonance imaging and a multiround economic exchange game (‘trust game’) to probe mentalizing, the social-cognitive ability to attribute mental states to others. Relative to interactions with a computer, those with human partners (‘mentalizing’) elicited less activation of medial prefrontal cortex in generalized social anxiety patients compared with matched healthy control participants. Diminished medial prefrontal cortex function may play a role in the social-cognitive pathophysiology of social anxiety. PMID:19521264

  16. Prefrontal Cortex and Executive Functions in Healthy Adults: A Meta-Analysis of Structural Neuroimaging Studies

    Science.gov (United States)

    Yuan, Peng; Raz, Naftali

    2014-01-01

    Lesion studies link the prefrontal cortex (PFC) to executive functions. However, the evidence from in vivo investigations in healthy people is mixed, and there are no quantitative estimates of the association strength. To examine the relationship between PFC volume and cortical thickness with executive cognition in healthy adults, we conducted a meta-analysis of studies that assessed executive functions and PFC volume (31 samples,) and PFC thickness (10 samples) in vivo, N=3272 participants. We found that larger PFC volume and greater PFC thickness were associated with better executive performance. Stronger associations between executive functions and PFC volume were linked to greater variance in the sample age but was unrelated to the mean age of a sample. Strength of association between cognitive and neuroanatomical indices depended on the executive task used in the study. PFC volume correlated stronger with Wisconsin Card Sorting Test than with digit backwards span, Trail Making Test and verbal fluency. Significant effect size was observed in lateral and medial but not orbital PFC. The results support the “bigger is better” hypothesis of brain-behavior relation in healthy adults and suggest different neural correlates across the neuropsychological tests used to assess executive functions. PMID:24568942

  17. Neuroanatomical correlates of haptic object processing: combined evidence from tractography and functional neuroimaging.

    Science.gov (United States)

    Lee Masson, Haemy; Kang, Hyeok-Mook; Petit, Laurent; Wallraven, Christian

    2017-09-13

    Touch delivers a wealth of information already from birth, helping infants to acquire knowledge about a variety of important object properties using their hands. Despite the fact that we are touch experts as much as we are visual experts, surprisingly, little is known how our perceptual ability in touch is linked to either functional or structural aspects of the brain. The present study, therefore, investigates and identifies neuroanatomical correlates of haptic perceptual performance using a novel, multi-modal approach. For this, participants' performance in a difficult shape categorization task was first measured in the haptic domain. Using a multi-modal functional magnetic resonance imaging and diffusion-weighted magnetic resonance imaging analysis pipeline, functionally defined and anatomically constrained white-matter pathways were extracted and their microstructural characteristics correlated with individual variability in haptic categorization performance. Controlling for the effects of age, total intracranial volume and head movements in the regression model, haptic performance was found to correlate significantly with higher axial diffusivity in functionally defined superior longitudinal fasciculus (fSLF) linking frontal and parietal areas. These results were further localized in specific sub-parts of fSLF. Using additional data from a second group of participants, who first learned the categories in the visual domain and then transferred to the haptic domain, haptic performance correlates were obtained in the functionally defined inferior longitudinal fasciculus. Our results implicate SLF linking frontal and parietal areas as an important white-matter track in processing touch-specific information during object processing, whereas ILF relays visually learned information during haptic processing. Taken together, the present results chart for the first time potential neuroanatomical correlates and interactions of touch-related object processing.

  18. A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN).

    Science.gov (United States)

    Keator, David B; Grethe, J S; Marcus, D; Ozyurt, B; Gadde, S; Murphy, Sean; Pieper, S; Greve, D; Notestine, R; Bockholt, H J; Papadopoulos, P

    2008-03-01

    The aggregation of imaging, clinical, and behavioral data from multiple independent institutions and researchers presents both a great opportunity for biomedical research as well as a formidable challenge. Many research groups have well-established data collection and analysis procedures, as well as data and metadata format requirements that are particular to that group. Moreover, the types of data and metadata collected are quite diverse, including image, physiological, and behavioral data, as well as descriptions of experimental design, and preprocessing and analysis methods. Each of these types of data utilizes a variety of software tools for collection, storage, and processing. Furthermore sites are reluctant to release control over the distribution and access to the data and the tools. To address these needs, the Biomedical Informatics Research Network (BIRN) has developed a federated and distributed infrastructure for the storage, retrieval, analysis, and documentation of biomedical imaging data. The infrastructure consists of distributed data collections hosted on dedicated storage and computational resources located at each participating site, a federated data management system and data integration environment, an Extensible Markup Language (XML) schema for data exchange, and analysis pipelines, designed to leverage both the distributed data management environment and the available grid computing resources.

  19. Integrating research and clinical neuroimaging for the evaluation of traumatic brain injury recovery

    Science.gov (United States)

    Senseney, Justin; Ollinger, John; Graner, John; Lui, Wei; Oakes, Terry; Riedy, Gerard

    2015-03-01

    Advanced MRI research and other imaging modalities may serve as biomarkers for the evaluation of traumatic brain injury (TBI) recovery. However, these advanced modalities typically require off-line processing which creates images that are incompatible with radiologist viewing software sold commercially. AGFA Impax is an example of such a picture archiving and communication system(PACS) that is used by many radiology departments in the United States Military Health System. By taking advantage of Impax's use of the Digital Imaging and Communications in Medicine (DICOM) standard, we developed a system that allows for advanced medical imaging to be incorporated into clinical PACS. Radiology research can now be conducted using existing clinical imaging display platforms resources in combination with image processingtechniques that are only available outside of the clinical scanning environment. We extracted the spatial and identification elements of theDICOM standard that are necessary to allow research images to be incorporatedinto a clinical radiology system, and developed a tool that annotates research images with the proper tags. This allows for the evaluation of imaging representations of biological markers that may be useful in theevaluation of TBI and TBI recovery.

  20. A Problem-Solving Task Specialized for Functional Neuroimaging: Validation of the Scarborough adaptation of the Tower of London (S-TOL using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Anthony Charles Ruocco

    2014-03-01

    Full Text Available Problem-solving is an executive function subserved by a network of neural structures of which the dorsolateral prefrontal cortex (DLPFC is central. Whereas several studies have evaluated the role of the DLPFC in problem-solving, few standardized tasks have been developed specifically for use with functional neuroimaging. The current study adapted a measure with established validity for the assessment of problem-solving abilities to design a test more suitable for functional neuroimaging protocols. The Scarborough adaptation of the Tower of London (S-TOL was administered to 38 healthy adults while hemodynamic oxygenation of the PFC was measured using 16-channel continuous-wave functional near-infrared spectroscopy. Compared to a baseline condition, problems that required two or three steps to achieve a goal configuration were associated with higher activation in the left DLPFC and deactivation in the medial PFC. Individuals scoring higher in trait deliberation showed consistently higher activation in the left DLPFC regardless of task difficulty, whereas individuals lower in this trait displayed less activation when solving simple problems. Based on these results, the S-TOL may serve as a standardized task to evaluate problem-solving abilities in functional neuroimaging studies.

  1. A problem-solving task specialized for functional neuroimaging: validation of the Scarborough adaptation of the Tower of London (S-TOL) using near-infrared spectroscopy.

    Science.gov (United States)

    Ruocco, Anthony C; Rodrigo, Achala H; Lam, Jaeger; Di Domenico, Stefano I; Graves, Bryanna; Ayaz, Hasan

    2014-01-01

    Problem-solving is an executive function subserved by a network of neural structures of which the dorsolateral prefrontal cortex (DLPFC) is central. Whereas several studies have evaluated the role of the DLPFC in problem-solving, few standardized tasks have been developed specifically for use with functional neuroimaging. The current study adapted a measure with established validity for the assessment of problem-solving abilities to design a test more suitable for functional neuroimaging protocols. The Scarborough adaptation of the Tower of London (S-TOL) was administered to 38 healthy adults while hemodynamic oxygenation of the PFC was measured using 16-channel continuous-wave functional near-infrared spectroscopy (fNIRS). Compared to a baseline condition, problems that required two or three steps to achieve a goal configuration were associated with higher activation in the left DLPFC and deactivation in the medial PFC. Individuals scoring higher in trait deliberation showed consistently higher activation in the left DLPFC regardless of task difficulty, whereas individuals lower in this trait displayed less activation when solving simple problems. Based on these results, the S-TOL may serve as a standardized task to evaluate problem-solving abilities in functional neuroimaging studies.

  2. A Review of Neuropsychological and Neuroimaging Research in Autistic Spectrum Disorders: Attention, Inhibition and Cognitive Flexibility

    Science.gov (United States)

    Sanders, Jane; Johnson, Katherine A.; Garavan, Hugh; Gill, Michael; Gallagher, Louise

    2008-01-01

    Autistic spectrum disorders (ASD) are devastating neurodevelopmental disorders of unknown aetiology with characteristic deficits in social interaction, communication and behaviour. Individuals with ASD show deficits in executive function (EF), which are hypothesised to underlie core repetitive, stereotyped behaviours of autism. Neuroimaging…

  3. Neuroimaging in aphasia treatment research : Standards for establishing the effects of treatment

    NARCIS (Netherlands)

    Kiran, Swathi; Ansaldo, Ana; Bastiaanse, Roelien; Cherney, Leora R.; Howard, David; Faroqi-Shah, Yasmeen; Meinzer, Marcus; Thompson, Cynthia K.

    2013-01-01

    The goal of this paper is to discuss experimental design options available for establishing the effects of treatment in studies that aim to examine the neural mechanisms associated with treatment-induced language recovery in aphasia, using functional magnetic resonance imaging (fMRI). We present

  4. A Review of Neuropsychological and Neuroimaging Research in Autistic Spectrum Disorders: Attention, Inhibition and Cognitive Flexibility

    Science.gov (United States)

    Sanders, Jane; Johnson, Katherine A.; Garavan, Hugh; Gill, Michael; Gallagher, Louise

    2008-01-01

    Autistic spectrum disorders (ASD) are devastating neurodevelopmental disorders of unknown aetiology with characteristic deficits in social interaction, communication and behaviour. Individuals with ASD show deficits in executive function (EF), which are hypothesised to underlie core repetitive, stereotyped behaviours of autism. Neuroimaging…

  5. Neuroimaging in aphasia treatment research : Standards for establishing the effects of treatment

    NARCIS (Netherlands)

    Kiran, Swathi; Ansaldo, Ana; Bastiaanse, Roelien; Cherney, Leora R.; Howard, David; Faroqi-Shah, Yasmeen; Meinzer, Marcus; Thompson, Cynthia K.

    2013-01-01

    The goal of this paper is to discuss experimental design options available for establishing the effects of treatment in studies that aim to examine the neural mechanisms associated with treatment-induced language recovery in aphasia, using functional magnetic resonance imaging (fMRI). We present bot

  6. Hybrid ultrasound and dual-wavelength optoacoustic biomicroscopy for functional neuroimaging

    Science.gov (United States)

    Rebling, Johannes; Estrada, Hector; Zwack, Michael; Sela, Gali; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Many neurological disorders are linked to abnormal activation or pathological alterations of the vasculature in the affected brain region. Obtaining simultaneous morphological and physiological information of neurovasculature is very challenging due to the acoustic distortions and intense light scattering by the skull and brain. In addition, the size of cerebral vasculature in murine brains spans an extended range from just a few microns up to about a millimeter, all to be recorded in 3D and over an area of several dozens of mm2. Numerous imaging techniques exist that excel at characterizing certain aspects of this complex network but are only capable of providing information on a limited spatiotemporal scale. We present a hybrid ultrasound and dual-wavelength optoacoustic microscope, capable of rapid imaging of murine neurovasculature in-vivo, with high spatial resolution down to 12 μm over a large field of view exceeding 50mm2. The dual wavelength imaging capability allows for the visualization of functional blood parameters through an intact skull while pulse-echo ultrasound biomicroscopy images are captured simultaneously by the same scan head. The flexible hybrid design in combination with fast high-resolution imaging in 3D holds promise for generating better insights into the architecture and function of the neurovascular system.

  7. Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies.

    Science.gov (United States)

    Silverman, Merav H; Jedd, Kelly; Luciana, Monica

    2015-11-15

    Behavioral responses to, and the neural processing of, rewards change dramatically during adolescence and may contribute to observed increases in risk-taking during this developmental period. Functional MRI (fMRI) studies suggest differences between adolescents and adults in neural activation during reward processing, but findings are contradictory, and effects have been found in non-predicted directions. The current study uses an activation likelihood estimation (ALE) approach for quantitative meta-analysis of functional neuroimaging studies to: (1) confirm the network of brain regions involved in adolescents' reward processing, (2) identify regions involved in specific stages (anticipation, outcome) and valence (positive, negative) of reward processing, and (3) identify differences in activation likelihood between adolescent and adult reward-related brain activation. Results reveal a subcortical network of brain regions involved in adolescent reward processing similar to that found in adults with major hubs including the ventral and dorsal striatum, insula, and posterior cingulate cortex (PCC). Contrast analyses find that adolescents exhibit greater likelihood of activation in the insula while processing anticipation relative to outcome and greater likelihood of activation in the putamen and amygdala during outcome relative to anticipation. While processing positive compared to negative valence, adolescents show increased likelihood for activation in the posterior cingulate cortex (PCC) and ventral striatum. Contrasting adolescent reward processing with the existing ALE of adult reward processing reveals increased likelihood for activation in limbic, frontolimbic, and striatal regions in adolescents compared with adults. Unlike adolescents, adults also activate executive control regions of the frontal and parietal lobes. These findings support hypothesized elevations in motivated activity during adolescence.

  8. Development of optical neuroimaging to detect drug-induced brain functional changes in vivo

    Science.gov (United States)

    Du, Congwu; Pan, Yingtian

    2014-03-01

    Deficits in prefrontal function play a crucial role in compulsive cocaine use, which is a hallmark of addiction. Dysfunction of the prefrontal cortex might result from effects of cocaine on neurons as well as from disruption of cerebral blood vessels. However, the mechanisms underlying cocaine's neurotoxic effects are not fully understood, partially due to technical limitations of current imaging techniques (e.g., PET, fMRI) to differentiate vascular from neuronal effects at sufficiently high temporal and spatial resolutions. We have recently developed a multimodal imaging platform which can simultaneously characterize the changes in cerebrovascular hemodynamics, hemoglobin oxygenation and intracellular calcium fluorescence for monitoring the effects of cocaine on the brain. Such a multimodality imaging technique (OFI) provides several uniquely important merits, including: 1) a large field-of-view, 2) high spatiotemporal resolutions, 3) quantitative 3D imaging of the cerebral blood flow (CBF) networks, 4) label-free imaging of hemodynamic changes, 5) separation of vascular compartments (e.g., arterial and venous vessels) and monitoring of cortical brain metabolic changes, 6) discrimination of cellular (neuronal) from vascular responses. These imaging features have been further advanced in combination with microprobes to form micro-OFI that allows quantification of drug effects on subcortical brain. In addition, our ultrahigh-resolution ODT (μODT) enables 3D microangiography and quantitative imaging of capillary CBF networks. These optical strategies have been used to investigate the effects of cocaine on brain physiology to facilitate the studies of brain functional changes induced by addictive substance to provide new insights into neurobiological effects of the drug on the brain.

  9. SPECT neuroimaging and neuropsychological functions in different stages of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Paschali, Anna; Lakiotis, Velissarios; Vassilakos, Pavlos [University of Patras Medical School, Department of Nuclear Medicine, Patras (Greece); Messinis, Lambros; Kargiotis, Odysseas; Papathanasopoulos, Panagiotis [University of Patras Medical School, Department of Neurology, Neuropsychology Section, Patras (Greece); Kefalopoulou, Zinovia; Constantoyannis, Costantinos [University of Patras Medical School, Department of Neurosurgery, Patras (Greece)

    2010-06-15

    The present study investigated differences and associations between cortical perfusion, nigrostriatal dopamine pathway and neuropsychological functions in different stages of Parkinson's disease (PD). We recruited 53 non-demented PD patients divided into four groups according to the Hoehn and Yahr (HY) staging system and 20 healthy controls who were used in the comparison of the neuropsychological findings. Each patient underwent two separate brain single photon emission computed tomography (SPECT) studies (perfusion and dopamine transporter binding) as well as neuropsychological evaluation. Perfusion images of each patient were quantified and compared with a normative database provided by the NeuroGam software manufacturers. Mean values obtained from the cortical areas and neuropsychological measures in the different groups were also compared by analysis of covariance (ANCOVA) controlling for disease duration and educational level. We found cognitive deficits especially in the late PD stages (HY 3, 4 and 5) compared to the early stages (HY 1 and 2) and associations between cognitive decrements and cortical perfusion deterioration mainly in the frontal and posterior cortical areas. Compared with controls, PD patients showed impairments of cognition and cerebral perfusion that increased with clinical severity. Furthermore, we found a significant correlation between the performance on the phonemic fluency task and regional cerebral blood flow (rCBF) in the left frontal lobe. Dopamine transporter binding in the left caudate nucleus significantly correlated with blood flow in the left dorsolateral prefrontal cortex (DLPFC), but not with measures of executive functions. There are significant cognitive and perfusion deficits associated with PD progression, implying a multifactorial neurodegeneration process apart from dopamine depletion in the substantia nigra pars compacta (SNc). (orig.)

  10. Volunteerism and self-selection bias in human positron emission tomography neuroimaging research.

    Science.gov (United States)

    Oswald, Lynn M; Wand, Gary S; Zhu, Shijun; Selby, Victoria

    2013-06-01

    Scientists have known for decades that persons who volunteer for behavioral research may be different from those who decline participation and that characteristics differentiating volunteers from non-volunteers may vary depending on the nature of the research. There is evidence that volunteer self-selection can impact representativeness of samples in studies involving physically or psychologically stressful procedures, such as electric shocks, sensory isolation, or drug effects. However, the degree to which self-selection influences sample characteristics in "stressful" studies involving positron emission tomography (PET) has not been evaluated. Since estimation of population parameters, robustness of findings, and validity of inferred relationships can all be impacted by volunteer bias, it is important to determine if self-selection may act as an unrecognized confound in such studies. In the present investigation, we obtained baseline data on 114 (56M, 58F) subjects who participated in a study involving completion of several self-report questionnaires and behavioral performance tasks. Participants were later given the opportunity to enroll in an [11C]raclopride PET study involving intravenous amphetamine (AMPH) administration. Demographic characteristics, personality traits, and task performance of subjects who consented to the latter study were compared with those who declined participation. Findings showed that the principal personality trait that distinguished the two groups was sensation-seeking; volunteers scored significantly higher on this dimension than non-volunteers. Males were more likely to volunteer than females. However, results of mediation analysis suggested that the relationship between gender and volunteer status was mediated by greater sensation-seeking traits in the males. Implications of these findings are discussed.

  11. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism.

    Directory of Open Access Journals (Sweden)

    Luca Dodero

    Full Text Available BTBR T+tf/J (BTBR mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6, a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The

  12. Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders.

    Science.gov (United States)

    Lin, Chia-Shu

    2014-01-01

    Brain neuroimaging has been widely used to investigate the bran signature of chronic orofacial pain, including trigeminal neuropathic pain (TNP) and pain related to temporomandibular joint disorders (TMD). We here systematically reviewed the neuroimaging literature regarding the functional and structural changes in the brain of TNP and TMD pain patients, using a computerized search of journal articles via PubMed. Ten TNP studies and 14 TMD studies were reviewed. Study quality and risk of bias were assessed based on the criteria of patient selection, the history of medication, the use of standardized pain/psychological assessments, and the model and statistics of imaging analyses. Qualitative meta-analysis was performed by examining the brain regions which showed significant changes in either brain functions (including the blood-oxygen-level dependent signal, cerebral blood flow and the magnetic resonance spectroscopy signal) or brain structure (including gray matter and white matter anatomy). We hypothesized that the neuroimaging findings would display a common pattern as well as distinct patterns of brain signature in the disorders. This major hypothesis was supported by the following findings: (1) TNP and TMD patients showed consistent functional/structural changes in the thalamus and the primary somatosensory cortex, indicating the thalamocortical pathway as the major site of plasticity. (2) The TNP patients showed more alterations at the thalamocortical pathway, and the two disorders showed distinct patterns of thalamic and insular connectivity. Additionally, functional and structural changes were frequently reported in the prefrontal cortex and the basal ganglia, suggesting the role of cognitive modulation and reward processing in chronic orofacial pain. The findings highlight the potential for brain neuroimaging as an investigating tool for understanding chronic orofacial pain.

  13. Seeking the aetiology of autistic spectrum disorder. Part 2: functional neuroimaging [W poszukiwaniu przyczyn zaburzeń ze spektrum autyzmu – neuroobrazowanie funkcjonalne (część II

    Directory of Open Access Journals (Sweden)

    Bryńska, Anita

    2012-12-01

    Full Text Available Multiple functional imaging techniques help to a better understanding of the neurobiological basis of autism-spectrum disorders (ASD. The early functional imaging studies on ASD focused on task-specific methods related to core symptom domains and explored patterns of activation in response to face processing, theory of mind tasks, language processing and executive function tasks. On the other hand, fMRI research in ASD focused on the development of functional connectivity methods and has provided evidence of alterations in cortical connectivity in ASD and establish autism as a disorder of under-connectivity among the brain regions participating in cortical networks. This atypical functional connectivity in ASD results in inefficiency and poor integration of processing in network connections to achieve task performance. The goal of this review is to summarise the actual neuroimaging functional data and examine their implication for understanding of the neurobiology of ASD.

  14. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    Science.gov (United States)

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  15. An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging.

    Directory of Open Access Journals (Sweden)

    Daniel A Wagenaar

    Full Text Available Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 μs, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes.

  16. Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings.

    Science.gov (United States)

    Avidan, Galia; Hasson, Uri; Malach, Rafael; Behrmann, Marlene

    2005-07-01

    Specific regions of the human occipito-temporal cortex are consistently activated in functional imaging studies of face processing. To understand the contribution of these regions to face processing, we examined the pattern of fMRI activation in four congenital prosopagnosic (CP) individuals who are markedly impaired at face processing despite normal vision and intelligence, and with no evidence of brain damage. These individuals evinced a normal pattern of fMRI activation in the fusiform gyrus (FFA) and in other ventral occipito-temporal areas, in response to faces, buildings, and other objects, shown both as line drawings in detection and discrimination tasks and under more naturalistic testing conditions when no task was required. CP individuals also showed normal adaptation levels in a block-design adaptation experiment and, like control subjects, exhibited evidence of global face representation in the FFA. The absence of a BOLD-behavioral correlation (profound behavioral deficit, normal face-related activation in the ventral occipito-temporal cortex) challenges existing accounts of face representation, and suggests that activation in these cortical regions per se is not sufficient to ensure intact face processing.

  17. Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Rubi Hammer

    2015-01-01

    Full Text Available Finding neurobiological markers for neurodevelopmental disorders, such as attention deficit and hyperactivity disorder (ADHD, is a major objective of clinicians and neuroscientists. We examined if functional Magnetic Resonance Imaging (fMRI data from a few distinct visuospatial working memory (VSWM tasks enables accurately detecting cases with ADHD. We tested 20 boys with ADHD combined type and 20 typically developed (TD boys in four VSWM tasks that differed in feedback availability (feedback, no-feedback and reward size (large, small. We used a multimodal analysis based on brain activity in 16 regions of interest, significantly activated or deactivated in the four VSWM tasks (based on the entire participants' sample. Dimensionality of the data was reduced into 10 principal components that were used as the input variables to a logistic regression classifier. fMRI data from the four VSWM tasks enabled a classification accuracy of 92.5%, with high predicted ADHD probability values for most clinical cases, and low predicted ADHD probabilities for most TDs. This accuracy level was higher than those achieved by using the fMRI data of any single task, or the respective behavioral data. This indicates that task-based fMRI data acquired while participants perform a few distinct VSWM tasks enables improved detection of clinical cases.

  18. Functional Neuroimaging Correlates of Burnout among Internal Medicine Residents and Faculty Members

    Directory of Open Access Journals (Sweden)

    Steven J Durning

    2013-10-01

    Full Text Available Burnout is prevalent in residency training and practice and is linked to medical error and suboptimal patient care. However, little is known about how burnout affects clinical reasoning, which is essential to safe and effective care. The aim of this study was to examine how burnout modulates brain activity during clinical reasoning in physicians. Using functional Magnetic Resonance Imaging (fMRI, brain activity was assessed in internal medicine residents (n=10 and board-certified internists (faculty, n=17 from the Uniformed Services University (USU while they answered and reflected upon United States Medical Licensing Examination and American Board of Internal Medicine multiple-choice questions. Participants also completed a validated two-item burnout scale, which includes an item assessing emotional exhaustion and an item assessing depersonalization. Whole brain covariate analysis was used to examine blood-oxygen-level-dependent (BOLD signal during answering and reflecting upon clinical problems with respect to burnout scores. Higher depersonalization scores were associated with less BOLD signal in the right dorsolateral prefrontal cortex and middle frontal gyrus during reflecting on clinical problems and less BOLD signal in the bilateral precuneus while answering clinical problems in residents. Higher emotional exhaustion scores were associated with more right posterior cingulate cortex and middle frontal gyrus BOLD signal in residents. Examination of faculty revealed no significant influence of burnout on brain activity. Residents appear to be more susceptible to burnout effects on clinical reasoning, which may indicate that residents may need both cognitive and emotional support to improve quality of life and to optimize performance and learning. These results inform our understanding of mental stress, cognitive control as well as cognitive load theory.

  19. Working memory, reasoning, and expertise in medicine-insights into their relationship using functional neuroimaging.

    Science.gov (United States)

    Hruska, Pam; Krigolson, Olav; Coderre, Sylvain; McLaughlin, Kevin; Cortese, Filomeno; Doig, Christopher; Beran, Tanya; Wright, Bruce; Hecker, Kent G

    2016-12-01

    Clinical reasoning is dependent upon working memory (WM). More precisely, during the clinical reasoning process stored information within long-term memory is brought into WM to facilitate the internal deliberation that affords a clinician the ability to reason through a case. In the present study, we examined the relationship between clinical reasoning and WM while participants read clinical cases with functional magnetic resonance imaging (fMRI). More specifically, we examined the impact of clinical case difficulty (easy, hard) and clinician level of expertise (2nd year medical students, senior gastroenterologists) on neural activity within regions of cortex associated with WM (i.e., the prefrontal cortex) during the reasoning process. fMRI was used to scan ten second-year medical students and ten practicing gastroenterologists while they reasoned through sixteen clinical cases [eight straight forward (easy) and eight complex (hard)] during a single 1-h scanning session. Within-group analyses contrasted the easy and hard cases which were then subsequently utilized for a between-group analysis to examine effects of expertise (novice > expert, expert > novice). Reading clinical cases evoked multiple neural activations in occipital, prefrontal, parietal, and temporal cortical regions in both groups. Importantly, increased activation in the prefrontal cortex in novices for both easy and hard clinical cases suggests novices utilize WM more so than experts during clinical reasoning. We found that clinician level of expertise elicited differential activation of regions of the human prefrontal cortex associated with WM during clinical reasoning. This suggests there is an important relationship between clinical reasoning and human WM. As such, we suggest future models of clinical reasoning take into account that the use of WM is not consistent throughout all clinical reasoning tasks, and that memory structure may be utilized differently based on level of expertise.

  20. Functional neuroimaging indicators of successful executive control in the oldest old.

    Science.gov (United States)

    Rosano, C; Aizenstein, H; Cochran, J; Saxton, J; De Kosky, S; Newman, A B; Kuller, L H; Lopez, O L; Carter, C S

    2005-12-01

    Attentional control, motor planning abilities, and executive cognitive functions (ECF) rapidly decline with age. In particular, older adults experience difficulty in manipulating selected motor responses in the presence of conflicting or distracting information. To examine age-related changes in the neural substrates of the attentional and motor planning components of ECF, we assessed the patterns of brain activation in 8 cognitively normal older adults (mean age 81.5) and 20 young individuals (mean age 23.0) while they responded to low and high loads of attentional demands of the Preparing to Overcome Prepotency (POP) task. In the POP task, the selection of one out of two possible motor responses in the presence of increasing attentional task loads determines the accuracy of the performance. Older individuals were slower than young adults (P Brodmann areas 7 and 40), and dorsolateral prefrontal cortex (dLPFC: Brodmann areas 9, 45, and 46) bilaterally. Compared to young individuals, older adults had lower activation in dLPFC (Brodmann areas 9, 45, and 46: P = 0.007, P = 0.043, and P = 0.040) and Brodmann area 7, P = 0.002. Activation in Brodmann areas 40 and ACC was similar in the two groups (P > 0.05). Among older adults, the most successful performers were those who responded to increasing task loads with greater activation in PPC (Brodmann area 40), despite lower dLPFC activation. Older adults who are able to perform executive control tasks as well as young adults, also seem to implement speed-accuracy trade-off strategies which may rely on increased parietal activation.

  1. Functional Neuroimaging Predictors of Self-Reported Psychotic Symptoms in Adolescents.

    Science.gov (United States)

    Bourque, Josiane; Spechler, Philip A; Potvin, Stéphane; Whelan, Robert; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Quinlan, Erin Burke; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Paillère-Martinot, Marie-Laure; McEwen, Sarah C; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Paus, Tomáš; Poustka, Luise; Smolka, Michael N; Vetter, Nora C; Walter, Henrik; Schumann, Gunter; Garavan, Hugh; Conrod, Patricia J

    2017-06-01

    This study investigated the neural correlates of psychotic-like experiences in youths during tasks involving inhibitory control, reward anticipation, and emotion processing. A secondary aim was to test whether these neurofunctional correlates of risk were predictive of psychotic symptoms 2 years later. Functional imaging responses to three paradigms-the stop-signal, monetary incentive delay, and faces tasks-were collected in youths at age 14, as part of the IMAGEN study. At baseline, youths from London and Dublin sites were assessed on psychotic-like experiences, and those reporting significant experiences were compared with matched control subjects. Significant brain activity differences between the groups were used to predict, with cross-validation, the presence of psychotic symptoms in the context of mood fluctuation at age 16, assessed in the full sample. These prediction analyses were conducted with the London-Dublin subsample (N=246) and the full sample (N=1,196). Relative to control subjects, youths reporting psychotic-like experiences showed increased hippocampus/amygdala activity during processing of neutral faces and reduced dorsolateral prefrontal activity during failed inhibition. The most prominent regional difference for classifying 16-year-olds with mood fluctuation and psychotic symptoms relative to the control groups (those with mood fluctuations but no psychotic symptoms and those with no mood symptoms) was hyperactivation of the hippocampus/amygdala, when controlling for baseline psychotic-like experiences and cannabis use. The results stress the importance of the limbic network's increased response to neutral facial stimuli as a marker of the extended psychosis phenotype. These findings might help to guide early intervention strategies for at-risk youths.

  2. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies

    NARCIS (Netherlands)

    Sescousse, G.T.; Caldu, X.; Segura, B.; Dreher, J.C.

    2013-01-01

    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human b

  3. Functional Neuroimaging in Dementia

    NARCIS (Netherlands)

    J.M. Papma (Janne)

    2012-01-01

    textabstractDementia refers to a clinical syndrome of cognitive deterioration and difficulty in the performance of activities of daily living. The most common cause of dementia is Alzheimer’s disease (AD), followed by vascular dementia (VaD) at old age and frontotemporal dementia (FTD) at young onse

  4. Advances on functional neuroimaging in substance misuse%人脑功能显像研究药物成瘾的新进展

    Institute of Scientific and Technical Information of China (English)

    吕荣彬; 韩梅; 刘兴党

    2009-01-01

    Over the past decade, functional neuroimaging has contributed greatly to our knowledge about the neuropharmacology of substance misuse in man. In this review, discussed the application and the progress of the positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging in the substance misuse. After reading some papers, found that the dopamine transporter was significantly decreased in the brain of subjects with heroin abuse. Also observed a significant decrease of regional cerebral blood flow in bilateral cerebral frontal lobes, temporal lobes, the insula and the ipsilateral basal nuclei in substance misuse subjects. Taken together, functional images will lead the direction in future research formedication development of addiction treatment.%神经功能影像技术为认识人类药物成瘾的神经药理学机制提供了很大帮助.该文在阅读神经功能影像技术在药物成瘾研究中应用的及国内外相关文献的基础上,探讨药物成瘾者在依赖、戒断、复发等不同状态下脑内血流灌注、葡萄糖代谢、神经受体及转运体等发生的形态和功能活动的改变,以寻求与药物成瘾相关的神经核团、神经通路以及受体作用系统,从而了解药物成瘾的神经生物学基础,为寻找有效的治疗措施提供理论基础.

  5. Delirium and hypovitaminosis D: neuroimaging findings.

    Science.gov (United States)

    Bourgeois, James A; Hategan, Ana; Ford, Jennifer; Tisi, Daniel K; Xiong, Glen L

    2015-01-01

    The authors examined the frequency of neuroimaging findings of cortical atrophy and/or cerebrovascular disease in patients with delirium with hypovitaminosis D and normal vitamin D levels. Of 32 patients with delirium with hypovitaminosis D who were neuroimaged, 91.4% had neuroimaging findings, despite only five cases having a comorbid diagnosis of dementia. Similar frequencies of cortical atrophy and/or cerebrovascular disease were found in patients with delirium with normal vitamin D levels. Further research with a larger sample size is needed to compare neuroimaging findings between normal patients and patients with hypovitaminosis D with delirium.

  6. Neuroimaging of the Functional and Structural Networks Underlying Visuospatial vs. Linguistic Reasoning in High-Functioning Autism

    Science.gov (United States)

    Sahyoun, Cherif P.; Belliveau, John W.; Soulieres, Isabelle; Schwartz, Shira; Mody, Maria

    2010-01-01

    High-functioning individuals with autism have been found to favor visuospatial processing in the face of typically poor language abilities. We aimed to examine the neurobiological basis of this difference using functional magnetic resonance imaging and diffusion tensor imaging. We compared 12 children with high functioning autism (HFA) to 12 age-…

  7. Neuroimaging craving: urge intensity matters.

    Science.gov (United States)

    Wilson, Stephen J; Sayette, Michael A

    2015-02-01

    Functional neuroimaging has become an increasingly common tool for studying drug craving. Furthermore, functional neuroimaging studies, which have addressed an incredibly diverse array of questions regarding the nature and treatment of craving, have had a substantial impact on theoretical models of addiction. Here, we offer three points related to this sizeable and influential body of research. First, we assert that the craving most investigators seek to study represents not just a desire but a strong desire to use drugs, consistent with prominent theoretical and clinical descriptions of craving. Secondly, we highlight that, despite the clear conceptual and clinical emphasis on craving as an intense desire, brain imaging studies often have been designed explicitly in a way that reduces the ability to generate powerful cravings. We illustrate this point by reviewing the peak urge levels endorsed by participants in functional magnetic resonance imaging (fMRI) studies of cigarette craving in nicotine-deprived versus non-deprived smokers. Thirdly, we suggest that brain responses measured during mild states of desire (such as following satiety) differ in fundamental ways from those measured during states of overpowering desire (i.e. craving) to use drugs. We support this position by way of a meta-analysis revealing that fMRI cue exposure studies using nicotine-deprived smokers have produced different patterns of brain activation to those using non-deprived smokers. Regarding brain imaging studies of craving, intensity of the urges matter, and more explicit attention to urge intensity in future work has the potential to yield valuable information about the nature of craving. © 2014 Society for the Study of Addiction.

  8. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  9. Neuroimaging studies of the hippocampus in schizophrenia.

    Science.gov (United States)

    Heckers, S

    2001-01-01

    Three neuroimaging techniques, morphometric neuroimaging, magnetic resonance spectroscopy, and functional neuroimaging, have provided evidence for abnormal hippocampal structure and function in schizophrenia. Hippocampal volume reduction is now one of the most consistent structural abnormalities found in schizophrenia: it is present at the onset of the illness and, to a lesser degree, in first-degree relatives of schizophrenic probands. Decreased levels of N-acetyl-aspartate point towards a cellular basis of such volume changes. Functional neuroimaging studies have demonstrated abnormal levels of hippocampal activity at rest, during the experience of auditory hallucinations, and during the performance of memory retrieval tasks. These results of neuroimaging studies complement evidence from post-mortem and behavioral studies, which have found regionally specific abnormalities of the hippocampus and of memory function in schizophrenia.

  10. Trends in performance indicators of neuroimaging anatomy research publications: a bibliometric study of major neuroradiology journal output over four decades based on web of science database.

    Science.gov (United States)

    Wing, Louise; Massoud, Tarik F

    2015-01-01

    Quantitative, qualitative, and innovative application of bibliometric research performance indicators to anatomy and radiology research and education can enhance cross-fertilization between the two disciplines. We aim to use these indicators to identify long-term trends in dissemination of publications in neuroimaging anatomy (including both productivity and citation rates), which has subjectively waned in prestige during recent years. We examined publications over the last 40 years in two neuroradiological journals, AJNR and Neuroradiology, and selected and categorized all neuroimaging anatomy research articles according to theme and type. We studied trends in their citation activity over time, and mathematically analyzed these trends for 1977, 1987, and 1997 publications. We created a novel metric, "citation half-life at 10 years postpublication" (CHL-10), and used this to examine trends in the skew of citation numbers for anatomy articles each year. We identified 367 anatomy articles amongst a total of 18,110 in these journals: 74.2% were original articles, with study of normal anatomy being the commonest theme (46.7%). We recorded a mean of 18.03 citations for each anatomy article, 35% higher than for general neuroradiology articles. Graphs summarizing the rise (upslope) in citation rates after publication revealed similar trends spanning two decades. CHL-10 trends demonstrated that more recently published anatomy articles were likely to take longer to reach peak citation rate. Bibliometric analysis suggests that anatomical research in neuroradiology is not languishing. This novel analytical approach can be applied to other aspects of neuroimaging research, and within other subspecialties in radiology and anatomy, and also to foster anatomical education. © 2014 Wiley Periodicals, Inc.

  11. The use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain

    OpenAIRE

    Jensen, Karin B.; Berna, Chantal; Loggia, Marco L.; Wasan, Ajay; Edwards, Robert R; Randy L Gollub

    2012-01-01

    A large number of studies have provided evidence for the efficacy of psychological and other non-pharmacological interventions in the treatment of chronic pain. While these methods are increasingly used to treat pain, remarkably few studies focused on the exploration of their neural correlates. The aim of this article was to review the findings from neuroimaging studies that evaluated the neural response to distraction-based techniques, cognitive behavioral therapy (CBT), clinical hypnosis, m...

  12. Reprint of "Does Functional Neuroimaging Solve the Questions of Neurolinguistics?" [Brain and Language 98 (2006) 276-290

    Science.gov (United States)

    Van Lancker Sidtis, Diana

    2007-01-01

    Neurolinguistic research has been engaged in evaluating models of language using measures from brain structure and function, and/or in investigating brain structure and function with respect to language representation using proposed models of language. While the aphasiological strategy, which classifies aphasias based on performance modality and a…

  13. Neuroethics, neuroimaging, and disorders of consciousness: promise or peril?

    Science.gov (United States)

    Fins, Joseph J

    2011-01-01

    The advent of powerful neuroimaging tools such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) has begun to redefine how we diagnose, define, and understand disorders of consciousness such as the vegetative and minimally conscious states. In my paper, I review how research using these methods is both elucidating these brain states and creating diagnostic dilemmas related to their classification as the specificity and sensitivity of traditional behavior-based assessments are weighed against sensitive but not yet fully validated neuroimaging data. I also consider how these methods are being studied as potential communication vectors for therapeutic use in subjects who heretofore have been thought to be unresponsive or minimally conscious. I conclude by considering the ethical challenges posed by novel diagnostic and therapeutic neuroimaging applications and contextualize these scientific developments against the broader needs of patients and families touched by severe brain injury.

  14. Developmental neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Dehaene-Lambertz, G. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM U562, 91 - Orsay (France)

    2006-07-01

    Cognitive capacities, such as language, mathematics, music, etc... are highly developed in humans as compared to animals. Numerous studies have found precursors of these capacities in infants: For example, infants are able to discriminate sentences in different languages (Mehler et al., 1988), distinguish sets of objects based on their numerosity (Feigenson et al., 2002) or recognize known faces (Bushnell, 1982). These abilities are not very different from those of other animals. Monkeys are also able to discriminate two human languages (Ramus et al., 2000), two quantities of items (Hauser et al., 2002), or respond to particular faces (Parr et al., 2000). In a few years, however, children surpass these animals. To explain the development of the cognitive capacities of our species, our approach consists in studying the initial stages of cerebral organization during the first months of life in order to characterize the critical parameters that allow infants to take advantage of their environment to achieve the adults' cognitive sophistication. Thanks to the recent progress of brain imaging, it is now possible to examine cerebral functioning of the very young child in entire security. In our team, we used two complementary methods: event-related potentials (ERPs) and functional magnetic resonance imaging (f MRI). ERPs, used since numerous years in infants, consist of the recording of the brain electrical activity consecutive to the presentation of a stimulus. By using a careful experimental design, it is possible to infer the succession of processing stages that the stimulus follows and to measure their latency (Dehaene-Lambertz and Dehaene, 1994; Gliga and Dehaene-Lambertz, 2006). High-density ERPs system allows also to record even small topographical differences between conditions and thus to infer that the underlying network s involved in the tested conditions are different. With this method, we have decomposed syllable perception in infants and underscore a

  15. Neuroimaging in Huntington's disease.

    Science.gov (United States)

    Niccolini, Flavia; Politis, Marios

    2014-06-28

    Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded trinucleotide CAG sequence in huntingtin gene (HTT) on chromosome 4. HD manifests with chorea, cognitive and psychiatric symptoms. Although advances in genetics allow identification of individuals carrying the HD gene, much is still unknown about the mechanisms underlying the development of overt clinical symptoms and the transitional period between premanifestation and manifestation of the disease. HD has no cure and patients rely only in symptomatic treatment. There is an urgent need to identify biomarkers that are able to monitor disease progression and assess the development and efficacy of novel disease modifying drugs. Over the past years, neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have provided important advances in our understanding of HD. MRI provides information about structural and functional organization of the brain, while PET can detect molecular changes in the brain. MRI and PET are able to detect changes in the brains of HD gene carriers years ahead of the manifestation of the disease and have also proved to be powerful in assessing disease progression. However, no single technique has been validated as an optimal biomarker. An integrative multimodal imaging approach, which combines different MRI and PET techniques, could be recommended for monitoring potential neuroprotective and preventive therapies in HD. In this article we review the current neuroimaging literature in HD.

  16. Development of PowerMap: a software package for statistical power calculation in neuroimaging studies.

    Science.gov (United States)

    Joyce, Karen E; Hayasaka, Satoru

    2012-10-01

    Although there are a number of statistical software tools for voxel-based massively univariate analysis of neuroimaging data, such as fMRI (functional MRI), PET (positron emission tomography), and VBM (voxel-based morphometry), very few software tools exist for power and sample size calculation for neuroimaging studies. Unlike typical biomedical studies, outcomes from neuroimaging studies are 3D images of correlated voxels, requiring a correction for massive multiple comparisons. Thus, a specialized power calculation tool is needed for planning neuroimaging studies. To facilitate this process, we developed a software tool specifically designed for neuroimaging data. The software tool, called PowerMap, implements theoretical power calculation algorithms based on non-central random field theory. It can also calculate power for statistical analyses with FDR (false discovery rate) corrections. This GUI (graphical user interface)-based tool enables neuroimaging researchers without advanced knowledge in imaging statistics to calculate power and sample size in the form of 3D images. In this paper, we provide an overview of the statistical framework behind the PowerMap tool. Three worked examples are also provided, a regression analysis, an ANOVA (analysis of variance), and a two-sample T-test, in order to demonstrate the study planning process with PowerMap. We envision that PowerMap will be a great aide for future neuroimaging research.

  17. Neuroimaging of autism

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, Judith S.; Cock, Paul de; Lagae, Lieven [University Hospitals of the Catholic University of Leuven, Department of Pediatrics, Leuven (Belgium); Sunaert, Stefan [University Hospitals of the Catholic University of Leuven, Department of Radiology, Leuven (Belgium)

    2010-01-15

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  18. Neuroimaging in tuberculous meningitis

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar Garg

    2016-01-01

    Full Text Available Tuberculous meningitis is a serious infection caused by Mycobacterium tuberculosis. Early diagnosis is the key to success of treatment. Neuroimaging plays a crucial role in the early and accurate diagnosis of tuberculous meningitis and its disabling complications. Magnetic resonance imaging is considered superior to computed tomography. Neuroimaging characteristics include leptomeningeal and basal cisternal enhancement, hydrocephalus, periventricular infarcts, and tuberculoma. Partially treated pyogenic meningitis, cryptococcal meningitis, viral encephalitis, carcinomatous, and lymphomatous meningitis may have many similar neuroimaging characteristics, and differentiation from tuberculous meningitis at times on the basis of neuroimaging characteristics becomes difficult.

  19. Neuroimaging of aggressive and violent behaviour in children and adolescents

    Directory of Open Access Journals (Sweden)

    Philipp Sterzer

    2009-10-01

    Full Text Available In recent years, a number of functional and structural neuroimaging studies have investigated the neural bases of aggressive and violent behaviour in children and adolescents. Most functional neuroimaging studies have persued the hypothesis that pathological aggression is a consequence of deficits in the neural circuits involved in emotion processing. There is converging evidence for deficient neural responses to emotional stimuli in youths with a propensity towards aggressive behaviour. In addition, recent neuroimaging work has suggested that aggressive behaviour is also associated with abnormalities in neural processes that subserve both the inhibitory control of behaviour and the flexible adaptation of behaviour in accord with reinforcement information. Structural neuroimaging studies in children and adolescents with conduct problems are still scarce, but point to deficits in brain structures in volved in the processing of social information and in the regulation of social and goal directed behaviour. The indisputable progress that this research field has made in recent years notwithstanding, the overall picture is still rather patchy and there are inconsistencies between studies that await clarification. Despite this, we attempt to provide an integrated view on the neural abnormalities that may contribute to various forms of juvenile aggression and violence, and discuss research strategies that may help to provide a more profound understanding of these important issues in the future.

  20. 基于神经心理学的功能神经影像学研究进展%Functional neuroimagings' investigation based on clinical neuropsychology

    Institute of Scientific and Technical Information of China (English)

    王晓平; Lassonde M; 王俊峰

    2009-01-01

    Neuropsychology, as well as cognitive neuroscience investigates the process of human cognition using several in vivo systemic approaches in order to explore neural mechanism. Besides the routine clinical neuropsychological assessments, up to date the latest neuroimaging techniques based on acoustics, optics, electricity and magnetism, have been applied to construct three-dimensional neuroimaging representations through mathematic models, and to identify functional areas or lesions in the brain. Presently, the combined use of functional MRI (fMRI) and event related potential (ERP) techniques is pioneering, especially when integrated synchronously.%当前神经心理学以及认知神经科学用整体的系统方法论来观察人类认知的过程,其中对人脑的内在神经过程的探索,除了临床神经心理学测试等方法外,则需要利用"声光电磁"等物理技术及数学模型三维再建.该文综述了功能磁共振和事件相关电位在功能神经影像学的活体功能解剖学观察中的应用,尤其是两者结合同步研究技术.

  1. Neuroimaging. Recent issues and future progresses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidenao [Kyoto Univ. (Japan). Graduate School of Medicine

    2002-07-01

    Recent advances in the technology of non-invasive neuroimaging techniques, include X-ray CT, magnetic resonance imaging, positron CT, etc. The trend of neuroimaging is from the diagnosis of the brain structural change to the functional localization of the brain function with accurate topographical data. Brain activation studies disclosed the responsible regions in the brain for various kinds of paradigms, including motor, sensory, cognitive functions. Another aspect of brain imaging shows the pathophysiological changes of the neurological disorders, such as Alzheimer's disease by abnormal CBF or metabolism changes. It is very important to note that the neurotransmitter receptor imaging is now available for various kinds of transmitters. We recently developed a new tracer for nicotinic type acetylcholine receptor, which might be involved in the pathophysiology of Alzheimer's disease and its treatment. In the near future, we will be able to visualize the proteins in the brain such as amyloid protein, which will make us to diagnose Alzheimer's patients accurately, and with respect to neuroscience research, not only neuronal functional localizations but also relationship between them will become important to disclose the functional aspects of the brain. (author)

  2. Auditory verbal hallucinations: neuroimaging and treatment.

    Science.gov (United States)

    Bohlken, M M; Hugdahl, K; Sommer, I E C

    2017-01-01

    Auditory verbal hallucinations (AVH) are a frequently occurring phenomenon in the general population and are considered a psychotic symptom when presented in the context of a psychiatric disorder. Neuroimaging literature has shown that AVH are subserved by a variety of alterations in brain structure and function, which primarily concentrate around brain regions associated with the processing of auditory verbal stimuli and with executive control functions. However, the direction of association between AVH and brain function remains equivocal in certain research areas and needs to be carefully reviewed and interpreted. When AVH have significant impact on daily functioning, several efficacious treatments can be attempted such as antipsychotic medication, brain stimulation and cognitive-behavioural therapy. Interestingly, the neural correlates of these treatments largely overlap with brain regions involved in AVH. This suggests that the efficacy of treatment corresponds to a normalization of AVH-related brain activity. In this selected review, we give a compact yet comprehensive overview of the structural and functional neuroimaging literature on AVH, with a special focus on the neural correlates of efficacious treatment.

  3. Neuroimaging Evidence of Comprehension Monitoring

    Directory of Open Access Journals (Sweden)

    Linda Baker

    2014-04-01

    Full Text Available The purpose of this article is to synthesize the emerging neuroimaging literature that reveals how the brain responds when readers and listeners encounter texts that demand monitoring of their ongoing comprehension processes. Much of this research has been undertaken by cognitive scientists who do not frame their work in metacognitive terms, and therefore it is less likely to be familiar to psychologists who study metacognition in educational contexts. The important role of metacognition in the development and use of academic skills is widely recognized. Metacognition is typically defined as the awareness and control of one's own cognitive processes. In the domain of reading, the most important metacognitive skill is comprehension monitoring, the evaluation and regulation of comprehension. Readers who monitor their understanding realize when they have encountered difficulty making sense of the text, and they apply error correction procedures to attempt to resolve the difficulty. Metacognition depends on executive control skills that continue to develop into early adulthood, in parallel with the maturation of the executive control regions of the prefrontal cortex. Functional magnetic resonance imaging (fMRI and event-related potentials (ERP have been used for some time to study neural correlates of basic reading processes such as word identification, but it is only within recent years that researchers have turned to the higher-level processes of text comprehension. The article describes illustrative studies that reveal changes in neural activity when adults apply lexical, syntactic, or semantic standards to evaluate their understanding.

  4. How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis?

    Science.gov (United States)

    Kempton, Matthew J; McGuire, Philip

    2015-05-01

    Early diagnosis and treatment of patients with psychosis are associated with improved outcome in terms of future functioning, symptoms and treatment response. Identifying neuroimaging biomarkers for illness onset and treatment response would lead to immediate clinical benefits. In this review we discuss if neuroimaging may be utilised to diagnose patients with psychosis, predict those who will develop the illness in those at high risk, and stratify patients. State-of-the-art developments in the field are critically examined including multicentre studies, longitudinal designs, multimodal imaging and machine learning as well as some of the challenges in utilising future neuroimaging biomarkers in clinical trials. As many of these developments are already being applied in neuroimaging studies of Alzheimer's disease, we discuss what lessons have been learned from this field and how they may be applied to research in psychosis. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. [Neuroimaging in psychiatry: multivariate analysis techniques for diagnosis and prognosis].

    Science.gov (United States)

    Kambeitz, J; Koutsouleris, N

    2014-06-01

    Multiple studies successfully applied multivariate analysis to neuroimaging data demonstrating the potential utility of neuroimaging for clinical diagnostic and prognostic purposes. Summary of the current state of research regarding the application of neuroimaging in the field of psychiatry. Literature review of current studies. Results of current studies indicate the potential application of neuroimaging data across various diagnoses, such as depression, schizophrenia, bipolar disorder and dementia. Potential applications include disease classification, differential diagnosis and prediction of disease course. The results of the studies are heterogeneous although some studies report promising findings. Further multicentre studies are needed with clearly specified patient populations to systematically investigate the potential utility of neuroimaging for the clinical routine.

  6. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: relationships to resting-state functional connectivity

    Science.gov (United States)

    Moeller, Scott J.; London, Edythe D.; Northoff, Georg

    2015-01-01

    Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications. PMID:26657968

  7. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: Relationships to resting-state functional connectivity.

    Science.gov (United States)

    Moeller, Scott J; London, Edythe D; Northoff, Georg

    2016-02-01

    Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    Science.gov (United States)

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  9. Neuroimaging Evidence of Comprehension Monitoring

    OpenAIRE

    Linda Baker; Alisa Zeliger-Kandasamy; Laura U. DeWyngaert

    2014-01-01

    The purpose of this article is to synthesize the emerging neuroimaging literature that reveals how the brain responds when readers and listeners encounter texts that demand monitoring of their ongoing comprehension processes. Much of this research has been undertaken by cognitive scientists who do not frame their work in metacognitive terms, and therefore it is less likely to be familiar to psychologists who study metacognition in educational contexts. The important role of metacognition in t...

  10. Functional imaging and related techniques: An introduction for rehabilitation researchers

    Directory of Open Access Journals (Sweden)

    Bruce Crosson, PhD

    2010-04-01

    Full Text Available Over the past 25 years, techniques to image brain structure and function have offered investigators in the cognitive neurosciences and related fields unprecedented opportunities to study how human brain systems work and are connected. Indeed, the number of peer-reviewed research articles using these techniques has grown at an exponential rate during this period. Inevitably, investigators have become interested in mapping neuroplastic changes that support learning and memory using functional neuroimaging, and concomitantly, rehabilitation researchers have become interested in mapping changes in brain systems responsible for treatment effects during the rehabilitation of patients with stroke, traumatic brain injury, and other brain injury or disease. This new rehabilitation research and development arena is important because a greater understanding of how and why brain systems remap in the service of rehabilitation will lead to the development of better treatments.

  11. Neuroimaging of the Philadelphia neurodevelopmental cohort.

    Science.gov (United States)

    Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Loughead, James; Prabhakaran, Karthik; Calkins, Monica E; Hopson, Ryan; Jackson, Chad; Keefe, Jack; Riley, Marisa; Mentch, Frank D; Sleiman, Patrick; Verma, Ragini; Davatzikos, Christos; Hakonarson, Hakon; Gur, Ruben C; Gur, Raquel E

    2014-02-01

    The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale, NIMH funded initiative to understand how brain maturation mediates cognitive development and vulnerability to psychiatric illness, and understand how genetics impacts this process. As part of this study, 1445 adolescents ages 8-21 at enrollment underwent multimodal neuroimaging. Here, we highlight the conceptual basis for the effort, the study design, and the measures available in the dataset. We focus on neuroimaging measures obtained, including T1-weighted structural neuroimaging, diffusion tensor imaging, perfusion neuroimaging using arterial spin labeling, functional imaging tasks of working memory and emotion identification, and resting state imaging of functional connectivity. Furthermore, we provide characteristics regarding the final sample acquired. Finally, we describe mechanisms in place for data sharing that will allow the PNC to become a freely available public resource to advance our understanding of normal and pathological brain development. © 2013 Elsevier Inc. All rights reserved.

  12. Neuroimaging of hippocampal atrophy in early recognition of Alzheimer's disease--a critical appraisal after two decades of research.

    Science.gov (United States)

    Schröder, Johannes; Pantel, Johannes

    2016-01-30

    As a characteristic feature of Alzheimer's disease (AD) hippocampal atrophy (HA) can be demonstrated in the majority of patients by using neuroimaging techniques in particular magnetic resonance imaging (MRI). Hippocampal atrophy is associated with declarative memory deficits and can also be associated with changes of adjacent medial temporal substructures such as the parahippocampal gyrus or the the entorhinal cortex. Similar findings are present in patients with mild cognitive impairment (MCI) albeit to a lesser extent. While these finding facilitate the diagnostic process in patients with clinical suspicious AD, the metric properties of hippocampal atrophy for delineating healthy aging from MCI and mild AD still appear to be rather limited; as such it is not sufficient to establish the diagnosis of AD (and even more so of MCI). This limitation partly refers to methodological issues and partly to the fact that hippocampal tissue integrity is subject to various pathogenetic influences other than AD. Moreover,the effects of hippocampal atrophy on the behavioral level (e.g. cognitive deficits) are modulated by the individual's cognitive reserve. From a clinical standpoint these observations are in line with the hypothesis that the onset and course of AD is influenced by a number of peristatic factors which are partly conceptualized in the concepts of brain and/or cognitive reserve. These complex interactions have to be considered when using the presence of hippocampal atrophy in the routine diagnostic procedure of AD.

  13. Neuroimaging findings in late-onset schizophrenia and bipolar disorder.

    Science.gov (United States)

    Hahn, Changtae; Lim, Hyun Kook; Lee, Chang Uk

    2014-03-01

    In recent years, there has been an increasing interest in late-onset mental disorders. Among them, geriatric schizophrenia and bipolar disorder are significant health care risks and major causes of disability. We discussed whether late-onset schizophrenia (LOS) and late-onset bipolar (LOB) disorder can be a separate entity from early-onset schizophrenia (EOS) and early-onset bipolar (EOB) disorder in a subset of late-life schizophrenia or late-life bipolar disorder through neuroimaging studies. A literature search for imaging studies of LOS or LOB was performed in the PubMed database. Search terms used were "(imaging OR MRI OR CT OR SPECT OR DTI OR PET OR fMRI) AND (schizophrenia or bipolar disorder) AND late onset." Articles that were published in English before October 2013 were included. There were a few neuroimaging studies assessing whether LOS and LOB had different disease-specific neural substrates compared with EOS and EOB. These researches mainly observed volumetric differences in specific brain regions, white matter hyperintensities, diffusion tensor imaging, or functional neuroimaging to explore the differences between LOS and LOB and EOS and EOB. The aim of this review was to highlight the neural substrates involved in LOS and LOB through neuroimaging studies. The exploration of neuroanatomical markers may be the key to the understanding of underlying neurobiology in LOS and LOB.

  14. Neural Systems Underlying Emotional and Non-emotional Interference Processing: An ALE Meta-Analysis of Functional Neuroimaging Studies

    Science.gov (United States)

    Xu, Min; Xu, Guiping; Yang, Yang

    2016-01-01

    Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564

  15. [Correlation between EEG and neuroimaging].

    Science.gov (United States)

    Tobimatsu, Shozo

    2012-01-01

    The present state of knowledge of physiological mechanisms underlying nonepileptiform EEG abnormalities is reviewed to clarify the correlation between EEG and neuroimaging. Focal and widespread slow waves, background abnormalities, and bursts of rhythmic slow activity are discussed. EEG phenomena were correlated with lesion size, location, type (white matter vs. gray matter, high density vs. low density), and mass effect. Clinical and experimental accumulated over the past five decades suggest that polymorphic slow activity is generated in cerebral cortex by layers of pyramidal cells and is probably due to partial deafferentation from subcortical areas. Unilateral background activity changes are probably thalamic dysfunction, and bilateral paroxysmal slow activity is due to abnormal thalamocortical circuits combined with cortical pathology. Paroxysmal discharges indicate the presence of epilepsy with possible brain lesion(s). The EEG is a functional test and provides us complementary information to neuroimaging studies.

  16. In search of the trauma memory: a meta-analysis of functional neuroimaging studies of symptom provocation in posttraumatic stress disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Gudrun Sartory

    Full Text Available Notwithstanding some discrepancy between results from neuroimaging studies of symptom provocation in posttraumatic stress disorder (PTSD, there is broad agreement as to the neural circuit underlying this disorder. It is thought to be characterized by an exaggerated amygdalar and decreased medial prefrontal activation to which the elevated anxiety state and concomitant inadequate emotional regulation are attributed. However, the proposed circuit falls short of accounting for the main symptom, unique among anxiety disorders to PTSD, namely, reexperiencing the precipitating event in the form of recurrent, distressing images and recollections. Owing to the technical demands, neuroimaging studies are usually carried out with small sample sizes. A meta-analysis of their findings is more likely to cast light on the involved cortical areas. Coordinate-based meta-analyses employing ES-SDM (Effect Size Signed Differential Mapping were carried out on 19 studies with 274 PTSD patients. Thirteen of the studies included 145 trauma-exposed control participants. Comparisons between reactions to trauma-related stimuli and a control condition and group comparison of reactions to the trauma-related stimuli were submitted to meta-analysis. Compared to controls and the neutral condition, PTSD patients showed significant activation of the mid-line retrosplenial cortex and precuneus in response to trauma-related stimuli. These midline areas have been implicated in self-referential processing and salient autobiographical memory. PTSD patients also evidenced hyperactivation of the pregenual/anterior cingulate gyrus and bilateral amygdala to trauma-relevant, compared to neutral, stimuli. Patients showed significantly less activation than controls in sensory association areas such as the bilateral temporal gyri and extrastriate area which may indicate that the patients' attention was diverted from the presented stimuli by being focused on the elicited trauma memory. Being

  17. Review of mechanism and neuroimaging researches of physical therapy in schizophrenia%精神分裂症物理治疗机制及其神经成像研究进展

    Institute of Scientific and Technical Information of China (English)

    罗程; 尧德中

    2015-01-01

    Recently,the clinical psychiatric researches have been deeply developed in accompany with the increasing neuroim-aging techniques. Many of functional disconnections of brain were observed in the patients with schizophrenia. The physical therapy,in-cluding electroconvulsive therapy and transcranial magnetic stimulation,has been used in the clinical practice of psychosis,especially in the treatment of refractory schizophrenia. The mechanism of these approaches is unclear till now. In this review,the mechanism of the electroconvulsive therapy and transcranial magnetic stimulation in refractory schizophrenia,as well as their neuroimaging investigation were summarized based on the references. In conclusion,the multi - model neuroimagings provided an effective tools to investigate the longitudinal effects of the physical therapy on the refractory schizophrenia,moreover,the in - depth observation would be helpful to define the therapy protocols and evaluate the curative effect in refractory schizophrenia.%近年来,脑影像成像技术飞速发展,极大地推动了临床神经精神疾病的研究进展。多模态脑成像技术已经发现精神分裂症患者存在广泛的功能连接异常。包括电抽搐治疗、经颅磁刺激治疗在内的物理治疗已经应用于临床,特别是对难治性精神分裂症的治疗。但是这些物理治疗的作用机制尚不明确。本文就精神分裂症物理治疗机制及脑成像研究方面进行了文献综述。综合多种无创的神经成像方法可以纵向研究物理治疗对难治性精神分裂症起效机制,对于指导临床治疗方案的制定及疗效评价均有重要的科学意义及临床价值。

  18. Neuroimaging essentials in essential tremor: a systematic review.

    Science.gov (United States)

    Sharifi, Sarvi; Nederveen, Aart J; Booij, Jan; van Rootselaar, Anne-Fleur

    2014-01-01

    Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, mri, vbm, dwi, fmri, pet and spect, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily clinical practice is limited.

  19. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice.

    Science.gov (United States)

    Bufkin, Jana L; Luttrell, Vickie R

    2005-04-01

    With the availability of new functional and structural neuroimaging techniques, researchers have begun to localize brain areas that may be dysfunctional in offenders who are aggressive and violent. Our review of 17 neuroimaging studies reveals that the areas associated with aggressive and/or violent behavioral histories, particularly impulsive acts, are located in the prefrontal cortex and the medial temporal regions. These findings are explained in the context of negative emotion regulation, and suggestions are provided concerning how such findings may affect future theoretical frameworks in criminology, crime prevention efforts, and the functioning of the criminal justice system.

  20. Human neuroimaging as a "Big Data" science.

    Science.gov (United States)

    Van Horn, John Darrell; Toga, Arthur W

    2014-06-01

    The maturation of in vivo neuroimaging has led to incredible quantities of digital information about the human brain. While much is made of the data deluge in science, neuroimaging represents the leading edge of this onslaught of "big data". A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Yet few, if any, common solutions exist to support the science of neuroimaging. In this article, we discuss how modern neuroimaging research represents a multifactorial and broad ranging data challenge, involving the growing size of the data being acquired; sociological and logistical sharing issues; infrastructural challenges for multi-site, multi-datatype archiving; and the means by which to explore and mine these data. As neuroimaging advances further, e.g. aging, genetics, and age-related disease, new vision is needed to manage and process this information while marshalling of these resources into novel results. Thus, "big data" can become "big" brain science.

  1. Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: a functional neuroimaging study.

    Science.gov (United States)

    Steele, C A; Powell, J L; Kemp, G J; Halford, J C G; Wilding, J P; Harrold, J A; Kumar, S V D; Cuthbertson, D J; Cross, A A; Javadpour, M; MacFarlane, I A; Stancak, A A; Daousi, C

    2015-09-01

    Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.

  2. Neuroimaging in psychiatry: an update on neuroimaging in the clinical setting.

    Science.gov (United States)

    Power, Brian D; Nguyen, T; Hayhow, B; Looi, Jcl

    2016-04-01

    We offered guidance on the role of structural and functional neuroimaging modalities for the general psychiatrist and for trainees in the clinical setting. We outlined the utility of neuroimaging modalities in the clinical setting, specifically with a view to understanding the pathophysiology of manifestations of disease. Both structural and functional neuroimaging modalities have a clear role in diagnostic evaluation in the spectrum of neurodegenerative disorders. Whilst the role of neuroimaging in patients with mood, anxiety and psychotic disorders is less clear, structural and functional imaging modalities have utility in the clinical setting in the form of diagnostic refinement and in understanding the pathophysiology of disorders, towards explaining manifestations and planning treatment. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  3. A Neuroimaging Proof of Principle Study of Down's Syndrome and Dementia: Ethical and Methodological Challenges in Intrusive Research

    Science.gov (United States)

    d'Abrera, J. C.; Holland, A. J.; Landt, J.; Stocks-Gee, G.; Zaman, S. H.

    2013-01-01

    Background: Research into specific illnesses and the development of new treatments may only become possible as new technologies become available. When used for research, such technologies may best be described as "intrusive", in that they require a considerable willingness and commitment on the part of the participants. This has…

  4. Neuroimaging in epilepsy

    Directory of Open Access Journals (Sweden)

    Shahina Bano

    2011-01-01

    Full Text Available Epilepsy is the most common neurological disease worldwide and is second only to stroke in causing neurological morbidity. Neuroimaging plays a very important role in the diagnosis and treatment of patients with epilepsy. This review article highlights the specific role of various imaging modalities in patients with epilepsy, and their practical applications in the management of epileptic patients.

  5. Multimodal Neuroimaging of Frontolimbic Structure and Function Associated With Suicide Attempts in Adolescents and Young Adults With Bipolar Disorder.

    Science.gov (United States)

    Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P

    2017-07-01

    Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.

  6. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    DEFF Research Database (Denmark)

    Siebner, H R; Callicott, J H; Sommer, T

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...

  7. Experiencing Past and Future Personal Events: Functional Neuroimaging Evidence on the Neural Bases of Mental Time Travel

    Science.gov (United States)

    Botzung, Anne; Denkova, Ekaterina; Manning, Lilianne

    2008-01-01

    Functional MRI was used in healthy subjects to investigate the existence of common neural structures supporting re-experiencing the past and pre-experiencing the future. Past and future events evocation appears to involve highly similar patterns of brain activation including, in particular, the medial prefrontal cortex, posterior regions and the…

  8. Seeing responsibility: can neuroimaging teach us anything about moral and legal responsibility?

    Science.gov (United States)

    Wasserman, David; Johnston, Josephine

    2014-01-01

    As imaging technologies help us understand the structure and function of the brain, providing insight into human capabilities as basic as vision and as complex as memory, and human conditions as impairing as depression and as fraught as psychopathy, some have asked whether they can also help us understand human agency. Specifically, could neuroimaging lead us to reassess the socially significant practice of assigning and taking responsibility? While responsibility itself is not a psychological process open to investigation through neuroimaging, decision-making is. Over the past decade, different researchers and scholars have sought to use neuroimaging (or the results of neuroimaging studies) to investigate what is going on in the brain when we make decisions. The results of this research raise the question whether neuroscience-especially now that it includes neuroimaging-can and should alter our understandings of responsibility and our related practice of holding people responsible. It is this question that we investigate here. © 2014 by The Hastings Center.

  9. Neuroimaging of Parkinson's disease: Expanding views.

    Science.gov (United States)

    Weingarten, Carol P; Sundman, Mark H; Hickey, Patrick; Chen, Nan-kuei

    2015-12-01

    Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cortical morphology as a shared neurobiological substrate of attention-deficit/hyperactivity symptoms and executive functioning: a population-based pediatric neuroimaging study

    Science.gov (United States)

    Mous, Sabine E.; White, Tonya; Muetzel, Ryan L.; El Marroun, Hanan; Rijlaarsdam, Jolien; Polderman, Tinca J.C.; Jaddoe, Vincent W.; Verhulst, Frank C.; Posthuma, Danielle; Tiemeier, Henning

    2017-01-01

    Background Attention-deficit/hyperactivity symptoms have repeatedly been associated with poor cognitive functioning. Genetic studies have demonstrated a shared etiology of attention-deficit/hyperactivity disorder (ADHD) and cognitive ability, suggesting a common underlying neurobiology of ADHD and cognition. Further, neuroimaging studies suggest that altered cortical development is related to ADHD. In a large population-based sample we investigated whether cortical morphology, as a potential neurobiological substrate, underlies the association between attention-deficit/hyperactivity symptoms and cognitive problems. Methods The sample consisted of school-aged children with data on attention-deficit/hyperactivity symptoms, cognitive functioning and structural imaging. First, we investigated the association between attention-deficit/hyperactivity symptoms and different domains of cognition. Next, we identified cortical correlates of attention-deficit/hyperactivity symptoms and related cognitive domains. Finally, we studied the role of cortical thickness and gyrification in the behaviour–cognition associations. Results We included 776 children in our analyses. We found that attention-deficit/hyperactivity symptoms were associated specifically with problems in attention and executive functioning (EF; b = −0.041, 95% confidence interval [CI] −0.07 to −0.01, p = 0.004). Cortical thickness and gyrification were associated with both attention-deficit/hyperactivity symptoms and EF in brain regions that have been previously implicated in ADHD. This partly explained the association between attention-deficit/hyperactivity symptoms and EF (bindirect = −0.008, bias-corrected 95% CI −0.018 to −0.001). Limitations The nature of our study did not allow us to draw inferences regarding temporal associations; longitudinal studies are needed for clarification. Conclusion In a large, population-based sample of children, we identified a shared cortical morphology underlying

  11. Misconceptions in the use of the General Linear Model applied to functional MRI: a tutorial for junior neuro-imagers

    Directory of Open Access Journals (Sweden)

    Cyril R Pernet

    2014-01-01

    Full Text Available This tutorial presents several misconceptions related to the use the General Linear Model (GLM in functional Magnetic Resonance Imaging (fMRI. The goal is not to present mathematical proofs but to educate using examples and computer code (in Matlab. In particular, I address issues related to (i model parameterization (modelling baseline or null events and scaling of the design matrix; (ii hemodynamic modelling using basis functions, and (iii computing percentage signal change. Using a simple controlled block design and an alternating block design, I first show why 'baseline' should not be modelled (model over-parameterization, and how this affects effect sizes. I also show that, depending on what is tested; over-parameterization does not necessarily impact upon statistical results. Next, using a simple periodic vs. random event related design, I show how the haemodynamic model (haemodynamic function only or using derivatives can affects parameter estimates, as well as detail the role of orthogonalization. I then relate the above results to the computation of percentage signal change. Finally, I discuss how these issues affect group analysis and give some recommendations.

  12. Functional neuroimaging of emotional processing in women with polycystic ovary syndrome: a case-control pilot study

    Science.gov (United States)

    Marsh, Courtney A.; Berent-Spillson, Alison; Love, Tiffany; Persad, Carol C.; Pop-Busui, Rodica; Zubieta, Jon-Kar; Smith, Yolanda R.

    2013-01-01

    Objective To evaluate emotional processing in women with insulin-resistant polycystic ovary syndrome (IR-PCOS) and its relationship to glucose regulation and the mu-opioid system. Design Case-control pilot. Setting Tertiary referring medical center. Patient(s) Seven women with IR-PCOS and five non-insulin-resistant controls, aged 21–40 years, recruited from the general population. Intervention(s) Sixteen weeks of metformin (1,500 mg/day) in women with IR-PCOS. Main Outcome Measure(s) Assessment of mood, metabolic function, and neuronal activation during an emotional task using functional magnetic resonance imaging (fMRI), and mu-opioid receptor availability using positive emission tomography (PET). Result(s) We found that insulin-resistant PCOS patients [1] had greater limbic activation during an emotion task than controls (n = 5); [2] trended toward decreased positive affect and increased trait anxiety; [3] after metformin treatment, had limbic activation that no longer differed from controls; and [4] had positive correlations between fMRI limbic activation during emotional processing and mu-opioid binding potential. Conclusion(s) Patients with IR-PCOS had greater regional activation during an emotion task than the controls, although this resolved with metformin therapy. Alterations in mu-opioid neurotransmission may underlie limbic system activity and mood disorders in IR-PCOS. Clinical Trial Registration Number NCT00670800. PMID:23557757

  13. Neuroimaging training among neuropsychologists: A survey of the state of current training and recommendations for trainees

    OpenAIRE

    2013-01-01

    Neuroimaging has gained widespread use in neuropsychological research and practice. However, there are neither established guidelines on how neuropsychologists might become competent researchers or consumers of neuroimaging data, nor any published studies describing the state of neuroimaging training among neuropsychologists. We report the results of two online surveys, one of 13 expert neuropsychologist-neuroimagers, whose responses informed the formulation of a second, larger survey to neur...

  14. Increasing pharmacological knowledge about human neurological and psychiatric disorders through functional neuroimaging and its application in drug discovery.

    Science.gov (United States)

    Nathan, Pradeep J; Phan, K Luan; Harmer, Catherine J; Mehta, Mitul A; Bullmore, Edward T

    2014-02-01

    Functional imaging methods such as fMRI have been widely used to gain greater understanding of brain circuitry abnormalities in CNS disorders and their underlying neurochemical basis. Findings suggest that: (1) drugs with known clinical efficacy have consistent effects on disease relevant brain circuitry, (2) brain activation changes at baseline or early drug effects on brain activity can predict long-term efficacy; and (3) fMRI together with pharmacological challenges could serve as experimental models of disease phenotypes and be used for screening novel drugs. Together, these observations suggest that drug related modulation of disease relevant brain circuitry may serve as a promising biomarker/method for use in drug discovery to demonstrate target engagement, differential efficacy, dose-response relationships, and prediction of clinically relevant changes.

  15. Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function.

    Science.gov (United States)

    Gharagouzloo, Codi A; Timms, Liam; Qiao, Ju; Fang, Zihang; Nneji, Joseph; Pandya, Aniket; Kulkarni, Praveen; van de Ven, Anne L; Ferris, Craig; Sridhar, Srinivas

    2017-09-06

    A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Individual differences in audio-vocal speech imitation aptitude in late bilinguals: functional neuro-imaging and brain morphology.

    Science.gov (United States)

    Reiterer, Susanne Maria; Hu, Xiaochen; Erb, Michael; Rota, Giuseppina; Nardo, Davide; Grodd, Wolfgang; Winkler, Susanne; Ackermann, Hermann

    2011-01-01

    An unanswered question in adult language learning or late bi and multilingualism is why individuals show marked differences in their ability to imitate foreign accents. While recent research acknowledges that more adults than previously assumed can still acquire a "native" foreign accent, very little is known about the neuro-cognitive correlates of this special ability. We investigated 140 German-speaking individuals displaying varying degrees of "mimicking" capacity, based on natural language text, sentence, and word imitations either in their second language English or in Hindi and Tamil, languages they had never been exposed to. The large subject pool was strictly controlled for previous language experience prior to magnetic resonance imaging. The late-onset (around 10 years) bilinguals showed significant individual differences as to how they employed their left-hemisphere speech areas: higher hemodynamic activation in a distinct fronto-parietal network accompanied low ability, while high ability paralleled enhanced gray matter volume in these areas concomitant with decreased hemodynamic responses. Finally and unexpectedly, males were found to be more talented foreign speech mimics.

  17. Individual differences in speech imitation/pronunciation aptitude in late bilinguals: functional neuro-imaging and brain morphology

    Directory of Open Access Journals (Sweden)

    Susanne Maria Reiterer

    2011-10-01

    Full Text Available An unanswered question in adult language learning or late bi- and multilingualism is why individuals show marked differences in their ability to imitate foreign accents. While recent research acknowledges that more adults than previously assumed can still acquire a native foreign accent, very little is known about the neuro-cognitive correlates of this special ability. We investigated 140 German speaking individuals displaying varying degrees of mimicking capacity, based on natural language text, sentence and word imitations either in their second language English or in Hindi and Tamil, languages they had never been exposed to. The large subject pool was extensively controlled for previous language experience prior to magnetic resonance imaging (MRI. The late-onset (around 10 years bilinguals showed significant individual differences as to how they employed their left-hemisphere speech areas: higher hemodynamic activation in a distinct fronto-parietal network accompanied low ability, while high ability paralleled enhanced gray matter volume in these areas concomitant with decreased hemodynamic responses. Finally and unexpectedly, males were found to be more talented foreign speech mimics.

  18. Neuroimaging procedures and related acquisitions in bipolar disorder: state of the art.

    Science.gov (United States)

    Dell'Osso, Bernardo; Dobrea, Cristina; Palazzo, Maria Carlotta; Cremaschi, Laura; Penzo, Beatrice; Benatti, Beatrice; Camuri, Giulia; Arici, Chiara; Suppes, Trisha; Altamura, A Carlo

    2014-01-01

    Bipolar disorder (BD) is a chronic and disabling mood disorder, with significant suicide rates among psychiatric disorders. Although the pathophysiological bases of BD have not been fully elucidated yet, over the last two decades, neuroimaging research has documented specific neuroanatomic and functional abnormalities in bipolar patients. The present review was aimed to provide an updated and comprehensive overview about currently available evidence on main structural and functional alterations documented in BD by neuroimaging procedures, through a Medline research. Among the structural alterations, the most consistent ones seem to be at the level of frontal, temporal and insular cortices, amygdala and basal ganglia, having been ventriculomegaly reported as well. Magnetic resonance spectroscopy findings showed, in turn, biochemical alterations in several neurotransmitter systems. Functional neuroimaging data are quite heterogeneous with positron emission tomography and single photon emission computed tomography studies showing phase-specific abnormalities of blood flow and glucose metabolism, as well as modifications of serotonin transporter density and binding. Functional magnetic resonance imaging data documented impaired neural networks involved in emotional regulation, including anterior limbic, ventral and dorsal prefrontal regions. Taken as a whole, neuroimaging data are strongly advancing the understanding of the neural bases of BD as described in the present review.

  19. A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals.

    Directory of Open Access Journals (Sweden)

    Frédéric Gougoux

    2005-02-01

    Full Text Available Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged, the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life.

  20. Merging clinical neuropsychology and functional neuroimaging to evaluate the construct validity and neural network engagement of the n-back task.

    Science.gov (United States)

    Kearney-Ramos, Tonisha E; Fausett, Jennifer S; Gess, Jennifer L; Reno, Ashley; Peraza, Jennifer; Kilts, Clint D; James, G Andrew

    2014-08-01

    The n-back task is a widely used neuroimaging paradigm for studying the neural basis of working memory (WM); however, its neuropsychometric properties have received little empirical investigation. The present study merged clinical neuropsychology and functional magnetic resonance imaging (fMRI) to explore the construct validity of the letter variant of the n-back task (LNB) and to further identify the task-evoked networks involved in WM. Construct validity of the LNB task was investigated using a bootstrapping approach to correlate LNB task performance across clinically validated neuropsychological measures of WM to establish convergent validity, as well as measures of related but distinct cognitive constructs (i.e., attention and short-term memory) to establish discriminant validity. Independent component analysis (ICA) identified brain networks active during the LNB task in 34 healthy control participants, and general linear modeling determined task-relatedness of these networks. Bootstrap correlation analyses revealed moderate to high correlations among measures expected to converge with LNB (|ρ|≥ 0.37) and weak correlations among measures expected to discriminate (|ρ|≤ 0.29), controlling for age and education. ICA identified 35 independent networks, 17 of which demonstrated engagement significantly related to task condition, controlling for reaction time variability. Of these, the bilateral frontoparietal networks, bilateral dorsolateral prefrontal cortices, bilateral superior parietal lobules including precuneus, and frontoinsular network were preferentially recruited by the 2-back condition compared to 0-back control condition, indicating WM involvement. These results support the use of the LNB as a measure of WM and confirm its use in probing the network-level neural correlates of WM processing.

  1. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  2. Human fear conditioning and extinction in neuroimaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Christina Sehlmeyer

    Full Text Available Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance

  3. Meeting Curation Challenges in a Neuroimaging Group

    Directory of Open Access Journals (Sweden)

    Angus Whyte

    2008-08-01

    Full Text Available The SCARP project is a series of short studies with two aims; firstly to discover more about disciplinary approaches and attitudes to digital curation through ‘immersion’ in selected cases; secondly to apply known good practice, and where possible, identify new lessons from practice in the selected discipline areas. The study summarised here is of the Neuroimaging Group in the University of Edinburgh’s Division of Psychiatry, which plays a leading role in eScience collaborations to improve the infrastructure for neuroimaging data integration and reuse. The Group also aims to address growing data storage and curation needs, given the capabilities afforded by new infrastructure. The study briefly reviews the policy context and current challenges to data integration and sharing in the neuroimaging field. It then describes how curation and preservation risks and opportunities for change were identified throughout the curation lifecycle; and their context appreciated through field study in the research site. The results are consistent with studies of neuroimaging eInfrastructure that emphasise the role of local data sharing and reuse practices. These sustain mutual awareness of datasets and experimental protocols through sharing peer to peer, and among senior researchers and students, enabling continuity in research and flexibility in project work. This “human infrastructure” is taken into account in considering next steps for curation and preservation of the Group’s datasets and a phased approach to supporting data documentation.

  4. Functional neuroimaging in Tourette syndrome:

    DEFF Research Database (Denmark)

    Debes, Nanette Marinette Monique Mol; Preel, Marie; Skov, Liselotte

    2017-01-01

    the presence of comorbidity, medical treatment, and severity of tics are considered in the various studies; most studies show that the cortico-striato-thalamo-cortical circuit seems to be involved in the generation of tics. Changes in this circuit seem to be correlated with tic severity. Correlations have been...... found between the presence of tics and hypermetabolism in various brain regions. Abnormalities of GABAergic, serotonergic, and dopaminergic neurotransmission in patients with TS have been suggested. During tic suppression, increased activity in the inferior frontal gyrus is seen. The premotor cortex...... might be involved in inhibition of motor control in subjects with TS. The right anterior insula is suggested to be a part of the urge–tic network. Several studies have shown altered motor network activations and sensorimotor gating deficits in subjects with TS. In future studies, inclusion of more well...

  5. Neuroimaging Findings and Repeat Neuroimaging Value in Pediatric Chronic Ataxia.

    Science.gov (United States)

    Salman, Michael S; Chodirker, Bernard N; Bunge, Martin

    2016-11-01

    Chronic ataxia, greater than two months in duration, is encountered relatively commonly in clinical pediatric neurology practise and presents with diagnostic challenges. It is caused by multiple and diverse disorders. Our aims were to describe the neuroimaging features and the value of repeat neuroimaging in pediatric chronic ataxia to ascertain their contribution to the diagnosis and management. A retrospective charts and neuroimaging reports review was undertaken in 177 children with chronic ataxia. Neuroimaging in 130 of 177 patients was also reviewed. Nineteen patients had head computed tomography only, 103 brain magnetic resonance imaging only, and 55 had both. Abnormalities in the cerebellum or other brain regions were associated with ataxia. Neuroimaging was helpful in 73 patients with 30 disorders: It was diagnostic in 9 disorders, narrowed down the diagnostic possibilities in 14 disorders, and revealed important but non-diagnostic abnormalities, e.g. cerebellar atrophy in 7 disorders. Having a normal magnetic resonance imaging scan was mostly seen in genetic diseases or in the early course of ataxia telangiectasia. Repeat neuroimaging, performed in 108 patients, was generally helpful in monitoring disease evolution and in making a diagnosis. Neuroimaging was not directly helpful in 36 patients with 10 disorders or by definition the 55 patients with unknown disease etiology. Normal or abnormal neuroimaging findings and repeat neuroimaging are very valuable in the diagnosis and management of disorders associated with pediatric chronic ataxia.

  6. Neuroimaging in clinical studies of craving: importance of reward and control networks.

    Science.gov (United States)

    Thayer, Rachel E; Hutchison, Kent E

    2013-06-01

    Research on neurobiological mechanisms, especially the function of networks that underlie reward and cognitive control, may offer an opportunity to explore how existing treatments work and provide means for developing new treatments for substance use disorders. In this respect, the special issue of Psychology of Addictive Behaviors highlights efforts to integrate translational neuroimaging with clinical research by actively linking neuroimaging measures with psychosocial treatment mechanisms. Based on several of the articles in this special issue, mindfulness-based approaches appear poised to make rapid progress in terms of integrating neuroimaging with research on mechanisms that mediate treatment success. This commentary briefly discusses research on incentive salience and cognitive control networks in the context of addiction, followed by a discussion of specific studies within this special issue that address the integration of neuroimaging assessments in the context of mindfulness approaches. Future work may be able to leverage measures of changes in networks and regions that underlie reward processing and cognitive control to better understand how treatments work, especially for mindfulness-based approaches. 2013 APA, all rights reserved

  7. Neuroimaging resilience to stress: a review.

    Science.gov (United States)

    van der Werff, S J A; van den Berg, S M; Pannekoek, J N; Elzinga, B M; van der Wee, N J A

    2013-01-01

    There is a high degree of intra-individual variation in how individuals respond to stress. This becomes evident when exploring the development of posttraumatic symptoms or stress-related disorders after exposure to trauma. Whether or not an individual develops posttraumatic symptoms after experiencing a traumatic event is partly dependent on a person's resilience. Resilience can be broadly defined as the dynamic process encompassing positive adaptation within the context of significant adversity. Even though research into the neurobiological basis of resilience is still in its early stages, these insights can have important implications for the prevention and treatment of stress-related disorders. Neuroimaging studies contribute to our knowledge of intra-individual variability in resilience and the development of posttraumatic symptoms or other stress-related disorders. This review provides an overview of neuroimaging findings related to resilience. Structural, resting-state, and task-related neuroimaging results associated with resilience are discussed. There are a limited number of studies available and neuroimaging research of resilience is still in its infancy. The available studies point at brain circuitries involved in stress and emotion regulation, with more efficient processing and regulation associated with resilience.

  8. Neuroimaging resilience to stress: a review

    Directory of Open Access Journals (Sweden)

    Steven J A van der Werff

    2013-05-01

    Full Text Available There is a high degree of intra-individual variation in how individuals respond to stress. This becomes evident when exploring the development of posttraumatic symptoms or stress-related disorders after exposure to trauma. Whether or not an individual develops posttraumatic symptoms after experiencing a traumatic event is partly dependent on a person’s resilience. Resilience can be broadly defined as the dynamic process encompassing positive adaptation within the context of significant adversity. Even though research into the neurobiological basis of resilience is still in its early stages, these insights can have important implications for the prevention and treatment of stress-related disorders. Neuroimaging studies contribute to our knowledge of intra-individual variability in resilience and the development of posttraumatic symptoms or other stress-related disorders. This review provides an overview of neuroimaging findings related to resilience. Structural, resting-state and task-related neuroimaging results associated with resilience are discussed. There are a limited number of studies available and neuroimaging research of resilience is still in its infancy. The available studies point at brain circuitries involved in stress and emotion regulation, with more efficient processing and regulation associated with resilience.

  9. Neuroimaging resilience to stress: a review

    Science.gov (United States)

    van der Werff, S. J. A.; van den Berg, S. M.; Pannekoek, J. N.; Elzinga, B. M.; van der Wee, N. J. A.

    2013-01-01

    There is a high degree of intra-individual variation in how individuals respond to stress. This becomes evident when exploring the development of posttraumatic symptoms or stress-related disorders after exposure to trauma. Whether or not an individual develops posttraumatic symptoms after experiencing a traumatic event is partly dependent on a person's resilience. Resilience can be broadly defined as the dynamic process encompassing positive adaptation within the context of significant adversity. Even though research into the neurobiological basis of resilience is still in its early stages, these insights can have important implications for the prevention and treatment of stress-related disorders. Neuroimaging studies contribute to our knowledge of intra-individual variability in resilience and the development of posttraumatic symptoms or other stress-related disorders. This review provides an overview of neuroimaging findings related to resilience. Structural, resting-state, and task-related neuroimaging results associated with resilience are discussed. There are a limited number of studies available and neuroimaging research of resilience is still in its infancy. The available studies point at brain circuitries involved in stress and emotion regulation, with more efficient processing and regulation associated with resilience. PMID:23675330

  10. The RUMBA software: tools for neuroimaging data analysis.

    Science.gov (United States)

    Bly, Benjamin Martin; Rebbechi, Donovan; Hanson, Stephen Jose; Grasso, Giorgio

    2004-01-01

    The enormous scale and complexity of data sets in functional neuroimaging makes it crucial to have well-designed and flexible software for image processing, modeling, and statistical analysis. At present, researchers must choose between general purpose scientific computing environments (e.g., Splus and Matlab), and specialized human brain mapping packages that implement particular analysis strategies (e.g., AFNI, SPM, VoxBo, FSL or FIASCO). For the vast majority of users in Human Brain Mapping and Cognitive Neuroscience, general purpose computing environments provide an insufficient framework for a complex data-analysis regime. On the other hand, the operational particulars of more specialized neuroimaging analysis packages are difficult or impossible to modify and provide little transparency or flexibility to the user for approaches other than massively multiple comparisons based on inferential statistics derived from linear models. In order to address these problems, we have developed open-source software that allows a wide array of data analysis procedures. The RUMBA software includes programming tools that simplify the development of novel methods, and accommodates data in several standard image formats. A scripting interface, along with programming libraries, defines a number of useful analytic procedures, and provides an interface to data analysis procedures. The software also supports a graphical functional programming environment for implementing data analysis streams based on modular functional components. With these features, the RUMBA software provides researchers programmability, reusability, modular analysis tools, novel data analysis streams, and an analysis environment in which multiple approaches can be contrasted and compared. The RUMBA software retains the flexibility of general scientific computing environments while adding a framework in which both experts and novices can develop and adapt neuroimaging-specific analyses.

  11. Sleep neuroimaging and models of consciousness

    Directory of Open Access Journals (Sweden)

    Enzo eTagliazucchi

    2013-05-01

    Full Text Available Human deep sleep is characterized by reduced or absent sensory activity, responsiveness to stimuli and conscious awareness. Given its ubiquity and reversible nature, it represents an attractive paradigm to study the neural changes which accompany the loss of consciousness in humans. In particular, the deepest stages of sleep can serve as an empirical test for the predictions of theoretical models relating the phenomenology of consciousness with underlying neural activity. A relatively recent shift of attention from the analysis of evoked responses towards spontaneous (or ``resting state'' activity has taken place in the neuroimaging community, together with the development of tools suitable to study distributed functional interactions. In this review we focus on recent functional Magnetic Resonance Imaging (fMRI studies of spontaneous activity during sleep and their relationship with theoretical models for human consciousness generation, considering the global workspace theory, the information integration theory and the dynamical core hypothesis. We discuss the venues of research opened by these results, emphasizing the need to extend the analytic methodology in order to obtain a dynamical picture of how functional interactions change over time and how their evolution is modulated during different conscious states. Finally, we discuss the need to experimentally establish absent or reduced conscious content, even when studying the deepest sleep stages.

  12. Self-reflection and the brain : A theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia

    NARCIS (Netherlands)

    van der Meer, Lisette; Costafreda, Sergi; Aleman, Andre; David, Anthony S.

    2010-01-01

    Several studies have investigated the neural correlates of self-reflection. In the paradigm most commonly used to address this concept, a subject is presented with trait adjectives or sentences and asked whether they describe him or her. Functional neuroimaging research has revealed a set of regions

  13. Interactive Information Visualization in Neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    1998-01-01

    We describe a virtual environment for interactive visualization of 3D neuroimages. The environment is implemented in VRML and we will discuss the viability and limitation of this platform......We describe a virtual environment for interactive visualization of 3D neuroimages. The environment is implemented in VRML and we will discuss the viability and limitation of this platform...

  14. Interactive Information Visualization in Neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    1998-01-01

    We describe a virtual environment for interactive visualization of 3D neuroimages. The environment is implemented in VRML and we will discuss the viability and limitation of this platform......We describe a virtual environment for interactive visualization of 3D neuroimages. The environment is implemented in VRML and we will discuss the viability and limitation of this platform...

  15. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  16. Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders

    Science.gov (United States)

    O’Halloran, Rafael; Kopell, Brian H.; Sprooten, Emma; Goodman, Wayne K.; Frangou, Sophia

    2016-01-01

    Recent advances in neuroimaging data acquisition and analysis hold the promise to enhance the ability to make diagnostic and prognostic predictions and perform treatment planning in neuropsychiatric disorders. Prior research using a variety of types of neuroimaging techniques has confirmed that neuropsychiatric disorders are associated with dysfunction in anatomical and functional brain circuits. We first discuss current challenges associated with the identification of reliable neuroimaging markers for diagnosis and prognosis in mood disorders and for neurosurgical treatment planning for deep brain stimulation (DBS). We then present data on the use of neuroimaging for the diagnosis and prognosis of mood disorders and for DBS treatment planning. We demonstrate how multivariate analyses of functional activation and connectivity parameters can be used to differentiate patients with bipolar disorder from those with major depressive disorder and non-affective psychosis. We also present data on connectivity parameters that mediate acute treatment response in affective and non-affective psychosis. We then focus on precision mapping of functional connectivity in native space. We describe the benefits of integrating anatomical fiber reconstruction with brain functional parameters and cortical surface measures to derive anatomically informed connectivity metrics within the morphological context of each individual brain. We discuss how this approach may be particularly promising in psychiatry, given the clinical and etiological heterogeneity of the disorders, and particularly in treatment response prediction and planning. Precision mapping of connectivity is essential for DBS. In DBS, treatment electrodes are inserted into positions near key gray matter nodes within the circuits considered relevant to disease expression. However, targeting white matter tracts that underpin connectivity within these circuits may increase treatment efficacy and tolerability therefore relevant

  17. Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Rafael eO'Halloran

    2016-04-01

    Full Text Available Recent advances in neuroimaging data acquisition and analysis hold the promise to enhance the ability to make diagnostic and prognostic predictions and perform treatment planning in neuropsychiatric disorders. Prior research using a variety of types of neuroimaging techniques has confirmed that neuropsychiatric disorders are associated with dysfunction in anatomical and functional brain circuits. We first discuss current challenges associated with the identification of reliable neuroimaging markers for diagnosis and prognosis in mood disorders and for neurosurgical treatment planning for deep brain stimulation (DBS. We then present data on the use of neuroimaging for the diagnosis and prognosis of mood disorders and for DBS treatment planning. We demonstrate how multivariate analyses of functional activation and connectivity parameters can be used to differentiate patients with bipolar disorder from those with major depressive disorder and non-affective psychosis. We also present data on connectivity parameters that mediate acute treatment response in affective and non-affective psychosis. We then focus on precision mapping of functional connectivity in native space. We describe the benefits of integrating anatomical fiber reconstruction with brain functional parameters and cortical surface measures to derive anatomically-informed connectivity metrics within the morphological context of each individual brain. We discuss how this approach may be particularly promising in psychiatry, given the clinical and etiological heterogeneity of the disorders, and particularly in treatment response prediction and planning. Precision mapping of connectivity is essential for DBS. In DBS, treatment electrodes are inserted into positions near key grey matter nodes within the circuits considered relevant to disease expression. However, targeting white matter tracts that underpin connectivity within these circuits may increase treatment efficacy and tolerability

  18. Neuroimaging of Fear-Associated Learning.

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning.

  19. Neuroimaging bei Schlaganfall

    Directory of Open Access Journals (Sweden)

    Nasel Ch

    2013-01-01

    Full Text Available Während zunächst die Differenzialdiagnosen des Schlaganfalls erfasst werden sollten, wurde sehr bald das Neuroimaging in den Dienst der Behandlung der akuten Ischämie gestellt. Hier kommt der neuroradiologischen Bildgebung eine besondere Rolle zu, da zunehmend die Auswahl von Patienten für eine bestimmte Therapie von der Bildgebung abhängt. Der Verlauf von zerebralen Ischämien ist, bedingt durch stark variierende Faktoren wie Kollateralisation, frühe Rekanalisation etc., sehr unterschiedlich. Die multimodale MR- und CTBildgebung, welche eine Kombination aus konventioneller Bildgebung des Gehirns, angiographischen Verfahren und funktionellen Messungen, wie z. B. Perfusionsmessungen, darstellt, kann jede Ischämie sehr genau charakterisieren. Wichtig ist dabei ein klares Interpretationskonzept. Bei Patienten, deren Symptombeginn eindeutig innerhalb der letzten 3–4,5 h liegt, kann die Nativ- CT, am besten in Kombination mit der CTA, als ausreichend zur Durchführung der anerkannten systemischen i.v.-Lyse sowie zur Feststellung eines Gefäßverschlusses, der einer weiteren Behandlung bedarf, angesehen werden. Im Zeitfenster 4,5 h, bei unklarem Zeitfenster oder nach frustraner i.v.-Lyse, ist, insbesondere bei einem im Weiteren geplanten endovaskulären Eingriff, die multimodale MRI mit Anwendung des „Mismatch-match“-Konzepts zwischen diffusionsgewichtetem MRI und Perfusions-MRI jedenfalls die Methode der ersten Wahl. Steht diese nicht zur Verfügung, kann alternativ das multimodale CT eingesetzt werden.

  20. [Mixed states and neuroimaging].

    Science.gov (United States)

    Kaladjian, A; Belzeaux, R; Micoulaud-Franchi, J A; Cermolacce, M; Fakra, E; Azorin, J-M

    2013-12-01

    Despite the growing number of neuroimaging studies in bipolar disorder over the past years, the brain regions involved in mood dysregulation in this disease are still poorly understood. If some neurofunctional abnormalities seem to be independent of mood state, others were preferentially associated with mania or depression, involving the amygdala and other limbic regions as well as ventral frontal regions, with a likely hemispheric lateralization of these abnormalities according to the thymic state that was examined. Very few imaging studies became interested in bipolar patients in a mixed state, making it harder to connect brain malfunction to a given mood state. However, data obtained so far support the hypothesis of a lateralization of brain abnormalities in relation to bipolar symptomatology, suggesting that neurofonctional abnormalities preferentially located in the right ventral frontal and limbic areas may underlie the depressive component, associated with abnormalities of the left similar regions for the manic component. Identification of brain dysfunctions that may explain the emergence of mixed symptoms will likely provide useful information to better understand the respective roles of each hemisphere in the pathophysiology of bipolar disorder. Copyright © 2013 Sociedade Brasileira de Farmacognosia. Published by Elsevier Masson SAS.. All rights reserved.

  1. Neuroimaging correlates of pharmacological and psychological treatments for specific phobia.

    Science.gov (United States)

    Linares, Ila M; Chags, Marcos H N; Machado-de-Sousa, João P; Crippa, José A S; Hallak, Jaime E C

    2014-01-01

    Specific phobia is an anxiety disorder characterized by irrational fear and avoidance of specific things or situations, interfering significantly with the patients' daily life. Treatment for the disorder consists of both pharmacological and psychological approaches, mainly cognitive behavioral therapy (CBT). Neuroimaging techniques have been used in an attempt to improve our understanding of the neurobiology of SP and of the effects of treatment options available. This review describes the design and results of eight articles investigating the neuroimaging correlates of pharmacological and psychological treatments for SP. The studies show that CBT is effective in SP, leading to a reduction of anxiety symptoms that is accompanied by functional alterations in the brain. The results of pharmacological interventions for SP are less uniform, but suggest that the partial agonist of the NMDA (N-methyl D-aspartate) receptor DCS (D-cycloserine) can be used in combination with psychotherapy techniques for the achievement of quicker treatment response and that DCS modulates the function of structures implicated in the neurobiology of SP. Further research should explore the augmentation of CBT treatment with DCS in controlled trials.

  2. Learning Neuroimaging. 100 essential cases

    Energy Technology Data Exchange (ETDEWEB)

    Asis Bravo-Rodriguez, Francisco de [Reina Sofia University Hospital, Cordoba (Spain). Diagnostic and Therapeutics Neuroradiology; Diaz-Aguilera, Rocio [Alto Guadalquivir Hospital, Andujar, Jaen (Spain). Dept. of Radiology; Hygino da Cruz, Luiz Celso [Universidade Federal do Rio de Janeiro (Brazil). CDPI and IRM Ressonancia Magnetica

    2012-07-01

    Neuroradiology is the branch of radiology that comprises both imaging and invasive procedures related to the brain, spine and spinal cord, head, neck, organs of special sense (eyes, ears, nose), cranial and spinal nerves, and cranial, cervical, and spinal vessels. Special training and skills are required to enable the neuroradiologist to function as an expert diagnostic and therapeutic consultant and practitioner. In addition to knowledge of imaging findings, the neuroradiologist is required to learn the fundamentals of structural and functional neuroanatomy, neuropathology, and neuropathophysiology as well as the clinical manifestations of diseases of the brain, spine and spinal cord, head, neck, and organs of special sense. This book is intended as an introduction to neuroradiology and aims to provide the reader with a comprehensive overview of this highly specialized radiological subspecialty. One hundred illustrated cases from clinical practice are presented in a standard way. Each case is supported by representative images and is divided into three parts: a brief summary of the patient's medical history, a discussion of the disease, and a description of the most characteristic imaging features of the disorder. The focus is not only on common neuroradiological entities such as stroke and acute head trauma but also on less frequent disorders that the practitioner should recognize. Learning Neuroimaging: 100 Essential Cases is an ideal resource for neuroradiology and radiology residents, neurology residents, neurosurgery residents, nurses, radiology technicians, and medical students. (orig.)

  3. Neuroimaging of motor neuron diseases.

    Science.gov (United States)

    Kassubek, Jan; Ludolph, Albert C; Müller, Hans-Peter

    2012-03-01

    It is agreed that conventional magnetic resonance imaging (MRI) of the brain and spine is one of the core elements in the differential diagnostic work up of patients with clinical signs of motor neuron diseases (MNDs), for example amyotrophic lateral sclerosis (ALS), to exclude MND mimics. However, the sensitivity and specificity of MRI signs in these disorders are moderate to low and do not have an evidence level higher than class IV (good clinical practice point). Currently computerized MRI analyses in ALS and other MNDs are not techniques used for individual diagnosis. However, they have improved the anatomical understanding of pathomorphological alterations in gray and white matter in various MNDs and the changes in functional networks by quantitative comparisons between patients with MND and controls at group level. For multiparametric MRI protocols, including T1-weighted three-dimensional datasets, diffusion-weighted imaging and functional MRI, the potential as a 'dry' surrogate marker is a subject of investigation in natural history studies with well defined patients. The additional value of MRI with respect to early diagnosis at an individual level and for future disease-modifying multicentre trials remains to be defined. There is still the need for more longitudinal studies in the very early stages of disease or when there is clinical uncertainty and for better standardization in the acquisition and postprocessing of computer-based MRI data. These requirements are to be addressed by establishing quality-controlled multicentre neuroimaging databases.

  4. Neuroimaging in Traumatic Brain Imaging

    OpenAIRE

    Lee, Bruce; Newberg, Andrew

    2005-01-01

    Summary: Traumatic brain injury (TBI) is a common and potentially devastating clinical problem. Because prompt proper management of TBI sequelae can significantly alter the clinical course especially within 48 h of the injury, neuroimaging techniques have become an important part of the diagnostic work up of such patients. In the acute setting, these imaging studies can determine the presence and extent of injury and guide surgical planning and minimally invasive interventions. Neuroimaging a...

  5. Energy landscape analysis of neuroimaging data

    CERN Document Server

    Ezaki, Takahiro; Ohzeki, Masayuki; Masuda, Naoki

    2016-01-01

    Computational neuroscience models have been used for understanding neural dynamics in the brain and how they may be altered when physiological or other conditions change. We review and develop a data-driven approach to neuroimaging data called the energy landscape analysis. The methods are rooted in statistical physics theory, in particular, the Ising model, also known as the (pairwise) maximum entropy model and Boltzmann machine. The methods have been applied to fitting electrophysiological data in neuroscience for a decade, but its use in neuroimaging data is still in its infancy. We first review the methods and discuss some algorithms and technical aspects. Then, we apply the methods to functional magnetic resonance imaging data recorded from healthy individuals to inspect the relationship between the accuracy of fitting, the size of the brain system to be analyzed, and the data length.

  6. Deep learning for neuroimaging: a validation study.

    Science.gov (United States)

    Plis, Sergey M; Hjelm, Devon R; Salakhutdinov, Ruslan; Allen, Elena A; Bockholt, Henry J; Long, Jeffrey D; Johnson, Hans J; Paulsen, Jane S; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.

  7. Energy landscape analysis of neuroimaging data

    Science.gov (United States)

    Ezaki, Takahiro; Watanabe, Takamitsu; Ohzeki, Masayuki; Masuda, Naoki

    2017-05-01

    Computational neuroscience models have been used for understanding neural dynamics in the brain and how they may be altered when physiological or other conditions change. We review and develop a data-driven approach to neuroimaging data called the energy landscape analysis. The methods are rooted in statistical physics theory, in particular the Ising model, also known as the (pairwise) maximum entropy model and Boltzmann machine. The methods have been applied to fitting electrophysiological data in neuroscience for a decade, but their use in neuroimaging data is still in its infancy. We first review the methods and discuss some algorithms and technical aspects. Then, we apply the methods to functional magnetic resonance imaging data recorded from healthy individuals to inspect the relationship between the accuracy of fitting, the size of the brain system to be analysed and the data length. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  8. Neuroimaging: beginning to appreciate its complexities.

    Science.gov (United States)

    Parens, Erik; Johnston, Josephine

    2014-01-01

    For over a century, scientists have sought to see through the protective shield of the human skull and into the living brain. Today, an array of technologies allows researchers and clinicians to create astonishingly detailed images of our brain's structure as well as colorful depictions of the electrical and physiological changes that occur within it when we see, hear, think and feel. These technologies-and the images they generate-are an increasingly important tool in medicine and science. Given the role that neuroimaging technologies now play in biomedical research, both neuroscientists and nonexperts should aim to be as clear as possible about how neuroimages are made and what they can-and cannot-tell us. Add to this that neuroimages have begun to be used in courtrooms at both the determination of guilt and sentencing stages, that they are being employed by marketers to refine advertisements and develop new products, that they are being sold to consumers for the diagnosis of mental disorders and for the detection of lies, and that they are being employed in arguments about the nature (or absence) of powerful concepts like free will and personhood, and the need for citizens to have a basic understanding of how this technology works and what it can and cannot tell us becomes even more pressing.

  9. Neuroimaging of Wernicke's encephalopathy and Korsakoff's syndrome.

    Science.gov (United States)

    Jung, Young-Chul; Chanraud, Sandra; Sullivan, Edith V

    2012-06-01

    There is considerable evidence that neuroimaging findings can improve the early diagnosis of Wernicke's encephalopathy (WE) in clinical settings. The most distinctive neuroimaging finding of acute WE are cytotoxic edema and vasogenic edema, which are represented by bilateral symmetric hyperintensity alterations on T2-weighted MR images in the periphery of the third ventricle, periaqueductal area, mammillary bodies and midbrain tectal plate. An initial bout of WE can result in Korsakoff's syndrome (KS), but repeated bouts in conjunction with its typical comorbidity, chronic alcoholism, can result in signs of tissue degeneration in vulnerable brain regions. Chronic abnormalities identified with neuroimaging enable examination of brain damage in living patients with KS and have expanded the understanding of the neuropsychological deficits resulting from thiamine deficiency, alcohol neurotoxicity, and their comorbidity. Brain structure and functional studies indicate that the interactions involving the thalamus, mammillary bodies, hippocampus, frontal lobes, and cerebellum are crucial for memory formation and executive functions, and the interruption of these circuits by WE and chronic alcoholism can contribute substantially to the neuropsychological deficits in KS.

  10. Addressing Confounding in Predictive Models with an Application to Neuroimaging.

    Science.gov (United States)

    Linn, Kristin A; Gaonkar, Bilwaj; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-01

    Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples.

  11. Neuroimaging in Epilepsy

    Directory of Open Access Journals (Sweden)

    Mahmoud Motamedi

    2009-01-01

    Full Text Available Introduction: The assessment of the problem of seizures requires knowledge of the clinical details and features of the seizures, the functional abnormality in the brain as shown on the EEG, and the structural assessment of the brain with an MRI study optimized for epilepsy. Usually MRI or computed tomographic (CT scan should be performed in evaluating the cause of a newly diagnosed seizure disorder. MRI is preferred over CT because of its greater sensitivity and specificity for identifying small lesions."nBecause there is an option of surgical excision of the "seizure focus," which may cure the patient, the detection of a focal abnormality of the brain is important for the formulation of the reason for the seizures and the options available for treatment. Knowledge of the brain abnormalities early in the course of treating the patient greatly helps the management of each individual. The challenge to epileptologists is that the problem of epilepsy is a special one, which requires optimized protocols dedicated to it."nMRI interpretation is different when used in a screening way and when viewed in the context of other investigations. This is particularly important when the patient has partial seizures and may be considered for surgical treatment."nMost centers that deal with epilepsy spend a great deal of time in ensuring the quality of their EEG and EEG interpretation. However, unless there is a radiologist with an interest in epilepsy or an epileptologist who spends time with radiologist colleagues, it can be difficult to establish good epilepsy-focused MRI with appropriate sequences, radiography, and interpretation. MRI acquisition and interpretation need to be focused on the problem of epilepsy."nIndication"nThe American academy of neurology has published practice parameters for neuroimaging (NI studies (MRI, CT of patients having a first seizure. Emergent NI (scan immediately should be performed when a health care provider suspects a serious

  12. Contributions and complexities from the use of in-vivo animal models to improve understanding of human neuroimaging signals.

    Directory of Open Access Journals (Sweden)

    Chris eMartin

    2014-08-01

    Full Text Available Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in-vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anaesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologues within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals and human studies (e.g. combined fMRI-EEG, that mitigate against these challenges.

  13. The impact of the Alzheimer's Disease Neuroimaging Initiative 2: What role do public-private partnerships have in pushing the boundaries of clinical and basic science research on Alzheimer's disease?

    Science.gov (United States)

    Jones-Davis, Dorothy M; Buckholtz, Neil

    2015-07-01

    In the growing landscape of biomedical public-private-partnerships, particularly for Alzheimer's disease, the question is posed as to their value. What impacts do public-private-partnerships have on clinical and basic science research in Alzheimer's disease? The authors answer the question using the Alzheimer's Disease Neuroimaging Initiative (ADNI) as a test case and example. ADNI is an exemplar of how public-private-partnerships can make an impact not only on clinical and basic science research and practice (including clinical trials), but also of how similar partnerships using ADNI as an example, can be designed to create a maximal impact within their fields. Copyright © 2015 The Alzheimer's Association. All rights reserved.

  14. The Functioning of Economic Research

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1991-01-01

    textabstractTinbergen (1988) describes his method of conducting economic research. In contrast to Dopfer (1988), the subject of mechanics is avoided, and the method deals only with economics. The purpose of economic research is seen as either: 1. an attempt to explain an economic phenomenon, or 2. t

  15. THE FUNCTION OF QUALITATIVE RESEARCH

    NARCIS (Netherlands)

    HEYINK, JW; TYMSTRA, T

    1993-01-01

    Due to the prevailing positivistic view on science, qualitative research has only a modest place within the social sciences. There is, however, a growing awareness that a purely quantitative approach is not always satisfactory. This is for instance the case in the field of research into the quality

  16. THE FUNCTION OF QUALITATIVE RESEARCH

    NARCIS (Netherlands)

    HEYINK, JW; TYMSTRA, T

    Due to the prevailing positivistic view on science, qualitative research has only a modest place within the social sciences. There is, however, a growing awareness that a purely quantitative approach is not always satisfactory. This is for instance the case in the field of research into the quality

  17. The Functioning of Economic Research

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1991-01-01

    textabstractTinbergen (1988) describes his method of conducting economic research. In contrast to Dopfer (1988), the subject of mechanics is avoided, and the method deals only with economics. The purpose of economic research is seen as either: 1. an attempt to explain an economic phenomenon, or 2. t

  18. Sports concussions and aging: a neuroimaging investigation.

    Science.gov (United States)

    Tremblay, Sebastien; De Beaumont, Louis; Henry, Luke C; Boulanger, Yvan; Evans, Alan C; Bourgouin, Pierre; Poirier, Judes; Théoret, Hugo; Lassonde, Maryse

    2013-05-01

    Recent epidemiological and experimental studies suggest a link between cognitive decline in late adulthood and sports concussions sustained in early adulthood. In order to provide the first in vivo neuroanatomical evidence of this relation, the present study probes the neuroimaging profile of former athletes with concussions in relation to cognition. Former athletes who sustained their last sports concussion >3 decades prior to testing were compared with those with no history of traumatic brain injury. Participants underwent quantitative neuroimaging (optimized voxel-based morphometry [VBM], hippocampal volume, and cortical thickness), proton magnetic resonance spectroscopy ((1)H MRS; medial temporal lobes and prefrontal cortices), and neuropsychological testing, and they were genotyped for APOE polymorphisms. Relative to controls, former athletes with concussions exhibited: 1) Abnormal enlargement of the lateral ventricles, 2) cortical thinning in regions more vulnerable to the aging process, 3) various neurometabolic anomalies found across regions of interest, 4) episodic memory and verbal fluency decline. The cognitive deficits correlated with neuroimaging findings in concussed participants. This study unveiled brain anomalies in otherwise healthy former athletes with concussions and associated those manifestations to the long-term detrimental effects of sports concussion on cognitive function. Findings from this study highlight patterns of decline often associated with abnormal aging.

  19. Overlapping prefrontal systems involved in cognitive and emotional processing in euthymic bipolar disorder and following sleep deprivation: A review of functional neuroimaging studies

    Science.gov (United States)

    McKenna, Benjamin S; Eyler, Lisa T

    2013-01-01

    Prefrontal cortex (PFC) mediated cognitive and emotional processing deficits in bipolar disorder lead to functional limitations even during periods of mood stability. Alterations of sleep and circadian functioning are well-documented in bipolar disorder, but there is little research directly examining the mechanistic role of sleep and/or circadian rhythms in the observed cognitive and emotional processing deficits. We systematically review the cognitive and emotional processing deficits reliant upon PFC functioning of euthymic patients with bipolar disorder and in healthy individuals deprived of sleep. The evidence from two parallel lines of investigation suggests that sleep and circadian rhythms may be involved in the cognitive and emotional processing deficits seen in bipolar disorder through overlapping neurobiological systems. We discuss current models of bipolar highlighting the PFC-limbic connections and discuss inclusion of sleep-related mechanisms. Sleep and circadian dysfunction is a core feature of bipolar disorder and models of neurobiological abnormalities should incorporate chronobiological measures. Further research into the role of sleep and circadian rhythms in cognition and emotional processing in bipolar disorder is warranted. PMID:22926687

  20. Neuroimaging characteristics of dementia with Lewy bodies.

    Science.gov (United States)

    Mak, Elijah; Su, Li; Williams, Guy B; O'Brien, John T

    2014-01-01

    This review summarises the findings and applications from neuroimaging studies in dementia with Lewy bodies (DLB), highlighting key differences between DLB and other subtypes of dementia. We also discuss the increasingly important role of imaging biomarkers in differential diagnosis and outline promising areas for future research in DLB. DLB shares common clinical, neuropsychological and pathological features with Parkinson's disease dementia and other dementia subtypes, such as Alzheimer's disease. Despite the development of consensus diagnostic criteria, the sensitivity for differential diagnosis of DLB in clinical practice remains low and many DLB patients will be misdiagnosed. The importance of developing accurate imaging markers in dementia is highlighted by the potential for treatments targeting specific molecular abnormalities as well as the responsiveness to cholinesterase inhibitors and marked neuroleptic sensitivity of DLB. We review various brain imaging techniques that have been applied to investigate DLB, including the characteristic nigrostriatal degeneration in DLB using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers. Dopamine transporter loss has proven to reliably differentiate DLB from other dementias and has been incorporated into the revised clinical diagnostic criteria for DLB. To date, this remains the 'gold standard' for diagnostic imaging of DLB. Regional cerebral blood flow, 18 F-fluorodeoxygluclose-PET and SPECT have also identified marked deficits in the occipital regions with relative sparing of the medial temporal lobe when compared to Alzheimer's disease. In addition, structural, diffusion, and functional magnetic resonance imaging techniques have shown alterations in structure, white matter integrity, and functional activity in DLB. We argue that the multimodal identification of DLB-specific biomarkers has the potential to improve ante-mortem diagnosis and contribute to our

  1. Chronic disorders of consciousness: role of neuroimaging

    Science.gov (United States)

    Kremneva, E.; Sergeev, D.; Zmeykina, E.; Legostaeva, L.; Piradov, M.

    2017-08-01

    Chronic disorders of consciousness are clinically challenging conditions, and advanced methods of imaging for better understanding of diagnosis and prognosis are needed. Recent functional neuroradiological studies utilizing PET and fMRI demonstrated that besides widespread neuronal loss disruption of interconnection between certain cortical networks after the injury may also play the leading role in the development of behaviourally assessed unresponsiveness. Functional and structural connectivity, evaluated by neuroimaging approaches, may correlate with clinical status and may also play prognostic role. Integration of data from various diagnostic modalities is needed for further progress in this area.

  2. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  3. Human Neuroimaging as a “Big Data” Science

    Science.gov (United States)

    Van Horn, John Darrell; Toga, Arthur W.

    2013-01-01

    The maturation of in vivo neuroimaging has lead to incredible quantities of digital information about the human brain. While much is made of the data deluge in science, neuroimaging represents the leading edge of this onslaught of “big data”. A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Yet few, if any, common solutions exist to support the science of neuroimaging. In this article, we discuss how modern neuroimaging research represents a mutifactorial and broad ranging data challenge, involving the growing size of the data being acquired; sociologial and logistical sharing issues; infrastructural challenges for multi-site, multi-datatype archiving; and the means by which to explore and mine these data. As neuroimaging advances further, e.g. aging, genetics, and age-related disease, new vision is needed to manage and process this information while marshalling of these resources into novel results. Thus, “big data” can become “big” brain science. PMID:24113873

  4. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations.

    Science.gov (United States)

    Leung, Lawrence

    2013-01-01

    With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing) and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract) with a suggested protocol of approach.

  5. Mathematical research on spline functions

    Science.gov (United States)

    Horner, J. M.

    1973-01-01

    One approach in spline functions is to grossly estimate the integrand in J and exactly solve the resulting problem. If the integrand in J is approximated by Y" squared, the resulting problem lends itself to exact solution, the familiar cubic spline. Another approach is to investigate various approximations to the integrand in J and attempt to solve the resulting problems. The results are described.

  6. Molecular neuroimaging in degenerative dementias.

    Science.gov (United States)

    Jiménez Bonilla, J F; Carril Carril, J M

    2013-01-01

    In the context of the limitations of structural imaging, brain perfusion and metabolism using SPECT and PET have provided relevant information for the study of cognitive decline. The introduction of the radiotracers for cerebral amyloid imaging has changed the diagnostic strategy regarding Alzheimer's disease, which is currently considered to be a "continuum." According to this new paradigm, the increasing amyloid load would be associated to the preclinical phase and mild cognitive impairment. It has been possible to observe "in vivo" images using 11C-PIB and PET scans. The characteristics of the 11C-PIB image include specific high brain cortical area retention in the positive cases with typical distribution pattern and no retention in the negative cases. This, in combination with 18F-FDG PET, is the basis of molecular neuroimaging as a biomarker. At present, its prognostic value is being evaluated in longitudinal studies. 11C-PIB-PET has become the reference radiotracer to evaluate the presence of cerebral amyloid. However, its availability is limited due to the need for a nearby cyclotron. Therefore, 18F labeled radiotracers are being introduced. Our experience in the last two years with 11C-PIB, first in the research phase and then as being clinically applied, has shown the utility of the technique in the clinical field, either alone or in combination with FDG. Thus, amyloid image is a useful tool for the differential diagnosis of dementia and it is a potentially useful method for early diagnosis and evaluation of future treatments. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  7. Neuroimaging: a story of physicians and basic scientists.

    Science.gov (United States)

    Lucignani, Giovanni; Bastianello, Stefano

    2006-01-01

    Until just a few decades ago, it was very difficult to detect, non invasively, physiological signals from the brain. However, the discoveries in physics, the evolution of information technology, and the invention of non-invasive biomedical technologies in the last decades of the twentieth century transformed this scenario and created numerous opportunities for studying the brain in living subjects. The authors trace the extraordinary evolution of brain imaging techniques (magnetic resonance imaging, emission tomography, and ?functional neuroimaging?) in the second part of the twentieth century. Not only have these methods had a remarkable clinical impact, they have also been outstanding research tools in the field of the neurosciences. In their most recent applications, they are employed in the quest to uncover the neuronal substrate of the human mind.

  8. Some Current Themes in Functional Analysis Research.

    Science.gov (United States)

    Vollmer, Timothy R.; Smith, Richard G.

    1996-01-01

    This article discusses clinical application of functional analysis in developmental disabilities, reviewing issues related to treatment logic and development. The article then approaches functional analysis as a research method, reviewing three areas of research: analysis of diverse response topographies, analysis of basic behavioral processes,…

  9. Research at the Dairy and Functional Foods Research Unit

    Science.gov (United States)

    Dr. Peggy Tomasula is Research Leader of the Dairy and Functional Foods Research Unit (DFFRU), ARS, USDA, Wyndmoor, PA, a group that includes 11 Research Scientists, 4 of whom are Lead Scientists (LS), 13 support scientists, and 3 Retired Collaborators. The mission of the DFFRU is to solve critical ...

  10. ANIMA: A data-sharing initiative for neuroimaging meta-analyses.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Genon, Sarah; Langner, Robert; Müller, Veronika I; Eickhoff, Claudia R; Hoffstaedter, Felix; Cieslik, Edna-Clarisse; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Caspers, Svenja; Eickhoff, Simon B

    2016-01-01

    Meta-analytic techniques allow cognitive neuroscientists to pool large amounts of data across many individual task-based functional neuroimaging experiments. These methods have been aided by the introduction of online databases such as Brainmap.org or Neurosynth.org, which collate peak activation coordinates obtained from thousands of published studies. Findings from meta-analytic studies typically include brain regions which are consistently activated across studies for specific contrasts, investigating cognitive or clinical hypotheses. These regions can be subsequently used as the basis for seed-based connectivity analysis, or formally compared to neuroimaging data in order to help interpret new findings. To facilitate such approaches, we have developed a new online repository of meta-analytic neuroimaging results, named the Archive of Neuroimaging Meta-analyses (ANIMA). The ANIMA platform consists of an intuitive online interface for querying, downloading, and contributing data from published meta-analytic studies. Additionally, to aid the process of organizing, visualizing, and working with these data, we present an open-source desktop application called Volume Viewer. Volume Viewer allows users to easily arrange imaging data into composite stacks, and save these sessions as individual files, which can also be uploaded to the ANIMA database. The application also allows users to perform basic functions, such as computing conjunctions between images, or extracting regions-of-interest or peak coordinates for further analysis. The introduction of this new resource will enhance the ability of researchers to both share their findings and incorporate existing meta-analytic results into their own research.

  11. Neuroimaging of sleep and sleep disorders.

    Science.gov (United States)

    Nofzinger, Eric A

    2006-03-01

    Herein are presented the results of research in the area of sleep neuroimaging over the past year. Significant work has been performed to clarify the basic mechanisms of sleep in humans. New studies also extend prior observations regarding altered brain activation in response to sleep deprivation by adding information regarding vulnerability to sleep deprivation and regarding the influence of task difficulty on aberrant responses. Studies in sleep disorder medicine have yielded significant findings in insomnia, depression, and restless legs syndrome. Extensive advances have been made in the area of sleep apnea where physiologic challenges have been used to probe brain activity in the pathophysiology of sleep apnea syndrome.

  12. Sinp 2012: aggiornamenti in neuroimaging

    Directory of Open Access Journals (Sweden)

    Sara D'Alberto

    2012-12-01

    Full Text Available Molti gli aggiornamenti in neurofisiologia e neuroimaging dal congresso annuale della Società Italiana di Neuropsicologia (Sinp tenutosi a Roma a Novembre. Interessanti in modo particolare alcuni studi sui modelli anatomici funzionali nell'anosognosia per l'emiplegia e sulle funzioni della corteccia premotoria ventrale e della giunzione temporo-parietale nella regolazione del senso di "agency".

  13. Neuroimaging training among neuropsychologists: a survey of the state of current training and recommendations for trainees.

    Science.gov (United States)

    Benitez, Andreana; Hassenstab, Jason; Bangen, Katherine J

    2014-01-01

    Neuroimaging has gained widespread use in neuropsychological research and practice. However, there are neither established guidelines on how neuropsychologists might become competent researchers or consumers of neuroimaging data, nor any published studies describing the state of neuroimaging training among neuropsychologists. We report the results of two online surveys, one of 13 expert neuropsychologist-neuroimagers whose responses informed the formulation of a second, larger survey to neuropsychologists-at-large that were a random selection of a third of the members of the International Neuropsychological Society and American Academy of Clinical Neuropsychology. A total of 237 doctoral-level neuropsychologists, or 15.3% of potential participants, provided complete responses. Most respondents (69.2%) received training in neuroimaging, mostly at the post-doctoral level, largely through independent study, clinical conferences, instruction by clinical supervisors, and individualized mentoring, on topics such as neuroimaging modalities in neurology, neuroanatomy, and the appropriate information to glean from neuroradiology reports. Of the remaining respondents who did not receive training in neuroimaging, 64.4% indicated that such training would be very or extremely beneficial to one's career as a neuropsychologist. Both neuropsychologist-neuroimagers and neuropsychologists-at-large provided specific recommendations for training. Findings from this initial effort will guide trainees who seek to develop competence in neuroimaging, and inform future formulations of neuropsychological training.

  14. The utility of neuroimaging studies for informing educational practice and policy in reading disorders.

    Science.gov (United States)

    Black, Jessica M; Myers, Chelsea A; Hoeft, Fumiko

    2015-01-01

    Educational neuroscience is an emerging scientific field that brings together researchers from neuroscience, psychology, and education to explore the neurocognitive processes underlying educational practice and theory. In this brief article, we take reading disorder (RD, also known as developmental dyslexia) as an example, and explore trends in neuroimaging research, which may have future implications for educational practice and policy. Specifically, we present two examples that have been central to research efforts in our laboratory: (a) utilizing multimodal neuroimaging to optimize criteria to diagnose RD, and (b) identifying neuroimaging markers that predict future academic outcomes. Such research is faced with important challenges, and rigorous validation is necessary before any claims of the widespread practical utility of neuroimaging can be made. Nevertheless, we contend that neuroimaging studies offer opportunities for providing critical information that could lead to advancing theory of reading and RD. This could in turn lead to better diagnostic criteria and more accurate and earlier identification of RD. © 2015 Wiley Periodicals, Inc.

  15. Neuroimaging of Parkinson’s Disease: Expanding views

    Science.gov (United States)

    Weingarten, Carol P.; Sundman, Mark H.; Hickey, Patrick; Chen, Nankuei

    2015-01-01

    Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson’s disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD. PMID:26409344

  16. Neuroimaging genetic approaches to Posttraumatic Stress Disorder.

    Science.gov (United States)

    Lebois, Lauren A M; Wolff, Jonathan D; Ressler, Kerry J

    2016-10-01

    Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity or structure provide an opportunity to link genes to psychiatric disorders, often before psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural intermediate phenotypes associated with PTSD. These genes are associated with and sometimes predict neural structure and function in areas involved in attention, executive function, memory, decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once PTSD has developed. Work distinguishing between the re-experiencing and dissociative sub-types of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent findings. Furthermore, an exciting possibility is that genetic associations with PTSD may eventually be understood through differential intermediate phenotypes of neural circuit structure and function, possibly underlying the different symptom clusters seen within PTSD. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  18. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  19. Analyzing neuroimaging data with subclasses: A shrinkage approach.

    Science.gov (United States)

    Höhne, Johannes; Bartz, Daniel; Hebart, Martin N; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-01-01

    Among the numerous methods used to analyze neuroimaging data, Linear Discriminant Analysis (LDA) is commonly applied for binary classification problems. LDAs popularity derives from its simplicity and its competitive classification performance, which has been reported for various types of neuroimaging data. Yet the standard LDA approach proves less than optimal for binary classification problems when additional label information (i.e. subclass labels) is present. Subclass labels allow to model structure in the data, which can be used to facilitate the classification task. In this paper, we illustrate how neuroimaging data exhibit subclass labels that may contain valuable information. We also show that the standard LDA classifier is unable to exploit subclass labels. We introduce a novel method that allows subclass labels to be incorporated efficiently into the classifier. The novel method, which we call Relevance Subclass LDA (RSLDA), computes an individual classification hyperplane for each subclass. It is based on regularized estimators of the subclass mean and uses other subclasses as regularization targets. We demonstrate the applicability and performance of our method on data drawn from two different neuroimaging modalities: (I) EEG data from brain-computer interfacing with event-related potentials, and (II) fMRI data in response to different levels of visual motion. We show that RSLDA outperforms the standard LDA approach for both types of datasets. These findings illustrate the benefits of exploiting subclass structure in neuroimaging data. Finally, we show that our classifier also outputs regularization profiles, enabling researchers to interpret the subclass structure in a meaningful way. RSLDA therefore yields increased classification accuracy as well as a better interpretation of neuroimaging data. Since both results are highly favorable, we suggest to apply RSLDA for various classification problems within neuroimaging and beyond. Copyright © 2015

  20. Nipype: A flexible, lightweight and extensible neuroimaging data processing framework

    Directory of Open Access Journals (Sweden)

    Krzysztof eGorgolewski

    2011-08-01

    Full Text Available Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM are used to process and analyze large and often diverse (highly multi-dimensional data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient and optimal use of neuroimaging analysis approaches: 1 No uniform access to neuroimaging analysis software and usage information; 2 No framework for comparative algorithm development and dissemination; 3 Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; 4 Neuroimaging software packages do not address computational efficiency; and 5 Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype, an open-source, community-developed, software package and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is BSD licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.

  1. [Schizophrenia, cognition and neuroimaging].

    Science.gov (United States)

    Kaladjian, A; Fakra, E; Adida, M; Belzeaux, R; Cermolacce, M; Azorin, J-M

    2011-12-01

    Schizophrenia is a complex illness whose mechanisms are still largely unknown. Functional brain imaging, by making the link between psyche and brain, has recently become an indispensable tool to study in vivo the neural bases underlying cognitive dysfunction in this disease. But despite the proliferation of data coming from this approach, the exact impact of functional imaging on our understanding of the disease remains blurry. In general, studies of the brain functioning of patients with schizophrenia found activation abnormalities which vary in nature and localization depending of the cognitive paradigm used. However, it appears that neurofunctional abnormalities observed in patients cannot be reduced to a simple well-localized deficit. It would be rather an alteration of the dynamics of the interactions between different brain regions that underlie the cognitive disturbances encountered in the disease. Functional brain imaging now offers new perspectives to clarify the dynamics of the brain networks, and particularly those involved in high-level cognitive functions, such as cognitive control or social cognition which seem to play a crucial role in the disease. The characterization of these features is an important issue not only to develop new hypotheses on the pathophysiology of the disorder, but also more pragmatically to identify potential therapeutic targets.

  2. Advances in Researches of Functional Rice

    Institute of Scientific and Technical Information of China (English)

    Mingjun; YU; Min; XIANG; Hechun; HUANG

    2016-01-01

    Functional rice has functions of adjusting human physiological functions of and preventing diseases. At present,there are researches both at home and abroad about the relationship between nutritional quality and physiological active substances of rice and human physiological activities. Through conventional breeding,gene mutation technology,and molecular-assisted selection( MAS) technology,it is feasible to select and breed new rice varieties and plants with certain health care functions.

  3. Neuroimaging in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Kemal Kara

    2013-03-01

    Full Text Available Bipolar disorder is characterized by recurrent attacks, significantly disrupts the functionality of a chronic mental disorder. Although there is growing number of studies on the neurobiological basis of the disorder, the pathophysiology has not yet been clearly understood. Structural and functional imaging techniques present a better understanding of the etiology of bipolar disorder and has contributed significantly to the development of the diagnostic approach. Recent developments in brain imaging modalities have let us learn more about the underlying abnormalities in neural systems of bipolar patients. Identification of objective biomarkers would help to determine the pathophysiology of bipolar disorder, a disorder which causes significant deterioration in neurocognitive and emotional areas.

  4. Paediatric obsessive-compulsive disorder, a neurodevelopmental disorder? Evidence from neuroimaging

    NARCIS (Netherlands)

    Huyser, C.; Veltman, D.J.; de Haan, E.; Boer, F.

    2009-01-01

    Objective: To present an overview of neuroimaging data on paediatric obsessive-compulsive disorder (OCD) and discuss implications for further research. Method: Medline PsycINFO databases and reference lists were searched for relevant articles. All neuroimaging studies up to October 1, 2008 involving

  5. More education, less administration: reflections of neuroimagers' attitudes to ethics through the qualitative looking glass.

    Science.gov (United States)

    Kehagia, A A; Tairyan, K; Federico, C; Glover, G H; Illes, J

    2012-12-01

    In follow-up to a large-scale ethics survey of neuroscientists whose research involves neuroimaging, brain stimulation and imaging genetics, we conducted focus groups and interviews to explore their sense of responsibility about integrating ethics into neuroimaging and readiness to adopt new ethics strategies as part of their research. Safety, trust and virtue were key motivators for incorporating ethics into neuroimaging research. Managing incidental findings emerged as a predominant daily challenge for faculty, while student reports focused on the malleability of neuroimaging data and scientific integrity. The most frequently cited barrier was time and administrative burden associated with the ethics review process. Lack of scholarly training in ethics also emerged as a major barrier. Participants constructively offered remedies to these challenges: development and dissemination of best practices and standardized ethics review for minimally invasive neuroimaging protocols. Students in particular, urged changes to curricula to include early, focused training in ethics.

  6. LSTGEE: longitudinal analysis of neuroimaging data

    Science.gov (United States)

    Li, Yimei; Zhu, Hongtu; Chen, Yasheng; An, Hongyu; Gilmore, John; Lin, Weili; Shen, Dinggang

    2009-02-01

    Longitudinal imaging studies are essential to understanding the neural development of neuropsychiatric disorders, substance use disorders, and normal brain. Using appropriate image processing and statistical tools to analyze the imaging, behavioral, and clinical data is critical for optimally exploring and interpreting the findings from those imaging studies. However, the existing imaging processing and statistical methods for analyzing imaging longitudinal measures are primarily developed for cross-sectional neuroimaging studies. The simple use of these cross-sectional tools to longitudinal imaging studies will significantly decrease the statistical power of longitudinal studies in detecting subtle changes of imaging measures and the causal role of time-dependent covariate in disease process. The main objective of this paper is to develop longitudinal statistics toolbox, called LSTGEE, for the analysis of neuroimaging data from longitudinal studies. We develop generalized estimating equations for jointly modeling imaging measures with behavioral and clinical variables from longitudinal studies. We develop a test procedure based on a score test statistic and a resampling method to test linear hypotheses of unknown parameters, such as associations between brain structure and function and covariates of interest, such as IQ, age, gene, diagnostic groups, and severity of disease. We demonstrate the application of our statistical methods to the detection of the changes of the fractional anisotropy across time in a longitudinal neonate study. Particularly, our results demonstrate that the use of longitudinal statistics can dramatically increase the statistical power in detecting the changes of neuroimaging measures. The proposed approach can be applied to longitudinal data with multiple outcomes and accommodate incomplete and unbalanced data, i.e., subjects with different number of measurements.

  7. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    OpenAIRE

    Lijun Bai; Lixing Lao

    2013-01-01

    Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental facto...

  8. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model...

  9. Dairy and functional foods research in the Agricultural Research Service

    Science.gov (United States)

    The Dairy and Functional Foods Research Unit is the only group in the Agricultural Research Service that is dedicated to solving critical problems in milk utilization and fruit and vegetable byproducts from specialty crops. The many areas of investigation include development of specialty cheese, c...

  10. Neural correlates of the LSD experience revealed by multimodal neuroimaging

    Science.gov (United States)

    Carhart-Harris, Robin L.; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E.; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T.; Williams, Tim M.; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I.; Nichols, David; Hobden, Peter; Evans, John; Singh, Krish D.; Wise, Richard G.; Curran, H. Valerie; Feilding, Amanda; Nutt, David J.

    2016-01-01

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others. PMID:27071089

  11. Neural correlates of the LSD experience revealed by multimodal neuroimaging.

    Science.gov (United States)

    Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J

    2016-04-26

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

  12. Progress and Prospect of Functional Rice Researches

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the rapid development of economy and the increase of people's living standards, functional foods are being gradually embraced by consumers and have a great growth potential. Rice is the main staple food in China. It plays an important role in promoting people's health and in improving public nutrition, and therefore there is an ever-increasing consumer demand for rice for its functional quality. This study introduces the concept of functional rice and summarizes the current research progress on this topic and the application of breeding strategies including traditional breeding, induced mutagenesis, molecular marker-assisted selection and transgenic engineering in the research of a new generation of functional rice that posses health benefits, therapeutic values, bioreactor properties, and other unique functions. We then point out the prospect of functional rice from the point of view of social development, germplasm innovation,breeding of functional rice by biological technology and the test of active material related functional rice. We conclude that developing and marketing of functional rice is becoming a subject of great importance for research and is to be the focus of research in future.

  13. Autismo: neuroimagem Autism: neuroimaging

    Directory of Open Access Journals (Sweden)

    Mônica Zilbovicius

    2006-05-01

    and stereotyped and repetitive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in autism spectrum disorders. Indeed, functional brain imaging, such as positron emission tomography, single foton emission tomographyand functional MRI have opened a new perspective to study normal and pathological brain functioning. Three independent studies have found anatomical and rest functional temporal lobe abnormalities in autistic patients. These alterations are localized in the superior temporal sulcus bilaterally, an area which is critical for perception of key social stimuli. In addition, functional studies have shown hypoactivation of most areas implicated in social perception (face and voice perception and social cognition (theory of mind. These data suggest an abnormal functioning of the social brain network in autism. The understanding of the functional alterations of this important mechanism may drive the elaboration of new and more adequate social re-educative strategies for autistic patients.

  14. Effect of the 5-HT(1A) partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA).

    Science.gov (United States)

    Anderer, P; Saletu, B; Pascual-Marqui, R D

    2000-12-04

    In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.

  15. Functional Magnetic Resonance Imaging in Consumer Research

    DEFF Research Database (Denmark)

    Reimann, Martin; Schilke, Oliver; Weber, Bernd

    2011-01-01

    Although the field of psychology is undergoing an immense shift toward the use of functional magnetic resonance imaging (fMRI), the application of this methodology to consumer research is relatively new. To assist consumer researchers in understanding fMRI, this paper elaborates on the findings...

  16. Looking inside the brain the power of neuroimaging

    CERN Document Server

    Le Bihan, Denis

    2014-01-01

    It is now possible to witness human brain activity while we are talking, reading, or thinking, thanks to revolutionary neuroimaging techniques like magnetic resonance imaging (MRI). These groundbreaking advances have opened infinite fields of investigation—into such areas as musical perception, brain development in utero, and faulty brain connections leading to psychiatric disorders—and have raised unprecedented ethical issues. In Looking Inside the Brain, one of the leading pioneers of the field, Denis Le Bihan, offers an engaging account of the sophisticated interdisciplinary research in physics, neuroscience, and medicine that have led to the remarkable neuroimaging methods that give us a detailed look into the human brain. Introducing neurological anatomy and physiology, Le Bihan walks readers through the historical evolution of imaging technology—from the x-ray and CT scan to the PET scan and MRI—and he explains how neuroimaging uncovers afflictions like stroke or cancer and the workings of high...

  17. Building better biomarkers: brain models in translational neuroimaging.

    Science.gov (United States)

    Woo, Choong-Wan; Chang, Luke J; Lindquist, Martin A; Wager, Tor D

    2017-02-23

    Despite its great promise, neuroimaging has yet to substantially impact clinical practice and public health. However, a developing synergy between emerging analysis techniques and data-sharing initiatives has the potential to transform the role of neuroimaging in clinical applications. We review the state of translational neuroimaging and outline an approach to developing brain signatures that can be shared, tested in multiple contexts and applied in clinical settings. The approach rests on three pillars: (i) the use of multivariate pattern-recognition techniques to develop brain signatures for clinical outcomes and relevant mental processes; (ii) assessment and optimization of their diagnostic value; and (iii) a program of broad exploration followed by increasingly rigorous assessment of generalizability across samples, research contexts and populations. Increasingly sophisticated models based on these principles will help to overcome some of the obstacles on the road from basic neuroscience to better health and will ultimately serve both basic and applied goals.

  18. Can neuroimaging disentangle bipolar disorder?

    Science.gov (United States)

    Hozer, Franz; Houenou, Josselin

    2016-05-01

    Bipolar disorder heterogeneity is large, leading to difficulties in identifying neuropathophysiological and etiological mechanisms and hindering the formation of clinically homogeneous patient groups in clinical trials. Identifying markers of clinically more homogeneous groups would help disentangle BD heterogeneity. Neuroimaging may aid in identifying such groups by highlighting specific biomarkers of BD subtypes or clinical dimensions. We performed a systematic literature search of the neuroimaging literature assessing biomarkers of relevant BD phenotypes (type-I vs. II, presence vs. absence of psychotic features, suicidal behavior and impulsivity, rapid cycling, good vs. poor medication response, age at onset, cognitive performance and circadian abnormalities). Consistent biomarkers were associated with suicidal behavior, i.e. frontal/anterior alterations (prefrontal and cingulate grey matter, prefrontal white matter) in patients with a history of suicide attempts; and with cognitive performance, i.e. involvement of frontal and temporal regions, superior and inferior longitudinal fasciculus, right thalamic radiation, and corpus callosum in executive dysfunctions. For the other dimensions and sub-types studied, no consistent biomarkers were identified. Studies were heterogeneous both in methodology and outcome. Though theoretically promising, neuroimaging has not yet proven capable of disentangling subtypes and dimensions of bipolar disorder, due to high between-study heterogeneity. We issue recommendations for future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Memory processes and executive functioning: novel trends for research].

    Science.gov (United States)

    Collette, Fabienne; Angel, Lucie

    2015-01-01

    The existence of processes common to memory systems and executive functioning was evidenced by studies in the domain of cerebral neuroimaging, individual differences (mainly in normal aging) and, to a lesser extent, neuropsychology. Executive functioning depends on a large antero-posterior brain network, some regions of which (the middle dorsolateral and ventrolateral cortex, the dorsal anterior cingulate cortex) are involved in a series of executive processes, but also in encoding and retrieval of information in episodic memory and short-term memory. A consequence of lesions in frontal areas is to impair strategical organization of the information to-be-processed (an executive process) and thus leads to a lower memory capacity in frontal patients. Moreover, executive abilities will influence both memory efficiency and the associated brain networks even in people without brain pathology. These data attest to the importance of the relationships between executive and memory processes for an optimal cognitive functioning. Recent advances in neuroimaging and electrophysiology data acquisition and analysis techniques should allow us to better determine and understand the fashion in which these relationships work. © Société de Biologie, 2016.

  20. Diagnostic neuroimaging across diseases

    Science.gov (United States)

    Klöppel, Stefan; Abdulkadir, Ahmed; Jack, Clifford R.; Koutsouleris, Nikolaos; Mourao-Miranda, Janaina; Vemuri, Prashanthi

    2012-01-01

    Fully automated classification algorithms have been successfully applied to diagnose a wide range of neurological and psychiatric diseases. They are sufficiently robust to handle data from different scanners for many applications and in specific cases outperform radiologists. This article provides an overview of current applications taking structural imaging in Alzheimer's Disease and schizophrenia as well as functional imaging to diagnose depression as examples. In this context, we also report studies aiming to predict the future course of the disease and the response to treatment for the individual. This has obvious clinical relevance but is also important for the design of treatment studies that may aim to include a cohort with a predicted fast disease progression to be more sensitive to detect treatment effects. In the second part, we present our own opinions on i) the role these classification methods can play in the clinical setting; ii) where their limitations are at the moment and iii) how those can be overcome. Specifically, we discuss strategies to deal with disease heterogeneity, diagnostic uncertainties, a probabilistic framework for classification and multi-class classification approaches. PMID:22094642

  1. Neuroimaging in Huntington’s disease

    Science.gov (United States)

    Niccolini, Flavia; Politis, Marios

    2014-01-01

    Huntington’s disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded trinucleotide CAG sequence in huntingtin gene (HTT) on chromosome 4. HD manifests with chorea, cognitive and psychiatric symptoms. Although advances in genetics allow identification of individuals carrying the HD gene, much is still unknown about the mechanisms underlying the development of overt clinical symptoms and the transitional period between premanifestation and manifestation of the disease. HD has no cure and patients rely only in symptomatic treatment. There is an urgent need to identify biomarkers that are able to monitor disease progression and assess the development and efficacy of novel disease modifying drugs. Over the past years, neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have provided important advances in our understanding of HD. MRI provides information about structural and functional organization of the brain, while PET can detect molecular changes in the brain. MRI and PET are able to detect changes in the brains of HD gene carriers years ahead of the manifestation of the disease and have also proved to be powerful in assessing disease progression. However, no single technique has been validated as an optimal biomarker. An integrative multimodal imaging approach, which combines different MRI and PET techniques, could be recommended for monitoring potential neuroprotective and preventive therapies in HD. In this article we review the current neuroimaging literature in HD. PMID:24976932

  2. Reproducibility of neuroimaging analyses across operating systems.

    Science.gov (United States)

    Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.

  3. The teen brain: insights from neuroimaging.

    Science.gov (United States)

    Giedd, Jay N

    2008-04-01

    Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.

  4. How Shakespeare tempests the brain: neuroimaging insights.

    Science.gov (United States)

    Keidel, James L; Davis, Philip M; Gonzalez-Diaz, Victorina; Martin, Clara D; Thierry, Guillaume

    2013-04-01

    Shakespeare made extensive use of the functional shift (FS), a rhetorical device involving a change in the grammatical status of words, e.g., using nouns as verbs. Previous work using event-related brain potentials showed how FS triggers a surprise effect inviting mental re-evaluation, seemingly independent of semantic processing. Here, we used functional magnetic resonance imaging to investigate brain activation in participants making judgements on the semantic relationship between sentences -some containing a Shakespearean FS- and subsequently presented words. Behavioural performance in the semantic decision task was high and unaffected by sentence type. However, neuroimaging results showed that sentences featuring FS elicited significant activation beyond regions classically activated by typical language tasks, including the left caudate nucleus, the right inferior frontal gyrus and the right inferior temporal gyrus. These findings show how Shakespeare's grammatical exploration forces the listener to take a more active role in integrating the meaning of what is said.

  5. Disorders of Consciousness: Painless or Painful Conditions?—Evidence from Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Francesca Pistoia

    2016-10-01

    Full Text Available The experience of pain in disorders of consciousness is still debated. Neuroimaging studies, using functional Magnetic Resonance Imaging (fMRI, Positron Emission Tomography (PET, multichannel electroencephalography (EEG and laser-evoked potentials, suggest that the perception of pain increases with the level of consciousness. Brain activation in response to noxious stimuli has been observed in patients with unresponsive wakefulness syndrome (UWS, which is also referred to as a vegetative state (VS, as well as those in a minimally conscious state (MCS. However, all of these techniques suggest that pain-related brain activation patterns of patients in MCS more closely resemble those of healthy subjects. This is further supported by fMRI findings showing a much greater functional connectivity within the structures of the so-called pain matrix in MCS as compared to UWS/VS patients. Nonetheless, when interpreting the results, a distinction is necessary between autonomic responses to potentially harmful stimuli and conscious experience of the unpleasantness of pain. Even more so if we consider that the degree of residual functioning and cortical connectivity necessary for the somatosensory, affective and cognitive-evaluative components of pain processing are not yet clear. Although procedurally challenging, the particular value of the aforementioned techniques in the assessment of pain in disorders of consciousness has been clearly demonstrated. The study of pain-related brain activation and functioning can contribute to a better understanding of the networks underlying pain perception while addressing clinical and ethical questions concerning patient care. Further development of technology and methods should aim to increase the availability of neuroimaging, objective assessment of functional connectivity and analysis at the level of individual cases as well as group comparisons. This will enable neuroimaging to truly become a clinical tool to

  6. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  7. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  8. Developing High-Density Diffuse Optical Tomography for Neuroimaging

    Science.gov (United States)

    White, Brian Richard

    Clinicians who care for brain-injured patients and premature infants desire a bedside monitor of brain function. A decade ago, there was hope that optical imaging would be able to fill this role, as it combined fMRI's ability to construct cortical maps with EEG's portable, cap-based systems. However, early optical systems had poor imaging performance, and the momentum for the technique slowed. In our lab, we develop diffuse optical tomography (DOT), which is a more advanced method of performing optical imaging. My research has been to pioneer the in vivo use of DOT for advanced neuroimaging by (1) quantifying the advantages of DOT through both in silico simulation and in vivo performance metrics, (2) restoring confidence in the technique with the first retinotopic mapping of the visual cortex (a benchmark for fMRI and PET), and (3) creating concepts and methods for the clinical translation of DOT. Hospitalized patients are unable to perform complicated neurological tasks, which has motivated us to develop the first DOT methods for resting-state brain mapping with functional connectivity. Finally, in collaboration with neonatologists, I have extended these methods with proof-of-principle imaging of brain-injured premature infants. This work establishes DOT's improvements in imaging performance and readies it for multiple clinical and research roles.

  9. Update on neuroimaging phenotypes of mid-hindbrain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Jissendi-Tchofo, Patrice [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); CHU Saint-Pierre, Radiology Department, Pediatric Neuroradiology Section, Brussels (Belgium); Severino, Mariasavina [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Nguema-Edzang, Beatrice; Toure, Cisse; Soto Ares, Gustavo [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); Barkovich, Anthony James [University of California, Neuroradiology Section, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-10-23

    Neuroimaging techniques including structural magnetic resonance imaging (MRI) and functional positron emission tomography (PET) are useful in categorizing various midbrain-hindbrain (MHB) malformations, both in allowing diagnosis and in helping to understand the developmental processes that were disturbed. Brain imaging phenotypes of numerous malformations are characteristic features that help in guiding the genetic testing in case of direct neuroimaging-genotype correlation or, at least, to differentiate among MHB malformations entities. The present review aims to provide the reader with an update of the use of neuroimaging applications in the fine analysis of MHB malformations, using a comprehensive, recently proposed developmental and genetic classification. We have performed an extensive systematic review of the literature, from the embryology main steps of MHB development through the malformations entities, with regard to their molecular and genetic basis, conventional MRI features, and other neuroimaging characteristics. We discuss disorders in which imaging features are distinctive and how these features reflect the structural and functional impairment of the brain. Recognition of specific MRI phenotypes, including advanced imaging features, is useful to recognize the MHB malformation entities, to suggest genetic investigations, and, eventually, to monitor the disease outcome after supportive therapies. (orig.)

  10. Promoting Efficacy Research on Functional Analytic Psychotherapy

    Science.gov (United States)

    Maitland, Daniel W. M.; Gaynor, Scott T.

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a form of therapy grounded in behavioral principles that utilizes therapist reactions to shape target behavior. Despite a growing literature base, there is a paucity of research to establish the efficacy of FAP. As a general approach to psychotherapy, and how the therapeutic relationship produces change,…

  11. New advances in fetal MR neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Hopital Robert Debre, Department of Paediatric Imaging, Paris (France)

    2006-07-15

    MR is now routinely and widely used in fetal neuroimaging and has proven to be valuable in the detection of many cerebral lesions, either genetically determined or acquired in utero. However, its efficiency has certain limits in the detection of diffuse white-matter abnormalities, the evaluation of fibre development and the demonstration of metabolic disorders. Moreover, conventional fetal MR imaging provides only a morphological approach to the fetal brain. New techniques such as diffusion-weighted imaging, diffusion tensor imaging, proton MR spectroscopy and functional MR imaging are developing. The majority of these are not used routinely. The principles, aims, technical problems and possible applications of these techniques for imaging the fetus are discussed. (orig.)

  12. Neuroimaging for drug addiction and related behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Parvaz M. A.; Parvaz, M.A.; Alia-Klein, N.; Woicik,P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-10-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  13. A review of neuroimaging studies of anxiety disorders in China.

    Science.gov (United States)

    Chen, Jing; Shi, Shenxun

    2011-01-01

    Anxiety disorders are highly prevalent internationally, and constitute a substantial social and economic burden for patients, their families, and society. A number of neuroimaging studies have investigated the etiology of anxiety disorders in China in the last decade. We discuss the findings of these studies, and compare them with the results of neuroimaging studies of anxiety disorders outside China. A literature search was conducted using the Chinese BioMedical Literature Database, the Chinese Scientific and Technical Periodicals Database, the Chinese Journal Full-text Database, and PubMed, from 1989 to April 2009. We selected neuroimaging studies in which all participants and researchers were Chinese. Twenty-five studies fit our inclusion criteria. Nine studies examined general anxiety disorder (GAD) and/or panic disorder (PD), eight examined obsessive-compulsive disorder (OCD), and eight examined posttraumatic stress disorder (PTSD). Our literature review revealed several general findings. First, reduced regional cerebral blood flow (rCBF) was found in the frontal lobe and temporal lobe in patients with GAD and PD compared with healthy controls. Second, when viewing images with negative and positive valence, relatively increased or decreased activation was found in several brain areas in patients with GAD and PD, respectively. Third, studies with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) imaging revealed that OCD patients exhibited hyperperfusion and hypoperfusion in some brain regions compared with healthy controls. Neuroimaging studies of PTSD indicate that the hippocampal volume and the N-acetylaspartic acid (NAA) level and the NAA/creatine ratio in the hippocampus are decreased in patients relative to controls. Neuroimaging studies within and outside China have provided evidence of specific neurobiological changes associated with anxiety disorders. However, results have not been entirely consistent across different studies

  14. 25 years of neuroimaging in amyotrophic lateral sclerosis

    Science.gov (United States)

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  15. 25 years of neuroimaging in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L

    2013-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.

  16. Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography.

    Science.gov (United States)

    Riba, Jordi; Anderer, Peter; Jané, Francesc; Saletu, Bernd; Barbanoj, Manel J

    2004-01-01

    Ayahuasca, a South American psychotropic plant tea obtained from Banisteriopsis caapi and Psychotria viridis, combines monoamine oxidase-inhibiting beta-carboline alkaloids with N,N-dimethyltryptamine (DMT), a psychedelic agent showing 5-HT(2A) agonist activity. In a clinical research setting, ayahuasca has demonstrated a combined stimulatory and psychedelic effect profile, as measured by subjective effect self-assessment instruments and dose-dependent changes in spontaneous brain electrical activity, which parallel the time course of subjective effects. In the present study, the spatial distribution of ayahuasca-induced changes in brain electrical activity was investigated by means of low-resolution electromagnetic tomography (LORETA). Electroencephalography recordings were obtained from 18 volunteers after the administration of a dose of encapsulated freeze-dried ayahuasca containing 0.85 mg DMT/kg body weight and placebo. The intracerebral power density distribution was computed with LORETA from spectrally analyzed data, and subjective effects were measured by means of the Hallucinogen Rating Scale (HRS). Statistically significant differences compared to placebo were observed for LORETA power 60 and 90 min after dosing, together with increases in all six scales of the HRS. Ayahuasca decreased power density in the alpha-2, delta, theta and beta-1 frequency bands. Power decreases in the delta, alpha-2 and beta-1 bands were found predominantly over the temporo-parieto-occipital junction, whereas theta power was reduced in the temporomedial cortex and in frontomedial regions. The present results suggest the involvement of unimodal and heteromodal association cortex and limbic structures in the psychological effects elicited by ayahuasca.

  17. Towards structured sharing of raw and derived neuroimaging data across existing resources.

    Science.gov (United States)

    Keator, D B; Helmer, K; Steffener, J; Turner, J A; Van Erp, T G M; Gadde, S; Ashish, N; Burns, G A; Nichols, B N

    2013-11-15

    Data sharing efforts increasingly contribute to the acceleration of scientific discovery. Neuroimaging data is accumulating in distributed domain-specific databases and there is currently no integrated access mechanism nor an accepted format for the critically important meta-data that is necessary for making use of the combined, available neuroimaging data. In this manuscript, we present work from the Derived Data Working Group, an open-access group sponsored by the Biomedical Informatics Research Network (BIRN) and the International Neuroimaging Coordinating Facility (INCF) focused on practical tools for distributed access to neuroimaging data. The working group develops models and tools facilitating the structured interchange of neuroimaging meta-data and is making progress towards a unified set of tools for such data and meta-data exchange. We report on the key components required for integrated access to raw and derived neuroimaging data as well as associated meta-data and provenance across neuroimaging resources. The components include (1) a structured terminology that provides semantic context to data, (2) a formal data model for neuroimaging with robust tracking of data provenance, (3) a web service-based application programming interface (API) that provides a consistent mechanism to access and query the data model, and (4) a provenance library that can be used for the extraction of provenance data by image analysts and imaging software developers. We believe that the framework and set of tools outlined in this manuscript have great potential for solving many of the issues the neuroimaging community faces when sharing raw and derived neuroimaging data across the various existing database systems for the purpose of accelerating scientific discovery.

  18. Neuroimaging in Selected Nigerian Epileptic Patients: A Decade of ...

    African Journals Online (AJOL)

    Neuroimaging in Selected Nigerian Epileptic Patients: A Decade of Experience. ... The study sets out to highlight the relevance of neuroimaging in the management of ... The neuroimaging was done in various centres in Nigeria and abroad.

  19. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations

    Directory of Open Access Journals (Sweden)

    Lawrence Leung

    2013-01-01

    Full Text Available With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract with a suggested protocol of approach.

  20. Understanding the impact of TV commercials: electrical neuroimaging.

    Science.gov (United States)

    Vecchiato, Giovanni; Kong, Wanzeng; Maglione, Anton Giulio; Wei, Daming

    2012-01-01

    Today, there is a greater interest in the marketing world in using neuroimaging tools to evaluate the efficacy of TV commercials. This field of research is known as neuromarketing. In this article, we illustrate some applications of electrical neuroimaging, a discipline that uses electroencephalography (EEG) and intensive signal processing techniques for the evaluation of marketing stimuli. We also show how the proper usage of these methodologies can provide information related to memorization and attention while people are watching marketing-relevant stimuli. We note that temporal and frequency patterns of EEG signals are able to provide possible descriptors that convey information about the cognitive process in subjects observing commercial advertisements (ads). Such information could be unobtainable through common tools used in standard marketing research. Evidence of this research shows how EEG methodologies could be employed to better design new products that marketers are going to promote and to analyze the global impact of video commercials already broadcast on TV.

  1. Basics of Multivariate Analysis in Neuroimaging Data

    Science.gov (United States)

    Habeck, Christian Georg

    2010-01-01

    Multivariate analysis techniques for neuroimaging data have recently received increasing attention as they have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques1,5,6,7,8,9. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address interregional correlation in the brain. Multivariate approaches can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent corrections for voxel-wise multiple comparisons. Further, multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. The current article is an attempt at a didactic introduction of multivariate techniques for the novice. A conceptual introduction is followed with a very simple application to a diagnostic

  2. Three brain collections for comparative neuroanatomy and neuroimaging.

    Science.gov (United States)

    Zilles, Karl; Amunts, Katrin; Smaers, Jeroen B

    2011-05-01

    In the context of increasing extinction rates and the potential loss of essential evolutionary biological and anthropological information, it is an important task to support efforts to prepare, preserve, and curate collections of histological brain sections; to disseminate information on such collections in the neuroscience community; and to make the collections publicly available. This review emphasizes the importance of complete, serially sectioned human brains of different ontogenetic stages as well as those of adult and old human individuals for neurobiological and medical research. Such histological sections enable microstructural analyses and anatomical evaluations of functional and structural neuroimaging data, for example, based on magnetic resonance imaging. Here, this review provides the first detailed and updated account of the content of the Stephan, Zilles, and Zilles-Amunts collections, which consist of serially sectioned and cell body- and myelin-stained histological preparations. Finally, this review will give an overview of past and recent research using these collections to increase our understanding of the detailed patterns of divergent brain evolution in primates as well as of the structural organization of the human brain.

  3. Neuroimaging of classic neuralgic amyotrophy.

    Science.gov (United States)

    Lieba-Samal, Doris; Jengojan, Suren; Kasprian, Gregor; Wöber, Christian; Bodner, Gerd

    2016-12-01

    Neuralgic amyotrophy (NA) often imposes diagnostic problems. Recently, MRI and high-resolution ultrasound (HRUS) have proven useful in diagnosing peripheral nerve disorders. We performed a chart and imaging review of patients who were examined using neuroimaging and who were referred because of clinically diagnosed NA between March 1, 2014 and May 1, 2015. Six patients were included. All underwent HRUS, and 5 underwent MRI. Time from onset to evaluation ranged from 2 weeks to 6 months. HRUS showed segmental swelling of all clinically affected nerves/trunks. Atrophy of muscles was detected in those assessed >1 month after onset. MRI showed T2-weighted hyperintensity in all clinically affected nerves, except for the long thoracic nerve, and denervation edema of muscles. HRUS and MRI are valuable diagnostic tools in NA. This could change the diagnostic approach from one now focused on excluding other disorders to confirming NA through imaging markers. Muscle Nerve 54: 1079-1085, 2016. © 2016 Wiley Periodicals, Inc.

  4. Pediatric neuroimaging in early childhood and infancy: challenges and practical guidelines

    Science.gov (United States)

    Raschle, Nora; Zuk, Jennifer; Ortiz-Mantilla, Silvia; Sliva, Danielle D.; Franceschi, Angela; Grant, P. Ellen; Benasich, April A.; Gaab, Nadine

    2012-01-01

    Structural and functional magnetic resonance imaging (fMRI) has been used increasingly to investigate typical and atypical brain development. However, in contrast to studies in school-aged children and adults, MRI research in young pediatric age groups is less common. Practical and technical challenges occur when imaging infants and children, which presents clinicians and research teams with a unique set of problems. These include procedural difficulties (e.g., participant anxiety or movement restrictions), technical obstacles (e.g., availability of child-appropriate equipment or pediatric MR head coils), and the challenge of choosing the most appropriate analysis methods for pediatric imaging data. Here, we summarize and review pediatric imaging and analysis tools and present neuroimaging protocols for young nonsedated children and infants, including guidelines and procedures that have been successfully implemented in research protocols across several research sites. PMID:22524338

  5. Revisiting neuroimaging of abusive head trauma in infants and young children.

    Science.gov (United States)

    Hsieh, Kevin Li-Chun; Zimmerman, Robert A; Kao, Hung Wen; Chen, Cheng-Yu

    2015-05-01

    The purpose of this article is to use a mechanism-based approach to review the neuroimaging findings of abusive head trauma to infants. Advanced neuroimaging provides insights into not only the underlying mechanisms of craniocerebral injuries but also the long-term prognosis of brain injury for children on whom these injuries have been inflicted. Knowledge of the traumatic mechanisms, the key neuroimaging findings, and the implications of functional imaging findings should help radiologists characterize the underlying causes of the injuries inflicted, thereby facilitating effective treatment.

  6. Mathematical modeling and visualization of functional neuroimages

    OpenAIRE

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    2011-01-01

    Denne afhandling præsenterer forskningsresultater omhandlende matematisk modellering indenfor analyse af funktionelle hjernescanningsbilleder. Specifikt fokuserer afhandlingen pa mønster-baserede analysemetoder, som nyligt er blevet populære indenfor hjerneforskning. Ved hjæp af sådanne modelleringsmetoderne forsger forskere at prdiktere en eksperimentelt defineret mental tilstand ud fra hjernescanningsdata. Afhandlingen omhandler emner, der kan inddeles i to dele.Første del undersger hvorled...

  7. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    influence of model regularization parameter choices on the model generalization, the reliability of the spatial brain patterns extracted from the analysis model, and the ability of the model to identify relevant brain networks defining the underlying neural encoding of the experiment. We show that known...... parts of brain networks can be overlooked in pursuing maximization of prediction accuracy. This supports the view that the quality of spatial patterns extracted from models cannot be assessed purely by focusing on prediction accuracy. Our results instead suggest that model regularization parameters must...

  8. Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development

    Directory of Open Access Journals (Sweden)

    Elizabeth B Isaacs

    2013-08-01

    Full Text Available Nutrition is crucial to the initial development of the central nervous system, and then to its maintenance, because both depend on dietary intake to supply the elements required to develop and fuel the system. Diet in early life is often seen in the context of programming where a stimulus occurring during a vulnerable period can have long-lasting or even lifetime effects on some aspect of the organism’s structure or function. Nutrition was first shown to be a programing stimulus for growth, and then for cognitive behaviour, in animal studies that were also able to employ methods that allowed the demonstration of neural effects of early nutrition. Such research raised the question of whether nutrition could also programme cognition/brain structure in humans. Initial studies of cognitive effects were observational, usually in developing countries where the presence of confounding factors made it difficult to interpret the role of nutrition in the cognitive deficits that were seen. Attributing causality to nutrition required randomised controlled trials and these, often in developed countries, started to appear around 30 years ago. Most demonstrated convincingly that early nutrition could affect subsequent cognition. Until the advent of neuroimaging techniques that allowed in vivo examination of the brain, however, we could determine very little about the neural effects of early diet in humans. The combination of well-designed trials with neuroimaging tools means that we are now able to pose and answer questions that would have seemed impossible only recently. This review discusses various neuroimaging methods that are suitable for use in nutrition studies, while pointing out some of the limitations that they may have. The existing literature is small, but examples of studies that have used these methods are presented. Finally, some considerations that have arisen from previous studies, as well as suggestions for future research, are discussed.

  9. Post-stroke cognitive dysfunctions: A clinical and neuroimaging study

    Directory of Open Access Journals (Sweden)

    Andrei Yuryevich Emelin

    2013-01-01

    Full Text Available Clinical, neuropsychological, and neuroimaging examinations were made in 65 patients (52 men and 13 women aged 65.6±10.1 years who had experienced ischemic stroke. Cognitive impairments (CI were heterogeneous; regulatory functions, attention, and counting were most significantly affected in moderate CI. In mild dementia, mainly poor attention and regulatory dysfunctions were added by clearly-cut impairments of memory, orientation, and visual-spatial function. Brain atrophy, white matter changes, and small focal gray matter damages along with focal post-stroke changes were revealed by neuroimaging in most patients. It was found that besides the volume and location of a damage focus, the signs of impaired integrated mental activity of the brain, regulatory dysfunctions in particular, should be a necessary condition for the verification of post-stroke CI.

  10. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies.

    Science.gov (United States)

    Noreika, Valdas; Falter, Christine M; Rubia, Katya

    2013-01-01

    measures of impulsiveness and inattention, suggesting that timing problems are key to the clinical behavioural profile of ADHD. Emerging evidence shows that the most common treatment of ADHD with the dopamine agonist and psychostimulant Methylphenidate attenuates most timing deficits in ADHD and normalises the abnormally blunted recruitment of the underlying fronto-striato-cerebellar networks. Timing function deficits in ADHD, therefore, next to executive function deficits, form an independent impairment domain, and should receive more attention in neuropsychological, neuroimaging, and pharmacological basic research as well as in translational research aimed to develop pharmacological or non-pharmacological treatment of abnormal timing behaviour and cognition in ADHD.

  11. 中枢神经系统核素显像的临床应用与进展%The progress and clinical application of radionuclide neuroimaging

    Institute of Scientific and Technical Information of China (English)

    陈文新; 何品玉

    2008-01-01

    Development of site-specific brain radiopharmaceuticals extends the the functional neuroimaging applications in the diagnosis and monitoring treatments of various neurologic and psychiatric disorders.This article highlights recent advances and clinical applications of the functional neuroimaging in Parkinson disease,epilepsy,dementia,substance abuse,psychiatric disorders and brain functional research.%各种特异性脑显像剂不断被推广应用,使放射性核素显像从诊断中枢神经系统疾病和监测疗效发展到观察特异性变化的阶段.简述了帕金森病、癫痫、痴呆、药物成瘾、精神疾病、脑功能活动等核素显像的临床应用及近期研究进展.

  12. Electrical neuroimaging reveals early generator modulation to emotional words.

    Science.gov (United States)

    Ortigue, Stephanie; Michel, Christoph M; Murray, Micah M; Mohr, Christine; Carbonnel, Serge; Landis, Theodor

    2004-04-01

    Functional electrical neuroimaging investigated incidental emotional word processing. Previous research suggests that the brain may differentially respond to the emotional content of linguistic stimuli pre-lexically (i.e., before distinguishing that these stimuli are words). We investigated the spatiotemporal brain mechanisms of this apparent paradox and in particular whether the initial differentiation of emotional stimuli is marked by different brain generator configurations using high-density, event-related potentials. Such would support the existence of specific cerebral resources dedicated to emotional word processing. A related issue concerns the possibility of right-hemispheric specialization in the processing of emotional stimuli. Thirteen healthy men performed a go/no-go lexical decision task with bilateral word/non-word or non-word/non-word stimulus pairs. Words included equal numbers of neutral and emotional stimuli, but subjects made no explicit discrimination along this dimension. Emotional words appearing in the right visual field (ERVF) yielded the best overall performance, although the difference between emotional and neutral words was larger for left than for right visual field presentations. Electrophysiologically, ERVF presentations were distinguished from all other conditions over the 100-140 ms period by a distinct scalp topography, indicative of different intracranial generator configurations. A distributed linear source estimation (LAURA) of this distinct scalp potential field revealed bilateral lateral-occipital sources with a right hemisphere current density maximum. These data support the existence of a specialized brain network triggered by the emotional connotation of words at a very early processing stage.

  13. Neuroimaging and Neurocognitive Correlates of Aggression and Violence in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisabeth M. Weiss

    2012-01-01

    Full Text Available Individuals diagnosed with major mental disorders such as schizophrenia are more likely to have engaged in violent behavior than mentally healthy members of the same communities. Although aggressive acts can have numerous causes, research about the underlying neurobiology of violence and aggression in schizophrenia can lead to a better understanding of the heterogeneous nature of that behavior and can assist in developing new treatment strategies. The purpose of this paper is to review the recent literature and discuss some of the neurobiological correlates of aggression and violence. The focus will be on schizophrenia, and the results of neuroimaging and neuropsychological studies that have directly investigated brain functioning and/or structure in aggressive and violent samples will be discussed as well as other domains that might predispose to aggression and violence such as deficits in responding to the emotional expressions of others, impulsivity, and psychopathological symptoms. Finally gender differences regarding aggression and violence are discussed. In this context several methodological and conceptional issues that limited the comparison of these studies will be addressed.

  14. Federating distributed and heterogeneous information sources in neuroimaging: the NeuroBase Project.

    OpenAIRE

    Barillot, Christian; Benali, Habib; Dojat, Michel; Gaignard, Alban; Gibaud, Bernard; Kinkingnéhun, Serge; Matsumoto, Jean-Pierre; Pélégrini-Issac, Mélanie; Simon, Eric; Temal, Lynda

    2006-01-01

    The NeuroBase project aims at studying the requirements for federating, through the Internet, information sources in neuroimaging. These sources are distributed in different experimental sites, hospitals or research centers in cognitive neurosciences, and contain heterogeneous data and image processing programs. More precisely, this project consists in creating of a shared ontology, suitable for supporting various neuroimaging applications, and a computer architecture for accessing and sharin...

  15. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data

    OpenAIRE

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of finding...

  16. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.

    OpenAIRE

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of finding...

  17. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    OpenAIRE

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of finding...

  18. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    OpenAIRE

    Thompson, Paul; Stein, J.L.; Medland, Sarah Elizabeth; Hibar, Derrek; Vásquez, Arias; Rentería, Miguel; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret; Martin, Nicholas; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud

    2014-01-01

    textabstractThe Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replicatio...

  19. A review of neuroimaging studies of anxiety disorders in China

    Directory of Open Access Journals (Sweden)

    Chen J

    2011-05-01

    Full Text Available Jing Chen, Shenxun ShiDepartment of Psychiatry, Huashan Hospital, Fudan University, Shanghai, ChinaBackground: Anxiety disorders are highly prevalent internationally, and constitute a substantial social and economic burden for patients, their families, and society. A number of neuroimaging studies have investigated the etiology of anxiety disorders in China in the last decade. We discuss the findings of these studies, and compare them with the results of neuroimaging studies of anxiety disorders outside China.Method: A literature search was conducted using the Chinese BioMedical Literature Database, the Chinese Scientific and Technical Periodicals Database, the Chinese Journal Full-text Database, and PubMed, from 1989 to April 2009. We selected neuroimaging studies in which all participants and researchers were Chinese.Results: Twenty-five studies fit our inclusion criteria. Nine studies examined general anxiety disorder (GAD and/or panic disorder (PD, eight examined obsessive-compulsive disorder (OCD, and eight examined posttraumatic stress disorder (PTSD. Our literature review revealed several general findings. First, reduced regional cerebral blood flow (rCBF was found in the frontal lobe and temporal lobe in patients with GAD and PD compared with healthy controls. Second, when viewing images with negative and positive valence, relatively increased or decreased activation was found in several brain areas in patients with GAD and PD, respectively. Third, studies with positron emission tomography (PET and magnetic resonance spectroscopy (MRS imaging revealed that OCD patients exhibited hyperperfusion and hypoperfusion in some brain regions compared with healthy controls. Neuroimaging studies of PTSD indicate that the hippocampal volume and the N-acetylaspartic acid (NAA level and the NAA/creatine ratio in the hippocampus are decreased in patients relative to controls.Conclusion: Neuroimaging studies within and outside China have provided

  20. Cross-View Neuroimage Pattern Analysis for Alzheimer's Disease Staging

    Directory of Open Access Journals (Sweden)

    Sidong eLiu

    2016-02-01

    Full Text Available The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer's disease (AD, is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed 9 types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.

  1. Organising Quality Function in Research and Development

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2006-01-01

    Full Text Available Quality function may be summarised as quality generation, quality control, and qualityassurance. The quality generation and quality control, because of their fuactional nature, arecomparatively easy to organise, however, the challenge is to organise quality assurance in theorganisation. It is the challenge because quality assurance should seamlessly merge with theR&D process. In future, the organisations, whether real or virtual, are going to bepredominantly, research and development (R&D oriented rather than pure manufacturing orservice providers. However, the nature and intensity of the R&D may differ. It could be fromsimple improvement to innovation, to exploitation of inventions.Organising quality function in R&D means organising its various dimensions against thestipulated criteria such as the realisation of the quality system; realisation of quality duringproduct development, including system engineering; staffing of quality generation, quality control,and quality assurance; balancing of the quality function; harnessing of project quality, functionalquality, staff quality and line quality; application of the RHR principle; exploitation of the toolsof organising, democratic organisation; and so on. The basic purpose of organising the qualityfunction is to inculcate the sense of pride in quality among the scientists so that they feelpassionate about it. It is the passion and love for quality that generates, sustains, and maintainsquality.

  2. Neuroimaging revolutionizes therapeutic approaches to chronic pain

    Directory of Open Access Journals (Sweden)

    Borsook David

    2007-09-01

    Full Text Available Abstract An understanding of how the brain changes in chronic pain or responds to pharmacological or other therapeutic interventions has been significantly changed as a result of developments in neuroimaging of the CNS. These developments have occurred in 3 domains : (1 Anatomical Imaging which has demonstrated changes in brain volume in chronic pain; (2 Functional Imaging (fMRI that has demonstrated an altered state in the brain in chronic pain conditions including back pain, neuropathic pain, and complex regional pain syndromes. In addition the response of the brain to drugs has provided new insights into how these may modify normal and abnormal circuits (phMRI or pharmacological MRI; (3 Chemical Imaging (Magnetic Resonance Spectroscopy or MRS has helped our understanding of measures of chemical changes in chronic pain. Taken together these three domains have already changed the way in which we think of pain – it should now be considered an altered brain state in which there may be altered functional connections or systems and a state that has components of degenerative aspects of the CNS.

  3. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    Science.gov (United States)

    Risacher, Shannon L.; Saykin, Andrew J.

    2014-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson’s disease with and without dementia, dementia with Lewy bodies, Huntington’s disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders. PMID:24234359

  4. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    Science.gov (United States)

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  5. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Science.gov (United States)

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  6. Efeitos cerebrais da maconha: resultados dos estudos de neuroimagem Brain effects of cannabis: neuroimaging findings

    Directory of Open Access Journals (Sweden)

    José Alexandre Crippa

    2005-03-01

    Full Text Available A maconha é a droga ilícita mais utilizada. Apesar disto, apenas um pequeno número de estudos investigaram as conseqüências neurotóxicas de longo prazo do uso de cannabis. As técnicas de neuroimagem se constituem em poderosos instrumentos para investigar alterações neuroanatômicas e neurofuncionais e suas correlações clínicas e neuropsicológicas. Uma revisão computadorizada da literatura foi conduzida nos indexadores MEDLINE e PsycLIT entre 1966 e novembro de 2004 com os termos 'cannabis', 'marijuana', 'neuroimaging', 'magnetic resonance', 'computed tomography', 'positron emission tomography', 'single photon emission computed tomography", 'SPET', 'MRI' e 'CT'. Estudos de neuroimagem estrutural apresentam resultados conflitantes, com a maioria dos estudos não relatando atrofia cerebral ou alterações volumétricas regionais. Contudo, há uma pequena evidência de que usuários de longo prazo que iniciaram um uso regular no início da adolescência apresentam atrofia cerebral assim como redução na substância cinzenta. Estudos de neuroimagem funcional relatam aumento na atividade neural em regiões que podem estar relacionadas com intoxicação por cannabis e alteração do humor (lobos frontais mesial e orbital e redução na atividade de regiões relacionadas com funções cognitivas prejudicadas durante a intoxicação aguda. A questão crucial se efeitos neurotóxicos residuais ocorrem após o uso prolongado e regular de maconha permanece obscura, não existindo até então estudo endereçando esta questão diretamente. Estudos de neuroimagem com melhores desenhos, combinados com avaliação cognitiva, podem ser elucidativos neste aspecto.Cannabis is the most widely used illicit drug. Despite this, only a small number of studies have investigated the long-term neurotoxic consequences of cannabis use. Structural and functional neuroimaging techniques are powerful research tools to investigate possible cannabis

  7. Multiple comparison procedures for neuroimaging genomewide association studies.

    Science.gov (United States)

    Hua, Wen-Yu; Nichols, Thomas E; Ghosh, Debashis

    2015-01-01

    Recent research in neuroimaging has focused on assessing associations between genetic variants that are measured on a genomewide scale and brain imaging phenotypes. A large number of works in the area apply massively univariate analyses on a genomewide basis to find single nucleotide polymorphisms that influence brain structure. In this paper, we propose using various dimensionality reduction methods on both brain structural MRI scans and genomic data, motivated by the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We also consider a new multiple testing adjustment method and compare it with two existing false discovery rate (FDR) adjustment methods. The simulation results suggest an increase in power for the proposed method. The real-data analysis suggests that the proposed procedure is able to find associations between genetic variants and brain volume differences that offer potentially new biological insights. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Harnessing graphics processing units for improved neuroimaging statistics.

    Science.gov (United States)

    Eklund, Anders; Villani, Mattias; Laconte, Stephen M

    2013-09-01

    Simple models and algorithms based on restrictive assumptions are often used in the field of neuroimaging for studies involving functional magnetic resonance imaging, voxel based morphometry, and diffusion tensor imaging. Nonparametric statistical methods or flexible Bayesian models can be applied rather easily to yield more trustworthy results. The spatial normalization step required for multisubject studies can also be improved by taking advantage of more robust algorithms for image registration. A common drawback of algorithms based on weaker assumptions, however, is the increase in computational complexity. In this short overview, we will therefore present some examples of how inexpensive PC graphics hardware, normally used for demanding computer games, can be used to enable practical use of more realistic models and accurate algorithms, such that the outcome of neuroimaging studies really can be trusted.

  9. Imaging genetics in obsessive-compulsive disorder: linking genetic variations to alterations in neuroimaging.

    Science.gov (United States)

    Grünblatt, Edna; Hauser, Tobias U; Walitza, Susanne

    2014-10-01

    Obsessive-compulsive disorder (OCD) occurs in ∼1-3% of the general population, and its often rather early onset causes major disabilities in the everyday lives of patients. Although the heritability of OCD is between 35 and 65%, many linkage, association, and genome-wide association studies have failed to identify single genes that exhibit high effect sizes. Several neuroimaging studies have revealed structural and functional alterations mainly in cortico-striato-thalamic loops. However, there is also marked heterogeneity across studies. These inconsistencies in genetic and neuroimaging studies may be due to the heterogeneous and complex phenotypes of OCD. Under the consideration that genetic variants may also influence neuroimaging in OCD, researchers have started to combine both domains in the field of imaging genetics. Here, we conducted a systematic search of PubMed and Google Scholar literature for articles that address genetic imaging in OCD and related disorders (published through March 2014). We selected 8 publications that describe the combination of imaging genetics with OCD, and extended it with 43 publications of comorbid psychiatric disorders. The most promising findings of this systematic review point to the involvement of variants in genes involved in the serotonergic (5-HTTLPR, HTR2A), dopaminergic (COMT, DAT), and glutamatergic (SLC1A1, SAPAP) systems. However, the field of imaging genetics must be further explored, best through investigations that combine multimodal imaging techniques with genetic profiling, particularly profiling techniques that employ polygenetic approaches, with much larger sample sizes than have been used up to now. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Deficient Approaches to Human Neuroimaging

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-07-01

    Full Text Available Functional magnetic resonance imaging (fMRI is the workhorse of imaging-based human cognitive neuroscience. The use of fMRI is ever-increasing; within the last 4 years more fMRI studies have been published than in the previous 17 years. This large body of research has mainly focused on the functional localization of condition- or stimulus-dependent changes in the blood-oxygenation-level dependent (BOLD signal.In recent years, however, many aspects of the commonly practiced analysis frameworks and methodologies have been critically reassessed. Here we summarize these critiques, providing an overview of the major conceptual and practical deficiencies in widely used brain-mapping approaches, and exemplify some of these issues by the use of imaging data and simulations. In particular, we discuss the inherent pitfalls and shortcomings of methodologies for statistical parametric mapping. Our critique emphasizes recent reports of excessively high numbers of both false positive and false negative findings in fMRI brain mapping. We outline our view regarding the broader scientific implications of these methodological considerations and briefly discuss possible solutions.

  11. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  12. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    Science.gov (United States)

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies. PMID:26110109

  13. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    Science.gov (United States)

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.

  14. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    Directory of Open Access Journals (Sweden)

    D. Val-Laillet

    2015-01-01

    the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS and deep brain stimulation (DBS. In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.

  15. The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence

    Directory of Open Access Journals (Sweden)

    Bressan Rodrigo A

    2009-06-01

    Full Text Available Abstract Background Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies. Methods and design Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases will be compared to resilient victims of traumatic life experiences without PTSD (controls aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured

  16. Gain-of-Function Research: Ethical Analysis.

    Science.gov (United States)

    Selgelid, Michael J

    2016-08-01

    Gain-of-function (GOF) research involves experimentation that aims or is expected to (and/or, perhaps, actually does) increase the transmissibility and/or virulence of pathogens. Such research, when conducted by responsible scientists, usually aims to improve understanding of disease causing agents, their interaction with human hosts, and/or their potential to cause pandemics. The ultimate objective of such research is to better inform public health and preparedness efforts and/or development of medical countermeasures. Despite these important potential benefits, GOF research (GOFR) can pose risks regarding biosecurity and biosafety. In 2014 the administration of US President Barack Obama called for a "pause" on funding (and relevant research with existing US Government funding) of GOF experiments involving influenza, SARS, and MERS viruses in particular. With announcement of this pause, the US Government launched a "deliberative process" regarding risks and benefits of GOFR to inform future funding decisions-and the US National Science Advisory Board for Biosecurity (NSABB) was tasked with making recommendations to the US Government on this matter. As part of this deliberative process the National Institutes of Health commissioned this Ethical Analysis White Paper, requesting that it provide (1) review and summary of ethical literature on GOFR, (2) identification and analysis of existing ethical and decision-making frameworks relevant to (i) the evaluation of risks and benefits of GOFR, (ii) decision-making about the conduct of GOF studies, and (iii) the development of US policy regarding GOFR (especially with respect to funding of GOFR), and (3) development of an ethical and decision-making framework that may be considered by NSABB when analyzing information provided by GOFR risk-benefit assessment, and when crafting its final recommendations (especially regarding policy decisions about funding of GOFR in particular). The ethical and decision-making framework

  17. Neuroimaging diagnosis for cerebral infarction An 8-year bibliometric analysis

    Institute of Scientific and Technical Information of China (English)

    Yan Du; Xiaoxia Yang; Hong Song; Bo Chen; Lin Li; Yue Pan; Qiong Wu; Jia Li

    2012-01-01

    OBJECTIVE:To identify global research trends in neuroimaging diagnosis for cerebral infarction using a bibliometric analysis of the Web of Science.DATA RETRIEVAL:We performed a bibliometric analysis of data retrieval for neuroimaging diagnosis for cerebral infarction containing the key words "CT,magnetic resonance imaging,MRI,transcranial Doppler,transvaginal color Doppler,digital subtraction angiography,and cerebral infarction" using the Web of Science.SELECTION CRITERIA:Inclusion criteria were:(a) peer-reviewed articles on neuroimaging diagnosis for cerebral infarction which were published and indexed in the Web of Science; (b) original research articles and reviews; and (c) publication between 2004-2011.Exclusion criteria were:(a) articles that required manual searching or telephone access; and (b) corrected papers or book chapters.MAIN OUTCOME MEASURES:(1)Annual publication output; (2) distribution according to country;(3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on neuroimaging diagnosis for cerebral infarction.RESULTS:Imaging has become the predominant method used in diagnosing cerebral infarction.The most frequently used clinical imaging methods were digital subtraction angiography,CT,MRI,and transcranial color Doppler examination.Digital subtraction angiography is used as the gold standard.However,it is a costly and time-consuming invasive diagnosis that requires some radiation exposure,and is poorly accepted by patients.As such,it is mostly adopted in interventional therapy in the clinic.CT is now accepted as a rapid,simple,and reliable non-invasive method for use in diagnosis of cerebrovascular disease and preoperative appraisal.Ultrasonic Doppler can be used to reflect the hardness of the vascular wall and the nature of the plaque more clearly than CT and MRI.CONCLUSION:At present,there is no unified standard of classification of cerebral infarction

  18. The role of neuroimaging in the early diagnosis and evaluation of Parkinson's disease.

    Science.gov (United States)

    Seibyl, J; Jennings, D; Tabamo, R; Marek, K

    2005-10-01

    The development of imaging biomarkers which target specific sites in the brain represents a significant advance in neurodegenerative diseases and Parkinson's disease with the promise of new and improved approaches for the early and accurate diagnosis of disease as well as novel ways to monitor patients and assess treatment. The 3 major applications of imaging may play a role in Parkinson's disease include: 1) the use of neuroimaging as a biomarker of disease in order to improve the accuracy, timeliness, and reliability of diagnosis; 2) objective monitoring of the progression of disease to provide a molecular phenotype of Parkinson's disease which may illuminate some of the sources of clinical variability; 3) the evaluation of so-called ''disease-modifying'' treatments designed to retard the progression of disease by interfering with pathways thought implicated in the ongoing neuronal loss or replace dopamine-producing cells. Each of these areas has shown a numbers of critical clinical investigations which have better defined the utility of the imaging tools to these tasks. Nonetheless, current unresolved issues around the clinical role of neuroimaging in monitoring patients over time and validation of quantitative imaging measures of dopaminergic function are immediate issues for the field and the subject of current research efforts and the extension of the lessons learned in Parkinson's to other neurodegenerative diseases including Alzheimer's dementia.

  19. Neurobiological foundations of acupuncture: the relevance and future prospect based on neuroimaging evidence.

    Science.gov (United States)

    Bai, Lijun; Lao, Lixing

    2013-01-01

    Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. "Deqi" response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  20. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  1. Research on the river function regionalization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objectives, principles, classification system, zoning method and procedure of river function region-alization were investigated systematically based on the present status of modern river regulation and function requirement. Considering the ecosystem continuity and river function integrality, a river is suggested to be divided into five function zones: ecological protection zone, habitat restoration zone, exploitation and utilization zone, buffer zone,and transition zone, based on the developed intensity and the function characteristics of the river. In this paper, not only the five function zones were described qualitatively, but also the quantitative examination method on how to identify their function zone types was given. A double-criterion partitioning scheme was proposed according to the functional zoning diagram constructed by the evaluation of the social and ecological function of rivers. Finally, the procedures of river function regionalization were shown.

  2. Data sharing and publishing in the field of neuroimaging

    Directory of Open Access Journals (Sweden)

    Breeze Janis L

    2012-07-01

    Full Text Available Abstract There is growing recognition of the importance of data sharing in the neurosciences, and in particular in the field of neuroimaging research, in order to best make use of the volumes of human subject data that have been acquired to date. However, a number of barriers, both practical and cultural, continue to impede the widespread practice of data sharing; these include: lack of standard infrastructure and tools for data sharing, uncertainty about how to organize and prepare the data for sharing, and researchers’ fears about unattributed data use or missed opportunities for publication. A further challenge is how the scientific community should best describe and/or reference shared data that is used in secondary analyses. Finally, issues of human research subject protections and the ethical use of such data are an ongoing source of concern for neuroimaging researchers. One crucial issue is how producers of shared data can and should be acknowledged and how this important component of science will benefit individuals in their academic careers. While we encourage the field to make use of these opportunities for data publishing, it is critical that standards for metadata, provenance, and other descriptors are used. This commentary outlines the efforts of the International Neuroinformatics Coordinating Facility Task Force on Neuroimaging Datasharing to coordinate and establish such standards, as well as potential ways forward to relieve the issues that researchers who produce these massive, reusable community resources face when making the data rapidly and freely available to the public. Both the technical and human aspects of data sharing must be addressed if we are to go forward.

  3. Facial emotion processing in major depression: a systematic review of neuroimaging findings

    Directory of Open Access Journals (Sweden)

    Stuhrmann Anja

    2011-11-01

    Full Text Available Abstract Background Cognitive models of depression suggest that major depression is characterized by biased facial emotion processing, making facial stimuli particularly valuable for neuroimaging research on the neurobiological correlates of depression. The present review provides an overview of functional neuroimaging studies on abnormal facial emotion processing in major depression. Our main objective was to describe neurobiological differences between depressed patients with major depressive disorder (MDD and healthy controls (HCs regarding brain responsiveness to facial expressions and, furthermore, to delineate altered neural activation patterns associated with mood-congruent processing bias and to integrate these data with recent functional connectivity results. We further discuss methodological aspects potentially explaining the heterogeneity of results. Methods A Medline search was performed up to August 2011 in order to identify studies on emotional face processing in acutely depressed patients compared with HCs. A total of 25 studies using functional magnetic resonance imaging were reviewed. Results The analysis of neural activation data showed abnormalities in MDD patients in a common face processing network, pointing to mood-congruent processing bias (hyperactivation to negative and hypoactivation to positive stimuli particularly in the amygdala, insula, parahippocampal gyrus, fusiform face area, and putamen. Furthermore, abnormal activation patterns were repeatedly found in parts of the cingulate gyrus and the orbitofrontal cortex, which are extended by investigations implementing functional connectivity analysis. However, despite several converging findings, some inconsistencies are observed, particularly in prefrontal areas, probably caused by heterogeneities in paradigms and patient samples. Conclusions Further studies in remitted patients and high-risk samples are required to discern whether the described abnormalities represent

  4. A neuroimaging study in childhood autism

    Directory of Open Access Journals (Sweden)

    Mohammad S. I. Mullick

    2016-08-01

    Full Text Available Background: Childhood autism is now widely viewed as being of developmental neurological origin. Abnormality in neuroimaging is reported in autism.Objectives: To delineate the proportion of structural magnetic resonance imaging (MRI and electro encephalography (EEG abnormality among the children with Autism and to assess any association of MRI and EEG changes with co morbid mental illness.Methods: It was a cross sectional descriptive study done at a child and adolescent consultation centre, Dhaka. The study was Carried out from January 2009 to December 2009. Both boys and girls were included in the study. A total of 42 children with childhood autism aged between two and 12 years partici­pated in this study. Diagnosis of autism was based on ICD-10(DCR criteria. Results: Abnormalities were found to be 35.7% in MRI and 42.9% in EEG. EEG abnormalities were found in the form of defuse slow waves activities, generalized faster activities, epileptogenic discharge and mixed discharge. The abnormalities in MRI was found in the form of diffuse cortical atrophic changes, focal cortical atrophy in frontal and temporal cortex with widening of major sulci, prominent ventricles, periventricular degeneration and abnormal basal ganglia. EEG changes were significantly associated with increased number of co-morbid illness (mental retardation, epilepsy and others. Conclusion: A number of abnom1alities that observed in the present study indicative of relations between structural and physiological dysfunctions and childhood autism. Further exploratory and in-depth researches are certainly required in this field. Intervention of autism needs to address co morbidities for better outcome.

  5. Neuroimaging and Other Biomarkers for Alzheimer's Disease: The Changing Landscape of Early Detection

    Science.gov (United States)

    Risacher, Shannon L.; Saykin, Andrew J.

    2014-01-01

    The goal of this review is to provide an overview of biomarkers for Alzheimer's disease (AD), with emphasis on neuroimaging and cerebrospinal fluid (CSF) biomarkers. We first review biomarker changes in patients with late-onset AD, including findings from studies using structural and functional magnetic resonance imaging (MRI), advanced MRI techniques (diffusion tensor imaging, magnetic resonance spectroscopy, perfusion), positron emission tomography with fluorodeoxyglucose, amyloid tracers, and other neurochemical tracers, and CSF protein levels. Next, we evaluate findings from these biomarkers in preclinical and prodromal stages of AD including mild cognitive impairment (MCI) and pre-MCI conditions conferring elevated risk. We then discuss related findings in patients with dominantly inherited AD. We conclude with a discussion of the current theoretical framework for the role of biomarkers in AD and emergent directions for AD biomarker research. PMID:23297785

  6. Advanced Neuroimaging of Cerebral Small Vessel Disease.

    Science.gov (United States)

    Blair, Gordon W; Hernandez, Maria Valdez; Thrippleton, Michael J; Doubal, Fergus N; Wardlaw, Joanna M

    2017-07-01

    Cerebral small vessel disease (SVD) is characterised by damage to deep grey and white matter structures of the brain and is responsible for a diverse range of clinical problems that include stroke and dementia. In this review, we describe advances in neuroimaging published since January 2015, mainly with magnetic resonance imaging (MRI), that, in general, are improving quantification, observation and investigation of SVD focussing on three areas: quantifying the total SVD burden, imaging brain microstructural integrity and imaging vascular malfunction. Methods to capture 'whole brain SVD burden' across the spectrum of SVD imaging changes will be useful for patient stratification in clinical trials, an approach that we are already testing. More sophisticated imaging measures of SVD microstructural damage are allowing the disease to be studied at earlier stages, will help identify specific factors that are important in development of overt SVD imaging features and in understanding why specific clinical consequences may occur. Imaging vascular function will help establish the precise blood vessel and blood flow alterations at early disease stages and, together with microstructural integrity measures, may provide important surrogate endpoints in clinical trials testing new interventions. Better knowledge of SVD pathophysiology will help identify new treatment targets, improve patient stratification and may in future increase efficiency of clinical trials through smaller sample sizes or shorter follow-up periods. However, most of these methods are not yet sufficiently mature to use with confidence in clinical trials, although rapid advances in the field suggest that reliable quantification of SVD lesion burden, tissue microstructural integrity and vascular dysfunction are imminent.

  7. Neuroimaging and the search for a cure for Alzheimer disease.

    Science.gov (United States)

    Petrella, Jeffrey R

    2013-12-01

    As radiologists, our role in the workup of the dementia patient has long been limited by the sensitivity of our imaging tools and lack of effective treatment options. Over the past 30 years, we have made tremendous strides in understanding the genetic, molecular, and cellular basis of Alzheimer disease (AD). We now know that the pathologic features of AD are present 1 to 2 decades prior to development of symptoms, though currently approved symptomatic therapies are administered much later in the disease course. The search for true disease-modifying therapy continues and many clinical trials are underway. Current outcome measures, based on cognitive tests, are relatively insensitive to pathologic disease progression, requiring long, expensive trials with large numbers of participants. Biomarkers, including neuroimaging, have great potential to increase the power of trials by matching imaging methodology with therapeutic mechanism. One of the most important advances over the past decade has been the development of in vivo imaging probes targeted to amyloid beta protein, and one agent is already available for clinical use. Additional advances include automated volumetric imaging methods to quantitate cerebral volume loss. Use of such techniques in small, early phase trials are expected to significantly increase the number and quality of candidate drugs for testing in larger trials. In addition to a critical role in trials, structural, molecular, and functional imaging techniques can give us a window on the etiology of AD and other neurodegenerative diseases. This combination of developments has potential to bring diagnostic radiology to the forefront in AD research, therapeutic trials, and patient care. ©RSNA, 2013.

  8. The emerging role of advanced neuroimaging techniques for brain metastases.

    Science.gov (United States)

    Nowosielski, Martha; Radbruch, Alexander

    2015-06-01

    Brain metastases are an increasingly encountered and frightening manifestation of systemic cancer. More effective therapeutic strategies for the primary tumor are resulting in longer patient survival on the one hand while on the other, better brain tumor detection has resulted from increased availability and development of more precise brain imaging methods. This review focuses on the emerging role of functional neuroimaging techniques; magnetic resonance imaging (MRI) as well as positron emission tomography (PET), in establishing diagnosis, for monitoring treatment response with an emphasis on new targeted as well as immunomodulatory therapies and for predicting prognosis in patients with brain metastases.

  9. Ionization penalty in nonlinear Raman neuroimaging.

    Science.gov (United States)

    Voronin, Aleksandr A; Fedotov, Ilya V; Doronina-Amitonova, Lyubov V; Ivashkina, Olga I; Zots, Marina A; Fedotov, Andrei B; Anokhin, Konstantin V; Zheltikov, Aleksei M

    2011-02-15

    Light-assisted ionization accompanying coherent anti-Stokes Raman scattering (CARS) of ultrashort laser pulses in brain tissue is shown to manifest itself in a detectable blueshift of the anti-Stokes signal. This blueshift can serve as an indicator of ionization processes in CARS-based neuroimaging.

  10. Neuropsychiatric lupus: classification criteria in neuroimaging studies.

    Science.gov (United States)

    Netto, Tania M; Zimmermann, Nicolle; Rueda-Lopes, Fernanda; Bizzo, Bernardo C; Fonseca, Rochele P; Gasparetto, Emerson L

    2013-05-01

    This systematic review described the criteria and main evaluations methods procedures used to classify neuropsychiatric systemic lupus erythematosus (NPSLE) patients. Also, within the evaluations methods, this review aimed to identify the main contributions of neuropsychological measurements in neuroimaging studies. A search was conducted in PubMed, EMBASE and SCOPUS databases with the terms related to neuropsychiatric syndromes, systemic lupus erythematosus, and neuroimaging techniques. Sixty-six abstracts were found; only 20 were completely analyzed and included. Results indicated that the 1999 American College of Rheumatology (ACR) criteria is the most used to classify NPSLE samples together with laboratorial, cognitive, neurological and psychiatric assessment procedures. However, the recommended ACR assessment procedures to classify NPSLE patients are being used incompletely, especially the neuropsychological batteries. Neuropsychological instruments and neuroimaging techniques have been used mostly to characterize NPSLE samples, instead of contributing to their classifications. The most described syndromes in neuroimaging studies have been seizure/cerebrovascular disease followed by cognitive dysfunctions as well as headache disorder.

  11. Neuroimaging in childhood headache: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, George A. [University of Ioannina, Department of Neurosurgery, Medical School, P.O. Box 103, Ioannina (Greece); Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece)

    2013-07-15

    Headache is a common complaint in children, one that gives rise to considerable parental concern and fear of the presence of a space-occupying lesion. The evaluation and diagnosis of headache is very challenging for paediatricians, and neuroimaging by means of CT or MRI is often requested as part of the investigation. CT exposes children to radiation, while MRI is costly and sometimes requires sedation or general anaesthesia, especially in children younger than 6 years. This review of the literature on the value of neuroimaging in children with headache showed that the rate of pathological findings is generally low. Imaging findings that led to a change in patient management were in almost all cases reported in children with abnormal signs on neurological examination. Neuroimaging should be limited to children with a suspicious clinical history, abnormal neurological findings or other physical signs suggestive of intracranial pathology. Well-designed prospective studies are needed to better define the clinical findings that warrant neuroimaging in children with headache. (orig.)

  12. Structural Neuroimaging in Aging and Alzheimer's Disease

    NARCIS (Netherlands)

    Vernooij, Meike W.; Smits, Marion

    2012-01-01

    The role of structural neuroimaging in the diagnosis of Alzheimer's disease (AD) is becoming increasingly important. As a consequence, a basic understanding of what are normal brain changes in aging is key to be able to recognize what is abnormal. The first part of this article discusses normal vers

  13. On small sample experiments in neuroimaging

    DEFF Research Database (Denmark)

    Goutte, Cyril; Hansen, Lars Kai

    1998-01-01

    Most human brain imaging experiments involve a number of subjects that is unusually low by accepted statistical standards. Although there are anumber of practical reasons for using small samples in neuroimaging we need to face the question regarding whether results obtained with only a fewsubjects...

  14. Neuroimaging and Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Norman, Andria L.; Crocker, Nicole; Mattson, Sarah N.; Riley, Edward P.

    2009-01-01

    The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and…

  15. ORIGINAL ARTICLE EEG changes and neuroimaging abnormalities ...

    African Journals Online (AJOL)

    salah

    neuroimaging changes of the brain and EEG abnormalities in correlation to the degree of ... MRI is the method of choice to investigate ... regional gray and white matter volumes .... relation of the cerebellar affection with disease ... were mostly done on mentally retarded cases23 ... vide a certain correlation between the.

  16. PET radioligand injection for pig neuroimaging

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Munk, Ole Lajord; Landau, Anne M.

    2017-01-01

    Pigs are useful models in neuroimaging studies with positron emission tomography. Radiolabeled ligands are injected intravenously at the start of the scan and in pigs, the most easily accessible route of administration is the ear vein. However, in brain studies the short distance between the brai...

  17. On small sample experiments in neuroimaging

    DEFF Research Database (Denmark)

    Goutte, Cyril; Hansen, Lars Kai

    1998-01-01

    Most human brain imaging experiments involve a number of subjects that is unusually low by accepted statistical standards. Although there are anumber of practical reasons for using small samples in neuroimaging we need to face the question regarding whether results obtained with only a fewsubjects...

  18. Online open neuroimaging mass meta-analysis

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Kempton, Matthew J.; Williams, Steven C. R.

    We describe a system for meta-analysis where a wiki stores numerical data in a simple format and a web service performs the numerical computation. We initially apply the system on multiple meta-analyses of structural neuroimaging data results. The described system allows for mass meta-analysis, e...

  19. Acute stroke imaging research roadmap

    NARCIS (Netherlands)

    Wintermark, Max; Albers, Gregory W.; Alexandrov, Andrei V.; Alger, Jeffry R.; Bammer, Roland; Baron, Jean-Claude; Davis, Stephen; Demaerschalk, Bart M.; Derdeyn, Colin P.; Donnan, Geoffrey A.; Eastwood, James D.; Fiebach, Jochen B.; Fisher, Marc; Furie, Karen L.; Goldmakher, Gregory V.; Hacke, Werner; Kidwell, Chelsea S.; Kloska, Stephan P.; Koehrmann, Martin; Koroshetz, Walter; Lee, Ting-Yim; Lees, Kennedy R.; Lev, Michael H.; Liebeskind, David S.; Ostergaard, Leif; Powers, William J.; Provenzale, James; Schellinger, Peter; Silbergleit, Robert; Sorensen, Alma Gregory; Wardlaw, Joanna; Warach, Steven

    2008-01-01

    The recent "Advanced Neuroimaging for Acute Stroke Treatment" meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (

  20. Internet and gaming addiction: a systematic literature review of neuroimaging studies.

    Science.gov (United States)

    Kuss, Daria J; Griffiths, Mark D

    2012-09-05

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  1. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2012-09-01

    Full Text Available In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  2. Behavioural, computational, and neuroimaging studies of acquired apraxia of speech

    Directory of Open Access Journals (Sweden)

    Kirrie J Ballard

    2014-11-01

    Full Text Available A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions - the speech motor programming disorder apraxia of speech (AOS and the linguistic / grammatical disorder of Broca’s aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca's area and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localised lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally.

  3. Sex steroids and connectivity in the human brain: a review of neuroimaging studies.

    Science.gov (United States)

    Peper, Jiska S; van den Heuvel, Martijn P; Mandl, René C W; Hulshoff Pol, Hilleke E; van Honk, Jack

    2011-09-01

    Our brain operates by the way of interconnected networks. Connections between brain regions have been extensively studied at a functional and structural level, and impaired connectivity has been postulated as an important pathophysiological mechanism underlying several neuropsychiatric disorders. Yet the neurobiological mechanisms contributing to the development of functional and structural brain connections remain to be poorly understood. Interestingly, animal research has convincingly shown that sex steroid hormones (estrogens, progesterone and testosterone) are critically involved in myelination, forming the basis of white matter connectivity in the central nervous system. To get insights, we reviewed studies into the relation between sex steroid hormones, white matter and functional connectivity in the human brain, measured with neuroimaging. Results suggest that sex hormones organize structural connections, and activate the brain areas they connect. These processes could underlie a better integration of structural and functional communication between brain regions with age. Specifically, ovarian hormones (estradiol and progesterone) may enhance both cortico-cortical and subcortico-cortical functional connectivity, whereas androgens (testosterone) may decrease subcortico-cortical functional connectivity but increase functional connectivity between subcortical brain areas. Therefore, when examining healthy brain development and aging or when investigating possible biological mechanisms of 'brain connectivity' diseases, the contribution of sex steroids should not be ignored.

  4. Neuroimaging in social anxiety disorder—a meta-analytic review resulting in a new neurofunctional model.

    Science.gov (United States)

    Brühl, Annette Beatrix; Delsignore, Aba; Komossa, Katja; Weidt, Steffi

    2014-11-01

    Social anxiety disorder (SAD) is one of the most frequent anxiety disorders. The landmark meta-analysis of functional neuroimaging studies by Etkin and Wager (2007) revealed primarily the typical fear circuit as overactive in SAD. Since then, new methodological developments such as functional connectivity and more standardized structural analyses of grey and white matter have been developed. We provide a comprehensive update and a meta-analysis of neuroimaging studies in SAD since 2007 and present a new model of the neurobiology of SAD. We confirmed the hyperactivation of the fear circuit (amygdala, insula, anterior cingulate and prefrontal cortex) in SAD. In addition, task-related functional studies revealed hyperactivation of medial parietal and occipital regions (posterior cingulate, precuneus, cuneus) in SAD and a reduced connectivity between parietal and limbic and executive network regions. Based on the result of this meta-analysis and review, we present an updated model of SAD adopting a network-based perspective. The disconnection of the medial parietal hub in SAD extends current frameworks for future research in anxiety disorders.

  5. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python.

    Science.gov (United States)

    Gorgolewski, Krzysztof; Burns, Christopher D; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O; Waskom, Michael L; Ghosh, Satrajit S

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for

  6. Functional requirements for a central research imaging data repository.

    Science.gov (United States)

    Franke, Thomas; Gruetz, Romanus; Dickmann, Frank

    2013-01-01

    The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data.

  7. A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature

    Directory of Open Access Journals (Sweden)

    Danielle Andrea Baribeau

    2013-12-01

    Full Text Available Background: Autism spectrum disorder (ASD and childhood onset schizophrenia (COS are pediatric neurodevelopmental disorders associated with significant morbidity. Both conditions are thought to share an underlying genetic architecture. A comparison of neuroimaging findings across ASD and COS with a focus on altered neurodevelopmental trajectories can shed light on potential clinical biomarkers and may highlight an underlying etiopathogenesis. Methods: A comprehensive review of the medical literature was conducted to summarize neuroimaging data with respect to both conditions in terms of structural imaging (including volumetric analysis, cortical thickness and morphology, and region of interest studies, white matter analysis (include volumetric analysis and diffusion tensor imaging and functional connectivity. Results: In ASD, a pattern of early brain overgrowth in the first few years of life is followed by dysmaturation in adolescence. Functional analyses have suggested impaired long-range connectivity as well as increased local and/or subcortical connectivity in this condition. In COS, deficits in cerebral volume, cortical thickness, and white matter maturation seem most pronounced in childhood and adolescence, and may level off in adulthood. Deficits in local connectivity, with increased long-range connectivity have been proposed, in keeping with exaggerated cortical thinning.Conclusions: The neuroimaging literature supports a neurodevelopmental origin of both ASD and COS and provides evidence for dynamic changes in both conditions that vary across space and time in the developing brain. Looking forward, imaging studies which capture the early post natal period, which are longitudinal and prospective, and which maximize the signal to noise ratio across heterogeneous conditions will be required to translate research findings into a clinical environment.

  8. 功能核磁共振对弱视神经机制及治疗评价的研究进展%Neuroimaging and treatment evaluation of amblyopia by function-MRI

    Institute of Scientific and Technical Information of China (English)

    李阳; 燕振国

    2015-01-01

    以往弱视神经机制研究主要集中于以视觉电生理为代表的二维表现形式,这些方式主要研究外侧膝状体之前的功能状态,对于视中枢的研究多处于动物模型阶段,无法准确探知人类弱视神经机制。易受多种因素影响,很难完成对弱视治疗效果的评价。功能核磁共振( functional MRI, fMRI)可无创、准确、以三维形式呈现视皮层神经元的功能活动状态,为弱视神经机制及治疗效果评价提供了可靠依据。本文就弱视神经机制及治疗后效果评价的fMRI研究进行综述。%In the past, the ways to amblyopia neural mechanism research are given priority to visual electrophysiology and so on, which express the result use two -dimensional form, these ways mainly research the functions of the state before the lateral geniculate body. For the study of optic center, animal models are used to research it. But these kinds of methods are unable to accurately detect amblyopia neural mechanisms of human beings. Vulnerable to a variety of factors, it is difficult to finish the amblyopia treatment effect evaluation. Functional magnetic resonance imaging ( fMRI ) can reflect the three-dimensional visual cortex neuron activity noninvasively and accurately, and give rise to amblyopia neural mechanism and therapeutic effect evaluation. Therefore, in this paper, the amblyopia neural mechanisms and visual center after treatment effect evaluation of fMRI research progress are summarized.

  9. Neuroimaging in refractory epilepsy. Current practice and evolving trends

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, N. [Department of Biomedical Imaging, University Malaya Research Imaging Centre (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya Research Imaging Centre (Malaysia); Lim, K.S.; Tan, C.T. [Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Neuroimaging is imperative in diagnostic work up and therapeutic assessment of refractory epilepsy. • Identification of epileptogenic zone on EEG, MRI and functional imaging improves the success of surgery. • High performance MRI greatly enhanced metabolic information and elucidate brain functions. • Optimisation of epilepsy protocols in structural and functional MRI are presented in this article. - Abstract: Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.

  10. Neuromarketing: the hope and hype of neuroimaging in business.

    Science.gov (United States)

    Ariely, Dan; Berns, Gregory S

    2010-04-01

    The application of neuroimaging methods to product marketing - neuromarketing - has recently gained considerable popularity. We propose that there are two main reasons for this trend. First, the possibility that neuroimaging will become cheaper and faster than other marketing methods; and second, the hope that neuroimaging will provide marketers with information that is not obtainable through conventional marketing methods. Although neuroimaging is unlikely to be cheaper than other tools in the near future, there is growing evidence that it may provide hidden information about the consumer experience. The most promising application of neuroimaging methods to marketing may come before a product is even released - when it is just an idea being developed.

  11. Graphical Neuroimaging Informatics: Application to Alzheimer’s Disease

    Science.gov (United States)

    Bowman, Ian; Joshi, Shantanu H.; Greer, Vaughan

    2013-01-01

    The Informatics Visualization for Neuroimaging (INVIZIAN) framework allows one to graphically display image and meta-data information from sizeable collections of neuroimaging data as a whole using a dynamic and compelling user interface. Users can fluidly interact with an entire collection of cortical surfaces using only their mouse. In addition, users can cluster and group brains according in multiple ways for subsequent comparison using graphical data mining tools. In this article, we illustrate the utility of INVIZIAN for simultaneous exploration and mining a large collection of extracted cortical surface data arising in clinical neuroimaging studies of patients with Alzheimer’s Disease, mild cognitive impairment, as well as healthy control subjects. Alzheimer’s Disease is particularly interesting due to the wide-spread effects on cortical architecture and alterations of volume in specific brain areas associated with memory. We demonstrate INVIZIAN’s ability to render multiple brain surfaces from multiple diagnostic groups of subjects, showcase the interactivity of the system, and showcase how INVIZIAN can be employed to generate hypotheses about the collection of data which would be suitable for direct access to the underlying raw data and subsequent formal statistical analysis. Specifically, we use INVIZIAN show how cortical thickness and hippocampal volume differences between group are evident even in the absence of more formal hypothesis testing. In the context of neurological diseases linked to brain aging such as AD, INVIZIAN provides a unique means for considering the entirety of whole brain datasets, look for interesting relationships among them, and thereby derive new ideas for further research and study. PMID:24203652

  12. Publication trends in neuroimaging of minimally conscious states

    Directory of Open Access Journals (Sweden)

    Alex Garnett

    2013-09-01

    Full Text Available We used existing and customized bibliometric and scientometric methods to analyze publication trends in neuroimaging research of minimally conscious states and describe the domain in terms of its geographic, contributor, and content features. We considered publication rates for the years 2002–2011, author interconnections, the rate at which new authors are added, and the domains that inform the work of author contributors. We also provided a content analysis of clinical and ethical themes within the relevant literature. We found a 27% growth in the number of papers over the period of study, professional diversity among a wide range of peripheral author contributors but only few authors who dominate the field, and few new technical paradigms and clinical themes that would fundamentally expand the landscape. The results inform both the science of consciousness as well as parallel ethics and policy studies of the potential for translational challenges of neuroimaging in research and health care of people with disordered states of consciousness.

  13. Emotion and Cognition Interactions in PTSD: A Review of Neurocognitive and Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Jasmeet P Hayes

    2012-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a psychiatric syndrome that develops after exposure to terrifying and life-threatening events including warfare, motor-vehicle accidents, and physical and sexual assault. The emotional experience of psychological trauma can have long-term cognitive effects. The hallmark symptoms of PTSD involve alterations to cognitive processes such as memory, attention, planning and problem solving, underscoring the detrimental impact that negative emotionality has on cognitive functioning. As such, an important challenge for PTSD researchers and treatment providers is to understand the dynamic interplay between emotion and cognition. Contemporary cognitive models of PTSD theorize that a preponderance of information processing resources are allocated towards threat detection and interpretation of innocuous stimuli as threatening, narrowing one’s attentional focus at the expense of other cognitive operations. Decades of research have shown support for these cognitive models of PTSD using a variety of tasks and methodological approaches. The primary goal of this review is to summarize the latest neurocognitive and neuroimaging research of emotion-cognition interactions in PTSD. To directly assess the influence of emotion on cognition and vice versa, the studies reviewed employed challenge tasks that included both cognitive and emotional components. The findings provide evidence for memory and attention deficits in PTSD that are often associated with changes in functional brain activity. The results are reviewed to provide future directions for research that may direct better and more effective treatments for PTSD.

  14. The 100 most-cited articles in neuroimaging: A bibliometric analysis.

    Science.gov (United States)

    Kim, Hye Jeong; Yoon, Dae Young; Kim, Eun Soo; Lee, Kwanseop; Bae, Jong Seok; Lee, Ju-Hun

    2016-06-18

    The purpose of our study was to identify and characterize the 100 most-cited articles in neuroimaging. Based on the database of Journal Citation Reports, we selected 669 journals that were considered as potential outlets for neuroimaging articles. The Web of Science search tools were used to identify the 100 most-cited articles relevant to neuroimaging within the selected journals. The following information was recorded for each article: publication year, journal, category and impact factor of journal, number of citations, number of annual citations, authorship, department, institution, country, article type, imaging technique used, and topic. The 100 most-cited articles in neuroimaging were published between 1980 and 2012, with 1995-2004 producing 69 articles. Citations ranged from 4384 to 673 and annual citations ranged from 313.1 to 24.9. The majority of articles were published in radiology/imaging journals (n=75), originated in the United States (n=58), were original articles (n=63), used MRI as imaging modality (n=85), and dealt with imaging technique (n=45). The Oxford Centre for Functional Magnetic Resonance Imaging of the Brain at John Radcliffe Hospital (n=10) was the leading institutions and Karl J. Friston (n=11) was the most prolific author. Our study presents a detailed list and an analysis of the 100 most-cited articles in the field of neuroimaging, which provides an insight into historical developments and allows for recognition of the important advances in this field.

  15. A review of the recent advances in neuroimaging of frontotemporal lobar degeneration.

    Science.gov (United States)

    D'Agata, Federico; Orsi, Laura; Cicerale, Alessandro; Rubino, Elisa; Rainero, Innocenzo; Bergui, Mauro; Pinessi, Lorenzo

    2017-04-01

    The term "frontotemporal lobar degeneration" (FTLD) includes a large set of neurodegenerative diseases, which are heterogeneous in their genetic, pathologic and clinical aspects. This review will focus on the most recent contribution of neuroimaging tools on the diagnosis, characterization and pathogenesis of FTLD. Scopus, Ovid, PubMed and MEDLINE were searched for articles published from January 2012 up to December 2014. Searches were limited to articles published in English. Frontotemporal lobar degeneration as a key word was always in the search queries in combination with logic AND, and at least one other key word. We found 91 papers of interest and reviewed their contents, finding in particular 4 major topics: the contribution of neuroimaging on the differential diagnosis; patients' functional characterization; new neuroimaging tools under development and pre-symptomatic genetic forms. Neuroimaging techniques have shown to be useful supporting tools in diagnosis, even if not always determinant to reach a conclusive decision, and quite important to identify phenocopies. At the moment, there is not a neuroimaging biomarker that could track the progressive course of dementias and the effect of therapies, but it is possible that in the future Diffusion Tensor Imaging and molecular imaging could fill this void. Monitoring the evolution of the pathology in vivo for at least 5 years is essential, and this would only be possible in a large multicenter study; asymptomatic forms would require even longer observation periods.

  16. Neuroimaging Measures as Endophenotypes in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Meredith N. Braskie

    2011-01-01

    Full Text Available Late onset Alzheimer's disease (AD is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4 has been replicated consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by which proposed risk factors influence the brain.

  17. Neuroimaging studies of self-reflection

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying

    2004-01-01

    This paper reviews some basic findings and methodological issues in neuroimaging studies of self-referential processing.As a general rule,making judgments about one's self,inclusive of personality trait adjectives or current mental states(person's prefer ences,norms,aesthetic values and feeling)uniformly generates medial prefrontal activations,regardless of stimulus materials(words or pictures)and modality(visual or auditory).Cingulate activations are also observed in association with most self-referential processing.Methodological issues include treating self-referential processing as either representing one's own personality traits or representing one's own current mental states.Finally,self-referential processing could Be considered as implement of "I think therefore I am" approach to neuroimaging the self.

  18. Neuroimaging of HIV-associated neurocognitive disorders

    Directory of Open Access Journals (Sweden)

    Michel Elyas Jung Haziot

    Full Text Available ABSTRACT A significant increase in the incidence of cognitive impairment in HIV/AIDS patients has been continuously observed. Consequently, three classification categories of cognitive impairment have been proposed: asymptomatic neurocognitive impairment (ANI and mild neurocognitive disorder (MND, that correspond to the mild and intermediate forms, and HIV-associated dementia (HAD for the most severe cases. HIV-associated neurocognitive disorders (HAND is a broad term that encompasses these three categories. Moreover, the application of neuroimaging methods has led to a major breakthrough in understanding of the neurological changes in HIV, providing greater reliability in the exclusion of associated diseases and allowing earlier diagnosis. Therefore, abnormalities and/or specific neuroimaging elements may soon be incorporated into the HAND classification criteria, which will be of great value in the management of these diseases, including in the optimization of high CNS penetration antiretroviral regimens.

  19. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits.

    Science.gov (United States)

    Wilde, Elisabeth A; Bouix, Sylvain; Tate, David F; Lin, Alexander P; Newsome, Mary R; Taylor, Brian A; Stone, James R; Montier, James; Gandy, Samuel E; Biekman, Brian; Shenton, Martha E; York, Gerald

    2015-09-01

    Traumatic brain injury (TBI) remains one of the most prevalent forms of morbidity among Veterans and Service Members, particularly for those engaged in the conflicts in Iraq and Afghanistan. Neuroimaging has been considered a potentially useful diagnostic and prognostic tool across the spectrum of TBI generally, but may have particular importance in military populations where the diagnosis of mild TBI is particularly challenging, given the frequent lack of documentation on the nature of the injuries and mixed etiologies, and highly comorbid with other disorders such as post-traumatic stress disorder, depression, and substance misuse. Imaging has also been employed in attempts to understand better the potential late effects of trauma and to evaluate the effects of promising therapeutic interventions. This review surveys the use of structural and functional neuroimaging techniques utilized in military studies published to date, including the utilization of quantitative fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), volumetric analysis, diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), positron emission tomography (PET), magnetoencephalography (MEG), task-based and resting state functional MRI (fMRI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS). The importance of quality assurance testing in current and future research is also highlighted. Current challenges and limitations of each technique are outlined, and future directions are discussed.

  20. Occipital headaches and neuroimaging in children.

    Science.gov (United States)

    Bear, Joshua J; Gelfand, Amy A; Goadsby, Peter J; Bass, Nancy

    2017-08-01

    To investigate the common thinking, as reinforced by the International Classification of Headache Disorders, 3rd edition (beta), that occipital headaches in children are rare and suggestive of serious intracranial pathology. We performed a retrospective chart review cohort study of all patients ≤18 years of age referred to a university child neurology clinic for headache in 2009. Patients were stratified by headache location: solely occipital, occipital plus other area(s) of head pain, or no occipital involvement. Children with abnormal neurologic examinations were excluded. We assessed location as a predictor of whether neuroimaging was ordered and whether intracranial pathology was found. Analyses were performed with cohort study tools in Stata/SE 13.0 (StataCorp, College Station, TX). A total of 308 patients were included. Median age was 12 years (32 months-18 years), and 57% were female. Headaches were solely occipital in 7% and occipital-plus in 14%. Patients with occipital head pain were more likely to undergo neuroimaging than those without occipital involvement (solely occipital: 95%, relative risk [RR] 10.5, 95% confidence interval [CI] 1.4-77.3; occipital-plus: 88%, RR 3.7, 95% CI 1.5-9.2; no occipital pain: 63%, referent). Occipital pain alone or with other locations was not significantly associated with radiographic evidence of clinically significant intracranial pathology. Children with occipital headache are more likely to undergo neuroimaging. In the absence of concerning features on the history and in the setting of a normal neurologic examination, neuroimaging can be deferred in most pediatric patients when occipital pain is present. © 2017 American Academy of Neurology.

  1. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders.

    Science.gov (United States)

    Roussotte, Florence F; Daianu, Madelaine; Jahanshad, Neda; Leonardo, Cassandra D; Thompson, Paul M

    2014-06-01

    Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.

  2. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia

    Science.gov (United States)

    Ewers, Michael; Sperling, Reisa A.; Klunk, William E.; Weiner, Michael W.; Hampel, Harald

    2011-01-01

    Alzheimer’s disease (AD) is a progressive age-related neurodegenerative disease. At the time of clinical manifestation of dementia, significant irreversible brain damage is already present, rendering the diagnosis of AD at early stages of the disease an urgent prerequisite for therapeutic treatment to halt, or at least slow, disease progression. In this Review, we discuss various neuroimaging measures that are proving to have potential value as biomarkers of AD pathology for the detection and prediction of AD before the onset of dementia. Recent studies that have identified AD-like structural and functional brain changes in elderly people who are cognitively within the normal range or who have mild cognitive impairment (MCI) are discussed. A dynamic sequence model of changes that occur in neuroimaging markers during the different disease stages is presented and the predictive value of multimodal neuroimaging for AD dementia is considered. PMID:21696834

  3. The Cost Function and Scale Economies in Academic Research Libraries.

    Science.gov (United States)

    Liu, Lewis G.

    2003-01-01

    This empirical research examined scale economies of academic research libraries and developed a total cost function for estimating economies of scale. Suggests that libraries in general, and academic research libraries in particular, are information provision organizations that provide multiproducts and multiservices. Findings indicate that slight…

  4. Traumatic brain injury, neuroimaging, and neurodegeneration.

    Science.gov (United States)

    Bigler, Erin D

    2013-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  5. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  6. Modelling Strategies for Functional Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard

    2009-01-01

    This thesis collects research done on several models for the analysis of functional magnetic resonance neuroimaging (fMRI) data. Several extensions for unsupervised factor analysis type decompositions including explicit delay modelling as well as handling of spatial and temporal smoothness...

  7. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    P.M. Thompson (Paul); J.L. Stein; S.E. Medland (Sarah Elizabeth); D.P. Hibar (Derrek); A.A. Vásquez (Arias); M.E. Rentería (Miguel); R. Toro (Roberto); N. Jahanshad (Neda); G. Schumann (Gunter); B. Franke (Barbara); M.J. Wright (Margaret); N.G. Martin (Nicholas); I. Agartz (Ingrid); M. Alda (Martin); S. Alhusaini (Saud); L. Almasy (Laura); J. Almeida (Julia); K. Alpert (Kathryn); N.C. Andreasen; O.A. Andreassen (Ole); L.G. Apostolova (Liana); K. Appel (Katja); N.J. Armstrong (Nicola); B. Aribisala (Benjamin); M.E. Bastin (Mark); M. Bauer (Michael); C.E. Bearden (Carrie); Ø. Bergmann (Ørjan); E.B. Binder (Elisabeth); J. Blangero (John); H.J. Bockholt; E. Bøen (Erlend); M. Bois (Monique); D.I. Boomsma (Dorret); T. Booth (Tom); I.J. Bowman (Ian); L.B.C. Bralten (Linda); R.M. Brouwer (Rachel); H.G. Brunner; D.G. Brohawn (David); M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); J. Bustillo; V.D. Calhoun (Vince); D.M. Cannon (Dara); R.M. Cantor; M.A. Carless (Melanie); X. Caseras (Xavier); G. Cavalleri (Gianpiero); M.M. Chakravarty (M. Mallar); K.D. Chang (Kiki); C.R.K. Ching (Christopher); A. Christoforou (Andrea); S. Cichon (Sven); V.P. Clark; P. Conrod (Patricia); D. Coppola (Domenico); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); I.J. Deary (Ian); E.J.C. de Geus (Eco); A. den Braber (Anouk); G. Delvecchio (Giuseppe); C. Depondt (Chantal); L. de Haan (Lieuwe); G.I. de Zubicaray (Greig); D. Dima (Danai); R. Dimitrova (Rali); S. Djurovic (Srdjan); H. Dong (Hongwei); D.J. Donohoe (Dennis); A. Duggirala (Aparna); M.D. Dyer (Matthew); S.M. Ehrlich (Stefan); C.J. Ekman (Carl Johan); T. Elvsåshagen (Torbjørn); L. Emsell (Louise); S. Erk; T. Espeseth (Thomas); J. Fagerness (Jesen); S. Fears (Scott); I. Fedko (Iryna); G. Fernandez (Guillén); S.E. Fisher (Simon); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); S. Frangou (Sophia); E.M. Frey (Eva Maria); T. Frodl (Thomas); V. Frouin (Vincent); H. Garavan (Hugh); S. Giddaluru (Sudheer); D.C. Glahn (David); B. Godlewska (Beata); R.Z. Goldstein (Rita); R.L. Gollub (Randy); H.J. Grabe (Hans Jörgen); O. Grimm (Oliver); O. Gruber (Oliver); T. Guadalupe (Tulio); R.E. Gur (Raquel); R.C. Gur (Ruben); H.H.H. Göring (Harald); S. Hagenaars (Saskia); T. Hajek (Tomas); G.B. Hall (Garry); J. Hall (Jeremy); J. Hardy (John); C.A. Hartman (Catharina); J. Hass (Johanna); W. Hatton; U.K. Haukvik (Unn); K. Hegenscheid (Katrin); J. Heinz (Judith); I.B. Hickie (Ian); B.C. Ho (Beng ); D. Hoehn (David); P.J. Hoekstra (Pieter); M. Hollinshead (Marisa); A.J. Holmes (Avram); G. Homuth (Georg); M. Hoogman (Martine); L.E. Hong (L.Elliot); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); H.E. Hulshoff Pol (Hilleke); K.S. Hwang (Kristy); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); C. Johnston; E.G. Jönsson (Erik); R.S. Kahn (René); D. Kasperaviciute (Dalia); S. Kelly (Steve); S. Kim (Shinseog); P. Kochunov (Peter); L. Koenders (Laura); B. Krämer (Bernd); J.B.J. Kwok (John); J. Lagopoulos (Jim); G. Laje (Gonzalo); M. Landén (Mikael); B.A. Landman (Bennett); J. Lauriello; S. Lawrie (Stephen); P.H. Lee (Phil); S. Le Hellard (Stephanie); H. Lemaître (Herve); C.D. Leonardo (Cassandra); C.-S. Li (Chiang-shan); B. Liberg (Benny); D.C. Liewald (David C.); X. Liu (Xinmin); L.M. Lopez (Lorna); E. Loth (Eva); A. Lourdusamy (Anbarasu); M. Luciano (Michelle); F. MacCiardi (Fabio); M.W.J. Machielsen (Marise); G.M. MacQueen (Glenda); U.F. Malt (Ulrik); R. Mandl (René); D.S. Manoach (Dara); J.-L. Martinot (Jean-Luc); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); M. Mattingsdal (Morten); A. Meyer-Lindenberg; C. McDonald (Colm); A.M. McIntosh (Andrew); F.J. Mcmahon (Francis J); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); Y. Milaneschi (Yuri); S. Mohnke (Sebastian); G.W. Montgomery (Grant); D.W. Morris (Derek W); E.K. Moses (Eric); B.A. Mueller (Bryon ); S. Muñoz Maniega (Susana); T.W. Mühleisen (Thomas); B. Müller-Myhsok (Bertram); B. Mwangi (Benson); M. Nauck (Matthias); K. Nho (Kwangsik); T.E. Nichols (Thomas); L.G. Nilsson; A.C. Nugent (Allison); L. Nyberg (Lisa); R.L. Olvera (Rene); J. Oosterlaan (Jaap); R.A. Ophoff (Roel); M. Pandolfo (Massimo); M. Papalampropoulou-Tsiridou (Melina); M. Papmeyer (Martina); T. Paus (Tomas); Z. Pausova (Zdenka); G. Pearlson (Godfrey); B.W.J.H. Penninx (Brenda); C.P. Peterson (Charles); A. Pfennig (Andrea); M. Phillips (Mary); G.B. Pike (G Bruce); J.B. Poline (Jean Baptiste); S.G. Potkin (Steven); B. Pütz (Benno); A. Ramasamy (Adaikalavan); J. Rasmussen (Jerod); M. Rietschel (Marcella); M. Rijpkema (Mark); S.L. Risacher (Shannon); J.L. Roffman (Joshua); R. Roiz-Santiañez (Roberto); N. Romanczuk-Seiferth (Nina); E.J. Rose (Emma); N.A. Royle (Natalie); D. Rujescu (Dan); M. Ryten (Mina); P.S. Sachdev (Perminder); A. Salami (Alireza); T.D. Satterthwaite (Theodore); J. Savitz (Jonathan); A.J. Saykin (Andrew); C. Scanlon (Cathy); L. Schmaal (Lianne); H. Schnack (Hugo); N.J. Schork (Nicholas); S.C. Schulz (S.Charles); R. Schür (Remmelt); L.J. Seidman (Larry); L. Shen (Li); L. Shoemaker (Lawrence); A. Simmons (Andrew); S.M. Sisodiya (Sanjay); C. Smith (Colin); J.W. Smoller; J.C. Soares (Jair); S.R. Sponheim (Scott); R. Sprooten (Roy); J.M. Starr (John); V.M. Steen (Vidar); S. Strakowski (Stephen); V.M. Strike (Vanessa); J. Sussmann (Jessika); P.G. Sämann (Philipp); A. Teumer (Alexander); A.W. Toga (Arthur); D. Tordesillas-Gutierrez (Diana); D. Trabzuni (Danyah); S. Trost (Sarah); J. Turner (Jessica); M. van den Heuvel (Martijn); N.J. van der Wee (Nic); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); M.C. Valdés Hernández (Maria); D.J. Veltman (Dick); A. Versace (Amelia); H. Völzke (Henry); R. Walker (Robert); H.J. Walter (Henrik); L. Wang (Lei); J.M. Wardlaw (J.); M.E. Weale (Michael); M.W. Weiner (Michael); W. Wen (Wei); L.T. Westlye (Lars); H.C. Whalley (Heather); C.D. Whelan (Christopher); T.J.H. White (Tonya); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); D. Zilles (David); M.P. Zwiers (Marcel); A. Thalamuthu (Anbupalam); C.J. Schofield (Christopher); N.B. Freimer (Nelson); N.S. Lawrence (Natalia); D.A. Drevets (Douglas)

    2014-01-01

    textabstractThe Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscien

  8. The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Boen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Cannon, Dara M.; Cantor, Rita M.; Carless, Melanie A.; Caseras, Xavier; Cavalleri, Gianpiero L.; Chakravarty, M. Mallar; Chang, Kiki D.; Ching, Christopher R. K.; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P.; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Deary, Ian J.; de Geus, Eco J. C.; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I.; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D.; Ehrlich, Stefan; Ekman, Carl Johan; Elvsashagen, Torbjorn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernandez, Guillen; Fisher, Simon E.; Foroud, Tatiana; Fox, Peter T.; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C.; Godlewska, Beata; Goldstein, Rita Z.; Gollub, Randy L.; Grabe, Hans J.; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E.; Gur, Ruben C.; Goering, Harald H. H.; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B.; Hall, Jeremy; Hardy, John; Hartman, Catharina A.; Hass, Johanna; Hatton, Sean N.; Haukvik, Unn K.; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B.; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J.; Hollinshead, Marisa; Holmes, Avram J.; Homuth, Georg; Hoogman, Martine; Hong, L. Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Pol, Hilleke E. Hulshoff; Hwang, Kristy S.; Jack, Clifford R.; Jenkinson, Mark; Johnston, Caroline; Joensson, Erik G.; Kahn, Rene S.; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Kraemer, Bernd; Kwok, John B. J.; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A.; Lauriello, John; Lawrie, Stephen M.; Lee, Phil H.; Le Hellard, Stephanie; Lemaitre, Herve; Leonardo, Cassandra D.; Li, Chiang-shan; Liberg, Benny; Liewald, David C.; Liu, Xinmin; Lopez, Lorna M.; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W. J.; MacQueen, Glenda M.; Malt, Ulrik F.; Mandl, Rene; Manoach, Dara S.; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Moses, Eric K.; Mueller, Bryon A.; Munoz Maniega, Susana; Muehleisen, Thomas W.; Mueller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E.; Nilsson, Lars-Goeran; Nugent, Allison C.; Nyberg, Lars; Olvera, Rene L.; Oosterlaan, Jaap; Ophoff, Roel A.; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D.; Penninx, Brenda W.; Peterson, Charles P.; Pfennig, Andrea; Phillips, Mary; Pike, G. Bruce; Poline, Jean-Baptiste; Potkin, Steven G.; Puetz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L.; Roffman, Joshua L.; Roiz-Santianez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J.; Royle, Natalie A.; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S.; Salami, Alireza; Satterthwaite, Theodore D.; Savitz, Jonathan; Saykin, Andrew J.; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G.; Schork, Andrew J.; Schulz, S. Charles; Schuer, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M.; Simmons, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soares, Jair C.; Sponheim, Scott R.; Sprooten, Emma; Starr, John M.; Steen, Vidar M.; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Saemann, Philipp G.; Teumer, Alexander; Toga, Arthur W.; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J.; van Eijk, Kristel; van Erp, Theo G. M.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Hernandez, Maria C. Valdes; Veltman, Dick J.; Versace, Amelia; Voelzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M.; Weale, Michael E.; Weiner, Michael W.; Wen, Wei; Westlye, Lars T.; Whalley, Heather C.; Whelan, Christopher D.; White, Tonya; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P.; Thalamuthu, Anbupalam; Schofield, Peter R.; Freimer, Nelson B.; Lawrence, Natalia S.; Drevets, Wayne

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics

  9. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    P.M. Thompson (Paul); J.L. Stein; S.E. Medland (Sarah Elizabeth); D.P. Hibar (Derrek); A.A. Vásquez (Arias); M.E. Rentería (Miguel); R. Toro (Roberto); N. Jahanshad (Neda); G. Schumann (Gunter); B. Franke (Barbara); M.J. Wright (Margaret); N.G. Martin (Nicholas); I. Agartz (Ingrid); M. Alda (Martin); S. Alhusaini (Saud); L. Almasy (Laura); J. Almeida (Julia); K. Alpert (Kathryn); N.C. Andreasen; O.A. Andreassen (Ole); L.G. Apostolova (Liana); K. Appel (Katja); N.J. Armstrong (Nicola); B. Aribisala (Benjamin); M.E. Bastin (Mark); M. Bauer (Michael); C.E. Bearden (Carrie); Ø. Bergmann (Ørjan); E.B. Binder (Elisabeth); J. Blangero (John); H.J. Bockholt; E. Bøen (Erlend); M. Bois (Monique); D.I. Boomsma (Dorret); T. Booth (Tom); I.J. Bowman (Ian); L.B.C. Bralten (Linda); R.M. Brouwer (Rachel); H.G. Brunner; D.G. Brohawn (David); M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); J. Bustillo; V.D. Calhoun (Vince); D.M. Cannon (Dara); R.M. Cantor; M.A. Carless (Melanie); X. Caseras (Xavier); G. Cavalleri (Gianpiero); M.M. Chakravarty (M. Mallar); K.D. Chang (Kiki); C.R.K. Ching (Christopher); A. Christoforou (Andrea); S. Cichon (Sven); V.P. Clark; P. Conrod (Patricia); D. Coppola (Domenico); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); I.J. Deary (Ian); E.J.C. de Geus (Eco); A. den Braber (Anouk); G. Delvecchio (Giuseppe); C. Depondt (Chantal); L. de Haan (Lieuwe); G.I. de Zubicaray (Greig); D. Dima (Danai); R. Dimitrova (Rali); S. Djurovic (Srdjan); H. Dong (Hongwei); D.J. Donohoe (Dennis); A. Duggirala (Aparna); M.D. Dyer (Matthew); S.M. Ehrlich (Stefan); C.J. Ekman (Carl Johan); T. Elvsåshagen (Torbjørn); L. Emsell (Louise); S. Erk; T. Espeseth (Thomas); J. Fagerness (Jesen); S. Fears (Scott); I. Fedko (Iryna); G. Fernandez (Guillén); S.E. Fisher (Simon); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); S. Frangou (Sophia); E.M. Frey (Eva Maria); T. Frodl (Thomas); V. Frouin (Vincent); H. Garavan (Hugh); S. Giddaluru (Sudheer); D.C. Glahn (David); B. Godlewska (Beata); R.Z. Goldstein (Rita); R.L. Gollub (Randy); H.J. Grabe (Hans Jörgen); O. Grimm (Oliver); O. Gruber (Oliver); T. Guadalupe (Tulio); R.E. Gur (Raquel); R.C. Gur (Ruben); H.H.H. Göring (Harald); S. Hagenaars (Saskia); T. Hajek (Tomas); G.B. Hall (Garry); J. Hall (Jeremy); J. Hardy (John); C.A. Hartman (Catharina); J. Hass (Johanna); W. Hatton; U.K. Haukvik (Unn); K. Hegenscheid (Katrin); J. Heinz (Judith); I.B. Hickie (Ian); B.C. Ho (Beng ); D. Hoehn (David); P.J. Hoekstra (Pieter); M. Hollinshead (Marisa); A.J. Holmes (Avram); G. Homuth (Georg); M. Hoogman (Martine); L.E. Hong (L.Elliot); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); H.E. Hulshoff Pol (Hilleke); K.S. Hwang (Kristy); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); C. Johnston; E.G. Jönsson (Erik); R.S. Kahn (René); D. Kasperaviciute (Dalia); S. Kelly (Steve); S. Kim (Shinseog); P. Kochunov (Peter); L. Koenders (Laura); B. Krämer (Bernd); J.B.J. Kwok (John); J. Lagopoulos (Jim); G. Laje (Gonzalo); M. Landén (Mikael); B.A. Landman (Bennett); J. Lauriello; S. Lawrie (Stephen); P.H. Lee (Phil); S. Le Hellard (Stephanie); H. Lemaître (Herve); C.D. Leonardo (Cassandra); C.-S. Li (Chiang-shan); B. Liberg (Benny); D.C. Liewald (David C.); X. Liu (Xinmin); L.M. Lopez (Lorna); E. Loth (Eva); A. Lourdusamy (Anbarasu); M. Luciano (Michelle); F. MacCiardi (Fabio); M.W.J. Machielsen (Marise); G.M. MacQueen (Glenda); U.F. Malt (Ulrik); R. Mandl (René); D.S. Manoach (Dara); J.-L. Martinot (Jean-Luc); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); M. Mattingsdal (Morten); A. Meyer-Lindenberg; C. McDonald (Colm); A.M. McIntosh (Andrew); F.J. Mcmahon (Francis J); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); Y. Milaneschi (Yuri); S. Mohnke (Sebastian); G.W. Montgomery (Grant); D.W. Morris (Derek W); E.K. Moses (Eric); B.A. Mueller (Bryon ); S. Muñoz Maniega (Susana); T.W. Mühleisen (Thomas); B. Müller-Myhsok (Bertram); B. Mwangi (Benson); M. Nauck (Matthias); K. Nho (Kwangsik); T.E. Nichols (Thomas); L.G. Nilsson; A.C. Nugent (Allison); L. Nyberg (Lisa); R.L. Olvera (Rene); J. Oosterlaan (Jaap); R.A. Ophoff (Roel); M. Pandolfo (Massimo); M. Papalampropoulou-Tsiridou (Melina); M. Papmeyer (Martina); T. Paus (Tomas); Z. Pausova (Zdenka); G. Pearlson (Godfrey); B.W.J.H. Penninx (Brenda); C.P. Peterson (Charles); A. Pfennig (Andrea); M. Phillips (Mary); G.B. Pike (G Bruce); J.B. Poline (Jean Baptiste); S.G. Potkin (Steven); B. Pütz (Benno); A. Ramasamy (Adaikalavan); J. Rasmussen (Jerod); M. Rietschel (Marcella); M. Rijpkema (Mark); S.L. Risacher (Shannon); J.L. Roffman (Joshua); R. Roiz-Santiañez (Roberto); N. Romanczuk-Seiferth (Nina); E.J. Rose (Emma); N.A. Royle (Natalie); D. Rujescu (Dan); M. Ryten (Mina); P.S. Sachdev (Perminder); A. Salami (Alireza); T.D. Satterthwaite (Theodore); J. Savitz (Jonathan); A.J. Saykin (Andrew); C. Scanlon (Cathy); L. Schmaal (Lianne); H. Schnack (Hugo); N.J. Schork (Nicholas); S.C. Schulz (S.Charles); R. Schür (Remmelt); L.J. Seidman (Larry); L. Shen (Li); L. Shoemaker (Lawrence); A. Simmons (Andrew); S.M. Sisodiya (Sanjay); C. Smith (Colin); J.W. Smoller; J.C. Soares (Jair); S.R. Sponheim (Scott); R. Sprooten (Roy); J.M. Starr (John); V.M. Steen (Vidar); S. Strakowski (Stephen); V.M. Strike (Vanessa); J. Sussmann (Jessika); P.G. Sämann (Philipp); A. Teumer (Alexander); A.W. Toga (Arthur); D. Tordesillas-Gutierrez (Diana); D. Trabzuni (Danyah); S. Trost (Sarah); J. Turner (Jessica); M. van den Heuvel (Martijn); N.J. van der Wee (Nic); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); M.C. Valdés Hernández (Maria); D.J. Veltman (Dick); A. Versace (Amelia); H. Völzke (Henry); R. Walker (Robert); H.J. Walter (Henrik); L. Wang (Lei); J.M. Wardlaw (J.); M.E. Weale (Michael); M.W. Weiner (Michael); W. Wen (Wei); L.T. Westlye (Lars); H.C. Whalley (Heather); C.D. Whelan (Christopher); T.J.H. White (Tonya); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); D. Zilles (David); M.P. Zwiers (Marcel); A. Thalamuthu (Anbupalam); C.J. Schofield (Christopher); N.B. Freimer (Nelson); N.S. Lawrence (Natalia); D.A. Drevets (Douglas)

    2014-01-01

    textabstractThe Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in

  10. The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Boen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Cannon, Dara M.; Cantor, Rita M.; Carless, Melanie A.; Caseras, Xavier; Cavalleri, Gianpiero L.; Chakravarty, M. Mallar; Chang, Kiki D.; Ching, Christopher R. K.; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P.; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Deary, Ian J.; de Geus, Eco J. C.; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I.; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D.; Ehrlich, Stefan; Ekman, Carl Johan; Elvsashagen, Torbjorn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernandez, Guillen; Fisher, Simon E.; Foroud, Tatiana; Fox, Peter T.; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C.; Godlewska, Beata; Goldstein, Rita Z.; Gollub, Randy L.; Grabe, Hans J.; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E.; Gur, Ruben C.; Goering, Harald H. H.; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B.; Hall, Jeremy; Hardy, John; Hartman, Catharina A.; Hass, Johanna; Hatton, Sean N.; Haukvik, Unn K.; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B.; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J.; Hollinshead, Marisa; Holmes, Avram J.; Homuth, Georg; Hoogman, Martine; Hong, L. Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Pol, Hilleke E. Hulshoff; Hwang, Kristy S.; Jack, Clifford R.; Jenkinson, Mark; Johnston, Caroline; Joensson, Erik G.; Kahn, Rene S.; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Kraemer, Bernd; Kwok, John B. J.; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A.; Lauriello, John; Lawrie, Stephen M.; Lee, Phil H.; Le Hellard, Stephanie; Lemaitre, Herve; Leonardo, Cassandra D.; Li, Chiang-shan; Liberg, Benny; Liewald, David C.; Liu, Xinmin; Lopez, Lorna M.; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W. J.; MacQueen, Glenda M.; Malt, Ulrik F.; Mandl, Rene; Manoach, Dara S.; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Moses, Eric K.; Mueller, Bryon A.; Munoz Maniega, Susana; Muehleisen, Thomas W.; Mueller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E.; Nilsson, Lars-Goeran; Nugent, Allison C.; Nyberg, Lars; Olvera, Rene L.; Oosterlaan, Jaap; Ophoff, Roel A.; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D.; Penninx, Brenda W.; Peterson, Charles P.; Pfennig, Andrea; Phillips, Mary; Pike, G. Bruce; Poline, Jean-Baptiste; Potkin, Steven G.; Puetz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L.; Roffman, Joshua L.; Roiz-Santianez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J.; Royle, Natalie A.; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S.; Salami, Alireza; Satterthwaite, Theodore D.; Savitz, Jonathan; Saykin, Andrew J.; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G.; Schork, Andrew J.; Schulz, S. Charles; Schuer, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M.; Simmons, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soares, Jair C.; Sponheim, Scott R.; Sprooten, Emma; Starr, John M.; Steen, Vidar M.; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Saemann, Philipp G.; Teumer, Alexander; Toga, Arthur W.; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J.; van Eijk, Kristel; van Erp, Theo G. M.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Hernandez, Maria C. Valdes; Veltman, Dick J.; Versace, Amelia; Voelzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M.; Weale, Michael E.; Weiner, Michael W.; Wen, Wei; Westlye, Lars T.; Whalley, Heather C.; Whelan, Christopher D.; White, Tonya; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P.; Thalamuthu, Anbupalam; Schofield, Peter R.; Freimer, Nelson B.; Lawrence, Natalia S.; Drevets, Wayne

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  11. Is advanced neuroimaging for neuroradiologists? A systematic review of the scientific literature of the last decade.

    Science.gov (United States)

    Cocozza, Sirio; Russo, Camilla; Pontillo, Giuseppe; Ugga, Lorenzo; Macera, Antonio; Cervo, Amedeo; De Liso, Maria; Di Paolo, Nilde; Ginocchio, Maria Isabella; Giordano, Flavio; Leone, Giuseppe; Rusconi, Giovanni; Stanzione, Arnaldo; Briganti, Francesco; Quarantelli, Mario; Caranci, Ferdinando; D'Amico, Alessandra; Elefante, Andrea; Tedeschi, Enrico; Brunetti, Arturo

    2016-12-01

    To evaluate if advanced neuroimaging research is mainly conducted by imaging specialists, we investigated the number of first authorships by radiologists and non-radiologist scientists in articles published in the field of advanced neuroimaging in the past 10 years. Articles in the field of advanced neuroimaging identified in this retrospective bibliometric analysis were divided in four groups, depending on the imaging technique used. For all included studies, educational background of the first authors was recorded (based on available online curriculum vitae) and classified in subgroups, depending on their specialty. Finally, journal impact factors were recorded and comparatively assessed among subgroups as a metric of research quality. A total number of 3831 articles were included in the study. Radiologists accounted as first authors for only 12.8 % of these publications, while 56.9 % of first authors were researchers without a medical degree. Mean impact factor (IF) of journals with non-MD researchers as first authors was significantly higher than the MD subgroup (p articles authored by other MD specialists (p articles was the lowest among all subgroups. These results, taken together, should question the radiology community about its future role in the development of advanced neuroimaging.

  12. Timing deficits in attention-deficit/hyperactivity disorder (ADHD) : Evidence from neurocognitive and neuroimaging studies

    NARCIS (Netherlands)

    Noreika, Valdas; Falter, Christine M.; Rubia, Katya

    Relatively recently, neurocognitive and neuroimaging studies have indicated that individuals with attention-deficit/hyperactivity disorder (ADHD) may have deficits in a range of timing functions and their underlying neural networks. Despite this evidence, timing deficits in ADHD are still somewhat

  13. Timing deficits in attention-deficit/hyperactivity disorder (ADHD) : Evidence from neurocognitive and neuroimaging studies

    NARCIS (Netherlands)

    Noreika, Valdas; Falter, Christine M.; Rubia, Katya

    2013-01-01

    Relatively recently, neurocognitive and neuroimaging studies have indicated that individuals with attention-deficit/hyperactivity disorder (ADHD) may have deficits in a range of timing functions and their underlying neural networks. Despite this evidence, timing deficits in ADHD are still somewhat n

  14. Integrating Genetic, Psychopharmacological and Neuroimaging Studies: A Converging Methods Approach to Understanding the Neurobiology of ADHD

    Science.gov (United States)

    Durston, Sarah; Konrad, Kerstin

    2007-01-01

    This paper aims to illustrate how combining multiple approaches can inform us about the neurobiology of ADHD. Converging evidence from genetic, psychopharmacological and functional neuroimaging studies has implicated dopaminergic fronto-striatal circuitry in ADHD. However, while the observation of converging evidence from multiple vantage points…

  15. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    NARCIS (Netherlands)

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well a

  16. Neuroimaging in the Diagnostic Evaluation of Eye Pain.

    Science.gov (United States)

    Szatmáry, Gabriella

    2016-09-01

    Ocular or eye pain is a frequent complaint encountered not only by eye care providers but neurologists. Isolated eye pain is non-specific and non-localizing; therefore, it poses significant differential diagnostic problems. A wide range of neurologic and ophthalmic disorders may cause pain in, around, or behind the eye. These include ocular and orbital diseases and primary and secondary headaches. In patients presenting with an isolated and chronic eye pain, neuroimaging is usually normal. However, at the beginning of a disease process or in low-grade disease, the eye may appear "quiet," misleading a provider lacking familiarity with underlying disorders and high index of clinical suspicion. Delayed diagnosis of some neuro-ophthalmic causes of eye pain could result in significant neurologic and ophthalmic morbidity, conceivably even mortality. This article reviews some recent advances in imaging of the eye, the orbit, and the brain, as well as research in which neuroimaging has advanced the discovery of the underlying pathophysiology and the complex differential diagnosis of eye pain.

  17. Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.

    Science.gov (United States)

    Pfeifer, Jennifer H; Peake, Shannon J

    2012-01-01

    This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively.

  18. Understanding face perception by means of prosopagnosia and neuroimaging.

    Science.gov (United States)

    Rossion, Bruno

    2014-06-01

    Understanding the human neuro-anatomy of face recognition is a long-standing goal of Cognitive Neuroscience. Studies of patients with face recognition impairment following brain damage (i.e., acquired prosopagnosia) have revealed the specificity of face recognition, the importance and nature of holistic/configural perception of individual faces, and the distribution of this function in the ventral occipito-temporal (VOT) cortex, with a right hemispheric dominance. Yet, neuroimaging studies in this field have essentially focused on a single face-selective area of the VOT and underestimated the right hemisphere superiority. Findings in these studies have also been taken as supporting a hierarchical view of face perception, according to which a face is decomposed into parts in early face-selective areas, these parts being subsequently integrated into a whole representation in higher-order areas. This review takes a historical and current perspective on the study of acquired prosopagnosia and neuroimaging that challenges this latter view. It argues for a combination of these methods, an approach suggesting a coarse-to-fine emergence of the holistic face percept in a non-hierarchical network of cortical face-selective areas.

  19. PET-based molecular nuclear neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho [Gil Medical Center, Gachon (Korea, Republic of)

    2004-04-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.

  20. Research on Bounded Rationality of Fuzzy Choice Functions

    Directory of Open Access Journals (Sweden)

    Xinlin Wu

    2014-01-01

    Full Text Available The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.

  1. Neuropsychological assessment, neuroimaging, and neuropsychiatric evaluation in pediatric and adult patients with sickle cell disease (SCD

    Directory of Open Access Journals (Sweden)

    Christopher L Edwards

    2007-01-01

    Full Text Available Christopher L Edwards1, Renee Dunn Raynor1, Miriam Feliu1, Camela McDougald1, Stephanie Johnson2, Donald Schmechel3, Mary Wood1, Gary G Bennett4, Patrick Saurona5, Melanie Bonner1, Chante’ Wellington1, Laura M DeCastro6, Elaine Whitworth6, Mary Abrams6, Patrick Logue1, Lekisha Edwards1, Salutario Martinez7, Keith E Whitfield81Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA; 2American Psychological Association, Science Directorate, Washington, DC, USA; 3Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC, USA; 4Department of Society, Human Development, and Health, Harvard School of Public Health, Boston, MA, USA; 5Taub Institute For Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA; 6Department of Medicine, Division of Hematology, Duke University Medical Center, Durham, NC, USA; 7Department of Radiology, Duke University Medical Center, Durham, NC, USA; 8Duke University, Durham, NC, USAAbstract: Traditionally, neuropsychological deficits due to Sickle Cell Disease (SCD have been understudied in adults. We have begun to suspect, however, that symptomatic and asymptomatic Cerebrovascular Events (CVE may account for an alarming number of deficits in this population. In the current brief review, we critically evaluated the pediatric and adult literatures on the neurocognitive effects of SCD. We highlighted the studies that have been published on this topic and posit that early detection of CVE via neurocognitive testing, neuropsychiatric evaluations, and neuroimaging may significantly reduce adult cognitive and functional morbidities.Keywords: cerebral vascular event, neuropsychological assessment, sickle cell disease, neuroimaging

  2. The tools of disability outcomes research functional status measures.

    Science.gov (United States)

    Cohen, M E; Marino, R J

    2000-12-01

    To review the major functional status measures currently used in rehabilitation research, including the domains and scope of functional status measures, as well as the psychometric properties of selected functional status measures and their use in adult rehabilitation populations. Measures of physical functioning widely used in rehabilitation research. Major generic measures included the following activities of daily living and instrumental activities of daily living: the FIM instrument, the Katz Activities of Daily Living Scale, the Level of Rehabilitation Scale, the Barthel index, and the Patient Evaluation and Conference System. Measures were evaluated based on published evidence of validity, reliability, and sensitivity. Measures were chosen on the basis of the amount and quality of published research on the functional measures widely used in rehabilitation medicine. Independent research of computer databases and reviews of functional measures were conducted to determine suitability for inclusion. The quality and validity of the measures were assessed using standard psychometric guidelines. Measures were evaluated based on published evidence of validity, reliability, sensitivity response and administrative burdens and instrument bias. Each criterion was graded on a 3-point scale reflecting the level of evidence. Researchers in the field of disabilities research need to consider carefully study objectives when measuring physical functioning in people with disabilities.

  3. Identifying Predictors, Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches

    Science.gov (United States)

    Phillips, Mary L.; Chase, Henry W.; Sheline, Yvette I.; Etkin, Amit; Almeida, Jorge R.C.; Deckersbach, Thilo; Trivedi, Madhukar H.

    2015-01-01

    Objective Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. Method In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. Results The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Conclusions Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes. PMID:25640931

  4. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches.

    Science.gov (United States)

    Phillips, Mary L; Chase, Henry W; Sheline, Yvette I; Etkin, Amit; Almeida, Jorge R C; Deckersbach, Thilo; Trivedi, Madhukar H

    2015-02-01

    Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes.

  5. Functional Capacity Evaluation Research: Report from the Third International Functional Capacity Evaluation Research Meeting.

    Science.gov (United States)

    Edelaar, M J A; Gross, D P; James, C L; Reneman, M F

    2017-04-08

    Purpose Based on the success of the first two conferences the Third International FCE Research Conference was held in The Netherlands on September 29, 2016. The aim was to provide ongoing opportunity to share and recent FCE research and discuss its implications. Methods Invitations and call for abstracts were sent to previous attendees, researchers, practicing FCE clinicians and professionals. Fifteen abstracts were selected for presentation. The FCE research conference contained two keynote lectures. Results 54 participants from 12 countries attended the conference where 15 research projects and 2 keynote lectures were presented. The conference provided an opportunity to present and discuss recent FCE research, and provided a forum for discourse related to FCE use. Conference presentations covered aspects of practical issues in administration and interpretation; protocol reliability and validity; consideration of specific injury populations; and a focused discussion on proposed inclusion of work physiology principles in FCE testing with the Heart Rate Reserve Method. Details of this Third International FCE Research Conference are available from http://repro.rcnheliomare.nl/FCE.pdf . Conclusions Researchers, clinicians, and other professionals in the FCE area have a common desire to further improve the content and quality of FCE research and to collaborate to further develop research across systems, cultures and countries. A fourth, 2-day, International FCE research conference will be held in Valens, Switzerland in August or September 2018. A 'FCE research Society' will be developed.

  6. Neural correlates of fear: insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Garfinkel SN

    2014-12-01

    Full Text Available Sarah N Garfinkel,1,2 Hugo D Critchley1,2 1Sackler Centre for Consciousness Science, 2Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Brighton, UK Abstract: Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions, and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of

  7. Utilization of Emergent Neuroimaging for Thrombolysis-Eligible Stroke Patients.

    Science.gov (United States)

    Sanossian, Nerses; Fu, Katherine A; Liebeskind, David S; Starkman, Sidney; Hamilton, Scott; Villablanca, J Pablo; Burgos, Adrian M; Conwit, Robin; Saver, Jeffrey L

    2017-01-01

    Advances in diagnostic imaging of stroke include multimodal techniques such as noninvasive angiography and perfusion imaging. We aimed to characterize trends in neuroimaging utilization among acute stroke patients. Utilization of multimodal imaging for acute stroke in the community has remained largely uncharacterized despite its increased adoption at academic medical centers. We quantified neuroimaging utilization in the emergency department (ED) for 1,700 hyperacute stroke patients presenting Neuroimaging.

  8. Fusing multiple neuroimaging modalities to assess group differences in perception-action coupling.

    Science.gov (United States)

    Muraskin, Jordan; Sherwin, Jason; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sajda, Paul

    2017-01-01

    In the last few decades, non-invasive neuroimaging has revealed macro-scale brain dynamics that underlie perception, cognition and action. Advances in non-invasive neuroimaging target two capabilities; 1) increased spatial and temporal resolution of measured neural activity, and 2) innovative methodologies to extract brain-behavior relationships from evolving neuroimaging technology. We target the second. Our novel methodology integrated three neuroimaging methodologies and elucidated expertise-dependent differences in functional (fused EEG-fMRI) and structural (dMRI) brain networks for a perception-action coupling task. A set of baseball players and controls performed a Go/No-Go task designed to mimic the situation of hitting a baseball. In the functional analysis, our novel fusion methodology identifies 50ms windows with predictive EEG neural correlates of expertise and fuses these temporal windows with fMRI activity in a whole-brain 2mm voxel analysis, revealing time-localized correlations of expertise at a spatial scale of millimeters. The spatiotemporal cascade of brain activity reflecting expertise differences begins as early as 200ms after the pitch starts and lasting up to 700ms afterwards. Network differences are spatially localized to include motor and visual processing areas, providing evidence for differences in perception-action coupling between the groups. Furthermore, an analysis of structural connectivity revealed that the players have significantly more connections between cerebellar and left frontal/motor regions, and many of the functional activation differences between the groups are located within structurally defined network modules that differentiate expertise. In short, our novel method illustrates how multimodal neuroimaging can provide specific macro-scale insights into the functional and structural correlates of expertise development.

  9. Work functioning measurement: tools for occupational mental health research

    NARCIS (Netherlands)

    K. Nieuwenhuijsen; R.L. Franche; F.J.H. van Dijk

    2010-01-01

    To review the status of work functioning research in workers with common mental disorders (CMDs) and also the work functioning measurement instruments. We distinguish between productivity, work role limitations, quality of work output, and extra effort required to remain productive. Two systematic l

  10. Understanding Youth Antisocial Behavior Using Neuroscience through a Developmental Psychopathology Lens: Review, Integration, and Directions for Research.

    Science.gov (United States)

    Hyde, Luke W; Shaw, Daniel S; Hariri, Ahmad R

    2013-09-01

    Youth antisocial behavior (AB) is an important public health concern impacting perpetrators, victims, and society. Functional neuroimaging is becoming a more common and useful modality for understanding neural correlates of youth AB. Although there has been a recent increase in neuroimaging studies of youth AB and corresponding theoretical articles on the neurobiology of AB, there has been little work critically examining the strengths and weaknesses of individual studies and using this knowledge to inform the design of future studies. Additionally, research on neuroimaging and youth AB has not been integrated within the broader framework of developmental psychopathology. Thus, this paper provides an in-depth review of the youth AB functional neuroimaging literature with the following goals: 1. to evaluate how this literature has informed our understanding of youth AB, 2. to evaluate current neuroimaging studies of youth AB from a developmental psychopathology perspective with a focus on integrating research from neuroscience and developmental psychopathology, as well as placing this research in the context of other related areas (e.g., psychopathy, molecular genetics), and 3. to examine strengths and weaknesses of neuroimaging and behavioral studies of youth AB to suggest how future studies can develop a more informed and integrated understanding of youth AB.

  11. Epistemological considerations on neuroimaging--a crucial prerequisite for neuroethics.

    Science.gov (United States)

    Huber, Christian G; Huber, Johannes

    2009-07-01

    Whereas ethical considerations on imaging techniques and interpretations of neuroimaging results flourish, there is not much work on their preconditions. In this paper, therefore, we discuss epistemological considerations on neuroimaging and their implications for neuroethics. Neuroimaging uses indirect methods to generate data about surrogate parameters for mental processes, and there are many determinants influencing the results, including current hypotheses and the state of knowledge. This leads to an interdependence between hypotheses and data. Additionally, different levels of description are involved, especially when experiments are designed to answer questions pertaining to broad concepts like the self, empathy or moral intentions. Interdisciplinary theoretical frameworks are needed to integrate findings from the life sciences and the humanities and to translate between them. While these epistemological issues are not specific for neuroimaging, there are some reasons why they are of special importance in this context: Due to their inferential proximity, 'neuro-images' seem to be self-evident, suggesting directness of observation and objectivity. This has to be critically discussed to prevent overinterpretation. Additionally, there is a high level of attention to neuroimaging, leading to a high frequency of presentation of neuroimaging data and making the critical examination of their epistemological properties even more pressing. Epistemological considerations are an important prerequisite for neuroethics. The presentation and communication of the results of neuroimaging studies, the potential generation of new phenomena and new 'dysfunctions' through neuroimaging, and the influence on central concepts at the foundations of ethics will be important future topics for this discipline.

  12. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: Part 1 Structural neuroimaging.

    Science.gov (United States)

    Stylianou, Petros; Hoffmann, Chen; Blat, Ilan; Harnof, Sagi

    2016-01-01

    The objective of part one of this review is to present the structural neuroimaging techniques that are currently used to evaluate patients with temporal lobe epilepsy (TLE), and to discuss their potential to define patient eligibility for medial temporal lobe surgery. A PubMed query, using Medline and Embase, and subsequent review, was performed for all English language studies published after 1990, reporting neuroimaging methods for the evaluation of patients with TLE. The extracted data included demographic variables, population and study design, imaging methods, gold standard methods, imaging findings, surgical outcomes and conclusions. Overall, 56 papers were reviewed, including a total of 1517 patients. This review highlights the following structural neuroimaging techniques: MRI, diffusion-weighted imaging, tractography, electroencephalography and magnetoencephalography. The developments in neuroimaging during the last decades have led to remarkable improvements in surgical precision, postsurgical outcome, prognosis, and the rate of seizure control in patients with TLE. The use of multiple imaging methods provides improved outcomes, and further improvements will be possible with future studies of larger patient cohorts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  14. Relating Translational Neuroimaging and Amperometric Endpoints: Utility for Neuropsychiatric Drug Discovery.

    Science.gov (United States)

    Li, Jennifer; Schwarz, Adam J; Gilmour, Gary

    Measures of neuronal activation are a natural and parsimonious translational biomarker to consider in the context of neuropsychiatric drug discovery studies. In this regard, functional neuroimaging using the BOLD fMRI technique is becoming more frequently employed to not only probe aberrant brain regions and circuits in disease, but also to assess the effects of novel pharmacological agents on these processes. In the ideal situation, these types of studies would first be conducted pre-clinically in rodents to confirm a measurable functional response on relevant brain circuits before seeking to replicate the findings in an analogous fMRI paradigm in humans. However, the need for animal immobilization during the scanning procedure precludes all but the simplest behavioural task-based paradigms in rodent BOLD fMRI. This chapter considers how in vivo oxygen amperometry may represent a viable and valid proxy for BOLD fMRI in freely moving rodents engaged in behavioural tasks. The amperometric technique and several examples of emerging evidence are described to show how the technique can deliver results that translate to pharmacological, event-related and functional connectivity variants of fMRI. In vivo oxygen amperometry holds great promise as a technique that may help to bridge the gap between basic drug discovery research in rodents and applied efficacy testing in humans.

  15. Comparative primate neuroimaging: insights into human brain evolution.

    Science.gov (United States)

    Rilling, James K

    2014-01-01

    Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind.

  16. Neuroimaging in stroke and non-stroke pusher patients

    Directory of Open Access Journals (Sweden)

    Taiza Elaine Grespan Santos-Pontelli

    2011-12-01

    Full Text Available Pusher behavior (PB is a disorder of postural control affecting patients with encephalic lesions. This study has aimed to identify the brain substrates that are critical for the occurrence of PB, to analyze the influence of the midline shift (MS and hemorrhagic stroke volume (HSV on the severity and prognosis of the PB. We identified 31 pusher patients of a neurological unit, mean age 67.4±11.89, 61.3% male. Additional neurological and functional examinations were assessed. Neuroimaging workup included measurement of the MS, the HSV in patients with hemorrhagic stroke, the analysis of the vascular territory, etiology and side of the lesion. Lesions in the parietal region (p=0.041 and thalamus (p=0.001 were significantly more frequent in PB patients. Neither the MS nor the HSV were correlated with the PB severity or recovery time.

  17. Developing Research on Performance-Based Functional Work Assessment : Report on the First International Functional Capacity Evaluation Research Meeting

    NARCIS (Netherlands)

    Reneman, M. F.; Soer, R.; Gross, D. P.

    2013-01-01

    Introduction Research on Performance-Based Work Assessment, also known as Functional Capacity Evaluation (FCE), has evolved substantially over the past decades. Although this field of research has developed, the use of FCE has been an object of discussion and debate internationally. Unfortunately, t

  18. Neuroimaging features of Cornelia de Lange syndrome.

    Science.gov (United States)

    Whitehead, Matthew T; Nagaraj, Usha D; Pearl, Phillip L

    2015-07-01

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms "Cornelia," "Brachmann" and "de Lange." The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present.

  19. Neuroimaging of herpesvirus infections in children

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Henry J. [Cincinnati Children' s Medical Center, Department of Radiology, Cincinnati, OH (United States); Hedlund, Gary [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States)

    2007-10-15

    Six members of the herpesvirus family cause well-described neurologic disease in children: herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella-zoster (VZV), Epstein-Barr (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6). When herpesviruses infect the central nervous system (CNS), the clinical presentation is non-specific and often confounding. The clinical urgency is often underscored by progressive neurologic deficits, seizures, or even death, and prompt diagnosis and treatment rely heavily on neuroimaging. This review focuses on the spectrum of cerebral manifestations caused by these viruses, particularly on non-congenital presentations. Recent advances in our understanding of these viruses are discussed, including new polymerase chain reaction techniques that allow parallel detection, which has improved our recognition that the herpesviruses are neurotropic and involve the CNS more often than previously thought. Evolving knowledge has also better elucidated viral neuropathology, particularly the role of VZV vasculitis in the brain, HHV-6 in febrile seizures, and herpesvirus reactivation in immunosuppressed patients. The virology, clinical course, and CNS manifestations of each virus are reviewed, followed by descriptions of neuroimaging findings when these agents infect the brain. Characteristic but often subtle imaging findings are discussed, as well as technical pearls covering appropriate use of MRI and MRI adjuncts to help differentiate viral infection from mimics. (orig.)

  20. Ethical concepts and future challenges of neuroimaging: an Islamic perspective.

    Science.gov (United States)

    Al-Delaimy, Wael K

    2012-09-01

    Neuroscience is advancing at a rapid pace, with new technologies and approaches that are creating ethical challenges not easily addressed by current ethical frameworks and guidelines. One fascinating technology is neuroimaging, especially functional Magnetic Resonance Imaging (fMRI). Although still in its infancy, fMRI is breaking new ground in neuroscience, potentially offering increased understanding of brain function. Different populations and faith traditions will likely have different reactions to these new technologies and the ethical challenges they bring with them. Muslims are approximately one-fifth of world population and they have a specific and highly regulated ethical and moral code, which helps them deal with scientific advances and decision making processes in an Islamically ethical manner. From this ethical perspective, in light of the relevant tenets of Islam, neuroimaging poses various challenges. The privacy of spirituality and the thought process, the requirement to put community interest before individual interest, and emphasis on conscious confession in legal situations are Islamic concepts that can pose a challenge for the use of something intrusive such as an fMRI. Muslim moral concepts such as There shall be no harm inflicted or reciprocated in Islam and Necessities overrule prohibitions are some of the criteria that might appropriately be used to guide advancing neuroscience. Neuroscientists should be particularly prudent and well prepared in implementing neuroscience advances that are breaking new scientific and ethical ground. Neuroscientists should also be prepared to assist in setting the ethical frameworks in place in advance of what might be perceived as runaway applications of technology.

  1. Application of neuroanatomical ontologies for neuroimaging data annotation

    Directory of Open Access Journals (Sweden)

    Jessica A Turner

    2010-06-01

    Full Text Available The annotation of functional neuroimaging results for data sharing and reuse is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus. This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a sub-part of the middle frontal gyrus to more general (how many activations were found in areas connected via a known white matter tract?. In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuranatomical ontology is publicly available as a view of FMA at the Bioportal website at http://rest.bioontology.org/bioportal/ontologies/download/10005. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

  2. Application of Neuroanatomical Ontologies for Neuroimaging Data Annotation

    Science.gov (United States)

    Turner, Jessica A.; Mejino, Jose L. V.; Brinkley, James F.; Detwiler, Landon T.; Lee, Hyo Jong; Martone, Maryann E.; Rubin, Daniel L.

    2010-01-01

    The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website1. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining. PMID:20725521

  3. [Research advances on cortical functional and structural deficits of amblyopia].

    Science.gov (United States)

    Wu, Y; Liu, L Q

    2017-05-11

    Previous studies have observed functional deficits in primary visual cortex. With the development of functional magnetic resonance imaging and electrophysiological technique, the research of the striate, extra-striate cortex and higher-order cortical deficit underlying amblyopia reaches a new stage. The neural mechanisms of amblyopia show that anomalous responses exist throughout the visual processing hierarchy, including the functional and structural abnormalities. This review aims to summarize the current knowledge about structural and functional deficits of brain regions associated with amblyopia. (Chin J Ophthalmol, 2017, 53: 392-395).

  4. Comorbidities and cognitive functioning: implications for nursing research and practice.

    Science.gov (United States)

    Vance, David; Larsen, Kirsten I; Eagerton, Gregory; Wright, Mary A

    2011-08-01

    Optimal cognitive functioning is necessary to successfully negotiate one's environment, yet medical conditions can interfere with brain health, thus negatively impacting cognitive functioning. Such comorbidities include hypertension, heart disease, diabetes, depression, and HIV, as well as others. The physiological properties of these comorbidities can reduce one's cognitive reserve and limit one's cognitive efficiency. This article provides an overview of a few common comorbidities known to affect cognitive functioning and addresses ways in which cognitive functioning may be ameliorated and protected or mitigated in lieu of cognitive declines in such clinical populations. Implications for nursing practice and research are posited.

  5. [Research progress of mechanism of functional dyspepsia treated with acupuncture].

    Science.gov (United States)

    Yan, Kaiwei; Zhao, Ling; Yang, Jie; Lan, Ying; Xu, Jing; Wei, Chenchen; Liang, Fanrong

    2015-09-01

    Literature about functional dyspepsia treated with acupuncture in recent 5 years is retrieved in China National Knowledge Infrastructure (CNKI), Wanfang database and PubMed. The research achievements are arranged and summed up to explore the mechanism of acupuncture for functional dyspepsia. It is found that acupuncture can regulate the secretion of braingut petide, and cause the coordination response of limbic system-brain. Also, it adjusts serum molecule metabolin and the gene expression of the transduction pathway of adjustment signal for rats. It is believed that functional dyspepsia treated with acupuncture is through multiple ways, and adjusting the function of braingut axis is one of the important mechanisms.

  6. What can neuroimaging findings tell us about sleep disorders?

    Science.gov (United States)

    Nofzinger, Eric A

    2004-06-01

    Models of the pathophysiology of human sleep disorders have only recently been tested using nuclear medicine assessments, which have greatly increased our understanding of the brain mechanisms involved in the human sleep-wake cycle. Dramatic changes in function have been observed in large-scale neuronal networks during sleep. Broad declines in heteromodal-association-cortical function, and relative increases in limbic and paralimbic function have been observed. These cortical areas are responsible for essential aspects of human behavior, allowing us to interact with the world around us and to evaluate the significance of important events in our lives. Preliminary findings suggest that fundamental alterations in the function of these neural systems occur in sleep disorders. In depression, alterations in rapid-eye-movement and slow-wave sleep appear linked to a sleep-related dysfunctional arousal in primary limbic and paralimbic structures (amygdala), and hypofunction in frontal cortical areas. Pharmacologic interventions partially reverse these alterations. Preliminary studies in insomia indicate a subcortical hyperarousal and a failure of sleep to provide normal restoration of function in the prefrontal cortex, leading to chronic sleep deprivation. This review discusses functional neuroimaging data on normal sleep, and on the pathophysiology of insomnia related to depression and primary insomnia.

  7. Neuroimaging in Social Anxiety Disorder ? a meta-analytic review resulting in a new neurofunctional model

    OpenAIRE

    Br?hl, Annette Beatrix; Delsignore, Aba; Komossa, Katja; Weidt, Steffi

    2014-01-01

    This is the author's accepted manuscript. The final version is printed by Elsevier in Neuroscience & Biobehavioral Reviews here: http://www.sciencedirect.com/science/article/pii/S0149763414002012. Social anxiety disorder (SAD) is one of the most frequent anxiety disorders. The landmark meta-analysis of functional neuroimaging studies by Etkin & Wager (2007) revealed primarily the typical fear circuit as overactive in SAD. Since then, new methodological developments such as functional