WorldWideScience

Sample records for functional hydrogel microstructures

  1. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    Science.gov (United States)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  2. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  3. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  4. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  5. Functionalized graphene hydrogel-based high-performance supercapacitors.

    Science.gov (United States)

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures.

    Science.gov (United States)

    Li, Hui; Zhao, Lei; Chen, Xiao Dong; Mercadé-Prieto, Ruben

    2016-02-01

    Swelling of protein hydrogels in alkaline conditions strongly depends on the gel microstructure. Stranded transparent gels swell as predicted using a modified Flory-Rehner model with the net protein charge. Particulate opaque gels swell very differently, with a sudden increase at a narrow pH range. Its swelling is not controlled by the protein charge, but by the destruction of the non-covalent interactions. Comparable dissolution thresholds, one with pH and another with the degree of swelling, are observed in both types of microstructures. These conclusions are valid for both whey protein isolate (WPI) gels and egg white gels, suggesting that they are universal for all globular proteins that can form such microscructures. Differences are observed, however, from the prevalent chemical crosslinks in each protein system. Non-covalent interactions dominate WPI gels; when such interactions are destroyed at pH≥11.5 the gels swell extensively and eventually dissolve. In egg white gels, the higher degree of disulphide crosslinking allows extensive swelling when non-covalent interactions are destroyed, but dissolution only occurs at pH≥13 when covalent crosslinks are cleaved. The current study highlights that the microstructure of protein hydrogels, a unique particularity of protein systems compared to other synthetic hydrogels, defines swelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications.

    Science.gov (United States)

    García-Astrain, Clara; Avérous, Luc

    2018-06-15

    Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Directory of Open Access Journals (Sweden)

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  10. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.

    Science.gov (United States)

    Yetisen, Ali K; Jiang, Nan; Fallahi, Afsoon; Montelongo, Yunuen; Ruiz-Esparza, Guillermo U; Tamayol, Ali; Zhang, Yu Shrike; Mahmood, Iram; Yang, Su-A; Kim, Ki Su; Butt, Haider; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-04-01

    Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for quantitative glucose measurements within the physiological range. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    Science.gov (United States)

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  12. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.A.; Niconov, A.; Chmieliewska, D.; Spadaro, G.

    2011-01-01

    Complete text of publication follows. Objective of this research is to develop a functional soft nanocomposites platform that combines the electro-optic properties of conjugated polymer nanoparticles with process flexibility, highly hydrophilic character, 3D structure and biocompatibility of hydrogels, to yield novel soft materials with multi-application potential in diagnostic, therapeutic and regenerative medicine. PANI aqueous nanocolloids in their acid doped, inherently conductive form, are synthesised by means of suitable polymeric stabilisers, i.e. water soluble polymers, that may prevent irreversible PANI particles coalescence and precipitation during synthesis and upon storage. Depending on the nature nad concentration of the polymeric stabiliser, e.g. polyvinyl pyrrolidone (PVP), polyvinylalcohol (PVA) or chitosan (CT), PANI has been synthesised in form of nanoscalar rods, spherical particles or rice grains, respectively. In the present work, e-beam irradiation with a 12 MeV Linac accelerator has been tested, in alternative to gamma-rays, as a viable industrial methodology to generate hydrogel nanocomposites via in-situ crosslinking of the polymers already used to stabilise polyaniline nanocolloids, at low temperature, with no recourse to further addition of molecular weight chemicals and in a few minutes. In these conditions nanoparticles morphology of PANI should be preserved and interesting electro-optical properties can be imparted. The swelling properties of the different hydrogel nanocomposites have been investigated at the variance of the chemical structure of the matrix material and of the pH of the swelling medium. UV-visible absorption and fluorescence spectroscopies demonstrate the retained optical activity of the dispersed PANI nanoparticles when incorporated in the hydrogels. Selected formulations have been also subjected to MTT assays and absence of cytotoxicity has been ascertained as the first necessary step to assess their biocompatibility.

  13. HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian [College of chemistry & materials science, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Xue, Wenjiao [Shannxi provincial institute of microbiology, Xi’ an 710043 (China); Liu, Yannan; Li, Weina [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Zhu, Chenhui [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Wang, Yaoyu, E-mail: wyaoyu@nwu.edu.cn [College of chemistry & materials science, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China)

    2016-01-01

    New locally injectable biomaterials that are suitable for use as soft tissue fillers are needed to address a significant unmet medical need. In this study, we used pullulan and human-like collagen (HLC) based hydrogels with various molecular weights (MWs) in combination therapy against tissue defects. Briefly, pullulan was crosslinked with NaIO{sub 4} to form a pullulan hydrogel and then may coupled with HLC using the reaction between the –NH{sub 2} end-group of HLC and the –CHO group present on the aldehyde pullulan to form the HLC/pullulan hydrogel, wherein the NaIO{sub 4} acted as the crosslinking and oxidizing agent. The good miscibility of pullulan and HLC in the hydrogels was confirmed via Fourier transform infrared spectroscopy, scanning electron microscopy, compression testing, enzyme degradation testing, cell adhesions, live/dead staining and subcutaneous filling assays. Here, pullulan hydrogels with various MWs were fabricated and physicochemically characterized. Limitations of the pullulan hydrogels included inflammation, poor mechanical strength, and degradation. By contrast, the properties of the HLC/pullulan hydrogels strongly enhanced. The efficacy of these hydrogels was evaluated both in vitro and in vivo. Our results indicate that HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and delayed hydrogel degradation. - Graphical abstract: The HLC/pullulan hydrogels were prepared by dialysis, wet granulation and UV radiation after various MWs of pullulan and HLC were crosslinked with NaIO{sub 4}, and injected subcutaneously into Kunming mouse. The formation of HLC/pullulan hydrogels is due to the amide bond linkage with the amino group of HLC and the aldehyde groups in pullulan aqueous media after crosslinking by NaIO{sub 4}. HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and

  14. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning

    International Nuclear Information System (INIS)

    Occhetta, P; Piraino, F; Redaelli, A; Rasponi, M; Sadr, N; Moretti, M

    2013-01-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells–cells and cells–extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs. (paper)

  15. Molecularly imprinted hydrogels as functional active packaging materials.

    Science.gov (United States)

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys.

    Science.gov (United States)

    Takahashi, Riku; Sun, Tao Lin; Saruwatari, Yoshiyuki; Kurokawa, Takayuki; King, Daniel R; Gong, Jian Ping

    2018-04-01

    Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create "macroscale" hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress-induced deformation. A low-melting-point alloy that can transform from a load-bearing solid state to a free-deformable liquid state at relatively low temperature is used as a reinforcing skeleton, which enables the release of any swelling mismatch, regardless of the matrix swelling degree in liquid media. This design can generally provide hydrogels with hybridized functions, including excellent mechanical properties, shape memory, and thermal healing, which are often difficult or impossible to achieve with single-component hydrogel systems. Furthermore, this technique enables controlled electrochemical reactions and channel-structure templating in hydrogel matrices. This work may play an important role in the future design of soft robots, wearable electronics, and biocompatible functional materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel Osteoinductive Photo-cross-linkable Chitosan-lactide-fibrinogen Hydrogels Enhance Bone Regeneration in Critical Size Segmental Bone Defects

    Science.gov (United States)

    2014-08-01

    2.3.2. Scanning electron microscopy (SEM) The internal microstructures of the CL and CLF hydrogels were investigated by SEM. The effect of...hydrogels. All hydrogels showed homogeneous and microporous structures throughout the cross-section. The CL hydrogel (Fig. 3a and 3c) exhibited...regardless of wettability. Furthermore, amide or ester linkages for the branched PLA chains can function as plasticizers internally in the rigid main

  18. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications

    Directory of Open Access Journals (Sweden)

    Robert C. Spiro

    2012-04-01

    Full Text Available Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer strengthens the stability of resultant hydrogels and enriches its functionalities by bringing in new functional groups or optimizing the micro-environmental conditions for certain biological and biochemical processes. This article presents approaches that have been used by our groups to synthesize biopolymer hybrid hydrogels for effective uses for immunotherapy, tissue regeneration, food and functional food applications. The research has achieved some challenging results, such as stabilizing physical structure, increasing mucoadhesiveness, and the creation of an artificial extracellular matrix to aid in guiding tissue differentiation.

  19. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.-A.; Niconov, A.; Chmielewska, D.; Spadaro, G.

    2012-01-01

    PANI aqueous nanocolloids in their acid-doped, inherently conductive form were synthesised by means of suitable water soluble polymers used as stabilisers. In particular, poly(vinyl alcohol) (PVA) or chitosan (CT) was used to stabilise PANI nanoparticles, thus preventing PANI precipitation during synthesis and upon storage. Subsequently, e-beam irradiation of the PANI dispersions has been performed with a 12 MeV Linac accelerator. PVA-PANI nanocolloid has been transformed into a PVA-PANI hydrogel nanocomposite by radiation induced crosslinking of PVA. CT-PANI nanoparticles dispersion, in turn, was added to PVA to obtain wall-to-wall gels, as chitosan mainly undergoes chain scission under the chosen irradiation conditions. While the obtainment of uniform PANI particle size distribution was preliminarily ascertained with laser light scattering and TEM microscopy, the typical porous structure of PVA-based freeze dried hydrogels was observed with SEM microscopy for the hydrogel nanocomposites. UV−visible absorption spectroscopy demonstrates that the characteristic, pH-dependent and reversible optical absorption properties of PANI are conferred to the otherwise optically transparent PVA hydrogels. Selected formulations have been also subjected to MTT assays to prove the absence of cytotoxicity. - Highlights: ► PANI nanocolloids were chemically synthesised in the presence of PVA and chitosan. ► PANI dispersions were transformed into hydrogel nanocomposites by e-beam irradiation. ► Characteristic optical properties of PANI were shown by the nanocomposite hydrogels. ► Absence of cytotoxicity for the nanocomposite hydrogels is demonstrated. ► Results encourage developments for application in biosensing and smart drug delivery.

  20. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    Science.gov (United States)

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  1. Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

    Science.gov (United States)

    Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul

    2017-12-01

    We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

  2. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.

    Science.gov (United States)

    Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian

    2016-01-27

    Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.

  3. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization.

    Science.gov (United States)

    Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong

    2012-08-01

    Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.

  4. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury

    Science.gov (United States)

    Geissler, Sydney A.; Sabin, Alexandra L.; Besser, Rachel R.; Gooden, Olivia M.; Shirk, Bryce D.; Nguyen, Quan M.; Khaing, Zin Z.; Schmidt, Christine E.

    2018-04-01

    Objective. Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. Approach. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Main results. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. Significance. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.

  5. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System.

    Science.gov (United States)

    Mufamadi, Maluta S; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Iyuke, Sunny E; Pillay, Viness

    2017-04-01

    The purpose of this study was to explore the use of molecular bio-imaging systems and biomechanical dynamics to elucidate the fate of a nanocomposite hydrogel system prepared by merging FITC-labeled nanolipobubbles within a cross-linked hydrogel network. The nanocomposite hydrogel system was characterized by size distribution analysis and zeta potential as well as shears thinning behavior, elastic modulus (G'), viscous loss moduli (G"), TEM, and FTIR. In addition, molecular bio-imaging via Vevo ultrasound and Cell-viZio techniques evaluated the stability and distribution of the nanolipobubbles within the cross-linked hydrogel. FITC-labeled and functionalized nanolipobubbles had particle sizes between 135 and 158 nm (PdI = 0.129 and 0.190) and a zeta potential of -34 mV. TEM and ultrasound imaging revealed the uniformity and dimensional stability of the functionalized nanolipobubbles pre- and post-embedment into the cross-linked hydrogel. Biomechanical characterization of the hydrogel by shear thinning behavior was governed by the polymer concentration and the cross-linker, glutaraldehyde. Ultrasound analysis and Cell-viZio bio-imaging were highly suitable to visualize the fluorescent image-guided nanolipobubbles and their morphology post-embedment into the hydrogel to form the NanoComposite system. Since the nanocomposite is intended for targeted treatment of neurodegenerative disorders, the distribution of the functionalized nanolipobubbles into PC12 neuronal cells was also ascertained via confocal microscopy. Results demonstrated effective release and localization of the nanolipobubbles within PC12 neuronal cells. The molecular structure of the synthetic surface peptide remained intact for an extended period to ensure potency for targeted delivery from the hydrogel ex vivo. These findings provide further insight into the properties of nanocomposite hydrogels for specialized drug delivery.

  8. Three-Dimensional Calcium Alginate Hydrogel Assembly via TiOPc-Based Light-Induced Controllable Electrodeposition

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-06-01

    Full Text Available Artificial reconstruction of three-dimensional (3D hydrogel microstructures would greatly contribute to tissue assembly in vitro, and has been widely applied in tissue engineering and drug screening. Recent technological advances in the assembly of functional hydrogel microstructures such as microfluidic, 3D bioprinting, and micromold-based 3D hydrogel fabrication methods have enabled the formation of 3D tissue constructs. However, they still lack flexibility and high efficiency, which restrict their application in 3D tissue constructs. Alternatively, we report a feasible method for the fabrication and reconstruction of customized 3D hydrogel blocks. Arbitrary hydrogel microstructures were fabricated in situ via flexible and rapid light-addressable electrodeposition. To demonstrate the versatility of this method, the higher-order assembly of 3D hydrogel blocks was investigated using a constant direct current (DC voltage (6 V applied between two electrodes for 20–120 s. In addition to the plane-based two-dimensional (2D assembly, hierarchical structures—including multi-layer 3D hydrogel structures and vessel-shaped structures—could be assembled using the proposed method. Overall, we developed a platform that enables researchers to construct complex 3D hydrogel microstructures efficiently and simply, which has the potential to facilitate research on drug screening and 3D tissue constructs.

  9. Radiation Engineering of Functional Biomaterials: From Smart Hydrogels to Theragnostic Nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Dispenza, C.; Spadaro, G. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali (DICPM), Centro Interdipartimentale di Biotecnologie Applicate (CIBA), Università degli Studi di Palermo, Palermo (Italy); Alessi, S. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali (DICPM), Università degli Studi di Palermo, Palermo (Italy)

    2009-07-01

    Radiation engineering represents an important tool in “nanobiotechology”. The possibility of manipulating photons and electrons alongside the possibility of manipulating macromolecules and biomolecules offers to the scientist and technologist an irresistible convergence of experimental tools for the generation of new or improved functional biomaterials. The versatility and the untapped potential of this approach may contribute in understanding, developing and exploring the role of nanobiomaterials in emerging research fields, such as biomolecules detection and/or delivery. In this short review, after an introductory part that describe the motivation of this research, we present some of the approaches we developed in the recent years for the synthesis and characterization of smart hydrogels for controlled delivery of proteins and for radiation engineering of nanostructured hydrogels that possess electrochemical activity and some novel optical properties. (author)

  10. Radiation Engineering of Functional Biomaterials: From Smart Hydrogels to Theragnostic Nanodevices

    International Nuclear Information System (INIS)

    Dispenza, C.; Spadaro, G.; Alessi, S.

    2009-01-01

    Radiation engineering represents an important tool in “nanobiotechology”. The possibility of manipulating photons and electrons alongside the possibility of manipulating macromolecules and biomolecules offers to the scientist and technologist an irresistible convergence of experimental tools for the generation of new or improved functional biomaterials. The versatility and the untapped potential of this approach may contribute in understanding, developing and exploring the role of nanobiomaterials in emerging research fields, such as biomolecules detection and/or delivery. In this short review, after an introductory part that describe the motivation of this research, we present some of the approaches we developed in the recent years for the synthesis and characterization of smart hydrogels for controlled delivery of proteins and for radiation engineering of nanostructured hydrogels that possess electrochemical activity and some novel optical properties. (author)

  11. Novel β-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair.

    Science.gov (United States)

    Yao, Hang; Kang, Junpei; Li, Weichang; Liu, Jian; Xie, Renjian; Wang, Yingjun; Liu, Sa; Wang, Dong-An; Ren, Li

    2017-12-07

    Cartilage repairing grafts have been widely studied, and osteochondral replacement hydrogels have proven to be an excellent method in research and clinical fields. However, it has been difficult to simultaneously solve three main issues in osteochondral replacement preparation: surface lubrication, overall mechanical support and good simulations of cell regeneration. A novel integrated bilayered hydrogel osteochondral replacement was constructed by blending polyvinyl alcohol (PVA) and β-tricalcium phosphate (β-TCP) in this study. Separated nano-ball milling with ultrasound dispersion prepared β-TCP demonstrated suitable properties of tiny particle size, high purity and ideal distribution, improving the mechanical properties of the novel integrated hydrogel, and providing a cartilage-like lubrication effect and high biocompatibility, including cytocompatibility and osteogenesis. The reinforcement of β-TCP and integrated molding technology enabled the hydrogel to demonstrate excellent component compatibility and good bonding between the two layers, which promoted the strengthening of the compression modulus and tensile modulus up to three times by mechanical testing. The surface lubrication properties of the novel osteochondral hydrogel were similar to the natural cartilage by friction coefficient characterization. The two layers of the novel integrated graft provided a considerable bio-function by co-culturing with chondrocytes and synovium mesenchymal stem cells: chondrocytes promoted adherence achieved by the upper density layer and better osteogenesis performance of the porous lower layer. The design of the bilayered β-TCP/PVA osteochondral hydrogel is promising for use in articular cartilage repair.

  12. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Directory of Open Access Journals (Sweden)

    Bae Hoon Lee

    Full Text Available Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol-diacrylate (PEG-DA based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates.

  13. Modeling the microstructure of surface by applying BRDF function

    Science.gov (United States)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  14. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

    Science.gov (United States)

    Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.

    2008-10-01

    Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

  15. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function.

    Directory of Open Access Journals (Sweden)

    Kihoon Nam

    Full Text Available Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration.

  16. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    Science.gov (United States)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  17. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  18. THE USE OF A NOVEL ALDEHYDE-FUNCTIONALIZED CHITOSAN HYDROGEL TO PREPARE POROUS TUBULAR SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Eduardo P. Azevedo

    Full Text Available In this work, porous tubular scaffolds were prepared from a novel water soluble aldehyde-functionalized chitosan (ALDCHIT hydrogel, which was obtained by dissolving this chitosan derivative in water and using oxidized dextrose (OXDEXT as the crosslinking agent at different ALDCHIT:OXDEXT mole ratios (10:1, 10:2 and 10:4. By increasing the amount of OXDEXT in respect to ALDCHIT the hydrogels became more rigid and could absorb more than 200% of its weight in water. Since the ALDCHIT:OXDEXT 10:4 was the most stable hydrogel, its ability to form porous tubular scaffolds was investigated. The tubular scaffolds were prepared by the lyophilization method, where the orientation of the pores was controlled by exposing either the internal or the external surface of the frozen hydrogel during the sublimation step. When only the inner surface of the frozen hydrogel was exposed, tubular scaffolds with a highly porous lumen and a sealed outer surface were obtained, where the orientation of the pores, their sizes and interconnectivity seem to be optimum for vascular tissue engineering application.

  19. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel.

    Science.gov (United States)

    Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook

    2017-12-01

    Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D

  20. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Science.gov (United States)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  1. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels

    Directory of Open Access Journals (Sweden)

    Sadik Kaga

    2016-04-01

    Full Text Available Hydrogels have emerged as a versatile class of polymeric materials with a wide range of applications in biomedical sciences. The judicious choice of hydrogel precursors allows one to introduce the necessary attributes to these materials that dictate their performance towards intended applications. Traditionally, hydrogels were fabricated using either polymerization of monomers or through crosslinking of polymers. In recent years, dendrimers and dendrons have been employed as well-defined building blocks in these materials. The multivalent and multifunctional nature of dendritic constructs offers advantages in either formulation or the physical and chemical properties of the obtained hydrogels. This review highlights various approaches utilized for the fabrication of hydrogels using well-defined dendrimers, dendrons and their polymeric conjugates. Examples from recent literature are chosen to illustrate the wide variety of hydrogels that have been designed using dendrimer- and dendron-based building blocks for applications, such as sensing, drug delivery and tissue engineering.

  2. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    Directory of Open Access Journals (Sweden)

    Song Bao

    Full Text Available Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1. The hydrogel also exhibited higher separation selectivity to Pb(2+ than Cu(2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  3. Microfabrication of biocompatible hydrogels by proton beam writing

    Science.gov (United States)

    Nagasawa, Naotsugu; Kimura, Atsushi; Idesaki, Akira; Yamada, Naoto; Koka, Masashi; Satoh, Takahiro; Ishii, Yasuyuki; Taguchi, Mitsumasa

    2017-10-01

    Functionalization of biocompatible materials is expected to be widely applied in biomedical engineering and regenerative medicine fields. Hydrogel has been expected as a biocompatible scaffold which support to keep an organ shape during cell multiplying in regenerative medicine. Therefore, it is important to understanding a surface microstructure (minute shape, depth of flute) and a chemical characteristic of the hydrogel affecting the cell culture. Here, we investigate the microfabrication of biocompatible polymeric materials, such as the water-soluble polysaccharide derivatives hydroxypropyl cellulose and carboxymethyl cellulose, by use of proton beam writing (PBW). These polymeric materials were dissolved thoroughly in pure water using a planetary centrifugal mixer, and a sample sheet (1 mm thick) was formed on polyethylene terephthalate (PET) film. Crosslinking to form hydrogels was induced using a 3.0 MeV focused proton beam from the single-ended accelerator at Takasaki Ion Accelerators for Advanced Radiation Application. The aqueous samples were horizontally irradiated with the proton beam through the PET cover film, and then rinsed with deionized water. Microstructured hydrogels were obtained on the PET film using the PBW technique without toxic crosslinking reagents. Cell adhesion and proliferation on the microfabricated biocompatible hydrogels were investigated. Microfabrication of HPC and CMC by the use of PBW is expected to produce new biocompatible materials that can be applied in biological and medical applications.

  4. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    Science.gov (United States)

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  5. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects.

    Science.gov (United States)

    Kumar, Alok; Nune, K C; Misra, R D K

    2018-04-01

    We have designed a unique injectable bioactive hydrogel comprising of alginate, gelatin, and nanocrystalline hydroxyapatite and loaded with osteoblasts, with the ability to infiltrate into three-dimensional Ti-6Al-4V scaffolds with interconnected porous architecture, fabricated by electron beam melting. A two-step crosslinking process using the EDC/NHS and CaCl 2 was adopted and found to be effective in the fabrication of cell-loaded hydrogel/Ti-6Al-4V scaffold system. This hybrid Ti-6Al-4V scaffold/hydrogel system was designed for the reconstruction of bone defects, which are difficult to heal in the absence of suitable support materials. The hybrid Ti-6Al-4V/hydrogel system favourably modulated the biological functions, namely, adhesion, proliferation, cell-to-cell, and cell-material communication because of the presence of extracellular matrix-like hydrogel in the interconnected porous structure of 3D printed Ti-6Al-4V scaffold. The hydrogel was cytocompatible, which was proven through live/dead assay, the expression level of prominent proteins for cell adhesion and cytoskeleton, including 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Furthermore, the high bone formation ability of the hydrogel was confirmed using alkaline phosphatase assay. A high equilibrium water content (~97%) in the hydrogel enables the delivery of cells and bioactive molecules, necessary for bone tissue growth. Although not studied, the presence of hydrogel in the pores of the scaffold can provide the space for the cell migration as well as vascularization through it, required for the effective exchange of nutrients. In conclusion, we underscore that the 3D-printed Ti-6Al-4V scaffold-loaded with bioactive hydrogel to treat the bone defects significantly impacted cellular functions and cell-material interaction. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  7. Functionalized D-form self-assembling peptide hydrogels for bone regeneration

    Directory of Open Access Journals (Sweden)

    He B

    2016-04-01

    Full Text Available Bin He,1 Yunsheng Ou,1 Ao Zhou,1 Shuo Chen,1 Weikang Zhao,1 Jinqiu Zhao,2 Hong Li,3 Yong Zhu,1 Zenghui Zhao,1 Dianming Jiang1 1Department of Orthopedics, 2Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China Abstract: Bone defects are very common in orthopedics, and there is great need to develop suitable bone grafts for transplantation in vivo. However, current bone grafts still encounter some limitations, including limited availability, immune rejection, poor osteoinduction and osteoconduction, poor biocompatibility and degradation properties, etc. Self-assembling peptide nanofiber scaffolds have emerged as an important substrate for cell culture and bone regeneration. We report on the structural features (eg, Congo red staining, circular dichroism spectroscopy, transmission electron microscopy, and rheometry assays and osteogenic ability of D-RADA16-RGD peptide hydrogels (with or without basic fibroblast growth factor due to the better stability of peptide bonds formed by these peptides compared with those formed by L-form peptides, and use them to fill the femoral condyle defect of Sprague Dawley rat model. The bone morphology change, two-dimensional reconstructions using microcomputed tomography, quantification of the microcomputed tomography analyses as well as histological analyses have demonstrated that RGD-modified D-form peptide scaffolds are able to enhance extensive bone regeneration. Keywords: bone defect, functionalized D-form self-assembling peptide, D-RADA16-RGD, peptide hydrogel, bone regeneration

  8. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    Science.gov (United States)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  9. Nutritional, antioxidant, microstructural and pasting properties of functional pasta

    Directory of Open Access Journals (Sweden)

    Amir Gull

    2018-04-01

    Full Text Available The present study aimed to characterize millet-pomace based pasta on the basis of functional, morphological, pasting and nutritional properties with control pasta (100% durum semolina. Functional pasta was developed by using blend of 20% finger millet flour, 12% pearl millet flour, 4% carboxy methyl cellulose (CMC and 64% composite flour containing durum semolina and carrot pomace. Nutritional analysis of developed pasta showed high content of minerals viz calcium, iron, zinc and dietary fiber compared to control pasta. The developed pasta showed better quality characteristics in terms of cooked weight, swelling index and water absorption. Color evaluation of developed pasta showed increase in L∗ and b∗ values. Phenolic content and antioxidant activity of developed pasta was significantly higher with respect to control. Also significant (p < 0.05 variations were observed in pasting properties between pasta samples. Microstructure evaluation of cooked pasta showed better interaction between starch and protein matrix with addition of carboxy methyl cellulose gum. Keywords: Pasta, Phenolic content, Antioxidant activity, Nutritional properties, Microstructure

  10. Functional CuO Microstructures for Glucose Sensing

    Science.gov (United States)

    Ali, Gulzar; Tahira, Aneela; Mallah, Arfana Begum; Mallah, Sarfraz Ahmed; Ibupoto, Akila; Khand, Aftab Ahmed; Baradi, Waryani; Willander, Magnus; Yu, Cong; Ibupoto, Zafar Hussain

    2018-02-01

    CuO microstructures are produced in the presence of water-soluble amino acids by hydrothermal method. The used amino acids include isoleucine, alpha alanine, and arginine as a soft template and are used for tuning the morphology of CuO nanostructures. The crystalline and morphological investigations were carried out by x-ray diffraction (XRD) and scanning electron microscopy techniques. The XRD study has shown that CuO material obtained in the presence of different amino acids is of high purity and all have the same crystal phase. The CuO microstructures prepared in the presence of arginine were used for the development of sensitive and selective glucose biosensor. The linear range for the glucose detection are from 0.001 mM to 30 mM and limit of detection was found to be 0.0005 mM. The sensitivity was estimated around 77 mV/decade. The developed biosensor is highly selective, sensitive, stable and reproducible. The glucose biosensor was used for the determination of real human blood samples and the obtained results are satisfactory. The CuO material is functional therefore can be capitalized in wide range of applications such as lithium ion batteries, all oxide solar cells and supercapacitors.

  11. Network structure and functional properties of transparent hydrogel sanxan produced by Sphingomonas sanxanigenens NX02.

    Science.gov (United States)

    Wu, Mengmeng; Shi, Zhong; Huang, Haidong; Qu, Jianmei; Dai, Xiaohui; Tian, Xuefeng; Wei, Weiying; Li, Guoqiang; Ma, Ting

    2017-11-15

    The micro-network structure and functional properties of sanxan, a novel polysaccharide produced by Sphingomonas sanxanigenens NX02, were investigated. Transparent hydrogel sanxan was a high acyl polymer containing 8.96% acetyl and 4.75% glyceroyl. The micro-network structure of sanxan was mainly cyclic configurations composed of side-by-side intermolecular associations, with many rounded nodes found. Sanxan exhibited predominant gelation behavior at concentrations above 0.1%, which was enhanced by adding cations, especially Ca 2+ . The gel strength of sanxan was much higher than that of low acyl gellan, but slightly lower than that of high acyl gellan. Furthermore, the conformation transition temperature was increased in the presence of added cations. Moreover, sanxan showed excellent emulsifying and emulsion stabilizing properties. Consequently, such excellent functional properties make sanxan a good candidate as a gelling, stabilizing, emulsifying, or suspending agent in food and cosmetics industries, and in medical and pharmaceutical usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.

    Science.gov (United States)

    Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C

    2010-02-01

    Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    Directory of Open Access Journals (Sweden)

    Gama Miguel

    2008-10-01

    Full Text Available Abstract Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD. The RGD sequence, present in several proteins from the extra-cellular matrix (ECM, is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications.

  14. Microstructural abnormalities of uncinate fasciculus as a function of ...

    Indian Academy of Sciences (India)

    2016-08-02

    Aug 2, 2016 ... strength and direction of water diffusivity in brain tissue to estimate the microstructural .... coloured grey and a voxel with FA < 0.15 remains black. Typical segmented axial .... treatment in schizophrenia. Although the effect of ...

  15. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions.

    Science.gov (United States)

    Eslahi, Niloofar; Abdorahim, Marjan; Simchi, Abdolreza

    2016-11-14

    Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.

  16. Retention and Functional Effect of Adipose-Derived Stromal Cells Administered in Alginate Hydrogel in a Rat Model of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Bjarke Follin

    2018-01-01

    Full Text Available Background. Cell therapy for heart disease has been proven safe and efficacious, despite poor cell retention in the injected area. Improving cell retention is hypothesized to increase the treatment effect. In the present study, human adipose-derived stromal cells (ASCs were delivered in an in situ forming alginate hydrogel following acute myocardial infarction (AMI in rats. Methods. ASCs were transduced with luciferase and tested for ASC phenotype. AMI was inducted in nude rats, with subsequent injection of saline (controls, 1 × 106 ASCs in saline or 1 × 106 ASCs in 1% (w/v alginate hydrogel. ASCs were tracked by bioluminescence and functional measurements were assessed by magnetic resonance imaging (MRI and 82rubidium positron emission tomography (PET. Results. ASCs in both saline and alginate hydrogel significantly increased the ejection fraction (7.2% and 7.8% at 14 days and 7.2% and 8.0% at 28 days, resp.. After 28 days, there was a tendency for decreased infarct area and increased perfusion, compared to controls. No significant differences were observed between ASCs in saline or alginate hydrogel, in terms of retention and functional salvage. Conclusion. ASCs improved the myocardial function after AMI, but administration in the alginate hydrogel did not further improve retention of the cells or myocardial function.

  17. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing [State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023 (China); School of the Environment, Nanjing University, Nanjing 210023 (China); Li, Zhengkui, E-mail: zhkuili@nju.edu.cn [State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023 (China); School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-12-30

    Highlights: • A novel ion-imprinted poly(polyethylenimine/hydroxyethyl acrylate) hydrogel was synthesized. • The prepared hydrogel enhanced the selectivity of Cu(II) removal. • The material had high adsorption capacity and excellent regeneration property for copper. • The adsorption mechanism was the chelate interaction between functional groups and Cu(II) ions. - Abstract: A novel polyethylenimine-functionalized ion-imprinted hydrogel (Cu(II)-p(PEI/HEA)) was newly synthesized by {sup 60}Co-γ-induced polymerization for the selective removal of Cu(II) from aqueous solution. The adsorption performances including the adsorption capacity and selectivity of the novel hydrogel were much better than those of similar adsorbents reported. The hydrogel was characterized via scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis and X-ray photoelectron spectroscopy to determine the structure and mechanisms. The adsorption process was pH and temperature sensitive, better fitted to pseudo-second-order equation, and was Langmuir monolayer adsorption. The maximum adsorption capacity for Cu(II) was 40.00 mg/g. The selectivity coefficients of ion-imprinted hydrogel for Cu(II)/Pb(II), Cu(II)/Cd(II) and Cu(II)/Ni(II) were 55.09, 107.47 and 63.12, respectively, which were 3.93, 4.25 and 3.53 times greater than those of non-imprinted hydrogel, respectively. Moreover, the adsorption capacity of Cu(II)-p(PEI/HEA) could still keep more than 85% after four adsorption–desorption cycles. Because of such enhanced selective removal performance and excellent regeneration property, Cu(II)-p(PEI/HEA) is a promising adsorbent for the selective removal of copper ions from wastewater.

  18. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  19. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms.

    Science.gov (United States)

    Wang, Jingjing; Li, Zhengkui

    2015-12-30

    A novel polyethylenimine-functionalized ion-imprinted hydrogel (Cu(II)-p(PEI/HEA)) was newly synthesized by (60)Co-γ-induced polymerization for the selective removal of Cu(II) from aqueous solution. The adsorption performances including the adsorption capacity and selectivity of the novel hydrogel were much better than those of similar adsorbents reported. The hydrogel was characterized via scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis and X-ray photoelectron spectroscopy to determine the structure and mechanisms. The adsorption process was pH and temperature sensitive, better fitted to pseudo-second-order equation, and was Langmuir monolayer adsorption. The maximum adsorption capacity for Cu(II) was 40.00 mg/g. The selectivity coefficients of ion-imprinted hydrogel for Cu(II)/Pb(II), Cu(II)/Cd(II) and Cu(II)/Ni(II) were 55.09, 107.47 and 63.12, respectively, which were 3.93, 4.25 and 3.53 times greater than those of non-imprinted hydrogel, respectively. Moreover, the adsorption capacity of Cu(II)-p(PEI/HEA) could still keep more than 85% after four adsorption-desorption cycles. Because of such enhanced selective removal performance and excellent regeneration property, Cu(II)-p(PEI/HEA) is a promising adsorbent for the selective removal of copper ions from wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior

    Czech Academy of Sciences Publication Activity Database

    Sadakbayeva, Zhansaya; Dušková-Smrčková, Miroslava; Šturcová, Adriana; Pfleger, Jiří; Dušek, Karel

    2018-01-01

    Roč. 101, April (2018), s. 304-313 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA17-08531S Institutional support: RVO:61389013 Keywords : hydrogels * interpenetrating polymer networks * kinetics Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  1. Topical Anti-Nuclear Factor-Kappa B Small Interfering RNA with Functional Peptides Containing Sericin-Based Hydrogel for Atopic Dermatitis

    Directory of Open Access Journals (Sweden)

    Takanori Kanazawa

    2015-09-01

    Full Text Available The small interfering RNA (siRNA is suggested to offer a novel means of treating atopic dermatitis (AD because it allows the specific silencing of genes related to AD pathogenesis. In our previous study, we found that siRNA targeted against RelA, an important nuclear factor-kappa B (NF-κB subdomain, with functional peptides, showed therapeutic effects in a mouse model of AD. In the present study, to develop a topical skin application against AD, we prepared a hydrogel containing anti-RelA siRNA and functional peptides and determined the intradermal permeation and the anti-AD effects in an AD mouse model. We selected the silk protein, sericin (SC, which is a versatile biocompatible biomaterial to prepare hydrogel as an aqueous gel base. We found that the siRNA was more widely delivered to the site of application in AD-induced ear skin of mice after topical application via the hydrogel containing functional peptides than via the preparation without functional peptides. In addition, the ear thickness and clinical skin severity of the AD-induced mice treated with hydrogel containing anti-RelA siRNA with functional peptides improved more than that of mice treated with the preparation formulated with negative siRNA.

  2. Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme.

    Science.gov (United States)

    Koshani, Roya; Aminlari, Mahmoud

    2017-10-01

    The purpose of this study was to prepare, characterize and investigate physiochemical and functional attributes of hen egg white lysozyme (LZM) cross-linked with ultrasonic-treated tragacanth (US-treated TGC) under mild Maillard reactions conditions. FT-IR spectroscopy together with OPA assay revealed that covalent attachment of LZM with TCG's. Under optimum condition (pH=8.5, 60°C, RH=79%, 8 days), only one of the free amino group of LZM was blocked by TGC whereas under the same condition, US treated-TGC's blocked about three amino groups. The thermal stability of the LZM-TGC conjugates differed depending on the lengths of the main and branch chains. The microstructure of LZM-TGC conjugates was characterized by scanning electron microscopy. US-treated TGC-LZM exhibited improved solubility, emulsion properties, foam capacity and stability as compared with the native LZM. Since this gum is extensively used in food industry and application of LZM as a natural antimicrobial agents in different food systems is recommended and practiced in some countries, the results of this study indicates that a conjugated product of these two polymers combines different properties into one macromolecule and improves the property of each. These properties may make the conjugate an attractive food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Endothelial Function Is Associated with White Matter Microstructure and Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Nathan F. Johnson

    2017-08-01

    Full Text Available Age-related declines in endothelial function can lead to cognitive decline. However, little is known about the relationships between endothelial function and specific neurocognitive functions. This study explored the relationship between measures of endothelial function (reactive hyperemia index; RHI, white matter (WM health (fractional anisotropy, FA, and WM hyperintensity volume, WMH, and executive function (Trail Making Test (TMT; Trail B − Trail A. Participants were 36 older adults between the ages of 59 and 69 (mean age = 63.89 years, SD = 2.94. WMH volume showed no relationship with RHI or executive function. However, there was a positive relationship between RHI and FA in the genu and body of the corpus callosum. In addition, higher RHI and FA were each associated with better executive task performance. Tractography was used to localize the WM tracts associated with RHI to specific portions of cortex. Results indicated that the RHI-FA relationship observed in the corpus callosum primarily involved tracts interconnecting frontal regions, including the superior frontal gyrus (SFG and frontopolar cortex, linked with executive function. These findings suggest that superior endothelial function may help to attenuate age-related declines in WM microstructure in portions of the corpus callosum that interconnect prefrontal brain regions involved in executive function.

  4. Hydrogels in a historical perspective: From simple networks to smart materials

    NARCIS (Netherlands)

    Buwalda, S.J.; Boere, K.W.M.; Dijkstra, Pieter J.; Feijen, Jan; Vermonden, T.; Hennink, W.E.

    2014-01-01

    Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge

  5. Hydrogels in a historical perspective : From simple networks to smart materials

    NARCIS (Netherlands)

    Buwalda, Sytze J.|info:eu-repo/dai/nl/339146850; Boere, Kristel W M|info:eu-repo/dai/nl/338018093; Dijkstra, Pieter J.; Feijen, Jan; Vermonden, Tina|info:eu-repo/dai/nl/275124517; Hennink, Wim E.|info:eu-repo/dai/nl/070880409

    2014-01-01

    Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge

  6. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    Science.gov (United States)

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  7. Antiseptic cyclodextrin-functionalized hydrogels and gauzes for loading and delivery of benzalkonium chloride.

    Science.gov (United States)

    Garcia-Fernandez, Maria José; Brackman, Gilles; Coenye, Tom; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2013-01-01

    Prevention and management of wound infections receive a lot of attention, since the presence of micro-organisms interferes with the wound-healing process. The aim of this work was to use cyclodextrins (CDs) to endow hydrogels and gauzes with the ability to take up antiseptics and sustain their delivery for several hours. Benzalkonium chloride (BzCl) can form inclusion complexes with cross-linked CDs that regulate the release through an affinity-driven mechanism. Grafting of CDs to cotton gauzes using citric acid as the linker, at 190 °C and for 15 min, led to grafting yields of about 148%, much larger than those obtained at 180 °C or with shorter reaction times. Microbiological tests revealed that the BzCl-loaded networks can inhibit the growth of Staphylococcus epidermidis and Escherichia coli both on agar plates and in liquid medium. Furthermore, the antiseptic-loaded gauzes were able to inhibit biofilm formation by Staphylococcus aureus RN1HG pMV158GFP when applied in early stages of biofilm formation and could reduce the number of living cells in preformed biofilms grown in a chronic wound biofilm model. These findings highlight the role of CDs as main components of hydrogels and gauzes for the efficient delivery of antiseptics.

  8. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  9. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery.

    Science.gov (United States)

    Zhang, Mengke; Wang, Jinpeng; Jin, Zhengyu

    2018-07-15

    Chitosan-cyclodextrin hydrogel (CFCD) was prepared via Diels-Alder reaction between furfural functionalized chitosan (CF) and N-maleoyl alanine functionalized hydroxypropyl β-cyclodextrin (HPCD-AMI) in aqueous media without any catalyst or initiator. The CF and HPCD-AMI were confirmed by Fourier transform infrared spectroscopy and 1 H nuclear magnetic resonance spectroscopy. The resultant CFCD hydrogel was characterized in terms of thermal peripteries, microstructure, rheology behavior, and swelling capacity. The rheology analysis found that the storage modulus G' ranged from 1pa to 1200pa as the degree of furfural substitute on chitosan increased from 2.6% to 28.3%, indicating the hydrogel strength can be tuned readily by reaction stoichiometry. The swelling behaviors proved that CFCD hydrogel was pH-responsive with low swelling capacity, which would be preferable for drug delivery. Drug adsorption analysis showed the introduction of cyclodextrin into CFCD hydrogels promoted drug adsorption capacity. In addition, methyl orange cumulative release in PBS buffer was only 48.85% after 24h, suggesting CFCD hydrogel had good sustained release capacity on the loaded drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. [Thromboresistance of glucose-containing hydrogels].

    Science.gov (United States)

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  11. A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes.

    Science.gov (United States)

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2014-01-01

    Despite an increased interest in the use of hydrogel encapsulation and cellular self-assembly (often termed "self-aggregating" or "scaffold-free" approaches) for tissue-engineering applications, to the best of our knowledge, no study to date has been undertaken to directly compare both approaches for generating functional cartilaginous grafts. The objective of this study was to directly compare self-assembly (SA) and agarose hydrogel encapsulation (AE) as a means to engineer such grafts using passaged chondrocytes. Agarose hydrogels (5 mm diameter × 1.5 mm thick) were seeded with chondrocytes at two cell seeding densities (900,000 cells or 4 million cells in total per hydrogel), while SA constructs were generated by adding the same number of cells to custom-made molds. Constructs were either supplemented with transforming growth factor (TGF)-β3 for 6 weeks, or only supplemented with TGF-β3 for the first 2 weeks of the 6 week culture period. The SA method was only capable of generating geometrically uniform cartilaginous tissues at high seeding densities (4 million cells). At these high seeding densities, we observed that total sulphated glycosaminoglycan (sGAG) and collagen synthesis was greater with AE than SA, with higher sGAG retention also observed in AE constructs. When normalized to wet weight, however, SA constructs exhibited significantly higher levels of collagen accumulation compared with agarose hydrogels. Furthermore, it was possible to engineer such functionality into these tissues in a shorter timeframe using the SA approach compared with AE. Therefore, while large numbers of chondrocytes are required to engineer cartilaginous grafts using the SA approach, it would appear to lead to the faster generation of a more hyaline-like tissue, with a tissue architecture and a ratio of collagen to sGAG content more closely resembling native articular cartilage.

  12. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a

  13. A comparison of reflectance properties on polymer micro-structured functional surface

    DEFF Research Database (Denmark)

    Regi, Francesco; Li, Dongya; Nielsen, Jannik Boll

    In this study, a functional micro-structure surface [1] has been developed as a combination of arrays of micro ridges. The scope of the surface is to achieve specific directional optical properties: that is, under constrained lighting, maximizing the reflectance from a certain viewing direction, ...

  14. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  15. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    Science.gov (United States)

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  16. Functional connectivity and microstructural white matter changes in phenocopy frontotemporal dementia

    Energy Technology Data Exchange (ETDEWEB)

    Meijboom, R.; Steketee, R.M.E.; Lugt, A. van der; Smits, M. [Erasmus MC - University Medical Centre, Radiology and Nuclear Medicine, Rotterdam (Netherlands); Koning, I. de [Erasmus MC - University Medical Centre, Neuropsychology, Rotterdam (Netherlands); Osse, R.J. [Erasmus MC - University Medical Centre, Psychiatry, Rotterdam (Netherlands); Jiskoot, L.C. [Erasmus MC - University Medical Centre, Neuropsychology, Rotterdam (Netherlands); Erasmus MC - University Medical Centre, Neurology, Rotterdam (Netherlands); Jong, F.J. de; Swieten, J.C. van [Erasmus MC - University Medical Centre, Neurology, Rotterdam (Netherlands)

    2017-04-15

    Phenocopy frontotemporal dementia (phFTD) is a rare and poorly understood clinical syndrome. PhFTD shows core behavioural variant FTD (bvFTD) symptoms without associated cognitive deficits and brain abnormalities on conventional MRI and without progression. In contrast to phFTD, functional connectivity and white matter (WM) microstructural abnormalities have been observed in bvFTD. We hypothesise that phFTD belongs to the same disease spectrum as bvFTD and investigated whether functional connectivity and microstructural WM changes similar to bvFTD are present in phFTD. Seven phFTD patients without progression or alternative psychiatric diagnosis, 12 bvFTD patients and 17 controls underwent resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Default mode network (DMN) connectivity and WM measures were compared between groups. PhFTD showed subtly increased DMN connectivity and subtle microstructural changes in frontal WM tracts. BvFTD showed abnormalities in similar regions as phFTD, but had lower increased DMN connectivity and more extensive microstructural WM changes. Our findings can be interpreted as neuropathological changes in phFTD and are in support of the hypothesis that phFTD and bvFTD may belong to the same disease spectrum. Advanced MRI techniques, objectively identifying brain abnormalities, would therefore be potentially suited to improve the diagnosis of phFTD. (orig.)

  17. Functional connectivity and microstructural white matter changes in phenocopy frontotemporal dementia

    International Nuclear Information System (INIS)

    Meijboom, R.; Steketee, R.M.E.; Lugt, A. van der; Smits, M.; Koning, I. de; Osse, R.J.; Jiskoot, L.C.; Jong, F.J. de; Swieten, J.C. van

    2017-01-01

    Phenocopy frontotemporal dementia (phFTD) is a rare and poorly understood clinical syndrome. PhFTD shows core behavioural variant FTD (bvFTD) symptoms without associated cognitive deficits and brain abnormalities on conventional MRI and without progression. In contrast to phFTD, functional connectivity and white matter (WM) microstructural abnormalities have been observed in bvFTD. We hypothesise that phFTD belongs to the same disease spectrum as bvFTD and investigated whether functional connectivity and microstructural WM changes similar to bvFTD are present in phFTD. Seven phFTD patients without progression or alternative psychiatric diagnosis, 12 bvFTD patients and 17 controls underwent resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Default mode network (DMN) connectivity and WM measures were compared between groups. PhFTD showed subtly increased DMN connectivity and subtle microstructural changes in frontal WM tracts. BvFTD showed abnormalities in similar regions as phFTD, but had lower increased DMN connectivity and more extensive microstructural WM changes. Our findings can be interpreted as neuropathological changes in phFTD and are in support of the hypothesis that phFTD and bvFTD may belong to the same disease spectrum. Advanced MRI techniques, objectively identifying brain abnormalities, would therefore be potentially suited to improve the diagnosis of phFTD. (orig.)

  18. NODDI and Tensor-Based Microstructural Indices as Predictors of Functional Connectivity.

    Directory of Open Access Journals (Sweden)

    Fani Deligianni

    Full Text Available In Diffusion Weighted MR Imaging (DWI, the signal is affected by the biophysical properties of neuronal cells and their relative placement, as well as extra-cellular tissue compartments. Typically, microstructural indices, such as fractional anisotropy (FA and mean diffusivity (MD, are based on a tensor model that cannot disentangle the influence of these parameters. Recently, Neurite Orientation Dispersion and Density Imaging (NODDI has exploited multi-shell acquisition protocols to model the diffusion signal as the contribution of three tissue compartments. NODDI microstructural indices, such as intra-cellular volume fraction (ICVF and orientation dispersion index (ODI are directly related to neuronal density and orientation dispersion, respectively. One way of examining the neurophysiological role of these microstructural indices across neuronal fibres is to look into how they relate to brain function. Here we exploit a statistical framework based on sparse Canonical Correlation Analysis (sCCA and randomised Lasso to identify structural connections that are highly correlated with resting-state functional connectivity measured with simultaneous EEG-fMRI. Our results reveal distinct structural fingerprints for each microstructural index that also reflect their inter-relationships.

  19. Microstructural strength of tidal soils – a rheometric approach to develop pedotransfer functions

    Directory of Open Access Journals (Sweden)

    Stoppe Nina

    2018-03-01

    Full Text Available Differences in soil stability, especially in visually comparable soils can occur due to microstructural processes and interactions. By investigating these microstructural processes with rheological investigations, it is possible to achieve a better understanding of soil behaviour from the mesoscale (soil aggregates to macroscale (bulk soil. In this paper, a rheological investigation of the factors influencing microstructural stability of riparian soils was conducted. Homogenized samples of Marshland soils from the riparian zone of the Elbe River (North Germany were analyzed with amplitude sweeps (AS under controlled shear deformation in a modular compact rheometer MCR 300 (Anton Paar, Germany at different matric potentials. A range physicochemical parameters were determined (texture, pH, organic matter, CaCO3 etc. and these factors were used to parameterize pedotransfer functions. The results indicate a clear dependence of microstructural elasticity on texture and water content. Although the influence of individual physicochemical factors varies depending on texture, the relevant features were identified taking combined effects into account. Thus, stabilizing factors are: organic matter, calcium ions, CaCO3 and pedogenic iron oxides; whereas sodium ions and water content represent structurally unfavorable factors. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF have been developed.

  20. Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Fuzhi; Pascoe, Alexander R; Wu, Wu-Qiang; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Caruso, Rachel A; Cheng, Yi-Bing

    2017-05-01

    The efficiencies of the hybrid organic-inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.

    Science.gov (United States)

    Huang, Ping; Jing, Long; Zhu, Huarui; Gao, Xueyun

    2013-01-15

    The unique honeycomb lattice structure of graphene gives rise to its outstanding electronic properties such as ultrahigh carrier mobility, ballistic transport, and more. However, a crucial obstacle to its use in the electronics industry is its lack of an energy bandgap. A covalent chemistry strategy could overcome this problem, and would have the benefits of being highly controllable and stable in the ambient environment. One possible approach is aryl diazonium functionalization. In this Account, we investigate the micromolecular/lattice structure, electronic structure, and electron-transport properties of nitrophenyl-diazonium-functionalized graphene. We find that nitrophenyl groups mainly adopt random and inhomogeneous configurations on the graphene basal plane, and that their bonding with graphene carbon atoms leads to slight elongation of the graphene lattice spacing. By contrast, hydrogenated graphene has a compressed lattice. Low levels of functionalization suppressed the electric conductivity of the resulting functionalized graphene, while highly functionalized graphene showed the opposite effect. This difference arises from the competition between the charge transfer effect and the scattering enhancement effect introduced by nitrophenyl groups bonding with graphene carbon atoms. Detailed electron transport measurements revealed that the nitrophenyl diazonium functionalization locally breaks the symmetry of graphene lattice, which leads to an increase in the density of state near the Fermi level, thus increasing the carrier density. On the other hand, the bonded nitrophenyl groups act as scattering centers, lowering the mean free path of the charge carriers and suppressing the carrier mobility. In rare cases, we observed ordered configurations of nitrophenyl groups in local domains on graphene flakes due to fluctuations in the reaction processes. We describe one example of such a superlattice, with a lattice constant nearly twice of that of pristine graphene

  2. Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis.

    Science.gov (United States)

    Geitner, Robert; Götz, Stefan; Stach, Robert; Siegmann, Michael; Krebs, Patrick; Zechel, Stefan; Schreyer, Kristin; Winter, Andreas; Hager, Martin D; Schubert, Ulrich S; Gräfe, Stefanie; Dietzek, Benjamin; Mizaikoff, Boris; Schmitt, Michael; Popp, Jürgen

    2018-03-15

    The presented study reports the synthesis and the vibrational spectroscopic characterization of different matrix-embedded model photocatalysts. The goal of the study is to investigate the interaction of a polymer matrix with photosensitizing dyes and metal complexes for potential future photocatalytic applications. The synthesis focuses on a new rhodamine B derivate and a Pt(II) terpyridine complex, which both contain a polymerizable methacrylate moiety and an acid labile acylhydrazone group. The methacrylate moieties are afterward utilized to synthesize functional model hydrogels mainly consisting of poly(ethylene glycol) methacrylate units. The pH-dependent and temperature-dependent behavior of the hydrogels is investigated by means of Raman and IR spectroscopy assisted by density functional theory calculations and two-dimensional correlation spectroscopy. The spectroscopic results reveal that the Pt(II) terpyridine complex can be released from the polymer matrix by cleaving the C═N bond in an acid environment. The same behavior could not be observed in the case of the rhodamine B dye although it features a comparable C═N bond. The temperature-dependent study shows that the water evaporation has a significant influence neither on the molecular structure of the hydrogel nor on the model photocatalytic moieties.

  3. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.

    Science.gov (United States)

    Costantini, Marco; Testa, Stefano; Mozetic, Pamela; Barbetta, Andrea; Fuoco, Claudia; Fornetti, Ersilia; Tamiro, Francesco; Bernardini, Sergio; Jaroszewicz, Jakub; Święszkowski, Wojciech; Trombetta, Marcella; Castagnoli, Luisa; Seliktar, Dror; Garstecki, Piotr; Cesareni, Gianni; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-07-01

    We present a new strategy for the fabrication of artificial skeletal muscle tissue with functional morphologies based on an innovative 3D bioprinting approach. The methodology is based on a microfluidic printing head coupled to a co-axial needle extruder for high-resolution 3D bioprinting of hydrogel fibers laden with muscle precursor cells (C2C12). To promote myogenic differentiation, we formulated a tailored bioink with a photocurable semi-synthetic biopolymer (PEG-Fibrinogen) encapsulating cells into 3D constructs composed of aligned hydrogel fibers. After 3-5 days of culture, the encapsulated myoblasts started migrating and fusing, forming multinucleated myotubes within the 3D bioprinted fibers. The obtained myotubes showed high degree of alignment along the direction of hydrogel fiber deposition, further revealing maturation, sarcomerogenesis, and functionality. Following subcutaneous implantation in the back of immunocompromised mice, bioprinted constructs generated organized artificial muscle tissue in vivo. Finally, we demonstrate that our microfluidic printing head allows to design three dimensional multi-cellular assemblies with an exquisite compartmentalization of the encapsulated cells. Our results demonstrate an enhanced myogenic differentiation with the formation of parallel aligned long-range myotubes. The approach that we report here represents a robust and valid candidate for the fabrication of macroscopic artificial muscle to scale up skeletal muscle tissue engineering for human clinical application. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Microstructural stress relaxation mechanics in functionally different tendons.

    Science.gov (United States)

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected

    Science.gov (United States)

    Donnelly, Ryan F.; Mooney, Karen; McCrudden, Maelíosa T.C.; Vicente-Pérez, Eva M.; Belaid, Luc; González-Vázquez, Patricia; McElnay, James C.; Woolfson, A. David

    2014-01-01

    We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle arrays (MN) and skin barrier recovery in human volunteers. Such MN, prepared from aqueous blends of hydrolysed poly(methylvinylether/maleicanhydride) (15% w/w) and the crosslinker poly(ethyleneglycol) 10,000 daltons (7.5% w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 hours in skin. Importantly, however, skin barrier function recovered within 24 hours post microneedle removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required, since transepidermal water loss measurements suggested micropore closure, while optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 hours after MN had been removed. There were no complaints of skin reactions, adverse events or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 hours and no adverse events were present on follow-up. PMID:24633895

  7. Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons

    International Nuclear Information System (INIS)

    Mehrabi, K.; Bruncko, M.; Kneissl, A.C.

    2012-01-01

    Highlights: ► Melt-spun samples exhibited martensite structure and shape memory effects immediately after processing at room temperature. ► Using a new etchant and interference contrast, it is possible to reveal the fine microstructures and grain boundaries. ► The martensite structure in NiTi is very fine, and nano-sized twin boundaries could be revealed using TEM only. ► Two-way effects have been successfully introduced by different thermomechanical training methods in NiTi, NiTiCu and NiTiW alloys, which can be used for several applications, e.g. microsensors and microactuators. - Abstract: The present work has been aimed to study the microstructures, functional properties and the influence of different thermomechanical training methods on the two-way shape memory effect in NiTi-based melt-spun ribbons. In order to get small-dimensioned shape memory alloys (SMAs) with good functional and mechanical properties, a rapid solidification technique was employed. Their fracture and elasticity characteristics have been determined, as well as shape memory properties by thermomechanical cycling. The ribbons were trained under tensile and bending deformation by thermal cycling through the phase transformation temperature range. The results displayed that all different training methods were effective in developing a two-way shape memory effect (TWSME). The influence of copper (5–25 at.% Cu) and tungsten (2 at.% W) on the microstructure, and the functional and mechanical behavior of NiTi thin ribbons was also investigated. All samples show a shape memory effect immediately after processing without further heat treatment. The melt-spun ribbons were trained under constant strain (bending and tensile deformation) by thermal cycling through the phase transformation temperature range. The addition of copper was effective to narrow the transformation hysteresis. The W addition has improved the TWSME stability of the NiTi alloys and mechanical properties. Results about

  8. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Jin [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Wu, Yongchao; Wu, Bin; Huang, Shuai; Fang, Weizhi; Guo, Xiaodong [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-01-01

    A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA{sub 16} and designer functional peptide RADA{sub 16}-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA{sub 16} scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA{sub 16}-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA{sub 16}. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair. - Highlights: • RADA{sub 16} and RADA{sub 16}-FGL peptides were synthesized and characterized. • Rat spinal cord neural stem cells were successfully isolated and characterized. • We provided an induction method for mixed differentiation of neural stem cells. • FGL scaffold had good biocompatibility and bioactivity with neural stem cells.

  9. Verifying the functional ability of microstructured surfaces by model-based testing

    Science.gov (United States)

    Hartmann, Wito; Weckenmann, Albert

    2014-09-01

    Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.

  10. PVA hydrogel properties for biomedical application.

    Science.gov (United States)

    Jiang, Shan; Liu, Sha; Feng, Wenhao

    2011-10-01

    PVA has been proposed as a promising biomaterial suitable for tissue mimicking, vascular cell culturing and vascular implanting. In this research, a kind of transparent PVA hydrogel has been investigated in order to mimic the creatural soft tissue deformation during mini-invasive surgery with needle intervention, such as brachytherapy. Three kinds of samples with the same composition of 3 g PVA, 17 g de-ionized water, 80 g dimethyl-sulfoxide but different freeze/thaw cycles have been prepared. In order to investigate the structure and properties of polyvinyl alcohol hydrogel, micro-structure, mechanical property and deformation measurement have been conducted. As the SEM image comparison results show, with the increase of freeze/thaw cycles, PVA hydrogel revealed the similar micro-structure to porcine liver tissue. With uniaxial tensile strength test, the above composition with a five freeze/thaw cycle sample resulted in Young's modulus similar to that of porcine liver's property. Through the comparison of needle insertion deformation experiment and the clinical experiment during brachytherapy, results show that the PVA hydrogel had the same deformation property as prostate tissue. These transparent hydrogel phantom materials can be suitable soft tissue substitutes in needle intervention precision or pre-operation planning studies, particularly in the cases of mimicking creatural tissue deformation and analysing video camera images. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kazuaki Nakajima

    Full Text Available Cell transplantation therapy will mean a breakthrough in resolving the donor shortage in cardiac transplantation. Cardiomyocyte (CM transplantation, however, has been relatively inefficient in restoring cardiac function after myocardial infarction (MI due to low engraftment of transplanted CM. In order to ameliorate engraftment of CM, the novel transplantation strategy must be invented. Gelatin hydrogel (GH is a biodegradable water-soluble polymer gel. Gelatin is made of collagen. Although we observed that collagen strongly induced the aggregation of platelets to potentially cause coronary microembolization, GH did not enhance thrombogenicity. Therefore, GH is a suitable biomaterial in the cell therapy after heart failure. To assess the effect of GH on the improvement of cardiac function, fetal rat CM (5×10(6 or 1x10(6 cells were transplanted with GH (10 mg/ml to infarcted hearts. We compared this group with sham operated rats, CM in phosphate buffered saline (PBS, only PBS, and only GH-transplanted groups. Three weeks after transplantation, cardiac function was evaluated by echocardiography. The echocardiography confirmed that transplantation of 5×10(6 CM with GH significantly improved cardiac systolic function, compared with the CM+PBS group (fractional area change: 75.1±3.4% vs. 60.7±5.9%, p<0.05, only PBS, and only GH groups (60.1±6.5%, 65.0±2.8%, p<0.05. Pathological analyses demonstrated that in the CM+GH group, CM were efficiently engrafted in infarcted myocardium (p<0.01 and angiogenesis was significantly enhanced (p<0.05 in both central and peripheral areas of the scar. Moreover, quantitative RT-PCR revealed that angiogenic cytokines, such as basic fibroblast growth factor, vascular endothelial growth factor, and hepatocyte growth factor, were significantly enriched in the CM+GH group (p<0.05. Here, we report that GH confined the CM effectively in infarcted myocardium after transplantation, and that CM transplanted with GH

  12. Executive Functions in Healthy Older Adults Are Differentially Related to Macro- and Microstructural White Matter Characteristics of the Cerebral Lobes

    Directory of Open Access Journals (Sweden)

    Sarah Hirsiger

    2017-11-01

    Full Text Available Aging is associated with microstructural white matter (WM changes. WM microstructural characteristics, measured with diffusion tensor imaging (DTI, are different in normal appearing white matter (NAWM and WM hyperintensities (WMH. It is largely unknown how the microstructural properties of WMH are associated with cognition and if there are regional effects for specific cognitive domains. We therefore examined within 200 healthy older participants (a differences in microstructural characteristics of NAWM and WMH per cerebral lobe; and (b the association of macrostructural (WMH volume and microstructural characteristics (within NAWM and WMH separately of each lobe with measures of executive function and processing speed. Multi-modal imaging (i.e., T1, DTI, and FLAIR was used to assess WM properties. The Stroop and the Trail Making Test were used to measure inhibition, task-switching (both components of executive function, and processing speed. We observed that age was associated with deterioration of white matter microstructure of the NAWM, most notably in the frontal lobe. Older participants had larger WMH volumes and lowest fractional anisotropy values within WMH were found in the frontal lobe. Task-switching was associated with cerebral NAWM volume and NAWM volume of all lobes. Processing speed was associated with total NAWM volume, and microstructural properties of parietal NAWM, the parietal WMH, and the temporal NAWM. Task-switching was related to microstructural properties of WMH of the frontal lobe and WMH volume of the parietal lobe. Our results confirm that executive functioning and processing speed are uniquely associated with macro- and microstructural properties of NAWM and WMH. We further demonstrate for the first time that these relationships differ by lobar region. This warrants the consideration of these distinct WM indices when investigating cognitive function.

  13. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    Science.gov (United States)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to

  14. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    Science.gov (United States)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  15. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  16. Atypical functional connectivity in autism spectrum disorder is associated with disrupted white matter microstructural organisation

    Directory of Open Access Journals (Sweden)

    Jane eMcGrath

    2013-09-01

    Full Text Available Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were 1. to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM in ASD and 2. to examine the relationships between aberrant neural connectivity and behaviour in ASD. 22 individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19 and five paired regions: left caudate head, left caudate body, left uncus, left thalamus and left cuneus. Measures of WM microstructural organisation were extracted from these tracts. Fractional anisotropy reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant white matter microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute 1. to abnormal functional connectivity and 2. to atypical visuospatial processing in ASD.

  17. Microstructure And Functional Properties Of Prosthetic Cobalt Alloys CoCrW

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2015-09-01

    Full Text Available The material subject to investigation was two commercial alloys of cobalt CoCrW (No. 27 and 28 used in prosthodontics. The scope of research included performing an analysis of microstructure and functional properties (microhardness, wear resistance and corrosion resistance, as well as dilatometric tests. The examined alloys were characterized by diverse properties, which was considerably influenced by the morphology of precipitates in these materials. Alloy No. 27 has a higher corrosion resistance, whereas alloy No. 28 shows higher microhardness, better wear resistance and higher coefficient of linear expansion. Lower value of the expansion coefficient indicates less probability of initiation of a crack in the facing ceramic material.

  18. Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hao; Cerretti, Giacomo; Wiersma, Diederik S., E-mail: camilla.parmeggiani@lens.unifi.it, E-mail: wiersma@lens.unifi.it [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Wasylczyk, Piotr [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Hoza 69, Warszawa 00-681 (Poland); Martella, Daniele [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica “Ugo Schiff,” University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (Italy); Parmeggiani, Camilla, E-mail: camilla.parmeggiani@lens.unifi.it, E-mail: wiersma@lens.unifi.it [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR-INO, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)

    2015-03-16

    We report a method to fabricate polymer microstructures with local control over the molecular orientation. Alignment control is achieved on molecular level in a structure of arbitrary form that can be from 1 to 100 μm in size, by fixing the local boundary conditions with micro-grating patterns. The method makes use of two-photon polymerization (Direct Laser Writing) and is demonstrated specifically in liquid-crystalline elastomers. This concept allows for the realization of free-form polymeric structures with multiple functionalities which are not possible to realize with existing techniques and which can be locally controlled by light in the micrometer scale.

  19. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  1. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films

    International Nuclear Information System (INIS)

    Chen, Aiping; Bi, Zhenxing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2013-01-01

    Vertically aligned nanocomposite (VAN) oxide thin films have recently stimulated a significant amount of research interest owing to their novel architecture, vertical interfacial strain control and tunable material functionalities. In this work, the growth mechanisms of VAN thin films have been investigated by varying the composite material system, the ratio of the two constituent phases, and the thin film growth conditions including deposition temperature and oxygen pressure as well as growth rate. It has been shown that thermodynamic parameters, elastic and interfacial energies and the multiple phase ratio play dominant roles in the resulting microstructure. In addition, vertical interfacial strain has been observed in BiFeO 3 (BFO)- and La 0.7 Sr 0.3 MnO 3 (LSMO)-based VAN thin film systems; the vertical strain could be tuned by the growth parameters and selection of a suitable secondary phase. The tunability of physical properties such as dielectric loss in BFO:Sm 2 O 3 VAN and low-field magnetoresistance in LSMO-based VAN systems has been demonstrated. The enhancement and tunability of those physical properties have been attributed to the unique VAN architecture and vertical strain control. These results suggest that VAN architecture with novel microstructure and unique vertical strain tuning could provide a general route for tailoring and manipulating the functionalities of oxide thin films

  2. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking.

    Science.gov (United States)

    Hashemi, Behnaz; Madadlou, Ashkan; Salami, Maryam

    2017-12-15

    Nanostructured lipid carriers (NLCs) with mean size of 347nm were fabricated and added into a heat-denatured whey protein solution. The subsequent crosslinking of proteins by citric acid or CaCl 2 resulted in the formation of cold-set hydrogels. Fourier transform infrared spectroscopy (FTIR) proposed formation of more hydrogen bonds in gel due to NLC loading or citric acid-mediated gelation. It was also found based on FITR spectroscopy that citric acid crosslinking disordered whey proteins. Scanning electron microscopy (SEM) imaging showed a non-porous and finely meshed microstructure for the crosslinked gels compared to non-crosslinked counterparts. Crosslinking also increased the firmness and water-holding capacity of gels. In pepsin-free fluid, a strong correlation existed between reduction in gel swellability and digestibility over periods up to 60min due to NLC loading and citric acid gelation. However, in peptic fluid, NLC loading and citric acid crosslinking brought about much higher decrease in digestibility than swellability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Gaharwar, Akhilesh K.; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-01-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  4. Hydrogels and their medical applications

    Science.gov (United States)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-05-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  5. Hydrogels and their medical applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-01-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  6. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  7. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.

    Science.gov (United States)

    Kufelt, Olga; El-Tamer, Ayman; Sehring, Camilla; Meißner, Marita; Schlie-Wolter, Sabrina; Chichkov, Boris N

    2015-05-01

    Fabrication of three-dimensional (3D) hydrogel microenvironments with predefined geometry and porosity can facilitate important requirements in tissue engineering and regenerative medicine. Chitosan (CH) is well known as a biocompatible hydrogel with prospective biological properties for biomedical aims. So far, microstructuring of this soft material presents a great limitation for its application as functional supporting material for guided tissue formation. Enabling photopolymerization, chemically modified CH can be applied for the biofabrication of reproducible 3D scaffolds using rapid prototyping techniques like two-photon polymerization (2PP) or others. The application of this technique allows precise serial fabrication of computer-designed microstructure geometries by scanning a femtosecond laser beam within a photosensitive material. This work explores a new synthesis of water-soluble photosensitive chitosan and the fabrication of well-defined microstructures from the generated materials. To modulate the mechanical and biochemical properties of the material, CH was combined and cross-linked with synthetic poly(ethylene glycol) diacrylate. For a biological adaption to the in vivo situation, CH was covalently crosslinked with a photosensitive modified vascular endothelial growth factor (VEGF). Performed in vitro studies reveal that modified CH is biocompatible. VEGF enhances CH bioactivity. Furthermore, a 3D CH scaffold can be successfully seeded with cells. Therefore, the established CH holds great promise for future applications in tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    Science.gov (United States)

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  9. Synthesis of Polyvinyl Pirrolidone (PVC /Κ-Carrageenan Hydrogel Prepared by Gamma Radiation Processing As a Function of Dose and PVP Concentration

    Directory of Open Access Journals (Sweden)

    Erizal Erizal

    2013-05-01

    Full Text Available The aim of this research is to prepare a biomaterial to be used in health care. A series of hydrogels based on polyvinyl pyrrolidone (PVP/κ-Carrageenan (KC has been prepared by radiation technique. PVP (5-15% were mixed with ΚC (2% and irradiated by gamma rays at the doses from 25 kGy to 35 kGy (dose rate 7 kGy/h at room temperature. The chemical change of hydrogels was characterized using Fourier Transform infra Red (FTIR. Gel fraction, water absorption and water evaporation were determined gravimetrically. Tensile strength and elongation at break was measured using Instron meter. It was found that with the increase irradiation dose and PVP concentration, the gel fraction and tensile strength of hydrogels increase. In contrast the elongation at break and water absorption of hydrogels decrease. The hydrogel of PVP/KC hydrogel produced by gamma radiation can be considered for wound dressings.

  10. Hydrogel-based bioflocculants for the removal of organic pollutants from biodiesel wastewater

    CSIR Research Space (South Africa)

    Fosso-Kankeu, E

    2017-09-01

    Full Text Available hydrogels were characterized using X-Ray diffraction, Fourier transformed infra-red spectroscopy and scanning electron microscope. It was found that the synthesis provided the composite with the functional groups of the individual components. The hydrogels...

  11. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    Science.gov (United States)

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  12. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The microstructural and functional changes in the macula of heavy habitual smokers.

    Science.gov (United States)

    Sobacı, Güngör; Musayev, Samir; Karslıoglu, Yıldırım; Gündoğan, Fatih Ç; Özge, Gökhan; Erdem, Üzeyir; Bayer, Atilla

    2013-10-01

    To investigate whether heavy habitual smoking affects microstructures and functions of the macula, 45 age- (20-39 years old) and sex-matched adult smokers (≥1 box/day for ≥5 years) and 45 nonsmokers (controls) were enrolled in this case-control study. Central macular thickness (CMT), macular autofluorescent pigment density (MAPD), macular electroretinogram (ERG), and photostress recovery time (PRT) measurements were performed. The mean age of smokers and nonsmokers was 32.9 ± 3.9 and 33.1 ± 4.1 years, respectively (p = 0.43), and smoking duration was 11 ± 5.6 years. CMT in smokers (220 ± 28 μm) and nonsmokers (217.2 ± 31 μm; p = 0.57) was similar. Smokers had lower MAPD values (124.6) than nonsmokers (138.2) (p = 0.010). Multifocal ERG parameters in the central (6°) hexagon were similar in both groups (p > 0.05 for latency and amplitudes of P1 and N1). PRT in smokers and nonsmokers was similar (7.2 ± 1.2 and 7.4 ± 1.9 min, respectively; p = 0.33); however, foveal threshold value (FTV) at the first minute after photostress was statistically higher in smokers (36.1 ± 1.04 dB) than nonsmokers (34.8 ± 1.05 dB) (p = 0.011). We conclude that decreased MAPD and altered response to photostress may be indicative of early nicotine toxicity in microstructurally sound macula of adult chronic smokers.

  15. Optimizing Double-Network Hydrogel for Biomedical Soft Robots.

    Science.gov (United States)

    Banerjee, Hritwick; Ren, Hongliang

    2017-09-01

    Double-network hydrogel with standardized chemical parameters demonstrates a reasonable and viable alternative to silicone in soft robotic fabrication due to its biocompatibility, comparable mechanical properties, and customizability through the alterations of key variables. The most viable hydrogel sample in our article shows tensile strain of 851% and maximum tensile strength of 0.273 MPa. The elasticity and strength range of this hydrogel can be customized according to application requirements by simple alterations in the recipe. Furthermore, we incorporated Agar/PAM hydrogel into our highly constrained soft pneumatic actuator (SPA) design and eventually produced SPAs with escalated capabilities, such as larger range of motion, higher force output, and power efficiency. Incorporating SPAs made of Agar/PAM hydrogel resulted in low viscosity, thermos-reversibility, and ultralow elasticity, which we believe can help to combine with the other functions of hydrogel, tailoring a better solution for fabricating biocompatible soft robots.

  16. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Jansen, J.A.; Mikos, A.G.

    2007-01-01

    Biodegradable polymers that can be processed into injectable hydrogel matrices are promising candidates for bone-substituting purposes. Furthermore, by incorporating degradable calcium phosphate (CaP) particles and growth factors into these hydrogel matrices, a bone construct can be designed which

  17. The Long-Term Effects of Silicone Hydrogel Contact Lenses on the Ocular Surface and Tear Function Tests

    Directory of Open Access Journals (Sweden)

    Yelda Yıldız Taşcı

    2014-05-01

    Full Text Available Objectives: To evaluate the effects of three different silicone hydrogel contact lenses, i.e. Balafilcon A (Pure Vision, Bausch & Lomb, Senofilcon A (Acuvue Oasys, Johnson & Johnson, and Confilcon A (Biofinity, CooperVision, on ocular surface after one, three, and sıx months of wear. Materials and Methods: Silicone hydrogel contact lenses (SHCL were fitted to 58 patients (Balafilcon A to 40 eyes: Group 1, Senofilcon A to 42 eyes: Group 2, and Confilcon A to 34 eyes: Group 3 who have not used any contact lenses before. All groups were graded according to the Cornea and Contact Lens Research Unit’s grading score, and were performed ocular surface disease index scoring (OSDI, tear break-up time (BUT, and Schirmer 1 test. Results: The mean age was 22.45±5.96, 20.76±3.70, 21.00±3.84 years in Groups 1,2, and 3, respectively (p>0.05. While the increase in papillary hypertrophy as well as palpebral and bulbar hyperemia at 1st month in Group 1 and at 6th month at Group 2 were significant, there were no change in Group 3 with the use of SHCL (p0.05. In Group 3, the Schirmer test was lower than in Groups 1 and 2, which was statistically significant (p=0.048, p=0.003. Conclusion: Factors like lens material, modulus, the presence of an internal wetting agent, and water content play an important role in the effects of SHCL on the ocular surface. In this study, it is demonstrated that SHCL does not cause clinically significant dry eye. (Turk J Ophthalmol 2014; 44: 201-6

  18. Keratin sponge/hydrogel part 1. fabrication and characterization

    Science.gov (United States)

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  19. Antifouling properties of hydrogels

    International Nuclear Information System (INIS)

    Murosaki, Takayuki; Gong, Jian Ping; Ahmed, Nafees

    2011-01-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris. (topical review)

  20. Antifouling properties of hydrogels

    Directory of Open Access Journals (Sweden)

    Takayuki Murosaki, Nafees Ahmed and Jian Ping Gong

    2011-01-01

    Full Text Available Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  1. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.

    Science.gov (United States)

    Valentin, Thomas M; Leggett, Susan E; Chen, Po-Yen; Sodhi, Jaskiranjeet K; Stephens, Lauren H; McClintock, Hayley D; Sim, Jea Yun; Wong, Ian Y

    2017-10-11

    3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.

  2. Age and Alzheimer's pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities.

    Science.gov (United States)

    Brown, Christopher A; Jiang, Yang; Smith, Charles D; Gold, Brian T

    2018-04-19

    The default mode network (DMN) comprises defined brain regions contributing to internally-directed thought processes. Reductions in task-induced deactivation in the DMN have been associated with increasing age and poorer executive task performance, but factors underlying these functional changes remain unclear. We investigated contributions of white matter (WM) microstructure, WM hyperintensities (WMH) and Alzheimer's pathology to age-related alterations in DMN function. Thirty-five cognitively normal older adults and 29 younger adults underwent working memory task fMRI and diffusion tensor imaging. In the older adults, we measured cerebrospinal fluid tau and Aβ 42 (markers of AD pathology), and WMH on FLAIR imaging (marker of cerebrovascular disease). We identified a set of regions showing DMN deactivation and a set of inter-connecting WM tracts (DMN-WM) common to both age groups. There were negative associations between DMN deactivation and task performance in older adults, consistent with previous studies. Decreased DMN deactivation was associated with AD pathology and WM microstructure but not with WMH volume. Mediation analyses showed that WM microstructure mediated declines in DMN deactivation associated with both aging and AD pathology. Together these results suggest that AD pathology may exert a "second-hit" on WM microstructure, over-and-above the effects of age, both contributing to diminished DMN deactivation in older adults. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. On the Interaction between Superabsorbent Hydrogels and Cementitious Materials

    Science.gov (United States)

    Farzanian, Khashayar

    Autogenous shrinkage induced cracking is a major concern in high performance concretes (HPC), which are produced with low water to cement ratios. Internal curing to maintain high relative humidity in HPC with the use of an internal water reservoir has proven effective in mitigating autogenous shrinkage in HPC. Superabsorbent polymers (SAP) or hydrogels have received increasing attention as an internal curing agent in recent years. A key advantage of SAP is its versatility in size distribution and absorption/desorption characteristics, which allow it to be adapted to specific mix designs. Understanding the behavior of superabsorbent hydrogels in cementitious materials is critical for accurate design of internal curing. The primary goal of this study is to fundamentally understand the interaction between superabsorbent hydrogels and cementitious materials. In the first step, the effect of chemical and mechanical conditions on the absorption of hydrogels is investigated. In the second step, the desorption of hydrogels in contact with porous cementitious materials is examined to aid in understanding the mechanisms of water release from superabsorbent hydrogels (SAP) into cementitious materials. The dependence of hydrogel desorption on the microstructure of cementitious materials and relative humidity is studied. It is shown that the capillary forces developed at the interface between the hydrogel and cementitious materials increased the desorption of the hydrogels. The size of hydrogels is shown to influence desorption, beyond the known size dependence of bulk diffusion, through debonding from the cementitious matrix, thereby decreasing the effect of the Laplace pressure on desorption. In the third step, the desorption of hydrogels synthesized with varied chemical compositions in cementitious materials are investigated. The absorption, chemical structure and mechanical response of hydrogels swollen in a cement mixture are studied. The effect of the capillary forces on

  4. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  5. A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces.

    Science.gov (United States)

    Palumbo, Fabio Salvatore; Bavuso Volpe, Antonella; Cusimano, Maria Grazia; Pitarresi, Giovanna; Giammona, Gaetano; Schillaci, Domenico

    2015-01-15

    A graft copolymer derivative of hyaluronic acid bearing pendant amino and short polymethacrylate portions (HA-EDA-BMP-MANa) has been employed for the production of a pH sensible vancomycin releasing hydrogel and studied in vitro to test its potential anti adhesive property against Staphylococcus aureus colonization. The copolymer obtained through atom transfer radical polymerization bears chargeable (carboxyl and amino groups) portions and it could be formulated as a hydrogel at a concentration of 10%w/v. The HA-EDA-BMP-MANa hydrogels, produced at three different pH values (5, 6 and 7, respectively), were formulated with or without the addition of vancomycin (2%w/v). The vancomycin release profiles were detected and related to the starting hydrogel pH values, demonstrating that the systems were able to sustain the release of drug for more than 48 h. S. aureus adhesion tests were performed on glass culture plates and hydroxyapatite doped titanium surfaces, comparing the performances of HA-EDA-BMP-MANa hydrogel formulations (obtained with and without vancomycin) with similar formulations obtained using unmodified hyaluronic acid. The non fouling property of a selected HA-EDA-BMP-MANa hydrogel (without vancomycin) was also assayed with a BSA adsorption test. We found that the HA-EDA-BMP-MANa hydrogel even without vancomycin prevented bacterial adhesion on investigated surfaces. Copyright © 2014. Published by Elsevier B.V.

  6. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  7. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Directory of Open Access Journals (Sweden)

    Michael Floren

    2016-09-01

    Full Text Available Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.

  8. An Injectable Composite Gelatin Hydrogel with pH Response Properties

    Directory of Open Access Journals (Sweden)

    Baoguo Chen

    2017-01-01

    Full Text Available On account of minimally invasive procedure and of filling irregular defects of tissues, injectable hydrogels are increasingly attractive in biomedical fields. However, traditional hydrogel formed by simple physical interaction or in situ crosslinking had inevitably some drawbacks such as low mechanical strength and lack of multifunctional properties. Though many investigations had successfully modified traditional injectable hydrogel to obtain both mechanical and functional properties, an acetalated β-cyclodextrin (Ac-β-CD nanoparticle composite injectable hydrogel designed in the research was another effective and efficient choice to solve the drawbacks. First of all, gelatin derivative (G-AA and Ac-β-CD were synthesized to prepare hydrogel and nanoparticle, respectively. In order to ensure good compatibility between nanoparticle and macromonomer and provide crosslink points between nanoparticle and macromonomer, G-AA was simultaneously functionalized onto the surface of Ac-β-CD nanoparticle during the fabrication of Ac-β-CD nanoparticle using one-step method. Finally, injectable composite hydrogel was obtained by photoinitiated polymerization in situ. Hydrogel properties like gelation time and swelling ratio were investigated. The viscoelastic behavior of hydrogels confirmed that typical characteristics of crosslinked elastomer for all hydrogel and nanoparticle in hydrogel could improve the mechanical property of hydrogel. Moreover, the transparency with time had verified obvious acid-response properties of hydrogels.

  9. Physicochemical and functional properties, microstructure, and storage stability of whey protein/polyvinylpyrrolidone based glue sticks

    Directory of Open Access Journals (Sweden)

    Guorong Wang

    2012-11-01

    Full Text Available A glue stick is comprised of solidified adhesive mounted in a lipstick-like push-up tube. Whey is a byproduct of cheese making. Direct disposal of whey can cause environmental pollution. The objective of this study was to use whey protein isolate (WPI as a natural polymer along with polyvinylpyrrolidone (PVP to develop safe glue sticks. Pre-dissolved WPI solution, PVP, sucrose, 1,2-propanediol (PG, sodium stearate, defoamer, and preservative were mixed and dissolved in water at 90 oC and then molded in push-up tubes. Chemical composition, functional properties (bonding strength, glue setting time, gel hardness, extension/retraction, and spreading properties, microstructure, and storage stability of the prototypes were evaluated in comparison with a commercial control. Results showed that all WPI/PVP prototypes had desirable bonding strength and exhibited faster setting than PVP prototypes and control. WPI could reduce gel hardness and form less compact and rougher structures than that of PVP, but there was no difference in bonding strength. PVP and sucrose could increase the hygroscopicity of glue sticks, thus increasing storage stability. Finally, the optimized prototype GS3 (major components: WPI 8.0%, PVP 12.0%, 1,2-propanediol 10.0%, sucrose 10.0%, and stearic sodium 7.0% had a comparable functionality to the commercial control. Results indicated that whey protein could be used as an adhesive polymer for glue stick formulations, which could be used to bond fiber or cellulose derived substrates such as paper.

  10. Different Functional and Microstructural Changes Depending on Duration of Mild Cognitive Impairment in Parkinson Disease.

    Science.gov (United States)

    Shin, N-Y; Shin, Y S; Lee, P H; Yoon, U; Han, S; Kim, D J; Lee, S-K

    2016-05-01

    disease with mild cognitive impairment according to the duration of parkinsonism before mild cognitive impairment. The functional and microstructural substrates may topographically differ depending on the rate of cognitive decline in these patients. © 2016 by American Journal of Neuroradiology.

  11. Exploiting Bisphosphonate-Bioactive-Glass Interactions for the Development of Self-Healing and Bioactive Composite Hydrogels

    NARCIS (Netherlands)

    Diba, M.; An, J.; Schmidt, S.; Hembury, M.; Ossipov, D.; Boccaccini, A.R.; Leeuwenburgh, S.C.G.

    2016-01-01

    Hydrogels are widely recognized as promising candidates for various biomedical applications, such as tissue engineering. Recently, extensive research efforts have been devoted to the improvement of the biological and mechanical performance of hydrogel systems by incorporation of functional groups

  12. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    Energy Technology Data Exchange (ETDEWEB)

    Subramani, K [Institute for Nanoscale Science and Technology (INSAT), University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7AR (United Kingdom); Birch, M A [Institute for Nanoscale Science and Technology (INSAT), University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7AR (United Kingdom)

    2006-09-15

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 {mu}m were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 {mu}m and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  13. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Kaneko, Ai; Matsushita, Akira; Sankai, Yoshiyuki

    2015-01-01

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  14. Injectable hydrogels for central nervous system therapy

    International Nuclear Information System (INIS)

    Pakulska, Malgosia M; Shoichet, Molly S; Ballios, Brian G

    2012-01-01

    Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood–brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel. (paper)

  15. Fabrication of Hyaluronan-Poly(vinylphosphonic acid-Chitosan Hydrogel for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Dang Hoang Phuc

    2016-01-01

    Full Text Available A new hydrogel made of hyaluronan, poly(vinylphosphonic acid, and chitosan (HA/PVPA/CS hydrogel was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally, in vivo study was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity against E. coli. Finally, in vivo study indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.

  16. The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, YuWei; Zhou, Chao; Zhang, AoKai; Xu, LiQun; Yao, Fang [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China); Cen, Lian, E-mail: cenlian@hotmail.com [National Tissue Engineering Center of China, No.68, East Jiang Chuan Road, Shanghai, 200241 (China); School of Chemical Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai, 200237 (China); Fu, Guo-Dong, E-mail: fu7352@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China)

    2014-11-30

    Highlights: • Many biological tissues are 3-dimensionally asymmetric in structure and properties, it would be desirable if hydrogels could bear such structural similarity with specialized surface and bulk properties. Moreover, gradual but continuous variation in spatial structural and property is also a common phenomenon in biological tissues, such as interfaces between bone and tendon, or between bone and cartilage. Hence, the development of a method to introduce well-defined functional polymer brushes on PEG hydrogels, especially with precisely controlled spatial structure in 3-dimensions, would impart the hydrogels with special functionalities and wider applications. Poly(ethylene glycol) (PEG) hydrogels with 3-dimensionally controlled well-defined poly(N-isopropylacrylamide) (poly(NIPAAm)) brushes were prepared by combined copper(I)-catalyzed azide-alkyne cycloaddition (“Click Chemistry”) and atom transfer radical polymerization (ATRP). The resulting hydrogels were presented as representatives with their detailed synthesis routes and characterization. H{sub PEG}-S-poly(NIPAAm) is a hydrogel with poly(NIPAAm) brushes mainly grafted on surface, whereas H{sub PEG}-G-poly(NIPAAm) has a gradiently decreased poly(NIPAAm) brushes in their chain length from surface to inside. On the other hand, poly(NIPAAm) brushes in H{sub PEG}-U-poly(NIPAAm) are uniformly dispersed throughout the whole hydrogel network. Successful preparation of H{sub PEG}-S-poly(NIPAAm), H{sub PEG}-G-poly(NIPAAm) and H{sub PEG}-U-poly(NIPAAm) were ascertained by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Hence, the flexibility and controllability of the synthetic strategy in varying the distribution of polymer brushes and hydrogel surface properties was demonstrated. Hydrogels with tunable and well-defined 3-dimensional poly(NIPAAm) polymer brushes could be tailor-designed to find potential applications in smart devices or skin dressing, such as for diabetics

  17. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-02-01

    Full Text Available This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.. Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.

  18. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.

    Science.gov (United States)

    Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S

    2011-04-26

    Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.

  19. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  20. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.

    Science.gov (United States)

    Madl, Christopher M; Heilshorn, Sarah C

    2018-06-04

    Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

  1. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    OpenAIRE

    Faisal Raza; Hajra Zafar; Ying Zhu; Yuan Ren; Aftab -Ullah; Asif Ullah Khan; Xinyi He; Han Han; Md Aquib; Kofi Oti Boakye-Yiadom; Liang Ge

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All...

  2. Development of an in situ polymeric hydrogel implant of ...

    African Journals Online (AJOL)

    All rights reserved. ... inflammatory activity (paw edema test) and in vivo motor function activity in a rat ... Conclusions: The in situ hydrogels of methylprednisolone developed may be .... in the left hind paw in all rats. .... Continuous brain-derived.

  3. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  4. Structure and Properties of Hydrophobic Aggregation Hydrogel with Chemical Sensitive Switch

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2017-01-01

    Full Text Available Hydrogels with chemical sensitive switch have control release properties in special environments. A series of polyacrylamide-octadecyl methacrylate hydrogels crosslinked by N,N′-bis (acryloyl cystamine were synthesized as potential chemical sensitive system. When this hydrogel encounters dithiothreitol it can change its quality. The properties of the hydrogels were characterized by infrared spectroscopy, contact angle, and scanning electron microscopy. The water absorption of the hydrogel has the maximum value of 475%, when the content of octadecyl methacrylate is 5 wt%. The amount of weight loss was changed from 34.6% to 17.2%, as the content of octadecyl methacrylate increased from 3 wt% to 9.4 wt%. At the same time, the stress of the hydrogel decreased from 67.01% to 47.61%; the strength of the hydrogel reaches to the maximum 0.367 Mpa at 7 wt% octadecyl methacrylate. The increasing content of octadecyl methacrylate from 3 wt% to 9.4 wt% can enhance the hydrophobicity of the hydrogel; the contact angle of water to hydrogel changed from 14.10° to 19.62°. This hydrogel has the porous structure which permits loading of oils into the gel matrix. The functionalities of the hydrogel make it have more widely potential applications in chemical sensitive response materials.

  5. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S [Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CCSR Building Room 3115A, 269 Campus Drive, Stanford, CA 94305 (United States); Lee, Wonjae [Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Chiao, Eric; Baker, Julie [Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 (United States); Frank, Curtis W, E-mail: jeffrey.glenn@stanford.ed, E-mail: curt.frank@stanford.ed [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2009-02-15

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from {approx}50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 +- 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  6. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    International Nuclear Information System (INIS)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S; Lee, Wonjae; Chiao, Eric; Baker, Julie; Frank, Curtis W

    2009-01-01

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from ∼50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 ± 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  7. ph Sensitive hydrogel as colon specific drug delivery

    International Nuclear Information System (INIS)

    Alarifi, A.S.

    2011-01-01

    γ-radiation induced graft copolymerization and crosslinking was for the synthesis of ph-sensitive hydrogels composed of poly (vinyl pyrrolidone) acrylic acid. The prepared hydrogels were subjected to swelling test to evaluate the effects of ph and ionic strength of the surrounding solution. Drastic changes in the swelling parameters where observed by changing the surrounding solution ph values. The release of ibuprofen from hydrogels was monitored as a function of time at ph 1 and ph 7 in order to evaluate the prepared copolymer ability for colon- specific drug carrier uses.

  8. Biomedical hydrogels biochemistry, manufacture and medical applications

    CERN Document Server

    Rimmer, Steve

    2011-01-01

    Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses. Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imag...

  9. Significance of Glucose Addition on Chitosan-Glycerophosphate Hydrogel Properties

    Directory of Open Access Journals (Sweden)

    Dian Susanthy

    2016-03-01

    Full Text Available Chitosan-glycerophosphate hydrogel can be used as dental scaffold due to its thermosensitivity, gelation performance at body temperature, suitable acidity for body condition, biocompatibility, and ability to provide good environment for cell proliferation and differentiation. Previous study showed that glucose addition to the chitosan solution before steam sterilization improved its hydrogel mechanical strength. However, the effectiveness of glucose addition was still doubted because glucose might undergo Maillard reaction in that particular condition. The aims of this study are to confirm whether the glucose addition can increase the hydrogel mechanical strength and gelation rate effectively and also to compare their performance to be dental scaffold. This research was performed through several steps, namely preparation of chitosan-glycerophosphate solution, addition of glucose, gelation time test, gel mechanical strength measurement, functional group analysis, and physical properties measurements (pH, viscosity, and pore size. The result showed that glucose addition did not improve the hydrogel mechanical strength and gelation rate, neither when it was added before nor after steam sterilization. Glucose addition before steam sterilization seemed to trigger Maillard reaction or browning effect, while glucose addition after steam sterilization increased the amount of free water molecules in the hydrogel. Chitosan and glycerophosphate interact physically, but interaction between chitosan and glucose seems to occur chemically and followed by the formation of free water molecules. Glucose addition decreases the solution viscosity and hydrogel pore size so the hydrogel performance as dental scaffold is lowered.

  10. Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling.

    Science.gov (United States)

    Ou, Kangkang; Dong, Xia; Qin, Chengling; Ji, Xinan; He, Jinxin

    2017-08-01

    It is well known that preparation method of hydrogels has a significant effect on their properties. In this paper, freeze-thawing and anneal-swelling were applied to prepare poly(vinyl alcohol)/polyacrylamide (PVA/PAM) double-network hydrogels with covalently and physically cross-linked networks. The properties of these hydrogels were investigated and compared to control hydrogels. Results indicated that hydrogels fabricated by freeze-thawing show larger pores size and higher swelling capacity than those made by anneal-swelling and control hydrogels. Hydrogels prepared by anneal-swelling exhibit higher mechanical strength, energy dissipation, fracture energy, gel fraction and crystallinity than those made by freeze-thawing and control hydrogels. Physical cross-linking plays a key role in formation of physical-chemical double-network. The toughening mechanism of double-network hydrogel is related to their chain-fracture behavior and elasticity. The results also indicated that appropriate methods can endow hydrogels with specific microstructures and properties which would broaden current hydrogels research and applications in biomedical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  12. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  13. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    Science.gov (United States)

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2008-06-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.

  14. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.

    Science.gov (United States)

    Li, Huijun; Tan, Yu Jun; Liu, Sijun; Li, Lin

    2018-04-04

    A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca-GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.

  15. Effect of Microstructure of Fe-C-V Alloys on Selected Functional Properties

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2014-08-01

    Full Text Available The cast alloys crystallizing in Fe-C-V system are classified as white cast iron, because all the carbon is bound in vanadium carbides. High vanadium cast iron has a very high abrasion resistance due to hard VC vanadium carbides. However, as opposed to ordinary white cast iron, this material can be treated using conventional machining tools. This article contains the results of the group of Fe-C-V alloys of various microstructure which are been tested metallographic, mechanical using an INSTRON machine and machinability with the method of drilling. The study shows that controlling the proper chemical composition can influence on the type and shape of the crystallized matrix and vanadium carbides. This makes it possible to obtain a high-vanadium cast iron with very high wear resistance while maintaining a good workability.

  16. VEGF-conjugated alginate hydrogel prompt angiogenesis and improve pancreatic islet engraftment and function in type 1 diabetes

    International Nuclear Information System (INIS)

    Yin, Nina; Han, Yongming; Xu, Hanlin; Gao, Yisen; Yi, Tao; Yao, Jiale; Dong, Li; Cheng, Dejun; Chen, Zebin

    2016-01-01

    Type 1 diabetes was a life-long disease that affected numerous people around the world. Insulin therapy has its limitations that may involve hyperglycemia and heavy burden of patient by repeated dose. Islet transplantation emerged as a promising approach to reach periodical reverse of diabetes, however, transplanted islets suffer from foreign body reaction and lack of nutrition and oxygen supply, especially in the blood-vessel-shortage subcutaneous site which was preferred by patient and surgeon. In this study, we designed and synthesized a vascular endothelial growth factor (VEGF) conjugated alginate material to encapsulate the transplanted islets via 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction, and successful conjugation was confirmed by Nuclear Magnetic Resonance H1 spectrum. The best VEGF concentration (100 ng/ml) was determined by the combined studies of the mechanical property and endothelial cell growth assay. In vivo study, conjugated VEGF on alginate exhibited sustained promoting angiogenesis property after subcutaneous transplantation by histology study and islets encapsulated in this material achieved long term therapeutic effect (up to 50 days) in the diabetic mice model. In conclusion, this study establishes a simple biomaterial strategy for islet transplantation to enhance islet survival and function, which could be a feasible therapeutic alternative for type 1 diabetes. - Highlights: • We synthesized VEGF-conjugated alginate material to encapsulate the transplanted islets. • The biomaterials improve islet engraftment and function due to angiogenesis. • The biomaterials could be a strong support for cell therapy with islet transplantation in type 1 diabetes.

  17. VEGF-conjugated alginate hydrogel prompt angiogenesis and improve pancreatic islet engraftment and function in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Nina; Han, Yongming [Department of Anatomy, Basic Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Xu, Hanlin [Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Gao, Yisen; Yi, Tao [Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Yao, Jiale; Dong, Li; Cheng, Dejun [Basic Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Chen, Zebin, E-mail: chenzebin-hbtcm@outlook.com [Acupuncture and Moxibustion College, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, Hubei (China)

    2016-02-01

    Type 1 diabetes was a life-long disease that affected numerous people around the world. Insulin therapy has its limitations that may involve hyperglycemia and heavy burden of patient by repeated dose. Islet transplantation emerged as a promising approach to reach periodical reverse of diabetes, however, transplanted islets suffer from foreign body reaction and lack of nutrition and oxygen supply, especially in the blood-vessel-shortage subcutaneous site which was preferred by patient and surgeon. In this study, we designed and synthesized a vascular endothelial growth factor (VEGF) conjugated alginate material to encapsulate the transplanted islets via 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction, and successful conjugation was confirmed by Nuclear Magnetic Resonance H1 spectrum. The best VEGF concentration (100 ng/ml) was determined by the combined studies of the mechanical property and endothelial cell growth assay. In vivo study, conjugated VEGF on alginate exhibited sustained promoting angiogenesis property after subcutaneous transplantation by histology study and islets encapsulated in this material achieved long term therapeutic effect (up to 50 days) in the diabetic mice model. In conclusion, this study establishes a simple biomaterial strategy for islet transplantation to enhance islet survival and function, which could be a feasible therapeutic alternative for type 1 diabetes. - Highlights: • We synthesized VEGF-conjugated alginate material to encapsulate the transplanted islets. • The biomaterials improve islet engraftment and function due to angiogenesis. • The biomaterials could be a strong support for cell therapy with islet transplantation in type 1 diabetes.

  18. Preparation and properties of polyvinyl alcohol (PVA) and hydroxylapatite (HA) hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Yuan, F; Ma, M; Lu, L; Pan, Z; Zhou, W; Cai, J; Luo, S; Zeng, W; Yin, F

    2017-05-20

    A novel bioactive hydrogel for cartilage tissue based on polyvinyl alcohol (PVA) and hydroxylapatite (HA) were prepared, the effects of its component contents on the mechanical properties and microstructure of the hydrogel were investigated. The important properties of the scaffold composites, such as density, porosity, compressive modulus and microstructure were studied and analyzed through various measurements and methods. The biodegradability of hydrogel was evaluated by soaking the samples into artificial degradation solution at body temperature (36 - 37 oC) in vitro. Experimental results showed that the PVA/HA hydrogels had a density of 0.572 - 0.683 g/cm3, a porosity of 63.25 - 96.14% and a compressive modulus of 5.62 - 8.24 MP. The HA compound in the hydrogels enhanced the biodegradation significantly and linearly increased the rate of biodegradation by 2.3 - 8.5 %. The compressive modulus of PVA/HA exhibited a linear reduce to 0.86 - 1.53 MP with the time of degradation. The scaffold composites PVA/HA possess a high porosity, decent compressive modulus and good biodegradability. After further optimizing the structure and properties, this composite might be considered as novel hydrogel biomaterials to be applied in the field of cartilage tissue engineering.

  19. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shenandoah Robinson

    2018-06-01

    Full Text Available Survivors of infant traumatic brain injury (TBI are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12 controlled-cortical impact (CCI model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI. Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.

  20. Gold recovery onto poly(acrylamide-allylthiourea) hydrogels synthesized by treating with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, A. Guelden [Hacettepe University, Department of Chemistry, 06532 Ankara (Turkey); Malci, Savas [Hacettepe University, Department of Chemistry, 06532 Ankara (Turkey); Celikbicak, Oemuer [Hacettepe University, Department of Chemistry, 06532 Ankara (Turkey); Sahiner, Nurettin [Hacettepe University, Department of Chemistry, 06532 Ankara (Turkey); Salih, Bekir [Hacettepe University, Department of Chemistry, 06532 Ankara (Turkey)]. E-mail: bekir@hacettepe.edu.tr

    2005-08-15

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AAm-ATU), were synthesized by gamma irradiation using a {sup 60}Co {gamma} source at different irradiation dose rates and in a monomer mixture with different 1-allyl-2-thiourea contents. These hydrogels were used for the specific gold recovery from single and competitive media. It was observed that the gold adsorption capacity onto the hydrogels was high at low pHs and reached a maximum value at pH 0.5. It was found that the adsorption capacity of the hydrogels for gold ions in acidic media around pH 0.5 was high and about 940 mg g{sup -1} dry hydrogel. Adsorption of these hydrogels for gold ions was found to be very fast and also these hydrogels were showed extremely high selectivity to the gold ions in acidic media even when the concentrations of the other metal ions were extremely higher than that of the gold. Because of the high specificity of these hydrogels to gold ions compared with the other metal ions at low pHs, all matrix effects could be easily eliminated by adsorbing gold ions onto the hydrogels at around pH 0.5 and desorbing into 0.8 M thiourea in 3.0 M HCl. The swellability of the synthesized hydrogels varied with irradiation dose rates and increased at high irradiation dose rates. The minimum swellability of the hydrogels was found to be at least 1000% which made it attractive for gold to penetrate into the hydrogels and react with all the functional groups in the interior surface of the hydrogels.

  1. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury.

    Science.gov (United States)

    Papa, S; Vismara, I; Mariani, A; Barilani, M; Rimondo, S; De Paola, M; Panini, N; Erba, E; Mauri, E; Rossi, F; Forloni, G; Lazzari, L; Veglianese, P

    2018-04-03

    Spinal cord injury (SCI) is an acute neurodegenerative disorder caused by traumatic damage of the spinal cord. The neuropathological evolution of the primary trauma involves multifactorial processes that exacerbate the pathology, worsening the neurodegeneration and limiting neuroregeneration. This complexity suggests that multi-therapeutic approaches, rather than any single treatment, might be more effective. Encouraging preclinical results indicate that stem cell-based treatments may improve the disease outcome due to their multi-therapeutic ability. Mesenchymal Stem Cells (MSCs) are currently considered one of the most promising approaches. Significant improvement in the behavioral outcome after MSC treatment sustained by hydrogel has been demonstrated. However, it is still not known how hydrogel contribute to the delivery of factors secreted from MSCs and what factors are released in situ. Among different mediators secreted by MSCs after seeding into hydrogel, we have found CCL2 chemokine, which could account for the neuroprotective mechanisms of these cells. CCL2 secreted from human MSCs is delivered efficaciously in the lesioned spinal cord acting not only on recruitment of macrophages, but driving also their conversion to an M2 neuroprotective phenotype. Surprisingly, human CCL2 delivered also plays a key role in preventing motor neuron degeneration in vitro and after spinal cord trauma in vivo, with a significant improvement of the motor performance of the rodent SCI models. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Topographical heterogeneity in transparent PVA hydrogels studied by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Ashit Kumar; Gupta, Siddhi, E-mail: siddhigupta@nmlindia.org; Mishra, Trilochan; Sinha, Arvind

    2012-02-01

    Physically crosslinked poly (vinyl alcohol) (PVA) hydrogels have a wide range of biomedical applications. Transparent and stable PVA hydrogels synthesized by freeze-thawing method are potential candidates to be used as tissue engineering scaffolds provided they exhibit suitable topographical roughness and surface energy. The effect of processing parameters i.e., polymer concentration and number of freeze-thaw cycles on the resulting topography of the freeze-thawed transparent hydrogels has been studied and quantified using non-contact mode of an atomic force microscope (AFM) and image analysis. Simultaneously captured phase contrast images have revealed significant information about morphological changes in the topographical features and crystallinity of the hydrogels. Topographical roughness was found to decrease as a function of number of freeze-thaw cycles.

  3. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    Science.gov (United States)

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The rational design of a peptide-based hydrogel responsive to H2S.

    Science.gov (United States)

    Peltier, Raoul; Chen, Ganchao; Lei, Haipeng; Zhang, Mei; Gao, Liqian; Lee, Su Seong; Wang, Zuankai; Sun, Hongyan

    2015-12-18

    The development of hydrogels that are responsive to external stimuli in a well-controlled manner is important for numerous biomedical applications. Herein we reported the first example of a hydrogel responsive to hydrogen sulphide (H2S). H2S is an important gasotransmitter whose deregulation has been associated with a number of pathological conditions. Our hydrogel design is based on the functionalization of an ultrashort hydrogelating peptide sequence with an azidobenzyl moiety, which was reported to react with H2S selectively under physiological conditions. The resulting peptide was able to produce hydrogels at a concentration as low as 0.1 wt%. It could then be fully degraded in the presence of excess H2S. We envision that the novel hydrogel developed in this study may provide useful tools for biomedical research.

  5. DNA Hydrogel with Tunable pH-Responsive Properties Produced by Rolling Circle Amplification.

    Science.gov (United States)

    Xu, Wanlin; Huang, Yishun; Zhao, Haoran; Li, Pan; Liu, Guoyuan; Li, Jing; Zhu, Chengshen; Tian, Leilei

    2017-12-22

    Recently, smart DNA hydrogels, which are generally formed by the self-assembly of oligonucleotides or through the cross-linking of oligonucleotide-polymer hybrids, have attracted tremendous attention. However, the difficulties of fabricating DNA hydrogels limit their practical applications. We report herein a novel method for producing pH-responsive hydrogels by rolling circle amplification (RCA). In this method, pH-sensitive cross-linking sites were introduced into the polymeric DNA chains during DNA synthesis. As the DNA sequence can be precisely defined by its template, the properties of such hydrogels can be finely tuned in a very facile way through template design. We have investigated the process of hydrogel formation and pH-responsiveness to provide rationales for functional hydrogel design based on the RCA reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Humidity Induces Changes in the Dimensions of Hydrogel-Coated Wool Yarns

    Directory of Open Access Journals (Sweden)

    Lanlan Wang

    2018-03-01

    Full Text Available Polymeric hydrogel based on acrylic acid (AA and N,N-dimethylacrylamide (DMAA was prepared by photopolymerization reaction, using nano-alumina as the inorganic crosslinker. Hydrogel-coated wool yarns determine their dimensional changes under humidity conditions. Surface morphology of the hydrogel-coated wool yarns was carried out using SEM microscopy. The hydrogel was further characterized by Fourier transformer infrared spectrum (FTIR, gel permeation chromatography (GPC, differential scanning calorimetry (DSC, thermogravimetry (TG and differential thermogravimetry (DTG. This contribution showed that UV-initiated polymerization coating wool yarns can change the functional properties of wool fibers.

  7. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    Science.gov (United States)

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  8. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    Science.gov (United States)

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  9. A multi-component reaction towards the development of highly modular hydrogelators.

    Science.gov (United States)

    Sundén, Henrik; Sauvée, Claire; Haukka, Matti; Stöm, Anna

    2018-04-16

    Herein we report a multi-component reaction approach for the development of a new class of hydrogelators based on the OxoTriphenylHexanOate (OTHO) backbone. A focused library of OTHOs has been synthesized and their hydrogelation features evaluated. The two most potent hydrogelators were studied by rheology revealing different gel strengths, appearances and thixotropic behaviours. The new gelators showcase the versatility of the OTHO backbone as a platform for the design of functionalized hydrogels with tunable gel properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    Science.gov (United States)

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  11. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  12. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  13. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  14. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    Science.gov (United States)

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  15. Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shahzad, Sohail Anjum [Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore (Pakistan); Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); MacNeil, Sheila, E-mail: s.macneil@sheffield.ac.uk [Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2017-05-01

    Our aim was to develop a biocompatible hydrogel that could be soaked in heparin and placed on wound beds to improve the vasculature of poorly vascularized wound beds. In the current study, a methodology was developed for the synthesis of a new chitosan derivative (CSD-1). Hydrogels were synthesized by blending CSD-1 for either 4 or 24 h with polyvinyl alcohol (PVA). The physical/chemical interactions and the presence of specific functional groups were confirmed by Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance ({sup 1}H NMR). The porous nature of the hydrogels was confirmed by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) showed that these hydrogels have good thermal stability which was slightly increased as the blending time was increased. Hydrogels produced with 24 h of blending supported cell attachment more and could be loaded with heparin to induce new blood vessel formation in a chick chorionic allantoic membrane assay. - Highlights: • Chitosan based hydrogels were designed to stimulate angiogenesis. • Two new derivatives of chitosan were produced using a Mannich type reaction. • Blending a chitosan derivative with PVA gave a porous biocompatible hydrogel. • Heparin bound to the hydrogel on immersion changing its morphology. • Heparin loaded hydrogel stimulated blood vessel formation in a chick model.

  16. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing

    Science.gov (United States)

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.

    2018-01-01

    Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369

  17. Double network bacterial cellulose hydrogel to build a biology-device interface

    Science.gov (United States)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  18. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.

    Science.gov (United States)

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R

    2018-04-01

    The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.

  19. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    Science.gov (United States)

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electrodeposition of Ni–W–Al{sub 2}O{sub 3} nanocomposite coating with functionally graded microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Allahyarzadeh, M.H.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Rouhaghdam, A.R. Sabour; Torabinejad, V.

    2016-05-05

    Electrodeposition of functionally graded (FG) Ni–W–Al{sub 2}O{sub 3} nanocomposite coatings is investigated in current research. These types of coatings were applied in a way that alumina content was increased from the substrate towards the surface of the coating; hence, Ni–W would possess improved wear and corrosion resistance properties. FG-coatings were developed by the variation of duty cycle and frequency. The microstructure and elemental analysis of the coating as a function of thickness was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis, respectively. The corrosion resistance of the FG-coatings was evaluated using potentiodynamic polarization and the wear behavior was also studied using pin-on-disk wear tests. In order to investigate hardness properties of the coating, microhardness measurements were carried out on cross-section of coatings. Results revealed that the alumina content and the microhardness increased towards the surface. Results also showed the corrosion and wear resistance of FG-coatings were significantly improved by addition of α-Al{sub 2}O{sub 3} nanoparticles. Profilometery and AFM results also revealed that surface roughness was influenced by pulse plating parameters. - Highlights: • Functionally graded structures have been synthesized using adjusting pulse parameters. • Al{sub 2}O{sub 3} and W contents increases gradually as a function of coating thickness. • Alumina increased the corrosion resistance by moderating i{sub corr} and E{sub corr}. • Wear behavior has been enhanced in functionally graded structure.

  1. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.

    Science.gov (United States)

    Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan

    2018-02-01

    A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging.

    Science.gov (United States)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I M; de Groot, Marius; Dehghan, Abbas; Franco, Oscar H; Niessen, Wiro J; Ikram, M Arfan; Peeters, Robin P; Vernooij, Meike W

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Design of multimodal degradable hydrogels for controlled therapeutic delivery

    Science.gov (United States)

    Kharkar, Prathamesh Madhav

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For localized drug delivery, hydrophilic polymeric precursors often are laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation. The release of physically entrapped cargo is dictated by Fickian diffusion, degradation of the drug carrier, or a combination of both. The goal of this work was to design and characterize degradable hydrogel formulations that are responsive to multiple biologically relevant stimuli for degradation-mediated delivery of cargo molecules such as therapeutic proteins, growth factors, and immunomodulatory agents. We began by demonstrating the use of cleavable click linkages formed by Michael-type addition reactions in conjunction with hydrolytically cleavable functionalities for the degradation of injectable hydrogels by endogenous stimuli for controlled protein release. Specifically, the reaction between maleimides and thiols was utilized for hydrogel formation, where thiol selection dictates the degradability of the resulting linkage under thiol-rich reducing conditions. Relevant microenvironments where degradation would occur in vivo include those rich in glutathione (GSH), a tripeptide that is found at elevated concentrations in carcinoma tissues. Degradation of the hydrogels was monitored with rheometry and volumetric swelling measurements. Arylthiol-based thioether succinimide linkages underwent degradation via click cleavage and thiol exchange reaction in the presence of GSH and via ester hydrolysis, whereas alkylthiol-based thioether succinimide linkages only undergo degradation by only ester hydrolysis. The resulting control over the degradation rate within a reducing microenvironment resulted in 2.5 fold differences in the release profile of the model protein, a fluorescently-labeled bovine serum albumin, from dually degradable hydrogels compared to non-degradable hydrogels, where the

  4. The Formation Mechanism of Hydrogels.

    Science.gov (United States)

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  6. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    Science.gov (United States)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  7. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  8. Microstructure and functional properties of micro- and nanostructure metal composites obtained by diffusion welding and rolling of multilayer packages

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valery P.; Karpov, Michael I., E-mail: korzhov@issp.ac.ru [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2011-07-01

    Multilayered nanostructure composites of Cu/Fe, Cu/Nb, and Cu/(Nb/NbTi) with an ≤10 nm the average thickness of individual layers mechanical and superconducting properties which are implemented immediately after rolling, and micro- and nanostructure composites of Ni/Al, Ti/Ni, and (Cu/Nb)/Cu12Sn functional properties which, in contrast to the first, are manifested after rolling and heat treatment were investigated. Composites of (Cu/Nb)/Cu12Sn in final form were a multilayer tape of superconducting compound Nb{sub 3}Sn. Welding of stacks carried by heat treatment under pressure and rolling mill in a vacuum with heating to 900-950°C and large (∼30%) compression in a single pass. The microstructure was investigated by scanning electron microscopy and X-ray analysis. For superconducting composites critical current density and upper critical magnetic field were measured. Shown that the pinning of superconducting vortices in alloys of NbTi are occurred at interlayer Nb- NbTi boundaries. Change in hardness and strength of multilayer composites under rolling deformation is described by the expression of the Hall-Petch relationship, in which instead of the grain size appeared thick of layers. Key words: multilayered composite, micro- and nanostructure, NbTi alloy, superconducting compound, rolling, heat treatment, the superconducting properties, hardness, strength, superconducting vortices, the Hall-Petch expression.

  9. The first week after concussion: Blood flow, brain function and white matter microstructure

    Directory of Open Access Journals (Sweden)

    Nathan W. Churchill

    2017-01-01

    Full Text Available Concussion is a major health concern, associated with short-term deficits in physical function, emotion and cognition, along with negative long-term health outcomes. However, we remain in the early stages of characterizing MRI markers of concussion, particularly during the first week post-injury when symptoms are most severe. In this study, 52 varsity athletes were scanned using Magnetic Resonance Imaging (MRI, including 26 athletes with acute concussion (scanned 1–7 days post-injury and 26 matched control athletes. A comprehensive set of functional and structural MRI measures were analyzed, including cerebral blood flow (CBF and global functional connectivity (Gconn of grey matter, along with fractional anisotropy (FA and mean diffusivity (MD of white matter. An analysis comparing acutely concussed athletes and controls showed limited evidence for reliable mean effects of acute concussion, with only MD showing spatially extensive differences between groups. We subsequently demonstrated that the number of days post-injury explained a significant proportion of inter-subject variability in MRI markers of acutely concussed athletes. Athletes scanned at early acute injury (1–3 days had elevated CBF and Gconn and reduced FA, but those scanned at late acute injury (5–7 days had the opposite response. In contrast, MD showed a more complex, spatially-dependent relationship with days post-injury. These novel findings highlight the variability of MRI markers during the acute phase of concussion and the critical importance of considering the acute injury time interval, which has significant implications for studies relating acute MRI data to concussion outcomes.

  10. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings.

    Science.gov (United States)

    Oliveira, R N; Rouzé, R; Quilty, B; Alves, G G; Soares, G D A; Thiré, R M S M; McGuinness, G B

    2014-02-06

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions.

  12. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry.

    Science.gov (United States)

    Marin, Luminita; Ailincai, Daniela; Morariu, Simona; Tartau-Mititelu, Liliana

    2017-08-15

    The paper focusses on the synthesis of novel hydrogels by joining natural biodegradable compounds with the aim to achieve biocompatible materials for bio related applications. The hydrogels were prepared from chitosan and citral by constitutional dynamic chemistry, incorporating both molecular and supramolecular dynamic features. The hydrophobic flexible citral has been reversible immobilized onto the hydrophilic chitosan backbone via imine bonds to form amphiphilic glycodynamers, which further self-ordered through supramolecular interactions into a 3D-network of biodynameric hydrogel. The synthetic pathway has been demonstrated by NMR and FTIR spectroscopy, X-ray diffraction and polarized light microscopy. Studies of the hydrogel morphology revealed a 3D porous microstructure, whose pores size correlated with the crosslinking degree. Rheological investigations evidenced high elasticity, thermo-responsiveness and thixotropic behavior. As a proof of the concept, the hydrogels proved in vivo biocompatibility on laboratory mice. The paper successfully implements the constitutional dynamic chemistry in generation of chitosan high performance hydrogels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural and permeability characterization of biosynthetic PVA hydrogels designed for cell-based therapy.

    Science.gov (United States)

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2014-01-01

    Incorporation of extracellular matrix (ECM) components to synthetic hydrogels has been shown to be the key for successful cell encapsulation devices, by providing a biofunctional microenvironment for the encapsulated cells. However, the influence of adding ECM components into synthetic hydrogels on the permeability as well as the physical and mechanical properties of the hydrogel has had little attention. Therefore, the aim of this study was to investigate the effect of incorporated ECM analogues on the permeability performance of permselective synthetic poly(vinyl alcohol) (PVA) hydrogels in addition to examining the physico-mechanical characteristics. PVA was functionalized with a systematically increased number of methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogel network. Heparin and gelatin were successfully incorporated into PVA network at low percentage (1%), and co-hydrogels were characterized for network properties and permeability to bovine serum albumin (BSA) and immunoglobulin G (IgG) proteins. Incorporation of these ECM analogues did not interfere with the base PVA network characteristics, as the controlled hydrogel mesh sizes, swelling and compressive modulii remained unchanged. While the permeation profiles of both BSA and IgG were not affected by the addition of heparin and gelatin as compared with pure PVA, increasing the FG/c from 7 to 20 significantly limited the diffusion of the larger IgG. Consequently, biosynthetic hydrogels composed of PVA with high FG/c and low percent ECM analogues show promise in their ability to be permselective for various biomedical applications.

  14. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  15. Connections matter: channeled hydrogels to improve vascularization

    Directory of Open Access Journals (Sweden)

    Severin eMuehleder

    2014-11-01

    Full Text Available The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser- and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

  16. Connections matter: channeled hydrogels to improve vascularization.

    Science.gov (United States)

    Muehleder, Severin; Ovsianikov, Aleksandr; Zipperle, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2014-01-01

    The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

  17. HYDROGELS AND THEIR APLICATION AREAS

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Hydrogels, being polymeric material,are named “Hydrophilic Polymer” because of their capable of holding large amounts of water in their three-dimensional networks. Hydrogels is not solved in water; however they have been swollen to their balace volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape. Their cross linked bound structures are able to covalent or ionic and also one polymer which can for use of hydrogel polymer, must have hydrophilic groups such as carboxyl, carbonyl, amine and amide in main chains or side chains, and because of these groups water bound the polymer and polymer start to swell with rising volume and mass. Swell behavior of hydrogel is interested in quantity of hydrophilic groups. Hydrogels can use in different industrial and environmental areas with this high amount water holding capacity. They are used in food industry, biomedical, bioengineering, biotechnology, veterinary, pharmacist, agriculture, telecommunication, etc. Especially in current life, baby nappy has been including inside hydrogel beads. Also they used in contact lens, artificial cornea, synthetic cartilage and gullet, controlled medicine release, surgery yarns. This article general inform about usage area of hydrogels.

  18. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film

    Science.gov (United States)

    Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2018-05-01

    In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.

  19. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID to small peptides for generating multifunctional supramolecular nanofibers/hydrogels

    Directory of Open Access Journals (Sweden)

    Jiayang Li

    2013-05-01

    Full Text Available Here we report supramolecular hydrogelators made of nonsteroidal anti-inflammatory drugs (NSAID and small peptides. The covalent linkage of Phe–Phe and NSAIDs results in conjugates that self-assemble in water to form molecular nanofibers as the matrices of hydrogels. When the NSAID is naproxen (1, the resultant hydrogelator 1a forms a hydrogel at a critical concentration (cgc of 0.2 wt % at pH 7.0. Hydrogelator 1a, also acting as a general motif, enables enzymatic hydrogelation in which the precursor turns into a hydrogelator upon hydrolysis catalyzed by a phosphatase at physiological conditions. The conjugates of Phe–Phe with other NSAIDs, such as (R-flurbiprofen (2, racemic flurbiprofen (3, and racemic ibuprofen (4, are able to form molecular hydrogels, except in the case of aspirin (5. After the conjugation with the small peptides, NSAIDs exhibit improved selectivity to their targets. In addition, the peptides made of D-amino acids help preserve the activities of NSAIDs. Besides demonstrating that common NSAIDs are excellent candidates to promote aromatic–aromatic interaction in water to form hydrogels, this work contributes to the development of functional molecules that have dual or multiple roles and ultimately may lead to new molecular hydrogels of therapeutic agents for topical use.

  20. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.

    Science.gov (United States)

    Gajendiran, Mani; Rhee, Jae-Sung; Kim, Kyobum

    2018-02-01

    This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone. The free carboxylic acid group containing polymers such as hyaluronic acid and heparin have been thiolated by using the bifunctional molecules such as cysteamine and L-cysteine via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The degree of thiolation in the polymer chain has been widely determined by using Ellman's assay method. The thiolated polymer hydrogels are prepared by disulfide bond formation (or) thiol-ene reaction (or) Michael-type addition reaction. The thiolated polymers such as thiolated gelatin are reacted with polyethylene glycol diacrylate for obtaining interpenetrating polymer network hydrogel scaffolds. Several in vitro cell culture experiments indicate that the developed thiolated polymer hydrogels exhibited biocompatibility and cellular mimicking properties. The developed hydrogel scaffolds efficiently support proliferation and differentiation of various cell types. In the present review article, the thiol-functionalized protein-based biopolymers, carbohydrate-based polymers, and some synthetic polymers have been covered with recently published research articles. In addition, the usage of new thiolated nanomaterials as a crosslinking agent for the preparation of three-dimensional tissue-engineered hydrogels is highlighted.

  2. Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    2018-01-01

    a catechol-based hydrogel design that allows for the degree of oxidative covalent cross-linking to be controlled. Double cross-linked hydrogels with tunable stiffness are constructed by adding the oxidizable catechol analogue, tannic acid, to an oxidation-resistant hydrogel construct held together...... by coordination of the dihydroxy functionality of 1-(2'-carboxyethyl)-2-methyl-3-hydroxy-4-pyridinone to trivalent metal ions. By varying the amount of tannic acid, the hydrogel stiffness can be customized to a given application while retaining the self-healing capabilities of the hydrogel's coordination chemical...

  3. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels.

    Science.gov (United States)

    Singh, Baljit; Dhiman, Abhishek

    2017-01-01

    No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures.

    Science.gov (United States)

    Zimoch, Jakub; Padial, Joan Simó; Klar, Agnes S; Vallmajo-Martin, Queralt; Meuli, Martin; Biedermann, Thomas; Wilson, Christopher J; Rowan, Alan; Reichmann, Ernst

    2018-04-01

    Molecular and mechanical interactions with the 3D extracellular matrix are essential for cell functions such as survival, proliferation, migration, and differentiation. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. This is a synthetic, thermo-responsive and stress-stiffening material synthesized via polymerization of the corresponding monomers using a nickel perchlorate as a catalyst. It can be tailored to meet various demands of cells by modulating its stiffness and through the decoration of the polymer with short GRGDS peptides using copper free click chemistry. These peptides make the hydrogels biocompatible by mimicking the binding sites of certain integrins. This study focuses on the optimization of the PIC polymer properties for efficient cell, tissue and organ development. Screening for the optimal stiffness of the hydrogel and the ideal concentration of the GRGDS ligand conjugated with the polymer, enabled cell proliferation, migration and differentiation of various primary cell types of human origin. We demonstrate that fibroblasts, endothelial cells, adipose-derived stem cells and melanoma cells, do survive, thrive and differentiate in optimized PIC hydrogels. Importantly, these hydrogels support the spontaneous formation of complex structures like blood capillaries in vitro. Additionally, we utilized the thermo-responsive properties of the hydrogels for a rapid and gentle recovery of viable cells. Finally, we show that organotypic structures of human origin grown in PIC hydrogels can be successfully transplanted subcutaneously onto immune-compromised rats, on which they survive and integrate into the surrounding tissue. Molecular and mechanical interactions with the surrounding environment are essential for cell functions. Although 2D culture systems greatly contributed to our understanding of complex biological phenomena, they cannot substitute for crucial

  5. Subcuticular microstructure of the hornet's gaster: Its possible function in thermoregulation

    Directory of Open Access Journals (Sweden)

    Neufeld Arnon

    2004-01-01

    Full Text Available Abstract The present study set out to elucidate the structure and function of the large subcuticular air sacs encountered in the gaster of the Oriental hornet Vespa orientalis (Hymenoptera, Vespinae. Gastral segments I, II, III, together with the anterior portion of segment IV, comprise the greater volume of the gaster, and inside them, beneath the cuticle, are contained not only structures that extend throughout their entire length, like the alimentary canal, and the nerve cord with its paired abdominal ganglia, situated near the cuticle in the ventral side, but also the heart, which is actually a muscular and dorsally located blood vessel that pumps blood anteriorly, toward the head of the hornet. The mentioned structures take up only a small volume of the gaster, while the rest is occupied by air sacs and tracheal ducts that also extend longitudinally. Interposed between the two air sacs, there is a hard partition and above it, at the center – a paired tracheal duct that extends the entire length of the air sacs. The endothelium of the air sacs is very anfractuous, thereby enlarging and strengthening the surface area. In each gastral segment there is an aperture for the entry of air, namely, a spiracle. Additionally, in each segment, in the antero-lateral aspect of its tergum and situated between two successive segments, there is an intersegmental conjunctive bearing parallel slits of 1–2 microM in width and 10–30 microM in length. The latter are arranged concentrically around bundles of tracheae that traverse the cuticle from segment to segment. From the upper rims of the slits are suspended downward fringe-like structures or "shutters" ranging between 3–10 microM in length. We discuss the possibility that the Oriental hornet resorts to internal circulation of air, along with a thermoelectric heat pump mechanism, in order to achieve cooling and thermoregulation of its body.

  6. Characterization of hydrogel printer for direct cell-laden scaffolds

    Science.gov (United States)

    Whulanza, Yudan; Arsyan, Rendria; Saragih, Agung Shamsuddin

    2018-02-01

    The additive manufacturing technology has been massively developed since the last decade. The technology was previously known as rapid prototyping techniques that aimed to produce a prototyping product in fast and economical way. Currently, this technique is also applied to fabricate microstructure utilized in tissue engineering technology. Here, we introduce a 3D printer which using hydrogel gelatin to realize cell laden scaffold with dimension around 50-100 µm. However, in order to fabricate such a precise dimension, an optimum working parameters are required to control the physical properties of gelatin. At the end of our study, we formulated the best parameters to perform the product as we desired.

  7. MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Yingpu Zhang

    2015-01-01

    Full Text Available Novel high strength composite hydrogels were designed and synthesized by introducing multiwalled carbon nanotubes (MWCNTs into cellulose/NaOH/urea aqueous solution and then cross-linked by epichlorohydrin. MWCNTs were used to modify the matrix of cellulose. The structure and morphology of the hydrogels were characterized by Fourier transform infrared (FT-IR spectroscopy, high resolution transmission electron microscopy (HR-TEM, and scanning electron microscopy (SEM. The results from swelling testing revealed that the equilibrium swelling ratio of hydrogels decreased with the increment of MWCNTs content. Thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA results demonstrated that the introduction of MWCNT into cellulose hydrogel networks remarkably improved both thermal and mechanical properties of the composite hydrogels. The preparation of MWCNTs modifiedcellulose-based composites with improved mechanical properties was the first important step towards the development of advanced functional materials.

  8. Synthesis of chitosan-PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition.

    Science.gov (United States)

    Tirino, Pasquale; Laurino, Rosaria; Maglio, Giovanni; Malinconico, Mario; d'Ayala, Giovanna Gomez; Laurienzo, Paola

    2014-11-04

    In this work, a well-defined hydrogel was developed by coupling chitosan with PEO through "click chemistry". Azide functionalities were introduced onto chitosan, through mesylation of C-6 hydroxyl groups, and reacted with a di-alkyne PEO by a regioselective Cu(I)-catalyzed cycloaddition. This synthetic approach allowed us to obtain a hydrogel with a controlled crosslinking degree. In fact, the extent of coupling is strictly dependent on the amount of azido groups on chitosan, which in turn can be easily modulated. The obtained hydrogel, with a crosslinking degree of around 90%, showed interesting swelling properties. With respect to chitosan hydrogels reported in literature, a considerably higher equilibrium uptake was reached (940%). The possibility to control the crosslinking degree of hydrogel and its capability to rapidly absorb high amounts of water make this material suitable for several applications, such as controlled drug release and wound healing. Copyright © 2014. Published by Elsevier Ltd.

  9. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi [Department of Chemistry, Indonesia University of Education, Setiabudi 229 Bandung, West Java, Indonesia 40154 (Indonesia)

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  10. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  11. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    International Nuclear Information System (INIS)

    Khoerunnisa, Fitri; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi

    2016-01-01

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp"3, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  12. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    Science.gov (United States)

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    International Nuclear Information System (INIS)

    Wei, Y T; Tian, W M; Yu, X; Cui, F Z; Hou, S P; Xu, Q Y; Lee, In-Seop

    2007-01-01

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue

  14. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    Directory of Open Access Journals (Sweden)

    Sun HY

    2017-04-01

    Full Text Available Hongyu Sun,* Jing Zhou,* Zhu Huang,* Linlin Qu,* Ning Lin,* Chengxiao Liang, Ruiwu Dai, Lijun Tang, Fuzhou Tian General Surgery Center, Chengdu Military General Hospital, Chengdu, China *These authors contributed equally to this work Abstract: Carbon nanotubes (CNTs provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt% exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. Keywords: carbon nanotubes, collagen hydrogel, cardiac constructs, cell alignment, tissue functionality

  15. Interfacial self-healing of nanocomposite hydrogels: Theory and experiment

    Science.gov (United States)

    Wang, Qiming; Gao, Zheming; Yu, Kunhao

    2017-12-01

    Polymers with dynamic bonds are able to self-heal their fractured interfaces and restore the mechanical strengths. It is largely elusive how to analytically model this self-healing behavior to construct the mechanistic relationship between the self-healing properties (e.g., healed interfacial strength and equilibrium healing time) and the material compositions and healing conditions. Here, we take a self-healable nanocomposite hydrogel as an example to illustrate an interfacial self-healing theory for hydrogels with dynamic bonds. In the theory, we consider the free polymer chains diffuse across the interface and reform crosslinks to bridge the interface. We analytically reveal that the healed strengths of nanocomposite hydrogels increase with the healing time in an error-function-like form. The equilibrium self-healing time of the full-strength recovery decreases with the temperature and increases with the nanoparticle concentration. We further analytically reveal that the healed interfacial strength decreases with increasing delaying time before the healing process. The theoretical results quantitatively match with our experiments on nanosilica hydrogels, and also agree well with other researchers' experiments on nanoclay hydrogels. We expect that this theory would open promising avenues for quantitative understanding of the self-healing mechanics of various polymers with dynamic bonds, and offer insights for designing high-performance self-healing polymers.

  16. Drug-sensing hydrogels for the inducible release of biopharmaceuticals

    Science.gov (United States)

    Ehrbar, Martin; Schoenmakers, Ronald; Christen, Erik H.; Fussenegger, Martin; Weber, Wilfried

    2008-10-01

    Drug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor. Genetically engineered bacterial gyrase subunit B (GyrB) (ref. 4) coupled to polyacrylamide was dimerized by the addition of the aminocoumarin antibiotic coumermycin, resulting in hydrogel formation. Addition of increasing concentrations of clinically validated novobiocin (Albamycin) dissociated the GyrB subunits, thereby resulting in dissociation of the hydrogel and dose- and time-dependent liberation of the entrapped protein pharmaceutical VEGF121 for triggering proliferation of human umbilical vein endothelial cells. Pharmacologically controlled hydrogels have the potential to fulfil the promises of stimuli-sensing materials as smart devices for spatiotemporally controlled delivery of drugs within the patient.

  17. Effects of polymerization degree on recovery behavior of PVA/PVP hydrogels as potential articular cartilage prosthesis after fatigue test

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2016-02-01

    Full Text Available Poly (vinyl alcohol/poly (vinyl pyrrolidone (PVA/PVP hydrogels with various polymerization degrees of PVA were synthesized by a repeated freezing-thawing method. The influence of polymerization degree on microstructure, water content, friction coefficient, compressive fatigue and recovery properties of PVA/PVP hydrogels were investigated. The results showed that higher polymerization degree resulted in larger compressive modulus and lower friction coefficient. The fatigue behaviors of PVA/PVP hydrogels were evaluated under sinusoidal compressive loading from 200 to 800 N at 5 Hz for up to 50 000 cycles. The unconfined uniaxial compressive tests of PVA/PVP hydrogels were performed before and after fatigue test. During the fatigue test, the height of the hydrogel rapidly decreased at first and gradually became stable with loading cycles. The compressive tangent modulus measured 0 h after fatigue was significantly larger than the values obtained before test, and then the modulus recovered to its original level for 48 h after test. However, the geometry of hydrogels could not return to the original level due to the creep effects. PVA/PVP hydrogels prepared with lower polymerization degree showed better recovery capability than that prepared with high polymerization degree.

  18. Critical current density and microstructure of YBa2Cu3O7-x films as a function of film thickness

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Turner, L.G.; Hall, E.L.; Lewis, N.

    1990-01-01

    Thin films of nominal composition YBa 2 Cu 3 O 7-x (YBCO) were produced on (100) SrTiO 3 substrates by coevaporation and furnace annealing. Film thicknesses in the range of 0.2 to 2.4 μm were analyzed. Microstructural investigations by cross sectional transmission electron microscopy (TEM) reveal a continuous layer of about 0.4 μm thickness adjacent to the substrate with c-axis normal to the substrate plane. In thicker films the remaining top portion has the c-axis in the film plane. The critical current density (J c ) at 77 K decreases with increasing thickness in the thickness range exceeding 0.4 μm, qualitatively consistent with the microstructural observation, but quantitatively inconsistent with a simple model based on the microstructural data

  19. Cytocompatible cellulose hydrogels containing trace lignin

    International Nuclear Information System (INIS)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-01-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm"2 and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  20. Cytocompatible cellulose hydrogels containing trace lignin

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Kazuki; Kobayashi, Takaomi, E-mail: takaomi@nagaoakut.ac.jp

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm{sup 2} and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  1. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  2. Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles

    International Nuclear Information System (INIS)

    Nair, Ashwin; Shen Jinhui; Thevenot, Paul; Zou Ling; Tang Liping; Cai Tong; Hu Zhibing

    2008-01-01

    Effective nanomedical devices for tumor imaging and drug delivery are not yet available. In an attempt to construct a more functional device for tumor imaging, we have embedded quantum dots (which have poor circulatory behavior) within hydrogel nanoparticles made of poly-N-isopropylacrylamide. We found that the hydrogel encapsulated quantum dots are more readily taken up by cultured tumor cells. Furthermore, in a melanoma model, hydrogel encapsulated quantum dots also preferentially accumulate in the tumor tissue compared with normal tissue and have ∼16-fold greater intratumoral uptake compared to non-derivatized quantum dots. Our results suggest that these derivatized quantum dots, which have greatly improved tumor localization, may enhance cancer monitoring and chemotherapy.

  3. Reentrant behaviour in polyvinyl alcohol-borax hydrogels

    Science.gov (United States)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2018-01-01

    Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.

  4. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    International Nuclear Information System (INIS)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-01-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39–132 kg mol −1 . Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm −3 , that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby–Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain. - Highlights: • Radiation synthesis of bioactive hydrogel wound dressing based on PVP. • Sol-gel analysis, radiation yield of crosslinking and degradation, gel fraction.

  5. A composite hydrogels-based photonic crystal multi-sensor

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-01-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye. (paper)

  6. Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior.

    Science.gov (United States)

    Wang, Lin; Du, Yu; Yuan, Yi; Mu, Ruo-Jun; Gong, Jingni; Ni, Yongsheng; Pang, Jie; Wu, Chunhua

    2018-07-01

    Intelligent hydrogels are attractive biomaterials for various applications, however, fabricating a hydrogel with both adequate self-healing ability and mechanical properties remains a challenge. Herein, a series of novel intelligent konjac glucomannan (KGM)/microcrystalline cellulose (MCC) hydrogels were prepared vis the mussel-inspired chemistry. MCC was firstly functionalized by the oxidative polymerization of dopamine, and the intelligent hydrogels were obtained by mixing aqueous solutions of KGM and functionalized MCC (PDMCC). By introducing PDMCC, a more compact interconnected porous structure formed for the resulting hydrogels. The self-healing ability and mechanical properties of intelligent hydrogels were dependence on the PDMCC content. Compared with KGM hydrogels, KGM/PDMCC hydrogels exhibited a more distinct pH sensitivity and a lower initial burst release, which was attributed to the compact structure and strong intermolecular hydrogen bond interaction between PDMCC and KGM. These results suggest that the KGM/PDMCC intelligent hydrogels may be promising carriers for controlled drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Jeerage, Kavita M.

    2013-01-01

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than ∼5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  8. Microstructure and mechanical properties of V–Me(Cr,W–Zr alloys as a function of their chemical–thermal treatment modes

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2015-07-01

    Full Text Available Formation of regularities of the nanometric oxide precipitates and defect microstructure in vanadium-based low activation alloys V–Cr–Zr–(C,N,O and V–Cr–W–Zr–(C,N,O as a function of the regimes of their thermochemical treatment was investigated. Several methods of internal oxidation which provide formation of the nanosized ZrO2 particles of controllable dispersion, ensure the nanometric size of the heterophase structure to be maintained up to the temperatures as high as 1300–1400 °С, and allow the recrystallization temperature to be increased up to ≥1400 °С were proposed. Formation of such microstructure contributes to dispersion- and substructural hardening and results in more than twofold increase in the yield stress of these alloys both at room and elevated (800 °С temperatures, compared to the conventional thermo-mechanical treatment.

  9. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    Science.gov (United States)

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hydrogels in Miniemulsions

    Science.gov (United States)

    Landfester, Katharina; Musyanovych, Anna

    In the last decade, the synthesis of polymeric materials that respond to specific environment stimuli by changing their size has attracted widespread interest in both fundamental and applied areas of research. Hydrogels in dispersions are composed of randomly oriented, physically or chemically crosslinked hydrophilic or amphiphilic polymer chains. The synthesis of these gels at the nanoscale (nanogels or microgels) is especially of great importance for their application in drug delivery and controlled release systems, and in biomimetics, biosensing, tissue regeneration, heterogeneous catalysis, etc. The focus of this review is to present the versatility of the miniemulsion process for the formation of monodisperse nanogels from synthetic and natural polymers. Several applications of the obtained microgels are briefly described.

  11. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study.

    Science.gov (United States)

    Wu, De-Qun; Zhu, Jie; Han, Hua; Zhang, Jun-Zhi; Wu, Fei-Fei; Qin, Xiao-Hong; Yu, Jian-Yong

    2018-01-01

    A multi-functional hybrid hydrogel P(M-Arg/NIPAAm) with temperature response, anti-protein adsorption and antibacterial properties was prepared and applied as wound dressing. The hydrogel was carried out by free radical copolymerization of methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm) monomers using N,N'-methylene bisacrylamide as a crosslinker, and ammonium persulfate/N,N,N', N'-tetramethylethylenediamine as the redox initiator. To endow the antimicrobial property, chlorhexidine diacetate (CHX) was preloaded into the hydrogel and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively. The antimicrobial property of two series of hydrogels was evaluated and compared. The successful synthesis of M-Arg, PHMG and hydrogels was proved by 13 C NMR, 1 H NMR and FTIR spectroscopy. The hydrogel morphology characterized by scanning electron microscopy confirmed that the homogeneous porous and interconnected structures of the hydrogels. The swelling, protein adsorption property, in vitro release of CHX, antimicrobial assessment, cell viability as well as in vivo wound healing in a mouse model were studied. The results showed the nontoxicity and antimicrobial P(M-Arg/NIPAAm) hydrogel accelerated the full-thickness wound healing process and had the potential application in wound dressing. Despite the zwitterionic characteristic and biocompatible property of arginine based hydrogels, the brittle behavior and non-transparency still remain as a significant problem for wound dressing. Furthermore promoting the antibacterial property of the zwitterionic hydrogel is also necessary to prevent the bacterial colonization and subsequent wound infection. Therefore, we created a hybrid hydrogel combined methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm). NIPAAm improves transparency and mechanical property as well as acts as a temperature-response drug release system. Additionally, chlorhexidine (CHX) was preloaded

  12. Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels.

    Science.gov (United States)

    Du, Xuewen; Li, Junfeng; Gao, Yuan; Kuang, Yi; Xu, Bing

    2012-02-18

    The use of enzyme to instruct the self-assembly of the nucleoside of adenosine in water provides a new class of molecular nanofibers/hydrogels as functional soft materials. This journal is © The Royal Society of Chemistry 2012

  13. Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase

    NARCIS (Netherlands)

    Douglas, T.E.L.; Skwarczynska, A.; Modrzejewska, Z.; Balcaen, L.; Schaubroeck, D.; Lycke, S.; Vanhaecke, F.; Vandenabeele, P.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2013-01-01

    Thermosensitive chitosan hydrogels containing sodium beta-glycerophosphate (beta-GP), whose gelation is induced by increasing temperature to body temperature, were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone. ALP incorporation led to

  14. Spatially and temporally controlled hydrogels for tissue engineering

    NARCIS (Netherlands)

    J., Leijten; Seo, Jungmok; Yue, Kan; Trujillo-de Santiago, Grissel; Tamayol, Ali; Ruiz-Esparza, Guillermo U.; Ryon Shin, Su; Sharifi, Roholah; Noshadi, Iman; Moises Alvarez, Mario; Shrike Zhang, Yu; Khademhosseini, Ali

    2017-01-01

    Recent years have seen tremendous advances in the field of hydrogel-based biomaterials. One of the most prominent revolutions in this field has been the integration of elements or techniques that enable spatial and temporal control over hydrogels’ properties and functions. Here, we critically review

  15. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Directory of Open Access Journals (Sweden)

    Akpe Victor

    2007-12-01

    Full Text Available Abstract Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.

  16. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  17. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    Science.gov (United States)

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. © 2013 Wiley Periodicals, Inc.

  18. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.

    Science.gov (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-19

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  19. The bio in the ink : cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells

    NARCIS (Netherlands)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, P. René; Khan, Ilyas M.; Malda, Jos

    2017-01-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of

  20. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior.

    NARCIS (Netherlands)

    Bongio, M.; Beucken, J.J.J.P van den; Nejadnik, M.R.; Leeuwenburgh, S.C.G.; Kinard, L.A.; Kasper, F.K.; Mikos, A.G.; Jansen, J.A.

    2011-01-01

    The ultimate goal of this work was to develop a biocompatible and biomimetic in situ crosslinkable hydrogel scaffold with an instructive capacity for bone regenerative treatment. To this end, synthetic hydrogels were functionalized with two key components of the extracellular matrix of native bone

  1. Normal Bone Microstructure and Density But Worse Physical Function in Older Women Treated with Selective Serotonin Reuptake Inhibitors, a Cross-Sectional Population-Based Study.

    Science.gov (United States)

    Larsson, Berit; Mellström, Dan; Johansson, Lisa; Nilsson, Anna G; Lorentzon, Mattias; Sundh, Daniel

    2018-05-05

    Depression in the elderly is today often treated with selective serotonin reuptake inhibitors (SSRIs) because of their favorable adverse effect profile. However, treatment with SSRIs is associated with increased risk of fractures. Whether this increased risk depends on reduced bone strength or increased fall risk due to reduced physical function is not certain. The aim was therefore to investigate if treatment with SSRIs is associated with impaired bone microstructure, bone density, or physical function in older women. From an ongoing population-based study, 1057 women (77.7 ± 1.5 years) were included. Validated questionnaires were used to assess information regarding medical history, medications, smoking, mental and physical health, and physical activity. Physical function was measured using clinically used tests: timed up and go, walking speed, grip strength, chair stand test, and one leg standing. Bone mineral density (BMD) was measured at the hip and spine with dual-energy X-ray absorptiometry (Hologic Discovery A). Bone geometry and microstructure were measured at the ultradistal and distal (14%) site of radius and tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT). Treatment with SSRIs was associated with higher BMD at the femoral neck, total hip, and lumbar spine, whereas no associations were found for any HR-pQCT-derived measurements. The use of SSRIs was associated with lower grip strength, walking speed, and fewer chair stand rises. These associations were valid also after adjustments for known risk factors for falls. Treatment with SSRIs was, independently of covariates, associated with worse physical function without any signs of inferior bone geometry and microstructure.

  2. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

    Science.gov (United States)

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

  3. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes.

    Science.gov (United States)

    Louis, Fiona; Pannetier, Pauline; Souguir, Zied; Le Cerf, Didier; Valet, Philippe; Vannier, Jean-Pierre; Vidal, Guillaume; Demange, Elise

    2017-08-01

    The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding domain of fibronectin and we compared it to usual 2D cultures on plastic plates. This scaffold allowed 3D culture of mature adipocytes from the preadipocytes cell lines 3T3-L1 and 3T3-F442A, as well as primary Human White Preadipocytes (HWP), acquiring in vivo-like organization, with spheroid shaped adipocytes forming multicellular aggregates. The size of these aggregates increased with time up to 120 μm in diameter after 4 weeks of maturation, with good viability. Significantly higher lipogenic activity (up to 20-fold at day 28 for HWP cultures) and differentiation rates were also observed compared to 2D. Gene expression analyses highlighted earlier differentiation and complete maturation of 3D HWP compared to 2D, reinforced by the expression of Perilipin protein after 21 days of nutrition. This increase in adipocytes phenotypic and genotypic markers made this scaffold-driven culture as a robust adipose 3D model. Retinoic acid inhibition of lipogenesis in HWP or isoprenalin and caffeine induction of lipolysis performed on mouse 3T3-F442A cells, showed higher doses of molecules than typically used in 2D, underlying the physiologic relevance of this 3D culture system. Biotechnol. Bioeng. 2017;114: 1813-1824. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Novel Hydrogels from Renewable Resources

    Science.gov (United States)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  5. Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency.

    Science.gov (United States)

    Gao, Yuzhou; Luo, Quan; Qiao, Shanpeng; Wang, Liang; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu

    2014-08-25

    Enzyme-mediated self-healing of dynamic covalent bond-driven protein hydrogels was realized by the synergy of two enzymes, glucose oxidase (GOX) and catalase (CAT). The reversible covalent attachment of glutaraldehyde to lysine residues of GOX, CAT, and bovine serum albumin (BSA) led to the formation and functionalization of the self-healing protein hydrogel system. The enzyme-mediated protein hydrogels exhibit excellent self-healing properties with 100% recovery. The self-healing process was reversible and effective with an external glucose stimulus at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications

    International Nuclear Information System (INIS)

    Memic, Adnan; Aldhahri, Musab; Alhadrami, Hani A; Hussain, M Asif; Al Nowaiser, Fozia; Al-Hazmi, Faten; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The incorporation of nanomaterials in hydrogels (hydrated networks of crosslinked polymers) has emerged as a useful method for generating biomaterials with tailored functionality. With the available engineering approaches it is becoming much easier to fabricate nanocomposite hydrogels that display improved performance across an array of electrical, mechanical, and biological properties. In this review, we discuss the fundamental aspects of these materials as well as recent developments that have enabled their application. Specifically, we highlight synthesis and fabrication, and the choice of nanomaterials for multifunctionality as ways to overcome current material property limitations. In addition, we review the use of nanocomposite hydrogels within the framework of biomedical and pharmaceutical disciplines. (paper)

  7. Anisotropic dehydration of hydrogel surfaces.

    Science.gov (United States)

    Kaklamani, Georgia; Cheneler, David; Grover, Liam M; Adams, Michael J; Anastasiadis, Spiros H; Bowen, James

    2017-12-01

    Efforts to develop tissue-engineered skin for regenerative medicine have explored natural, synthetic, and hybrid hydrogels. The creation of a bilayer material, with the stratification exhibited by native skin, is a complex problem. The mechanically robust, waterproof epidermis presents the stratum corneum at the tissue/air interface, which confers many of these protective properties. In this work, we explore the effect of high temperatures on alginate hydrogels, which are widely employed for tissue engineering due to their excellent mechanical properties and cellular compatibility. In particular, we investigate the rapid dehydration of the hydrogel surface which occurs following local exposure to heated surfaces with temperatures in the range 100-200 °C. We report the creation of a mechanically strengthened hydrogel surface, with improved puncture resistance and increased coefficient of friction, compared to an unheated surface. The use of a mechanical restraint during heating promoted differences in the rate of mass loss; the rate of temperature increase within the hydrogel, in the presence and absence of restraint, is simulated and discussed. It is hoped that the results will be of use in the development of processes suitable for preparing skin-like analogues; application areas could include wound healing and skin restoration.

  8. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Tan, Huaping, E-mail: hptan@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Hu, Xiaohong [School of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion.

  9. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    International Nuclear Information System (INIS)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-01-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion

  10. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  11. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  12. Assembly of hydrogel units for 3D microenvironment in a poly(dimethylsiloxane) channel

    Science.gov (United States)

    Cho, Chang Hyun; Kwon, Seyong; Park, Je-Kyun

    2017-12-01

    Construction of three-dimensional (3D) microenvironment become an important issue in recent biological studies due to their biological relevance compared to conventional two-dimensional (2D) microenvironment. Various fabrication techniques have been employed to construct a 3D microenvironment, however, it is difficult to fully satisfy the biological and mechanical properties required for the 3D cell culture system, such as heterogeneous tissue structures generated from the functional differences or diseases. We propose here an assembly method for facile construction of 3D microenvironment in a poly(dimethylsiloxane) (PDMS) channel using hydrogel units. The high-aspect-ratio of hydrogel units was achieved by fabricating these units using a 2D mold. With this approach, 3D heterogeneous hydrogel units were produced and assembled in a PDMS channel by structural hookup. In vivo-like 3D heterogeneous microenvironment in a precisely controllable fluidic system was also demonstrated using a controlled assembly of different types of hydrogel units, which was difficult to obtain from previous methods. By regulating the flow condition, the mechanical stability of the assembled hydrogel units was verified by the flow-induced deformation of hydrogel units. In addition, in vivo-like cell culture environment was demonstrated using an assembly of cell-coated hydrogel units in the fluidic channel. Based on these features, our method expects to provide a beneficial tool for the 3D cell culture module and biomimetic engineering.

  13. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  14. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  15. A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma.

    Science.gov (United States)

    Kwag, Hye Rin; Serbo, Janna V; Korangath, Preethi; Sukumar, Saraswati; Romer, Lewis H; Gracias, David H

    2016-04-01

    A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.

  16. Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.

    Science.gov (United States)

    Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd

    2018-01-08

    We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.

  17. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  18. Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters.

    Science.gov (United States)

    Bae, Chae Yun; Min, Mun-kyeong; Kim, Hail; Park, Je-Kyun

    2014-07-07

    A microstructure-based hydrogel was employed to study the relationship between spatial specificity and cellular behavior, including cell fate, proliferation, morphology, and insulin secretion in pancreatic β-cells. To effectively form homogeneous cell clusters in vitro, we made cell-containing hydrogel membrane constructs with an adapted grid structure based on a hexagonal micropattern. Homogeneous cell clusters (average diameter: 83.6 ± 14.2 μm) of pancreatic insulinoma (MIN6) cells were spontaneously generated in the floating hydrogel membrane constructs, including a hexagonal grid structure (size of cavity: 100 μm, interval between cavities: 30 μm). Interestingly, 3D clustering of MIN6 cells mimicking the structure of pancreatic islets was coalesced into a merged aggregate attaching to each hexagonal cavity of the hydrogel grid structure. The fate and insulin secretion of homogeneous cell clusters in the hydrogel grid structure were also assessed. The results of these designable hydrogel-cell membrane constructs suggest that facultative in vitro β-cell proliferation and maintenance can be applied to biofunctional assessments.

  19. Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Jessica L. Ungerleider, BS

    2016-01-01

    Full Text Available Although surgical and endovascular revascularization can be performed in peripheral arterial disease (PAD, 40% of patients with critical limb ischemia do not have a revascularization option. This study examines the efficacy and mechanisms of action of acellular extracellular matrix-based hydrogels as a potential novel therapy for treating PAD. We tested the efficacy of using a tissue-specific injectable hydrogel derived from decellularized porcine skeletal muscle (SKM and compared this to a new human umbilical cord-derived matrix (hUC hydrogel, which could have greater potential for tissue regeneration because of the younger age of the tissue source. In a rodent hindlimb ischemia model, both hydrogels were injected 1-week post-surgery and perfusion was regularly monitored with laser speckle contrast analysis to 35 days post-injection. There were significant improvements in hindlimb tissue perfusion and perfusion kinetics with both biomaterials. Histologic analysis indicated that the injected hydrogels were biocompatible, and resulted in arteriogenesis, rather than angiogenesis, as well as improved recruitment of skeletal muscle progenitors. Skeletal muscle fiber morphology analysis indicated that the muscle treated with the tissue-specific SKM hydrogel more closely matched healthy tissue morphology. Whole transcriptome analysis indicated that the SKM hydrogel caused a shift in the inflammatory response, decreased cell death, and increased blood vessel and muscle development. These results show the efficacy of an injectable ECM hydrogel alone as a potential therapy for treating patients with PAD. Our results indicate that the SKM hydrogel improved functional outcomes through stimulation of arteriogenesis and muscle progenitor cell recruitment.

  20. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drozdova, Maria G., E-mail: drozdovamg@gmail.com [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Zaytseva-Zotova, Daria S. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Akasov, Roman A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Trubetskaya str., 8/2, Moscow 119048 (Russian Federation); Golunova, Anna S.; Artyukhov, Alexander A. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Udartseva, Olga O.; Andreeva, Elena R. [Institute of Biomedical Problems of Russian Academy of Sciences, Khoroshevskoe Shosse 76a, Moscow 123007 (Russian Federation); Lisovyy, Denis E.; Shtilman, Michael I. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Markvicheva, Elena A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation)

    2017-06-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  1. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    International Nuclear Information System (INIS)

    Drozdova, Maria G.; Zaytseva-Zotova, Daria S.; Akasov, Roman A.; Golunova, Anna S.; Artyukhov, Alexander A.; Udartseva, Olga O.; Andreeva, Elena R.; Lisovyy, Denis E.; Shtilman, Michael I.; Markvicheva, Elena A.

    2017-01-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  2. Microstructures (clumps) in turbulent plasmas

    International Nuclear Information System (INIS)

    Balescu, R.; Misguich, J.H.

    1977-01-01

    A general analysis of binary correlations in a turbulent plasma leads to a functional relation relating correlations to the one-particle distribution function. Such a relation allows to understand the mechanism of generation of the microstructures or clumps introduced by Dupree. The expressions introduced by this author appear as a lowest approximation of the general equation. The features and interpretation of these microstructures are briefly discussed [fr

  3. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function.

    Science.gov (United States)

    Kodl, Christopher T; Franc, Daniel T; Rao, Jyothi P; Anderson, Fiona S; Thomas, William; Mueller, Bryon A; Lim, Kelvin O; Seaquist, Elizabeth R

    2008-11-01

    Long-standing type 1 diabetes is associated with deficits on neurocognitive testing that suggest central white matter dysfunction. This study investigated whether diffusion tensor imaging (DTI), a type of magnetic resonance imaging that measures white matter integrity quantitatively, could identify white matter microstructural deficits in patients with long-standing type 1 diabetes and whether these differences would be associated with deficits found by neurocognitive tests. Twenty-five subjects with type 1 diabetes for at least 15 years and 25 age- and sex-matched control subjects completed DTI on a 3.0 Tesla scanner and a battery of neurocognitive tests. Fractional anisotropy was calculated for the major white matter tracts of the brain. Diabetic subjects had significantly lower mean fractional anisotropy than control subjects in the posterior corona radiata and the optic radiation (P < 0.002). In type 1 diabetic subjects, reduced fractional anisotropy correlated with poorer performance on the copy portion of the Rey-Osterreith Complex Figure Drawing Test and the Grooved Peg Board Test, both of which are believed to assess white matter function. Reduced fractional anisotropy also correlated with duration of diabetes and increased A1C. A history of severe hypoglycemia did not correlate with fractional anisotropy. DTI can detect white matter microstructural deficits in subjects with long-standing type 1 diabetes. These deficits correlate with poorer performance on selected neurocognitive tests of white matter function.

  4. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-01-01

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424

  5. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Ahasan Habib

    2018-03-01

    Full Text Available Three-dimensional (3D bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  6. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  7. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel.

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-03-20

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  8. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    Science.gov (United States)

    Sun, Hongyu; Zhou, Jing; Huang, Zhu; Qu, Linlin; Lin, Ning; Liang, Chengxiao; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2017-01-01

    Carbon nanotubes (CNTs) provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col) hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt%) exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. PMID:28450785

  9. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  10. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  11. Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings

    Energy Technology Data Exchange (ETDEWEB)

    Nazari Pour, Sedigheh [Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Ghugare, Shivkumar V. [Department of Textile Science, Faculty of Human Ecology, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Wiens, Richard; Gough, Kathleen [Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Liu, Song, E-mail: Song.Liu@umanitoba.ca [Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Department of Textile Science, Faculty of Human Ecology, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada); Department of Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada R3T 2N2 (Canada)

    2015-09-15

    Graphical abstract: - Highlights: • We grow poly(acrylamide) (PAM) hydrgol from a polymer surface in a controlled way. • Divinyl crosslinker doesn't compromise the control chain growth feature of ARGET-ATRP. • ATR-FTIR-FPA images (spatial resolution 220 nm) reveal a uniform grafting of PAM. • PAM grafted wound dressing can be dual functional: low-adherent and antibacterial. - Abstract: Well-defined polyacrylamide (PAM) hydrogel was synthesized on the surface of poly(ethylene terephthalate) (PET) film via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP). Following the deposition of an ATRP initiator (2-bromoisobutyrylbromide) on PET film, PAM hydrogel was grafted from the functionalized PET surface via ARGET-ATRP. XPS and FTIR-ATR confirmed that PAM hydrogel was successfully grafted on the PET surface. Results from AFM, SEM, and FTIR-FPA microscopic investigations showed that PAM hydrogel uniformly covers the surface of PET film. The grafting yield increases linearly with increasing reaction time, indicating that the growth of PAM hydrogel on the surface of PET is well controlled. In a cell adhesion assay, PAM hydrogel grafted PET films (PAM hydrogel-g-PET) showed low adhesion to keratinocyte cells. To impart PAM hydrogel-g-PET with antibacterial function, AgNPs were self-assembled along the amide side chains of PAM hydrogel. AgNPs loaded-PAM hydrogel-g-PET shows 99% reduction in the number of multidrug-resistant Pseudomonas aeruginosa within 3 h contact.

  12. Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings

    International Nuclear Information System (INIS)

    Nazari Pour, Sedigheh; Ghugare, Shivkumar V.; Wiens, Richard; Gough, Kathleen; Liu, Song

    2015-01-01

    Graphical abstract: - Highlights: • We grow poly(acrylamide) (PAM) hydrgol from a polymer surface in a controlled way. • Divinyl crosslinker doesn't compromise the control chain growth feature of ARGET-ATRP. • ATR-FTIR-FPA images (spatial resolution 220 nm) reveal a uniform grafting of PAM. • PAM grafted wound dressing can be dual functional: low-adherent and antibacterial. - Abstract: Well-defined polyacrylamide (PAM) hydrogel was synthesized on the surface of poly(ethylene terephthalate) (PET) film via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP). Following the deposition of an ATRP initiator (2-bromoisobutyrylbromide) on PET film, PAM hydrogel was grafted from the functionalized PET surface via ARGET-ATRP. XPS and FTIR-ATR confirmed that PAM hydrogel was successfully grafted on the PET surface. Results from AFM, SEM, and FTIR-FPA microscopic investigations showed that PAM hydrogel uniformly covers the surface of PET film. The grafting yield increases linearly with increasing reaction time, indicating that the growth of PAM hydrogel on the surface of PET is well controlled. In a cell adhesion assay, PAM hydrogel grafted PET films (PAM hydrogel-g-PET) showed low adhesion to keratinocyte cells. To impart PAM hydrogel-g-PET with antibacterial function, AgNPs were self-assembled along the amide side chains of PAM hydrogel. AgNPs loaded-PAM hydrogel-g-PET shows 99% reduction in the number of multidrug-resistant Pseudomonas aeruginosa within 3 h contact

  13. Polyvinyl alcohol hydrogels for iontohporesis

    Science.gov (United States)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  14. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    Science.gov (United States)

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S.; Dehghani, Fariba

    2015-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from

  15. A novel platelet lysate hydrogel for endothelial cell and mesenchymal stem cell-directed neovascularization.

    Science.gov (United States)

    Robinson, Scott T; Douglas, Alison M; Chadid, Tatiana; Kuo, Katie; Rajabalan, Ajai; Li, Haiyan; Copland, Ian B; Barker, Thomas H; Galipeau, Jacques; Brewster, Luke P

    2016-05-01

    Mesenchymal stem cells (MSC) hold promise in promoting vascular regeneration of ischemic tissue in conditions like critical limb ischemia of the leg. However, this approach has been limited in part by poor cell retention and survival after delivery. New biomaterials offer an opportunity to localize cells to the desired tissue after delivery, but also to improve cell survival after delivery. Here we characterize the mechanical and microstructural properties of a novel hydrogel composed of pooled human platelet lysate (PL) and test its ability to promote MSC angiogenic activity using clinically relevant in vitro and in vivo models. This PL hydrogel had comparable storage and loss modulus and behaved as a viscoelastic solid similar to fibrin hydrogels despite having 1/4-1/10th the fibrin content of standard fibrin gels. Additionally, PL hydrogels enabled sustained release of endogenous PDGF-BB for up to 20days and were resistant to protease degradation. PL hydrogel stimulated pro-angiogenic activity by promoting human MSC growth and invasion in a 3D environment, and enhancing endothelial cell sprouting alone and in co-culture with MSCs. When delivered in vivo, the combination of PL and human MSCs improved local tissue perfusion after 8days compared to controls when assessed with laser Doppler perfusion imaging in a murine model of hind limb ischemia. These results support the use of a PL hydrogel as a scaffold for MSC delivery to promote vascular regeneration. Innovative strategies for improved retention and viability of mesenchymal stem cells (MSCs) are needed for cellular therapies. Human platelet lysate is a potent serum supplement that improves the expansion of MSCs. Here we characterize our novel PL hydrogel's desirable structural and biologic properties for human MSCs and endothelial cells. PL hydrogel can localize cells for retention in the desired tissue, improves cell viability, and augments MSCs' angiogenic activity. As a result of these unique traits, PL

  16. Synthesis and Characterization of Crosslinked Hydrogel Polyacrylamide (PAAM)-Co-Alginate Prepared by Gama Irradiation

    International Nuclear Information System (INIS)

    Erizal; Tita P; Dewi SP

    2008-01-01

    Crosslinked poly(acrylamide) (PAAM)-co-alginate hydrogels were prepared by gamma irradiation (γ-irradiation) and their conditions such as irradiation dose and alginate concentration were studied. PAAM-co-alginate was crosslinked to yield water sorption materials with various ability to absorb water (swelling) depending on the preparation conditions (e.g. γ-irradiation dosage>20 kGy) and alginate concentration (0.5 - 1 wt %). With an increase of γ-irradiation dosage and alginate concentration, the gels content and water absorption were increasing markedly. The swelling properties of hydrogel in urea and NaCl solution and the effect of temperature were also investigated. Intensity decreasing of functional goups of OH and NH 2 in the IR spectrum indicated that IPN (Interpenetreting Network) structure occured in the network of hydrogels. The ability of hydrogel to absorp and retain a large amount of water suggested their possible uses in health care and agriculture. (author)

  17. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.

    Science.gov (United States)

    Song, Hyun Seok; Kwon, Oh Seok; Kim, Jae-Hong; Conde, João; Artzi, Natalie

    2017-03-15

    Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fabrication of Self-Healable and Patternable Polypyrrole/Agarose Hybrid Hydrogels for Smart Bioelectrodes.

    Science.gov (United States)

    Park, Nokyoung; Chae, Seung Chul; Kim, Il Tae; Hur, Jaehyun

    2016-02-01

    We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix. In contrast to most commercially available hydrogels, the physical crosslinking of agarose gel allows for reversible gelation in the case of our hybrid gel, which could be manipulated by temperature variation, which controls the electrical on/off behavior of the hybrid gel electrode. Exploiting this property, we fabricated a hybrid conductive hydrogel electrode which also self-heals thermally. The novel composite material we report here will be useful for many technological and biological applications, especially in reactive biomimetic functions and devices, artificial muscles, smart membranes, smart full organic batteries, and artificial chemical synapses.

  19. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  20. Efficient adsorption of Au(CN)2- from gold cyanidation with graphene oxide-polyethylenimine hydrogel as adsorbent

    Science.gov (United States)

    Yang, Lang; Jia, Feifei; Yang, Bingqiao; Song, Shaoxian

    The adsorption of gold cyanide complex ion (Au(CN)2-) on graphene oxide-polyethylenimine hydrogel (GO/PEI hydrogel) from gold cyanidation has been studied to explore the possibility of the application of GO/PEI hydrogel in gold cyanidation process for extracting gold from ores. The adsorption was carried out in artificial Au(CN)2- aqueous solution with GO/PEI hydrogel as adsorbent. The experimental results, as well as IR, XPS and SEM-EDS, have shown that GO/PEI hydrogel exhibited a high adsorption capacity and a fast adsorption rate of Au(CN)2-, suggesting that GO/PEI hydrogel might be a good adsorbent for the recovery of Au(CN)2-. The adsorption of Au(CN)2- on GO/PEI hydrogel obeyed the Langmuir isotherm model and fitted well with the pseudo second order model. The good recovery of Au(CN)2- was largely related to the porous structure, large specific surface area, as well as the oxygenous functional groups on the surface of GO/PEI hydrogel.

  1. Type II collagen-hyaluronan hydrogel – a step towards a scaffold for intervertebral disc tissue engineering

    Directory of Open Access Journals (Sweden)

    L Calderon

    2010-09-01

    Full Text Available Intervertebral disc regeneration strategies based on stem cell differentiation in combination with the design of functional scaffolds is an attractive approach towards repairing/regenerating the nucleus pulposus. The specific aim of this study was to optimise a composite hydrogel composed of type II collagen and hyaluronic acid (HA as a carrier for mesenchymal stem cells. Hydrogel stabilisation was achieved by means of 1-ethyl-3(3-dimethyl aminopropyl carbodiimide (EDC and N-hydroxysuccinimide (NHS cross-linking. Optimal hydrogel properties were determined by investigating different concentrations of EDC (8mM, 24mM and 48mM. Stable hydrogels were obtained independent of the concentration of carbodiimide used. The hydrogels cross-linked by the lowest concentration of EDC (8mM demonstrated high swelling properties. Additionally, improved proliferation of seeded rat mesenchymal stem cells (rMSCs and hydrogel stability levels in culture were observed with this 8mM cross-linked hydrogel. Results from this study indicate that EDC/NHS (8mM cross-linked type II collagen/HA hydrogel was capable of supporting viability of rMSCs, and furthermore their differentiation into a chondrogenic lineage. Further investigations should be conducted to determine its potential as scaffold for nucleus pulposus regeneration/repair.

  2. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    Science.gov (United States)

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  4. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  5. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  6. Biomimetic poly(amidoamine hydrogels as synthetic materials for cell culture

    Directory of Open Access Journals (Sweden)

    Lenardi Cristina

    2008-11-01

    Full Text Available Abstract Background Poly(amidoamines (PAAs are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine hydrogel film incorporating 4-aminobutylguanidine (agmatine moieties to create RGD-mimicking repeating units for promoting cell adhesion. Results A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. Conclusion The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.

  7. Radiologic Findings in Hydrated Hydrogel Buckles

    International Nuclear Information System (INIS)

    Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo

    2008-01-01

    Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts

  8. Radiologic Findings in Hydrated Hydrogel Buckles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-11-15

    Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts.

  9. Polysaccharides as Hydrogel and Bioplastics. Chapter 4

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Sarada Idris; Norzita Yacob; Maznah Mahmud

    2017-01-01

    The use of radiation technology in producing hydrogel is increasingly popular nowadays. The hydrogel which produce through the radiation method has it own advantages. For example, easy to operate, reduce the cost production and also decrease the harmful chemical usage such as monomer. The cross-linking bonds which has been produced this hydrogel during the irradiation process can be controlled by the radiation dosage even though using the same material and composition.

  10. Programmable display of DNA-protein chimeras for controlling cell-hydrogel interactions via reversible intermolecular hybridization.

    Science.gov (United States)

    Zhang, Zhaoyang; Li, Shihui; Chen, Niancao; Yang, Cheng; Wang, Yong

    2013-04-08

    Extensive studies have been recently carried out to achieve dynamic control of cell-material interactions primarily through physicochemical stimulation. The purpose of this study was to apply reversible intermolecular hybridization to program cell-hydrogel interactions in physiological conditions based on DNA-antibody chimeras and complementary oligonucleotides. The results showed that DNA oligonucleotides could be captured to and released from the immobilizing DNA-functionalized hydrogels with high specificity via DNA hybridization. Accordingly, DNA-antibody chimeras were captured to the hydrogels, successfully inducing specific cell attachment. The cell attachment to the hydrogels reached the plateau at approximately half an hour after the functionalized hydrogels and the cells were incubated together. The attached cells were rapidly released from the bound hydrogels when triggering complementary oligonucleotides were introduced to the system. However, the capability of the triggering complementary oligonucleotides in releasing cells was affected by the length of intermolecular hybridization. The length needed to be at least more than 20 base pairs in the current experimental setting. Notably, because the procedure of intermolecular hybridization did not involve any harsh condition, the released cells maintained the same viability as that of the cultured cells. The functionalized hydrogels also exhibited the potential to catch and release cells repeatedly. Therefore, this study demonstrates that it is promising to regulate cell-material interactions dynamically through the DNA-programmed display of DNA-protein chimeras.

  11. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    Science.gov (United States)

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  13. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    International Nuclear Information System (INIS)

    Kirf, Dominik; Devery, Sinead M; Higginbotham, Clement L; Rowan, Neil J

    2010-01-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  14. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirf, Dominik; Devery, Sinead M [Department of Life and Physical Science, Athlone Institute of Technology (Ireland); Higginbotham, Clement L [Materials Research Institute, Athlone Institute of Technology (Ireland); Rowan, Neil J, E-mail: sdevery@ait.i, E-mail: dkirf@ait.i, E-mail: chigginbotham@ait.i, E-mail: nrowan@ait.i [Department of Nursing and Health Science, Athlone Institute of Technology (Ireland)

    2010-06-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  15. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Faisal Raza

    2018-01-01

    Full Text Available Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications.

  16. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers.

    Science.gov (United States)

    Raza, Faisal; Zafar, Hajra; Zhu, Ying; Ren, Yuan; -Ullah, Aftab; Khan, Asif Ullah; He, Xinyi; Han, Han; Aquib, Md; Boakye-Yiadom, Kofi Oti; Ge, Liang

    2018-01-18

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today's world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, "release mechanisms" their physical and chemical characteristics and diverse applications.

  17. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    Science.gov (United States)

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Della Giustina, Gioia; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-06-01

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures. The design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking is reported. Significantly, topological and mechanical conditions of polymerized gelatin structures were suitable for cell accommodation in the volume of the woodpiles, leading to a cell density per unit area comparable to the bare substrate. The fabricated structures, presenting micrometric features of high resolution, are actively deformed by cells, both in terms of cell invasion within rods and of cell attachment in-between contiguous woodpiles. Possible biological targets for this 3D approach are customized 3D tissue models, or studies of cell adhesion

  18. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Lei; Yao, Yongchang; Wang, Dong-an; Chen, Xiaofeng

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis

  19. Characterization of the Properties of Photopatterned Hydrogels for Use in Regenerative Medicine

    Science.gov (United States)

    Fiedler, Callie Irene

    The goal of this thesis was to locally photopattern cytocompatible hydrogels to exhibit a wide range of mechanical properties and to probe the fundamental parameters governing these materials printed via stereolithography (SLA). Fabricating cell-laden structures with locally defined mechanical properties is non-trivial because the use of multiple precursor materials is wasteful, slow, and can lead to cell-death. To investigate the range of mechanical properties a single precursor solution can produce, I initially formed a single-network hydrogel and cyclically in- swelled fresh precursor solution followed by photo-exposure of the swollen gel ("swelling + exposure" or SE cycle). Because transport (i.e., diffusion and swelling) can occur on the same time scale as photopolymerization reaction kinetics, I first characterized the variable modulus hydrogels in bulk to isolate the reaction kinetics. In these experiments, I demonstrated the ability modify the mechanical and chemical (i.e., compressive modulus, toughness, crosslink density, swelling ratio) properties by up to 10-fold using only 2-4 SE cycles. I then used the understanding gained via these bulk experiments to locally photopattern the elastic modulus of a cytocompatible hydrogel with pixel-limited resolution (˜10s mum) employing a custom SLA system. Here I demonstrated the ability to fabricate hydrogels with a 500% elastic moduli increase with respect to the unpatterned hydrogel using atomic force microscopy. I monitored monomer attachment to the existing matrix as a function of SE cycle using confocal fluorescence microscopy to characterize the shape and size of printed features. I validated that the dependence of these features on material and processing conditions could be explained by a first-order reaction/diffusion model. With this understanding, I fabricated SLA 3D printed, soft, cytocompatible hydrogels (˜10s kPa) with ˜250 mum channels in addition to fabricating 3D printed stiff, cytocompatible

  20. Radiation synthesis of super absorbent PAAm/PAAc-Na hydrogels to enhance sandy soil water retention

    International Nuclear Information System (INIS)

    Abd El-Mohdy, H.L.; Hegazy, E.A.; Farag, S.A.; Abd El-Rasoul, Sh.M.; Ragab, A.M.; Tantawy, E.A.

    2009-01-01

    Preparation of super absorbent hydrogels obtained by radiation induced cross linking of polyacrylamide (PAAm) and poly sodium acrylate (PAAc-Na) was investigated for possible uses in agricultural fields . The swelling of the investigated hydrogels was mainly related to the type of their hydrophilic functional groups and/or the presence of polarized charges. The preparation conditions, such as irradiation dose and hydrogel blend compositions that influence the swelling of PAAm/PAAc-Na copolymers and alter their gel content and cross linking density were investigated. The higher the irradiation dose, the higher the gel content, and the lower the swelling ratio. The effect of some external parameters such as nutrient concentration, ph, and temperature on the swelling behaviour of prepared hydrogels was studied. studies were also made on the applications of such hydrogels to improve the physical and water retention properties of sandy soil for agricultural purposes. The experiments' design was complete randomized block with different doses of hydrogel as 5,10,15,20 and 25 kg/feddan (fed). Hydrogel granules added with peanut seeds during sowing , these plots received irrigation by sprinkle system two times daily during 6 days per week even near harvesting . Whereas control plants were irrigate two times daily during 7 days of the week. The parameters of productivity as morphological characters, NPK uptake and microbiological data were obtained during growth and harvesting . The effect of hydrogel doses on total bacterial counts (TBC) and nitrogen fixing bacteria (NFB) in the rhizosphere plant was studied after 45 days and at harvest

  1. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  2. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies.

    Science.gov (United States)

    Demitri, Christian; Sannino, Alessandro; Conversano, Francesco; Casciaro, Sergio; Distante, Alessandro; Maffezzoli, Alfonso

    2008-11-01

    Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).

  3. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    Science.gov (United States)

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  4. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  5. Fluorescent probe encapsulated hydrogel microsphere for selective and reversible detection of Hg{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenhu; Wang, Fang; Qiang, Jian; Zhang, Zhijie; Chen, Yahui; Wang, Yong; Zhang, Wei; Chen, Xiaoqiang

    2017-03-15

    We developed a simple and sensitive hydrogel sensor in the form of microspheres by using fluorescence probe encapsulated within a hydrogel matrix for the detection of Hg{sup 2+}. The traditional fluorescence probes suspended in solution are not transportable and recoverable. To overcome these disadvantages, we devised poly(ethylene glycol) diacrylate-based hydrogel microspheres in which fluorescence probe (R19S) was embedded at high density. The functionalized hydrogel microspheres were prepared by combining a microfluidic device with UV light. The hydrogel microspheres-based sensor exhibited good selectivity to Hg{sup 2+} among various metal ions and high sensitivity with a detection limit of 90 nM. Furthermore, after binding with Hg{sup 2+}, the R19S encapsulated hydrogel microspheres can be separated from testing samples easily and treated with the solution containing KI to remove Hg{sup 2+} and realize reusable detection. The current work may offer a new method for Hg{sup 2+} recognition with a more efficient manner.

  6. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  7. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    Science.gov (United States)

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Electronic structure, magnetic properties, and microstructural analysis of thiol-functionalized Au nanoparticles: role of chemical and structural parameters in the ferromagnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Estefania; Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.e [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Fernandez-Pinel, Enrique; Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain)

    2008-12-15

    Gold nanoparticles (NPs) have been stabilized with a variety of thiol-containing molecules in order to change their chemical and physical properties; among the possible capping systems, alkane chains with different lengths, a carboxylic acid and a thiol-containing biomolecule (tiopronin) have been selected as protecting shells for the synthesized NPs; the NPs solubility in water or organic solvents is determined by the protecting molecule. A full microstructural characterization of these NPs is presented in the current research work. It has been shown that NPs capped with alkanethiol chains have a marked ferromagnetic behaviour which might also be dependent on the chain length. The simultaneous presence of Au-Au and Au-S bonds together with a reduced particle diameter, and the formation of an ordered monolayer protective shell, have proved to be key parameters for the ferromagnetic-like behaviour exhibited by thiol-functionalized gold NPs.

  9. Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors.

    Science.gov (United States)

    Ladet, S G; Tahiri, K; Montembault, A S; Domard, A J; Corvol, M-T M

    2011-08-01

    We investigated the bioactivity of new chitosan-based multi-membrane hydrogel (MMH) architectures towards chondrocyte-like cells. The microstructure of the hydrogels constituting the membranes precludes any living cell penetration, whereas their lower scale architecture allows the protein diffusion. The biological behavior of chondrocytes implanted within the MMH inter-membrane spaces was studied for 45 days in culture. Chondrocytes formed cell aggregates and proliferated without loosing their chondrogenic phenotype as illustrated by collagen II and aggrecan expressions at the mRNA and protein levels. Cells produced neo-formed alcyan blue matrix proteins filling MMH interspaces. The HiF-2α/SOX9 pattern of expression suggested that the elevated chondrocytic phenotype in MMH could be related to a better hypoxic local environment than in classical culture conditions. Pro-inflammatory markers were not expressed during the period of culture. The low level of nitric oxide accumulation within the inter-membrane spaces and in the incubation medium implied that chitosan consumed nitrites produced by entrapped chondrocytes, in relation with the decrease of its molecular weight of 50%. Our data suggest that MMH structures may be considered as complex chondrocytic cell bioreactors; "active decoys of biological media", potentially promising for various biomedical applications like the inter-vertebral disk replacement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nieves Iglesias

    2018-04-01

    Full Text Available The present work deals with the synthesis of micro-structured biomaterials based on chitosan (CTS for their applications as biocompatible carriers of drugs and bioactive compounds. Twelve dispersions were prepared by means of functional cross-linking with tricarballylic acid (TCA; they were characterized by Fourier transform infrared spectroscopy (FT-IR, modulated temperature differential scanning calorimetry (MTDSC and scanning electron microscopy (SEM, and their rheological properties were studied. To the best of the authors’ knowledge, no study has been carried out on the influence of CTS concentration, degree of cross-linking and drug loading on chitosan hydrogels for drug delivery systems (DDS and is investigated herein for the first time. The influence of dispersion composition (polymer concentration and degree of cross-linking revealed to exert a marked impact on its rheological properties, going from liquid-like to viscoelastic gels. The release profiles of a model drug, diclofenac sodium (DCNa, as well as their relationships with polymer concentration, drug loading and degree of cross-linking were evaluated. Similar to the findings on rheological properties, a wide range of release profiles was encountered. These formulations were found to display a well-controlled drug release strongly dependent on the formulation composition. Cumulative drug release under physiological conditions for 96 h ranged from 8% to 67%. For comparative purpose, Voltaren emulgel® from Novartis Pharmaceuticals was also investigated and the latter was the formulation with the highest cumulative drug release (85%. Some formulations showed similar spreadability values to the commercial hydrogel. The comparative study of three batches confirmed the reproducibility of the method, leading to systems particularly suitable for their use as drug carriers.

  11. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  12. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  13. Strain and defect microstructure in ion-irradiated GeSi/Si strained layers as a function of annealing temperature

    International Nuclear Information System (INIS)

    Glasko, J.M.; Elliman, R.G.; Zou, J.; Cockayne, D.J.H.; Fitz Gerald, J.D.

    1998-01-01

    High energy (1 MeV), ion irradiation of GeSi/Si strained layers at elevated temperatures can cause strain relaxation. In this study, the effect of subsequent thermal annealing was investigated. Three distinct annealing stages were identified and correlated with the evolution of the defect microstructure. In the temperature range from 350 to 600 deg C, a gradual recovery of strain is observed. This is believed to result from the annealing of small defect clusters and the growth of voids. The voids are visible at annealing temperatures in excess of 600 deg C, consistent with an excess vacancy concentration in the irradiated alloy layer. The 600 to 750 deg C range is marked by pronounced maximal recovery of strain, and is correlated with the dissolution of faulted loops in the substrate. At temperatures in the range 750-1000 deg C, strain relaxation is observed and is correlated with the growth of intrinsic dislocations within the alloy layer. These dislocations nucleate at the alloy-substrate interface and grow within the alloy layer, towards the surface. (authors)

  14. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks

    NARCIS (Netherlands)

    Zant, Erwin; Grijpma, Dirk W.

    Major drawbacks of synthetic hydrogels are their poor mechanical properties and their limited ability to allow cell attachment and proliferation. By photo-cross-linking mixtures of dimethacrylate-functionalized oligomers (macromers) in a combinatorial manner in solution, synthetic hydrogels with

  15. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the

  16. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  17. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  18. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.

    Science.gov (United States)

    Guo, Jingjing; Liu, Xinyue; Jiang, Nan; Yetisen, Ali K; Yuk, Hyunwoo; Yang, Changxi; Khademhosseini, Ali; Zhao, Xuanhe; Yun, Seok-Hyun

    2016-12-01

    A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biomolecule-Responsive Hydrogels in Medicine.

    Science.gov (United States)

    Sharifzadeh, Ghorbanali; Hosseinkhani, Hossein

    2017-12-01

    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and characterization of superabsorbent hydrogel based ...

    African Journals Online (AJOL)

    The hydrogels structure was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effect of grafting variables, that is, AA/AN weight ratio and concentration of MBA and APS, was systematically optimized to achieve a hydrogel with ...

  1. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    Science.gov (United States)

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Rabinarayan parhi

    2017-12-01

    Full Text Available Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed.

  3. Radiochemical preparation of PAAM hydrogels and their usage in agriculture

    International Nuclear Information System (INIS)

    Yousefzadeh, P.; Khajavi, M.; Sohrabpour, M.

    1994-01-01

    The polyacrylamide (PAAm) hydrogels are crosslinked polymers and have the interesting ability to release the retained additives to the surrounding media in a controlled manner. This property in turn may have application in agriculture (fertilizers, pesticides) or in medicine, etc. In this study PAAm aqueous solutions were irradiated by varying doses to find the optimum gelation dose and to investigate the following: 1. Radiation induced crosslinking of PAAm. 2. Effect of additives' concentration on the degree of crosslinking. 3. Measurement of the release rate of the additives (pesticides, microelements) versus different soil type and the gel granule size. The results show that the release rate of the additives is not a function of soil type but it rather depends on the background moisture content as well as on the hydrogel particle size. (author)

  4. Promotion of peripheral nerve regeneration of a peptide compound hydrogel scaffold

    Directory of Open Access Journals (Sweden)

    Wei GJ

    2013-08-01

    Full Text Available Guo-Jun Wei,1 Meng Yao,1 Yan-Song Wang,1 Chang-Wei Zhou,1 De-Yu Wan,1 Peng-Zhen Lei,1 Jian Wen,1 Hong-Wei Lei,2 Da-Ming Dong1 1Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; 2Department of Rheumatology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China Background: Peripheral nerve injury is a common trauma, but presents a significant challenge to the clinic. Silk-based materials have recently become an important biomaterial for tissue engineering applications due to silk’s biocompatibility and impressive mechanical and degradative properties. In the present study, a silk fibroin peptide (SF16 was designed and used as a component of the hydrogel scaffold for the repair of peripheral nerve injury. Methods: The SF16 peptide’s structure was characterized using spectrophotometry and atomic force microscopy, and the SF16 hydrogel was analyzed using scanning electron microscopy. The effects of the SF16 hydrogel on the viability and growth of live cells was first assessed in vitro, on PC12 cells. The in vivo test model involved the repair of a nerve gap with tubular nerve guides, through which it was possible to identify if the SF16 hydrogel would have the potential to enhance nerve regeneration. In this model physiological saline was set as the negative control, and collagen as the positive control. Walking track analysis and electrophysiological methods were used to evaluate the functional recovery of the nerve at 4 and 8 weeks after surgery. Results: Analysis of the SF16 peptide’s characteristics indicated that it consisted of a well-defined secondary structure and exhibited self-assembly. Results of scanning electron microscopy showed that the peptide based hydrogel may represent a porous scaffold that is viable for repair of peripheral nerve injury. Analysis of cell culture also supported that the hydrogel was an effective

  5. A phytomodulatory hydrogel with enhanced healing effects.

    Science.gov (United States)

    Vasconcelos, Mirele S; Souza, Tamiris F G; Figueiredo, Ingrid S; Sousa, Emília T; Sousa, Felipe D; Moreira, Renato A; Alencar, Nylane M N; Lima-Filho, José V; Ramos, Márcio V

    2018-04-01

    The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1β, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Arct'Alg release from hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata H.; Rogero, Sizue O.; Shihomatsu, Helena M.; Lugao, Ademar B.

    2009-01-01

    The hydrogel properties make them attractive for a variety of biomedical and pharmaceutical applications, primarily in drug delivery system. Synthetic hydrogels have been studied to develop new devices for drugs or cosmetic active agents release. Arct'Alg R is an extract derived from red algae biomass which has antioxidant, anti-inflammatory and tissue regeneration stimulant properties. This extract was incorporated to poly(N-vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) hydrogel membranes obtained by gamma rays crosslinking technique. The ionizing radiation presents the advantage to occur polymerization and sterilization simultaneously in the same process. The aim of this work was the in vitro release kinetic study of Arct'Alg R from hydrogel membranes during 24 hours to verify the possibility of use in cosmetic and dermatological treatments. Results showed that about 50% and 30% of incorporated Arct'Alg R was released from PVP and PVA hydrogel membrane devices respectively. (author)

  7. Hybrid hydrogels produced by ionizing radiation technique

    Science.gov (United States)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  8. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    Science.gov (United States)

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design

  9. Functional activity and white matter microstructure reveal the independent effects of age of acquisition and proficiency on second-language learning.

    Science.gov (United States)

    Nichols, Emily S; Joanisse, Marc F

    2016-12-01

    Two key factors govern how bilingual speakers neurally maintain two languages: the speakers' second language age of acquisition (AoA) and their subsequent proficiency. However, the relative roles of these two factors have been difficult to disentangle given that the two can be closely correlated, and most prior studies have examined the two factors in isolation. Here, we combine functional magnetic resonance imaging with diffusion tensor imaging to identify specific brain areas that are independently modulated by AoA and proficiency in second language speakers. First-language Mandarin Chinese speakers who are second language speakers of English were scanned as they performed a picture-word matching task in either language. In the same session we also acquired diffusion-weighted scans to assess white matter microstructure, along with behavioural measures of language proficiency prior to entering the scanner. Results reveal gray- and white-matter networks involving both the left and right hemisphere that independently vary as a function of a second-language speaker's AoA and proficiency, focused on the superior temporal gyrus, middle and inferior frontal gyrus, parahippocampal gyrus, and the basal ganglia. These results indicate that proficiency and AoA explain separate functional and structural networks in the bilingual brain, which we interpret as suggesting distinct types of plasticity for age-dependent effects (i.e., AoA) versus experience and/or predisposition (i.e., proficiency). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Synthesis and Characterization of Superabsorbent Sodium Alginate-G-Poly (Potassium Acrylate Hydrogels Prepared By Using Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    Erizal Erizal

    2017-07-01

    Full Text Available The aim of this research was to use gamma rays as sources for the preparation of superabsorbent hydrogels through radiation induced copolymerization. A series of superabsorbent hydrogels were prepared from aqueous solution containing partially neutralized acrylic acid (15% with different sodium alginate (NaAlg concentrations (0.5% to 1.5% by ionizing gamma irradiation (10 kGy to 40 kGy at room temperature. The effect of NaAlg concentration and irradiation doses on the water absorption behavior of the obtained hydrogels was investigated. The structural changes of hydrogels were characterized using Fourier Transform Infrared (FTIR whereas the morphologies of hydrogels were examined using Scanning Electron Microscope (SEM. The results showed the swelling of hydrogel in water and NaCl solution increases with increasing NaAlg concentration and decreases with increasing irradiation dose up to 40 kGy. The extend of gel fraction increases as a function of NaAlg concentration. The results of FTIR analysis revealed that acrylic acid and sodium alginate had been successfully grafted, while SEM examination showed that the hydrogels demonstrated large numbers of pores.     

  11. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiankang, E-mail: jiankanghe@mail.xjtu.edu.cn; Chen, Ruomeng; Lu, Yongjie; Zhan, Li; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2016-02-01

    It is a huge challenge to engineer vascular networks in vital organ tissue engineering. Although the incorporation of artificial microfluidic network into thick tissue-engineered constructs has shown great promise, most of the existing microfluidic strategies are limited to generate rectangle cross-sectional channels rather than circular vessels in soft hydrogels. Here we present a facile approach to fabricate branched microfluidic network with circular cross-sections in gelatin hydrogels by combining micromolding and enzymatically-crosslinking mechanism. Partially crosslinked hydrogel slides with predefined semi-circular channels were molded, assembled and in situ fully crosslinked to form a seamless and circular microfluidic network. The bonding strength of the resultant gelatin hydrogels was investigated. The morphology and the dimension of the resultant circular channels were characterized using scanning electron microscopy (SEM) and micro-computerized tomography (μCT). Computational fluid dynamic simulation shows that the fabrication error had little effect on the distribution of flow field but affected the maximum velocity in comparison with designed models. The microfluidic gelatin hydrogel facilitates the attachment and spreading of human umbilical endothelial cells (HUVECs) to form a uniform endothelialized layer around the circular channel surface, which successfully exhibited barrier functions. The presented method might provide a simple way to fabricate circular microfluidic networks in biologically-relevant hydrogels to advance various applications of in vitro tissue models, organ-on-a-chip systems and tissue engineering. - Highlights: • A facile method was proposed to build a circular fluidic network in gelatin hydrogel. • The fluidic network is mechanically robust and supports physiological flow. • HUVECs formed endothelialized layer around the channel to express barrier function.

  13. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels.

    Science.gov (United States)

    Kilic Bektas, Cemile; Hasirci, Vasif

    2018-04-01

    Cell-laden methacrylated gelatin (GelMA) hydrogels with high (approximately 90%) transparency were prepared to mimic the natural form and function of corneal stroma. They were synthesized from GelMA with a methacrylation degree of 70% as determined by nuclear magnetic resonance. Hydrogels were strong enough to withstand handling. Stability studies showed that 87% of the GelMA hydrogels remained after 21 days in phosphate buffered saline (PBS). Cell viability in the first 2 days was over 90% for the human keratocytes loaded in the gels as determined with the live-dead analysis. Cells in the hydrogel elongated and connected to each other as observed by confocal laser scanning microscopy (CLSM) images and scanning electron microscope analysis after 3 weeks in the culture medium and cells were seen to be distributed throughout the hydrogel bulk. Cells were found to synthesize collagen Types I and V, decorin, and biglycan (representative collagens and proteoglycans of human corneal stroma, respectively) showing that keratocytes maintained their functions and preserved their phenotypes in the hydrogels. Transparency of cell-loaded and cell-free hydrogels after 21 days was found to be over 90% at all time points in the visible light range and was comparable to the transparency of the native cornea. The corneal stroma equivalent produced in this study that has cells entrapped in it leads to a product with homogenous distribution of cells. It was transparent at the very beginning and is expected to allow better vision than nontransparent substrates. It, therefore, has a significant potential to be used as an alternative to the current products used to treat corneal blindness. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Development and Characterization of UHMWPE Fiber-Reinforced Hydrogels For Meniscal Replacement

    Science.gov (United States)

    Holloway, Julianne Leigh

    biocompatible PVA grafting technique was developed to form a direct covalent linkage at the fiber-matrix interface. Chemical grafting was tailored as a function of the number of sites available for covalent bonding and the percentage of sites reacted. PVA grafting resulted in significant improvements to interfacial shear strength from 11 kPa without any treatment to above 220 kPa following grafting. After grafting, failure was observed cohesively within the PVA hydrogel indicating the UHMWPE-PVA interface was successfully optimized. Lastly, in vitro gait simulations and an in vivo sheep study demonstrated the feasibility and biocompatibility of the proposed UHMWPE-PVA composite. The results from this work can be applied to designing materials for other soft tissue applications, including the anterior cruciate ligament (ACL) and the annulus fibrosus.

  15. Evaluation of a novel thermosensitive heparin-poloxamer hydrogel for improving vascular anastomosis quality and safety in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Ying-Zheng Zhao

    Full Text Available Despite progress in the design of advanced surgical techniques, stenosis recurs in a large percentage of vascular anastomosis. In this study, a novel heparin-poloxamer (HP hydrogel was designed and its effects for improving the quality and safety of vascular anastomosis were studied. HP copolymer was synthesized and its structure was confirmed by Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance spectroscopy ((1H-NMR. Hydrogels containing HP were prepared and their important characteristics related to the application in vascular anastomosis including gelation temperature, rheological behaviour and micromorphology were measured. Vascular anastomosis were performed on the right common carotid arteries of rabbits, and the in vivo efficiency and safety of HP hydrogel to achieve vascular anastomosis was verified and compared with Poloxamer 407 hydrogel and the conventional hand-sewn method using Doppler ultrasound, CT angiograms, scanning electron microscopy (SEM and histological technique. Our results showed that HP copolymer displayed special gel-sol-gel phase transition behavior with increasing temperature from 5 to 60 °C. HP hydrogel prepared from 18 wt% HP solution had a porous sponge-like structure, with gelation temperature at approximately 38 °C and maximum elastic modulus at 10,000 Pa. In animal studies, imaging and histological examination of rabbit common jugular artery confirmed that HP hydrogel group had similar equivalent patency, flow and burst strength as Poloxamer 407 group. Moreover, HP hydrogel was superior to poloxamer 407 hydrogel and hand-sewn method for restoring the functions and epithelial structure of the broken vessel junctions after operation. By combining the advantages of heparin and poloxamer 407, HP hydrogel holds high promise for improving vascular anastomosis quality and safety.

  16. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications

    OpenAIRE

    Bourke, Sharon L.; Al-Khalili, Mohammad; Briggs, Tonye; Michniak, Bozena B.; Kohn, Joachim; Poole-Warren, Laura A.

    2003-01-01

    The objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug. TI permeability was altered by changing the solids content of the gel and by adding hydrophilic PVA fillers. As...

  17. Synthesis of PVA Hydrogel for Prosthetic Discus Nucleus Pulposus: Formation of Interpenetrating Polymer Network (IPN) PVA Hydrogel by Gamma Rays

    International Nuclear Information System (INIS)

    Darwis, Darmawan; Erizal; Lely Hardiningsih; Razzak, Mirzan T.

    2004-01-01

    Research on synthesis of IPN PVA hydrogel for using as prosthetic discus nucleus has been carried out. Base hydrogel network (network I) was made by reacting the solution of polyvinyl alcohol (PVA) 10 - 15 % w/w with formaldehyde at 80 o C for several hours. Hydrogel network II (as IPN network) was then made by immersion of base hydrogel into polymer solution (PVP or PVA) until hydrogel swell to equilibrium volume. The hydrogel then irradiated using gamma rays at various doses. The results show that IPN PVA-PVP and IPN PVA-PVP hydrogels have higher compression strength compared to base hydrogel. IPN PVA-PVA hydrogel made by irradiating base hydrogel (immersed into polymer solution) with 25, 50 and 100 kGy have compression strength at 5 mm displacement 2.72; 2.83; and 3.25 kg/cm 2 respectively, While base hydrogel has compression strength of 1.75 kg/cm 2 . IPN PVA-PVP and PVA-PVA hydrogels made by irradiating base hydrogel with 100 kGy still retain high water content i.e. 72 and 74 % respectively. Beside that they show good re-absorption property after compression treatment that is hydrogel can return to the original shape after compressed to 12 mm displacement (80% of initial height on hydrogel) at relatively short time, less than 15 minutes. (author)

  18. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair.

    Science.gov (United States)

    Soucy, Jonathan R; Shirzaei Sani, Ehsan; Portillo Lara, Roberto; Diaz, David; Dias, Felipe; Weiss, Anthony S; Koppes, Abigail N; Koppes, Ryan A; Annabi, Nasim

    2018-05-09

    Suturing peripheral nerve transections is the predominant therapeutic strategy for nerve repair. However, the use of sutures leads to scar tissue formation, hinders nerve regeneration, and prevents functional recovery. Fibrin-based adhesives have been widely used for nerve reconstruction, but their limited adhesive and mechanical strength and inability to promote nerve regeneration hamper their utility as a stand-alone intervention. To overcome these challenges, we engineered composite hydrogels that are neurosupportive and possess strong tissue adhesion. These composites were synthesized by photocrosslinking two naturally derived polymers, gelatin-methacryloyl (GelMA) and methacryloyl-substituted tropoelastin (MeTro). The engineered materials exhibited tunable mechanical properties by varying the GelMA/MeTro ratio. In addition, GelMA/MeTro hydrogels exhibited 15-fold higher adhesive strength to nerve tissue ex vivo compared to fibrin control. Furthermore, the composites were shown to support Schwann cell (SC) viability and proliferation, as well as neurite extension and glial cell participation in vitro, which are essential cellular components for nerve regeneration. Finally, subcutaneously implanted GelMA/MeTro hydrogels exhibited slower degradation in vivo compared with pure GelMA, indicating its potential to support the growth of slowly regenerating nerves. Thus, GelMA/MeTro composites may be used as clinically relevant biomaterials to regenerate nerves and reduce the need for microsurgical suturing during nerve reconstruction.

  19. Gelatin-Based Hydrogels for Organ 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-08-01

    Full Text Available Three-dimensional (3D bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.

  20. Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries.

    Science.gov (United States)

    Rickett, Todd A; Amoozgar, Zohreh; Tuchek, Chad A; Park, Joonyoung; Yeo, Yoon; Shi, Riyi

    2011-01-10

    Restoring continuity to severed peripheral nerves is crucial to regeneration and enables functional recovery. However, the two most common agents for coaptation, sutures and fibrin glues, have drawbacks such as inflammation, pathogenesis, and dehiscence. Chitosan-based adhesives are a promising alternative, reported to have good cytocompatibility and favorable immunogenicity. A photo-cross-linkable hydrogel based on chitosan is proposed as a new adhesive for peripheral nerve anastomosis. Two Az-chitosans were synthesized by conjugating 4-azidobenzoic acid with low (LMW, 15 kDa) and high (HMW, 50-190 kDa) molecular weight chitosans. These solutions formed a hydrogel in less than 1 min under UV light. The LMW Az-chitosan was more tightly cross-linked than the HMW variant, undergoing significantly less swelling and possessing a higher rheological storage modulus, and both Az-chitosan gels were stiffer than commercial fibrin glue. Severed nerves repaired by Az-chitosan adhesives tolerated longitudinal forces comparable or superior to fibrin glue. Adhesive exposure to intact nerves and neural cell culture showed both Az-chitosans to be nontoxic in the acute (minutes) and chronic (days) time frames. These results demonstrate that Az-chitosan hydrogels are cytocompatible and mechanically suitable for use as bioadhesives in peripheral neurosurgeries.

  1. Animal models used for testing hydrogels in cartilage regeneration.

    Science.gov (United States)

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Nanoparticle diffusometry in hydrogels

    NARCIS (Netherlands)

    Kort, de D.W.

    2016-01-01

    In order to understand food product functionality such as elastic and flow behavior and mass transport properties, one first has to understand the multi-length-scale structure of the material. The aim of this work is to explore novel methodologies to study and characterize multi-length-scale

  3. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hybrid hydrogels produced by ionizing radiation technique

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Amato, V.S.; Lugão, A.B.; Parra, D.F.

    2012-01-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling. - Highlights: ► Chemical interaction is observed when nanoclay is irradiated in PVAl hybrid hydrogels. ► Osmotic pressure within network promotes the rehydration capacity of the membranes. ► This effect is an important characteristic for hydrogels drug delivery systems.

  5. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  6. Thermal gelation and tissue adhesion of biomimetic hydrogels

    International Nuclear Information System (INIS)

    Burke, Sean A; Ritter-Jones, Marsha; Lee, Bruce P; Messersmith, Phillip B

    2007-01-01

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 0 C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues

  7. Obtaining membranes for alternative treatment hydrogels of cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    Oliveira, Maria Jose Alves de

    2013-01-01

    Polymeric Hydrogels formed by crosslinked polymeric chains were obtained by ionizing radiation process according to Rosiak technique. In the last 40 years the use of hydrogels has been investigated for various applications as curatives. In this work hydrogel membranes were synthesized with poly (N-2-pyrrolidone) (PVP), poly (vinyl alcohol) (PVA), chitosan and laponita clay for use as a vehicle for controlled glucantime release on the surface of skin tissues injured by leishmaniasis. Leishmaniasis is a disease caused by a protozoan parasite of the genus Leishmania transmitted by the bite of phlebotomies sandfly. The traditional treatment of patients infected by these parasites is done with pentavalent antimony in injectable form. However, these antimonates are highly toxic and cause side effects in these patients. In addition, patients with heart and kidney disease can not use this treatment. In treatment with drug delivery hydrogel membrane applied on the surface of leishmaniasis injured tissues the drug is released directly to the wound in a controlled manner, reducing the side effects. Membranes prepared in this study were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), swelling, gel fraction, infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The characterizations of cytotoxicity and drug release were made 'in vitro' and 'in vivo' with functional test according to ethical protocol of the Division of Infectious and Parasitic Diseases at the Hospital of Clinics, Sao Paulo University-School of Medicine, University. The 'in vivo' test of these membranes proved to be effective in controlled release of drugs directly into leishmaniasis damaged tissues. Results of 'in vivo' tests using PVP/PVAl / clay 1,5% and glucantime membrane showed remarkable contribution to wound reduction and cure in clinical therapy. (author)

  8. A novel chondroitin sulfate hydrogel for nerve repair

    Science.gov (United States)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  9. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    Science.gov (United States)

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable

  10. The Microstructure Organization and Functional Peculiarities of Euphorbia paralias L. and Polygonum maritimum L. – Halophytic Plants from Dunes of Pomorie Lake (Bulgaria

    Directory of Open Access Journals (Sweden)

    I.V. Kosakivska

    2017-05-01

    Full Text Available The aim of this research was to investigate the leaf surface microstructure, pigments spectrum, hormones status and lipids composition of halophytes Polygonum maritimum L. and Euphorbia paralias L. that grow under natural conditions on the dunes of Pomorie Lake, (Bulgaria. It was shown that the existence in saline and dry soils provided among others adaptive mechanisms by specific microstructure of leaf. The adaxial and abaxial surfaces of P. maritimum leaves are covered with a dense layer of cuticle wax, stomata are located on the leaf both sides below the cuticle level. In E. paralias the cuticle is also well developed on the adaxial surface of leaf laminas. The epidermis of the leaf lower side is covered with a less dense cuticle layer formed by large wax crystals. This plant has stoma pores only on the abaxial side of small leaves below the cuticle level and they are surrounded with hump-shaped cuticle constructions. A high amount of carotenoids (as compared with that of chlorophylls in P. maritimum leaves indicates that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. The high performance liquid chromatography method has been used to provide a qualitative and quantitative analysis of hormones. It was shown that in leaves of E. paralias and P. maritimum free abscisic (ABA and conjugated indole-3-acetic (IAA acids prevailed. A high level of active ABA is correlated with the salt tolerance and ability to survive and grow in stress conditions. A high level of conjugated form of IAA demonstrated that activity of this hormone is limited. The cytokinins qualitative and quantitative analyses demonstrated that in E. paralias leaves zeatin forms dominated, and the level of inactive cytokinins (cis-zeatin and zeatin-O-glucoside was much higher than that of active ones (trans-zeatin and zeatin riboside. P. maritinum leaves contained a significant quantity of isopentenyl forms

  11. Development of polymer-polysaccharide hydrogels for controlling drug delivery

    Science.gov (United States)

    Baldwin, Aaron David

    The use of polymers as biomaterials has evolved over the past several decades, encompassing an expanding synthetic toolbox and many bio-mimetic approaches. Both synthetic and natural polymers have been used as components for biomaterials as their unique chemical structures can provide specific functions for desired applications. Of these materials, heparin, a highly sulfated naturally occurring polysaccharide, has been investigated extensively as a core component in drug delivery platforms and tissue engineering. The goal of this work was to further explore the use of heparin via conjugation with synthetic polymers for applications in drug delivery. We begin by investigating low molecular weight heparin (LMWH), a depolymerized heparin that is used medicinally in the prevention of thrombosis by subcutaneous injection or intravenous drip. Certain disease states or disorders require frequent administration with invasive delivery modalities leading to compliance issues for individuals on prolonged therapeutic courses. To address these issues, a long-term delivery method was developed for LMWH via subcutaneous injection of in situ hydrogelators. This therapy was accomplished by chemical modification of LMWH with maleimide functionality so that it may be crosslinked into continuous hydrogel networks with four-arm thiolated polyethylene glycol (PEG-SH). These hydrogels degrade via hydrolysis over a period of weeks and release bioactive LMWH with first-order kinetics as determined by in vitro and in vivo models, thus indicating the possibility of an alternative means of heparin delivery over current accepted methodologies. Evaluation of the maleimide-thiol chemistries applied in the LMWH hydrogels revealed reversibility for some conjugates under reducing conditions. Addition chemistries, such as maleimide-thiol reactions, are widely employed in biological conjugates and are generally accepted as stable. Here we show that the resulting succinimide thioether formed by the

  12. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel

    Directory of Open Access Journals (Sweden)

    Farzaneh Amiri

    2016-11-01

    Full Text Available In recent years, the main objective of developing new hydrogel systems has been to convert biomass into environmentally-friendly hydrogels. Hybrid hydrogels are usually prepared by graft copolymerization of acrylic monomers onto natural polymers or biomass. In this study, sugarcane bagasse was used to prepare semi-synthetic hybrid hydrogels without delignification, which is a costly and timeconsuming process. Sugarcane bagasse as a source of polysaccharide was modified using polymer microgels based on acrylic monomers such as acrylic acid, acrylamide and 2-acrylamido-2-methyl propane sulfonic acid which were prepared through inverse emulsion polymerization. By this process, biomass as a low-value by-product was converted into a valuable semi-synthetic hydrogel. In the following, the effect of latex type¸ the aqueous-to-organic phase ratio in the polymer latex, time and temperature of modification reaction on the swelling capacity of the hybrid hydrogel were evaluated. The chemical reaction between sugarcane bagasse and acrylic latex was carried out during heating of the modified bagasse which led to obtain a semisynthetic hydrogel with 60% natural components and 40% synthetic components. Among the latexes with different structures, poly(AA-NaAA-AM-AMPS was the most suitable polymer latex for the conversion of biomass into hydrogel. The bagasse modified with this latex had a water absorption capacity up to 112 g/g, while the water absorption capacity of primary sugarcane bagasse was only equal to 3.6 g/g. The prepared polymer hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR, dynamic-mechanical thermal analysis (DMTA, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and determination of the amount of swelling capacity.

  13. Induction of neurite outgrowth in 3D hydrogel-based environments

    International Nuclear Information System (INIS)

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Gomes, Eduardo D; Sousa, Nuno; Silva, Nuno A; Salgado, António J; Ziv-Polat, Ofra; Sahar, Abraham

    2015-01-01

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine. (note)

  14. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach.

    Science.gov (United States)

    Zuluaga, M; Gregnanin, G; Cencetti, C; Di Meo, C; Gueguen, V; Letourneur, D; Meddahi-Pellé, A; Pavon-Djavid, G; Matricardi, P

    2017-12-28

    After myocardial infarction, the heart's mechanical properties and its intrinsic capability to recover are compromised. To improve this recovery, several groups have developed cardiac patches based on different biomaterials strategies. Here, we developed polyvinylalcohol/dextran (PVA/Dex) elastic hydrogel patches, obtained through the freeze thawing (FT) process, with the aim to deliver locally a potent natural antioxidant molecule, astaxanthin, and to assist the heart's response against the generated myofibril stress. Extensive rheological and dynamo-mechanical characterization of the effect of the PVA molecular weight, number of freeze-thawing cycles and Dex addition on the mechanical properties of the resulting hydrogels, were carried out. Hydrogel systems based on PVA 145 kDa and PVA 47 kDa blended with Dex 40 kDa, were chosen as the most promising candidates for this application. In order to improve astaxanthin solubility, an inclusion system using hydroxypropyl-β-cyclodextrin was prepared. This system was posteriorly loaded within the PVA/Dex hydrogels. PVA145/Dex 1FT and PVA47/Dex 3FT showed the best rheological and mechanical properties when compared to the other studied systems; environmental scanning electron microscope and confocal imaging evidenced a porous structure of the hydrogels allowing astaxanthin release. In vitro cellular behavior was analyzed after 24 h of contact with astaxanthin-loaded hydrogels. In vivo subcutaneous biocompatibility was performed in rats using PVA145/Dex 1FT, as the best compromise between mechanical support and astaxanthin delivery. Finally, ex vivo and in vivo experiments showed good mechanical and compatibility properties of this hydrogel. The obtained results showed that the studied materials have a potential to be used as myocardial patches to assist infarcted heart mechanical function and to reduce oxidative stress by the in situ release of astaxanthin.

  15. Age-dependent association of thyroid function with brain morphology and microstructural organization : Evidence from brain imaging

    NARCIS (Netherlands)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I.M.; De Groot, Marius; Dehghan, Abbas; Franco, Oscar H.; Niessen, W.J.; Ikram, M. Arfan; Peeters, Robin P.; Vernooij, Meike W.

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of

  16. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  17. Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network

    Science.gov (United States)

    Koo, Hyung-Jun; Velev, Orlin D.

    2013-01-01

    Light-driven degradation of photoactive molecules could be one of the major obstacles to stable long term operation of organic dye-based solar light harvesting devices. One solution to this problem may be mimicking the regeneration functionality of a plant leaf. We report an organic dye photovoltaic system that has been endowed with such microfluidic regeneration functionality. A hydrogel medium with embedded channels allows rapid and uniform supply of photoactive reagents by a convection-diffusion mechanism. A washing-activation cycle enables reliable replacement of the organic component in a dye-sensitized photovoltaic system. Repetitive restoration of photovoltaic performance after intensive device degradation is demonstrated. PMID:23912814

  18. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  19. Microstructure and kinetics of a functionally graded NiTi-TiC x composite produced by combustion synthesis

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Moore, John J.

    2007-01-01

    Production of a NiTi-TiC x functionally graded material (FGM) composite is possible through use of a combustion synthesis (CS) reaction employing the propagating mode (SHS). The NiTi-TiC x FGM combines the well-known and understood superelastic and shape memory capabilities of NiTi with the high hardness, wear and corrosion resistance of TiC x . The material layers were observed as functionally graded both in composition and porosity with distinct interfaces, while still maintaining good material interaction and bonding. XRD of the FGM composite revealed the presence of TiC x with equi-atomic NiTi and minor NiTi 2 and NiTi 3 phases. The TiC x particle size decreased with increasing NiTi content. Microindentation performed across the length of the FGM revealed a decrease in hardness as the NiTi content increased

  20. Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy.

    Science.gov (United States)

    Li, Pan; Jiang, Shan; Yu, Yan; Yang, Jun; Yang, Zhiyong

    2015-09-01

    It is definite that transparent material with similar structural characteristics and mechanical properties to human tissue is favorable for experimental study of prostate brachytherapy. In this paper, a kind of transparent polyvinyl alcohol (PVA) hydrogel and silicone rubber are developed as suitable substitutions for human soft tissue. Segmentation and 3D reconstruction of medical image are performed to manufacture the mould of organ groups through rapid prototyping technology. Micro-structure observation, force test and CCD deformation test have been conducted to investigate the structure and mechanical properties of PVA hydrogel used in organ group mockup. Scanning electron microscope (SEM) image comparison results show that PVA hydrogel consisting of 3 g PVA, 17 g de-ionized water, 80 g dimethyl-sulfoxide (DMSO), 4 g NaCl, 1.5 g NaOH, 3 g epichlorohydrin (ECH) and 7 freeze/thaw cycles reveals similar micro-structure to human prostate tissue. Through the insertion force comparison between organ group mockup and clinical prostate brachytherapy, PVA hydrogel and silicone rubber are found to have the same mechanical properties as prostate tissue and muscle. CCD deformation test results show that insertion force suffers a sharp decrease and a relaxation of tissue deformation appears when needle punctures the capsule of prostate model. The results exhibit that organ group mockup consisting of PVA hydrogel, silicone rubber, membrane and agarose satisfies the needs of prostate brachytherapy simulation in general and can be used to mimic the soft tissues in pelvic structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  2. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    Science.gov (United States)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  3. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    International Nuclear Information System (INIS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-01-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  4. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  5. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  6. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  7. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  8. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.

    Science.gov (United States)

    Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

    2014-06-01

    Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors.

    Science.gov (United States)

    Chen, Ya-Nan; Peng, Lufang; Liu, Tianqi; Wang, Yaxin; Shi, Shengjie; Wang, Huiliang

    2016-10-12

    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.

  10. Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band

    Directory of Open Access Journals (Sweden)

    Niels Crama

    2018-06-01

    Full Text Available Purpose: To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. Observations: A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI, compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. Conclusions and importance: This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band. Keywords: Retinal detachment, Tilted disc, Optic neuropathy, Miragel, Explant, Encircling band

  11. Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band.

    Science.gov (United States)

    Crama, Niels; Kluijtmans, Leo; Klevering, B Jeroen

    2018-06-01

    To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI), compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band.

  12. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease.

    Science.gov (United States)

    Li, Zhengzheng; Shim, Hyeeun; Cho, Myeong Ok; Cho, Ik Sung; Lee, Jin Hyun; Kang, Sun-Woong; Kwon, Bosun; Huh, Kang Moo

    2018-03-15

    The use of injectable hydrogel formulations have been suggested as a promising strategy for the treatment of degenerative disc disease to both restore the biomechanical function and reduce low back pain. In this work, a new thermo-sensitive injectable hydrogels with tunable thermo-sensitivity and enhanced stability were developed with N-hexanoylation of glycol chitosan (GC) for treatment of degenerative disc disease, and their physico-chemical and biological properties were evaluated. The sol-gel transition temperature of the hydrogels was controlled in a range of 23-56 °С, depending on the degree of hexanoylation and the polymer concentration. In vitro and in vivo tests showed no cytotoxicity and no adverse effects in a rat model. The hydrogel filling of the defective IVD site in an ex vivo porcine model maintained its stability for longer than 28 days. These results suggest that the hydrogel can be used as an alternative material for treatment of disc herniation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response.

    Directory of Open Access Journals (Sweden)

    Raimon Sunyer

    Full Text Available Many fundamental cell processes, such as angiogenesis, neurogenesis and cancer metastasis, are thought to be modulated by extracellular matrix stiffness. Thus, the availability of matrix substrates having well-defined stiffness profiles can be of great importance in biophysical studies of cell-substrate interaction. Here, we present a method to fabricate biocompatible hydrogels with a well defined and linear stiffness gradient. This method, involving the photopolymerization of films by progressively uncovering an acrylamide/bis-acrylamide solution initially covered with an opaque mask, can be easily implemented with common lab equipment. It produces linear stiffness gradients of at least 115 kPa/mm, extending from ∼1 kPa to 240 kPa (in units of Young's modulus. Hydrogels with less steep gradients and narrower stiffness ranges can easily be produced. The hydrogels can be covalently functionalized with uniform coatings of proteins that promote cell adhesion. Cell spreading on these hydrogels linearly correlates with hydrogel stiffness, indicating that this technique effectively modifies the mechanical environment of living cells. This technique provides a simple approach that produces steeper gradients, wider rigidity ranges, and more accurate profiles than current methods.

  14. Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy.

    Science.gov (United States)

    Pacelli, Settimio; Maloney, Ryan; Chakravarti, Aparna R; Whitlow, Jonathan; Basu, Sayantani; Modaresi, Saman; Gehrke, Stevin; Paul, Arghya

    2017-07-26

    Nanodiamonds (NDs) have attracted considerable attention as drug delivery nanocarriers due to their low cytotoxicity and facile surface functionalization. Given these features, NDs have been recently investigated for the fabrication of nanocomposite hydrogels for tissue engineering. Here we report the synthesis of a hydrogel using photocrosslinkable gelatin methacrylamide (GelMA) and NDs as a three-dimensional scaffold for drug delivery and stem cell-guided bone regeneration. We investigated the effect of different concentration of NDs on the physical and mechanical properties of the GelMA hydrogel network. The inclusion of NDs increased the network stiffness, which in turn augmented the traction forces generated by human adipose stem cells (hASCs). We also tested the ability of NDs to adsorb and modulate the release of a model drug dexamethasone (Dex) to promote the osteogenic differentiation of hASCs. The ND-Dex complexes modulated gene expression, cell area, and focal adhesion number in hASCs. Moreover, the integration of the ND-Dex complex within GelMA hydrogels allowed a higher retention of Dex over time, resulting in significantly increased alkaline phosphatase activity and calcium deposition of encapsulated hASCs. These results suggest that conventional GelMA hydrogels can be coupled with conjugated NDs to develop a novel platform for bone tissue engineering.

  15. Rational design and application of responsive α-helical peptide hydrogels

    Science.gov (United States)

    Banwell, Eleanor F.; Abelardo, Edgardo S.; Adams, Dave J.; Birchall, Martin A.; Corrigan, Adam; Donald, Athene M.; Kirkland, Mark; Serpell, Louise C.; Butler, Michael F.; Woolfson, Derek N.

    2009-01-01

    Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs; and as supports for cell growth and tissue engineering1. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials2-4. Here we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks melt upon heating, whereas those formed via hydrophobic interactions strengthen when warmed. The hSAFs are dual-peptide systems that only gel on mixing, which gives tight control over assembly5. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture. PMID:19543314

  16. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian

    2011-01-01

    , provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE......)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self......-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins....

  17. Responsive polyelectrolyte hydrogels and soft matter micromanipulation

    NARCIS (Netherlands)

    Glazer, P.J.

    2013-01-01

    This dissertation describes experimental studies on the mechanisms underlying the dynamic response of polyelectrolyte hydrogels when submitted to an external electric potential. In addition, we explore the possibilities of miniaturization and manipulation of responsive gels and other soft matter

  18. Hydrogels: Lets Thicken the Prebiotic Soup

    Science.gov (United States)

    Dass, A. V.; Georgelin, T.; Kee, T. P.; Brack, A.; Westall, F.

    2017-07-01

    We introduce a new class of material that could be interesting in prebiotic chemistry: The silica hydrogel. Inorganic cells could have provided an alternative mode of compatmentalisation on early earth.

  19. Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.

    Science.gov (United States)

    Wang, Huan; Gu, Hongcheng; Chen, Zhuoyue; Shang, Luoran; Zhao, Ze; Gu, Zhongze; Zhao, Yuanjin

    2017-04-19

    Enzymatic carriers have a demonstrated value for chemical reactions and industrial applications. Here, we present a novel kind of inverse opal hydrogel particles as the enzymatic carriers. The particles were negatively replicated from spherical colloidal crystal templates by using magnetic nanoparticles tagged acrylamide hydrogel. Thus, they were endowed with the features of monodispersity, small volume, complete penetrating structure, and controllable motion, which are all beneficial for improving the efficiency of biocatalysis. In addition, due to the ordered porous nanostructure, the inverse opal hydrogel particles were imparted with unique photonic band gaps (PBGs) and vivid structural colors for encoding varieties of immobilized enzymes and for constructing a multienzymes biocatalysis system. These features of the inverse opal hydrogel particles indicate that they are ideal enzymatic carriers for biocatalysis.

  20. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology National Taipei University of Technology, Taipei, Taiwan (China); Chou, Wei-Ling [Department of Chemical Engineering and Biotechnology National Taipei University of Technology, Taipei, Taiwan (China); Chou, Chih-Ming [Department of Biochemistry, Taipei Medical University, Taipei, Taiwan (China)

    2015-07-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) are a novel source of multi-potential stem cells for tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium exhibits an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. Hydrogels can mimic the natural cellular environment. The association of hydrogels with cell viability is determined using biological tests, including rheological experiments. In this study, osteogenic differentiation was investigated through SHED encapsulation in hydrogels containing strontium phosphate. Results of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and proliferating cell nuclear antigen (PCNA) immunofluorescence staining indicated that the cells grew well and SHEDs proliferated in the hydrogels. Strontium-loaded chitosan-based hydrogels induced the biomineralization and high expression of alkaline phosphatase. Moreover, the expression levels of bone-related genes, including type-I collagen, Runx2, osteopontin (OP), and osteonectin (ON), were up-regulated during the osteogenic differentiation of SHEDs. This study demonstrated that strontium can be an effective inducer of osteogenesis for SHEDs. Elucidating the function of bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering. • Strontium phosphate can enhance the osteogenic differentiation of SHEDs. • Hydrogels can mimic the natural cellular environment. • Bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering.

  1. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys

    International Nuclear Information System (INIS)

    Lamirand, M.; Bonnentien, J.-L.; Ferriere, G.; Guerin, S.; Chevalier, J.-P.

    2007-01-01

    The effects of 2 at.% chromium and niobium on microstructure and mechanical properties of Ti-48Al-x(Cr, Nb) have been investigated for alloys with different oxygen content, ranging from ultra-high purity to doped alloys. Chromium and niobium additions have significant effects for the high purity alloys, whereas for alloys containing oxygen, no significant modification is observed due to the strong stabilizing effect of oxygen on the lamellar microstructure

  2. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    Science.gov (United States)

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  3. Immobilization and release study of a red alga extract in hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata Hage

    2009-01-01

    In pharmaceutical technology hydrogel is the most used among the polymeric matrices due to its wide application and functionality, primarily in drug delivery system. In view of the large advance innovations in cosmetic products, both through the introduction of new active agents as the matrices used for its controlled release, the objective of this study was to evaluate the release and immobilization of a natural active agent, the Arct'Alg in hydrogel membranes to obtain a release device for cosmetics. Arct'Alg is an aqueous extract which has excellent anti-oxidant, lipolytic, anti-inflammatory and cytostimulant action. Study on mechanical and physical-chemical properties and biocompatibility in vitro of hydrogel membranes of poly(vinyl-2- pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) obtained by ionizing radiation crosslinking have been performed. The physical-chemical characterization of polymeric matrices was carried out by gel fraction and swelling tests and biocompatibility by in vitro test of cytotoxicity by using the technique of neutral red incorporation. In the gel fraction test, both the PVP and PVA hydrogel showed a high crosslinking degree. The PVP hydrogel showed a greater percentage of swelling in relation to PVA and the cytotoxicity test of the hydrogels showed non-toxicity effect. The cytostimulation property of Arct'Alg was verified by the cytostimulation test with rabbit skin cells, it was showed an increase at about 50% of the cells when in contact with 0,5% of active agent. The hydrogel membranes prepared with 3% of Arct'Alg were subjected to the release test in an incubator at 37 degree C and aliquots collected during the test were quantified by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that the PVP hydrogel membranes released about 50% of Arct'Alg incorporated and the PVA hydrogel membranes at about 30%. In the cytostimulation test of released Arct'Alg, the PVP device showed an

  4. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation.

    Directory of Open Access Journals (Sweden)

    Liezl Rae Balaoing

    Full Text Available Valve endothelial cells (VEC have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol diacrylate (PEGDA hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF. VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator and thrombotic (VWF, tissue factor, and P-selectin proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In

  5. Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications.

    Science.gov (United States)

    Cavo, Marta; Scaglione, Silvia

    2016-11-01

    The really nontrivial goal of tissue engineering is combining all scaffold micro-architectural features, affecting both fluid-dynamical and mechanical performance, to obtain a fully functional implant. In this work we identified an optimal geometrical pattern for bone tissue engineering applications, best balancing several graft needs which correspond to competing design goals. In particular, we investigated the occurred changes in graft behavior by varying pore size (300μm, 600μm, 900μm), interpore distance (equal to pore size or 300μm fixed) and pores interconnection (absent, 45°-oriented, 90°-oriented). Mathematical considerations and Computational Fluid Dynamics (CFD) tools, here combined in a complete theoretical model, were carried out to this aim. Poly-lactic acid (PLA) based samples were realized by 3D printing, basing on the modeled architectures. A collagen (COL) coating was also realized on grafts surface and the interaction between PLA and COL, besides the protein contribution to graft bioactivity, was evaluated. Scaffolds were extensively characterized; human articular cells were used to test their biocompatibility and to evaluate the theoretical model predictions. Grafts fulfilled both the chemical and physical requirements. Finally, a good agreement was found between the theoretical model predictions and the experimental data, making these prototypes good candidates for bone graft replacements. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Studies on radiation synthesis of polyethyleneimine/acrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Sanju [ISOMED, Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India); Varshney, Lalit [ISOMED, Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)]. E-mail: lalitv@magnum.barc.ernet.in; Tirumalesh, K. [Isotope Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2006-07-15

    Polyethyleneimine(PEI)/acrylamide(AAM) hydrogels were synthesized by {gamma}-radiation-induced polymerization/crosslinking of aqueous mixtures containing different ratios of PEI and AAM. The gel percentage and equilibrium degree of swelling (EDS) of the synthesized hydrogels were investigated. The compositions of the hydrogels produced were found to be different from the feed composition. Ion-chromatography technique was used to determine the amount of Pb (II) and Cd (II) absorbed by the hydrogel. The maximum binding capacity of the PEI/AAM hydrogels, for Pb and Cd was found to be 19 and 12.6 mg/g, respectively (at 100 ppm). PEI/AAM hydrogels had better metal uptake efficiency than the pure AAM hydrogel at concentrations less than 50 ppm. Pure PEI was observed to be highly degrading type polymer on exposure to gamma radiation. TGA and FT-IR techniques were used to characterize the prepared hydrogels.

  7. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    Science.gov (United States)

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.

    Science.gov (United States)

    Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan

    2014-07-22

    Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.

  9. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Directory of Open Access Journals (Sweden)

    Mareike Hütten

    Full Text Available Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX. To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  10. Chitosan–Cellulose Multifunctional Hydrogel Beads: Design, Characterization and Evaluation of Cytocompatibility with Breast Adenocarcinoma and Osteoblast Cells

    Science.gov (United States)

    Trivedi, Poonam; Saloranta-Simell, Tiina; Gradišnik, Lidija; Prabhakar, Neeraj; Smått, Jan-Henrik; Mohan, Tamilselvan; Gericke, Martin; Heinze, Thomas

    2018-01-01

    Cytocompatible polysaccharide-based functional scaffolds are potential extracellular matrix candidates for soft and hard tissue engineering. This paper describes a facile approach to design cytocompatible, non-toxic, and multifunctional chitosan-cellulose based hydrogel beads utilising polysaccharide dissolution in sodium hydroxide-urea-water solvent system and coagulation under three different acidic conditions, namely 2 M acetic acid, 2 M hydrochloric acid, and 2 M sulfuric acid. The effect of coagulating medium on the final chemical composition of the hydrogel beads is investigated by spectroscopic techniques (ATR–FTIR, Raman, NMR), and elemental analysis. The beads coagulated in 2 M acetic acid displayed an unchanged chitosan composition with free amino groups, while the beads coagulated in 2 M hydrochloric and sulfuric acid showed protonation of amino groups and ionic interaction with the counterions. The ultrastructural morphological study of lyophilized beads showed that increased chitosan content enhanced the porosity of the hydrogel beads. Furthermore, cytocompatibility evaluation of the hydrogel beads with human breast adenocarcinoma cells (soft tissue) showed that the beads coagulated in 2 M acetic acid are the most suitable for this type of cells in comparison to other coagulating systems. The acetic acid fabricated hydrogel beads also support osteoblast growth and adhesion over 192 h. Thus, in future, these hydrogel beads can be tested in the in vitro studies related to breast cancer and for bone regeneration. PMID:29315214

  11. Chitosan-Cellulose Multifunctional Hydrogel Beads: Design, Characterization and Evaluation of Cytocompatibility with Breast Adenocarcinoma and Osteoblast Cells.

    Science.gov (United States)

    Trivedi, Poonam; Saloranta-Simell, Tiina; Maver, Uroš; Gradišnik, Lidija; Prabhakar, Neeraj; Smått, Jan-Henrik; Mohan, Tamilselvan; Gericke, Martin; Heinze, Thomas; Fardim, Pedro

    2018-01-09

    Cytocompatible polysaccharide-based functional scaffolds are potential extracellular matrix candidates for soft and hard tissue engineering. This paper describes a facile approach to design cytocompatible, non-toxic, and multifunctional chitosan-cellulose based hydrogel beads utilising polysaccharide dissolution in sodium hydroxide-urea-water solvent system and coagulation under three different acidic conditions, namely 2 M acetic acid, 2 M hydrochloric acid, and 2 M sulfuric acid. The effect of coagulating medium on the final chemical composition of the hydrogel beads is investigated by spectroscopic techniques (ATR-FTIR, Raman, NMR), and elemental analysis. The beads coagulated in 2 M acetic acid displayed an unchanged chitosan composition with free amino groups, while the beads coagulated in 2 M hydrochloric and sulfuric acid showed protonation of amino groups and ionic interaction with the counterions. The ultrastructural morphological study of lyophilized beads showed that increased chitosan content enhanced the porosity of the hydrogel beads. Furthermore, cytocompatibility evaluation of the hydrogel beads with human breast adenocarcinoma cells (soft tissue) showed that the beads coagulated in 2 M acetic acid are the most suitable for this type of cells in comparison to other coagulating systems. The acetic acid fabricated hydrogel beads also support osteoblast growth and adhesion over 192 h. Thus, in future, these hydrogel beads can be tested in the in vitro studies related to breast cancer and for bone regeneration.

  12. Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions.

    Science.gov (United States)

    Xiao, Wenwu; Li, Qingtao; He, Huimin; Li, Wenxiu; Cao, Xiaodong; Dong, Hua

    2018-03-14

    Precise manipulation of biomolecule distribution and functions via biomolecule-matrix interaction is very important and challenging for tissue engineering and regenerative medicine. As a well-known biomimetic matrix, electrospun fibers often lack the unique spatial complexity compared to their natural counterparts in vivo and thus cannot deliver fully the regulatory cues to biomolecules. In this paper, we report a facile and reliable method to fabricate micro- and nanostructured poly(l-lactic acid) (PLLA) fibrous matrices with spatial complexity by a combination of advanced electrospinning and agarose hydrogel stamp-based micropatterning. Specifically, advanced electrospinning is used to construct multi-nanostructures of fibrous matrices while solvent-loaded agarose hydrogel stamps are used to create microstructures. Compared with other methods, our method shows extreme simplicity and flexibility originated from the mono-/multi-spinneret conversion and limitless micropatterns of agarose hydrogel stamps. Three types of PLLA fibrous matrices including patterned nano-Ag/PLLA hybrid fibers, patterned bicompartment polyethylene terephthalate/PLLA fibers, and patterned hollow PLLA fibers are fabricated and their capability to manipulate biomolecule distribution and functions, that is, bacterial distribution and antibacterial performance, cell patterning and adhesion/spreading behaviors, and protein adsorption and delivery, is demonstrated in detail. The method described in our paper provides a powerful tool to restore spatial complexity in biomimetic matrices and would have promising applications in the field of biomedical engineering.

  13. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.

    Science.gov (United States)

    Chou, Pang-Yun; Chen, Shih-Heng; Chen, Chih-Hao; Chen, Shih-Hsien; Fong, Yi Teng; Chen, Jyh-Ping

    2017-11-01

    In this study, we aimed to assess whether thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) could prevent post-operative peritendinous adhesion. The clinical advantages of the thermo-responsive hydrogels are acting as barrier material to block penetration of fibroblasts, providing mobility and flexibility during application and enabling injection through a small opening to fill spaces of any shape after surgery. The thermo-responsiveness of hydrogels was determined to ensure their clinic uses. By grafting hydrophilic biopolymers chitosan (CS) and hyaluronic acid (HA) to PNIPAM, the copolymer hydrogels show enhanced water retention and lubrication, while reduced volume shrinkage during phase transition. In cell culture experiments, the thermo-responsive hydrogel has good biocompatibility and reduces fibroblast penetration. In animal experiments, the effectiveness of preventing post-operative peritendinous adhesion was studied in a rabbit deep flexor tendon model. From gross examination, histology, bending angles of joints, tendon gliding excursion and pull-out force, HA-CS-PNIPAM (HACPN) was confirmed to be the best barrier material to prevent post-operative peritendinous adhesion compared to PNIPAM and CS-PNIPAM (CPN) hydrogels and a commercial barrier film Seprafilm®. There was no significant difference in the breaking strength of HACPN-treated tendons and spontaneously healed ones, indicating HACPN hydrogel application did not interfere with normal tendon healing. We conclude that HACPN hydrogel can provide the best functional outcomes to significantly prevent post-operative tendon adhesion in vivo. We prepared thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) to prevent post-operative peritendinous adhesion. The injectable barrier hydrogel could have better anti-adhesive properties than current commercial products by acting as barrier material to block penetration of fibroblasts

  14. Hydrogel-Tissue Chemistry: Principles and Applications.

    Science.gov (United States)

    Gradinaru, Viviana; Treweek, Jennifer; Overton, Kristin; Deisseroth, Karl

    2018-05-20

    Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.

  15. Microstructure evaluation of dermally applicable liquid crystals as a function of water content and temperature: Can electron paramagnetic resonance provide complementary data?

    Science.gov (United States)

    Matjaž, Mirjam Gosenca; Mravljak, Janez; Rogač, Marija Bešter; Šentjurc, Marjeta; Gašperlin, Mirjana; Pobirk, Alenka Zvonar

    2017-11-30

    Insight into the microstructure of lyotropic liquid crystals (LCs) is of crucial importance for development of novel dermal delivery systems. Our aim was to evaluate the phase behaviour of dermally applicable LCs composed of isopropyl myristate/Tween 80/lecithin/water, along the dilution line, where phase transitions are predominantly driven by increased water content. Additionally, identification of LC temperature dependence is of great importance for skin application. Selected LCs were evaluated using electron paramagnetic resonance (EPR) plus conventionally used methods of polarization microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheological measurements. Depending on water content, LCs formed diverse microstructures, from (pseudo)hexagonal (LC1) and lamellar (LC2-LC7) liquid crystalline phases that possibly co-exist with rod-like micelles (LC4-LC7), to a transitional micellar phase (LC8). Furthermore, the LCs microstructure remained unaltered within the tested temperature range. EPR was shown to detect microstructural transitions of LCs and to provide complementary data to other techniques. These data thus confirm the applicability of EPR as a complementary technique for better understanding of LC microstructural transitions that are expected to contribute greatly to studies oriented towards the drug release characteristics from such systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Use of hydrogels in the planting of industrial wood plantations ...

    African Journals Online (AJOL)

    This article provides an overview of the concepts of post-plant water stress, a review of trials that tested application of hydrogels to forest tree species, and discussion on probable reasons for failure or success in the use of hydrogels. Hydrogels applied in pot trials, under controlled conditions, tended to have a higher ...

  17. Natural fibers for hydrogels production and their applications in agriculture

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2017-10-01

    Full Text Available This paper presents a review on hydrogels applied to agriculture emphasizing on the use of natural fibers. The objectives were to examine, trends in research addressed to identify natural fibers used in hydrogels development and methods for modifying natural fibers, understand factors which determine the water retention capacity of a hydrogel. Consequently, this paper shows some methodologies used to evaluate the hydrogels efficiency and to collect in tables, relevant information in relation to methods of natural fibers modification and hydrogel synthesis. It was found that previous research focused on hydrogels development processed with biodegradable polymers such as starch, chitosan and modified natural fibers, cross-linked with potassium acrylate and acrylamide, respectively. In addition, current researches aimed to obtaining hydrogels with improved properties, which have allowed a resistance to climatic variations and soil physicochemical changes, such as pH, presence of salts, temperature and composition. In fact, natural fibers such as sugarcane, agave fiber and kapok fiber, modified with maleic anhydride, are an alternative to obtain hydrogels due to an increasing of mechanical properties and chemically active sites. However, the use of natural nanofibers in hydrogels, has been a successful proposal to improve hydrogels mechanical and swelling properties, since they give to material an elasticity and rigidity properties. A hydrogel efficiency applied to soil, is measured throughout properties as swellability, mechanical strength, and soil water retention. It was concluded that hydrogels, are an alternative to the current needs for the agricultural sector.

  18. Co-assembly of chitosan and phospholipids into hybrid hydrogels

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Shekarforoush, Elhamalsadat; Engwer, Christoph

    2016-01-01

    Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties...

  19. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles

    NARCIS (Netherlands)

    Sharifi, Shahriar; Blanquer, Sebastien; van Kooten, T.G.; Grijpma, Dirk W.

    2012-01-01

    Soft hydrogels with elasticity modulus values lower than 100 kPa that are tough and biodegradable are of great interest in medicine and in tissue engineering applications. We have developed a series of soft hydrogel structures from different methacrylate-functionalized triblock copolymers of

  20. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  1. Corrosion of steels in saline mediums with CO2, efficiency of inhibitors as a function of the degree of pre-corrosion and microstructure

    International Nuclear Information System (INIS)

    Paolinelli, LD; Perez, T; Simison, S.N

    2004-01-01

    Despite the big influence of the microstructure and chemical composition of plain carbon steels and low alloy steels on corrosion in saline mediums with CO 2 , the results found in the literature are contradictory. An aspect that is less studied is the effect of these variables on the formation and characteristics of the films as products of corrosion and on the efficiency of the inhibitors used in oil production. Previous works have shown that the efficiency of the inhibitors is affected by the microstructure and that this effect depends on the inhibitor's molecular structure. This work aims to further define the relationship between the films of corrosion products, the steel microstructure and the efficiency of the inhibitors. A plain carbon steel was studied with two different microstructures in a 5% NaCl deoxygenated solution at 40 o C, pH 6, saturated with CO 2 under laminar flow conditions. The efficiency of an imidazoline-based commercial inhibitor commonly used in oil production was characterized. The inhibitor was added after different periods of pre-corrosion: 24, 48 and 72 hours. The characteristics of the surface films were analyzed by SEM. Electrochemical tests were carried out (electrochemical impedance, resistance to lineal polarization every 24 h.) and the corrosion potentials were also recorded. The results show that the properties of the surface films and the inhibitor's efficiency depend on the microstructure with higher values for the quenched and tempered samples than for the annealed samples. While the inhibitor's efficiency diminishes in all cases along with the degree of pre-corrosion, the amount of this decrease is different for each microstructural condition (CW)

  2. Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications

    International Nuclear Information System (INIS)

    Santaniello, Tommaso; Milani, Paolo; Lenardi, Cristina; Martello, Federico; Tocchio, Alessandro; Gassa, Federico; Webb, Patrick

    2012-01-01

    We report a novel reliable and repeatable technologic manufacturing protocol for the realization of micro-patterned freestanding hydrogel layers based on thermo-responsive poly-(N-isopropyl)acrylamide (PNIPAAm), which have potential to be employed as temperature-triggered smart surfaces for cells-on-chip applications. PNIPAAm-based films with controlled mechanical properties and different thicknesses (100–300 µm thickness) were prepared by injection compression moulding at room temperature. A 9 × 9 array of 20 µm diameter through-holes is machined by means of the KrF excimer laser on dry PNIPAAm films which are physically attached to flat polyvinyl chloride (PVC) substrates. Machining parameters, such as fluence and number of shots, are optimized in order to achieve highly resolved features. Micro-structured freestanding films are then easily obtained after hydrogels are detached from PVC by gradually promoting the film swelling in ethanol. In the PNIPAAm water-swollen state, the machined holes’ diameter approaches a slight larger value (30 µm) according to the measured hydrogel swelling ratio. Thermo-responsive behaviour and through-hole tapering characterization are carried out by metrology measurements using an optical inverted and confocal microscope setup, respectively. After the temperature of freestanding films is raised above 32 °C, we observe that the shrinkage of the whole through-hole array occurs, thus reducing the holes’ diameter to less than a half its original size (about 15 µm) as a consequence of the film dehydration. Different holes’ diameters (10 and 30 µm) are also obtained on dry hydrogel employing suitable projection masks, showing similar shrinking behaviour when hydrated and undergone thermo-response tests. Thermo-responsive PNIPAAm-based freestanding layers could then be integrated with other suitable micro-fabricated thermoplastic components in order to preliminary test their feasibility in operating as temperature

  3. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  4. Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications

    Science.gov (United States)

    PATEL, RAVI GHANSHYAM; PURWADA, ALBERTO; CERCHIETTI, LEANDRO; INGHIRAMI, GIORGIO; MELNICK, ARI; GAHARWAR, AKHILESH K.; SINGH, ANKUR

    2014-01-01

    Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices. PMID:25328548

  5. Changes in myopia with low-Dk hydrogel and high-Dk silicone hydrogel extended wear.

    Science.gov (United States)

    Jalbert, Isabelle; Stretton, Serina; Naduvilath, Thomas; Holden, Brien; Keay, Lisa; Sweeney, Deborah

    2004-08-01

    This study compared changes in myopia between wearers of high-oxygen permeability (Dk) silicone hydrogel lenses and low-Dk hydrogel lenses after 1 year of extended wear (EW). Ninety-two adult subjects were randomly assigned to a lens type. Subjective refraction and autokeratometry were performed at baseline and at 6 and 12 months. After 6 months of EW, myopia (spherical equivalent) regressed by 0.18 +/- 0.33 D (p Dk silicone hydrogel group and progressed by -0.23 +/- 0.36 D (p Dk hydrogel group. There were no further changes after 12 months. Previous lens wear history, baseline refractive error, and age and gender did not have an impact on the change in myopia, and only 35% of the variation could be accounted for by changes in corneal curvature and lens type. Soft contact lens type significantly affects the direction of change in myopia during EW. We hypothesize that these changes are driven by pressure-related redistribution of corneal tissue in high-Dk silicone hydrogel lens wearers and by hypoxia-associated corneal thinning in low-Dk hydrogel wearers. More long-term studies are required to confirm whether the effects of high-Dk silicone hydrogel lens wear on myopia are permanent.

  6. Surface Friction of Polyacrylamide Hydrogel Particles

    Science.gov (United States)

    Cuccia, Nicholas; Burton, Justin

    Polyacrylamide hydrogel particles have recently become a popular system for modeling low-friction, granular materials near the jamming transition. Because a gel consists of a polymer network filled with solvent, its frictional behavior is often explained using a combination of hydrodynamic lubrication and polymer-surface interactions. As a result, the frictional coefficient can vary between 0.001 and 0.03 depending on several factors such as contact area, sliding velocity, normal force, and the gel surface chemistry. Most tribological measurements of hydrogels utilize two flat surfaces, where the contact area is not well-defined. We have built a custom, low-force tribometer to measure the single-contact frictional properties of spherical hydrogel particles on flat hydrogel surfaces under a variety of measurement conditions. At high velocities (> 1 cm/s), the friction coefficient depends linearly on velocity, but does not tend to zero at zero velocity. We also compare our measurements to solid particles (steel, glass, etc.) on hydrogel surfaces, which exhibit larger frictional forces, and show less dependence on velocity. A physical model for the friction which includes the lubrication layer between the deformed surfaces will be discussed. National Science Foundation Grant No. 1506446.

  7. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B., E-mail: mariajhho@yahoo.com.br, E-mail: pavsalva@ipen.br, E-mail: ablugao@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  8. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B.

    2017-01-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  9. Controlled release studies of calcium alginate hydrogels

    International Nuclear Information System (INIS)

    Rendevski, S.; Andonovski, A.; Mahmudi, N.

    2012-01-01

    Controlled release of substances in many cases may be achieved from calcium alginate hydrogels. In this research, the time dependence of the mass of released model substance bovine serum albumin (BSA) from calcium alginate spherical hydrogels of three different types (G/M ratio) have been investigated. The hydrogels were prepared with the drop-wise method of sodium alginate aqueous solutions with concentration of 0.02 g/cm 3 with 0.01 g/cm 3 BSA and a gelling water bath of chitosan in 0.2 M CH 3 COOH/0.4 M CH 3 COONa with added 0.2 M CaCl 2 .The hydrogel structures were characterized by dynamic light scattering and scanning electron microscopy. The controlled release studies were conducted by UV-Vis spectrophotometry of the released medium with p H=7 at 37 °C. The results showed that the model of osmotic pumping is the dominant mechanism of the release. Also, large dependences of the release profile on the homogeneity of the hydrogels were found. (Author)

  10. Magnetic hyaluronate hydrogels: preparation and characterization

    International Nuclear Information System (INIS)

    Tóth, Ildikó Y.; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka

    2015-01-01

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection

  11. Magnetic hyaluronate hydrogels: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection.

  12. Characterization and improvement of PVAl/PVP/PEG hydrogels

    International Nuclear Information System (INIS)

    Oliveira, Maria Jose A.; Parra, Duclerc F.; Almeida, Monise F.; Lugao, Ademar B.

    2009-01-01

    The use of hydrogels matrices for particular drug release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-vinyl-2-pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. In this study it was compared the hydrogels reticulation for irradiation gamma O 2 and N 2 atmosphere. The characterization of the hydrogels was conducted and the toxicity was evaluated. The dried hydrogel was analyzed by differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel determinations. The membranes have no toxicity and gel content revealed the crosslinking degree. (author)

  13. Fluxgate magnetorelaxometry of superparamagnetic nanoparticles for hydrogel characterization

    International Nuclear Information System (INIS)

    Heim, Erik; Harling, Steffen; Poehlig, Kai; Ludwig, Frank; Menzel, Henning; Schilling, Meinhard

    2007-01-01

    A new characterization method for hydrogels based on the relaxation behavior of superparamagnetic nanoparticles (MNPs) is proposed. MNPs are incorporated in the hydrogel to examine its network properties. By analyzing their relaxation behavior, incorporated and mobile nanoparticles can be studied. In the case of mobile nanoparticles, the microviscosity of the hydrogel can be determined. Thus, this method allows the studying of gelation as well as the degradation process of hydrogels. Furthermore, the hydrogel can have any shape (e.g. microspheres or larger blocks) and no sample preparation is needed, avoiding artefacts

  14. Radiation synthesis and characterization of polyacrylic acid hydrogels

    International Nuclear Information System (INIS)

    Yang Mingcheng; Song Hongyan; Zhu Chengshen; He Suqin

    2007-01-01

    The pH-sensitive polyacrylic acid (PAA) hydrogels were synthesized by gamma-ray irradiation at an ambient temperature. The influences of dose, monomer concentration, cross-linking agent content, pH, and ionic strength on the swelling ratio (SR) of the PAA hydrogels were investigated in detail. The results show that the SR of the hydrogel decreases with an increase in the dose, monomer concentration, and cross-linking agent content. In alkaline solution, the SR of the hydrogels is much higher than that in acid solution. Also, the ionic strength can influence the SR of the hydrogels. The more the concentration, the lower the SR. (authors)

  15. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    Science.gov (United States)

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  16. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.

    Science.gov (United States)

    Curley, J Lowry; Jennings, Scott R; Moore, Michael J

    2011-02-11

    Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the

  17. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. Copyright © 2015. Published by Elsevier B.V.

  18. Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia.

    Science.gov (United States)

    Ghaly, Tammer; Rabadi, May M; Weber, Mia; Rabadi, Seham M; Bank, Michael; Grom, John M; Fallon, John T; Goligorsky, Michael S; Ratliff, Brian B

    2011-10-01

    Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.

  19. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.

    Science.gov (United States)

    Calabrese, Rossella; Raia, Nicole; Huang, Wenwen; Ghezzi, Chiara E; Simon, Marc; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2017-09-01

    The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Hydrogels based on chemically modified poly(vinyl alcohol (PVA-GMA and PVA-GMA/chondroitin sulfate: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    E. C. Muniz

    2012-05-01

    Full Text Available This work reports the preparation of hydrogels based on PVA-GMA, PVA-GMA is poly(vinyl alcohol (PVA functionalized with vinyl groups from glycidyl methacrylate (GMA, and on PVA-GMA with different content of chondroitin sulfate (CS. The degrees of swelling of PVA-GMA and PVA-GMA/CS hydrogels were evaluated in distilled water and the swelling kinetics was performed in simulated gastric and intestinal fluids (SGF and SIF. PVA-GMA and PVAGMA/CS hydrogels demonstrated to be resistant on SGF and SIF fluids. The elastic modulus, E, of swollen-hydrogels were determined through compressive tests and, according to the obtained results, the hydrogels presented good mechanical properties. At last, the presence of CS enhances the hydrogel cell compatibility as gathered by cytotoxicity assays. It was concluded that the hydrogels prepared through this work presented characteristics that allow them to be used as biomaterial, as a carrier in drug delivery system or to act as scaffolds in tissue engineering as well.

  1. Production of hydrogel wound dressing by radiation

    International Nuclear Information System (INIS)

    Isobe, Kazuki

    2008-01-01

    It has been thought that making a dry scab helps to cure a wound faster. However, recently a treatment of a wound according to moist healing theory which cure a wound without making a scab is becoming popular. Accordingly, we prepared a highly stable sheet type hydrogel in a short period by radiating electron beam to an aqueous solution of a polymer. The hydrogel is not soluble in water and keeps suitable moist environment for wound healing. Therefore, a hydrogel a wound dressing, Viewgel R in which represents a registered trademark and is referred to Viewgel hereinafter, is developed and released from July of 2004. In this paper we report the process of the development of Viewgel. (author)

  2. Synthesis and characterization of anisotropic magnetic hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Stephan, E-mail: stephan.hinrichs@chemie.uni-hamburg.de; Nun, Nils; Fischer, Birgit, E-mail: birgit.fischer@chemie.uni-hamburg.de

    2017-06-01

    Multiresponsive hydrogels are an interesting new class of materials. They offer the advantage, that they respond to different stimuli like temperature, pH and magnetic fields. By this they can change their properties which makes the hydrogels ideal candidates for many applications in the technical as well as medical field. Here we present the synthesis and characterization of hydrogels - micro- as well as macrogels - which consist of an iron oxide core, varying in phase and morphology, embedded in a thermoresponsive polymer, consisting of poly N-isopropylacrylamide. By using dynamic light scattering we investigated the thermoresponsive properties. In addition we were able to follow the formation of the macrogel by monitoring the shear viscosity.

  3. Time-dependent Fracture Behaviour of Polyampholyte Hydrogels

    Science.gov (United States)

    Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.

  4. Self-assembling electroactive hydrogels for flexible display technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois [School of Electrical Engineering and Telecommunications, University of NSW, Sydney, NSW, 2052 (Australia); Thordarson, Pall, E-mail: f.ladouceur@unsw.edu.a [School of Chemistry, University of NSW, Sydney, NSW, 2052 (Australia)

    2010-12-15

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  5. Self-assembling electroactive hydrogels for flexible display technology

    International Nuclear Information System (INIS)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois; Thordarson, Pall

    2010-01-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  6. Nano-in-Micro Self-Reporting Hydrogel Constructs.

    Science.gov (United States)

    Tirella, Annalisa; La Marca, Margherita; Brace, Leigh-Anne; Mattei, Giorgio; Aylott, Jonathan W; Ahluwalia, Arti

    2015-08-01

    Highly reproducible Nano-in-Micro constructs are fabricated to provide a well-defined and self-reporting biomimetic environment for hepatocytes. Based on a protein/hydrogel formulation with controlled shape, size and composition, the constructs enable efficient nutrient exchange and provide an adhesive 3D framework to cells. Co-encapsulation of hepatocytes and ratiometric optical nanosensors with pH sensitivity in the physiological range allows continuous monitoring of the microenvironment. The lobule-sized microbeads are fabricated using an automated droplet generator, Sphyga (Spherical Hydrogel Generator) combining alginate, collagen, decellularized hepatic tissue, pH-nanosensors and hepatocytes. The pH inside the Nano-in-Micro constructs is monitored during culture, while assaying media for hepatic function and vitality markers. Although the local pH changes by several units during bead fabrication, when encapsulated cells are most likely to undergo stress, it is stable and buffered by cell culture media thereafter. Albumin secretion and urea production are significantly higher in the microbeads compared with controls, indicating that the encapsulated Nano-in-Micro environment is conducive to enhanced hepatic function.

  7. Autonomous patterning of cells on microstructured fine particles

    International Nuclear Information System (INIS)

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-01-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5–40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. - Highlights: • PS and SiO 2 particles provide effective scaffolds for cells. • Cells that adhere to microstructured particles successfully proliferate and differentiate. • Selective adhesion and growth along the scaffold can be achieved by patterning the fine particle microstructure. • Cells adhered to flat regions migrate toward microstructured regions. • Selective adhesion by cells depends on the microstructural geometry; specifically, on the inter-line spacing

  8. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications

    Science.gov (United States)

    2018-01-01

    Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612

  9. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  10. 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels.

    Science.gov (United States)

    Leppiniemi, Jenni; Lahtinen, Panu; Paajanen, Antti; Mahlberg, Riitta; Metsä-Kortelainen, Sini; Pinomaa, Tatu; Pajari, Heikki; Vikholm-Lundin, Inger; Pursula, Pekka; Hytönen, Vesa P

    2017-07-05

    We describe herein a nanocellulose-alginate hydrogel suitable for 3D printing. The composition of the hydrogel was optimized based on material characterization methods and 3D printing experiments, and its behavior during the printing process was studied using computational fluid dynamics simulations. The hydrogel was biofunctionalized by the covalent coupling of an enhanced avidin protein to the cellulose nanofibrils. Ionic cross-linking of the hydrogel using calcium ions improved the performance of the material. The resulting hydrogel is suitable for 3D printing, its mechanical properties indicate good tissue compatibility, and the hydrogel absorbs water in moist conditions, suggesting potential in applications such as wound dressings. The biofunctionalization potential was shown by attaching a biotinylated fluorescent protein and a biotinylated fluorescent small molecule via avidin and monitoring the material using confocal microscopy. The 3D-printable bioactivated nanocellulose-alginate hydrogel offers a platform for the development of biomedical devices, wearable sensors, and drug-releasing materials.

  11. Thermoresponsive chitosan-agarose hydrogel for skin regeneration.

    Science.gov (United States)

    Miguel, Sónia P; Ribeiro, Maximiano P; Brancal, Hugo; Coutinho, Paula; Correia, Ilídio J

    2014-10-13

    Healing enhancement and pain control are critical issues on wound management. So far, different wound dressings have been developed. Among them, hydrogels are the most applied. Herein, a thermoresponsive hydrogel was produced using chitosan (deacetylation degree 95%) and agarose. Hydrogel bactericidal activity, biocompatibility, morphology, porosity and wettability were characterized by confocal microscopy, MTS assay and SEM. The performance of the hydrogel in the wound healing process was evaluated through in vivo assays, during 21 days. The attained results revealed that hydrogel has a pore size (90-400 μm) compatible with cellular internalization and proliferation. A bactericidal activity was observed for hydrogels containing more than 188 μg/mL of chitosan. The improved healing and the lack of a reactive or a granulomatous inflammatory reaction in skin lesions treated with hydrogel demonstrate its suitability to be used in a near future as a wound dressing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of hydrogels composites for potential use as biomaterials

    International Nuclear Information System (INIS)

    Silva, Gabriela T. da; Alves, Natali O.; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Hydrogels, three-dimensional polymer networks that can absorb and retain impressive amounts of liquid, have shown a remarkable evolution in the past years. Since their first description, the hydrogels have replaced their inert characteristic by smart properties, which help enlarging the range of applicability of such soft materials in different fields. Hydrogels had been prepared from various polymers (including synthetic or natural or both), which allows obtaining materials with unique and desirable properties. This work deals with the preparation of hydrogels and hydrogel composites based on a synthetic/natural hybrid polymer network filled with bovine bone powder, which is composed mainly by hydroxyapatite (as inorganic phase) and collagen (as organic phase). The resulting materials were characterized by DRX, FTIR and TGA analyses. Additionally, water uptake capacity was estimated for both hydrogels and hydrogels composites samples by swelling assays. (author)

  13. Relationships between microstructure and microfissuring in alloy 718

    Science.gov (United States)

    Thompson, R. G.

    1985-01-01

    Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.

  14. Development of a radiochromic ferric oligomer hydrogel

    International Nuclear Information System (INIS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-01-01

    Ferrous gelatin hydrogels were prepared by using sulphuric acid concentrations lower than required to maintain radiation induced ferric ions fully hydrated. The ferric hydroxyl species that are produced following irradiation exhibit a radiochromic response that can be probed with blue light. The dose distribution shapes were stable in time, indicating no long term diffusion. An over response to dose gradients was observed both in one centimeter cuvette samples and litre volumes probed with optical cone beam CT. This ferrous hydrogel may represent a model system for studying iron radiochemistry in biological systems.

  15. Hydrogel based QCM aptasensor for detection of avian influenza virus.

    Science.gov (United States)

    Wang, Ronghui; Li, Yanbin

    2013-04-15

    The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

    Science.gov (United States)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos

    2017-10-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells

  17. Measurement of the dynamic behavior of thin poly(N-isopropylacrylamide) hydrogels and their phase transition temperatures measured using reflectometric interference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Fuminori [Konica Minolta, INC. (Japan); Akiyama, Yoshikatsu, E-mail: akiyama.yoshikatsu@twmu.ac.jp, E-mail: akiyama.yoshikatsu@abmes.twmu.ac.jp; Kobayashi, Jun [Tokyo Women’s Medical University (TWIns), Institute of Advanced Biomedical Engineering and Science (Japan); Ninomiya, Hidetaka [Konica Minolta, INC. (Japan); Kanazawa, Hideko [Keio University, Faculty of Pharmacy (Japan); Yamato, Masayuki; Okano, Teruo [Tokyo Women’s Medical University (TWIns), Institute of Advanced Biomedical Engineering and Science (Japan)

    2015-03-15

    Temperature-responsive cell culture surfaces prepared by modifying tissue-culture polystyrene with nanoscale poly(N-isopropylacrylamide) (PIPAAm) hydrogels are widely used as intelligent surfaces for the fabrication of various cell sheets that change with temperature. In this work, the characteristics of nanoscale PIPAAm hydrogels were phenomenologically elucidated on the basis of time-dependent surface evaluations under conditions of changing temperature. Because the dynamic characteristics of the nanoscale hydrogel did not exhibit good performance, the nanoscale PIPAAm hydrogel was analyzed by monitoring its temperature-dependent dynamic swelling/deswelling changes using reflectometric interference spectroscopy (RIfS) on an instrument equipped with a microfluidic system. RIfS measurements under ambient atmosphere provided the precise physical thickness of the dry PIPAAm hydrogel (6.7 nm), which agreed with the atomic force microscopy results (6.6 nm). Simulations of the reflectance spectra revealed that changes in the wavelength of the minimum reflectance (Δλ) were attributable to the changes in the refractive index of the thin PIPAAm hydrogel induced by a temperature-dependent volume phase transition. The temperature-dependent Δλ change was used to monitor the swelling/deswelling behavior of the nanoscale PIPAAm hydrogel. In addition, the phase transition temperature of the thin PIPAAm hydrogel under aqueous conditions was also determined to be the inflection point of the plot of the change in Δλ as a function of temperature. The dynamic behavior of a thin PIPAAm hydrogel chemically deposited on a surface was readily analyzed using a new analytical system with RIfS and microfluidic devices.

  18. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ϵ-caprolactone) for MSC chondrogenesis

    NARCIS (Netherlands)

    Stichler, Simone; Böck, Thomas; Paxton, Naomi; Bertlein, Sarah; Levato, Riccardo; Schill, Verena; Smolan, Willi; Malda, Jos; Teßmar, Jörg; Blunk, Torsten; Groll, Jürgen

    2017-01-01

    This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as a cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. The chemical cross-linking of gels with 10 wt.% overall

  19. Effects of local application of methylprednisolone delivered by the C/GP-hydrogel on the recovery of facial nerves.

    Science.gov (United States)

    Chao, Xiuhua; Fan, Zhaomin; Han, Yuechen; Wang, Yan; Li, Jianfeng; Chai, Renjie; Xu, Lei; Wang, Haibo

    2015-01-01

    Local administration of MP delivered by the C/GP-MP-hydrogel can improve the recovery of facial nerve following crush injury. The findings suggested that locally injected MP delivered by C/GP-hydrogel might be a promising treatment for facial nerve damage. In this study, the aim is to assess the effectiveness of locally administrating methylprednisolone(MP) loaded by chitosan-β-glycerophosphate hydrogel (C/GP-hydrogel) on the regeneration of facial nerve crush injury. After the crush of left facial nerves, Wistar rats were randomly divided into four different groups. Then, four different therapies were used to treat the damaged facial nerves. At the 1(st), 2(nd), 3(rd), and 4(th) week after injury, the functional recovery of facial nerves and the morphological changes of facial nerves were assessed. The expression of growth associated protein-43 (GAP-43) protein in the facial nucleus were also evaluated. Locally injected MP delivered by C/GP-hydrogel effectively accelerated the facial functional recovery. In addition, the regenerated facial nerves in the C/GP-MP group were more mature than those in the other groups. The expression of GAP-43 protein was also improved by the MP, especially in the C/GP-MP group.

  20. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  1. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials.

    Science.gov (United States)

    Kodjikian, Laurent; Casoli-Bergeron, Emmanuelle; Malet, Florence; Janin-Manificat, Hélène; Freney, Jean; Burillon, Carole; Colin, Joseph; Steghens, Jean-Paul

    2008-02-01

    As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay. Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37 degrees C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain. Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains. Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone-hydrogel lenses.

  2. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  3. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.

    Science.gov (United States)

    Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo

    2017-08-02

    Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.

  4. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    Science.gov (United States)

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transport of silver nanoparticles from nanocomposite Ag/alginate hydrogels under conditions mimicking tissue implantation

    Directory of Open Access Journals (Sweden)

    Kostić Danijela D.

    2017-01-01

    Full Text Available The aim of this work was to assess phenomena occurring during AgNP transport from nanocomposite Ag/alginate hydrogels under conditions relevant for potential biomedical applications as antimicrobial soft tissue implants. First, we have studied AgNP migration from the nanocomposite to the adjacent alginate hydrogel mimicking soft tissue next to the implant. AgNP deposition was carried out by the initial burst release lasting for ∼24 h yielding large aggregates on hydrogel surfaces and smaller clusters (∼400 nm in size inside. However, the overall released content was low (0.67% indicating high nanocomposite stability. In the next experimental series, release of AgNPs, 10–30 nm in size, from Ag/alginate microbeads in water was investigated under static conditions as well as under continuous perfusion mimicking vascularized tissues. Mathematical modeling has revealed AgNP release by diffusion under static conditions with the diffusion coefficient within the Ag/alginate hydrogel of 6.9x10–19 m2 s–1. Conversely, continuous perfusion induced increased AgNP release by convection with the interstitial fluid velocity estimated as 4.6 nm s–1. Overall, the obtained results indicated the influence of hydrodynamic conditions at the implantation site on silver release and potential implant functionality, which should be investigated at the experimentation beginning using appropriate in vitro systems. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45019

  6. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Akiyama, Kentaro; Ansari, Sahar; Xu, Xingtian; Chee, Winston W; Schricker, Scott R; Shi, Songtao

    2012-12-01

    The objectives of this study were to: (1) develop an injectable and biodegradable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the stem cell viability, and osteogenic differentiation of the stem cells in vitro. Stem cells were encapsulated using alginate hydrogel. The stem cell viability, proliferation and differentiation to adipogenic and osteogenic tissues were studied. To investigate the expression of both adipogenesis and ontogenesis related genes, the RNA was extracted and RT-PCR was performed. The degradation behavior of hydrogel based on oxidized sodium alginate with different degrees of oxidation was studied in PBS at 37 °C as a function of time by monitoring the changes in weight loss. The swelling kinetics of alginate hydrogel was also investigated. The results showed that alginate is a promising candidate as a non-toxic scaffold for PDLSCs and GMSCs. It also has the ability to direct the differentiation of these stem cells to osteogenic and adipogenic tissues as compared to the control group in vitro. The encapsulated stem cells remained viable in vitro and both osteo-differentiated and adipo-differentiated after 4 weeks of culturing in the induction media. It was found that the degradation profile and swelling kinetics of alginate hydrogel strongly depends on the degree of oxidation showing its tunable chemistry and degradation rate. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in the alginate microspheres provides a promising strategy for bone tissue engineering.

  7. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.

    Science.gov (United States)

    Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J

    2014-10-01

    In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels

    Science.gov (United States)

    Bertassoni, Luiz E.; Cardoso, Juliana C.; Manoharan, Vijayan; Cristino, Ana L.; Bhise, Nupura S.; Araujo, Wesleyan A.; Zorlutuna, Pinar; Vrana, Nihal E.; Ghaemmaghami, Amir M.

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least 8 days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. PMID:24695367

  9. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels

    International Nuclear Information System (INIS)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Dokmeci, Mehmet R; Khademhosseini, Ali; Ghaemmaghami, Amir M

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. (paper)

  10. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    Science.gov (United States)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  11. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.

    Science.gov (United States)

    Kuss, Mitchell A; Wu, Shaohua; Wang, Ying; Untrauer, Jason B; Li, Wenlong; Lim, Jung Yul; Duan, Bin

    2017-09-13

    Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  12. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    Science.gov (United States)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  13. Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA hydrogels

    Directory of Open Access Journals (Sweden)

    H.L. Abd El-Mohdy

    2016-11-01

    Full Text Available Association of poly(carboxylic acids and non-ionic polymers in solutions via hydrogen bonding results in formation of novel polymeric materials–interpolymer complexes. Starch/(EG-co-MAA polymeric hydrogels were obtained by γ-initiated radiation copolymerization of ethylene glycol (EG with methacrylic acid (MAA which grafted on starch. The gel content of prepared hydrogels was varied with changes in starch content, EG:MAA composition and irradiation dose as well as crosslinking density. The swelling was studied as a function of starch content, EG:MAA composition, irradiation dose, type of soaked liquid, pH and temperature of matrix-surrounding medium. The degree of swelling greatly increased with enhanced MAA content, pH and temperature whereas, it decreased with reduced starch content and irradiation dose. The swelling was varied with the polarity of soaked liquid. The results showed that Starch/(EG-co-MAA hydrogels reached the equilibrium swelling state in water after 72 h. The structure and surface morphology of prepared polymer were confirmed with FTIR and SEM, respectively. The thermal properties of hydrogels were studied by using DSC and TGA, they cleared that there is miscibility between EG and MAA in copolymer and adding them improve the thermal stability of starch. The results indicate that Starch/(EG-co-MAA materials may be used in various applications.

  14. Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization

    Science.gov (United States)

    Liu, Hongpeng; Yu, Dan; Zhou, Ke; Wang, Shichan; Luo, Suhua; Li, Li; Wang, Weibo; Song, Qinggong

    2018-05-01

    Optical sensor based on pH-sensitive hydrogel has important practical applications in medical diagnosis and bio-sensor areas. This report details the experimental and theoretical results from a novel photosensitive polymer hydrogel holographic sensor, which formed by thermal polymerization of 2-hydroxyethyl methacrylate, for the detection of pH in buffer. Volume grating recorded in the polymer hydrogel was employed in response to the performance of solution. Methacrylic acid with carboxyl groups was selected as the primary co-monomer to functionalize the matrix. Peak diffraction spectrum of holographic grating determined as a primary sensing parameter was characterized to reflect the change in pH. The extracted linear relation between peak wavelength and pH value provided a probability for the practical application of holographic sensor. To explore the sensing mechanism deeply, a theoretical model was used to describe the relevant holographic processes, including grating formation, dark diffusional enhancement, and final fringe swelling. Numerical result further showed all of the dynamic processes and internal sensing physical mechanism. These experimental and numerical results provided a significant foundation for the development of novel holographic sensor based on polymer hydrogel and improvement of its practical applicability.

  15. Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

    Science.gov (United States)

    Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.

    2017-05-01

    The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

  16. 4D Biofabrication Using Shape-Morphing Hydrogels.

    Science.gov (United States)

    Kirillova, Alina; Maxson, Ridge; Stoychev, Georgi; Gomillion, Cheryl T; Ionov, Leonid

    2017-12-01

    Despite the tremendous potential of bioprinting techniques toward the fabrication of highly complex biological structures and the flourishing progress in 3D bioprinting, the most critical challenge of the current approaches is the printing of hollow tubular structures. In this work, an advanced 4D biofabrication approach, based on printing of shape-morphing biopolymer hydrogels, is developed for the fabrication of hollow self-folding tubes with unprecedented control over their diameters and architectures at high resolution. The versatility of the approach is demonstrated by employing two different biopolymers (alginate and hyaluronic acid) and mouse bone marrow stromal cells. Harnessing the printing and postprinting parameters allows attaining average internal tube diameters as low as 20 µm, which is not yet achievable by other existing bioprinting/biofabrication approaches and is comparable to the diameters of the smallest blood vessels. The proposed 4D biofabrication process does not pose any negative effect on the viability of the printed cells, and the self-folded hydrogel-based tubes support cell survival for at least 7 d without any decrease in cell viability. Consequently, the presented 4D biofabrication strategy allows the production of dynamically reconfigurable architectures with tunable functionality and responsiveness, governed by the selection of suitable materials and cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    Science.gov (United States)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  18. Formulation and release of alaptide from cellulose-based hydrogels

    Directory of Open Access Journals (Sweden)

    Zbyněk Sklenář

    2012-01-01

    Full Text Available The modern drug alaptide, synthetic dipeptide, shows regenerative effects and effects on the epitelisation process. A commercial product consisting of 1% alaptide hydrophilic cream is authorised for use in veterinary practice. This study focuses on the formulation of alaptide into semi-synthetic polymer-based hydrogels. The aim of the present study is to prepare hydrogels and to evaluate the liberation of alaptide from hydrogels. The hydrogels were prepared on the basis of three gel-producing substances: methylcellulose, hydroxyethylcellulose and hydroxypropylcellulose. To enhance the drug release from hydrogel humectants, glycerol, propylene glycol and ethanol in various concentrations were evaluated. The permeation of the alaptide from gels into the acceptor solution was evaluated with the use of the permeable membrane neprophane. The amount of drug released from prepared hydrogels was determined spectrophotometrically. Hydrogels with optimal alaptide liberation properties were subjected to the study of rheological properties in the next phase. The optimal composition of hydrogel as established in this study was 1% alaptide + 3% hydroxyethylcellulose with the addition of 10% glycerol as humectant. Due to the advantageous properties of hydrogels in wounds, alaptide could be incorporated into a hydrogel base for use in veterinary medicine.

  19. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels<